ASTContext.cpp revision b9da713efb4277753211590953f433723908aade
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100
101  // TODO: handle comments for function parameters properly.
102  if (isa<ParmVarDecl>(D))
103    return NULL;
104
105  // TODO: we could look up template parameter documentation in the template
106  // documentation.
107  if (isa<TemplateTypeParmDecl>(D) ||
108      isa<NonTypeTemplateParmDecl>(D) ||
109      isa<TemplateTemplateParmDecl>(D))
110    return NULL;
111
112  ArrayRef<RawComment *> RawComments = Comments.getComments();
113
114  // If there are no comments anywhere, we won't find anything.
115  if (RawComments.empty())
116    return NULL;
117
118  // Find declaration location.
119  // For Objective-C declarations we generally don't expect to have multiple
120  // declarators, thus use declaration starting location as the "declaration
121  // location".
122  // For all other declarations multiple declarators are used quite frequently,
123  // so we use the location of the identifier as the "declaration location".
124  SourceLocation DeclLoc;
125  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
126      isa<ObjCPropertyDecl>(D) ||
127      isa<RedeclarableTemplateDecl>(D) ||
128      isa<ClassTemplateSpecializationDecl>(D))
129    DeclLoc = D->getLocStart();
130  else
131    DeclLoc = D->getLocation();
132
133  // If the declaration doesn't map directly to a location in a file, we
134  // can't find the comment.
135  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
136    return NULL;
137
138  // Find the comment that occurs just after this declaration.
139  ArrayRef<RawComment *>::iterator Comment;
140  {
141    // When searching for comments during parsing, the comment we are looking
142    // for is usually among the last two comments we parsed -- check them
143    // first.
144    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
145    BeforeThanCompare<RawComment> Compare(SourceMgr);
146    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
147    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
148    if (!Found && RawComments.size() >= 2) {
149      MaybeBeforeDecl--;
150      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
151    }
152
153    if (Found) {
154      Comment = MaybeBeforeDecl + 1;
155      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
156                                         &CommentAtDeclLoc, Compare));
157    } else {
158      // Slow path.
159      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
160                                 &CommentAtDeclLoc, Compare);
161    }
162  }
163
164  // Decompose the location for the declaration and find the beginning of the
165  // file buffer.
166  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
167
168  // First check whether we have a trailing comment.
169  if (Comment != RawComments.end() &&
170      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
171      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
172    std::pair<FileID, unsigned> CommentBeginDecomp
173      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
174    // Check that Doxygen trailing comment comes after the declaration, starts
175    // on the same line and in the same file as the declaration.
176    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
177        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
178          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
179                                     CommentBeginDecomp.second)) {
180      return *Comment;
181    }
182  }
183
184  // The comment just after the declaration was not a trailing comment.
185  // Let's look at the previous comment.
186  if (Comment == RawComments.begin())
187    return NULL;
188  --Comment;
189
190  // Check that we actually have a non-member Doxygen comment.
191  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
192    return NULL;
193
194  // Decompose the end of the comment.
195  std::pair<FileID, unsigned> CommentEndDecomp
196    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
197
198  // If the comment and the declaration aren't in the same file, then they
199  // aren't related.
200  if (DeclLocDecomp.first != CommentEndDecomp.first)
201    return NULL;
202
203  // Get the corresponding buffer.
204  bool Invalid = false;
205  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
206                                               &Invalid).data();
207  if (Invalid)
208    return NULL;
209
210  // Extract text between the comment and declaration.
211  StringRef Text(Buffer + CommentEndDecomp.second,
212                 DeclLocDecomp.second - CommentEndDecomp.second);
213
214  // There should be no other declarations or preprocessor directives between
215  // comment and declaration.
216  if (Text.find_first_of(",;{}#@") != StringRef::npos)
217    return NULL;
218
219  return *Comment;
220}
221
222namespace {
223/// If we have a 'templated' declaration for a template, adjust 'D' to
224/// refer to the actual template.
225/// If we have an implicit instantiation, adjust 'D' to refer to template.
226const Decl *adjustDeclToTemplate(const Decl *D) {
227  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
228    // Is this function declaration part of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
230      return FTD;
231
232    // Nothing to do if function is not an implicit instantiation.
233    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
234      return D;
235
236    // Function is an implicit instantiation of a function template?
237    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
238      return FTD;
239
240    // Function is instantiated from a member definition of a class template?
241    if (const FunctionDecl *MemberDecl =
242            FD->getInstantiatedFromMemberFunction())
243      return MemberDecl;
244
245    return D;
246  }
247  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
248    // Static data member is instantiated from a member definition of a class
249    // template?
250    if (VD->isStaticDataMember())
251      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
252        return MemberDecl;
253
254    return D;
255  }
256  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
257    // Is this class declaration part of a class template?
258    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
259      return CTD;
260
261    // Class is an implicit instantiation of a class template or partial
262    // specialization?
263    if (const ClassTemplateSpecializationDecl *CTSD =
264            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
265      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
266        return D;
267      llvm::PointerUnion<ClassTemplateDecl *,
268                         ClassTemplatePartialSpecializationDecl *>
269          PU = CTSD->getSpecializedTemplateOrPartial();
270      return PU.is<ClassTemplateDecl*>() ?
271          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
272          static_cast<const Decl*>(
273              PU.get<ClassTemplatePartialSpecializationDecl *>());
274    }
275
276    // Class is instantiated from a member definition of a class template?
277    if (const MemberSpecializationInfo *Info =
278                   CRD->getMemberSpecializationInfo())
279      return Info->getInstantiatedFrom();
280
281    return D;
282  }
283  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
284    // Enum is instantiated from a member definition of a class template?
285    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
286      return MemberDecl;
287
288    return D;
289  }
290  // FIXME: Adjust alias templates?
291  return D;
292}
293} // unnamed namespace
294
295const RawComment *ASTContext::getRawCommentForAnyRedecl(
296                                                const Decl *D,
297                                                const Decl **OriginalDecl) const {
298  D = adjustDeclToTemplate(D);
299
300  // Check whether we have cached a comment for this declaration already.
301  {
302    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
303        RedeclComments.find(D);
304    if (Pos != RedeclComments.end()) {
305      const RawCommentAndCacheFlags &Raw = Pos->second;
306      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
307        if (OriginalDecl)
308          *OriginalDecl = Raw.getOriginalDecl();
309        return Raw.getRaw();
310      }
311    }
312  }
313
314  // Search for comments attached to declarations in the redeclaration chain.
315  const RawComment *RC = NULL;
316  const Decl *OriginalDeclForRC = NULL;
317  for (Decl::redecl_iterator I = D->redecls_begin(),
318                             E = D->redecls_end();
319       I != E; ++I) {
320    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
321        RedeclComments.find(*I);
322    if (Pos != RedeclComments.end()) {
323      const RawCommentAndCacheFlags &Raw = Pos->second;
324      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
325        RC = Raw.getRaw();
326        OriginalDeclForRC = Raw.getOriginalDecl();
327        break;
328      }
329    } else {
330      RC = getRawCommentForDeclNoCache(*I);
331      OriginalDeclForRC = *I;
332      RawCommentAndCacheFlags Raw;
333      if (RC) {
334        Raw.setRaw(RC);
335        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
336      } else
337        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
338      Raw.setOriginalDecl(*I);
339      RedeclComments[*I] = Raw;
340      if (RC)
341        break;
342    }
343  }
344
345  // If we found a comment, it should be a documentation comment.
346  assert(!RC || RC->isDocumentation());
347
348  if (OriginalDecl)
349    *OriginalDecl = OriginalDeclForRC;
350
351  // Update cache for every declaration in the redeclaration chain.
352  RawCommentAndCacheFlags Raw;
353  Raw.setRaw(RC);
354  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
355  Raw.setOriginalDecl(OriginalDeclForRC);
356
357  for (Decl::redecl_iterator I = D->redecls_begin(),
358                             E = D->redecls_end();
359       I != E; ++I) {
360    RawCommentAndCacheFlags &R = RedeclComments[*I];
361    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
362      R = Raw;
363  }
364
365  return RC;
366}
367
368static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
369                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
370  const DeclContext *DC = ObjCMethod->getDeclContext();
371  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
372    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
373    if (!ID)
374      return;
375    // Add redeclared method here.
376    for (ObjCInterfaceDecl::known_extensions_iterator
377           Ext = ID->known_extensions_begin(),
378           ExtEnd = ID->known_extensions_end();
379         Ext != ExtEnd; ++Ext) {
380      if (ObjCMethodDecl *RedeclaredMethod =
381            Ext->getMethod(ObjCMethod->getSelector(),
382                                  ObjCMethod->isInstanceMethod()))
383        Redeclared.push_back(RedeclaredMethod);
384    }
385  }
386}
387
388comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
389                                                    const Decl *D) const {
390  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
391  ThisDeclInfo->CommentDecl = D;
392  ThisDeclInfo->IsFilled = false;
393  ThisDeclInfo->fill();
394  ThisDeclInfo->CommentDecl = FC->getDecl();
395  comments::FullComment *CFC =
396    new (*this) comments::FullComment(FC->getBlocks(),
397                                      ThisDeclInfo);
398  return CFC;
399
400}
401
402comments::FullComment *ASTContext::getCommentForDecl(
403                                              const Decl *D,
404                                              const Preprocessor *PP) const {
405  D = adjustDeclToTemplate(D);
406
407  const Decl *Canonical = D->getCanonicalDecl();
408  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
409      ParsedComments.find(Canonical);
410
411  if (Pos != ParsedComments.end()) {
412    if (Canonical != D) {
413      comments::FullComment *FC = Pos->second;
414      comments::FullComment *CFC = cloneFullComment(FC, D);
415      return CFC;
416    }
417    return Pos->second;
418  }
419
420  const Decl *OriginalDecl;
421
422  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
423  if (!RC) {
424    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
425      SmallVector<const NamedDecl*, 8> Overridden;
426      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
427      if (OMD && OMD->isPropertyAccessor())
428        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
429          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
430            return cloneFullComment(FC, D);
431      if (OMD)
432        addRedeclaredMethods(OMD, Overridden);
433      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
434      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
435        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
436          return cloneFullComment(FC, D);
437    }
438    else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
439      // Attach any tag type's documentation to its typedef if latter
440      // does not have one of its own.
441      QualType QT = TD->getUnderlyingType();
442      if (const TagType *TT = QT->getAs<TagType>())
443        if (const Decl *TD = TT->getDecl())
444          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
445            return cloneFullComment(FC, D);
446    }
447    return NULL;
448  }
449
450  // If the RawComment was attached to other redeclaration of this Decl, we
451  // should parse the comment in context of that other Decl.  This is important
452  // because comments can contain references to parameter names which can be
453  // different across redeclarations.
454  if (D != OriginalDecl)
455    return getCommentForDecl(OriginalDecl, PP);
456
457  comments::FullComment *FC = RC->parse(*this, PP, D);
458  ParsedComments[Canonical] = FC;
459  return FC;
460}
461
462void
463ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
464                                               TemplateTemplateParmDecl *Parm) {
465  ID.AddInteger(Parm->getDepth());
466  ID.AddInteger(Parm->getPosition());
467  ID.AddBoolean(Parm->isParameterPack());
468
469  TemplateParameterList *Params = Parm->getTemplateParameters();
470  ID.AddInteger(Params->size());
471  for (TemplateParameterList::const_iterator P = Params->begin(),
472                                          PEnd = Params->end();
473       P != PEnd; ++P) {
474    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
475      ID.AddInteger(0);
476      ID.AddBoolean(TTP->isParameterPack());
477      continue;
478    }
479
480    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
481      ID.AddInteger(1);
482      ID.AddBoolean(NTTP->isParameterPack());
483      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
484      if (NTTP->isExpandedParameterPack()) {
485        ID.AddBoolean(true);
486        ID.AddInteger(NTTP->getNumExpansionTypes());
487        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
488          QualType T = NTTP->getExpansionType(I);
489          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
490        }
491      } else
492        ID.AddBoolean(false);
493      continue;
494    }
495
496    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
497    ID.AddInteger(2);
498    Profile(ID, TTP);
499  }
500}
501
502TemplateTemplateParmDecl *
503ASTContext::getCanonicalTemplateTemplateParmDecl(
504                                          TemplateTemplateParmDecl *TTP) const {
505  // Check if we already have a canonical template template parameter.
506  llvm::FoldingSetNodeID ID;
507  CanonicalTemplateTemplateParm::Profile(ID, TTP);
508  void *InsertPos = 0;
509  CanonicalTemplateTemplateParm *Canonical
510    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
511  if (Canonical)
512    return Canonical->getParam();
513
514  // Build a canonical template parameter list.
515  TemplateParameterList *Params = TTP->getTemplateParameters();
516  SmallVector<NamedDecl *, 4> CanonParams;
517  CanonParams.reserve(Params->size());
518  for (TemplateParameterList::const_iterator P = Params->begin(),
519                                          PEnd = Params->end();
520       P != PEnd; ++P) {
521    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
522      CanonParams.push_back(
523                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
524                                               SourceLocation(),
525                                               SourceLocation(),
526                                               TTP->getDepth(),
527                                               TTP->getIndex(), 0, false,
528                                               TTP->isParameterPack()));
529    else if (NonTypeTemplateParmDecl *NTTP
530             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
531      QualType T = getCanonicalType(NTTP->getType());
532      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
533      NonTypeTemplateParmDecl *Param;
534      if (NTTP->isExpandedParameterPack()) {
535        SmallVector<QualType, 2> ExpandedTypes;
536        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
537        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
538          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
539          ExpandedTInfos.push_back(
540                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
541        }
542
543        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
544                                                SourceLocation(),
545                                                SourceLocation(),
546                                                NTTP->getDepth(),
547                                                NTTP->getPosition(), 0,
548                                                T,
549                                                TInfo,
550                                                ExpandedTypes.data(),
551                                                ExpandedTypes.size(),
552                                                ExpandedTInfos.data());
553      } else {
554        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
555                                                SourceLocation(),
556                                                SourceLocation(),
557                                                NTTP->getDepth(),
558                                                NTTP->getPosition(), 0,
559                                                T,
560                                                NTTP->isParameterPack(),
561                                                TInfo);
562      }
563      CanonParams.push_back(Param);
564
565    } else
566      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
567                                           cast<TemplateTemplateParmDecl>(*P)));
568  }
569
570  TemplateTemplateParmDecl *CanonTTP
571    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
572                                       SourceLocation(), TTP->getDepth(),
573                                       TTP->getPosition(),
574                                       TTP->isParameterPack(),
575                                       0,
576                         TemplateParameterList::Create(*this, SourceLocation(),
577                                                       SourceLocation(),
578                                                       CanonParams.data(),
579                                                       CanonParams.size(),
580                                                       SourceLocation()));
581
582  // Get the new insert position for the node we care about.
583  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
584  assert(Canonical == 0 && "Shouldn't be in the map!");
585  (void)Canonical;
586
587  // Create the canonical template template parameter entry.
588  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
589  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
590  return CanonTTP;
591}
592
593CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
594  if (!LangOpts.CPlusPlus) return 0;
595
596  switch (T.getCXXABI().getKind()) {
597  case TargetCXXABI::GenericARM:
598  case TargetCXXABI::iOS:
599    return CreateARMCXXABI(*this);
600  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
601  case TargetCXXABI::GenericItanium:
602    return CreateItaniumCXXABI(*this);
603  case TargetCXXABI::Microsoft:
604    return CreateMicrosoftCXXABI(*this);
605  }
606  llvm_unreachable("Invalid CXXABI type!");
607}
608
609static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
610                                             const LangOptions &LOpts) {
611  if (LOpts.FakeAddressSpaceMap) {
612    // The fake address space map must have a distinct entry for each
613    // language-specific address space.
614    static const unsigned FakeAddrSpaceMap[] = {
615      1, // opencl_global
616      2, // opencl_local
617      3, // opencl_constant
618      4, // cuda_device
619      5, // cuda_constant
620      6  // cuda_shared
621    };
622    return &FakeAddrSpaceMap;
623  } else {
624    return &T.getAddressSpaceMap();
625  }
626}
627
628ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
629                       const TargetInfo *t,
630                       IdentifierTable &idents, SelectorTable &sels,
631                       Builtin::Context &builtins,
632                       unsigned size_reserve,
633                       bool DelayInitialization)
634  : FunctionProtoTypes(this_()),
635    TemplateSpecializationTypes(this_()),
636    DependentTemplateSpecializationTypes(this_()),
637    SubstTemplateTemplateParmPacks(this_()),
638    GlobalNestedNameSpecifier(0),
639    Int128Decl(0), UInt128Decl(0),
640    BuiltinVaListDecl(0),
641    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
642    BOOLDecl(0),
643    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
644    FILEDecl(0),
645    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
646    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
647    cudaConfigureCallDecl(0),
648    NullTypeSourceInfo(QualType()),
649    FirstLocalImport(), LastLocalImport(),
650    SourceMgr(SM), LangOpts(LOpts),
651    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
652    Idents(idents), Selectors(sels),
653    BuiltinInfo(builtins),
654    DeclarationNames(*this),
655    ExternalSource(0), Listener(0),
656    Comments(SM), CommentsLoaded(false),
657    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
658    LastSDM(0, 0),
659    UniqueBlockByRefTypeID(0)
660{
661  if (size_reserve > 0) Types.reserve(size_reserve);
662  TUDecl = TranslationUnitDecl::Create(*this);
663
664  if (!DelayInitialization) {
665    assert(t && "No target supplied for ASTContext initialization");
666    InitBuiltinTypes(*t);
667  }
668}
669
670ASTContext::~ASTContext() {
671  // Release the DenseMaps associated with DeclContext objects.
672  // FIXME: Is this the ideal solution?
673  ReleaseDeclContextMaps();
674
675  // Call all of the deallocation functions.
676  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
677    Deallocations[I].first(Deallocations[I].second);
678
679  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
680  // because they can contain DenseMaps.
681  for (llvm::DenseMap<const ObjCContainerDecl*,
682       const ASTRecordLayout*>::iterator
683       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
684    // Increment in loop to prevent using deallocated memory.
685    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
686      R->Destroy(*this);
687
688  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
689       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
690    // Increment in loop to prevent using deallocated memory.
691    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
692      R->Destroy(*this);
693  }
694
695  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
696                                                    AEnd = DeclAttrs.end();
697       A != AEnd; ++A)
698    A->second->~AttrVec();
699}
700
701void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
702  Deallocations.push_back(std::make_pair(Callback, Data));
703}
704
705void
706ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
707  ExternalSource.reset(Source.take());
708}
709
710void ASTContext::PrintStats() const {
711  llvm::errs() << "\n*** AST Context Stats:\n";
712  llvm::errs() << "  " << Types.size() << " types total.\n";
713
714  unsigned counts[] = {
715#define TYPE(Name, Parent) 0,
716#define ABSTRACT_TYPE(Name, Parent)
717#include "clang/AST/TypeNodes.def"
718    0 // Extra
719  };
720
721  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
722    Type *T = Types[i];
723    counts[(unsigned)T->getTypeClass()]++;
724  }
725
726  unsigned Idx = 0;
727  unsigned TotalBytes = 0;
728#define TYPE(Name, Parent)                                              \
729  if (counts[Idx])                                                      \
730    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
731                 << " types\n";                                         \
732  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
733  ++Idx;
734#define ABSTRACT_TYPE(Name, Parent)
735#include "clang/AST/TypeNodes.def"
736
737  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
738
739  // Implicit special member functions.
740  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
741               << NumImplicitDefaultConstructors
742               << " implicit default constructors created\n";
743  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
744               << NumImplicitCopyConstructors
745               << " implicit copy constructors created\n";
746  if (getLangOpts().CPlusPlus)
747    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
748                 << NumImplicitMoveConstructors
749                 << " implicit move constructors created\n";
750  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
751               << NumImplicitCopyAssignmentOperators
752               << " implicit copy assignment operators created\n";
753  if (getLangOpts().CPlusPlus)
754    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
755                 << NumImplicitMoveAssignmentOperators
756                 << " implicit move assignment operators created\n";
757  llvm::errs() << NumImplicitDestructorsDeclared << "/"
758               << NumImplicitDestructors
759               << " implicit destructors created\n";
760
761  if (ExternalSource.get()) {
762    llvm::errs() << "\n";
763    ExternalSource->PrintStats();
764  }
765
766  BumpAlloc.PrintStats();
767}
768
769TypedefDecl *ASTContext::getInt128Decl() const {
770  if (!Int128Decl) {
771    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
772    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
773                                     getTranslationUnitDecl(),
774                                     SourceLocation(),
775                                     SourceLocation(),
776                                     &Idents.get("__int128_t"),
777                                     TInfo);
778  }
779
780  return Int128Decl;
781}
782
783TypedefDecl *ASTContext::getUInt128Decl() const {
784  if (!UInt128Decl) {
785    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
786    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
787                                     getTranslationUnitDecl(),
788                                     SourceLocation(),
789                                     SourceLocation(),
790                                     &Idents.get("__uint128_t"),
791                                     TInfo);
792  }
793
794  return UInt128Decl;
795}
796
797void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
798  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
799  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
800  Types.push_back(Ty);
801}
802
803void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
804  assert((!this->Target || this->Target == &Target) &&
805         "Incorrect target reinitialization");
806  assert(VoidTy.isNull() && "Context reinitialized?");
807
808  this->Target = &Target;
809
810  ABI.reset(createCXXABI(Target));
811  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
812
813  // C99 6.2.5p19.
814  InitBuiltinType(VoidTy,              BuiltinType::Void);
815
816  // C99 6.2.5p2.
817  InitBuiltinType(BoolTy,              BuiltinType::Bool);
818  // C99 6.2.5p3.
819  if (LangOpts.CharIsSigned)
820    InitBuiltinType(CharTy,            BuiltinType::Char_S);
821  else
822    InitBuiltinType(CharTy,            BuiltinType::Char_U);
823  // C99 6.2.5p4.
824  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
825  InitBuiltinType(ShortTy,             BuiltinType::Short);
826  InitBuiltinType(IntTy,               BuiltinType::Int);
827  InitBuiltinType(LongTy,              BuiltinType::Long);
828  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
829
830  // C99 6.2.5p6.
831  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
832  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
833  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
834  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
835  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
836
837  // C99 6.2.5p10.
838  InitBuiltinType(FloatTy,             BuiltinType::Float);
839  InitBuiltinType(DoubleTy,            BuiltinType::Double);
840  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
841
842  // GNU extension, 128-bit integers.
843  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
844  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
845
846  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
847    if (TargetInfo::isTypeSigned(Target.getWCharType()))
848      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
849    else  // -fshort-wchar makes wchar_t be unsigned.
850      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
851  } else // C99 (or C++ using -fno-wchar)
852    WCharTy = getFromTargetType(Target.getWCharType());
853
854  WIntTy = getFromTargetType(Target.getWIntType());
855
856  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
857    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
858  else // C99
859    Char16Ty = getFromTargetType(Target.getChar16Type());
860
861  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
862    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
863  else // C99
864    Char32Ty = getFromTargetType(Target.getChar32Type());
865
866  // Placeholder type for type-dependent expressions whose type is
867  // completely unknown. No code should ever check a type against
868  // DependentTy and users should never see it; however, it is here to
869  // help diagnose failures to properly check for type-dependent
870  // expressions.
871  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
872
873  // Placeholder type for functions.
874  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
875
876  // Placeholder type for bound members.
877  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
878
879  // Placeholder type for pseudo-objects.
880  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
881
882  // "any" type; useful for debugger-like clients.
883  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
884
885  // Placeholder type for unbridged ARC casts.
886  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
887
888  // Placeholder type for builtin functions.
889  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
890
891  // C99 6.2.5p11.
892  FloatComplexTy      = getComplexType(FloatTy);
893  DoubleComplexTy     = getComplexType(DoubleTy);
894  LongDoubleComplexTy = getComplexType(LongDoubleTy);
895
896  // Builtin types for 'id', 'Class', and 'SEL'.
897  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
898  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
899  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
900
901  if (LangOpts.OpenCL) {
902    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
903    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
904    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
905    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
906    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
907    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
908
909    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
910    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
911  }
912
913  // Builtin type for __objc_yes and __objc_no
914  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
915                       SignedCharTy : BoolTy);
916
917  ObjCConstantStringType = QualType();
918
919  ObjCSuperType = QualType();
920
921  // void * type
922  VoidPtrTy = getPointerType(VoidTy);
923
924  // nullptr type (C++0x 2.14.7)
925  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
926
927  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
928  InitBuiltinType(HalfTy, BuiltinType::Half);
929
930  // Builtin type used to help define __builtin_va_list.
931  VaListTagTy = QualType();
932}
933
934DiagnosticsEngine &ASTContext::getDiagnostics() const {
935  return SourceMgr.getDiagnostics();
936}
937
938AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
939  AttrVec *&Result = DeclAttrs[D];
940  if (!Result) {
941    void *Mem = Allocate(sizeof(AttrVec));
942    Result = new (Mem) AttrVec;
943  }
944
945  return *Result;
946}
947
948/// \brief Erase the attributes corresponding to the given declaration.
949void ASTContext::eraseDeclAttrs(const Decl *D) {
950  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
951  if (Pos != DeclAttrs.end()) {
952    Pos->second->~AttrVec();
953    DeclAttrs.erase(Pos);
954  }
955}
956
957MemberSpecializationInfo *
958ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
959  assert(Var->isStaticDataMember() && "Not a static data member");
960  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
961    = InstantiatedFromStaticDataMember.find(Var);
962  if (Pos == InstantiatedFromStaticDataMember.end())
963    return 0;
964
965  return Pos->second;
966}
967
968void
969ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
970                                                TemplateSpecializationKind TSK,
971                                          SourceLocation PointOfInstantiation) {
972  assert(Inst->isStaticDataMember() && "Not a static data member");
973  assert(Tmpl->isStaticDataMember() && "Not a static data member");
974  assert(!InstantiatedFromStaticDataMember[Inst] &&
975         "Already noted what static data member was instantiated from");
976  InstantiatedFromStaticDataMember[Inst]
977    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
978}
979
980FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
981                                                     const FunctionDecl *FD){
982  assert(FD && "Specialization is 0");
983  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
984    = ClassScopeSpecializationPattern.find(FD);
985  if (Pos == ClassScopeSpecializationPattern.end())
986    return 0;
987
988  return Pos->second;
989}
990
991void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
992                                        FunctionDecl *Pattern) {
993  assert(FD && "Specialization is 0");
994  assert(Pattern && "Class scope specialization pattern is 0");
995  ClassScopeSpecializationPattern[FD] = Pattern;
996}
997
998NamedDecl *
999ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1000  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1001    = InstantiatedFromUsingDecl.find(UUD);
1002  if (Pos == InstantiatedFromUsingDecl.end())
1003    return 0;
1004
1005  return Pos->second;
1006}
1007
1008void
1009ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1010  assert((isa<UsingDecl>(Pattern) ||
1011          isa<UnresolvedUsingValueDecl>(Pattern) ||
1012          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1013         "pattern decl is not a using decl");
1014  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1015  InstantiatedFromUsingDecl[Inst] = Pattern;
1016}
1017
1018UsingShadowDecl *
1019ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1020  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1021    = InstantiatedFromUsingShadowDecl.find(Inst);
1022  if (Pos == InstantiatedFromUsingShadowDecl.end())
1023    return 0;
1024
1025  return Pos->second;
1026}
1027
1028void
1029ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1030                                               UsingShadowDecl *Pattern) {
1031  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1032  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1033}
1034
1035FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1036  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1037    = InstantiatedFromUnnamedFieldDecl.find(Field);
1038  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1039    return 0;
1040
1041  return Pos->second;
1042}
1043
1044void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1045                                                     FieldDecl *Tmpl) {
1046  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1047  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1048  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1049         "Already noted what unnamed field was instantiated from");
1050
1051  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1052}
1053
1054bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1055                                    const FieldDecl *LastFD) const {
1056  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1057          FD->getBitWidthValue(*this) == 0);
1058}
1059
1060bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1061                                             const FieldDecl *LastFD) const {
1062  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1063          FD->getBitWidthValue(*this) == 0 &&
1064          LastFD->getBitWidthValue(*this) != 0);
1065}
1066
1067bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1068                                         const FieldDecl *LastFD) const {
1069  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1070          FD->getBitWidthValue(*this) &&
1071          LastFD->getBitWidthValue(*this));
1072}
1073
1074bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1075                                         const FieldDecl *LastFD) const {
1076  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1077          LastFD->getBitWidthValue(*this));
1078}
1079
1080bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1081                                             const FieldDecl *LastFD) const {
1082  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1083          FD->getBitWidthValue(*this));
1084}
1085
1086ASTContext::overridden_cxx_method_iterator
1087ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1088  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1089    = OverriddenMethods.find(Method->getCanonicalDecl());
1090  if (Pos == OverriddenMethods.end())
1091    return 0;
1092
1093  return Pos->second.begin();
1094}
1095
1096ASTContext::overridden_cxx_method_iterator
1097ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1098  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1099    = OverriddenMethods.find(Method->getCanonicalDecl());
1100  if (Pos == OverriddenMethods.end())
1101    return 0;
1102
1103  return Pos->second.end();
1104}
1105
1106unsigned
1107ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1108  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1109    = OverriddenMethods.find(Method->getCanonicalDecl());
1110  if (Pos == OverriddenMethods.end())
1111    return 0;
1112
1113  return Pos->second.size();
1114}
1115
1116void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1117                                     const CXXMethodDecl *Overridden) {
1118  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1119  OverriddenMethods[Method].push_back(Overridden);
1120}
1121
1122void ASTContext::getOverriddenMethods(
1123                      const NamedDecl *D,
1124                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1125  assert(D);
1126
1127  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1128    Overridden.append(CXXMethod->begin_overridden_methods(),
1129                      CXXMethod->end_overridden_methods());
1130    return;
1131  }
1132
1133  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1134  if (!Method)
1135    return;
1136
1137  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1138  Method->getOverriddenMethods(OverDecls);
1139  Overridden.append(OverDecls.begin(), OverDecls.end());
1140}
1141
1142void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1143  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1144  assert(!Import->isFromASTFile() && "Non-local import declaration");
1145  if (!FirstLocalImport) {
1146    FirstLocalImport = Import;
1147    LastLocalImport = Import;
1148    return;
1149  }
1150
1151  LastLocalImport->NextLocalImport = Import;
1152  LastLocalImport = Import;
1153}
1154
1155//===----------------------------------------------------------------------===//
1156//                         Type Sizing and Analysis
1157//===----------------------------------------------------------------------===//
1158
1159/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1160/// scalar floating point type.
1161const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1162  const BuiltinType *BT = T->getAs<BuiltinType>();
1163  assert(BT && "Not a floating point type!");
1164  switch (BT->getKind()) {
1165  default: llvm_unreachable("Not a floating point type!");
1166  case BuiltinType::Half:       return Target->getHalfFormat();
1167  case BuiltinType::Float:      return Target->getFloatFormat();
1168  case BuiltinType::Double:     return Target->getDoubleFormat();
1169  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1170  }
1171}
1172
1173/// getDeclAlign - Return a conservative estimate of the alignment of the
1174/// specified decl.  Note that bitfields do not have a valid alignment, so
1175/// this method will assert on them.
1176/// If @p RefAsPointee, references are treated like their underlying type
1177/// (for alignof), else they're treated like pointers (for CodeGen).
1178CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1179  unsigned Align = Target->getCharWidth();
1180
1181  bool UseAlignAttrOnly = false;
1182  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1183    Align = AlignFromAttr;
1184
1185    // __attribute__((aligned)) can increase or decrease alignment
1186    // *except* on a struct or struct member, where it only increases
1187    // alignment unless 'packed' is also specified.
1188    //
1189    // It is an error for alignas to decrease alignment, so we can
1190    // ignore that possibility;  Sema should diagnose it.
1191    if (isa<FieldDecl>(D)) {
1192      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1193        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1194    } else {
1195      UseAlignAttrOnly = true;
1196    }
1197  }
1198  else if (isa<FieldDecl>(D))
1199      UseAlignAttrOnly =
1200        D->hasAttr<PackedAttr>() ||
1201        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1202
1203  // If we're using the align attribute only, just ignore everything
1204  // else about the declaration and its type.
1205  if (UseAlignAttrOnly) {
1206    // do nothing
1207
1208  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1209    QualType T = VD->getType();
1210    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1211      if (RefAsPointee)
1212        T = RT->getPointeeType();
1213      else
1214        T = getPointerType(RT->getPointeeType());
1215    }
1216    if (!T->isIncompleteType() && !T->isFunctionType()) {
1217      // Adjust alignments of declarations with array type by the
1218      // large-array alignment on the target.
1219      unsigned MinWidth = Target->getLargeArrayMinWidth();
1220      const ArrayType *arrayType;
1221      if (MinWidth && (arrayType = getAsArrayType(T))) {
1222        if (isa<VariableArrayType>(arrayType))
1223          Align = std::max(Align, Target->getLargeArrayAlign());
1224        else if (isa<ConstantArrayType>(arrayType) &&
1225                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1226          Align = std::max(Align, Target->getLargeArrayAlign());
1227
1228        // Walk through any array types while we're at it.
1229        T = getBaseElementType(arrayType);
1230      }
1231      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1232    }
1233
1234    // Fields can be subject to extra alignment constraints, like if
1235    // the field is packed, the struct is packed, or the struct has a
1236    // a max-field-alignment constraint (#pragma pack).  So calculate
1237    // the actual alignment of the field within the struct, and then
1238    // (as we're expected to) constrain that by the alignment of the type.
1239    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1240      // So calculate the alignment of the field.
1241      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1242
1243      // Start with the record's overall alignment.
1244      unsigned fieldAlign = toBits(layout.getAlignment());
1245
1246      // Use the GCD of that and the offset within the record.
1247      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1248      if (offset > 0) {
1249        // Alignment is always a power of 2, so the GCD will be a power of 2,
1250        // which means we get to do this crazy thing instead of Euclid's.
1251        uint64_t lowBitOfOffset = offset & (~offset + 1);
1252        if (lowBitOfOffset < fieldAlign)
1253          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1254      }
1255
1256      Align = std::min(Align, fieldAlign);
1257    }
1258  }
1259
1260  return toCharUnitsFromBits(Align);
1261}
1262
1263// getTypeInfoDataSizeInChars - Return the size of a type, in
1264// chars. If the type is a record, its data size is returned.  This is
1265// the size of the memcpy that's performed when assigning this type
1266// using a trivial copy/move assignment operator.
1267std::pair<CharUnits, CharUnits>
1268ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1269  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1270
1271  // In C++, objects can sometimes be allocated into the tail padding
1272  // of a base-class subobject.  We decide whether that's possible
1273  // during class layout, so here we can just trust the layout results.
1274  if (getLangOpts().CPlusPlus) {
1275    if (const RecordType *RT = T->getAs<RecordType>()) {
1276      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1277      sizeAndAlign.first = layout.getDataSize();
1278    }
1279  }
1280
1281  return sizeAndAlign;
1282}
1283
1284std::pair<CharUnits, CharUnits>
1285ASTContext::getTypeInfoInChars(const Type *T) const {
1286  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1287  return std::make_pair(toCharUnitsFromBits(Info.first),
1288                        toCharUnitsFromBits(Info.second));
1289}
1290
1291std::pair<CharUnits, CharUnits>
1292ASTContext::getTypeInfoInChars(QualType T) const {
1293  return getTypeInfoInChars(T.getTypePtr());
1294}
1295
1296std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1297  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1298  if (it != MemoizedTypeInfo.end())
1299    return it->second;
1300
1301  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1302  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1303  return Info;
1304}
1305
1306/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1307/// method does not work on incomplete types.
1308///
1309/// FIXME: Pointers into different addr spaces could have different sizes and
1310/// alignment requirements: getPointerInfo should take an AddrSpace, this
1311/// should take a QualType, &c.
1312std::pair<uint64_t, unsigned>
1313ASTContext::getTypeInfoImpl(const Type *T) const {
1314  uint64_t Width=0;
1315  unsigned Align=8;
1316  switch (T->getTypeClass()) {
1317#define TYPE(Class, Base)
1318#define ABSTRACT_TYPE(Class, Base)
1319#define NON_CANONICAL_TYPE(Class, Base)
1320#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1321#include "clang/AST/TypeNodes.def"
1322    llvm_unreachable("Should not see dependent types");
1323
1324  case Type::FunctionNoProto:
1325  case Type::FunctionProto:
1326    // GCC extension: alignof(function) = 32 bits
1327    Width = 0;
1328    Align = 32;
1329    break;
1330
1331  case Type::IncompleteArray:
1332  case Type::VariableArray:
1333    Width = 0;
1334    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1335    break;
1336
1337  case Type::ConstantArray: {
1338    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1339
1340    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1341    uint64_t Size = CAT->getSize().getZExtValue();
1342    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1343           "Overflow in array type bit size evaluation");
1344    Width = EltInfo.first*Size;
1345    Align = EltInfo.second;
1346    Width = llvm::RoundUpToAlignment(Width, Align);
1347    break;
1348  }
1349  case Type::ExtVector:
1350  case Type::Vector: {
1351    const VectorType *VT = cast<VectorType>(T);
1352    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1353    Width = EltInfo.first*VT->getNumElements();
1354    Align = Width;
1355    // If the alignment is not a power of 2, round up to the next power of 2.
1356    // This happens for non-power-of-2 length vectors.
1357    if (Align & (Align-1)) {
1358      Align = llvm::NextPowerOf2(Align);
1359      Width = llvm::RoundUpToAlignment(Width, Align);
1360    }
1361    // Adjust the alignment based on the target max.
1362    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1363    if (TargetVectorAlign && TargetVectorAlign < Align)
1364      Align = TargetVectorAlign;
1365    break;
1366  }
1367
1368  case Type::Builtin:
1369    switch (cast<BuiltinType>(T)->getKind()) {
1370    default: llvm_unreachable("Unknown builtin type!");
1371    case BuiltinType::Void:
1372      // GCC extension: alignof(void) = 8 bits.
1373      Width = 0;
1374      Align = 8;
1375      break;
1376
1377    case BuiltinType::Bool:
1378      Width = Target->getBoolWidth();
1379      Align = Target->getBoolAlign();
1380      break;
1381    case BuiltinType::Char_S:
1382    case BuiltinType::Char_U:
1383    case BuiltinType::UChar:
1384    case BuiltinType::SChar:
1385      Width = Target->getCharWidth();
1386      Align = Target->getCharAlign();
1387      break;
1388    case BuiltinType::WChar_S:
1389    case BuiltinType::WChar_U:
1390      Width = Target->getWCharWidth();
1391      Align = Target->getWCharAlign();
1392      break;
1393    case BuiltinType::Char16:
1394      Width = Target->getChar16Width();
1395      Align = Target->getChar16Align();
1396      break;
1397    case BuiltinType::Char32:
1398      Width = Target->getChar32Width();
1399      Align = Target->getChar32Align();
1400      break;
1401    case BuiltinType::UShort:
1402    case BuiltinType::Short:
1403      Width = Target->getShortWidth();
1404      Align = Target->getShortAlign();
1405      break;
1406    case BuiltinType::UInt:
1407    case BuiltinType::Int:
1408      Width = Target->getIntWidth();
1409      Align = Target->getIntAlign();
1410      break;
1411    case BuiltinType::ULong:
1412    case BuiltinType::Long:
1413      Width = Target->getLongWidth();
1414      Align = Target->getLongAlign();
1415      break;
1416    case BuiltinType::ULongLong:
1417    case BuiltinType::LongLong:
1418      Width = Target->getLongLongWidth();
1419      Align = Target->getLongLongAlign();
1420      break;
1421    case BuiltinType::Int128:
1422    case BuiltinType::UInt128:
1423      Width = 128;
1424      Align = 128; // int128_t is 128-bit aligned on all targets.
1425      break;
1426    case BuiltinType::Half:
1427      Width = Target->getHalfWidth();
1428      Align = Target->getHalfAlign();
1429      break;
1430    case BuiltinType::Float:
1431      Width = Target->getFloatWidth();
1432      Align = Target->getFloatAlign();
1433      break;
1434    case BuiltinType::Double:
1435      Width = Target->getDoubleWidth();
1436      Align = Target->getDoubleAlign();
1437      break;
1438    case BuiltinType::LongDouble:
1439      Width = Target->getLongDoubleWidth();
1440      Align = Target->getLongDoubleAlign();
1441      break;
1442    case BuiltinType::NullPtr:
1443      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1444      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1445      break;
1446    case BuiltinType::ObjCId:
1447    case BuiltinType::ObjCClass:
1448    case BuiltinType::ObjCSel:
1449      Width = Target->getPointerWidth(0);
1450      Align = Target->getPointerAlign(0);
1451      break;
1452    case BuiltinType::OCLSampler:
1453      // Samplers are modeled as integers.
1454      Width = Target->getIntWidth();
1455      Align = Target->getIntAlign();
1456      break;
1457    case BuiltinType::OCLEvent:
1458    case BuiltinType::OCLImage1d:
1459    case BuiltinType::OCLImage1dArray:
1460    case BuiltinType::OCLImage1dBuffer:
1461    case BuiltinType::OCLImage2d:
1462    case BuiltinType::OCLImage2dArray:
1463    case BuiltinType::OCLImage3d:
1464      // Currently these types are pointers to opaque types.
1465      Width = Target->getPointerWidth(0);
1466      Align = Target->getPointerAlign(0);
1467      break;
1468    }
1469    break;
1470  case Type::ObjCObjectPointer:
1471    Width = Target->getPointerWidth(0);
1472    Align = Target->getPointerAlign(0);
1473    break;
1474  case Type::BlockPointer: {
1475    unsigned AS = getTargetAddressSpace(
1476        cast<BlockPointerType>(T)->getPointeeType());
1477    Width = Target->getPointerWidth(AS);
1478    Align = Target->getPointerAlign(AS);
1479    break;
1480  }
1481  case Type::LValueReference:
1482  case Type::RValueReference: {
1483    // alignof and sizeof should never enter this code path here, so we go
1484    // the pointer route.
1485    unsigned AS = getTargetAddressSpace(
1486        cast<ReferenceType>(T)->getPointeeType());
1487    Width = Target->getPointerWidth(AS);
1488    Align = Target->getPointerAlign(AS);
1489    break;
1490  }
1491  case Type::Pointer: {
1492    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1493    Width = Target->getPointerWidth(AS);
1494    Align = Target->getPointerAlign(AS);
1495    break;
1496  }
1497  case Type::MemberPointer: {
1498    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1499    std::pair<uint64_t, unsigned> PtrDiffInfo =
1500      getTypeInfo(getPointerDiffType());
1501    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1502    Align = PtrDiffInfo.second;
1503    break;
1504  }
1505  case Type::Complex: {
1506    // Complex types have the same alignment as their elements, but twice the
1507    // size.
1508    std::pair<uint64_t, unsigned> EltInfo =
1509      getTypeInfo(cast<ComplexType>(T)->getElementType());
1510    Width = EltInfo.first*2;
1511    Align = EltInfo.second;
1512    break;
1513  }
1514  case Type::ObjCObject:
1515    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1516  case Type::ObjCInterface: {
1517    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1518    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1519    Width = toBits(Layout.getSize());
1520    Align = toBits(Layout.getAlignment());
1521    break;
1522  }
1523  case Type::Record:
1524  case Type::Enum: {
1525    const TagType *TT = cast<TagType>(T);
1526
1527    if (TT->getDecl()->isInvalidDecl()) {
1528      Width = 8;
1529      Align = 8;
1530      break;
1531    }
1532
1533    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1534      return getTypeInfo(ET->getDecl()->getIntegerType());
1535
1536    const RecordType *RT = cast<RecordType>(TT);
1537    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1538    Width = toBits(Layout.getSize());
1539    Align = toBits(Layout.getAlignment());
1540    break;
1541  }
1542
1543  case Type::SubstTemplateTypeParm:
1544    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1545                       getReplacementType().getTypePtr());
1546
1547  case Type::Auto: {
1548    const AutoType *A = cast<AutoType>(T);
1549    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1550    return getTypeInfo(A->getDeducedType().getTypePtr());
1551  }
1552
1553  case Type::Paren:
1554    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1555
1556  case Type::Typedef: {
1557    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1558    std::pair<uint64_t, unsigned> Info
1559      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1560    // If the typedef has an aligned attribute on it, it overrides any computed
1561    // alignment we have.  This violates the GCC documentation (which says that
1562    // attribute(aligned) can only round up) but matches its implementation.
1563    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1564      Align = AttrAlign;
1565    else
1566      Align = Info.second;
1567    Width = Info.first;
1568    break;
1569  }
1570
1571  case Type::TypeOfExpr:
1572    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1573                         .getTypePtr());
1574
1575  case Type::TypeOf:
1576    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1577
1578  case Type::Decltype:
1579    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1580                        .getTypePtr());
1581
1582  case Type::UnaryTransform:
1583    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1584
1585  case Type::Elaborated:
1586    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1587
1588  case Type::Attributed:
1589    return getTypeInfo(
1590                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1591
1592  case Type::TemplateSpecialization: {
1593    assert(getCanonicalType(T) != T &&
1594           "Cannot request the size of a dependent type");
1595    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1596    // A type alias template specialization may refer to a typedef with the
1597    // aligned attribute on it.
1598    if (TST->isTypeAlias())
1599      return getTypeInfo(TST->getAliasedType().getTypePtr());
1600    else
1601      return getTypeInfo(getCanonicalType(T));
1602  }
1603
1604  case Type::Atomic: {
1605    // Start with the base type information.
1606    std::pair<uint64_t, unsigned> Info
1607      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1608    Width = Info.first;
1609    Align = Info.second;
1610
1611    // If the size of the type doesn't exceed the platform's max
1612    // atomic promotion width, make the size and alignment more
1613    // favorable to atomic operations:
1614    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1615      // Round the size up to a power of 2.
1616      if (!llvm::isPowerOf2_64(Width))
1617        Width = llvm::NextPowerOf2(Width);
1618
1619      // Set the alignment equal to the size.
1620      Align = static_cast<unsigned>(Width);
1621    }
1622  }
1623
1624  }
1625
1626  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1627  return std::make_pair(Width, Align);
1628}
1629
1630/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1631CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1632  return CharUnits::fromQuantity(BitSize / getCharWidth());
1633}
1634
1635/// toBits - Convert a size in characters to a size in characters.
1636int64_t ASTContext::toBits(CharUnits CharSize) const {
1637  return CharSize.getQuantity() * getCharWidth();
1638}
1639
1640/// getTypeSizeInChars - Return the size of the specified type, in characters.
1641/// This method does not work on incomplete types.
1642CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1643  return toCharUnitsFromBits(getTypeSize(T));
1644}
1645CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1646  return toCharUnitsFromBits(getTypeSize(T));
1647}
1648
1649/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1650/// characters. This method does not work on incomplete types.
1651CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1652  return toCharUnitsFromBits(getTypeAlign(T));
1653}
1654CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1655  return toCharUnitsFromBits(getTypeAlign(T));
1656}
1657
1658/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1659/// type for the current target in bits.  This can be different than the ABI
1660/// alignment in cases where it is beneficial for performance to overalign
1661/// a data type.
1662unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1663  unsigned ABIAlign = getTypeAlign(T);
1664
1665  // Double and long long should be naturally aligned if possible.
1666  if (const ComplexType* CT = T->getAs<ComplexType>())
1667    T = CT->getElementType().getTypePtr();
1668  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1669      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1670      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1671    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1672
1673  return ABIAlign;
1674}
1675
1676/// DeepCollectObjCIvars -
1677/// This routine first collects all declared, but not synthesized, ivars in
1678/// super class and then collects all ivars, including those synthesized for
1679/// current class. This routine is used for implementation of current class
1680/// when all ivars, declared and synthesized are known.
1681///
1682void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1683                                      bool leafClass,
1684                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1685  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1686    DeepCollectObjCIvars(SuperClass, false, Ivars);
1687  if (!leafClass) {
1688    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1689         E = OI->ivar_end(); I != E; ++I)
1690      Ivars.push_back(*I);
1691  } else {
1692    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1693    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1694         Iv= Iv->getNextIvar())
1695      Ivars.push_back(Iv);
1696  }
1697}
1698
1699/// CollectInheritedProtocols - Collect all protocols in current class and
1700/// those inherited by it.
1701void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1702                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1703  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1704    // We can use protocol_iterator here instead of
1705    // all_referenced_protocol_iterator since we are walking all categories.
1706    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1707         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1708      ObjCProtocolDecl *Proto = (*P);
1709      Protocols.insert(Proto->getCanonicalDecl());
1710      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1711           PE = Proto->protocol_end(); P != PE; ++P) {
1712        Protocols.insert((*P)->getCanonicalDecl());
1713        CollectInheritedProtocols(*P, Protocols);
1714      }
1715    }
1716
1717    // Categories of this Interface.
1718    for (ObjCInterfaceDecl::visible_categories_iterator
1719           Cat = OI->visible_categories_begin(),
1720           CatEnd = OI->visible_categories_end();
1721         Cat != CatEnd; ++Cat) {
1722      CollectInheritedProtocols(*Cat, Protocols);
1723    }
1724
1725    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1726      while (SD) {
1727        CollectInheritedProtocols(SD, Protocols);
1728        SD = SD->getSuperClass();
1729      }
1730  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1731    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1732         PE = OC->protocol_end(); P != PE; ++P) {
1733      ObjCProtocolDecl *Proto = (*P);
1734      Protocols.insert(Proto->getCanonicalDecl());
1735      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1736           PE = Proto->protocol_end(); P != PE; ++P)
1737        CollectInheritedProtocols(*P, Protocols);
1738    }
1739  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1740    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1741         PE = OP->protocol_end(); P != PE; ++P) {
1742      ObjCProtocolDecl *Proto = (*P);
1743      Protocols.insert(Proto->getCanonicalDecl());
1744      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1745           PE = Proto->protocol_end(); P != PE; ++P)
1746        CollectInheritedProtocols(*P, Protocols);
1747    }
1748  }
1749}
1750
1751unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1752  unsigned count = 0;
1753  // Count ivars declared in class extension.
1754  for (ObjCInterfaceDecl::known_extensions_iterator
1755         Ext = OI->known_extensions_begin(),
1756         ExtEnd = OI->known_extensions_end();
1757       Ext != ExtEnd; ++Ext) {
1758    count += Ext->ivar_size();
1759  }
1760
1761  // Count ivar defined in this class's implementation.  This
1762  // includes synthesized ivars.
1763  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1764    count += ImplDecl->ivar_size();
1765
1766  return count;
1767}
1768
1769bool ASTContext::isSentinelNullExpr(const Expr *E) {
1770  if (!E)
1771    return false;
1772
1773  // nullptr_t is always treated as null.
1774  if (E->getType()->isNullPtrType()) return true;
1775
1776  if (E->getType()->isAnyPointerType() &&
1777      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1778                                                Expr::NPC_ValueDependentIsNull))
1779    return true;
1780
1781  // Unfortunately, __null has type 'int'.
1782  if (isa<GNUNullExpr>(E)) return true;
1783
1784  return false;
1785}
1786
1787/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1788ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1789  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1790    I = ObjCImpls.find(D);
1791  if (I != ObjCImpls.end())
1792    return cast<ObjCImplementationDecl>(I->second);
1793  return 0;
1794}
1795/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1796ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1797  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1798    I = ObjCImpls.find(D);
1799  if (I != ObjCImpls.end())
1800    return cast<ObjCCategoryImplDecl>(I->second);
1801  return 0;
1802}
1803
1804/// \brief Set the implementation of ObjCInterfaceDecl.
1805void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1806                           ObjCImplementationDecl *ImplD) {
1807  assert(IFaceD && ImplD && "Passed null params");
1808  ObjCImpls[IFaceD] = ImplD;
1809}
1810/// \brief Set the implementation of ObjCCategoryDecl.
1811void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1812                           ObjCCategoryImplDecl *ImplD) {
1813  assert(CatD && ImplD && "Passed null params");
1814  ObjCImpls[CatD] = ImplD;
1815}
1816
1817const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1818                                              const NamedDecl *ND) const {
1819  if (const ObjCInterfaceDecl *ID =
1820          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1821    return ID;
1822  if (const ObjCCategoryDecl *CD =
1823          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1824    return CD->getClassInterface();
1825  if (const ObjCImplDecl *IMD =
1826          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1827    return IMD->getClassInterface();
1828
1829  return 0;
1830}
1831
1832/// \brief Get the copy initialization expression of VarDecl,or NULL if
1833/// none exists.
1834Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1835  assert(VD && "Passed null params");
1836  assert(VD->hasAttr<BlocksAttr>() &&
1837         "getBlockVarCopyInits - not __block var");
1838  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1839    I = BlockVarCopyInits.find(VD);
1840  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1841}
1842
1843/// \brief Set the copy inialization expression of a block var decl.
1844void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1845  assert(VD && Init && "Passed null params");
1846  assert(VD->hasAttr<BlocksAttr>() &&
1847         "setBlockVarCopyInits - not __block var");
1848  BlockVarCopyInits[VD] = Init;
1849}
1850
1851TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1852                                                 unsigned DataSize) const {
1853  if (!DataSize)
1854    DataSize = TypeLoc::getFullDataSizeForType(T);
1855  else
1856    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1857           "incorrect data size provided to CreateTypeSourceInfo!");
1858
1859  TypeSourceInfo *TInfo =
1860    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1861  new (TInfo) TypeSourceInfo(T);
1862  return TInfo;
1863}
1864
1865TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1866                                                     SourceLocation L) const {
1867  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1868  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1869  return DI;
1870}
1871
1872const ASTRecordLayout &
1873ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1874  return getObjCLayout(D, 0);
1875}
1876
1877const ASTRecordLayout &
1878ASTContext::getASTObjCImplementationLayout(
1879                                        const ObjCImplementationDecl *D) const {
1880  return getObjCLayout(D->getClassInterface(), D);
1881}
1882
1883//===----------------------------------------------------------------------===//
1884//                   Type creation/memoization methods
1885//===----------------------------------------------------------------------===//
1886
1887QualType
1888ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1889  unsigned fastQuals = quals.getFastQualifiers();
1890  quals.removeFastQualifiers();
1891
1892  // Check if we've already instantiated this type.
1893  llvm::FoldingSetNodeID ID;
1894  ExtQuals::Profile(ID, baseType, quals);
1895  void *insertPos = 0;
1896  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1897    assert(eq->getQualifiers() == quals);
1898    return QualType(eq, fastQuals);
1899  }
1900
1901  // If the base type is not canonical, make the appropriate canonical type.
1902  QualType canon;
1903  if (!baseType->isCanonicalUnqualified()) {
1904    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1905    canonSplit.Quals.addConsistentQualifiers(quals);
1906    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1907
1908    // Re-find the insert position.
1909    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1910  }
1911
1912  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1913  ExtQualNodes.InsertNode(eq, insertPos);
1914  return QualType(eq, fastQuals);
1915}
1916
1917QualType
1918ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1919  QualType CanT = getCanonicalType(T);
1920  if (CanT.getAddressSpace() == AddressSpace)
1921    return T;
1922
1923  // If we are composing extended qualifiers together, merge together
1924  // into one ExtQuals node.
1925  QualifierCollector Quals;
1926  const Type *TypeNode = Quals.strip(T);
1927
1928  // If this type already has an address space specified, it cannot get
1929  // another one.
1930  assert(!Quals.hasAddressSpace() &&
1931         "Type cannot be in multiple addr spaces!");
1932  Quals.addAddressSpace(AddressSpace);
1933
1934  return getExtQualType(TypeNode, Quals);
1935}
1936
1937QualType ASTContext::getObjCGCQualType(QualType T,
1938                                       Qualifiers::GC GCAttr) const {
1939  QualType CanT = getCanonicalType(T);
1940  if (CanT.getObjCGCAttr() == GCAttr)
1941    return T;
1942
1943  if (const PointerType *ptr = T->getAs<PointerType>()) {
1944    QualType Pointee = ptr->getPointeeType();
1945    if (Pointee->isAnyPointerType()) {
1946      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1947      return getPointerType(ResultType);
1948    }
1949  }
1950
1951  // If we are composing extended qualifiers together, merge together
1952  // into one ExtQuals node.
1953  QualifierCollector Quals;
1954  const Type *TypeNode = Quals.strip(T);
1955
1956  // If this type already has an ObjCGC specified, it cannot get
1957  // another one.
1958  assert(!Quals.hasObjCGCAttr() &&
1959         "Type cannot have multiple ObjCGCs!");
1960  Quals.addObjCGCAttr(GCAttr);
1961
1962  return getExtQualType(TypeNode, Quals);
1963}
1964
1965const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1966                                                   FunctionType::ExtInfo Info) {
1967  if (T->getExtInfo() == Info)
1968    return T;
1969
1970  QualType Result;
1971  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1972    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1973  } else {
1974    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1975    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1976    EPI.ExtInfo = Info;
1977    Result = getFunctionType(FPT->getResultType(),
1978                             ArrayRef<QualType>(FPT->arg_type_begin(),
1979                                                FPT->getNumArgs()),
1980                             EPI);
1981  }
1982
1983  return cast<FunctionType>(Result.getTypePtr());
1984}
1985
1986/// getComplexType - Return the uniqued reference to the type for a complex
1987/// number with the specified element type.
1988QualType ASTContext::getComplexType(QualType T) const {
1989  // Unique pointers, to guarantee there is only one pointer of a particular
1990  // structure.
1991  llvm::FoldingSetNodeID ID;
1992  ComplexType::Profile(ID, T);
1993
1994  void *InsertPos = 0;
1995  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1996    return QualType(CT, 0);
1997
1998  // If the pointee type isn't canonical, this won't be a canonical type either,
1999  // so fill in the canonical type field.
2000  QualType Canonical;
2001  if (!T.isCanonical()) {
2002    Canonical = getComplexType(getCanonicalType(T));
2003
2004    // Get the new insert position for the node we care about.
2005    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2006    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2007  }
2008  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2009  Types.push_back(New);
2010  ComplexTypes.InsertNode(New, InsertPos);
2011  return QualType(New, 0);
2012}
2013
2014/// getPointerType - Return the uniqued reference to the type for a pointer to
2015/// the specified type.
2016QualType ASTContext::getPointerType(QualType T) const {
2017  // Unique pointers, to guarantee there is only one pointer of a particular
2018  // structure.
2019  llvm::FoldingSetNodeID ID;
2020  PointerType::Profile(ID, T);
2021
2022  void *InsertPos = 0;
2023  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2024    return QualType(PT, 0);
2025
2026  // If the pointee type isn't canonical, this won't be a canonical type either,
2027  // so fill in the canonical type field.
2028  QualType Canonical;
2029  if (!T.isCanonical()) {
2030    Canonical = getPointerType(getCanonicalType(T));
2031
2032    // Get the new insert position for the node we care about.
2033    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2034    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2035  }
2036  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2037  Types.push_back(New);
2038  PointerTypes.InsertNode(New, InsertPos);
2039  return QualType(New, 0);
2040}
2041
2042/// getBlockPointerType - Return the uniqued reference to the type for
2043/// a pointer to the specified block.
2044QualType ASTContext::getBlockPointerType(QualType T) const {
2045  assert(T->isFunctionType() && "block of function types only");
2046  // Unique pointers, to guarantee there is only one block of a particular
2047  // structure.
2048  llvm::FoldingSetNodeID ID;
2049  BlockPointerType::Profile(ID, T);
2050
2051  void *InsertPos = 0;
2052  if (BlockPointerType *PT =
2053        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2054    return QualType(PT, 0);
2055
2056  // If the block pointee type isn't canonical, this won't be a canonical
2057  // type either so fill in the canonical type field.
2058  QualType Canonical;
2059  if (!T.isCanonical()) {
2060    Canonical = getBlockPointerType(getCanonicalType(T));
2061
2062    // Get the new insert position for the node we care about.
2063    BlockPointerType *NewIP =
2064      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2065    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2066  }
2067  BlockPointerType *New
2068    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2069  Types.push_back(New);
2070  BlockPointerTypes.InsertNode(New, InsertPos);
2071  return QualType(New, 0);
2072}
2073
2074/// getLValueReferenceType - Return the uniqued reference to the type for an
2075/// lvalue reference to the specified type.
2076QualType
2077ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2078  assert(getCanonicalType(T) != OverloadTy &&
2079         "Unresolved overloaded function type");
2080
2081  // Unique pointers, to guarantee there is only one pointer of a particular
2082  // structure.
2083  llvm::FoldingSetNodeID ID;
2084  ReferenceType::Profile(ID, T, SpelledAsLValue);
2085
2086  void *InsertPos = 0;
2087  if (LValueReferenceType *RT =
2088        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2089    return QualType(RT, 0);
2090
2091  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2092
2093  // If the referencee type isn't canonical, this won't be a canonical type
2094  // either, so fill in the canonical type field.
2095  QualType Canonical;
2096  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2097    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2098    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2099
2100    // Get the new insert position for the node we care about.
2101    LValueReferenceType *NewIP =
2102      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2103    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2104  }
2105
2106  LValueReferenceType *New
2107    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2108                                                     SpelledAsLValue);
2109  Types.push_back(New);
2110  LValueReferenceTypes.InsertNode(New, InsertPos);
2111
2112  return QualType(New, 0);
2113}
2114
2115/// getRValueReferenceType - Return the uniqued reference to the type for an
2116/// rvalue reference to the specified type.
2117QualType ASTContext::getRValueReferenceType(QualType T) const {
2118  // Unique pointers, to guarantee there is only one pointer of a particular
2119  // structure.
2120  llvm::FoldingSetNodeID ID;
2121  ReferenceType::Profile(ID, T, false);
2122
2123  void *InsertPos = 0;
2124  if (RValueReferenceType *RT =
2125        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2126    return QualType(RT, 0);
2127
2128  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2129
2130  // If the referencee type isn't canonical, this won't be a canonical type
2131  // either, so fill in the canonical type field.
2132  QualType Canonical;
2133  if (InnerRef || !T.isCanonical()) {
2134    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2135    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2136
2137    // Get the new insert position for the node we care about.
2138    RValueReferenceType *NewIP =
2139      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2140    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2141  }
2142
2143  RValueReferenceType *New
2144    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2145  Types.push_back(New);
2146  RValueReferenceTypes.InsertNode(New, InsertPos);
2147  return QualType(New, 0);
2148}
2149
2150/// getMemberPointerType - Return the uniqued reference to the type for a
2151/// member pointer to the specified type, in the specified class.
2152QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2153  // Unique pointers, to guarantee there is only one pointer of a particular
2154  // structure.
2155  llvm::FoldingSetNodeID ID;
2156  MemberPointerType::Profile(ID, T, Cls);
2157
2158  void *InsertPos = 0;
2159  if (MemberPointerType *PT =
2160      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2161    return QualType(PT, 0);
2162
2163  // If the pointee or class type isn't canonical, this won't be a canonical
2164  // type either, so fill in the canonical type field.
2165  QualType Canonical;
2166  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2167    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2168
2169    // Get the new insert position for the node we care about.
2170    MemberPointerType *NewIP =
2171      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2172    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2173  }
2174  MemberPointerType *New
2175    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2176  Types.push_back(New);
2177  MemberPointerTypes.InsertNode(New, InsertPos);
2178  return QualType(New, 0);
2179}
2180
2181/// getConstantArrayType - Return the unique reference to the type for an
2182/// array of the specified element type.
2183QualType ASTContext::getConstantArrayType(QualType EltTy,
2184                                          const llvm::APInt &ArySizeIn,
2185                                          ArrayType::ArraySizeModifier ASM,
2186                                          unsigned IndexTypeQuals) const {
2187  assert((EltTy->isDependentType() ||
2188          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2189         "Constant array of VLAs is illegal!");
2190
2191  // Convert the array size into a canonical width matching the pointer size for
2192  // the target.
2193  llvm::APInt ArySize(ArySizeIn);
2194  ArySize =
2195    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2196
2197  llvm::FoldingSetNodeID ID;
2198  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2199
2200  void *InsertPos = 0;
2201  if (ConstantArrayType *ATP =
2202      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2203    return QualType(ATP, 0);
2204
2205  // If the element type isn't canonical or has qualifiers, this won't
2206  // be a canonical type either, so fill in the canonical type field.
2207  QualType Canon;
2208  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2209    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2210    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2211                                 ASM, IndexTypeQuals);
2212    Canon = getQualifiedType(Canon, canonSplit.Quals);
2213
2214    // Get the new insert position for the node we care about.
2215    ConstantArrayType *NewIP =
2216      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2217    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2218  }
2219
2220  ConstantArrayType *New = new(*this,TypeAlignment)
2221    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2222  ConstantArrayTypes.InsertNode(New, InsertPos);
2223  Types.push_back(New);
2224  return QualType(New, 0);
2225}
2226
2227/// getVariableArrayDecayedType - Turns the given type, which may be
2228/// variably-modified, into the corresponding type with all the known
2229/// sizes replaced with [*].
2230QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2231  // Vastly most common case.
2232  if (!type->isVariablyModifiedType()) return type;
2233
2234  QualType result;
2235
2236  SplitQualType split = type.getSplitDesugaredType();
2237  const Type *ty = split.Ty;
2238  switch (ty->getTypeClass()) {
2239#define TYPE(Class, Base)
2240#define ABSTRACT_TYPE(Class, Base)
2241#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2242#include "clang/AST/TypeNodes.def"
2243    llvm_unreachable("didn't desugar past all non-canonical types?");
2244
2245  // These types should never be variably-modified.
2246  case Type::Builtin:
2247  case Type::Complex:
2248  case Type::Vector:
2249  case Type::ExtVector:
2250  case Type::DependentSizedExtVector:
2251  case Type::ObjCObject:
2252  case Type::ObjCInterface:
2253  case Type::ObjCObjectPointer:
2254  case Type::Record:
2255  case Type::Enum:
2256  case Type::UnresolvedUsing:
2257  case Type::TypeOfExpr:
2258  case Type::TypeOf:
2259  case Type::Decltype:
2260  case Type::UnaryTransform:
2261  case Type::DependentName:
2262  case Type::InjectedClassName:
2263  case Type::TemplateSpecialization:
2264  case Type::DependentTemplateSpecialization:
2265  case Type::TemplateTypeParm:
2266  case Type::SubstTemplateTypeParmPack:
2267  case Type::Auto:
2268  case Type::PackExpansion:
2269    llvm_unreachable("type should never be variably-modified");
2270
2271  // These types can be variably-modified but should never need to
2272  // further decay.
2273  case Type::FunctionNoProto:
2274  case Type::FunctionProto:
2275  case Type::BlockPointer:
2276  case Type::MemberPointer:
2277    return type;
2278
2279  // These types can be variably-modified.  All these modifications
2280  // preserve structure except as noted by comments.
2281  // TODO: if we ever care about optimizing VLAs, there are no-op
2282  // optimizations available here.
2283  case Type::Pointer:
2284    result = getPointerType(getVariableArrayDecayedType(
2285                              cast<PointerType>(ty)->getPointeeType()));
2286    break;
2287
2288  case Type::LValueReference: {
2289    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2290    result = getLValueReferenceType(
2291                 getVariableArrayDecayedType(lv->getPointeeType()),
2292                                    lv->isSpelledAsLValue());
2293    break;
2294  }
2295
2296  case Type::RValueReference: {
2297    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2298    result = getRValueReferenceType(
2299                 getVariableArrayDecayedType(lv->getPointeeType()));
2300    break;
2301  }
2302
2303  case Type::Atomic: {
2304    const AtomicType *at = cast<AtomicType>(ty);
2305    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2306    break;
2307  }
2308
2309  case Type::ConstantArray: {
2310    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2311    result = getConstantArrayType(
2312                 getVariableArrayDecayedType(cat->getElementType()),
2313                                  cat->getSize(),
2314                                  cat->getSizeModifier(),
2315                                  cat->getIndexTypeCVRQualifiers());
2316    break;
2317  }
2318
2319  case Type::DependentSizedArray: {
2320    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2321    result = getDependentSizedArrayType(
2322                 getVariableArrayDecayedType(dat->getElementType()),
2323                                        dat->getSizeExpr(),
2324                                        dat->getSizeModifier(),
2325                                        dat->getIndexTypeCVRQualifiers(),
2326                                        dat->getBracketsRange());
2327    break;
2328  }
2329
2330  // Turn incomplete types into [*] types.
2331  case Type::IncompleteArray: {
2332    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2333    result = getVariableArrayType(
2334                 getVariableArrayDecayedType(iat->getElementType()),
2335                                  /*size*/ 0,
2336                                  ArrayType::Normal,
2337                                  iat->getIndexTypeCVRQualifiers(),
2338                                  SourceRange());
2339    break;
2340  }
2341
2342  // Turn VLA types into [*] types.
2343  case Type::VariableArray: {
2344    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2345    result = getVariableArrayType(
2346                 getVariableArrayDecayedType(vat->getElementType()),
2347                                  /*size*/ 0,
2348                                  ArrayType::Star,
2349                                  vat->getIndexTypeCVRQualifiers(),
2350                                  vat->getBracketsRange());
2351    break;
2352  }
2353  }
2354
2355  // Apply the top-level qualifiers from the original.
2356  return getQualifiedType(result, split.Quals);
2357}
2358
2359/// getVariableArrayType - Returns a non-unique reference to the type for a
2360/// variable array of the specified element type.
2361QualType ASTContext::getVariableArrayType(QualType EltTy,
2362                                          Expr *NumElts,
2363                                          ArrayType::ArraySizeModifier ASM,
2364                                          unsigned IndexTypeQuals,
2365                                          SourceRange Brackets) const {
2366  // Since we don't unique expressions, it isn't possible to unique VLA's
2367  // that have an expression provided for their size.
2368  QualType Canon;
2369
2370  // Be sure to pull qualifiers off the element type.
2371  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2372    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2373    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2374                                 IndexTypeQuals, Brackets);
2375    Canon = getQualifiedType(Canon, canonSplit.Quals);
2376  }
2377
2378  VariableArrayType *New = new(*this, TypeAlignment)
2379    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2380
2381  VariableArrayTypes.push_back(New);
2382  Types.push_back(New);
2383  return QualType(New, 0);
2384}
2385
2386/// getDependentSizedArrayType - Returns a non-unique reference to
2387/// the type for a dependently-sized array of the specified element
2388/// type.
2389QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2390                                                Expr *numElements,
2391                                                ArrayType::ArraySizeModifier ASM,
2392                                                unsigned elementTypeQuals,
2393                                                SourceRange brackets) const {
2394  assert((!numElements || numElements->isTypeDependent() ||
2395          numElements->isValueDependent()) &&
2396         "Size must be type- or value-dependent!");
2397
2398  // Dependently-sized array types that do not have a specified number
2399  // of elements will have their sizes deduced from a dependent
2400  // initializer.  We do no canonicalization here at all, which is okay
2401  // because they can't be used in most locations.
2402  if (!numElements) {
2403    DependentSizedArrayType *newType
2404      = new (*this, TypeAlignment)
2405          DependentSizedArrayType(*this, elementType, QualType(),
2406                                  numElements, ASM, elementTypeQuals,
2407                                  brackets);
2408    Types.push_back(newType);
2409    return QualType(newType, 0);
2410  }
2411
2412  // Otherwise, we actually build a new type every time, but we
2413  // also build a canonical type.
2414
2415  SplitQualType canonElementType = getCanonicalType(elementType).split();
2416
2417  void *insertPos = 0;
2418  llvm::FoldingSetNodeID ID;
2419  DependentSizedArrayType::Profile(ID, *this,
2420                                   QualType(canonElementType.Ty, 0),
2421                                   ASM, elementTypeQuals, numElements);
2422
2423  // Look for an existing type with these properties.
2424  DependentSizedArrayType *canonTy =
2425    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2426
2427  // If we don't have one, build one.
2428  if (!canonTy) {
2429    canonTy = new (*this, TypeAlignment)
2430      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2431                              QualType(), numElements, ASM, elementTypeQuals,
2432                              brackets);
2433    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2434    Types.push_back(canonTy);
2435  }
2436
2437  // Apply qualifiers from the element type to the array.
2438  QualType canon = getQualifiedType(QualType(canonTy,0),
2439                                    canonElementType.Quals);
2440
2441  // If we didn't need extra canonicalization for the element type,
2442  // then just use that as our result.
2443  if (QualType(canonElementType.Ty, 0) == elementType)
2444    return canon;
2445
2446  // Otherwise, we need to build a type which follows the spelling
2447  // of the element type.
2448  DependentSizedArrayType *sugaredType
2449    = new (*this, TypeAlignment)
2450        DependentSizedArrayType(*this, elementType, canon, numElements,
2451                                ASM, elementTypeQuals, brackets);
2452  Types.push_back(sugaredType);
2453  return QualType(sugaredType, 0);
2454}
2455
2456QualType ASTContext::getIncompleteArrayType(QualType elementType,
2457                                            ArrayType::ArraySizeModifier ASM,
2458                                            unsigned elementTypeQuals) const {
2459  llvm::FoldingSetNodeID ID;
2460  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2461
2462  void *insertPos = 0;
2463  if (IncompleteArrayType *iat =
2464       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2465    return QualType(iat, 0);
2466
2467  // If the element type isn't canonical, this won't be a canonical type
2468  // either, so fill in the canonical type field.  We also have to pull
2469  // qualifiers off the element type.
2470  QualType canon;
2471
2472  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2473    SplitQualType canonSplit = getCanonicalType(elementType).split();
2474    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2475                                   ASM, elementTypeQuals);
2476    canon = getQualifiedType(canon, canonSplit.Quals);
2477
2478    // Get the new insert position for the node we care about.
2479    IncompleteArrayType *existing =
2480      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2481    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2482  }
2483
2484  IncompleteArrayType *newType = new (*this, TypeAlignment)
2485    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2486
2487  IncompleteArrayTypes.InsertNode(newType, insertPos);
2488  Types.push_back(newType);
2489  return QualType(newType, 0);
2490}
2491
2492/// getVectorType - Return the unique reference to a vector type of
2493/// the specified element type and size. VectorType must be a built-in type.
2494QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2495                                   VectorType::VectorKind VecKind) const {
2496  assert(vecType->isBuiltinType());
2497
2498  // Check if we've already instantiated a vector of this type.
2499  llvm::FoldingSetNodeID ID;
2500  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2501
2502  void *InsertPos = 0;
2503  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2504    return QualType(VTP, 0);
2505
2506  // If the element type isn't canonical, this won't be a canonical type either,
2507  // so fill in the canonical type field.
2508  QualType Canonical;
2509  if (!vecType.isCanonical()) {
2510    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2511
2512    // Get the new insert position for the node we care about.
2513    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2514    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2515  }
2516  VectorType *New = new (*this, TypeAlignment)
2517    VectorType(vecType, NumElts, Canonical, VecKind);
2518  VectorTypes.InsertNode(New, InsertPos);
2519  Types.push_back(New);
2520  return QualType(New, 0);
2521}
2522
2523/// getExtVectorType - Return the unique reference to an extended vector type of
2524/// the specified element type and size. VectorType must be a built-in type.
2525QualType
2526ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2527  assert(vecType->isBuiltinType() || vecType->isDependentType());
2528
2529  // Check if we've already instantiated a vector of this type.
2530  llvm::FoldingSetNodeID ID;
2531  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2532                      VectorType::GenericVector);
2533  void *InsertPos = 0;
2534  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2535    return QualType(VTP, 0);
2536
2537  // If the element type isn't canonical, this won't be a canonical type either,
2538  // so fill in the canonical type field.
2539  QualType Canonical;
2540  if (!vecType.isCanonical()) {
2541    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2542
2543    // Get the new insert position for the node we care about.
2544    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2545    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2546  }
2547  ExtVectorType *New = new (*this, TypeAlignment)
2548    ExtVectorType(vecType, NumElts, Canonical);
2549  VectorTypes.InsertNode(New, InsertPos);
2550  Types.push_back(New);
2551  return QualType(New, 0);
2552}
2553
2554QualType
2555ASTContext::getDependentSizedExtVectorType(QualType vecType,
2556                                           Expr *SizeExpr,
2557                                           SourceLocation AttrLoc) const {
2558  llvm::FoldingSetNodeID ID;
2559  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2560                                       SizeExpr);
2561
2562  void *InsertPos = 0;
2563  DependentSizedExtVectorType *Canon
2564    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2565  DependentSizedExtVectorType *New;
2566  if (Canon) {
2567    // We already have a canonical version of this array type; use it as
2568    // the canonical type for a newly-built type.
2569    New = new (*this, TypeAlignment)
2570      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2571                                  SizeExpr, AttrLoc);
2572  } else {
2573    QualType CanonVecTy = getCanonicalType(vecType);
2574    if (CanonVecTy == vecType) {
2575      New = new (*this, TypeAlignment)
2576        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2577                                    AttrLoc);
2578
2579      DependentSizedExtVectorType *CanonCheck
2580        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2581      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2582      (void)CanonCheck;
2583      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2584    } else {
2585      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2586                                                      SourceLocation());
2587      New = new (*this, TypeAlignment)
2588        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2589    }
2590  }
2591
2592  Types.push_back(New);
2593  return QualType(New, 0);
2594}
2595
2596/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2597///
2598QualType
2599ASTContext::getFunctionNoProtoType(QualType ResultTy,
2600                                   const FunctionType::ExtInfo &Info) const {
2601  const CallingConv DefaultCC = Info.getCC();
2602  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2603                               CC_X86StdCall : DefaultCC;
2604  // Unique functions, to guarantee there is only one function of a particular
2605  // structure.
2606  llvm::FoldingSetNodeID ID;
2607  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2608
2609  void *InsertPos = 0;
2610  if (FunctionNoProtoType *FT =
2611        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2612    return QualType(FT, 0);
2613
2614  QualType Canonical;
2615  if (!ResultTy.isCanonical() ||
2616      getCanonicalCallConv(CallConv) != CallConv) {
2617    Canonical =
2618      getFunctionNoProtoType(getCanonicalType(ResultTy),
2619                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2620
2621    // Get the new insert position for the node we care about.
2622    FunctionNoProtoType *NewIP =
2623      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2624    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2625  }
2626
2627  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2628  FunctionNoProtoType *New = new (*this, TypeAlignment)
2629    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2630  Types.push_back(New);
2631  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2632  return QualType(New, 0);
2633}
2634
2635/// \brief Determine whether \p T is canonical as the result type of a function.
2636static bool isCanonicalResultType(QualType T) {
2637  return T.isCanonical() &&
2638         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2639          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2640}
2641
2642/// getFunctionType - Return a normal function type with a typed argument
2643/// list.  isVariadic indicates whether the argument list includes '...'.
2644QualType
2645ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2646                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2647  size_t NumArgs = ArgArray.size();
2648
2649  // Unique functions, to guarantee there is only one function of a particular
2650  // structure.
2651  llvm::FoldingSetNodeID ID;
2652  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2653                             *this);
2654
2655  void *InsertPos = 0;
2656  if (FunctionProtoType *FTP =
2657        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2658    return QualType(FTP, 0);
2659
2660  // Determine whether the type being created is already canonical or not.
2661  bool isCanonical =
2662    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2663    !EPI.HasTrailingReturn;
2664  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2665    if (!ArgArray[i].isCanonicalAsParam())
2666      isCanonical = false;
2667
2668  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2669  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2670                               CC_X86StdCall : DefaultCC;
2671
2672  // If this type isn't canonical, get the canonical version of it.
2673  // The exception spec is not part of the canonical type.
2674  QualType Canonical;
2675  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2676    SmallVector<QualType, 16> CanonicalArgs;
2677    CanonicalArgs.reserve(NumArgs);
2678    for (unsigned i = 0; i != NumArgs; ++i)
2679      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2680
2681    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2682    CanonicalEPI.HasTrailingReturn = false;
2683    CanonicalEPI.ExceptionSpecType = EST_None;
2684    CanonicalEPI.NumExceptions = 0;
2685    CanonicalEPI.ExtInfo
2686      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2687
2688    // Result types do not have ARC lifetime qualifiers.
2689    QualType CanResultTy = getCanonicalType(ResultTy);
2690    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2691      Qualifiers Qs = CanResultTy.getQualifiers();
2692      Qs.removeObjCLifetime();
2693      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2694    }
2695
2696    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2697
2698    // Get the new insert position for the node we care about.
2699    FunctionProtoType *NewIP =
2700      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2701    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2702  }
2703
2704  // FunctionProtoType objects are allocated with extra bytes after
2705  // them for three variable size arrays at the end:
2706  //  - parameter types
2707  //  - exception types
2708  //  - consumed-arguments flags
2709  // Instead of the exception types, there could be a noexcept
2710  // expression, or information used to resolve the exception
2711  // specification.
2712  size_t Size = sizeof(FunctionProtoType) +
2713                NumArgs * sizeof(QualType);
2714  if (EPI.ExceptionSpecType == EST_Dynamic) {
2715    Size += EPI.NumExceptions * sizeof(QualType);
2716  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2717    Size += sizeof(Expr*);
2718  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2719    Size += 2 * sizeof(FunctionDecl*);
2720  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2721    Size += sizeof(FunctionDecl*);
2722  }
2723  if (EPI.ConsumedArguments)
2724    Size += NumArgs * sizeof(bool);
2725
2726  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2727  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2728  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2729  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2730  Types.push_back(FTP);
2731  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2732  return QualType(FTP, 0);
2733}
2734
2735#ifndef NDEBUG
2736static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2737  if (!isa<CXXRecordDecl>(D)) return false;
2738  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2739  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2740    return true;
2741  if (RD->getDescribedClassTemplate() &&
2742      !isa<ClassTemplateSpecializationDecl>(RD))
2743    return true;
2744  return false;
2745}
2746#endif
2747
2748/// getInjectedClassNameType - Return the unique reference to the
2749/// injected class name type for the specified templated declaration.
2750QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2751                                              QualType TST) const {
2752  assert(NeedsInjectedClassNameType(Decl));
2753  if (Decl->TypeForDecl) {
2754    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2755  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2756    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2757    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2758    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2759  } else {
2760    Type *newType =
2761      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2762    Decl->TypeForDecl = newType;
2763    Types.push_back(newType);
2764  }
2765  return QualType(Decl->TypeForDecl, 0);
2766}
2767
2768/// getTypeDeclType - Return the unique reference to the type for the
2769/// specified type declaration.
2770QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2771  assert(Decl && "Passed null for Decl param");
2772  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2773
2774  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2775    return getTypedefType(Typedef);
2776
2777  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2778         "Template type parameter types are always available.");
2779
2780  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2781    assert(!Record->getPreviousDecl() &&
2782           "struct/union has previous declaration");
2783    assert(!NeedsInjectedClassNameType(Record));
2784    return getRecordType(Record);
2785  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2786    assert(!Enum->getPreviousDecl() &&
2787           "enum has previous declaration");
2788    return getEnumType(Enum);
2789  } else if (const UnresolvedUsingTypenameDecl *Using =
2790               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2791    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2792    Decl->TypeForDecl = newType;
2793    Types.push_back(newType);
2794  } else
2795    llvm_unreachable("TypeDecl without a type?");
2796
2797  return QualType(Decl->TypeForDecl, 0);
2798}
2799
2800/// getTypedefType - Return the unique reference to the type for the
2801/// specified typedef name decl.
2802QualType
2803ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2804                           QualType Canonical) const {
2805  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2806
2807  if (Canonical.isNull())
2808    Canonical = getCanonicalType(Decl->getUnderlyingType());
2809  TypedefType *newType = new(*this, TypeAlignment)
2810    TypedefType(Type::Typedef, Decl, Canonical);
2811  Decl->TypeForDecl = newType;
2812  Types.push_back(newType);
2813  return QualType(newType, 0);
2814}
2815
2816QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2817  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2818
2819  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2820    if (PrevDecl->TypeForDecl)
2821      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2822
2823  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2824  Decl->TypeForDecl = newType;
2825  Types.push_back(newType);
2826  return QualType(newType, 0);
2827}
2828
2829QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2830  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2831
2832  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2833    if (PrevDecl->TypeForDecl)
2834      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2835
2836  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2837  Decl->TypeForDecl = newType;
2838  Types.push_back(newType);
2839  return QualType(newType, 0);
2840}
2841
2842QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2843                                       QualType modifiedType,
2844                                       QualType equivalentType) {
2845  llvm::FoldingSetNodeID id;
2846  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2847
2848  void *insertPos = 0;
2849  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2850  if (type) return QualType(type, 0);
2851
2852  QualType canon = getCanonicalType(equivalentType);
2853  type = new (*this, TypeAlignment)
2854           AttributedType(canon, attrKind, modifiedType, equivalentType);
2855
2856  Types.push_back(type);
2857  AttributedTypes.InsertNode(type, insertPos);
2858
2859  return QualType(type, 0);
2860}
2861
2862
2863/// \brief Retrieve a substitution-result type.
2864QualType
2865ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2866                                         QualType Replacement) const {
2867  assert(Replacement.isCanonical()
2868         && "replacement types must always be canonical");
2869
2870  llvm::FoldingSetNodeID ID;
2871  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2872  void *InsertPos = 0;
2873  SubstTemplateTypeParmType *SubstParm
2874    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2875
2876  if (!SubstParm) {
2877    SubstParm = new (*this, TypeAlignment)
2878      SubstTemplateTypeParmType(Parm, Replacement);
2879    Types.push_back(SubstParm);
2880    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2881  }
2882
2883  return QualType(SubstParm, 0);
2884}
2885
2886/// \brief Retrieve a
2887QualType ASTContext::getSubstTemplateTypeParmPackType(
2888                                          const TemplateTypeParmType *Parm,
2889                                              const TemplateArgument &ArgPack) {
2890#ifndef NDEBUG
2891  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2892                                    PEnd = ArgPack.pack_end();
2893       P != PEnd; ++P) {
2894    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2895    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2896  }
2897#endif
2898
2899  llvm::FoldingSetNodeID ID;
2900  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2901  void *InsertPos = 0;
2902  if (SubstTemplateTypeParmPackType *SubstParm
2903        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2904    return QualType(SubstParm, 0);
2905
2906  QualType Canon;
2907  if (!Parm->isCanonicalUnqualified()) {
2908    Canon = getCanonicalType(QualType(Parm, 0));
2909    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2910                                             ArgPack);
2911    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2912  }
2913
2914  SubstTemplateTypeParmPackType *SubstParm
2915    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2916                                                               ArgPack);
2917  Types.push_back(SubstParm);
2918  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2919  return QualType(SubstParm, 0);
2920}
2921
2922/// \brief Retrieve the template type parameter type for a template
2923/// parameter or parameter pack with the given depth, index, and (optionally)
2924/// name.
2925QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2926                                             bool ParameterPack,
2927                                             TemplateTypeParmDecl *TTPDecl) const {
2928  llvm::FoldingSetNodeID ID;
2929  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2930  void *InsertPos = 0;
2931  TemplateTypeParmType *TypeParm
2932    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2933
2934  if (TypeParm)
2935    return QualType(TypeParm, 0);
2936
2937  if (TTPDecl) {
2938    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2939    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2940
2941    TemplateTypeParmType *TypeCheck
2942      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2943    assert(!TypeCheck && "Template type parameter canonical type broken");
2944    (void)TypeCheck;
2945  } else
2946    TypeParm = new (*this, TypeAlignment)
2947      TemplateTypeParmType(Depth, Index, ParameterPack);
2948
2949  Types.push_back(TypeParm);
2950  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2951
2952  return QualType(TypeParm, 0);
2953}
2954
2955TypeSourceInfo *
2956ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2957                                              SourceLocation NameLoc,
2958                                        const TemplateArgumentListInfo &Args,
2959                                              QualType Underlying) const {
2960  assert(!Name.getAsDependentTemplateName() &&
2961         "No dependent template names here!");
2962  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2963
2964  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2965  TemplateSpecializationTypeLoc TL =
2966      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
2967  TL.setTemplateKeywordLoc(SourceLocation());
2968  TL.setTemplateNameLoc(NameLoc);
2969  TL.setLAngleLoc(Args.getLAngleLoc());
2970  TL.setRAngleLoc(Args.getRAngleLoc());
2971  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2972    TL.setArgLocInfo(i, Args[i].getLocInfo());
2973  return DI;
2974}
2975
2976QualType
2977ASTContext::getTemplateSpecializationType(TemplateName Template,
2978                                          const TemplateArgumentListInfo &Args,
2979                                          QualType Underlying) const {
2980  assert(!Template.getAsDependentTemplateName() &&
2981         "No dependent template names here!");
2982
2983  unsigned NumArgs = Args.size();
2984
2985  SmallVector<TemplateArgument, 4> ArgVec;
2986  ArgVec.reserve(NumArgs);
2987  for (unsigned i = 0; i != NumArgs; ++i)
2988    ArgVec.push_back(Args[i].getArgument());
2989
2990  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2991                                       Underlying);
2992}
2993
2994#ifndef NDEBUG
2995static bool hasAnyPackExpansions(const TemplateArgument *Args,
2996                                 unsigned NumArgs) {
2997  for (unsigned I = 0; I != NumArgs; ++I)
2998    if (Args[I].isPackExpansion())
2999      return true;
3000
3001  return true;
3002}
3003#endif
3004
3005QualType
3006ASTContext::getTemplateSpecializationType(TemplateName Template,
3007                                          const TemplateArgument *Args,
3008                                          unsigned NumArgs,
3009                                          QualType Underlying) const {
3010  assert(!Template.getAsDependentTemplateName() &&
3011         "No dependent template names here!");
3012  // Look through qualified template names.
3013  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3014    Template = TemplateName(QTN->getTemplateDecl());
3015
3016  bool IsTypeAlias =
3017    Template.getAsTemplateDecl() &&
3018    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3019  QualType CanonType;
3020  if (!Underlying.isNull())
3021    CanonType = getCanonicalType(Underlying);
3022  else {
3023    // We can get here with an alias template when the specialization contains
3024    // a pack expansion that does not match up with a parameter pack.
3025    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3026           "Caller must compute aliased type");
3027    IsTypeAlias = false;
3028    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3029                                                       NumArgs);
3030  }
3031
3032  // Allocate the (non-canonical) template specialization type, but don't
3033  // try to unique it: these types typically have location information that
3034  // we don't unique and don't want to lose.
3035  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3036                       sizeof(TemplateArgument) * NumArgs +
3037                       (IsTypeAlias? sizeof(QualType) : 0),
3038                       TypeAlignment);
3039  TemplateSpecializationType *Spec
3040    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3041                                         IsTypeAlias ? Underlying : QualType());
3042
3043  Types.push_back(Spec);
3044  return QualType(Spec, 0);
3045}
3046
3047QualType
3048ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3049                                                   const TemplateArgument *Args,
3050                                                   unsigned NumArgs) const {
3051  assert(!Template.getAsDependentTemplateName() &&
3052         "No dependent template names here!");
3053
3054  // Look through qualified template names.
3055  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3056    Template = TemplateName(QTN->getTemplateDecl());
3057
3058  // Build the canonical template specialization type.
3059  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3060  SmallVector<TemplateArgument, 4> CanonArgs;
3061  CanonArgs.reserve(NumArgs);
3062  for (unsigned I = 0; I != NumArgs; ++I)
3063    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3064
3065  // Determine whether this canonical template specialization type already
3066  // exists.
3067  llvm::FoldingSetNodeID ID;
3068  TemplateSpecializationType::Profile(ID, CanonTemplate,
3069                                      CanonArgs.data(), NumArgs, *this);
3070
3071  void *InsertPos = 0;
3072  TemplateSpecializationType *Spec
3073    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3074
3075  if (!Spec) {
3076    // Allocate a new canonical template specialization type.
3077    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3078                          sizeof(TemplateArgument) * NumArgs),
3079                         TypeAlignment);
3080    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3081                                                CanonArgs.data(), NumArgs,
3082                                                QualType(), QualType());
3083    Types.push_back(Spec);
3084    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3085  }
3086
3087  assert(Spec->isDependentType() &&
3088         "Non-dependent template-id type must have a canonical type");
3089  return QualType(Spec, 0);
3090}
3091
3092QualType
3093ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3094                              NestedNameSpecifier *NNS,
3095                              QualType NamedType) const {
3096  llvm::FoldingSetNodeID ID;
3097  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3098
3099  void *InsertPos = 0;
3100  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3101  if (T)
3102    return QualType(T, 0);
3103
3104  QualType Canon = NamedType;
3105  if (!Canon.isCanonical()) {
3106    Canon = getCanonicalType(NamedType);
3107    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3108    assert(!CheckT && "Elaborated canonical type broken");
3109    (void)CheckT;
3110  }
3111
3112  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3113  Types.push_back(T);
3114  ElaboratedTypes.InsertNode(T, InsertPos);
3115  return QualType(T, 0);
3116}
3117
3118QualType
3119ASTContext::getParenType(QualType InnerType) const {
3120  llvm::FoldingSetNodeID ID;
3121  ParenType::Profile(ID, InnerType);
3122
3123  void *InsertPos = 0;
3124  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3125  if (T)
3126    return QualType(T, 0);
3127
3128  QualType Canon = InnerType;
3129  if (!Canon.isCanonical()) {
3130    Canon = getCanonicalType(InnerType);
3131    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3132    assert(!CheckT && "Paren canonical type broken");
3133    (void)CheckT;
3134  }
3135
3136  T = new (*this) ParenType(InnerType, Canon);
3137  Types.push_back(T);
3138  ParenTypes.InsertNode(T, InsertPos);
3139  return QualType(T, 0);
3140}
3141
3142QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3143                                          NestedNameSpecifier *NNS,
3144                                          const IdentifierInfo *Name,
3145                                          QualType Canon) const {
3146  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3147
3148  if (Canon.isNull()) {
3149    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3150    ElaboratedTypeKeyword CanonKeyword = Keyword;
3151    if (Keyword == ETK_None)
3152      CanonKeyword = ETK_Typename;
3153
3154    if (CanonNNS != NNS || CanonKeyword != Keyword)
3155      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3156  }
3157
3158  llvm::FoldingSetNodeID ID;
3159  DependentNameType::Profile(ID, Keyword, NNS, Name);
3160
3161  void *InsertPos = 0;
3162  DependentNameType *T
3163    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3164  if (T)
3165    return QualType(T, 0);
3166
3167  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3168  Types.push_back(T);
3169  DependentNameTypes.InsertNode(T, InsertPos);
3170  return QualType(T, 0);
3171}
3172
3173QualType
3174ASTContext::getDependentTemplateSpecializationType(
3175                                 ElaboratedTypeKeyword Keyword,
3176                                 NestedNameSpecifier *NNS,
3177                                 const IdentifierInfo *Name,
3178                                 const TemplateArgumentListInfo &Args) const {
3179  // TODO: avoid this copy
3180  SmallVector<TemplateArgument, 16> ArgCopy;
3181  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3182    ArgCopy.push_back(Args[I].getArgument());
3183  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3184                                                ArgCopy.size(),
3185                                                ArgCopy.data());
3186}
3187
3188QualType
3189ASTContext::getDependentTemplateSpecializationType(
3190                                 ElaboratedTypeKeyword Keyword,
3191                                 NestedNameSpecifier *NNS,
3192                                 const IdentifierInfo *Name,
3193                                 unsigned NumArgs,
3194                                 const TemplateArgument *Args) const {
3195  assert((!NNS || NNS->isDependent()) &&
3196         "nested-name-specifier must be dependent");
3197
3198  llvm::FoldingSetNodeID ID;
3199  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3200                                               Name, NumArgs, Args);
3201
3202  void *InsertPos = 0;
3203  DependentTemplateSpecializationType *T
3204    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3205  if (T)
3206    return QualType(T, 0);
3207
3208  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3209
3210  ElaboratedTypeKeyword CanonKeyword = Keyword;
3211  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3212
3213  bool AnyNonCanonArgs = false;
3214  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3215  for (unsigned I = 0; I != NumArgs; ++I) {
3216    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3217    if (!CanonArgs[I].structurallyEquals(Args[I]))
3218      AnyNonCanonArgs = true;
3219  }
3220
3221  QualType Canon;
3222  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3223    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3224                                                   Name, NumArgs,
3225                                                   CanonArgs.data());
3226
3227    // Find the insert position again.
3228    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3229  }
3230
3231  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3232                        sizeof(TemplateArgument) * NumArgs),
3233                       TypeAlignment);
3234  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3235                                                    Name, NumArgs, Args, Canon);
3236  Types.push_back(T);
3237  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3238  return QualType(T, 0);
3239}
3240
3241QualType ASTContext::getPackExpansionType(QualType Pattern,
3242                                          Optional<unsigned> NumExpansions) {
3243  llvm::FoldingSetNodeID ID;
3244  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3245
3246  assert(Pattern->containsUnexpandedParameterPack() &&
3247         "Pack expansions must expand one or more parameter packs");
3248  void *InsertPos = 0;
3249  PackExpansionType *T
3250    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3251  if (T)
3252    return QualType(T, 0);
3253
3254  QualType Canon;
3255  if (!Pattern.isCanonical()) {
3256    Canon = getCanonicalType(Pattern);
3257    // The canonical type might not contain an unexpanded parameter pack, if it
3258    // contains an alias template specialization which ignores one of its
3259    // parameters.
3260    if (Canon->containsUnexpandedParameterPack()) {
3261      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3262
3263      // Find the insert position again, in case we inserted an element into
3264      // PackExpansionTypes and invalidated our insert position.
3265      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3266    }
3267  }
3268
3269  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3270  Types.push_back(T);
3271  PackExpansionTypes.InsertNode(T, InsertPos);
3272  return QualType(T, 0);
3273}
3274
3275/// CmpProtocolNames - Comparison predicate for sorting protocols
3276/// alphabetically.
3277static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3278                            const ObjCProtocolDecl *RHS) {
3279  return LHS->getDeclName() < RHS->getDeclName();
3280}
3281
3282static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3283                                unsigned NumProtocols) {
3284  if (NumProtocols == 0) return true;
3285
3286  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3287    return false;
3288
3289  for (unsigned i = 1; i != NumProtocols; ++i)
3290    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3291        Protocols[i]->getCanonicalDecl() != Protocols[i])
3292      return false;
3293  return true;
3294}
3295
3296static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3297                                   unsigned &NumProtocols) {
3298  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3299
3300  // Sort protocols, keyed by name.
3301  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3302
3303  // Canonicalize.
3304  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3305    Protocols[I] = Protocols[I]->getCanonicalDecl();
3306
3307  // Remove duplicates.
3308  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3309  NumProtocols = ProtocolsEnd-Protocols;
3310}
3311
3312QualType ASTContext::getObjCObjectType(QualType BaseType,
3313                                       ObjCProtocolDecl * const *Protocols,
3314                                       unsigned NumProtocols) const {
3315  // If the base type is an interface and there aren't any protocols
3316  // to add, then the interface type will do just fine.
3317  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3318    return BaseType;
3319
3320  // Look in the folding set for an existing type.
3321  llvm::FoldingSetNodeID ID;
3322  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3323  void *InsertPos = 0;
3324  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3325    return QualType(QT, 0);
3326
3327  // Build the canonical type, which has the canonical base type and
3328  // a sorted-and-uniqued list of protocols.
3329  QualType Canonical;
3330  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3331  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3332    if (!ProtocolsSorted) {
3333      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3334                                                     Protocols + NumProtocols);
3335      unsigned UniqueCount = NumProtocols;
3336
3337      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3338      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3339                                    &Sorted[0], UniqueCount);
3340    } else {
3341      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3342                                    Protocols, NumProtocols);
3343    }
3344
3345    // Regenerate InsertPos.
3346    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3347  }
3348
3349  unsigned Size = sizeof(ObjCObjectTypeImpl);
3350  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3351  void *Mem = Allocate(Size, TypeAlignment);
3352  ObjCObjectTypeImpl *T =
3353    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3354
3355  Types.push_back(T);
3356  ObjCObjectTypes.InsertNode(T, InsertPos);
3357  return QualType(T, 0);
3358}
3359
3360/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3361/// the given object type.
3362QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3363  llvm::FoldingSetNodeID ID;
3364  ObjCObjectPointerType::Profile(ID, ObjectT);
3365
3366  void *InsertPos = 0;
3367  if (ObjCObjectPointerType *QT =
3368              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3369    return QualType(QT, 0);
3370
3371  // Find the canonical object type.
3372  QualType Canonical;
3373  if (!ObjectT.isCanonical()) {
3374    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3375
3376    // Regenerate InsertPos.
3377    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3378  }
3379
3380  // No match.
3381  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3382  ObjCObjectPointerType *QType =
3383    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3384
3385  Types.push_back(QType);
3386  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3387  return QualType(QType, 0);
3388}
3389
3390/// getObjCInterfaceType - Return the unique reference to the type for the
3391/// specified ObjC interface decl. The list of protocols is optional.
3392QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3393                                          ObjCInterfaceDecl *PrevDecl) const {
3394  if (Decl->TypeForDecl)
3395    return QualType(Decl->TypeForDecl, 0);
3396
3397  if (PrevDecl) {
3398    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3399    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3400    return QualType(PrevDecl->TypeForDecl, 0);
3401  }
3402
3403  // Prefer the definition, if there is one.
3404  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3405    Decl = Def;
3406
3407  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3408  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3409  Decl->TypeForDecl = T;
3410  Types.push_back(T);
3411  return QualType(T, 0);
3412}
3413
3414/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3415/// TypeOfExprType AST's (since expression's are never shared). For example,
3416/// multiple declarations that refer to "typeof(x)" all contain different
3417/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3418/// on canonical type's (which are always unique).
3419QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3420  TypeOfExprType *toe;
3421  if (tofExpr->isTypeDependent()) {
3422    llvm::FoldingSetNodeID ID;
3423    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3424
3425    void *InsertPos = 0;
3426    DependentTypeOfExprType *Canon
3427      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3428    if (Canon) {
3429      // We already have a "canonical" version of an identical, dependent
3430      // typeof(expr) type. Use that as our canonical type.
3431      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3432                                          QualType((TypeOfExprType*)Canon, 0));
3433    } else {
3434      // Build a new, canonical typeof(expr) type.
3435      Canon
3436        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3437      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3438      toe = Canon;
3439    }
3440  } else {
3441    QualType Canonical = getCanonicalType(tofExpr->getType());
3442    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3443  }
3444  Types.push_back(toe);
3445  return QualType(toe, 0);
3446}
3447
3448/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3449/// TypeOfType AST's. The only motivation to unique these nodes would be
3450/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3451/// an issue. This doesn't effect the type checker, since it operates
3452/// on canonical type's (which are always unique).
3453QualType ASTContext::getTypeOfType(QualType tofType) const {
3454  QualType Canonical = getCanonicalType(tofType);
3455  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3456  Types.push_back(tot);
3457  return QualType(tot, 0);
3458}
3459
3460
3461/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3462/// DecltypeType AST's. The only motivation to unique these nodes would be
3463/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3464/// an issue. This doesn't effect the type checker, since it operates
3465/// on canonical types (which are always unique).
3466QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3467  DecltypeType *dt;
3468
3469  // C++0x [temp.type]p2:
3470  //   If an expression e involves a template parameter, decltype(e) denotes a
3471  //   unique dependent type. Two such decltype-specifiers refer to the same
3472  //   type only if their expressions are equivalent (14.5.6.1).
3473  if (e->isInstantiationDependent()) {
3474    llvm::FoldingSetNodeID ID;
3475    DependentDecltypeType::Profile(ID, *this, e);
3476
3477    void *InsertPos = 0;
3478    DependentDecltypeType *Canon
3479      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3480    if (Canon) {
3481      // We already have a "canonical" version of an equivalent, dependent
3482      // decltype type. Use that as our canonical type.
3483      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3484                                       QualType((DecltypeType*)Canon, 0));
3485    } else {
3486      // Build a new, canonical typeof(expr) type.
3487      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3488      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3489      dt = Canon;
3490    }
3491  } else {
3492    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3493                                      getCanonicalType(UnderlyingType));
3494  }
3495  Types.push_back(dt);
3496  return QualType(dt, 0);
3497}
3498
3499/// getUnaryTransformationType - We don't unique these, since the memory
3500/// savings are minimal and these are rare.
3501QualType ASTContext::getUnaryTransformType(QualType BaseType,
3502                                           QualType UnderlyingType,
3503                                           UnaryTransformType::UTTKind Kind)
3504    const {
3505  UnaryTransformType *Ty =
3506    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3507                                                   Kind,
3508                                 UnderlyingType->isDependentType() ?
3509                                 QualType() : getCanonicalType(UnderlyingType));
3510  Types.push_back(Ty);
3511  return QualType(Ty, 0);
3512}
3513
3514/// getAutoType - We only unique auto types after they've been deduced.
3515QualType ASTContext::getAutoType(QualType DeducedType) const {
3516  void *InsertPos = 0;
3517  if (!DeducedType.isNull()) {
3518    // Look in the folding set for an existing type.
3519    llvm::FoldingSetNodeID ID;
3520    AutoType::Profile(ID, DeducedType);
3521    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3522      return QualType(AT, 0);
3523  }
3524
3525  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3526  Types.push_back(AT);
3527  if (InsertPos)
3528    AutoTypes.InsertNode(AT, InsertPos);
3529  return QualType(AT, 0);
3530}
3531
3532/// getAtomicType - Return the uniqued reference to the atomic type for
3533/// the given value type.
3534QualType ASTContext::getAtomicType(QualType T) const {
3535  // Unique pointers, to guarantee there is only one pointer of a particular
3536  // structure.
3537  llvm::FoldingSetNodeID ID;
3538  AtomicType::Profile(ID, T);
3539
3540  void *InsertPos = 0;
3541  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3542    return QualType(AT, 0);
3543
3544  // If the atomic value type isn't canonical, this won't be a canonical type
3545  // either, so fill in the canonical type field.
3546  QualType Canonical;
3547  if (!T.isCanonical()) {
3548    Canonical = getAtomicType(getCanonicalType(T));
3549
3550    // Get the new insert position for the node we care about.
3551    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3552    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3553  }
3554  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3555  Types.push_back(New);
3556  AtomicTypes.InsertNode(New, InsertPos);
3557  return QualType(New, 0);
3558}
3559
3560/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3561QualType ASTContext::getAutoDeductType() const {
3562  if (AutoDeductTy.isNull())
3563    AutoDeductTy = getAutoType(QualType());
3564  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3565  return AutoDeductTy;
3566}
3567
3568/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3569QualType ASTContext::getAutoRRefDeductType() const {
3570  if (AutoRRefDeductTy.isNull())
3571    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3572  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3573  return AutoRRefDeductTy;
3574}
3575
3576/// getTagDeclType - Return the unique reference to the type for the
3577/// specified TagDecl (struct/union/class/enum) decl.
3578QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3579  assert (Decl);
3580  // FIXME: What is the design on getTagDeclType when it requires casting
3581  // away const?  mutable?
3582  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3583}
3584
3585/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3586/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3587/// needs to agree with the definition in <stddef.h>.
3588CanQualType ASTContext::getSizeType() const {
3589  return getFromTargetType(Target->getSizeType());
3590}
3591
3592/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3593CanQualType ASTContext::getIntMaxType() const {
3594  return getFromTargetType(Target->getIntMaxType());
3595}
3596
3597/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3598CanQualType ASTContext::getUIntMaxType() const {
3599  return getFromTargetType(Target->getUIntMaxType());
3600}
3601
3602/// getSignedWCharType - Return the type of "signed wchar_t".
3603/// Used when in C++, as a GCC extension.
3604QualType ASTContext::getSignedWCharType() const {
3605  // FIXME: derive from "Target" ?
3606  return WCharTy;
3607}
3608
3609/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3610/// Used when in C++, as a GCC extension.
3611QualType ASTContext::getUnsignedWCharType() const {
3612  // FIXME: derive from "Target" ?
3613  return UnsignedIntTy;
3614}
3615
3616QualType ASTContext::getIntPtrType() const {
3617  return getFromTargetType(Target->getIntPtrType());
3618}
3619
3620QualType ASTContext::getUIntPtrType() const {
3621  return getCorrespondingUnsignedType(getIntPtrType());
3622}
3623
3624/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3625/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3626QualType ASTContext::getPointerDiffType() const {
3627  return getFromTargetType(Target->getPtrDiffType(0));
3628}
3629
3630/// \brief Return the unique type for "pid_t" defined in
3631/// <sys/types.h>. We need this to compute the correct type for vfork().
3632QualType ASTContext::getProcessIDType() const {
3633  return getFromTargetType(Target->getProcessIDType());
3634}
3635
3636//===----------------------------------------------------------------------===//
3637//                              Type Operators
3638//===----------------------------------------------------------------------===//
3639
3640CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3641  // Push qualifiers into arrays, and then discard any remaining
3642  // qualifiers.
3643  T = getCanonicalType(T);
3644  T = getVariableArrayDecayedType(T);
3645  const Type *Ty = T.getTypePtr();
3646  QualType Result;
3647  if (isa<ArrayType>(Ty)) {
3648    Result = getArrayDecayedType(QualType(Ty,0));
3649  } else if (isa<FunctionType>(Ty)) {
3650    Result = getPointerType(QualType(Ty, 0));
3651  } else {
3652    Result = QualType(Ty, 0);
3653  }
3654
3655  return CanQualType::CreateUnsafe(Result);
3656}
3657
3658QualType ASTContext::getUnqualifiedArrayType(QualType type,
3659                                             Qualifiers &quals) {
3660  SplitQualType splitType = type.getSplitUnqualifiedType();
3661
3662  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3663  // the unqualified desugared type and then drops it on the floor.
3664  // We then have to strip that sugar back off with
3665  // getUnqualifiedDesugaredType(), which is silly.
3666  const ArrayType *AT =
3667    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3668
3669  // If we don't have an array, just use the results in splitType.
3670  if (!AT) {
3671    quals = splitType.Quals;
3672    return QualType(splitType.Ty, 0);
3673  }
3674
3675  // Otherwise, recurse on the array's element type.
3676  QualType elementType = AT->getElementType();
3677  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3678
3679  // If that didn't change the element type, AT has no qualifiers, so we
3680  // can just use the results in splitType.
3681  if (elementType == unqualElementType) {
3682    assert(quals.empty()); // from the recursive call
3683    quals = splitType.Quals;
3684    return QualType(splitType.Ty, 0);
3685  }
3686
3687  // Otherwise, add in the qualifiers from the outermost type, then
3688  // build the type back up.
3689  quals.addConsistentQualifiers(splitType.Quals);
3690
3691  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3692    return getConstantArrayType(unqualElementType, CAT->getSize(),
3693                                CAT->getSizeModifier(), 0);
3694  }
3695
3696  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3697    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3698  }
3699
3700  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3701    return getVariableArrayType(unqualElementType,
3702                                VAT->getSizeExpr(),
3703                                VAT->getSizeModifier(),
3704                                VAT->getIndexTypeCVRQualifiers(),
3705                                VAT->getBracketsRange());
3706  }
3707
3708  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3709  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3710                                    DSAT->getSizeModifier(), 0,
3711                                    SourceRange());
3712}
3713
3714/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3715/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3716/// they point to and return true. If T1 and T2 aren't pointer types
3717/// or pointer-to-member types, or if they are not similar at this
3718/// level, returns false and leaves T1 and T2 unchanged. Top-level
3719/// qualifiers on T1 and T2 are ignored. This function will typically
3720/// be called in a loop that successively "unwraps" pointer and
3721/// pointer-to-member types to compare them at each level.
3722bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3723  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3724                    *T2PtrType = T2->getAs<PointerType>();
3725  if (T1PtrType && T2PtrType) {
3726    T1 = T1PtrType->getPointeeType();
3727    T2 = T2PtrType->getPointeeType();
3728    return true;
3729  }
3730
3731  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3732                          *T2MPType = T2->getAs<MemberPointerType>();
3733  if (T1MPType && T2MPType &&
3734      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3735                             QualType(T2MPType->getClass(), 0))) {
3736    T1 = T1MPType->getPointeeType();
3737    T2 = T2MPType->getPointeeType();
3738    return true;
3739  }
3740
3741  if (getLangOpts().ObjC1) {
3742    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3743                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3744    if (T1OPType && T2OPType) {
3745      T1 = T1OPType->getPointeeType();
3746      T2 = T2OPType->getPointeeType();
3747      return true;
3748    }
3749  }
3750
3751  // FIXME: Block pointers, too?
3752
3753  return false;
3754}
3755
3756DeclarationNameInfo
3757ASTContext::getNameForTemplate(TemplateName Name,
3758                               SourceLocation NameLoc) const {
3759  switch (Name.getKind()) {
3760  case TemplateName::QualifiedTemplate:
3761  case TemplateName::Template:
3762    // DNInfo work in progress: CHECKME: what about DNLoc?
3763    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3764                               NameLoc);
3765
3766  case TemplateName::OverloadedTemplate: {
3767    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3768    // DNInfo work in progress: CHECKME: what about DNLoc?
3769    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3770  }
3771
3772  case TemplateName::DependentTemplate: {
3773    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3774    DeclarationName DName;
3775    if (DTN->isIdentifier()) {
3776      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3777      return DeclarationNameInfo(DName, NameLoc);
3778    } else {
3779      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3780      // DNInfo work in progress: FIXME: source locations?
3781      DeclarationNameLoc DNLoc;
3782      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3783      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3784      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3785    }
3786  }
3787
3788  case TemplateName::SubstTemplateTemplateParm: {
3789    SubstTemplateTemplateParmStorage *subst
3790      = Name.getAsSubstTemplateTemplateParm();
3791    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3792                               NameLoc);
3793  }
3794
3795  case TemplateName::SubstTemplateTemplateParmPack: {
3796    SubstTemplateTemplateParmPackStorage *subst
3797      = Name.getAsSubstTemplateTemplateParmPack();
3798    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3799                               NameLoc);
3800  }
3801  }
3802
3803  llvm_unreachable("bad template name kind!");
3804}
3805
3806TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3807  switch (Name.getKind()) {
3808  case TemplateName::QualifiedTemplate:
3809  case TemplateName::Template: {
3810    TemplateDecl *Template = Name.getAsTemplateDecl();
3811    if (TemplateTemplateParmDecl *TTP
3812          = dyn_cast<TemplateTemplateParmDecl>(Template))
3813      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3814
3815    // The canonical template name is the canonical template declaration.
3816    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3817  }
3818
3819  case TemplateName::OverloadedTemplate:
3820    llvm_unreachable("cannot canonicalize overloaded template");
3821
3822  case TemplateName::DependentTemplate: {
3823    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3824    assert(DTN && "Non-dependent template names must refer to template decls.");
3825    return DTN->CanonicalTemplateName;
3826  }
3827
3828  case TemplateName::SubstTemplateTemplateParm: {
3829    SubstTemplateTemplateParmStorage *subst
3830      = Name.getAsSubstTemplateTemplateParm();
3831    return getCanonicalTemplateName(subst->getReplacement());
3832  }
3833
3834  case TemplateName::SubstTemplateTemplateParmPack: {
3835    SubstTemplateTemplateParmPackStorage *subst
3836                                  = Name.getAsSubstTemplateTemplateParmPack();
3837    TemplateTemplateParmDecl *canonParameter
3838      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3839    TemplateArgument canonArgPack
3840      = getCanonicalTemplateArgument(subst->getArgumentPack());
3841    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3842  }
3843  }
3844
3845  llvm_unreachable("bad template name!");
3846}
3847
3848bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3849  X = getCanonicalTemplateName(X);
3850  Y = getCanonicalTemplateName(Y);
3851  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3852}
3853
3854TemplateArgument
3855ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3856  switch (Arg.getKind()) {
3857    case TemplateArgument::Null:
3858      return Arg;
3859
3860    case TemplateArgument::Expression:
3861      return Arg;
3862
3863    case TemplateArgument::Declaration: {
3864      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3865      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3866    }
3867
3868    case TemplateArgument::NullPtr:
3869      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3870                              /*isNullPtr*/true);
3871
3872    case TemplateArgument::Template:
3873      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3874
3875    case TemplateArgument::TemplateExpansion:
3876      return TemplateArgument(getCanonicalTemplateName(
3877                                         Arg.getAsTemplateOrTemplatePattern()),
3878                              Arg.getNumTemplateExpansions());
3879
3880    case TemplateArgument::Integral:
3881      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3882
3883    case TemplateArgument::Type:
3884      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3885
3886    case TemplateArgument::Pack: {
3887      if (Arg.pack_size() == 0)
3888        return Arg;
3889
3890      TemplateArgument *CanonArgs
3891        = new (*this) TemplateArgument[Arg.pack_size()];
3892      unsigned Idx = 0;
3893      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3894                                        AEnd = Arg.pack_end();
3895           A != AEnd; (void)++A, ++Idx)
3896        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3897
3898      return TemplateArgument(CanonArgs, Arg.pack_size());
3899    }
3900  }
3901
3902  // Silence GCC warning
3903  llvm_unreachable("Unhandled template argument kind");
3904}
3905
3906NestedNameSpecifier *
3907ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3908  if (!NNS)
3909    return 0;
3910
3911  switch (NNS->getKind()) {
3912  case NestedNameSpecifier::Identifier:
3913    // Canonicalize the prefix but keep the identifier the same.
3914    return NestedNameSpecifier::Create(*this,
3915                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3916                                       NNS->getAsIdentifier());
3917
3918  case NestedNameSpecifier::Namespace:
3919    // A namespace is canonical; build a nested-name-specifier with
3920    // this namespace and no prefix.
3921    return NestedNameSpecifier::Create(*this, 0,
3922                                 NNS->getAsNamespace()->getOriginalNamespace());
3923
3924  case NestedNameSpecifier::NamespaceAlias:
3925    // A namespace is canonical; build a nested-name-specifier with
3926    // this namespace and no prefix.
3927    return NestedNameSpecifier::Create(*this, 0,
3928                                    NNS->getAsNamespaceAlias()->getNamespace()
3929                                                      ->getOriginalNamespace());
3930
3931  case NestedNameSpecifier::TypeSpec:
3932  case NestedNameSpecifier::TypeSpecWithTemplate: {
3933    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3934
3935    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3936    // break it apart into its prefix and identifier, then reconsititute those
3937    // as the canonical nested-name-specifier. This is required to canonicalize
3938    // a dependent nested-name-specifier involving typedefs of dependent-name
3939    // types, e.g.,
3940    //   typedef typename T::type T1;
3941    //   typedef typename T1::type T2;
3942    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3943      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3944                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3945
3946    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3947    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3948    // first place?
3949    return NestedNameSpecifier::Create(*this, 0, false,
3950                                       const_cast<Type*>(T.getTypePtr()));
3951  }
3952
3953  case NestedNameSpecifier::Global:
3954    // The global specifier is canonical and unique.
3955    return NNS;
3956  }
3957
3958  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3959}
3960
3961
3962const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3963  // Handle the non-qualified case efficiently.
3964  if (!T.hasLocalQualifiers()) {
3965    // Handle the common positive case fast.
3966    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3967      return AT;
3968  }
3969
3970  // Handle the common negative case fast.
3971  if (!isa<ArrayType>(T.getCanonicalType()))
3972    return 0;
3973
3974  // Apply any qualifiers from the array type to the element type.  This
3975  // implements C99 6.7.3p8: "If the specification of an array type includes
3976  // any type qualifiers, the element type is so qualified, not the array type."
3977
3978  // If we get here, we either have type qualifiers on the type, or we have
3979  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3980  // we must propagate them down into the element type.
3981
3982  SplitQualType split = T.getSplitDesugaredType();
3983  Qualifiers qs = split.Quals;
3984
3985  // If we have a simple case, just return now.
3986  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3987  if (ATy == 0 || qs.empty())
3988    return ATy;
3989
3990  // Otherwise, we have an array and we have qualifiers on it.  Push the
3991  // qualifiers into the array element type and return a new array type.
3992  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3993
3994  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3995    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3996                                                CAT->getSizeModifier(),
3997                                           CAT->getIndexTypeCVRQualifiers()));
3998  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3999    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4000                                                  IAT->getSizeModifier(),
4001                                           IAT->getIndexTypeCVRQualifiers()));
4002
4003  if (const DependentSizedArrayType *DSAT
4004        = dyn_cast<DependentSizedArrayType>(ATy))
4005    return cast<ArrayType>(
4006                     getDependentSizedArrayType(NewEltTy,
4007                                                DSAT->getSizeExpr(),
4008                                                DSAT->getSizeModifier(),
4009                                              DSAT->getIndexTypeCVRQualifiers(),
4010                                                DSAT->getBracketsRange()));
4011
4012  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4013  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4014                                              VAT->getSizeExpr(),
4015                                              VAT->getSizeModifier(),
4016                                              VAT->getIndexTypeCVRQualifiers(),
4017                                              VAT->getBracketsRange()));
4018}
4019
4020QualType ASTContext::getAdjustedParameterType(QualType T) const {
4021  // C99 6.7.5.3p7:
4022  //   A declaration of a parameter as "array of type" shall be
4023  //   adjusted to "qualified pointer to type", where the type
4024  //   qualifiers (if any) are those specified within the [ and ] of
4025  //   the array type derivation.
4026  if (T->isArrayType())
4027    return getArrayDecayedType(T);
4028
4029  // C99 6.7.5.3p8:
4030  //   A declaration of a parameter as "function returning type"
4031  //   shall be adjusted to "pointer to function returning type", as
4032  //   in 6.3.2.1.
4033  if (T->isFunctionType())
4034    return getPointerType(T);
4035
4036  return T;
4037}
4038
4039QualType ASTContext::getSignatureParameterType(QualType T) const {
4040  T = getVariableArrayDecayedType(T);
4041  T = getAdjustedParameterType(T);
4042  return T.getUnqualifiedType();
4043}
4044
4045/// getArrayDecayedType - Return the properly qualified result of decaying the
4046/// specified array type to a pointer.  This operation is non-trivial when
4047/// handling typedefs etc.  The canonical type of "T" must be an array type,
4048/// this returns a pointer to a properly qualified element of the array.
4049///
4050/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4051QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4052  // Get the element type with 'getAsArrayType' so that we don't lose any
4053  // typedefs in the element type of the array.  This also handles propagation
4054  // of type qualifiers from the array type into the element type if present
4055  // (C99 6.7.3p8).
4056  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4057  assert(PrettyArrayType && "Not an array type!");
4058
4059  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4060
4061  // int x[restrict 4] ->  int *restrict
4062  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4063}
4064
4065QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4066  return getBaseElementType(array->getElementType());
4067}
4068
4069QualType ASTContext::getBaseElementType(QualType type) const {
4070  Qualifiers qs;
4071  while (true) {
4072    SplitQualType split = type.getSplitDesugaredType();
4073    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4074    if (!array) break;
4075
4076    type = array->getElementType();
4077    qs.addConsistentQualifiers(split.Quals);
4078  }
4079
4080  return getQualifiedType(type, qs);
4081}
4082
4083/// getConstantArrayElementCount - Returns number of constant array elements.
4084uint64_t
4085ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4086  uint64_t ElementCount = 1;
4087  do {
4088    ElementCount *= CA->getSize().getZExtValue();
4089    CA = dyn_cast_or_null<ConstantArrayType>(
4090      CA->getElementType()->getAsArrayTypeUnsafe());
4091  } while (CA);
4092  return ElementCount;
4093}
4094
4095/// getFloatingRank - Return a relative rank for floating point types.
4096/// This routine will assert if passed a built-in type that isn't a float.
4097static FloatingRank getFloatingRank(QualType T) {
4098  if (const ComplexType *CT = T->getAs<ComplexType>())
4099    return getFloatingRank(CT->getElementType());
4100
4101  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4102  switch (T->getAs<BuiltinType>()->getKind()) {
4103  default: llvm_unreachable("getFloatingRank(): not a floating type");
4104  case BuiltinType::Half:       return HalfRank;
4105  case BuiltinType::Float:      return FloatRank;
4106  case BuiltinType::Double:     return DoubleRank;
4107  case BuiltinType::LongDouble: return LongDoubleRank;
4108  }
4109}
4110
4111/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4112/// point or a complex type (based on typeDomain/typeSize).
4113/// 'typeDomain' is a real floating point or complex type.
4114/// 'typeSize' is a real floating point or complex type.
4115QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4116                                                       QualType Domain) const {
4117  FloatingRank EltRank = getFloatingRank(Size);
4118  if (Domain->isComplexType()) {
4119    switch (EltRank) {
4120    case HalfRank: llvm_unreachable("Complex half is not supported");
4121    case FloatRank:      return FloatComplexTy;
4122    case DoubleRank:     return DoubleComplexTy;
4123    case LongDoubleRank: return LongDoubleComplexTy;
4124    }
4125  }
4126
4127  assert(Domain->isRealFloatingType() && "Unknown domain!");
4128  switch (EltRank) {
4129  case HalfRank:       return HalfTy;
4130  case FloatRank:      return FloatTy;
4131  case DoubleRank:     return DoubleTy;
4132  case LongDoubleRank: return LongDoubleTy;
4133  }
4134  llvm_unreachable("getFloatingRank(): illegal value for rank");
4135}
4136
4137/// getFloatingTypeOrder - Compare the rank of the two specified floating
4138/// point types, ignoring the domain of the type (i.e. 'double' ==
4139/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4140/// LHS < RHS, return -1.
4141int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4142  FloatingRank LHSR = getFloatingRank(LHS);
4143  FloatingRank RHSR = getFloatingRank(RHS);
4144
4145  if (LHSR == RHSR)
4146    return 0;
4147  if (LHSR > RHSR)
4148    return 1;
4149  return -1;
4150}
4151
4152/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4153/// routine will assert if passed a built-in type that isn't an integer or enum,
4154/// or if it is not canonicalized.
4155unsigned ASTContext::getIntegerRank(const Type *T) const {
4156  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4157
4158  switch (cast<BuiltinType>(T)->getKind()) {
4159  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4160  case BuiltinType::Bool:
4161    return 1 + (getIntWidth(BoolTy) << 3);
4162  case BuiltinType::Char_S:
4163  case BuiltinType::Char_U:
4164  case BuiltinType::SChar:
4165  case BuiltinType::UChar:
4166    return 2 + (getIntWidth(CharTy) << 3);
4167  case BuiltinType::Short:
4168  case BuiltinType::UShort:
4169    return 3 + (getIntWidth(ShortTy) << 3);
4170  case BuiltinType::Int:
4171  case BuiltinType::UInt:
4172    return 4 + (getIntWidth(IntTy) << 3);
4173  case BuiltinType::Long:
4174  case BuiltinType::ULong:
4175    return 5 + (getIntWidth(LongTy) << 3);
4176  case BuiltinType::LongLong:
4177  case BuiltinType::ULongLong:
4178    return 6 + (getIntWidth(LongLongTy) << 3);
4179  case BuiltinType::Int128:
4180  case BuiltinType::UInt128:
4181    return 7 + (getIntWidth(Int128Ty) << 3);
4182  }
4183}
4184
4185/// \brief Whether this is a promotable bitfield reference according
4186/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4187///
4188/// \returns the type this bit-field will promote to, or NULL if no
4189/// promotion occurs.
4190QualType ASTContext::isPromotableBitField(Expr *E) const {
4191  if (E->isTypeDependent() || E->isValueDependent())
4192    return QualType();
4193
4194  FieldDecl *Field = E->getBitField();
4195  if (!Field)
4196    return QualType();
4197
4198  QualType FT = Field->getType();
4199
4200  uint64_t BitWidth = Field->getBitWidthValue(*this);
4201  uint64_t IntSize = getTypeSize(IntTy);
4202  // GCC extension compatibility: if the bit-field size is less than or equal
4203  // to the size of int, it gets promoted no matter what its type is.
4204  // For instance, unsigned long bf : 4 gets promoted to signed int.
4205  if (BitWidth < IntSize)
4206    return IntTy;
4207
4208  if (BitWidth == IntSize)
4209    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4210
4211  // Types bigger than int are not subject to promotions, and therefore act
4212  // like the base type.
4213  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4214  // is ridiculous.
4215  return QualType();
4216}
4217
4218/// getPromotedIntegerType - Returns the type that Promotable will
4219/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4220/// integer type.
4221QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4222  assert(!Promotable.isNull());
4223  assert(Promotable->isPromotableIntegerType());
4224  if (const EnumType *ET = Promotable->getAs<EnumType>())
4225    return ET->getDecl()->getPromotionType();
4226
4227  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4228    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4229    // (3.9.1) can be converted to a prvalue of the first of the following
4230    // types that can represent all the values of its underlying type:
4231    // int, unsigned int, long int, unsigned long int, long long int, or
4232    // unsigned long long int [...]
4233    // FIXME: Is there some better way to compute this?
4234    if (BT->getKind() == BuiltinType::WChar_S ||
4235        BT->getKind() == BuiltinType::WChar_U ||
4236        BT->getKind() == BuiltinType::Char16 ||
4237        BT->getKind() == BuiltinType::Char32) {
4238      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4239      uint64_t FromSize = getTypeSize(BT);
4240      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4241                                  LongLongTy, UnsignedLongLongTy };
4242      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4243        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4244        if (FromSize < ToSize ||
4245            (FromSize == ToSize &&
4246             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4247          return PromoteTypes[Idx];
4248      }
4249      llvm_unreachable("char type should fit into long long");
4250    }
4251  }
4252
4253  // At this point, we should have a signed or unsigned integer type.
4254  if (Promotable->isSignedIntegerType())
4255    return IntTy;
4256  uint64_t PromotableSize = getIntWidth(Promotable);
4257  uint64_t IntSize = getIntWidth(IntTy);
4258  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4259  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4260}
4261
4262/// \brief Recurses in pointer/array types until it finds an objc retainable
4263/// type and returns its ownership.
4264Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4265  while (!T.isNull()) {
4266    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4267      return T.getObjCLifetime();
4268    if (T->isArrayType())
4269      T = getBaseElementType(T);
4270    else if (const PointerType *PT = T->getAs<PointerType>())
4271      T = PT->getPointeeType();
4272    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4273      T = RT->getPointeeType();
4274    else
4275      break;
4276  }
4277
4278  return Qualifiers::OCL_None;
4279}
4280
4281/// getIntegerTypeOrder - Returns the highest ranked integer type:
4282/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4283/// LHS < RHS, return -1.
4284int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4285  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4286  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4287  if (LHSC == RHSC) return 0;
4288
4289  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4290  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4291
4292  unsigned LHSRank = getIntegerRank(LHSC);
4293  unsigned RHSRank = getIntegerRank(RHSC);
4294
4295  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4296    if (LHSRank == RHSRank) return 0;
4297    return LHSRank > RHSRank ? 1 : -1;
4298  }
4299
4300  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4301  if (LHSUnsigned) {
4302    // If the unsigned [LHS] type is larger, return it.
4303    if (LHSRank >= RHSRank)
4304      return 1;
4305
4306    // If the signed type can represent all values of the unsigned type, it
4307    // wins.  Because we are dealing with 2's complement and types that are
4308    // powers of two larger than each other, this is always safe.
4309    return -1;
4310  }
4311
4312  // If the unsigned [RHS] type is larger, return it.
4313  if (RHSRank >= LHSRank)
4314    return -1;
4315
4316  // If the signed type can represent all values of the unsigned type, it
4317  // wins.  Because we are dealing with 2's complement and types that are
4318  // powers of two larger than each other, this is always safe.
4319  return 1;
4320}
4321
4322static RecordDecl *
4323CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4324                 DeclContext *DC, IdentifierInfo *Id) {
4325  SourceLocation Loc;
4326  if (Ctx.getLangOpts().CPlusPlus)
4327    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4328  else
4329    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4330}
4331
4332// getCFConstantStringType - Return the type used for constant CFStrings.
4333QualType ASTContext::getCFConstantStringType() const {
4334  if (!CFConstantStringTypeDecl) {
4335    CFConstantStringTypeDecl =
4336      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4337                       &Idents.get("NSConstantString"));
4338    CFConstantStringTypeDecl->startDefinition();
4339
4340    QualType FieldTypes[4];
4341
4342    // const int *isa;
4343    FieldTypes[0] = getPointerType(IntTy.withConst());
4344    // int flags;
4345    FieldTypes[1] = IntTy;
4346    // const char *str;
4347    FieldTypes[2] = getPointerType(CharTy.withConst());
4348    // long length;
4349    FieldTypes[3] = LongTy;
4350
4351    // Create fields
4352    for (unsigned i = 0; i < 4; ++i) {
4353      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4354                                           SourceLocation(),
4355                                           SourceLocation(), 0,
4356                                           FieldTypes[i], /*TInfo=*/0,
4357                                           /*BitWidth=*/0,
4358                                           /*Mutable=*/false,
4359                                           ICIS_NoInit);
4360      Field->setAccess(AS_public);
4361      CFConstantStringTypeDecl->addDecl(Field);
4362    }
4363
4364    CFConstantStringTypeDecl->completeDefinition();
4365  }
4366
4367  return getTagDeclType(CFConstantStringTypeDecl);
4368}
4369
4370QualType ASTContext::getObjCSuperType() const {
4371  if (ObjCSuperType.isNull()) {
4372    RecordDecl *ObjCSuperTypeDecl  =
4373      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4374    TUDecl->addDecl(ObjCSuperTypeDecl);
4375    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4376  }
4377  return ObjCSuperType;
4378}
4379
4380void ASTContext::setCFConstantStringType(QualType T) {
4381  const RecordType *Rec = T->getAs<RecordType>();
4382  assert(Rec && "Invalid CFConstantStringType");
4383  CFConstantStringTypeDecl = Rec->getDecl();
4384}
4385
4386QualType ASTContext::getBlockDescriptorType() const {
4387  if (BlockDescriptorType)
4388    return getTagDeclType(BlockDescriptorType);
4389
4390  RecordDecl *T;
4391  // FIXME: Needs the FlagAppleBlock bit.
4392  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4393                       &Idents.get("__block_descriptor"));
4394  T->startDefinition();
4395
4396  QualType FieldTypes[] = {
4397    UnsignedLongTy,
4398    UnsignedLongTy,
4399  };
4400
4401  const char *FieldNames[] = {
4402    "reserved",
4403    "Size"
4404  };
4405
4406  for (size_t i = 0; i < 2; ++i) {
4407    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4408                                         SourceLocation(),
4409                                         &Idents.get(FieldNames[i]),
4410                                         FieldTypes[i], /*TInfo=*/0,
4411                                         /*BitWidth=*/0,
4412                                         /*Mutable=*/false,
4413                                         ICIS_NoInit);
4414    Field->setAccess(AS_public);
4415    T->addDecl(Field);
4416  }
4417
4418  T->completeDefinition();
4419
4420  BlockDescriptorType = T;
4421
4422  return getTagDeclType(BlockDescriptorType);
4423}
4424
4425QualType ASTContext::getBlockDescriptorExtendedType() const {
4426  if (BlockDescriptorExtendedType)
4427    return getTagDeclType(BlockDescriptorExtendedType);
4428
4429  RecordDecl *T;
4430  // FIXME: Needs the FlagAppleBlock bit.
4431  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4432                       &Idents.get("__block_descriptor_withcopydispose"));
4433  T->startDefinition();
4434
4435  QualType FieldTypes[] = {
4436    UnsignedLongTy,
4437    UnsignedLongTy,
4438    getPointerType(VoidPtrTy),
4439    getPointerType(VoidPtrTy)
4440  };
4441
4442  const char *FieldNames[] = {
4443    "reserved",
4444    "Size",
4445    "CopyFuncPtr",
4446    "DestroyFuncPtr"
4447  };
4448
4449  for (size_t i = 0; i < 4; ++i) {
4450    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4451                                         SourceLocation(),
4452                                         &Idents.get(FieldNames[i]),
4453                                         FieldTypes[i], /*TInfo=*/0,
4454                                         /*BitWidth=*/0,
4455                                         /*Mutable=*/false,
4456                                         ICIS_NoInit);
4457    Field->setAccess(AS_public);
4458    T->addDecl(Field);
4459  }
4460
4461  T->completeDefinition();
4462
4463  BlockDescriptorExtendedType = T;
4464
4465  return getTagDeclType(BlockDescriptorExtendedType);
4466}
4467
4468/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4469/// requires copy/dispose. Note that this must match the logic
4470/// in buildByrefHelpers.
4471bool ASTContext::BlockRequiresCopying(QualType Ty,
4472                                      const VarDecl *D) {
4473  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4474    const Expr *copyExpr = getBlockVarCopyInits(D);
4475    if (!copyExpr && record->hasTrivialDestructor()) return false;
4476
4477    return true;
4478  }
4479
4480  if (!Ty->isObjCRetainableType()) return false;
4481
4482  Qualifiers qs = Ty.getQualifiers();
4483
4484  // If we have lifetime, that dominates.
4485  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4486    assert(getLangOpts().ObjCAutoRefCount);
4487
4488    switch (lifetime) {
4489      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4490
4491      // These are just bits as far as the runtime is concerned.
4492      case Qualifiers::OCL_ExplicitNone:
4493      case Qualifiers::OCL_Autoreleasing:
4494        return false;
4495
4496      // Tell the runtime that this is ARC __weak, called by the
4497      // byref routines.
4498      case Qualifiers::OCL_Weak:
4499      // ARC __strong __block variables need to be retained.
4500      case Qualifiers::OCL_Strong:
4501        return true;
4502    }
4503    llvm_unreachable("fell out of lifetime switch!");
4504  }
4505  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4506          Ty->isObjCObjectPointerType());
4507}
4508
4509bool ASTContext::getByrefLifetime(QualType Ty,
4510                              Qualifiers::ObjCLifetime &LifeTime,
4511                              bool &HasByrefExtendedLayout) const {
4512
4513  if (!getLangOpts().ObjC1 ||
4514      getLangOpts().getGC() != LangOptions::NonGC)
4515    return false;
4516
4517  HasByrefExtendedLayout = false;
4518  if (Ty->isRecordType()) {
4519    HasByrefExtendedLayout = true;
4520    LifeTime = Qualifiers::OCL_None;
4521  }
4522  else if (getLangOpts().ObjCAutoRefCount)
4523    LifeTime = Ty.getObjCLifetime();
4524  // MRR.
4525  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4526    LifeTime = Qualifiers::OCL_ExplicitNone;
4527  else
4528    LifeTime = Qualifiers::OCL_None;
4529  return true;
4530}
4531
4532TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4533  if (!ObjCInstanceTypeDecl)
4534    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4535                                               getTranslationUnitDecl(),
4536                                               SourceLocation(),
4537                                               SourceLocation(),
4538                                               &Idents.get("instancetype"),
4539                                     getTrivialTypeSourceInfo(getObjCIdType()));
4540  return ObjCInstanceTypeDecl;
4541}
4542
4543// This returns true if a type has been typedefed to BOOL:
4544// typedef <type> BOOL;
4545static bool isTypeTypedefedAsBOOL(QualType T) {
4546  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4547    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4548      return II->isStr("BOOL");
4549
4550  return false;
4551}
4552
4553/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4554/// purpose.
4555CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4556  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4557    return CharUnits::Zero();
4558
4559  CharUnits sz = getTypeSizeInChars(type);
4560
4561  // Make all integer and enum types at least as large as an int
4562  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4563    sz = std::max(sz, getTypeSizeInChars(IntTy));
4564  // Treat arrays as pointers, since that's how they're passed in.
4565  else if (type->isArrayType())
4566    sz = getTypeSizeInChars(VoidPtrTy);
4567  return sz;
4568}
4569
4570static inline
4571std::string charUnitsToString(const CharUnits &CU) {
4572  return llvm::itostr(CU.getQuantity());
4573}
4574
4575/// getObjCEncodingForBlock - Return the encoded type for this block
4576/// declaration.
4577std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4578  std::string S;
4579
4580  const BlockDecl *Decl = Expr->getBlockDecl();
4581  QualType BlockTy =
4582      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4583  // Encode result type.
4584  if (getLangOpts().EncodeExtendedBlockSig)
4585    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4586                            BlockTy->getAs<FunctionType>()->getResultType(),
4587                            S, true /*Extended*/);
4588  else
4589    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4590                           S);
4591  // Compute size of all parameters.
4592  // Start with computing size of a pointer in number of bytes.
4593  // FIXME: There might(should) be a better way of doing this computation!
4594  SourceLocation Loc;
4595  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4596  CharUnits ParmOffset = PtrSize;
4597  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4598       E = Decl->param_end(); PI != E; ++PI) {
4599    QualType PType = (*PI)->getType();
4600    CharUnits sz = getObjCEncodingTypeSize(PType);
4601    if (sz.isZero())
4602      continue;
4603    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4604    ParmOffset += sz;
4605  }
4606  // Size of the argument frame
4607  S += charUnitsToString(ParmOffset);
4608  // Block pointer and offset.
4609  S += "@?0";
4610
4611  // Argument types.
4612  ParmOffset = PtrSize;
4613  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4614       Decl->param_end(); PI != E; ++PI) {
4615    ParmVarDecl *PVDecl = *PI;
4616    QualType PType = PVDecl->getOriginalType();
4617    if (const ArrayType *AT =
4618          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4619      // Use array's original type only if it has known number of
4620      // elements.
4621      if (!isa<ConstantArrayType>(AT))
4622        PType = PVDecl->getType();
4623    } else if (PType->isFunctionType())
4624      PType = PVDecl->getType();
4625    if (getLangOpts().EncodeExtendedBlockSig)
4626      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4627                                      S, true /*Extended*/);
4628    else
4629      getObjCEncodingForType(PType, S);
4630    S += charUnitsToString(ParmOffset);
4631    ParmOffset += getObjCEncodingTypeSize(PType);
4632  }
4633
4634  return S;
4635}
4636
4637bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4638                                                std::string& S) {
4639  // Encode result type.
4640  getObjCEncodingForType(Decl->getResultType(), S);
4641  CharUnits ParmOffset;
4642  // Compute size of all parameters.
4643  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4644       E = Decl->param_end(); PI != E; ++PI) {
4645    QualType PType = (*PI)->getType();
4646    CharUnits sz = getObjCEncodingTypeSize(PType);
4647    if (sz.isZero())
4648      continue;
4649
4650    assert (sz.isPositive() &&
4651        "getObjCEncodingForFunctionDecl - Incomplete param type");
4652    ParmOffset += sz;
4653  }
4654  S += charUnitsToString(ParmOffset);
4655  ParmOffset = CharUnits::Zero();
4656
4657  // Argument types.
4658  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4659       E = Decl->param_end(); PI != E; ++PI) {
4660    ParmVarDecl *PVDecl = *PI;
4661    QualType PType = PVDecl->getOriginalType();
4662    if (const ArrayType *AT =
4663          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4664      // Use array's original type only if it has known number of
4665      // elements.
4666      if (!isa<ConstantArrayType>(AT))
4667        PType = PVDecl->getType();
4668    } else if (PType->isFunctionType())
4669      PType = PVDecl->getType();
4670    getObjCEncodingForType(PType, S);
4671    S += charUnitsToString(ParmOffset);
4672    ParmOffset += getObjCEncodingTypeSize(PType);
4673  }
4674
4675  return false;
4676}
4677
4678/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4679/// method parameter or return type. If Extended, include class names and
4680/// block object types.
4681void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4682                                                   QualType T, std::string& S,
4683                                                   bool Extended) const {
4684  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4685  getObjCEncodingForTypeQualifier(QT, S);
4686  // Encode parameter type.
4687  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4688                             true     /*OutermostType*/,
4689                             false    /*EncodingProperty*/,
4690                             false    /*StructField*/,
4691                             Extended /*EncodeBlockParameters*/,
4692                             Extended /*EncodeClassNames*/);
4693}
4694
4695/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4696/// declaration.
4697bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4698                                              std::string& S,
4699                                              bool Extended) const {
4700  // FIXME: This is not very efficient.
4701  // Encode return type.
4702  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4703                                    Decl->getResultType(), S, Extended);
4704  // Compute size of all parameters.
4705  // Start with computing size of a pointer in number of bytes.
4706  // FIXME: There might(should) be a better way of doing this computation!
4707  SourceLocation Loc;
4708  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4709  // The first two arguments (self and _cmd) are pointers; account for
4710  // their size.
4711  CharUnits ParmOffset = 2 * PtrSize;
4712  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4713       E = Decl->sel_param_end(); PI != E; ++PI) {
4714    QualType PType = (*PI)->getType();
4715    CharUnits sz = getObjCEncodingTypeSize(PType);
4716    if (sz.isZero())
4717      continue;
4718
4719    assert (sz.isPositive() &&
4720        "getObjCEncodingForMethodDecl - Incomplete param type");
4721    ParmOffset += sz;
4722  }
4723  S += charUnitsToString(ParmOffset);
4724  S += "@0:";
4725  S += charUnitsToString(PtrSize);
4726
4727  // Argument types.
4728  ParmOffset = 2 * PtrSize;
4729  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4730       E = Decl->sel_param_end(); PI != E; ++PI) {
4731    const ParmVarDecl *PVDecl = *PI;
4732    QualType PType = PVDecl->getOriginalType();
4733    if (const ArrayType *AT =
4734          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4735      // Use array's original type only if it has known number of
4736      // elements.
4737      if (!isa<ConstantArrayType>(AT))
4738        PType = PVDecl->getType();
4739    } else if (PType->isFunctionType())
4740      PType = PVDecl->getType();
4741    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4742                                      PType, S, Extended);
4743    S += charUnitsToString(ParmOffset);
4744    ParmOffset += getObjCEncodingTypeSize(PType);
4745  }
4746
4747  return false;
4748}
4749
4750/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4751/// property declaration. If non-NULL, Container must be either an
4752/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4753/// NULL when getting encodings for protocol properties.
4754/// Property attributes are stored as a comma-delimited C string. The simple
4755/// attributes readonly and bycopy are encoded as single characters. The
4756/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4757/// encoded as single characters, followed by an identifier. Property types
4758/// are also encoded as a parametrized attribute. The characters used to encode
4759/// these attributes are defined by the following enumeration:
4760/// @code
4761/// enum PropertyAttributes {
4762/// kPropertyReadOnly = 'R',   // property is read-only.
4763/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4764/// kPropertyByref = '&',  // property is a reference to the value last assigned
4765/// kPropertyDynamic = 'D',    // property is dynamic
4766/// kPropertyGetter = 'G',     // followed by getter selector name
4767/// kPropertySetter = 'S',     // followed by setter selector name
4768/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4769/// kPropertyType = 'T'              // followed by old-style type encoding.
4770/// kPropertyWeak = 'W'              // 'weak' property
4771/// kPropertyStrong = 'P'            // property GC'able
4772/// kPropertyNonAtomic = 'N'         // property non-atomic
4773/// };
4774/// @endcode
4775void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4776                                                const Decl *Container,
4777                                                std::string& S) const {
4778  // Collect information from the property implementation decl(s).
4779  bool Dynamic = false;
4780  ObjCPropertyImplDecl *SynthesizePID = 0;
4781
4782  // FIXME: Duplicated code due to poor abstraction.
4783  if (Container) {
4784    if (const ObjCCategoryImplDecl *CID =
4785        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4786      for (ObjCCategoryImplDecl::propimpl_iterator
4787             i = CID->propimpl_begin(), e = CID->propimpl_end();
4788           i != e; ++i) {
4789        ObjCPropertyImplDecl *PID = *i;
4790        if (PID->getPropertyDecl() == PD) {
4791          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4792            Dynamic = true;
4793          } else {
4794            SynthesizePID = PID;
4795          }
4796        }
4797      }
4798    } else {
4799      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4800      for (ObjCCategoryImplDecl::propimpl_iterator
4801             i = OID->propimpl_begin(), e = OID->propimpl_end();
4802           i != e; ++i) {
4803        ObjCPropertyImplDecl *PID = *i;
4804        if (PID->getPropertyDecl() == PD) {
4805          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4806            Dynamic = true;
4807          } else {
4808            SynthesizePID = PID;
4809          }
4810        }
4811      }
4812    }
4813  }
4814
4815  // FIXME: This is not very efficient.
4816  S = "T";
4817
4818  // Encode result type.
4819  // GCC has some special rules regarding encoding of properties which
4820  // closely resembles encoding of ivars.
4821  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4822                             true /* outermost type */,
4823                             true /* encoding for property */);
4824
4825  if (PD->isReadOnly()) {
4826    S += ",R";
4827  } else {
4828    switch (PD->getSetterKind()) {
4829    case ObjCPropertyDecl::Assign: break;
4830    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4831    case ObjCPropertyDecl::Retain: S += ",&"; break;
4832    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4833    }
4834  }
4835
4836  // It really isn't clear at all what this means, since properties
4837  // are "dynamic by default".
4838  if (Dynamic)
4839    S += ",D";
4840
4841  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4842    S += ",N";
4843
4844  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4845    S += ",G";
4846    S += PD->getGetterName().getAsString();
4847  }
4848
4849  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4850    S += ",S";
4851    S += PD->getSetterName().getAsString();
4852  }
4853
4854  if (SynthesizePID) {
4855    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4856    S += ",V";
4857    S += OID->getNameAsString();
4858  }
4859
4860  // FIXME: OBJCGC: weak & strong
4861}
4862
4863/// getLegacyIntegralTypeEncoding -
4864/// Another legacy compatibility encoding: 32-bit longs are encoded as
4865/// 'l' or 'L' , but not always.  For typedefs, we need to use
4866/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4867///
4868void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4869  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4870    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4871      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4872        PointeeTy = UnsignedIntTy;
4873      else
4874        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4875          PointeeTy = IntTy;
4876    }
4877  }
4878}
4879
4880void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4881                                        const FieldDecl *Field) const {
4882  // We follow the behavior of gcc, expanding structures which are
4883  // directly pointed to, and expanding embedded structures. Note that
4884  // these rules are sufficient to prevent recursive encoding of the
4885  // same type.
4886  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4887                             true /* outermost type */);
4888}
4889
4890static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4891                                            BuiltinType::Kind kind) {
4892    switch (kind) {
4893    case BuiltinType::Void:       return 'v';
4894    case BuiltinType::Bool:       return 'B';
4895    case BuiltinType::Char_U:
4896    case BuiltinType::UChar:      return 'C';
4897    case BuiltinType::Char16:
4898    case BuiltinType::UShort:     return 'S';
4899    case BuiltinType::Char32:
4900    case BuiltinType::UInt:       return 'I';
4901    case BuiltinType::ULong:
4902        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4903    case BuiltinType::UInt128:    return 'T';
4904    case BuiltinType::ULongLong:  return 'Q';
4905    case BuiltinType::Char_S:
4906    case BuiltinType::SChar:      return 'c';
4907    case BuiltinType::Short:      return 's';
4908    case BuiltinType::WChar_S:
4909    case BuiltinType::WChar_U:
4910    case BuiltinType::Int:        return 'i';
4911    case BuiltinType::Long:
4912      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4913    case BuiltinType::LongLong:   return 'q';
4914    case BuiltinType::Int128:     return 't';
4915    case BuiltinType::Float:      return 'f';
4916    case BuiltinType::Double:     return 'd';
4917    case BuiltinType::LongDouble: return 'D';
4918    case BuiltinType::NullPtr:    return '*'; // like char*
4919
4920    case BuiltinType::Half:
4921      // FIXME: potentially need @encodes for these!
4922      return ' ';
4923
4924    case BuiltinType::ObjCId:
4925    case BuiltinType::ObjCClass:
4926    case BuiltinType::ObjCSel:
4927      llvm_unreachable("@encoding ObjC primitive type");
4928
4929    // OpenCL and placeholder types don't need @encodings.
4930    case BuiltinType::OCLImage1d:
4931    case BuiltinType::OCLImage1dArray:
4932    case BuiltinType::OCLImage1dBuffer:
4933    case BuiltinType::OCLImage2d:
4934    case BuiltinType::OCLImage2dArray:
4935    case BuiltinType::OCLImage3d:
4936    case BuiltinType::OCLEvent:
4937    case BuiltinType::OCLSampler:
4938    case BuiltinType::Dependent:
4939#define BUILTIN_TYPE(KIND, ID)
4940#define PLACEHOLDER_TYPE(KIND, ID) \
4941    case BuiltinType::KIND:
4942#include "clang/AST/BuiltinTypes.def"
4943      llvm_unreachable("invalid builtin type for @encode");
4944    }
4945    llvm_unreachable("invalid BuiltinType::Kind value");
4946}
4947
4948static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4949  EnumDecl *Enum = ET->getDecl();
4950
4951  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4952  if (!Enum->isFixed())
4953    return 'i';
4954
4955  // The encoding of a fixed enum type matches its fixed underlying type.
4956  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4957  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4958}
4959
4960static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4961                           QualType T, const FieldDecl *FD) {
4962  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4963  S += 'b';
4964  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4965  // The GNU runtime requires more information; bitfields are encoded as b,
4966  // then the offset (in bits) of the first element, then the type of the
4967  // bitfield, then the size in bits.  For example, in this structure:
4968  //
4969  // struct
4970  // {
4971  //    int integer;
4972  //    int flags:2;
4973  // };
4974  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4975  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4976  // information is not especially sensible, but we're stuck with it for
4977  // compatibility with GCC, although providing it breaks anything that
4978  // actually uses runtime introspection and wants to work on both runtimes...
4979  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4980    const RecordDecl *RD = FD->getParent();
4981    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4982    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4983    if (const EnumType *ET = T->getAs<EnumType>())
4984      S += ObjCEncodingForEnumType(Ctx, ET);
4985    else {
4986      const BuiltinType *BT = T->castAs<BuiltinType>();
4987      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4988    }
4989  }
4990  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4991}
4992
4993// FIXME: Use SmallString for accumulating string.
4994void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4995                                            bool ExpandPointedToStructures,
4996                                            bool ExpandStructures,
4997                                            const FieldDecl *FD,
4998                                            bool OutermostType,
4999                                            bool EncodingProperty,
5000                                            bool StructField,
5001                                            bool EncodeBlockParameters,
5002                                            bool EncodeClassNames,
5003                                            bool EncodePointerToObjCTypedef) const {
5004  CanQualType CT = getCanonicalType(T);
5005  switch (CT->getTypeClass()) {
5006  case Type::Builtin:
5007  case Type::Enum:
5008    if (FD && FD->isBitField())
5009      return EncodeBitField(this, S, T, FD);
5010    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5011      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5012    else
5013      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5014    return;
5015
5016  case Type::Complex: {
5017    const ComplexType *CT = T->castAs<ComplexType>();
5018    S += 'j';
5019    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5020                               false);
5021    return;
5022  }
5023
5024  case Type::Atomic: {
5025    const AtomicType *AT = T->castAs<AtomicType>();
5026    S += 'A';
5027    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5028                               false, false);
5029    return;
5030  }
5031
5032  // encoding for pointer or reference types.
5033  case Type::Pointer:
5034  case Type::LValueReference:
5035  case Type::RValueReference: {
5036    QualType PointeeTy;
5037    if (isa<PointerType>(CT)) {
5038      const PointerType *PT = T->castAs<PointerType>();
5039      if (PT->isObjCSelType()) {
5040        S += ':';
5041        return;
5042      }
5043      PointeeTy = PT->getPointeeType();
5044    } else {
5045      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5046    }
5047
5048    bool isReadOnly = false;
5049    // For historical/compatibility reasons, the read-only qualifier of the
5050    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5051    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5052    // Also, do not emit the 'r' for anything but the outermost type!
5053    if (isa<TypedefType>(T.getTypePtr())) {
5054      if (OutermostType && T.isConstQualified()) {
5055        isReadOnly = true;
5056        S += 'r';
5057      }
5058    } else if (OutermostType) {
5059      QualType P = PointeeTy;
5060      while (P->getAs<PointerType>())
5061        P = P->getAs<PointerType>()->getPointeeType();
5062      if (P.isConstQualified()) {
5063        isReadOnly = true;
5064        S += 'r';
5065      }
5066    }
5067    if (isReadOnly) {
5068      // Another legacy compatibility encoding. Some ObjC qualifier and type
5069      // combinations need to be rearranged.
5070      // Rewrite "in const" from "nr" to "rn"
5071      if (StringRef(S).endswith("nr"))
5072        S.replace(S.end()-2, S.end(), "rn");
5073    }
5074
5075    if (PointeeTy->isCharType()) {
5076      // char pointer types should be encoded as '*' unless it is a
5077      // type that has been typedef'd to 'BOOL'.
5078      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5079        S += '*';
5080        return;
5081      }
5082    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5083      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5084      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5085        S += '#';
5086        return;
5087      }
5088      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5089      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5090        S += '@';
5091        return;
5092      }
5093      // fall through...
5094    }
5095    S += '^';
5096    getLegacyIntegralTypeEncoding(PointeeTy);
5097
5098    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5099                               NULL);
5100    return;
5101  }
5102
5103  case Type::ConstantArray:
5104  case Type::IncompleteArray:
5105  case Type::VariableArray: {
5106    const ArrayType *AT = cast<ArrayType>(CT);
5107
5108    if (isa<IncompleteArrayType>(AT) && !StructField) {
5109      // Incomplete arrays are encoded as a pointer to the array element.
5110      S += '^';
5111
5112      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5113                                 false, ExpandStructures, FD);
5114    } else {
5115      S += '[';
5116
5117      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5118        if (getTypeSize(CAT->getElementType()) == 0)
5119          S += '0';
5120        else
5121          S += llvm::utostr(CAT->getSize().getZExtValue());
5122      } else {
5123        //Variable length arrays are encoded as a regular array with 0 elements.
5124        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5125               "Unknown array type!");
5126        S += '0';
5127      }
5128
5129      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5130                                 false, ExpandStructures, FD);
5131      S += ']';
5132    }
5133    return;
5134  }
5135
5136  case Type::FunctionNoProto:
5137  case Type::FunctionProto:
5138    S += '?';
5139    return;
5140
5141  case Type::Record: {
5142    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5143    S += RDecl->isUnion() ? '(' : '{';
5144    // Anonymous structures print as '?'
5145    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5146      S += II->getName();
5147      if (ClassTemplateSpecializationDecl *Spec
5148          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5149        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5150        llvm::raw_string_ostream OS(S);
5151        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5152                                            TemplateArgs.data(),
5153                                            TemplateArgs.size(),
5154                                            (*this).getPrintingPolicy());
5155      }
5156    } else {
5157      S += '?';
5158    }
5159    if (ExpandStructures) {
5160      S += '=';
5161      if (!RDecl->isUnion()) {
5162        getObjCEncodingForStructureImpl(RDecl, S, FD);
5163      } else {
5164        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5165                                     FieldEnd = RDecl->field_end();
5166             Field != FieldEnd; ++Field) {
5167          if (FD) {
5168            S += '"';
5169            S += Field->getNameAsString();
5170            S += '"';
5171          }
5172
5173          // Special case bit-fields.
5174          if (Field->isBitField()) {
5175            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5176                                       *Field);
5177          } else {
5178            QualType qt = Field->getType();
5179            getLegacyIntegralTypeEncoding(qt);
5180            getObjCEncodingForTypeImpl(qt, S, false, true,
5181                                       FD, /*OutermostType*/false,
5182                                       /*EncodingProperty*/false,
5183                                       /*StructField*/true);
5184          }
5185        }
5186      }
5187    }
5188    S += RDecl->isUnion() ? ')' : '}';
5189    return;
5190  }
5191
5192  case Type::BlockPointer: {
5193    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5194    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5195    if (EncodeBlockParameters) {
5196      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5197
5198      S += '<';
5199      // Block return type
5200      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5201                                 ExpandPointedToStructures, ExpandStructures,
5202                                 FD,
5203                                 false /* OutermostType */,
5204                                 EncodingProperty,
5205                                 false /* StructField */,
5206                                 EncodeBlockParameters,
5207                                 EncodeClassNames);
5208      // Block self
5209      S += "@?";
5210      // Block parameters
5211      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5212        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5213               E = FPT->arg_type_end(); I && (I != E); ++I) {
5214          getObjCEncodingForTypeImpl(*I, S,
5215                                     ExpandPointedToStructures,
5216                                     ExpandStructures,
5217                                     FD,
5218                                     false /* OutermostType */,
5219                                     EncodingProperty,
5220                                     false /* StructField */,
5221                                     EncodeBlockParameters,
5222                                     EncodeClassNames);
5223        }
5224      }
5225      S += '>';
5226    }
5227    return;
5228  }
5229
5230  case Type::ObjCObject:
5231  case Type::ObjCInterface: {
5232    // Ignore protocol qualifiers when mangling at this level.
5233    T = T->castAs<ObjCObjectType>()->getBaseType();
5234
5235    // The assumption seems to be that this assert will succeed
5236    // because nested levels will have filtered out 'id' and 'Class'.
5237    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5238    // @encode(class_name)
5239    ObjCInterfaceDecl *OI = OIT->getDecl();
5240    S += '{';
5241    const IdentifierInfo *II = OI->getIdentifier();
5242    S += II->getName();
5243    S += '=';
5244    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5245    DeepCollectObjCIvars(OI, true, Ivars);
5246    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5247      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5248      if (Field->isBitField())
5249        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5250      else
5251        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5252                                   false, false, false, false, false,
5253                                   EncodePointerToObjCTypedef);
5254    }
5255    S += '}';
5256    return;
5257  }
5258
5259  case Type::ObjCObjectPointer: {
5260    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5261    if (OPT->isObjCIdType()) {
5262      S += '@';
5263      return;
5264    }
5265
5266    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5267      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5268      // Since this is a binary compatibility issue, need to consult with runtime
5269      // folks. Fortunately, this is a *very* obsure construct.
5270      S += '#';
5271      return;
5272    }
5273
5274    if (OPT->isObjCQualifiedIdType()) {
5275      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5276                                 ExpandPointedToStructures,
5277                                 ExpandStructures, FD);
5278      if (FD || EncodingProperty || EncodeClassNames) {
5279        // Note that we do extended encoding of protocol qualifer list
5280        // Only when doing ivar or property encoding.
5281        S += '"';
5282        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5283             E = OPT->qual_end(); I != E; ++I) {
5284          S += '<';
5285          S += (*I)->getNameAsString();
5286          S += '>';
5287        }
5288        S += '"';
5289      }
5290      return;
5291    }
5292
5293    QualType PointeeTy = OPT->getPointeeType();
5294    if (!EncodingProperty &&
5295        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5296        !EncodePointerToObjCTypedef) {
5297      // Another historical/compatibility reason.
5298      // We encode the underlying type which comes out as
5299      // {...};
5300      S += '^';
5301      getObjCEncodingForTypeImpl(PointeeTy, S,
5302                                 false, ExpandPointedToStructures,
5303                                 NULL,
5304                                 false, false, false, false, false,
5305                                 /*EncodePointerToObjCTypedef*/true);
5306      return;
5307    }
5308
5309    S += '@';
5310    if (OPT->getInterfaceDecl() &&
5311        (FD || EncodingProperty || EncodeClassNames)) {
5312      S += '"';
5313      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5314      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5315           E = OPT->qual_end(); I != E; ++I) {
5316        S += '<';
5317        S += (*I)->getNameAsString();
5318        S += '>';
5319      }
5320      S += '"';
5321    }
5322    return;
5323  }
5324
5325  // gcc just blithely ignores member pointers.
5326  // FIXME: we shoul do better than that.  'M' is available.
5327  case Type::MemberPointer:
5328    return;
5329
5330  case Type::Vector:
5331  case Type::ExtVector:
5332    // This matches gcc's encoding, even though technically it is
5333    // insufficient.
5334    // FIXME. We should do a better job than gcc.
5335    return;
5336
5337#define ABSTRACT_TYPE(KIND, BASE)
5338#define TYPE(KIND, BASE)
5339#define DEPENDENT_TYPE(KIND, BASE) \
5340  case Type::KIND:
5341#define NON_CANONICAL_TYPE(KIND, BASE) \
5342  case Type::KIND:
5343#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5344  case Type::KIND:
5345#include "clang/AST/TypeNodes.def"
5346    llvm_unreachable("@encode for dependent type!");
5347  }
5348  llvm_unreachable("bad type kind!");
5349}
5350
5351void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5352                                                 std::string &S,
5353                                                 const FieldDecl *FD,
5354                                                 bool includeVBases) const {
5355  assert(RDecl && "Expected non-null RecordDecl");
5356  assert(!RDecl->isUnion() && "Should not be called for unions");
5357  if (!RDecl->getDefinition())
5358    return;
5359
5360  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5361  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5362  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5363
5364  if (CXXRec) {
5365    for (CXXRecordDecl::base_class_iterator
5366           BI = CXXRec->bases_begin(),
5367           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5368      if (!BI->isVirtual()) {
5369        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5370        if (base->isEmpty())
5371          continue;
5372        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5373        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5374                                  std::make_pair(offs, base));
5375      }
5376    }
5377  }
5378
5379  unsigned i = 0;
5380  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5381                               FieldEnd = RDecl->field_end();
5382       Field != FieldEnd; ++Field, ++i) {
5383    uint64_t offs = layout.getFieldOffset(i);
5384    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5385                              std::make_pair(offs, *Field));
5386  }
5387
5388  if (CXXRec && includeVBases) {
5389    for (CXXRecordDecl::base_class_iterator
5390           BI = CXXRec->vbases_begin(),
5391           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5392      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5393      if (base->isEmpty())
5394        continue;
5395      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5396      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5397        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5398                                  std::make_pair(offs, base));
5399    }
5400  }
5401
5402  CharUnits size;
5403  if (CXXRec) {
5404    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5405  } else {
5406    size = layout.getSize();
5407  }
5408
5409  uint64_t CurOffs = 0;
5410  std::multimap<uint64_t, NamedDecl *>::iterator
5411    CurLayObj = FieldOrBaseOffsets.begin();
5412
5413  if (CXXRec && CXXRec->isDynamicClass() &&
5414      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5415    if (FD) {
5416      S += "\"_vptr$";
5417      std::string recname = CXXRec->getNameAsString();
5418      if (recname.empty()) recname = "?";
5419      S += recname;
5420      S += '"';
5421    }
5422    S += "^^?";
5423    CurOffs += getTypeSize(VoidPtrTy);
5424  }
5425
5426  if (!RDecl->hasFlexibleArrayMember()) {
5427    // Mark the end of the structure.
5428    uint64_t offs = toBits(size);
5429    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5430                              std::make_pair(offs, (NamedDecl*)0));
5431  }
5432
5433  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5434    assert(CurOffs <= CurLayObj->first);
5435
5436    if (CurOffs < CurLayObj->first) {
5437      uint64_t padding = CurLayObj->first - CurOffs;
5438      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5439      // packing/alignment of members is different that normal, in which case
5440      // the encoding will be out-of-sync with the real layout.
5441      // If the runtime switches to just consider the size of types without
5442      // taking into account alignment, we could make padding explicit in the
5443      // encoding (e.g. using arrays of chars). The encoding strings would be
5444      // longer then though.
5445      CurOffs += padding;
5446    }
5447
5448    NamedDecl *dcl = CurLayObj->second;
5449    if (dcl == 0)
5450      break; // reached end of structure.
5451
5452    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5453      // We expand the bases without their virtual bases since those are going
5454      // in the initial structure. Note that this differs from gcc which
5455      // expands virtual bases each time one is encountered in the hierarchy,
5456      // making the encoding type bigger than it really is.
5457      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5458      assert(!base->isEmpty());
5459      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5460    } else {
5461      FieldDecl *field = cast<FieldDecl>(dcl);
5462      if (FD) {
5463        S += '"';
5464        S += field->getNameAsString();
5465        S += '"';
5466      }
5467
5468      if (field->isBitField()) {
5469        EncodeBitField(this, S, field->getType(), field);
5470        CurOffs += field->getBitWidthValue(*this);
5471      } else {
5472        QualType qt = field->getType();
5473        getLegacyIntegralTypeEncoding(qt);
5474        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5475                                   /*OutermostType*/false,
5476                                   /*EncodingProperty*/false,
5477                                   /*StructField*/true);
5478        CurOffs += getTypeSize(field->getType());
5479      }
5480    }
5481  }
5482}
5483
5484void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5485                                                 std::string& S) const {
5486  if (QT & Decl::OBJC_TQ_In)
5487    S += 'n';
5488  if (QT & Decl::OBJC_TQ_Inout)
5489    S += 'N';
5490  if (QT & Decl::OBJC_TQ_Out)
5491    S += 'o';
5492  if (QT & Decl::OBJC_TQ_Bycopy)
5493    S += 'O';
5494  if (QT & Decl::OBJC_TQ_Byref)
5495    S += 'R';
5496  if (QT & Decl::OBJC_TQ_Oneway)
5497    S += 'V';
5498}
5499
5500TypedefDecl *ASTContext::getObjCIdDecl() const {
5501  if (!ObjCIdDecl) {
5502    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5503    T = getObjCObjectPointerType(T);
5504    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5505    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5506                                     getTranslationUnitDecl(),
5507                                     SourceLocation(), SourceLocation(),
5508                                     &Idents.get("id"), IdInfo);
5509  }
5510
5511  return ObjCIdDecl;
5512}
5513
5514TypedefDecl *ASTContext::getObjCSelDecl() const {
5515  if (!ObjCSelDecl) {
5516    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5517    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5518    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5519                                      getTranslationUnitDecl(),
5520                                      SourceLocation(), SourceLocation(),
5521                                      &Idents.get("SEL"), SelInfo);
5522  }
5523  return ObjCSelDecl;
5524}
5525
5526TypedefDecl *ASTContext::getObjCClassDecl() const {
5527  if (!ObjCClassDecl) {
5528    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5529    T = getObjCObjectPointerType(T);
5530    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5531    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5532                                        getTranslationUnitDecl(),
5533                                        SourceLocation(), SourceLocation(),
5534                                        &Idents.get("Class"), ClassInfo);
5535  }
5536
5537  return ObjCClassDecl;
5538}
5539
5540ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5541  if (!ObjCProtocolClassDecl) {
5542    ObjCProtocolClassDecl
5543      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5544                                  SourceLocation(),
5545                                  &Idents.get("Protocol"),
5546                                  /*PrevDecl=*/0,
5547                                  SourceLocation(), true);
5548  }
5549
5550  return ObjCProtocolClassDecl;
5551}
5552
5553//===----------------------------------------------------------------------===//
5554// __builtin_va_list Construction Functions
5555//===----------------------------------------------------------------------===//
5556
5557static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5558  // typedef char* __builtin_va_list;
5559  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5560  TypeSourceInfo *TInfo
5561    = Context->getTrivialTypeSourceInfo(CharPtrType);
5562
5563  TypedefDecl *VaListTypeDecl
5564    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5565                          Context->getTranslationUnitDecl(),
5566                          SourceLocation(), SourceLocation(),
5567                          &Context->Idents.get("__builtin_va_list"),
5568                          TInfo);
5569  return VaListTypeDecl;
5570}
5571
5572static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5573  // typedef void* __builtin_va_list;
5574  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5575  TypeSourceInfo *TInfo
5576    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5577
5578  TypedefDecl *VaListTypeDecl
5579    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5580                          Context->getTranslationUnitDecl(),
5581                          SourceLocation(), SourceLocation(),
5582                          &Context->Idents.get("__builtin_va_list"),
5583                          TInfo);
5584  return VaListTypeDecl;
5585}
5586
5587static TypedefDecl *
5588CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5589  RecordDecl *VaListTagDecl;
5590  if (Context->getLangOpts().CPlusPlus) {
5591    // namespace std { struct __va_list {
5592    NamespaceDecl *NS;
5593    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5594                               Context->getTranslationUnitDecl(),
5595                               /*Inline*/false, SourceLocation(),
5596                               SourceLocation(), &Context->Idents.get("std"),
5597                               /*PrevDecl*/0);
5598
5599    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5600                                          Context->getTranslationUnitDecl(),
5601                                          SourceLocation(), SourceLocation(),
5602                                          &Context->Idents.get("__va_list"));
5603    VaListTagDecl->setDeclContext(NS);
5604  } else {
5605    // struct __va_list
5606    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5607                                   Context->getTranslationUnitDecl(),
5608                                   &Context->Idents.get("__va_list"));
5609  }
5610
5611  VaListTagDecl->startDefinition();
5612
5613  const size_t NumFields = 5;
5614  QualType FieldTypes[NumFields];
5615  const char *FieldNames[NumFields];
5616
5617  // void *__stack;
5618  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5619  FieldNames[0] = "__stack";
5620
5621  // void *__gr_top;
5622  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5623  FieldNames[1] = "__gr_top";
5624
5625  // void *__vr_top;
5626  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5627  FieldNames[2] = "__vr_top";
5628
5629  // int __gr_offs;
5630  FieldTypes[3] = Context->IntTy;
5631  FieldNames[3] = "__gr_offs";
5632
5633  // int __vr_offs;
5634  FieldTypes[4] = Context->IntTy;
5635  FieldNames[4] = "__vr_offs";
5636
5637  // Create fields
5638  for (unsigned i = 0; i < NumFields; ++i) {
5639    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5640                                         VaListTagDecl,
5641                                         SourceLocation(),
5642                                         SourceLocation(),
5643                                         &Context->Idents.get(FieldNames[i]),
5644                                         FieldTypes[i], /*TInfo=*/0,
5645                                         /*BitWidth=*/0,
5646                                         /*Mutable=*/false,
5647                                         ICIS_NoInit);
5648    Field->setAccess(AS_public);
5649    VaListTagDecl->addDecl(Field);
5650  }
5651  VaListTagDecl->completeDefinition();
5652  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5653  Context->VaListTagTy = VaListTagType;
5654
5655  // } __builtin_va_list;
5656  TypedefDecl *VaListTypedefDecl
5657    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5658                          Context->getTranslationUnitDecl(),
5659                          SourceLocation(), SourceLocation(),
5660                          &Context->Idents.get("__builtin_va_list"),
5661                          Context->getTrivialTypeSourceInfo(VaListTagType));
5662
5663  return VaListTypedefDecl;
5664}
5665
5666static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5667  // typedef struct __va_list_tag {
5668  RecordDecl *VaListTagDecl;
5669
5670  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5671                                   Context->getTranslationUnitDecl(),
5672                                   &Context->Idents.get("__va_list_tag"));
5673  VaListTagDecl->startDefinition();
5674
5675  const size_t NumFields = 5;
5676  QualType FieldTypes[NumFields];
5677  const char *FieldNames[NumFields];
5678
5679  //   unsigned char gpr;
5680  FieldTypes[0] = Context->UnsignedCharTy;
5681  FieldNames[0] = "gpr";
5682
5683  //   unsigned char fpr;
5684  FieldTypes[1] = Context->UnsignedCharTy;
5685  FieldNames[1] = "fpr";
5686
5687  //   unsigned short reserved;
5688  FieldTypes[2] = Context->UnsignedShortTy;
5689  FieldNames[2] = "reserved";
5690
5691  //   void* overflow_arg_area;
5692  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5693  FieldNames[3] = "overflow_arg_area";
5694
5695  //   void* reg_save_area;
5696  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5697  FieldNames[4] = "reg_save_area";
5698
5699  // Create fields
5700  for (unsigned i = 0; i < NumFields; ++i) {
5701    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5702                                         SourceLocation(),
5703                                         SourceLocation(),
5704                                         &Context->Idents.get(FieldNames[i]),
5705                                         FieldTypes[i], /*TInfo=*/0,
5706                                         /*BitWidth=*/0,
5707                                         /*Mutable=*/false,
5708                                         ICIS_NoInit);
5709    Field->setAccess(AS_public);
5710    VaListTagDecl->addDecl(Field);
5711  }
5712  VaListTagDecl->completeDefinition();
5713  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5714  Context->VaListTagTy = VaListTagType;
5715
5716  // } __va_list_tag;
5717  TypedefDecl *VaListTagTypedefDecl
5718    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5719                          Context->getTranslationUnitDecl(),
5720                          SourceLocation(), SourceLocation(),
5721                          &Context->Idents.get("__va_list_tag"),
5722                          Context->getTrivialTypeSourceInfo(VaListTagType));
5723  QualType VaListTagTypedefType =
5724    Context->getTypedefType(VaListTagTypedefDecl);
5725
5726  // typedef __va_list_tag __builtin_va_list[1];
5727  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5728  QualType VaListTagArrayType
5729    = Context->getConstantArrayType(VaListTagTypedefType,
5730                                    Size, ArrayType::Normal, 0);
5731  TypeSourceInfo *TInfo
5732    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5733  TypedefDecl *VaListTypedefDecl
5734    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5735                          Context->getTranslationUnitDecl(),
5736                          SourceLocation(), SourceLocation(),
5737                          &Context->Idents.get("__builtin_va_list"),
5738                          TInfo);
5739
5740  return VaListTypedefDecl;
5741}
5742
5743static TypedefDecl *
5744CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5745  // typedef struct __va_list_tag {
5746  RecordDecl *VaListTagDecl;
5747  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5748                                   Context->getTranslationUnitDecl(),
5749                                   &Context->Idents.get("__va_list_tag"));
5750  VaListTagDecl->startDefinition();
5751
5752  const size_t NumFields = 4;
5753  QualType FieldTypes[NumFields];
5754  const char *FieldNames[NumFields];
5755
5756  //   unsigned gp_offset;
5757  FieldTypes[0] = Context->UnsignedIntTy;
5758  FieldNames[0] = "gp_offset";
5759
5760  //   unsigned fp_offset;
5761  FieldTypes[1] = Context->UnsignedIntTy;
5762  FieldNames[1] = "fp_offset";
5763
5764  //   void* overflow_arg_area;
5765  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5766  FieldNames[2] = "overflow_arg_area";
5767
5768  //   void* reg_save_area;
5769  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5770  FieldNames[3] = "reg_save_area";
5771
5772  // Create fields
5773  for (unsigned i = 0; i < NumFields; ++i) {
5774    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5775                                         VaListTagDecl,
5776                                         SourceLocation(),
5777                                         SourceLocation(),
5778                                         &Context->Idents.get(FieldNames[i]),
5779                                         FieldTypes[i], /*TInfo=*/0,
5780                                         /*BitWidth=*/0,
5781                                         /*Mutable=*/false,
5782                                         ICIS_NoInit);
5783    Field->setAccess(AS_public);
5784    VaListTagDecl->addDecl(Field);
5785  }
5786  VaListTagDecl->completeDefinition();
5787  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5788  Context->VaListTagTy = VaListTagType;
5789
5790  // } __va_list_tag;
5791  TypedefDecl *VaListTagTypedefDecl
5792    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5793                          Context->getTranslationUnitDecl(),
5794                          SourceLocation(), SourceLocation(),
5795                          &Context->Idents.get("__va_list_tag"),
5796                          Context->getTrivialTypeSourceInfo(VaListTagType));
5797  QualType VaListTagTypedefType =
5798    Context->getTypedefType(VaListTagTypedefDecl);
5799
5800  // typedef __va_list_tag __builtin_va_list[1];
5801  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5802  QualType VaListTagArrayType
5803    = Context->getConstantArrayType(VaListTagTypedefType,
5804                                      Size, ArrayType::Normal,0);
5805  TypeSourceInfo *TInfo
5806    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5807  TypedefDecl *VaListTypedefDecl
5808    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5809                          Context->getTranslationUnitDecl(),
5810                          SourceLocation(), SourceLocation(),
5811                          &Context->Idents.get("__builtin_va_list"),
5812                          TInfo);
5813
5814  return VaListTypedefDecl;
5815}
5816
5817static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5818  // typedef int __builtin_va_list[4];
5819  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5820  QualType IntArrayType
5821    = Context->getConstantArrayType(Context->IntTy,
5822				    Size, ArrayType::Normal, 0);
5823  TypedefDecl *VaListTypedefDecl
5824    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5825                          Context->getTranslationUnitDecl(),
5826                          SourceLocation(), SourceLocation(),
5827                          &Context->Idents.get("__builtin_va_list"),
5828                          Context->getTrivialTypeSourceInfo(IntArrayType));
5829
5830  return VaListTypedefDecl;
5831}
5832
5833static TypedefDecl *
5834CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5835  RecordDecl *VaListDecl;
5836  if (Context->getLangOpts().CPlusPlus) {
5837    // namespace std { struct __va_list {
5838    NamespaceDecl *NS;
5839    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5840                               Context->getTranslationUnitDecl(),
5841                               /*Inline*/false, SourceLocation(),
5842                               SourceLocation(), &Context->Idents.get("std"),
5843                               /*PrevDecl*/0);
5844
5845    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5846                                       Context->getTranslationUnitDecl(),
5847                                       SourceLocation(), SourceLocation(),
5848                                       &Context->Idents.get("__va_list"));
5849
5850    VaListDecl->setDeclContext(NS);
5851
5852  } else {
5853    // struct __va_list {
5854    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5855                                  Context->getTranslationUnitDecl(),
5856                                  &Context->Idents.get("__va_list"));
5857  }
5858
5859  VaListDecl->startDefinition();
5860
5861  // void * __ap;
5862  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5863                                       VaListDecl,
5864                                       SourceLocation(),
5865                                       SourceLocation(),
5866                                       &Context->Idents.get("__ap"),
5867                                       Context->getPointerType(Context->VoidTy),
5868                                       /*TInfo=*/0,
5869                                       /*BitWidth=*/0,
5870                                       /*Mutable=*/false,
5871                                       ICIS_NoInit);
5872  Field->setAccess(AS_public);
5873  VaListDecl->addDecl(Field);
5874
5875  // };
5876  VaListDecl->completeDefinition();
5877
5878  // typedef struct __va_list __builtin_va_list;
5879  TypeSourceInfo *TInfo
5880    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5881
5882  TypedefDecl *VaListTypeDecl
5883    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5884                          Context->getTranslationUnitDecl(),
5885                          SourceLocation(), SourceLocation(),
5886                          &Context->Idents.get("__builtin_va_list"),
5887                          TInfo);
5888
5889  return VaListTypeDecl;
5890}
5891
5892static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5893                                     TargetInfo::BuiltinVaListKind Kind) {
5894  switch (Kind) {
5895  case TargetInfo::CharPtrBuiltinVaList:
5896    return CreateCharPtrBuiltinVaListDecl(Context);
5897  case TargetInfo::VoidPtrBuiltinVaList:
5898    return CreateVoidPtrBuiltinVaListDecl(Context);
5899  case TargetInfo::AArch64ABIBuiltinVaList:
5900    return CreateAArch64ABIBuiltinVaListDecl(Context);
5901  case TargetInfo::PowerABIBuiltinVaList:
5902    return CreatePowerABIBuiltinVaListDecl(Context);
5903  case TargetInfo::X86_64ABIBuiltinVaList:
5904    return CreateX86_64ABIBuiltinVaListDecl(Context);
5905  case TargetInfo::PNaClABIBuiltinVaList:
5906    return CreatePNaClABIBuiltinVaListDecl(Context);
5907  case TargetInfo::AAPCSABIBuiltinVaList:
5908    return CreateAAPCSABIBuiltinVaListDecl(Context);
5909  }
5910
5911  llvm_unreachable("Unhandled __builtin_va_list type kind");
5912}
5913
5914TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5915  if (!BuiltinVaListDecl)
5916    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5917
5918  return BuiltinVaListDecl;
5919}
5920
5921QualType ASTContext::getVaListTagType() const {
5922  // Force the creation of VaListTagTy by building the __builtin_va_list
5923  // declaration.
5924  if (VaListTagTy.isNull())
5925    (void) getBuiltinVaListDecl();
5926
5927  return VaListTagTy;
5928}
5929
5930void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5931  assert(ObjCConstantStringType.isNull() &&
5932         "'NSConstantString' type already set!");
5933
5934  ObjCConstantStringType = getObjCInterfaceType(Decl);
5935}
5936
5937/// \brief Retrieve the template name that corresponds to a non-empty
5938/// lookup.
5939TemplateName
5940ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5941                                      UnresolvedSetIterator End) const {
5942  unsigned size = End - Begin;
5943  assert(size > 1 && "set is not overloaded!");
5944
5945  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5946                          size * sizeof(FunctionTemplateDecl*));
5947  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5948
5949  NamedDecl **Storage = OT->getStorage();
5950  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5951    NamedDecl *D = *I;
5952    assert(isa<FunctionTemplateDecl>(D) ||
5953           (isa<UsingShadowDecl>(D) &&
5954            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5955    *Storage++ = D;
5956  }
5957
5958  return TemplateName(OT);
5959}
5960
5961/// \brief Retrieve the template name that represents a qualified
5962/// template name such as \c std::vector.
5963TemplateName
5964ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5965                                     bool TemplateKeyword,
5966                                     TemplateDecl *Template) const {
5967  assert(NNS && "Missing nested-name-specifier in qualified template name");
5968
5969  // FIXME: Canonicalization?
5970  llvm::FoldingSetNodeID ID;
5971  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5972
5973  void *InsertPos = 0;
5974  QualifiedTemplateName *QTN =
5975    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5976  if (!QTN) {
5977    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5978        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5979    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5980  }
5981
5982  return TemplateName(QTN);
5983}
5984
5985/// \brief Retrieve the template name that represents a dependent
5986/// template name such as \c MetaFun::template apply.
5987TemplateName
5988ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5989                                     const IdentifierInfo *Name) const {
5990  assert((!NNS || NNS->isDependent()) &&
5991         "Nested name specifier must be dependent");
5992
5993  llvm::FoldingSetNodeID ID;
5994  DependentTemplateName::Profile(ID, NNS, Name);
5995
5996  void *InsertPos = 0;
5997  DependentTemplateName *QTN =
5998    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5999
6000  if (QTN)
6001    return TemplateName(QTN);
6002
6003  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6004  if (CanonNNS == NNS) {
6005    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6006        DependentTemplateName(NNS, Name);
6007  } else {
6008    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6009    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6010        DependentTemplateName(NNS, Name, Canon);
6011    DependentTemplateName *CheckQTN =
6012      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6013    assert(!CheckQTN && "Dependent type name canonicalization broken");
6014    (void)CheckQTN;
6015  }
6016
6017  DependentTemplateNames.InsertNode(QTN, InsertPos);
6018  return TemplateName(QTN);
6019}
6020
6021/// \brief Retrieve the template name that represents a dependent
6022/// template name such as \c MetaFun::template operator+.
6023TemplateName
6024ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6025                                     OverloadedOperatorKind Operator) const {
6026  assert((!NNS || NNS->isDependent()) &&
6027         "Nested name specifier must be dependent");
6028
6029  llvm::FoldingSetNodeID ID;
6030  DependentTemplateName::Profile(ID, NNS, Operator);
6031
6032  void *InsertPos = 0;
6033  DependentTemplateName *QTN
6034    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6035
6036  if (QTN)
6037    return TemplateName(QTN);
6038
6039  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6040  if (CanonNNS == NNS) {
6041    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6042        DependentTemplateName(NNS, Operator);
6043  } else {
6044    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6045    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6046        DependentTemplateName(NNS, Operator, Canon);
6047
6048    DependentTemplateName *CheckQTN
6049      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6050    assert(!CheckQTN && "Dependent template name canonicalization broken");
6051    (void)CheckQTN;
6052  }
6053
6054  DependentTemplateNames.InsertNode(QTN, InsertPos);
6055  return TemplateName(QTN);
6056}
6057
6058TemplateName
6059ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6060                                         TemplateName replacement) const {
6061  llvm::FoldingSetNodeID ID;
6062  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6063
6064  void *insertPos = 0;
6065  SubstTemplateTemplateParmStorage *subst
6066    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6067
6068  if (!subst) {
6069    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6070    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6071  }
6072
6073  return TemplateName(subst);
6074}
6075
6076TemplateName
6077ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6078                                       const TemplateArgument &ArgPack) const {
6079  ASTContext &Self = const_cast<ASTContext &>(*this);
6080  llvm::FoldingSetNodeID ID;
6081  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6082
6083  void *InsertPos = 0;
6084  SubstTemplateTemplateParmPackStorage *Subst
6085    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6086
6087  if (!Subst) {
6088    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6089                                                           ArgPack.pack_size(),
6090                                                         ArgPack.pack_begin());
6091    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6092  }
6093
6094  return TemplateName(Subst);
6095}
6096
6097/// getFromTargetType - Given one of the integer types provided by
6098/// TargetInfo, produce the corresponding type. The unsigned @p Type
6099/// is actually a value of type @c TargetInfo::IntType.
6100CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6101  switch (Type) {
6102  case TargetInfo::NoInt: return CanQualType();
6103  case TargetInfo::SignedShort: return ShortTy;
6104  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6105  case TargetInfo::SignedInt: return IntTy;
6106  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6107  case TargetInfo::SignedLong: return LongTy;
6108  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6109  case TargetInfo::SignedLongLong: return LongLongTy;
6110  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6111  }
6112
6113  llvm_unreachable("Unhandled TargetInfo::IntType value");
6114}
6115
6116//===----------------------------------------------------------------------===//
6117//                        Type Predicates.
6118//===----------------------------------------------------------------------===//
6119
6120/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6121/// garbage collection attribute.
6122///
6123Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6124  if (getLangOpts().getGC() == LangOptions::NonGC)
6125    return Qualifiers::GCNone;
6126
6127  assert(getLangOpts().ObjC1);
6128  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6129
6130  // Default behaviour under objective-C's gc is for ObjC pointers
6131  // (or pointers to them) be treated as though they were declared
6132  // as __strong.
6133  if (GCAttrs == Qualifiers::GCNone) {
6134    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6135      return Qualifiers::Strong;
6136    else if (Ty->isPointerType())
6137      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6138  } else {
6139    // It's not valid to set GC attributes on anything that isn't a
6140    // pointer.
6141#ifndef NDEBUG
6142    QualType CT = Ty->getCanonicalTypeInternal();
6143    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6144      CT = AT->getElementType();
6145    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6146#endif
6147  }
6148  return GCAttrs;
6149}
6150
6151//===----------------------------------------------------------------------===//
6152//                        Type Compatibility Testing
6153//===----------------------------------------------------------------------===//
6154
6155/// areCompatVectorTypes - Return true if the two specified vector types are
6156/// compatible.
6157static bool areCompatVectorTypes(const VectorType *LHS,
6158                                 const VectorType *RHS) {
6159  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6160  return LHS->getElementType() == RHS->getElementType() &&
6161         LHS->getNumElements() == RHS->getNumElements();
6162}
6163
6164bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6165                                          QualType SecondVec) {
6166  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6167  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6168
6169  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6170    return true;
6171
6172  // Treat Neon vector types and most AltiVec vector types as if they are the
6173  // equivalent GCC vector types.
6174  const VectorType *First = FirstVec->getAs<VectorType>();
6175  const VectorType *Second = SecondVec->getAs<VectorType>();
6176  if (First->getNumElements() == Second->getNumElements() &&
6177      hasSameType(First->getElementType(), Second->getElementType()) &&
6178      First->getVectorKind() != VectorType::AltiVecPixel &&
6179      First->getVectorKind() != VectorType::AltiVecBool &&
6180      Second->getVectorKind() != VectorType::AltiVecPixel &&
6181      Second->getVectorKind() != VectorType::AltiVecBool)
6182    return true;
6183
6184  return false;
6185}
6186
6187//===----------------------------------------------------------------------===//
6188// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6189//===----------------------------------------------------------------------===//
6190
6191/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6192/// inheritance hierarchy of 'rProto'.
6193bool
6194ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6195                                           ObjCProtocolDecl *rProto) const {
6196  if (declaresSameEntity(lProto, rProto))
6197    return true;
6198  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6199       E = rProto->protocol_end(); PI != E; ++PI)
6200    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6201      return true;
6202  return false;
6203}
6204
6205/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6206/// return true if lhs's protocols conform to rhs's protocol; false
6207/// otherwise.
6208bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6209  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6210    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6211  return false;
6212}
6213
6214/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6215/// Class<pr1, ...>.
6216bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6217                                                      QualType rhs) {
6218  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6219  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6220  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6221
6222  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6223       E = lhsQID->qual_end(); I != E; ++I) {
6224    bool match = false;
6225    ObjCProtocolDecl *lhsProto = *I;
6226    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6227         E = rhsOPT->qual_end(); J != E; ++J) {
6228      ObjCProtocolDecl *rhsProto = *J;
6229      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6230        match = true;
6231        break;
6232      }
6233    }
6234    if (!match)
6235      return false;
6236  }
6237  return true;
6238}
6239
6240/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6241/// ObjCQualifiedIDType.
6242bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6243                                                   bool compare) {
6244  // Allow id<P..> and an 'id' or void* type in all cases.
6245  if (lhs->isVoidPointerType() ||
6246      lhs->isObjCIdType() || lhs->isObjCClassType())
6247    return true;
6248  else if (rhs->isVoidPointerType() ||
6249           rhs->isObjCIdType() || rhs->isObjCClassType())
6250    return true;
6251
6252  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6253    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6254
6255    if (!rhsOPT) return false;
6256
6257    if (rhsOPT->qual_empty()) {
6258      // If the RHS is a unqualified interface pointer "NSString*",
6259      // make sure we check the class hierarchy.
6260      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6261        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6262             E = lhsQID->qual_end(); I != E; ++I) {
6263          // when comparing an id<P> on lhs with a static type on rhs,
6264          // see if static class implements all of id's protocols, directly or
6265          // through its super class and categories.
6266          if (!rhsID->ClassImplementsProtocol(*I, true))
6267            return false;
6268        }
6269      }
6270      // If there are no qualifiers and no interface, we have an 'id'.
6271      return true;
6272    }
6273    // Both the right and left sides have qualifiers.
6274    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6275         E = lhsQID->qual_end(); I != E; ++I) {
6276      ObjCProtocolDecl *lhsProto = *I;
6277      bool match = false;
6278
6279      // when comparing an id<P> on lhs with a static type on rhs,
6280      // see if static class implements all of id's protocols, directly or
6281      // through its super class and categories.
6282      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6283           E = rhsOPT->qual_end(); J != E; ++J) {
6284        ObjCProtocolDecl *rhsProto = *J;
6285        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6286            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6287          match = true;
6288          break;
6289        }
6290      }
6291      // If the RHS is a qualified interface pointer "NSString<P>*",
6292      // make sure we check the class hierarchy.
6293      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6294        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6295             E = lhsQID->qual_end(); I != E; ++I) {
6296          // when comparing an id<P> on lhs with a static type on rhs,
6297          // see if static class implements all of id's protocols, directly or
6298          // through its super class and categories.
6299          if (rhsID->ClassImplementsProtocol(*I, true)) {
6300            match = true;
6301            break;
6302          }
6303        }
6304      }
6305      if (!match)
6306        return false;
6307    }
6308
6309    return true;
6310  }
6311
6312  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6313  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6314
6315  if (const ObjCObjectPointerType *lhsOPT =
6316        lhs->getAsObjCInterfacePointerType()) {
6317    // If both the right and left sides have qualifiers.
6318    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6319         E = lhsOPT->qual_end(); I != E; ++I) {
6320      ObjCProtocolDecl *lhsProto = *I;
6321      bool match = false;
6322
6323      // when comparing an id<P> on rhs with a static type on lhs,
6324      // see if static class implements all of id's protocols, directly or
6325      // through its super class and categories.
6326      // First, lhs protocols in the qualifier list must be found, direct
6327      // or indirect in rhs's qualifier list or it is a mismatch.
6328      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6329           E = rhsQID->qual_end(); J != E; ++J) {
6330        ObjCProtocolDecl *rhsProto = *J;
6331        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6332            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6333          match = true;
6334          break;
6335        }
6336      }
6337      if (!match)
6338        return false;
6339    }
6340
6341    // Static class's protocols, or its super class or category protocols
6342    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6343    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6344      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6345      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6346      // This is rather dubious but matches gcc's behavior. If lhs has
6347      // no type qualifier and its class has no static protocol(s)
6348      // assume that it is mismatch.
6349      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6350        return false;
6351      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6352           LHSInheritedProtocols.begin(),
6353           E = LHSInheritedProtocols.end(); I != E; ++I) {
6354        bool match = false;
6355        ObjCProtocolDecl *lhsProto = (*I);
6356        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6357             E = rhsQID->qual_end(); J != E; ++J) {
6358          ObjCProtocolDecl *rhsProto = *J;
6359          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6360              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6361            match = true;
6362            break;
6363          }
6364        }
6365        if (!match)
6366          return false;
6367      }
6368    }
6369    return true;
6370  }
6371  return false;
6372}
6373
6374/// canAssignObjCInterfaces - Return true if the two interface types are
6375/// compatible for assignment from RHS to LHS.  This handles validation of any
6376/// protocol qualifiers on the LHS or RHS.
6377///
6378bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6379                                         const ObjCObjectPointerType *RHSOPT) {
6380  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6381  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6382
6383  // If either type represents the built-in 'id' or 'Class' types, return true.
6384  if (LHS->isObjCUnqualifiedIdOrClass() ||
6385      RHS->isObjCUnqualifiedIdOrClass())
6386    return true;
6387
6388  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6389    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6390                                             QualType(RHSOPT,0),
6391                                             false);
6392
6393  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6394    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6395                                                QualType(RHSOPT,0));
6396
6397  // If we have 2 user-defined types, fall into that path.
6398  if (LHS->getInterface() && RHS->getInterface())
6399    return canAssignObjCInterfaces(LHS, RHS);
6400
6401  return false;
6402}
6403
6404/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6405/// for providing type-safety for objective-c pointers used to pass/return
6406/// arguments in block literals. When passed as arguments, passing 'A*' where
6407/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6408/// not OK. For the return type, the opposite is not OK.
6409bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6410                                         const ObjCObjectPointerType *LHSOPT,
6411                                         const ObjCObjectPointerType *RHSOPT,
6412                                         bool BlockReturnType) {
6413  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6414    return true;
6415
6416  if (LHSOPT->isObjCBuiltinType()) {
6417    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6418  }
6419
6420  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6421    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6422                                             QualType(RHSOPT,0),
6423                                             false);
6424
6425  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6426  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6427  if (LHS && RHS)  { // We have 2 user-defined types.
6428    if (LHS != RHS) {
6429      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6430        return BlockReturnType;
6431      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6432        return !BlockReturnType;
6433    }
6434    else
6435      return true;
6436  }
6437  return false;
6438}
6439
6440/// getIntersectionOfProtocols - This routine finds the intersection of set
6441/// of protocols inherited from two distinct objective-c pointer objects.
6442/// It is used to build composite qualifier list of the composite type of
6443/// the conditional expression involving two objective-c pointer objects.
6444static
6445void getIntersectionOfProtocols(ASTContext &Context,
6446                                const ObjCObjectPointerType *LHSOPT,
6447                                const ObjCObjectPointerType *RHSOPT,
6448      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6449
6450  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6451  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6452  assert(LHS->getInterface() && "LHS must have an interface base");
6453  assert(RHS->getInterface() && "RHS must have an interface base");
6454
6455  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6456  unsigned LHSNumProtocols = LHS->getNumProtocols();
6457  if (LHSNumProtocols > 0)
6458    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6459  else {
6460    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6461    Context.CollectInheritedProtocols(LHS->getInterface(),
6462                                      LHSInheritedProtocols);
6463    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6464                                LHSInheritedProtocols.end());
6465  }
6466
6467  unsigned RHSNumProtocols = RHS->getNumProtocols();
6468  if (RHSNumProtocols > 0) {
6469    ObjCProtocolDecl **RHSProtocols =
6470      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6471    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6472      if (InheritedProtocolSet.count(RHSProtocols[i]))
6473        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6474  } else {
6475    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6476    Context.CollectInheritedProtocols(RHS->getInterface(),
6477                                      RHSInheritedProtocols);
6478    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6479         RHSInheritedProtocols.begin(),
6480         E = RHSInheritedProtocols.end(); I != E; ++I)
6481      if (InheritedProtocolSet.count((*I)))
6482        IntersectionOfProtocols.push_back((*I));
6483  }
6484}
6485
6486/// areCommonBaseCompatible - Returns common base class of the two classes if
6487/// one found. Note that this is O'2 algorithm. But it will be called as the
6488/// last type comparison in a ?-exp of ObjC pointer types before a
6489/// warning is issued. So, its invokation is extremely rare.
6490QualType ASTContext::areCommonBaseCompatible(
6491                                          const ObjCObjectPointerType *Lptr,
6492                                          const ObjCObjectPointerType *Rptr) {
6493  const ObjCObjectType *LHS = Lptr->getObjectType();
6494  const ObjCObjectType *RHS = Rptr->getObjectType();
6495  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6496  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6497  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6498    return QualType();
6499
6500  do {
6501    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6502    if (canAssignObjCInterfaces(LHS, RHS)) {
6503      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6504      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6505
6506      QualType Result = QualType(LHS, 0);
6507      if (!Protocols.empty())
6508        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6509      Result = getObjCObjectPointerType(Result);
6510      return Result;
6511    }
6512  } while ((LDecl = LDecl->getSuperClass()));
6513
6514  return QualType();
6515}
6516
6517bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6518                                         const ObjCObjectType *RHS) {
6519  assert(LHS->getInterface() && "LHS is not an interface type");
6520  assert(RHS->getInterface() && "RHS is not an interface type");
6521
6522  // Verify that the base decls are compatible: the RHS must be a subclass of
6523  // the LHS.
6524  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6525    return false;
6526
6527  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6528  // protocol qualified at all, then we are good.
6529  if (LHS->getNumProtocols() == 0)
6530    return true;
6531
6532  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6533  // more detailed analysis is required.
6534  if (RHS->getNumProtocols() == 0) {
6535    // OK, if LHS is a superclass of RHS *and*
6536    // this superclass is assignment compatible with LHS.
6537    // false otherwise.
6538    bool IsSuperClass =
6539      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6540    if (IsSuperClass) {
6541      // OK if conversion of LHS to SuperClass results in narrowing of types
6542      // ; i.e., SuperClass may implement at least one of the protocols
6543      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6544      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6545      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6546      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6547      // If super class has no protocols, it is not a match.
6548      if (SuperClassInheritedProtocols.empty())
6549        return false;
6550
6551      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6552           LHSPE = LHS->qual_end();
6553           LHSPI != LHSPE; LHSPI++) {
6554        bool SuperImplementsProtocol = false;
6555        ObjCProtocolDecl *LHSProto = (*LHSPI);
6556
6557        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6558             SuperClassInheritedProtocols.begin(),
6559             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6560          ObjCProtocolDecl *SuperClassProto = (*I);
6561          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6562            SuperImplementsProtocol = true;
6563            break;
6564          }
6565        }
6566        if (!SuperImplementsProtocol)
6567          return false;
6568      }
6569      return true;
6570    }
6571    return false;
6572  }
6573
6574  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6575                                     LHSPE = LHS->qual_end();
6576       LHSPI != LHSPE; LHSPI++) {
6577    bool RHSImplementsProtocol = false;
6578
6579    // If the RHS doesn't implement the protocol on the left, the types
6580    // are incompatible.
6581    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6582                                       RHSPE = RHS->qual_end();
6583         RHSPI != RHSPE; RHSPI++) {
6584      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6585        RHSImplementsProtocol = true;
6586        break;
6587      }
6588    }
6589    // FIXME: For better diagnostics, consider passing back the protocol name.
6590    if (!RHSImplementsProtocol)
6591      return false;
6592  }
6593  // The RHS implements all protocols listed on the LHS.
6594  return true;
6595}
6596
6597bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6598  // get the "pointed to" types
6599  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6600  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6601
6602  if (!LHSOPT || !RHSOPT)
6603    return false;
6604
6605  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6606         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6607}
6608
6609bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6610  return canAssignObjCInterfaces(
6611                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6612                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6613}
6614
6615/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6616/// both shall have the identically qualified version of a compatible type.
6617/// C99 6.2.7p1: Two types have compatible types if their types are the
6618/// same. See 6.7.[2,3,5] for additional rules.
6619bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6620                                    bool CompareUnqualified) {
6621  if (getLangOpts().CPlusPlus)
6622    return hasSameType(LHS, RHS);
6623
6624  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6625}
6626
6627bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6628  return typesAreCompatible(LHS, RHS);
6629}
6630
6631bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6632  return !mergeTypes(LHS, RHS, true).isNull();
6633}
6634
6635/// mergeTransparentUnionType - if T is a transparent union type and a member
6636/// of T is compatible with SubType, return the merged type, else return
6637/// QualType()
6638QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6639                                               bool OfBlockPointer,
6640                                               bool Unqualified) {
6641  if (const RecordType *UT = T->getAsUnionType()) {
6642    RecordDecl *UD = UT->getDecl();
6643    if (UD->hasAttr<TransparentUnionAttr>()) {
6644      for (RecordDecl::field_iterator it = UD->field_begin(),
6645           itend = UD->field_end(); it != itend; ++it) {
6646        QualType ET = it->getType().getUnqualifiedType();
6647        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6648        if (!MT.isNull())
6649          return MT;
6650      }
6651    }
6652  }
6653
6654  return QualType();
6655}
6656
6657/// mergeFunctionArgumentTypes - merge two types which appear as function
6658/// argument types
6659QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6660                                                bool OfBlockPointer,
6661                                                bool Unqualified) {
6662  // GNU extension: two types are compatible if they appear as a function
6663  // argument, one of the types is a transparent union type and the other
6664  // type is compatible with a union member
6665  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6666                                              Unqualified);
6667  if (!lmerge.isNull())
6668    return lmerge;
6669
6670  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6671                                              Unqualified);
6672  if (!rmerge.isNull())
6673    return rmerge;
6674
6675  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6676}
6677
6678QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6679                                        bool OfBlockPointer,
6680                                        bool Unqualified) {
6681  const FunctionType *lbase = lhs->getAs<FunctionType>();
6682  const FunctionType *rbase = rhs->getAs<FunctionType>();
6683  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6684  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6685  bool allLTypes = true;
6686  bool allRTypes = true;
6687
6688  // Check return type
6689  QualType retType;
6690  if (OfBlockPointer) {
6691    QualType RHS = rbase->getResultType();
6692    QualType LHS = lbase->getResultType();
6693    bool UnqualifiedResult = Unqualified;
6694    if (!UnqualifiedResult)
6695      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6696    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6697  }
6698  else
6699    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6700                         Unqualified);
6701  if (retType.isNull()) return QualType();
6702
6703  if (Unqualified)
6704    retType = retType.getUnqualifiedType();
6705
6706  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6707  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6708  if (Unqualified) {
6709    LRetType = LRetType.getUnqualifiedType();
6710    RRetType = RRetType.getUnqualifiedType();
6711  }
6712
6713  if (getCanonicalType(retType) != LRetType)
6714    allLTypes = false;
6715  if (getCanonicalType(retType) != RRetType)
6716    allRTypes = false;
6717
6718  // FIXME: double check this
6719  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6720  //                           rbase->getRegParmAttr() != 0 &&
6721  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6722  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6723  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6724
6725  // Compatible functions must have compatible calling conventions
6726  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6727    return QualType();
6728
6729  // Regparm is part of the calling convention.
6730  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6731    return QualType();
6732  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6733    return QualType();
6734
6735  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6736    return QualType();
6737
6738  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6739  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6740
6741  if (lbaseInfo.getNoReturn() != NoReturn)
6742    allLTypes = false;
6743  if (rbaseInfo.getNoReturn() != NoReturn)
6744    allRTypes = false;
6745
6746  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6747
6748  if (lproto && rproto) { // two C99 style function prototypes
6749    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6750           "C++ shouldn't be here");
6751    unsigned lproto_nargs = lproto->getNumArgs();
6752    unsigned rproto_nargs = rproto->getNumArgs();
6753
6754    // Compatible functions must have the same number of arguments
6755    if (lproto_nargs != rproto_nargs)
6756      return QualType();
6757
6758    // Variadic and non-variadic functions aren't compatible
6759    if (lproto->isVariadic() != rproto->isVariadic())
6760      return QualType();
6761
6762    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6763      return QualType();
6764
6765    if (LangOpts.ObjCAutoRefCount &&
6766        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6767      return QualType();
6768
6769    // Check argument compatibility
6770    SmallVector<QualType, 10> types;
6771    for (unsigned i = 0; i < lproto_nargs; i++) {
6772      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6773      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6774      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6775                                                    OfBlockPointer,
6776                                                    Unqualified);
6777      if (argtype.isNull()) return QualType();
6778
6779      if (Unqualified)
6780        argtype = argtype.getUnqualifiedType();
6781
6782      types.push_back(argtype);
6783      if (Unqualified) {
6784        largtype = largtype.getUnqualifiedType();
6785        rargtype = rargtype.getUnqualifiedType();
6786      }
6787
6788      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6789        allLTypes = false;
6790      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6791        allRTypes = false;
6792    }
6793
6794    if (allLTypes) return lhs;
6795    if (allRTypes) return rhs;
6796
6797    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6798    EPI.ExtInfo = einfo;
6799    return getFunctionType(retType, types, EPI);
6800  }
6801
6802  if (lproto) allRTypes = false;
6803  if (rproto) allLTypes = false;
6804
6805  const FunctionProtoType *proto = lproto ? lproto : rproto;
6806  if (proto) {
6807    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6808    if (proto->isVariadic()) return QualType();
6809    // Check that the types are compatible with the types that
6810    // would result from default argument promotions (C99 6.7.5.3p15).
6811    // The only types actually affected are promotable integer
6812    // types and floats, which would be passed as a different
6813    // type depending on whether the prototype is visible.
6814    unsigned proto_nargs = proto->getNumArgs();
6815    for (unsigned i = 0; i < proto_nargs; ++i) {
6816      QualType argTy = proto->getArgType(i);
6817
6818      // Look at the converted type of enum types, since that is the type used
6819      // to pass enum values.
6820      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6821        argTy = Enum->getDecl()->getIntegerType();
6822        if (argTy.isNull())
6823          return QualType();
6824      }
6825
6826      if (argTy->isPromotableIntegerType() ||
6827          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6828        return QualType();
6829    }
6830
6831    if (allLTypes) return lhs;
6832    if (allRTypes) return rhs;
6833
6834    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6835    EPI.ExtInfo = einfo;
6836    return getFunctionType(retType,
6837                           ArrayRef<QualType>(proto->arg_type_begin(),
6838                                              proto->getNumArgs()),
6839                           EPI);
6840  }
6841
6842  if (allLTypes) return lhs;
6843  if (allRTypes) return rhs;
6844  return getFunctionNoProtoType(retType, einfo);
6845}
6846
6847/// Given that we have an enum type and a non-enum type, try to merge them.
6848static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
6849                                     QualType other, bool isBlockReturnType) {
6850  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6851  // a signed integer type, or an unsigned integer type.
6852  // Compatibility is based on the underlying type, not the promotion
6853  // type.
6854  QualType underlyingType = ET->getDecl()->getIntegerType();
6855  if (underlyingType.isNull()) return QualType();
6856  if (Context.hasSameType(underlyingType, other))
6857    return other;
6858
6859  // In block return types, we're more permissive and accept any
6860  // integral type of the same size.
6861  if (isBlockReturnType && other->isIntegerType() &&
6862      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
6863    return other;
6864
6865  return QualType();
6866}
6867
6868QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6869                                bool OfBlockPointer,
6870                                bool Unqualified, bool BlockReturnType) {
6871  // C++ [expr]: If an expression initially has the type "reference to T", the
6872  // type is adjusted to "T" prior to any further analysis, the expression
6873  // designates the object or function denoted by the reference, and the
6874  // expression is an lvalue unless the reference is an rvalue reference and
6875  // the expression is a function call (possibly inside parentheses).
6876  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6877  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6878
6879  if (Unqualified) {
6880    LHS = LHS.getUnqualifiedType();
6881    RHS = RHS.getUnqualifiedType();
6882  }
6883
6884  QualType LHSCan = getCanonicalType(LHS),
6885           RHSCan = getCanonicalType(RHS);
6886
6887  // If two types are identical, they are compatible.
6888  if (LHSCan == RHSCan)
6889    return LHS;
6890
6891  // If the qualifiers are different, the types aren't compatible... mostly.
6892  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6893  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6894  if (LQuals != RQuals) {
6895    // If any of these qualifiers are different, we have a type
6896    // mismatch.
6897    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6898        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6899        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6900      return QualType();
6901
6902    // Exactly one GC qualifier difference is allowed: __strong is
6903    // okay if the other type has no GC qualifier but is an Objective
6904    // C object pointer (i.e. implicitly strong by default).  We fix
6905    // this by pretending that the unqualified type was actually
6906    // qualified __strong.
6907    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6908    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6909    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6910
6911    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6912      return QualType();
6913
6914    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6915      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6916    }
6917    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6918      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6919    }
6920    return QualType();
6921  }
6922
6923  // Okay, qualifiers are equal.
6924
6925  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6926  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6927
6928  // We want to consider the two function types to be the same for these
6929  // comparisons, just force one to the other.
6930  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6931  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6932
6933  // Same as above for arrays
6934  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6935    LHSClass = Type::ConstantArray;
6936  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6937    RHSClass = Type::ConstantArray;
6938
6939  // ObjCInterfaces are just specialized ObjCObjects.
6940  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6941  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6942
6943  // Canonicalize ExtVector -> Vector.
6944  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6945  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6946
6947  // If the canonical type classes don't match.
6948  if (LHSClass != RHSClass) {
6949    // Note that we only have special rules for turning block enum
6950    // returns into block int returns, not vice-versa.
6951    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6952      return mergeEnumWithInteger(*this, ETy, RHS, false);
6953    }
6954    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6955      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
6956    }
6957    // allow block pointer type to match an 'id' type.
6958    if (OfBlockPointer && !BlockReturnType) {
6959       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6960         return LHS;
6961      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6962        return RHS;
6963    }
6964
6965    return QualType();
6966  }
6967
6968  // The canonical type classes match.
6969  switch (LHSClass) {
6970#define TYPE(Class, Base)
6971#define ABSTRACT_TYPE(Class, Base)
6972#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6973#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6974#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6975#include "clang/AST/TypeNodes.def"
6976    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6977
6978  case Type::LValueReference:
6979  case Type::RValueReference:
6980  case Type::MemberPointer:
6981    llvm_unreachable("C++ should never be in mergeTypes");
6982
6983  case Type::ObjCInterface:
6984  case Type::IncompleteArray:
6985  case Type::VariableArray:
6986  case Type::FunctionProto:
6987  case Type::ExtVector:
6988    llvm_unreachable("Types are eliminated above");
6989
6990  case Type::Pointer:
6991  {
6992    // Merge two pointer types, while trying to preserve typedef info
6993    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6994    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6995    if (Unqualified) {
6996      LHSPointee = LHSPointee.getUnqualifiedType();
6997      RHSPointee = RHSPointee.getUnqualifiedType();
6998    }
6999    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7000                                     Unqualified);
7001    if (ResultType.isNull()) return QualType();
7002    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7003      return LHS;
7004    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7005      return RHS;
7006    return getPointerType(ResultType);
7007  }
7008  case Type::BlockPointer:
7009  {
7010    // Merge two block pointer types, while trying to preserve typedef info
7011    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7012    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7013    if (Unqualified) {
7014      LHSPointee = LHSPointee.getUnqualifiedType();
7015      RHSPointee = RHSPointee.getUnqualifiedType();
7016    }
7017    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7018                                     Unqualified);
7019    if (ResultType.isNull()) return QualType();
7020    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7021      return LHS;
7022    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7023      return RHS;
7024    return getBlockPointerType(ResultType);
7025  }
7026  case Type::Atomic:
7027  {
7028    // Merge two pointer types, while trying to preserve typedef info
7029    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7030    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7031    if (Unqualified) {
7032      LHSValue = LHSValue.getUnqualifiedType();
7033      RHSValue = RHSValue.getUnqualifiedType();
7034    }
7035    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7036                                     Unqualified);
7037    if (ResultType.isNull()) return QualType();
7038    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7039      return LHS;
7040    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7041      return RHS;
7042    return getAtomicType(ResultType);
7043  }
7044  case Type::ConstantArray:
7045  {
7046    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7047    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7048    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7049      return QualType();
7050
7051    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7052    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7053    if (Unqualified) {
7054      LHSElem = LHSElem.getUnqualifiedType();
7055      RHSElem = RHSElem.getUnqualifiedType();
7056    }
7057
7058    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7059    if (ResultType.isNull()) return QualType();
7060    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7061      return LHS;
7062    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7063      return RHS;
7064    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7065                                          ArrayType::ArraySizeModifier(), 0);
7066    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7067                                          ArrayType::ArraySizeModifier(), 0);
7068    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7069    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7070    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7071      return LHS;
7072    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7073      return RHS;
7074    if (LVAT) {
7075      // FIXME: This isn't correct! But tricky to implement because
7076      // the array's size has to be the size of LHS, but the type
7077      // has to be different.
7078      return LHS;
7079    }
7080    if (RVAT) {
7081      // FIXME: This isn't correct! But tricky to implement because
7082      // the array's size has to be the size of RHS, but the type
7083      // has to be different.
7084      return RHS;
7085    }
7086    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7087    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7088    return getIncompleteArrayType(ResultType,
7089                                  ArrayType::ArraySizeModifier(), 0);
7090  }
7091  case Type::FunctionNoProto:
7092    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7093  case Type::Record:
7094  case Type::Enum:
7095    return QualType();
7096  case Type::Builtin:
7097    // Only exactly equal builtin types are compatible, which is tested above.
7098    return QualType();
7099  case Type::Complex:
7100    // Distinct complex types are incompatible.
7101    return QualType();
7102  case Type::Vector:
7103    // FIXME: The merged type should be an ExtVector!
7104    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7105                             RHSCan->getAs<VectorType>()))
7106      return LHS;
7107    return QualType();
7108  case Type::ObjCObject: {
7109    // Check if the types are assignment compatible.
7110    // FIXME: This should be type compatibility, e.g. whether
7111    // "LHS x; RHS x;" at global scope is legal.
7112    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7113    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7114    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7115      return LHS;
7116
7117    return QualType();
7118  }
7119  case Type::ObjCObjectPointer: {
7120    if (OfBlockPointer) {
7121      if (canAssignObjCInterfacesInBlockPointer(
7122                                          LHS->getAs<ObjCObjectPointerType>(),
7123                                          RHS->getAs<ObjCObjectPointerType>(),
7124                                          BlockReturnType))
7125        return LHS;
7126      return QualType();
7127    }
7128    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7129                                RHS->getAs<ObjCObjectPointerType>()))
7130      return LHS;
7131
7132    return QualType();
7133  }
7134  }
7135
7136  llvm_unreachable("Invalid Type::Class!");
7137}
7138
7139bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7140                   const FunctionProtoType *FromFunctionType,
7141                   const FunctionProtoType *ToFunctionType) {
7142  if (FromFunctionType->hasAnyConsumedArgs() !=
7143      ToFunctionType->hasAnyConsumedArgs())
7144    return false;
7145  FunctionProtoType::ExtProtoInfo FromEPI =
7146    FromFunctionType->getExtProtoInfo();
7147  FunctionProtoType::ExtProtoInfo ToEPI =
7148    ToFunctionType->getExtProtoInfo();
7149  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7150    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7151         ArgIdx != NumArgs; ++ArgIdx)  {
7152      if (FromEPI.ConsumedArguments[ArgIdx] !=
7153          ToEPI.ConsumedArguments[ArgIdx])
7154        return false;
7155    }
7156  return true;
7157}
7158
7159/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7160/// 'RHS' attributes and returns the merged version; including for function
7161/// return types.
7162QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7163  QualType LHSCan = getCanonicalType(LHS),
7164  RHSCan = getCanonicalType(RHS);
7165  // If two types are identical, they are compatible.
7166  if (LHSCan == RHSCan)
7167    return LHS;
7168  if (RHSCan->isFunctionType()) {
7169    if (!LHSCan->isFunctionType())
7170      return QualType();
7171    QualType OldReturnType =
7172      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7173    QualType NewReturnType =
7174      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7175    QualType ResReturnType =
7176      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7177    if (ResReturnType.isNull())
7178      return QualType();
7179    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7180      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7181      // In either case, use OldReturnType to build the new function type.
7182      const FunctionType *F = LHS->getAs<FunctionType>();
7183      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7184        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7185        EPI.ExtInfo = getFunctionExtInfo(LHS);
7186        QualType ResultType
7187          = getFunctionType(OldReturnType,
7188                            ArrayRef<QualType>(FPT->arg_type_begin(),
7189                                               FPT->getNumArgs()),
7190                            EPI);
7191        return ResultType;
7192      }
7193    }
7194    return QualType();
7195  }
7196
7197  // If the qualifiers are different, the types can still be merged.
7198  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7199  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7200  if (LQuals != RQuals) {
7201    // If any of these qualifiers are different, we have a type mismatch.
7202    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7203        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7204      return QualType();
7205
7206    // Exactly one GC qualifier difference is allowed: __strong is
7207    // okay if the other type has no GC qualifier but is an Objective
7208    // C object pointer (i.e. implicitly strong by default).  We fix
7209    // this by pretending that the unqualified type was actually
7210    // qualified __strong.
7211    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7212    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7213    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7214
7215    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7216      return QualType();
7217
7218    if (GC_L == Qualifiers::Strong)
7219      return LHS;
7220    if (GC_R == Qualifiers::Strong)
7221      return RHS;
7222    return QualType();
7223  }
7224
7225  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7226    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7227    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7228    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7229    if (ResQT == LHSBaseQT)
7230      return LHS;
7231    if (ResQT == RHSBaseQT)
7232      return RHS;
7233  }
7234  return QualType();
7235}
7236
7237//===----------------------------------------------------------------------===//
7238//                         Integer Predicates
7239//===----------------------------------------------------------------------===//
7240
7241unsigned ASTContext::getIntWidth(QualType T) const {
7242  if (const EnumType *ET = dyn_cast<EnumType>(T))
7243    T = ET->getDecl()->getIntegerType();
7244  if (T->isBooleanType())
7245    return 1;
7246  // For builtin types, just use the standard type sizing method
7247  return (unsigned)getTypeSize(T);
7248}
7249
7250QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7251  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7252
7253  // Turn <4 x signed int> -> <4 x unsigned int>
7254  if (const VectorType *VTy = T->getAs<VectorType>())
7255    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7256                         VTy->getNumElements(), VTy->getVectorKind());
7257
7258  // For enums, we return the unsigned version of the base type.
7259  if (const EnumType *ETy = T->getAs<EnumType>())
7260    T = ETy->getDecl()->getIntegerType();
7261
7262  const BuiltinType *BTy = T->getAs<BuiltinType>();
7263  assert(BTy && "Unexpected signed integer type");
7264  switch (BTy->getKind()) {
7265  case BuiltinType::Char_S:
7266  case BuiltinType::SChar:
7267    return UnsignedCharTy;
7268  case BuiltinType::Short:
7269    return UnsignedShortTy;
7270  case BuiltinType::Int:
7271    return UnsignedIntTy;
7272  case BuiltinType::Long:
7273    return UnsignedLongTy;
7274  case BuiltinType::LongLong:
7275    return UnsignedLongLongTy;
7276  case BuiltinType::Int128:
7277    return UnsignedInt128Ty;
7278  default:
7279    llvm_unreachable("Unexpected signed integer type");
7280  }
7281}
7282
7283ASTMutationListener::~ASTMutationListener() { }
7284
7285
7286//===----------------------------------------------------------------------===//
7287//                          Builtin Type Computation
7288//===----------------------------------------------------------------------===//
7289
7290/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7291/// pointer over the consumed characters.  This returns the resultant type.  If
7292/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7293/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7294/// a vector of "i*".
7295///
7296/// RequiresICE is filled in on return to indicate whether the value is required
7297/// to be an Integer Constant Expression.
7298static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7299                                  ASTContext::GetBuiltinTypeError &Error,
7300                                  bool &RequiresICE,
7301                                  bool AllowTypeModifiers) {
7302  // Modifiers.
7303  int HowLong = 0;
7304  bool Signed = false, Unsigned = false;
7305  RequiresICE = false;
7306
7307  // Read the prefixed modifiers first.
7308  bool Done = false;
7309  while (!Done) {
7310    switch (*Str++) {
7311    default: Done = true; --Str; break;
7312    case 'I':
7313      RequiresICE = true;
7314      break;
7315    case 'S':
7316      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7317      assert(!Signed && "Can't use 'S' modifier multiple times!");
7318      Signed = true;
7319      break;
7320    case 'U':
7321      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7322      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7323      Unsigned = true;
7324      break;
7325    case 'L':
7326      assert(HowLong <= 2 && "Can't have LLLL modifier");
7327      ++HowLong;
7328      break;
7329    }
7330  }
7331
7332  QualType Type;
7333
7334  // Read the base type.
7335  switch (*Str++) {
7336  default: llvm_unreachable("Unknown builtin type letter!");
7337  case 'v':
7338    assert(HowLong == 0 && !Signed && !Unsigned &&
7339           "Bad modifiers used with 'v'!");
7340    Type = Context.VoidTy;
7341    break;
7342  case 'f':
7343    assert(HowLong == 0 && !Signed && !Unsigned &&
7344           "Bad modifiers used with 'f'!");
7345    Type = Context.FloatTy;
7346    break;
7347  case 'd':
7348    assert(HowLong < 2 && !Signed && !Unsigned &&
7349           "Bad modifiers used with 'd'!");
7350    if (HowLong)
7351      Type = Context.LongDoubleTy;
7352    else
7353      Type = Context.DoubleTy;
7354    break;
7355  case 's':
7356    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7357    if (Unsigned)
7358      Type = Context.UnsignedShortTy;
7359    else
7360      Type = Context.ShortTy;
7361    break;
7362  case 'i':
7363    if (HowLong == 3)
7364      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7365    else if (HowLong == 2)
7366      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7367    else if (HowLong == 1)
7368      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7369    else
7370      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7371    break;
7372  case 'c':
7373    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7374    if (Signed)
7375      Type = Context.SignedCharTy;
7376    else if (Unsigned)
7377      Type = Context.UnsignedCharTy;
7378    else
7379      Type = Context.CharTy;
7380    break;
7381  case 'b': // boolean
7382    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7383    Type = Context.BoolTy;
7384    break;
7385  case 'z':  // size_t.
7386    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7387    Type = Context.getSizeType();
7388    break;
7389  case 'F':
7390    Type = Context.getCFConstantStringType();
7391    break;
7392  case 'G':
7393    Type = Context.getObjCIdType();
7394    break;
7395  case 'H':
7396    Type = Context.getObjCSelType();
7397    break;
7398  case 'M':
7399    Type = Context.getObjCSuperType();
7400    break;
7401  case 'a':
7402    Type = Context.getBuiltinVaListType();
7403    assert(!Type.isNull() && "builtin va list type not initialized!");
7404    break;
7405  case 'A':
7406    // This is a "reference" to a va_list; however, what exactly
7407    // this means depends on how va_list is defined. There are two
7408    // different kinds of va_list: ones passed by value, and ones
7409    // passed by reference.  An example of a by-value va_list is
7410    // x86, where va_list is a char*. An example of by-ref va_list
7411    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7412    // we want this argument to be a char*&; for x86-64, we want
7413    // it to be a __va_list_tag*.
7414    Type = Context.getBuiltinVaListType();
7415    assert(!Type.isNull() && "builtin va list type not initialized!");
7416    if (Type->isArrayType())
7417      Type = Context.getArrayDecayedType(Type);
7418    else
7419      Type = Context.getLValueReferenceType(Type);
7420    break;
7421  case 'V': {
7422    char *End;
7423    unsigned NumElements = strtoul(Str, &End, 10);
7424    assert(End != Str && "Missing vector size");
7425    Str = End;
7426
7427    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7428                                             RequiresICE, false);
7429    assert(!RequiresICE && "Can't require vector ICE");
7430
7431    // TODO: No way to make AltiVec vectors in builtins yet.
7432    Type = Context.getVectorType(ElementType, NumElements,
7433                                 VectorType::GenericVector);
7434    break;
7435  }
7436  case 'E': {
7437    char *End;
7438
7439    unsigned NumElements = strtoul(Str, &End, 10);
7440    assert(End != Str && "Missing vector size");
7441
7442    Str = End;
7443
7444    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7445                                             false);
7446    Type = Context.getExtVectorType(ElementType, NumElements);
7447    break;
7448  }
7449  case 'X': {
7450    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7451                                             false);
7452    assert(!RequiresICE && "Can't require complex ICE");
7453    Type = Context.getComplexType(ElementType);
7454    break;
7455  }
7456  case 'Y' : {
7457    Type = Context.getPointerDiffType();
7458    break;
7459  }
7460  case 'P':
7461    Type = Context.getFILEType();
7462    if (Type.isNull()) {
7463      Error = ASTContext::GE_Missing_stdio;
7464      return QualType();
7465    }
7466    break;
7467  case 'J':
7468    if (Signed)
7469      Type = Context.getsigjmp_bufType();
7470    else
7471      Type = Context.getjmp_bufType();
7472
7473    if (Type.isNull()) {
7474      Error = ASTContext::GE_Missing_setjmp;
7475      return QualType();
7476    }
7477    break;
7478  case 'K':
7479    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7480    Type = Context.getucontext_tType();
7481
7482    if (Type.isNull()) {
7483      Error = ASTContext::GE_Missing_ucontext;
7484      return QualType();
7485    }
7486    break;
7487  case 'p':
7488    Type = Context.getProcessIDType();
7489    break;
7490  }
7491
7492  // If there are modifiers and if we're allowed to parse them, go for it.
7493  Done = !AllowTypeModifiers;
7494  while (!Done) {
7495    switch (char c = *Str++) {
7496    default: Done = true; --Str; break;
7497    case '*':
7498    case '&': {
7499      // Both pointers and references can have their pointee types
7500      // qualified with an address space.
7501      char *End;
7502      unsigned AddrSpace = strtoul(Str, &End, 10);
7503      if (End != Str && AddrSpace != 0) {
7504        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7505        Str = End;
7506      }
7507      if (c == '*')
7508        Type = Context.getPointerType(Type);
7509      else
7510        Type = Context.getLValueReferenceType(Type);
7511      break;
7512    }
7513    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7514    case 'C':
7515      Type = Type.withConst();
7516      break;
7517    case 'D':
7518      Type = Context.getVolatileType(Type);
7519      break;
7520    case 'R':
7521      Type = Type.withRestrict();
7522      break;
7523    }
7524  }
7525
7526  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7527         "Integer constant 'I' type must be an integer");
7528
7529  return Type;
7530}
7531
7532/// GetBuiltinType - Return the type for the specified builtin.
7533QualType ASTContext::GetBuiltinType(unsigned Id,
7534                                    GetBuiltinTypeError &Error,
7535                                    unsigned *IntegerConstantArgs) const {
7536  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7537
7538  SmallVector<QualType, 8> ArgTypes;
7539
7540  bool RequiresICE = false;
7541  Error = GE_None;
7542  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7543                                       RequiresICE, true);
7544  if (Error != GE_None)
7545    return QualType();
7546
7547  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7548
7549  while (TypeStr[0] && TypeStr[0] != '.') {
7550    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7551    if (Error != GE_None)
7552      return QualType();
7553
7554    // If this argument is required to be an IntegerConstantExpression and the
7555    // caller cares, fill in the bitmask we return.
7556    if (RequiresICE && IntegerConstantArgs)
7557      *IntegerConstantArgs |= 1 << ArgTypes.size();
7558
7559    // Do array -> pointer decay.  The builtin should use the decayed type.
7560    if (Ty->isArrayType())
7561      Ty = getArrayDecayedType(Ty);
7562
7563    ArgTypes.push_back(Ty);
7564  }
7565
7566  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7567         "'.' should only occur at end of builtin type list!");
7568
7569  FunctionType::ExtInfo EI;
7570  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7571
7572  bool Variadic = (TypeStr[0] == '.');
7573
7574  // We really shouldn't be making a no-proto type here, especially in C++.
7575  if (ArgTypes.empty() && Variadic)
7576    return getFunctionNoProtoType(ResType, EI);
7577
7578  FunctionProtoType::ExtProtoInfo EPI;
7579  EPI.ExtInfo = EI;
7580  EPI.Variadic = Variadic;
7581
7582  return getFunctionType(ResType, ArgTypes, EPI);
7583}
7584
7585GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7586  GVALinkage External = GVA_StrongExternal;
7587
7588  Linkage L = FD->getLinkage();
7589  switch (L) {
7590  case NoLinkage:
7591  case InternalLinkage:
7592  case UniqueExternalLinkage:
7593    return GVA_Internal;
7594
7595  case ExternalLinkage:
7596    switch (FD->getTemplateSpecializationKind()) {
7597    case TSK_Undeclared:
7598    case TSK_ExplicitSpecialization:
7599      External = GVA_StrongExternal;
7600      break;
7601
7602    case TSK_ExplicitInstantiationDefinition:
7603      return GVA_ExplicitTemplateInstantiation;
7604
7605    case TSK_ExplicitInstantiationDeclaration:
7606    case TSK_ImplicitInstantiation:
7607      External = GVA_TemplateInstantiation;
7608      break;
7609    }
7610  }
7611
7612  if (!FD->isInlined())
7613    return External;
7614
7615  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7616    // GNU or C99 inline semantics. Determine whether this symbol should be
7617    // externally visible.
7618    if (FD->isInlineDefinitionExternallyVisible())
7619      return External;
7620
7621    // C99 inline semantics, where the symbol is not externally visible.
7622    return GVA_C99Inline;
7623  }
7624
7625  // C++0x [temp.explicit]p9:
7626  //   [ Note: The intent is that an inline function that is the subject of
7627  //   an explicit instantiation declaration will still be implicitly
7628  //   instantiated when used so that the body can be considered for
7629  //   inlining, but that no out-of-line copy of the inline function would be
7630  //   generated in the translation unit. -- end note ]
7631  if (FD->getTemplateSpecializationKind()
7632                                       == TSK_ExplicitInstantiationDeclaration)
7633    return GVA_C99Inline;
7634
7635  return GVA_CXXInline;
7636}
7637
7638GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7639  // If this is a static data member, compute the kind of template
7640  // specialization. Otherwise, this variable is not part of a
7641  // template.
7642  TemplateSpecializationKind TSK = TSK_Undeclared;
7643  if (VD->isStaticDataMember())
7644    TSK = VD->getTemplateSpecializationKind();
7645
7646  Linkage L = VD->getLinkage();
7647
7648  switch (L) {
7649  case NoLinkage:
7650  case InternalLinkage:
7651  case UniqueExternalLinkage:
7652    return GVA_Internal;
7653
7654  case ExternalLinkage:
7655    switch (TSK) {
7656    case TSK_Undeclared:
7657    case TSK_ExplicitSpecialization:
7658      return GVA_StrongExternal;
7659
7660    case TSK_ExplicitInstantiationDeclaration:
7661      llvm_unreachable("Variable should not be instantiated");
7662      // Fall through to treat this like any other instantiation.
7663
7664    case TSK_ExplicitInstantiationDefinition:
7665      return GVA_ExplicitTemplateInstantiation;
7666
7667    case TSK_ImplicitInstantiation:
7668      return GVA_TemplateInstantiation;
7669    }
7670  }
7671
7672  llvm_unreachable("Invalid Linkage!");
7673}
7674
7675bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7676  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7677    if (!VD->isFileVarDecl())
7678      return false;
7679  } else if (!isa<FunctionDecl>(D))
7680    return false;
7681
7682  // Weak references don't produce any output by themselves.
7683  if (D->hasAttr<WeakRefAttr>())
7684    return false;
7685
7686  // Aliases and used decls are required.
7687  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7688    return true;
7689
7690  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7691    // Forward declarations aren't required.
7692    if (!FD->doesThisDeclarationHaveABody())
7693      return FD->doesDeclarationForceExternallyVisibleDefinition();
7694
7695    // Constructors and destructors are required.
7696    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7697      return true;
7698
7699    // The key function for a class is required.  This rule only comes
7700    // into play when inline functions can be key functions, though.
7701    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7702      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7703        const CXXRecordDecl *RD = MD->getParent();
7704        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7705          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7706          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7707            return true;
7708        }
7709      }
7710    }
7711
7712    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7713
7714    // static, static inline, always_inline, and extern inline functions can
7715    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7716    // Implicit template instantiations can also be deferred in C++.
7717    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7718        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7719      return false;
7720    return true;
7721  }
7722
7723  const VarDecl *VD = cast<VarDecl>(D);
7724  assert(VD->isFileVarDecl() && "Expected file scoped var");
7725
7726  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7727    return false;
7728
7729  // Variables that can be needed in other TUs are required.
7730  GVALinkage L = GetGVALinkageForVariable(VD);
7731  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7732    return true;
7733
7734  // Variables that have destruction with side-effects are required.
7735  if (VD->getType().isDestructedType())
7736    return true;
7737
7738  // Variables that have initialization with side-effects are required.
7739  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7740    return true;
7741
7742  return false;
7743}
7744
7745CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7746  // Pass through to the C++ ABI object
7747  return ABI->getDefaultMethodCallConv(isVariadic);
7748}
7749
7750CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7751  if (CC == CC_C && !LangOpts.MRTD &&
7752      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7753    return CC_Default;
7754  return CC;
7755}
7756
7757bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7758  // Pass through to the C++ ABI object
7759  return ABI->isNearlyEmpty(RD);
7760}
7761
7762MangleContext *ASTContext::createMangleContext() {
7763  switch (Target->getCXXABI().getKind()) {
7764  case TargetCXXABI::GenericAArch64:
7765  case TargetCXXABI::GenericItanium:
7766  case TargetCXXABI::GenericARM:
7767  case TargetCXXABI::iOS:
7768    return createItaniumMangleContext(*this, getDiagnostics());
7769  case TargetCXXABI::Microsoft:
7770    return createMicrosoftMangleContext(*this, getDiagnostics());
7771  }
7772  llvm_unreachable("Unsupported ABI");
7773}
7774
7775CXXABI::~CXXABI() {}
7776
7777size_t ASTContext::getSideTableAllocatedMemory() const {
7778  return ASTRecordLayouts.getMemorySize()
7779    + llvm::capacity_in_bytes(ObjCLayouts)
7780    + llvm::capacity_in_bytes(KeyFunctions)
7781    + llvm::capacity_in_bytes(ObjCImpls)
7782    + llvm::capacity_in_bytes(BlockVarCopyInits)
7783    + llvm::capacity_in_bytes(DeclAttrs)
7784    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7785    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7786    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7787    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7788    + llvm::capacity_in_bytes(OverriddenMethods)
7789    + llvm::capacity_in_bytes(Types)
7790    + llvm::capacity_in_bytes(VariableArrayTypes)
7791    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7792}
7793
7794void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7795  // FIXME: This mangling should be applied to function local classes too
7796  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7797      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7798    return;
7799
7800  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7801    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7802  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7803}
7804
7805int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7806  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7807    UnnamedMangleNumbers.find(Tag);
7808  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7809}
7810
7811unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7812  CXXRecordDecl *Lambda = CallOperator->getParent();
7813  return LambdaMangleContexts[Lambda->getDeclContext()]
7814           .getManglingNumber(CallOperator);
7815}
7816
7817
7818void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7819  ParamIndices[D] = index;
7820}
7821
7822unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7823  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7824  assert(I != ParamIndices.end() &&
7825         "ParmIndices lacks entry set by ParmVarDecl");
7826  return I->second;
7827}
7828