ASTContext.cpp revision bf1a028246d884a540aeafa38e89be59a269b072
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  NSConstantStringTypeDecl(0),
45  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
46  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
47  NullTypeSourceInfo(QualType()),
48  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
49  Idents(idents), Selectors(sels),
50  BuiltinInfo(builtins),
51  DeclarationNames(*this),
52  ExternalSource(0), PrintingPolicy(LOpts),
53  LastSDM(0, 0) {
54  ObjCIdRedefinitionType = QualType();
55  ObjCClassRedefinitionType = QualType();
56  ObjCSelRedefinitionType = QualType();
57  if (size_reserve > 0) Types.reserve(size_reserve);
58  TUDecl = TranslationUnitDecl::Create(*this);
59  InitBuiltinTypes();
60}
61
62ASTContext::~ASTContext() {
63  // Release the DenseMaps associated with DeclContext objects.
64  // FIXME: Is this the ideal solution?
65  ReleaseDeclContextMaps();
66
67  if (!FreeMemory) {
68    // Call all of the deallocation functions.
69    for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
70      Deallocations[I].first(Deallocations[I].second);
71  }
72
73  // Release all of the memory associated with overridden C++ methods.
74  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
75         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
76       OM != OMEnd; ++OM)
77    OM->second.Destroy();
78
79  if (FreeMemory) {
80    // Deallocate all the types.
81    while (!Types.empty()) {
82      Types.back()->Destroy(*this);
83      Types.pop_back();
84    }
85
86    for (llvm::FoldingSet<ExtQuals>::iterator
87         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
88      // Increment in loop to prevent using deallocated memory.
89      Deallocate(&*I++);
90    }
91
92    for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
93         I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
94      // Increment in loop to prevent using deallocated memory.
95      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
96        R->Destroy(*this);
97    }
98
99    for (llvm::DenseMap<const ObjCContainerDecl*,
100         const ASTRecordLayout*>::iterator
101         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
102      // Increment in loop to prevent using deallocated memory.
103      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
104        R->Destroy(*this);
105    }
106  }
107
108  // Destroy nested-name-specifiers.
109  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
110         NNS = NestedNameSpecifiers.begin(),
111         NNSEnd = NestedNameSpecifiers.end();
112       NNS != NNSEnd; ) {
113    // Increment in loop to prevent using deallocated memory.
114    (*NNS++).Destroy(*this);
115  }
116
117  if (GlobalNestedNameSpecifier)
118    GlobalNestedNameSpecifier->Destroy(*this);
119
120  TUDecl->Destroy(*this);
121}
122
123void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
124  Deallocations.push_back(std::make_pair(Callback, Data));
125}
126
127void
128ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
129  ExternalSource.reset(Source.take());
130}
131
132void ASTContext::PrintStats() const {
133  fprintf(stderr, "*** AST Context Stats:\n");
134  fprintf(stderr, "  %d types total.\n", (int)Types.size());
135
136  unsigned counts[] = {
137#define TYPE(Name, Parent) 0,
138#define ABSTRACT_TYPE(Name, Parent)
139#include "clang/AST/TypeNodes.def"
140    0 // Extra
141  };
142
143  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
144    Type *T = Types[i];
145    counts[(unsigned)T->getTypeClass()]++;
146  }
147
148  unsigned Idx = 0;
149  unsigned TotalBytes = 0;
150#define TYPE(Name, Parent)                                              \
151  if (counts[Idx])                                                      \
152    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
153  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
154  ++Idx;
155#define ABSTRACT_TYPE(Name, Parent)
156#include "clang/AST/TypeNodes.def"
157
158  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
159
160  if (ExternalSource.get()) {
161    fprintf(stderr, "\n");
162    ExternalSource->PrintStats();
163  }
164}
165
166
167void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
168  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
169  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
170  Types.push_back(Ty);
171}
172
173void ASTContext::InitBuiltinTypes() {
174  assert(VoidTy.isNull() && "Context reinitialized?");
175
176  // C99 6.2.5p19.
177  InitBuiltinType(VoidTy,              BuiltinType::Void);
178
179  // C99 6.2.5p2.
180  InitBuiltinType(BoolTy,              BuiltinType::Bool);
181  // C99 6.2.5p3.
182  if (LangOpts.CharIsSigned)
183    InitBuiltinType(CharTy,            BuiltinType::Char_S);
184  else
185    InitBuiltinType(CharTy,            BuiltinType::Char_U);
186  // C99 6.2.5p4.
187  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
188  InitBuiltinType(ShortTy,             BuiltinType::Short);
189  InitBuiltinType(IntTy,               BuiltinType::Int);
190  InitBuiltinType(LongTy,              BuiltinType::Long);
191  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
192
193  // C99 6.2.5p6.
194  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
195  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
196  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
197  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
198  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
199
200  // C99 6.2.5p10.
201  InitBuiltinType(FloatTy,             BuiltinType::Float);
202  InitBuiltinType(DoubleTy,            BuiltinType::Double);
203  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
204
205  // GNU extension, 128-bit integers.
206  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
207  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
208
209  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
210    InitBuiltinType(WCharTy,           BuiltinType::WChar);
211  else // C99
212    WCharTy = getFromTargetType(Target.getWCharType());
213
214  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
215    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
216  else // C99
217    Char16Ty = getFromTargetType(Target.getChar16Type());
218
219  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
220    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
221  else // C99
222    Char32Ty = getFromTargetType(Target.getChar32Type());
223
224  // Placeholder type for functions.
225  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
226
227  // Placeholder type for type-dependent expressions whose type is
228  // completely unknown. No code should ever check a type against
229  // DependentTy and users should never see it; however, it is here to
230  // help diagnose failures to properly check for type-dependent
231  // expressions.
232  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
233
234  // Placeholder type for C++0x auto declarations whose real type has
235  // not yet been deduced.
236  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
237
238  // C99 6.2.5p11.
239  FloatComplexTy      = getComplexType(FloatTy);
240  DoubleComplexTy     = getComplexType(DoubleTy);
241  LongDoubleComplexTy = getComplexType(LongDoubleTy);
242
243  BuiltinVaListType = QualType();
244
245  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
246  ObjCIdTypedefType = QualType();
247  ObjCClassTypedefType = QualType();
248  ObjCSelTypedefType = QualType();
249
250  // Builtin types for 'id', 'Class', and 'SEL'.
251  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
252  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
253  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
254
255  ObjCConstantStringType = QualType();
256
257  // void * type
258  VoidPtrTy = getPointerType(VoidTy);
259
260  // nullptr type (C++0x 2.14.7)
261  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
262}
263
264MemberSpecializationInfo *
265ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
266  assert(Var->isStaticDataMember() && "Not a static data member");
267  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
268    = InstantiatedFromStaticDataMember.find(Var);
269  if (Pos == InstantiatedFromStaticDataMember.end())
270    return 0;
271
272  return Pos->second;
273}
274
275void
276ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
277                                                TemplateSpecializationKind TSK) {
278  assert(Inst->isStaticDataMember() && "Not a static data member");
279  assert(Tmpl->isStaticDataMember() && "Not a static data member");
280  assert(!InstantiatedFromStaticDataMember[Inst] &&
281         "Already noted what static data member was instantiated from");
282  InstantiatedFromStaticDataMember[Inst]
283    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
284}
285
286NamedDecl *
287ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
288  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
289    = InstantiatedFromUsingDecl.find(UUD);
290  if (Pos == InstantiatedFromUsingDecl.end())
291    return 0;
292
293  return Pos->second;
294}
295
296void
297ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
298  assert((isa<UsingDecl>(Pattern) ||
299          isa<UnresolvedUsingValueDecl>(Pattern) ||
300          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
301         "pattern decl is not a using decl");
302  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
303  InstantiatedFromUsingDecl[Inst] = Pattern;
304}
305
306UsingShadowDecl *
307ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
308  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
309    = InstantiatedFromUsingShadowDecl.find(Inst);
310  if (Pos == InstantiatedFromUsingShadowDecl.end())
311    return 0;
312
313  return Pos->second;
314}
315
316void
317ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
318                                               UsingShadowDecl *Pattern) {
319  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
320  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
321}
322
323FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
324  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
325    = InstantiatedFromUnnamedFieldDecl.find(Field);
326  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
327    return 0;
328
329  return Pos->second;
330}
331
332void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
333                                                     FieldDecl *Tmpl) {
334  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
335  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
336  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
337         "Already noted what unnamed field was instantiated from");
338
339  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
340}
341
342ASTContext::overridden_cxx_method_iterator
343ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
344  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
345    = OverriddenMethods.find(Method);
346  if (Pos == OverriddenMethods.end())
347    return 0;
348
349  return Pos->second.begin();
350}
351
352ASTContext::overridden_cxx_method_iterator
353ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
354  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
355    = OverriddenMethods.find(Method);
356  if (Pos == OverriddenMethods.end())
357    return 0;
358
359  return Pos->second.end();
360}
361
362void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
363                                     const CXXMethodDecl *Overridden) {
364  OverriddenMethods[Method].push_back(Overridden);
365}
366
367namespace {
368  class BeforeInTranslationUnit
369    : std::binary_function<SourceRange, SourceRange, bool> {
370    SourceManager *SourceMgr;
371
372  public:
373    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
374
375    bool operator()(SourceRange X, SourceRange Y) {
376      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
377    }
378  };
379}
380
381//===----------------------------------------------------------------------===//
382//                         Type Sizing and Analysis
383//===----------------------------------------------------------------------===//
384
385/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
386/// scalar floating point type.
387const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
388  const BuiltinType *BT = T->getAs<BuiltinType>();
389  assert(BT && "Not a floating point type!");
390  switch (BT->getKind()) {
391  default: assert(0 && "Not a floating point type!");
392  case BuiltinType::Float:      return Target.getFloatFormat();
393  case BuiltinType::Double:     return Target.getDoubleFormat();
394  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
395  }
396}
397
398/// getDeclAlign - Return a conservative estimate of the alignment of the
399/// specified decl.  Note that bitfields do not have a valid alignment, so
400/// this method will assert on them.
401/// If @p RefAsPointee, references are treated like their underlying type
402/// (for alignof), else they're treated like pointers (for CodeGen).
403CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
404  unsigned Align = Target.getCharWidth();
405
406  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
407    Align = std::max(Align, AA->getMaxAlignment());
408
409  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
410    QualType T = VD->getType();
411    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
412      if (RefAsPointee)
413        T = RT->getPointeeType();
414      else
415        T = getPointerType(RT->getPointeeType());
416    }
417    if (!T->isIncompleteType() && !T->isFunctionType()) {
418      unsigned MinWidth = Target.getLargeArrayMinWidth();
419      unsigned ArrayAlign = Target.getLargeArrayAlign();
420      if (isa<VariableArrayType>(T) && MinWidth != 0)
421        Align = std::max(Align, ArrayAlign);
422      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
423        unsigned Size = getTypeSize(CT);
424        if (MinWidth != 0 && MinWidth <= Size)
425          Align = std::max(Align, ArrayAlign);
426      }
427      // Incomplete or function types default to 1.
428      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
429        T = cast<ArrayType>(T)->getElementType();
430
431      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
432    }
433    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
434      // In the case of a field in a packed struct, we want the minimum
435      // of the alignment of the field and the alignment of the struct.
436      Align = std::min(Align,
437        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
438    }
439  }
440
441  return CharUnits::fromQuantity(Align / Target.getCharWidth());
442}
443
444std::pair<CharUnits, CharUnits>
445ASTContext::getTypeInfoInChars(const Type *T) {
446  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
447  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
448                        CharUnits::fromQuantity(Info.second / getCharWidth()));
449}
450
451std::pair<CharUnits, CharUnits>
452ASTContext::getTypeInfoInChars(QualType T) {
453  return getTypeInfoInChars(T.getTypePtr());
454}
455
456/// getTypeSize - Return the size of the specified type, in bits.  This method
457/// does not work on incomplete types.
458///
459/// FIXME: Pointers into different addr spaces could have different sizes and
460/// alignment requirements: getPointerInfo should take an AddrSpace, this
461/// should take a QualType, &c.
462std::pair<uint64_t, unsigned>
463ASTContext::getTypeInfo(const Type *T) {
464  uint64_t Width=0;
465  unsigned Align=8;
466  switch (T->getTypeClass()) {
467#define TYPE(Class, Base)
468#define ABSTRACT_TYPE(Class, Base)
469#define NON_CANONICAL_TYPE(Class, Base)
470#define DEPENDENT_TYPE(Class, Base) case Type::Class:
471#include "clang/AST/TypeNodes.def"
472    assert(false && "Should not see dependent types");
473    break;
474
475  case Type::FunctionNoProto:
476  case Type::FunctionProto:
477    // GCC extension: alignof(function) = 32 bits
478    Width = 0;
479    Align = 32;
480    break;
481
482  case Type::IncompleteArray:
483  case Type::VariableArray:
484    Width = 0;
485    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
486    break;
487
488  case Type::ConstantArray: {
489    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
490
491    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
492    Width = EltInfo.first*CAT->getSize().getZExtValue();
493    Align = EltInfo.second;
494    break;
495  }
496  case Type::ExtVector:
497  case Type::Vector: {
498    const VectorType *VT = cast<VectorType>(T);
499    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
500    Width = EltInfo.first*VT->getNumElements();
501    Align = Width;
502    // If the alignment is not a power of 2, round up to the next power of 2.
503    // This happens for non-power-of-2 length vectors.
504    if (Align & (Align-1)) {
505      Align = llvm::NextPowerOf2(Align);
506      Width = llvm::RoundUpToAlignment(Width, Align);
507    }
508    break;
509  }
510
511  case Type::Builtin:
512    switch (cast<BuiltinType>(T)->getKind()) {
513    default: assert(0 && "Unknown builtin type!");
514    case BuiltinType::Void:
515      // GCC extension: alignof(void) = 8 bits.
516      Width = 0;
517      Align = 8;
518      break;
519
520    case BuiltinType::Bool:
521      Width = Target.getBoolWidth();
522      Align = Target.getBoolAlign();
523      break;
524    case BuiltinType::Char_S:
525    case BuiltinType::Char_U:
526    case BuiltinType::UChar:
527    case BuiltinType::SChar:
528      Width = Target.getCharWidth();
529      Align = Target.getCharAlign();
530      break;
531    case BuiltinType::WChar:
532      Width = Target.getWCharWidth();
533      Align = Target.getWCharAlign();
534      break;
535    case BuiltinType::Char16:
536      Width = Target.getChar16Width();
537      Align = Target.getChar16Align();
538      break;
539    case BuiltinType::Char32:
540      Width = Target.getChar32Width();
541      Align = Target.getChar32Align();
542      break;
543    case BuiltinType::UShort:
544    case BuiltinType::Short:
545      Width = Target.getShortWidth();
546      Align = Target.getShortAlign();
547      break;
548    case BuiltinType::UInt:
549    case BuiltinType::Int:
550      Width = Target.getIntWidth();
551      Align = Target.getIntAlign();
552      break;
553    case BuiltinType::ULong:
554    case BuiltinType::Long:
555      Width = Target.getLongWidth();
556      Align = Target.getLongAlign();
557      break;
558    case BuiltinType::ULongLong:
559    case BuiltinType::LongLong:
560      Width = Target.getLongLongWidth();
561      Align = Target.getLongLongAlign();
562      break;
563    case BuiltinType::Int128:
564    case BuiltinType::UInt128:
565      Width = 128;
566      Align = 128; // int128_t is 128-bit aligned on all targets.
567      break;
568    case BuiltinType::Float:
569      Width = Target.getFloatWidth();
570      Align = Target.getFloatAlign();
571      break;
572    case BuiltinType::Double:
573      Width = Target.getDoubleWidth();
574      Align = Target.getDoubleAlign();
575      break;
576    case BuiltinType::LongDouble:
577      Width = Target.getLongDoubleWidth();
578      Align = Target.getLongDoubleAlign();
579      break;
580    case BuiltinType::NullPtr:
581      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
582      Align = Target.getPointerAlign(0); //   == sizeof(void*)
583      break;
584    }
585    break;
586  case Type::ObjCObjectPointer:
587    Width = Target.getPointerWidth(0);
588    Align = Target.getPointerAlign(0);
589    break;
590  case Type::BlockPointer: {
591    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
592    Width = Target.getPointerWidth(AS);
593    Align = Target.getPointerAlign(AS);
594    break;
595  }
596  case Type::LValueReference:
597  case Type::RValueReference: {
598    // alignof and sizeof should never enter this code path here, so we go
599    // the pointer route.
600    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
601    Width = Target.getPointerWidth(AS);
602    Align = Target.getPointerAlign(AS);
603    break;
604  }
605  case Type::Pointer: {
606    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
607    Width = Target.getPointerWidth(AS);
608    Align = Target.getPointerAlign(AS);
609    break;
610  }
611  case Type::MemberPointer: {
612    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
613    std::pair<uint64_t, unsigned> PtrDiffInfo =
614      getTypeInfo(getPointerDiffType());
615    Width = PtrDiffInfo.first;
616    if (Pointee->isFunctionType())
617      Width *= 2;
618    Align = PtrDiffInfo.second;
619    break;
620  }
621  case Type::Complex: {
622    // Complex types have the same alignment as their elements, but twice the
623    // size.
624    std::pair<uint64_t, unsigned> EltInfo =
625      getTypeInfo(cast<ComplexType>(T)->getElementType());
626    Width = EltInfo.first*2;
627    Align = EltInfo.second;
628    break;
629  }
630  case Type::ObjCObject:
631    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
632  case Type::ObjCInterface: {
633    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
634    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
635    Width = Layout.getSize();
636    Align = Layout.getAlignment();
637    break;
638  }
639  case Type::Record:
640  case Type::Enum: {
641    const TagType *TT = cast<TagType>(T);
642
643    if (TT->getDecl()->isInvalidDecl()) {
644      Width = 1;
645      Align = 1;
646      break;
647    }
648
649    if (const EnumType *ET = dyn_cast<EnumType>(TT))
650      return getTypeInfo(ET->getDecl()->getIntegerType());
651
652    const RecordType *RT = cast<RecordType>(TT);
653    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
654    Width = Layout.getSize();
655    Align = Layout.getAlignment();
656    break;
657  }
658
659  case Type::SubstTemplateTypeParm:
660    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
661                       getReplacementType().getTypePtr());
662
663  case Type::Typedef: {
664    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
665    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
666      Align = std::max(Aligned->getMaxAlignment(),
667                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
668      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
669    } else
670      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
671    break;
672  }
673
674  case Type::TypeOfExpr:
675    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
676                         .getTypePtr());
677
678  case Type::TypeOf:
679    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
680
681  case Type::Decltype:
682    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
683                        .getTypePtr());
684
685  case Type::Elaborated:
686    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
687
688  case Type::TemplateSpecialization:
689    assert(getCanonicalType(T) != T &&
690           "Cannot request the size of a dependent type");
691    // FIXME: this is likely to be wrong once we support template
692    // aliases, since a template alias could refer to a typedef that
693    // has an __aligned__ attribute on it.
694    return getTypeInfo(getCanonicalType(T));
695  }
696
697  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
698  return std::make_pair(Width, Align);
699}
700
701/// getTypeSizeInChars - Return the size of the specified type, in characters.
702/// This method does not work on incomplete types.
703CharUnits ASTContext::getTypeSizeInChars(QualType T) {
704  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
705}
706CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
707  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
708}
709
710/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
711/// characters. This method does not work on incomplete types.
712CharUnits ASTContext::getTypeAlignInChars(QualType T) {
713  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
714}
715CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
716  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
717}
718
719/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
720/// type for the current target in bits.  This can be different than the ABI
721/// alignment in cases where it is beneficial for performance to overalign
722/// a data type.
723unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
724  unsigned ABIAlign = getTypeAlign(T);
725
726  // Double and long long should be naturally aligned if possible.
727  if (const ComplexType* CT = T->getAs<ComplexType>())
728    T = CT->getElementType().getTypePtr();
729  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
730      T->isSpecificBuiltinType(BuiltinType::LongLong))
731    return std::max(ABIAlign, (unsigned)getTypeSize(T));
732
733  return ABIAlign;
734}
735
736static void CollectLocalObjCIvars(ASTContext *Ctx,
737                                  const ObjCInterfaceDecl *OI,
738                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
739  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
740       E = OI->ivar_end(); I != E; ++I) {
741    ObjCIvarDecl *IVDecl = *I;
742    if (!IVDecl->isInvalidDecl())
743      Fields.push_back(cast<FieldDecl>(IVDecl));
744  }
745}
746
747void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
748                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
749  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
750    CollectObjCIvars(SuperClass, Fields);
751  CollectLocalObjCIvars(this, OI, Fields);
752}
753
754/// ShallowCollectObjCIvars -
755/// Collect all ivars, including those synthesized, in the current class.
756///
757void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
758                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
759  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
760         E = OI->ivar_end(); I != E; ++I) {
761     Ivars.push_back(*I);
762  }
763
764  CollectNonClassIvars(OI, Ivars);
765}
766
767/// CollectNonClassIvars -
768/// This routine collects all other ivars which are not declared in the class.
769/// This includes synthesized ivars (via @synthesize) and those in
770//  class's @implementation.
771///
772void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
773                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
774  // Find ivars declared in class extension.
775  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
776    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
777         E = CDecl->ivar_end(); I != E; ++I) {
778      Ivars.push_back(*I);
779    }
780  }
781
782  // Also add any ivar defined in this class's implementation.  This
783  // includes synthesized ivars.
784  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
785    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
786         E = ImplDecl->ivar_end(); I != E; ++I)
787      Ivars.push_back(*I);
788  }
789}
790
791/// CollectInheritedProtocols - Collect all protocols in current class and
792/// those inherited by it.
793void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
794                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
795  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
796    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
797         PE = OI->protocol_end(); P != PE; ++P) {
798      ObjCProtocolDecl *Proto = (*P);
799      Protocols.insert(Proto);
800      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
801           PE = Proto->protocol_end(); P != PE; ++P) {
802        Protocols.insert(*P);
803        CollectInheritedProtocols(*P, Protocols);
804      }
805    }
806
807    // Categories of this Interface.
808    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
809         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
810      CollectInheritedProtocols(CDeclChain, Protocols);
811    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
812      while (SD) {
813        CollectInheritedProtocols(SD, Protocols);
814        SD = SD->getSuperClass();
815      }
816  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
817    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
818         PE = OC->protocol_end(); P != PE; ++P) {
819      ObjCProtocolDecl *Proto = (*P);
820      Protocols.insert(Proto);
821      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
822           PE = Proto->protocol_end(); P != PE; ++P)
823        CollectInheritedProtocols(*P, Protocols);
824    }
825  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
826    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
827         PE = OP->protocol_end(); P != PE; ++P) {
828      ObjCProtocolDecl *Proto = (*P);
829      Protocols.insert(Proto);
830      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
831           PE = Proto->protocol_end(); P != PE; ++P)
832        CollectInheritedProtocols(*P, Protocols);
833    }
834  }
835}
836
837unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
838  unsigned count = 0;
839  // Count ivars declared in class extension.
840  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension())
841    count += CDecl->ivar_size();
842
843  // Count ivar defined in this class's implementation.  This
844  // includes synthesized ivars.
845  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
846    count += ImplDecl->ivar_size();
847
848  return count;
849}
850
851/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
852ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
853  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
854    I = ObjCImpls.find(D);
855  if (I != ObjCImpls.end())
856    return cast<ObjCImplementationDecl>(I->second);
857  return 0;
858}
859/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
860ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
861  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
862    I = ObjCImpls.find(D);
863  if (I != ObjCImpls.end())
864    return cast<ObjCCategoryImplDecl>(I->second);
865  return 0;
866}
867
868/// \brief Set the implementation of ObjCInterfaceDecl.
869void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
870                           ObjCImplementationDecl *ImplD) {
871  assert(IFaceD && ImplD && "Passed null params");
872  ObjCImpls[IFaceD] = ImplD;
873}
874/// \brief Set the implementation of ObjCCategoryDecl.
875void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
876                           ObjCCategoryImplDecl *ImplD) {
877  assert(CatD && ImplD && "Passed null params");
878  ObjCImpls[CatD] = ImplD;
879}
880
881/// \brief Allocate an uninitialized TypeSourceInfo.
882///
883/// The caller should initialize the memory held by TypeSourceInfo using
884/// the TypeLoc wrappers.
885///
886/// \param T the type that will be the basis for type source info. This type
887/// should refer to how the declarator was written in source code, not to
888/// what type semantic analysis resolved the declarator to.
889TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
890                                                 unsigned DataSize) {
891  if (!DataSize)
892    DataSize = TypeLoc::getFullDataSizeForType(T);
893  else
894    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
895           "incorrect data size provided to CreateTypeSourceInfo!");
896
897  TypeSourceInfo *TInfo =
898    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
899  new (TInfo) TypeSourceInfo(T);
900  return TInfo;
901}
902
903TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
904                                                     SourceLocation L) {
905  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
906  DI->getTypeLoc().initialize(L);
907  return DI;
908}
909
910const ASTRecordLayout &
911ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
912  return getObjCLayout(D, 0);
913}
914
915const ASTRecordLayout &
916ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
917  return getObjCLayout(D->getClassInterface(), D);
918}
919
920//===----------------------------------------------------------------------===//
921//                   Type creation/memoization methods
922//===----------------------------------------------------------------------===//
923
924QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
925  unsigned Fast = Quals.getFastQualifiers();
926  Quals.removeFastQualifiers();
927
928  // Check if we've already instantiated this type.
929  llvm::FoldingSetNodeID ID;
930  ExtQuals::Profile(ID, TypeNode, Quals);
931  void *InsertPos = 0;
932  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
933    assert(EQ->getQualifiers() == Quals);
934    QualType T = QualType(EQ, Fast);
935    return T;
936  }
937
938  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
939  ExtQualNodes.InsertNode(New, InsertPos);
940  QualType T = QualType(New, Fast);
941  return T;
942}
943
944QualType ASTContext::getVolatileType(QualType T) {
945  QualType CanT = getCanonicalType(T);
946  if (CanT.isVolatileQualified()) return T;
947
948  QualifierCollector Quals;
949  const Type *TypeNode = Quals.strip(T);
950  Quals.addVolatile();
951
952  return getExtQualType(TypeNode, Quals);
953}
954
955QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
956  QualType CanT = getCanonicalType(T);
957  if (CanT.getAddressSpace() == AddressSpace)
958    return T;
959
960  // If we are composing extended qualifiers together, merge together
961  // into one ExtQuals node.
962  QualifierCollector Quals;
963  const Type *TypeNode = Quals.strip(T);
964
965  // If this type already has an address space specified, it cannot get
966  // another one.
967  assert(!Quals.hasAddressSpace() &&
968         "Type cannot be in multiple addr spaces!");
969  Quals.addAddressSpace(AddressSpace);
970
971  return getExtQualType(TypeNode, Quals);
972}
973
974QualType ASTContext::getObjCGCQualType(QualType T,
975                                       Qualifiers::GC GCAttr) {
976  QualType CanT = getCanonicalType(T);
977  if (CanT.getObjCGCAttr() == GCAttr)
978    return T;
979
980  if (T->isPointerType()) {
981    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
982    if (Pointee->isAnyPointerType()) {
983      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
984      return getPointerType(ResultType);
985    }
986  }
987
988  // If we are composing extended qualifiers together, merge together
989  // into one ExtQuals node.
990  QualifierCollector Quals;
991  const Type *TypeNode = Quals.strip(T);
992
993  // If this type already has an ObjCGC specified, it cannot get
994  // another one.
995  assert(!Quals.hasObjCGCAttr() &&
996         "Type cannot have multiple ObjCGCs!");
997  Quals.addObjCGCAttr(GCAttr);
998
999  return getExtQualType(TypeNode, Quals);
1000}
1001
1002static QualType getExtFunctionType(ASTContext& Context, QualType T,
1003                                        const FunctionType::ExtInfo &Info) {
1004  QualType ResultType;
1005  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1006    QualType Pointee = Pointer->getPointeeType();
1007    ResultType = getExtFunctionType(Context, Pointee, Info);
1008    if (ResultType == Pointee)
1009      return T;
1010
1011    ResultType = Context.getPointerType(ResultType);
1012  } else if (const BlockPointerType *BlockPointer
1013                                              = T->getAs<BlockPointerType>()) {
1014    QualType Pointee = BlockPointer->getPointeeType();
1015    ResultType = getExtFunctionType(Context, Pointee, Info);
1016    if (ResultType == Pointee)
1017      return T;
1018
1019    ResultType = Context.getBlockPointerType(ResultType);
1020   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1021    if (F->getExtInfo() == Info)
1022      return T;
1023
1024    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1025      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1026                                                  Info);
1027    } else {
1028      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1029      ResultType
1030        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1031                                  FPT->getNumArgs(), FPT->isVariadic(),
1032                                  FPT->getTypeQuals(),
1033                                  FPT->hasExceptionSpec(),
1034                                  FPT->hasAnyExceptionSpec(),
1035                                  FPT->getNumExceptions(),
1036                                  FPT->exception_begin(),
1037                                  Info);
1038    }
1039  } else
1040    return T;
1041
1042  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1043}
1044
1045QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1046  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1047  return getExtFunctionType(*this, T,
1048                                 Info.withNoReturn(AddNoReturn));
1049}
1050
1051QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1052  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1053  return getExtFunctionType(*this, T,
1054                            Info.withCallingConv(CallConv));
1055}
1056
1057QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1058  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1059  return getExtFunctionType(*this, T,
1060                                 Info.withRegParm(RegParm));
1061}
1062
1063/// getComplexType - Return the uniqued reference to the type for a complex
1064/// number with the specified element type.
1065QualType ASTContext::getComplexType(QualType T) {
1066  // Unique pointers, to guarantee there is only one pointer of a particular
1067  // structure.
1068  llvm::FoldingSetNodeID ID;
1069  ComplexType::Profile(ID, T);
1070
1071  void *InsertPos = 0;
1072  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1073    return QualType(CT, 0);
1074
1075  // If the pointee type isn't canonical, this won't be a canonical type either,
1076  // so fill in the canonical type field.
1077  QualType Canonical;
1078  if (!T.isCanonical()) {
1079    Canonical = getComplexType(getCanonicalType(T));
1080
1081    // Get the new insert position for the node we care about.
1082    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1083    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1084  }
1085  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1086  Types.push_back(New);
1087  ComplexTypes.InsertNode(New, InsertPos);
1088  return QualType(New, 0);
1089}
1090
1091/// getPointerType - Return the uniqued reference to the type for a pointer to
1092/// the specified type.
1093QualType ASTContext::getPointerType(QualType T) {
1094  // Unique pointers, to guarantee there is only one pointer of a particular
1095  // structure.
1096  llvm::FoldingSetNodeID ID;
1097  PointerType::Profile(ID, T);
1098
1099  void *InsertPos = 0;
1100  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1101    return QualType(PT, 0);
1102
1103  // If the pointee type isn't canonical, this won't be a canonical type either,
1104  // so fill in the canonical type field.
1105  QualType Canonical;
1106  if (!T.isCanonical()) {
1107    Canonical = getPointerType(getCanonicalType(T));
1108
1109    // Get the new insert position for the node we care about.
1110    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1111    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1112  }
1113  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1114  Types.push_back(New);
1115  PointerTypes.InsertNode(New, InsertPos);
1116  return QualType(New, 0);
1117}
1118
1119/// getBlockPointerType - Return the uniqued reference to the type for
1120/// a pointer to the specified block.
1121QualType ASTContext::getBlockPointerType(QualType T) {
1122  assert(T->isFunctionType() && "block of function types only");
1123  // Unique pointers, to guarantee there is only one block of a particular
1124  // structure.
1125  llvm::FoldingSetNodeID ID;
1126  BlockPointerType::Profile(ID, T);
1127
1128  void *InsertPos = 0;
1129  if (BlockPointerType *PT =
1130        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1131    return QualType(PT, 0);
1132
1133  // If the block pointee type isn't canonical, this won't be a canonical
1134  // type either so fill in the canonical type field.
1135  QualType Canonical;
1136  if (!T.isCanonical()) {
1137    Canonical = getBlockPointerType(getCanonicalType(T));
1138
1139    // Get the new insert position for the node we care about.
1140    BlockPointerType *NewIP =
1141      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1142    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1143  }
1144  BlockPointerType *New
1145    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1146  Types.push_back(New);
1147  BlockPointerTypes.InsertNode(New, InsertPos);
1148  return QualType(New, 0);
1149}
1150
1151/// getLValueReferenceType - Return the uniqued reference to the type for an
1152/// lvalue reference to the specified type.
1153QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1154  // Unique pointers, to guarantee there is only one pointer of a particular
1155  // structure.
1156  llvm::FoldingSetNodeID ID;
1157  ReferenceType::Profile(ID, T, SpelledAsLValue);
1158
1159  void *InsertPos = 0;
1160  if (LValueReferenceType *RT =
1161        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1162    return QualType(RT, 0);
1163
1164  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1165
1166  // If the referencee type isn't canonical, this won't be a canonical type
1167  // either, so fill in the canonical type field.
1168  QualType Canonical;
1169  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1170    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1171    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1172
1173    // Get the new insert position for the node we care about.
1174    LValueReferenceType *NewIP =
1175      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1176    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1177  }
1178
1179  LValueReferenceType *New
1180    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1181                                                     SpelledAsLValue);
1182  Types.push_back(New);
1183  LValueReferenceTypes.InsertNode(New, InsertPos);
1184
1185  return QualType(New, 0);
1186}
1187
1188/// getRValueReferenceType - Return the uniqued reference to the type for an
1189/// rvalue reference to the specified type.
1190QualType ASTContext::getRValueReferenceType(QualType T) {
1191  // Unique pointers, to guarantee there is only one pointer of a particular
1192  // structure.
1193  llvm::FoldingSetNodeID ID;
1194  ReferenceType::Profile(ID, T, false);
1195
1196  void *InsertPos = 0;
1197  if (RValueReferenceType *RT =
1198        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1199    return QualType(RT, 0);
1200
1201  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1202
1203  // If the referencee type isn't canonical, this won't be a canonical type
1204  // either, so fill in the canonical type field.
1205  QualType Canonical;
1206  if (InnerRef || !T.isCanonical()) {
1207    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1208    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1209
1210    // Get the new insert position for the node we care about.
1211    RValueReferenceType *NewIP =
1212      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1213    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1214  }
1215
1216  RValueReferenceType *New
1217    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1218  Types.push_back(New);
1219  RValueReferenceTypes.InsertNode(New, InsertPos);
1220  return QualType(New, 0);
1221}
1222
1223/// getMemberPointerType - Return the uniqued reference to the type for a
1224/// member pointer to the specified type, in the specified class.
1225QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1226  // Unique pointers, to guarantee there is only one pointer of a particular
1227  // structure.
1228  llvm::FoldingSetNodeID ID;
1229  MemberPointerType::Profile(ID, T, Cls);
1230
1231  void *InsertPos = 0;
1232  if (MemberPointerType *PT =
1233      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1234    return QualType(PT, 0);
1235
1236  // If the pointee or class type isn't canonical, this won't be a canonical
1237  // type either, so fill in the canonical type field.
1238  QualType Canonical;
1239  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1240    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1241
1242    // Get the new insert position for the node we care about.
1243    MemberPointerType *NewIP =
1244      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1245    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1246  }
1247  MemberPointerType *New
1248    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1249  Types.push_back(New);
1250  MemberPointerTypes.InsertNode(New, InsertPos);
1251  return QualType(New, 0);
1252}
1253
1254/// getConstantArrayType - Return the unique reference to the type for an
1255/// array of the specified element type.
1256QualType ASTContext::getConstantArrayType(QualType EltTy,
1257                                          const llvm::APInt &ArySizeIn,
1258                                          ArrayType::ArraySizeModifier ASM,
1259                                          unsigned EltTypeQuals) {
1260  assert((EltTy->isDependentType() ||
1261          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1262         "Constant array of VLAs is illegal!");
1263
1264  // Convert the array size into a canonical width matching the pointer size for
1265  // the target.
1266  llvm::APInt ArySize(ArySizeIn);
1267  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1268
1269  llvm::FoldingSetNodeID ID;
1270  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1271
1272  void *InsertPos = 0;
1273  if (ConstantArrayType *ATP =
1274      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1275    return QualType(ATP, 0);
1276
1277  // If the element type isn't canonical, this won't be a canonical type either,
1278  // so fill in the canonical type field.
1279  QualType Canonical;
1280  if (!EltTy.isCanonical()) {
1281    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1282                                     ASM, EltTypeQuals);
1283    // Get the new insert position for the node we care about.
1284    ConstantArrayType *NewIP =
1285      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1286    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1287  }
1288
1289  ConstantArrayType *New = new(*this,TypeAlignment)
1290    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1291  ConstantArrayTypes.InsertNode(New, InsertPos);
1292  Types.push_back(New);
1293  return QualType(New, 0);
1294}
1295
1296/// getVariableArrayType - Returns a non-unique reference to the type for a
1297/// variable array of the specified element type.
1298QualType ASTContext::getVariableArrayType(QualType EltTy,
1299                                          Expr *NumElts,
1300                                          ArrayType::ArraySizeModifier ASM,
1301                                          unsigned EltTypeQuals,
1302                                          SourceRange Brackets) {
1303  // Since we don't unique expressions, it isn't possible to unique VLA's
1304  // that have an expression provided for their size.
1305  QualType CanonType;
1306
1307  if (!EltTy.isCanonical()) {
1308    if (NumElts)
1309      NumElts->Retain();
1310    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1311                                     EltTypeQuals, Brackets);
1312  }
1313
1314  VariableArrayType *New = new(*this, TypeAlignment)
1315    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1316
1317  VariableArrayTypes.push_back(New);
1318  Types.push_back(New);
1319  return QualType(New, 0);
1320}
1321
1322/// getDependentSizedArrayType - Returns a non-unique reference to
1323/// the type for a dependently-sized array of the specified element
1324/// type.
1325QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1326                                                Expr *NumElts,
1327                                                ArrayType::ArraySizeModifier ASM,
1328                                                unsigned EltTypeQuals,
1329                                                SourceRange Brackets) {
1330  assert((!NumElts || NumElts->isTypeDependent() ||
1331          NumElts->isValueDependent()) &&
1332         "Size must be type- or value-dependent!");
1333
1334  void *InsertPos = 0;
1335  DependentSizedArrayType *Canon = 0;
1336  llvm::FoldingSetNodeID ID;
1337
1338  if (NumElts) {
1339    // Dependently-sized array types that do not have a specified
1340    // number of elements will have their sizes deduced from an
1341    // initializer.
1342    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1343                                     EltTypeQuals, NumElts);
1344
1345    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1346  }
1347
1348  DependentSizedArrayType *New;
1349  if (Canon) {
1350    // We already have a canonical version of this array type; use it as
1351    // the canonical type for a newly-built type.
1352    New = new (*this, TypeAlignment)
1353      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1354                              NumElts, ASM, EltTypeQuals, Brackets);
1355  } else {
1356    QualType CanonEltTy = getCanonicalType(EltTy);
1357    if (CanonEltTy == EltTy) {
1358      New = new (*this, TypeAlignment)
1359        DependentSizedArrayType(*this, EltTy, QualType(),
1360                                NumElts, ASM, EltTypeQuals, Brackets);
1361
1362      if (NumElts) {
1363        DependentSizedArrayType *CanonCheck
1364          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1365        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1366        (void)CanonCheck;
1367        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1368      }
1369    } else {
1370      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1371                                                  ASM, EltTypeQuals,
1372                                                  SourceRange());
1373      New = new (*this, TypeAlignment)
1374        DependentSizedArrayType(*this, EltTy, Canon,
1375                                NumElts, ASM, EltTypeQuals, Brackets);
1376    }
1377  }
1378
1379  Types.push_back(New);
1380  return QualType(New, 0);
1381}
1382
1383QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1384                                            ArrayType::ArraySizeModifier ASM,
1385                                            unsigned EltTypeQuals) {
1386  llvm::FoldingSetNodeID ID;
1387  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1388
1389  void *InsertPos = 0;
1390  if (IncompleteArrayType *ATP =
1391       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1392    return QualType(ATP, 0);
1393
1394  // If the element type isn't canonical, this won't be a canonical type
1395  // either, so fill in the canonical type field.
1396  QualType Canonical;
1397
1398  if (!EltTy.isCanonical()) {
1399    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1400                                       ASM, EltTypeQuals);
1401
1402    // Get the new insert position for the node we care about.
1403    IncompleteArrayType *NewIP =
1404      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1405    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1406  }
1407
1408  IncompleteArrayType *New = new (*this, TypeAlignment)
1409    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1410
1411  IncompleteArrayTypes.InsertNode(New, InsertPos);
1412  Types.push_back(New);
1413  return QualType(New, 0);
1414}
1415
1416/// getVectorType - Return the unique reference to a vector type of
1417/// the specified element type and size. VectorType must be a built-in type.
1418QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1419                                   bool IsAltiVec, bool IsPixel) {
1420  BuiltinType *baseType;
1421
1422  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1423  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1424
1425  // Check if we've already instantiated a vector of this type.
1426  llvm::FoldingSetNodeID ID;
1427  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1428    IsAltiVec, IsPixel);
1429  void *InsertPos = 0;
1430  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1431    return QualType(VTP, 0);
1432
1433  // If the element type isn't canonical, this won't be a canonical type either,
1434  // so fill in the canonical type field.
1435  QualType Canonical;
1436  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1437    Canonical = getVectorType(getCanonicalType(vecType),
1438      NumElts, false, false);
1439
1440    // Get the new insert position for the node we care about.
1441    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1442    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1443  }
1444  VectorType *New = new (*this, TypeAlignment)
1445    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1446  VectorTypes.InsertNode(New, InsertPos);
1447  Types.push_back(New);
1448  return QualType(New, 0);
1449}
1450
1451/// getExtVectorType - Return the unique reference to an extended vector type of
1452/// the specified element type and size. VectorType must be a built-in type.
1453QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1454  BuiltinType *baseType;
1455
1456  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1457  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1458
1459  // Check if we've already instantiated a vector of this type.
1460  llvm::FoldingSetNodeID ID;
1461  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1462  void *InsertPos = 0;
1463  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1464    return QualType(VTP, 0);
1465
1466  // If the element type isn't canonical, this won't be a canonical type either,
1467  // so fill in the canonical type field.
1468  QualType Canonical;
1469  if (!vecType.isCanonical()) {
1470    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1471
1472    // Get the new insert position for the node we care about.
1473    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1474    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1475  }
1476  ExtVectorType *New = new (*this, TypeAlignment)
1477    ExtVectorType(vecType, NumElts, Canonical);
1478  VectorTypes.InsertNode(New, InsertPos);
1479  Types.push_back(New);
1480  return QualType(New, 0);
1481}
1482
1483QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1484                                                    Expr *SizeExpr,
1485                                                    SourceLocation AttrLoc) {
1486  llvm::FoldingSetNodeID ID;
1487  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1488                                       SizeExpr);
1489
1490  void *InsertPos = 0;
1491  DependentSizedExtVectorType *Canon
1492    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1493  DependentSizedExtVectorType *New;
1494  if (Canon) {
1495    // We already have a canonical version of this array type; use it as
1496    // the canonical type for a newly-built type.
1497    New = new (*this, TypeAlignment)
1498      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1499                                  SizeExpr, AttrLoc);
1500  } else {
1501    QualType CanonVecTy = getCanonicalType(vecType);
1502    if (CanonVecTy == vecType) {
1503      New = new (*this, TypeAlignment)
1504        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1505                                    AttrLoc);
1506
1507      DependentSizedExtVectorType *CanonCheck
1508        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1509      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1510      (void)CanonCheck;
1511      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1512    } else {
1513      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1514                                                      SourceLocation());
1515      New = new (*this, TypeAlignment)
1516        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1517    }
1518  }
1519
1520  Types.push_back(New);
1521  return QualType(New, 0);
1522}
1523
1524/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1525///
1526QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1527                                            const FunctionType::ExtInfo &Info) {
1528  const CallingConv CallConv = Info.getCC();
1529  // Unique functions, to guarantee there is only one function of a particular
1530  // structure.
1531  llvm::FoldingSetNodeID ID;
1532  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1533
1534  void *InsertPos = 0;
1535  if (FunctionNoProtoType *FT =
1536        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1537    return QualType(FT, 0);
1538
1539  QualType Canonical;
1540  if (!ResultTy.isCanonical() ||
1541      getCanonicalCallConv(CallConv) != CallConv) {
1542    Canonical =
1543      getFunctionNoProtoType(getCanonicalType(ResultTy),
1544                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1545
1546    // Get the new insert position for the node we care about.
1547    FunctionNoProtoType *NewIP =
1548      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1549    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1550  }
1551
1552  FunctionNoProtoType *New = new (*this, TypeAlignment)
1553    FunctionNoProtoType(ResultTy, Canonical, Info);
1554  Types.push_back(New);
1555  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1556  return QualType(New, 0);
1557}
1558
1559/// getFunctionType - Return a normal function type with a typed argument
1560/// list.  isVariadic indicates whether the argument list includes '...'.
1561QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1562                                     unsigned NumArgs, bool isVariadic,
1563                                     unsigned TypeQuals, bool hasExceptionSpec,
1564                                     bool hasAnyExceptionSpec, unsigned NumExs,
1565                                     const QualType *ExArray,
1566                                     const FunctionType::ExtInfo &Info) {
1567  const CallingConv CallConv= Info.getCC();
1568  // Unique functions, to guarantee there is only one function of a particular
1569  // structure.
1570  llvm::FoldingSetNodeID ID;
1571  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1572                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1573                             NumExs, ExArray, Info);
1574
1575  void *InsertPos = 0;
1576  if (FunctionProtoType *FTP =
1577        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1578    return QualType(FTP, 0);
1579
1580  // Determine whether the type being created is already canonical or not.
1581  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1582  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1583    if (!ArgArray[i].isCanonicalAsParam())
1584      isCanonical = false;
1585
1586  // If this type isn't canonical, get the canonical version of it.
1587  // The exception spec is not part of the canonical type.
1588  QualType Canonical;
1589  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1590    llvm::SmallVector<QualType, 16> CanonicalArgs;
1591    CanonicalArgs.reserve(NumArgs);
1592    for (unsigned i = 0; i != NumArgs; ++i)
1593      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1594
1595    Canonical = getFunctionType(getCanonicalType(ResultTy),
1596                                CanonicalArgs.data(), NumArgs,
1597                                isVariadic, TypeQuals, false,
1598                                false, 0, 0,
1599                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1600
1601    // Get the new insert position for the node we care about.
1602    FunctionProtoType *NewIP =
1603      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1604    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1605  }
1606
1607  // FunctionProtoType objects are allocated with extra bytes after them
1608  // for two variable size arrays (for parameter and exception types) at the
1609  // end of them.
1610  FunctionProtoType *FTP =
1611    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1612                                 NumArgs*sizeof(QualType) +
1613                                 NumExs*sizeof(QualType), TypeAlignment);
1614  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1615                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1616                              ExArray, NumExs, Canonical, Info);
1617  Types.push_back(FTP);
1618  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1619  return QualType(FTP, 0);
1620}
1621
1622#ifndef NDEBUG
1623static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1624  if (!isa<CXXRecordDecl>(D)) return false;
1625  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1626  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1627    return true;
1628  if (RD->getDescribedClassTemplate() &&
1629      !isa<ClassTemplateSpecializationDecl>(RD))
1630    return true;
1631  return false;
1632}
1633#endif
1634
1635/// getInjectedClassNameType - Return the unique reference to the
1636/// injected class name type for the specified templated declaration.
1637QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1638                                              QualType TST) {
1639  assert(NeedsInjectedClassNameType(Decl));
1640  if (Decl->TypeForDecl) {
1641    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1642  } else if (CXXRecordDecl *PrevDecl
1643               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1644    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1645    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1646    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1647  } else {
1648    Decl->TypeForDecl =
1649      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1650    Types.push_back(Decl->TypeForDecl);
1651  }
1652  return QualType(Decl->TypeForDecl, 0);
1653}
1654
1655/// getTypeDeclType - Return the unique reference to the type for the
1656/// specified type declaration.
1657QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1658  assert(Decl && "Passed null for Decl param");
1659  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1660
1661  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1662    return getTypedefType(Typedef);
1663
1664  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1665         "Template type parameter types are always available.");
1666
1667  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1668    assert(!Record->getPreviousDeclaration() &&
1669           "struct/union has previous declaration");
1670    assert(!NeedsInjectedClassNameType(Record));
1671    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1672  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1673    assert(!Enum->getPreviousDeclaration() &&
1674           "enum has previous declaration");
1675    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1676  } else if (const UnresolvedUsingTypenameDecl *Using =
1677               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1678    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1679  } else
1680    llvm_unreachable("TypeDecl without a type?");
1681
1682  Types.push_back(Decl->TypeForDecl);
1683  return QualType(Decl->TypeForDecl, 0);
1684}
1685
1686/// getTypedefType - Return the unique reference to the type for the
1687/// specified typename decl.
1688QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1689  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1690
1691  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1692  Decl->TypeForDecl = new(*this, TypeAlignment)
1693    TypedefType(Type::Typedef, Decl, Canonical);
1694  Types.push_back(Decl->TypeForDecl);
1695  return QualType(Decl->TypeForDecl, 0);
1696}
1697
1698/// \brief Retrieve a substitution-result type.
1699QualType
1700ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1701                                         QualType Replacement) {
1702  assert(Replacement.isCanonical()
1703         && "replacement types must always be canonical");
1704
1705  llvm::FoldingSetNodeID ID;
1706  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1707  void *InsertPos = 0;
1708  SubstTemplateTypeParmType *SubstParm
1709    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1710
1711  if (!SubstParm) {
1712    SubstParm = new (*this, TypeAlignment)
1713      SubstTemplateTypeParmType(Parm, Replacement);
1714    Types.push_back(SubstParm);
1715    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1716  }
1717
1718  return QualType(SubstParm, 0);
1719}
1720
1721/// \brief Retrieve the template type parameter type for a template
1722/// parameter or parameter pack with the given depth, index, and (optionally)
1723/// name.
1724QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1725                                             bool ParameterPack,
1726                                             IdentifierInfo *Name) {
1727  llvm::FoldingSetNodeID ID;
1728  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1729  void *InsertPos = 0;
1730  TemplateTypeParmType *TypeParm
1731    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1732
1733  if (TypeParm)
1734    return QualType(TypeParm, 0);
1735
1736  if (Name) {
1737    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1738    TypeParm = new (*this, TypeAlignment)
1739      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1740
1741    TemplateTypeParmType *TypeCheck
1742      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1743    assert(!TypeCheck && "Template type parameter canonical type broken");
1744    (void)TypeCheck;
1745  } else
1746    TypeParm = new (*this, TypeAlignment)
1747      TemplateTypeParmType(Depth, Index, ParameterPack);
1748
1749  Types.push_back(TypeParm);
1750  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1751
1752  return QualType(TypeParm, 0);
1753}
1754
1755TypeSourceInfo *
1756ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1757                                              SourceLocation NameLoc,
1758                                        const TemplateArgumentListInfo &Args,
1759                                              QualType CanonType) {
1760  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1761
1762  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1763  TemplateSpecializationTypeLoc TL
1764    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1765  TL.setTemplateNameLoc(NameLoc);
1766  TL.setLAngleLoc(Args.getLAngleLoc());
1767  TL.setRAngleLoc(Args.getRAngleLoc());
1768  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1769    TL.setArgLocInfo(i, Args[i].getLocInfo());
1770  return DI;
1771}
1772
1773QualType
1774ASTContext::getTemplateSpecializationType(TemplateName Template,
1775                                          const TemplateArgumentListInfo &Args,
1776                                          QualType Canon,
1777                                          bool IsCurrentInstantiation) {
1778  unsigned NumArgs = Args.size();
1779
1780  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1781  ArgVec.reserve(NumArgs);
1782  for (unsigned i = 0; i != NumArgs; ++i)
1783    ArgVec.push_back(Args[i].getArgument());
1784
1785  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1786                                       Canon, IsCurrentInstantiation);
1787}
1788
1789QualType
1790ASTContext::getTemplateSpecializationType(TemplateName Template,
1791                                          const TemplateArgument *Args,
1792                                          unsigned NumArgs,
1793                                          QualType Canon,
1794                                          bool IsCurrentInstantiation) {
1795  if (!Canon.isNull())
1796    Canon = getCanonicalType(Canon);
1797  else {
1798    assert(!IsCurrentInstantiation &&
1799           "current-instantiation specializations should always "
1800           "have a canonical type");
1801
1802    // Build the canonical template specialization type.
1803    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1804    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1805    CanonArgs.reserve(NumArgs);
1806    for (unsigned I = 0; I != NumArgs; ++I)
1807      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1808
1809    // Determine whether this canonical template specialization type already
1810    // exists.
1811    llvm::FoldingSetNodeID ID;
1812    TemplateSpecializationType::Profile(ID, CanonTemplate, false,
1813                                        CanonArgs.data(), NumArgs, *this);
1814
1815    void *InsertPos = 0;
1816    TemplateSpecializationType *Spec
1817      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1818
1819    if (!Spec) {
1820      // Allocate a new canonical template specialization type.
1821      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1822                            sizeof(TemplateArgument) * NumArgs),
1823                           TypeAlignment);
1824      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate, false,
1825                                                  CanonArgs.data(), NumArgs,
1826                                                  Canon);
1827      Types.push_back(Spec);
1828      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1829    }
1830
1831    if (Canon.isNull())
1832      Canon = QualType(Spec, 0);
1833    assert(Canon->isDependentType() &&
1834           "Non-dependent template-id type must have a canonical type");
1835  }
1836
1837  // Allocate the (non-canonical) template specialization type, but don't
1838  // try to unique it: these types typically have location information that
1839  // we don't unique and don't want to lose.
1840  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1841                        sizeof(TemplateArgument) * NumArgs),
1842                       TypeAlignment);
1843  TemplateSpecializationType *Spec
1844    = new (Mem) TemplateSpecializationType(*this, Template,
1845                                           IsCurrentInstantiation,
1846                                           Args, NumArgs,
1847                                           Canon);
1848
1849  Types.push_back(Spec);
1850  return QualType(Spec, 0);
1851}
1852
1853QualType
1854ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1855                              NestedNameSpecifier *NNS,
1856                              QualType NamedType) {
1857  llvm::FoldingSetNodeID ID;
1858  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1859
1860  void *InsertPos = 0;
1861  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1862  if (T)
1863    return QualType(T, 0);
1864
1865  QualType Canon = NamedType;
1866  if (!Canon.isCanonical()) {
1867    Canon = getCanonicalType(NamedType);
1868    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1869    assert(!CheckT && "Elaborated canonical type broken");
1870    (void)CheckT;
1871  }
1872
1873  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
1874  Types.push_back(T);
1875  ElaboratedTypes.InsertNode(T, InsertPos);
1876  return QualType(T, 0);
1877}
1878
1879QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1880                                          NestedNameSpecifier *NNS,
1881                                          const IdentifierInfo *Name,
1882                                          QualType Canon) {
1883  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1884
1885  if (Canon.isNull()) {
1886    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1887    ElaboratedTypeKeyword CanonKeyword = Keyword;
1888    if (Keyword == ETK_None)
1889      CanonKeyword = ETK_Typename;
1890
1891    if (CanonNNS != NNS || CanonKeyword != Keyword)
1892      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
1893  }
1894
1895  llvm::FoldingSetNodeID ID;
1896  DependentNameType::Profile(ID, Keyword, NNS, Name);
1897
1898  void *InsertPos = 0;
1899  DependentNameType *T
1900    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1901  if (T)
1902    return QualType(T, 0);
1903
1904  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
1905  Types.push_back(T);
1906  DependentNameTypes.InsertNode(T, InsertPos);
1907  return QualType(T, 0);
1908}
1909
1910QualType
1911ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1912                                 NestedNameSpecifier *NNS,
1913                                 const TemplateSpecializationType *TemplateId,
1914                                 QualType Canon) {
1915  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1916
1917  llvm::FoldingSetNodeID ID;
1918  DependentNameType::Profile(ID, Keyword, NNS, TemplateId);
1919
1920  void *InsertPos = 0;
1921  DependentNameType *T
1922    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1923  if (T)
1924    return QualType(T, 0);
1925
1926  if (Canon.isNull()) {
1927    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1928    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1929    ElaboratedTypeKeyword CanonKeyword = Keyword;
1930    if (Keyword == ETK_None)
1931      CanonKeyword = ETK_Typename;
1932    if (CanonNNS != NNS || CanonKeyword != Keyword ||
1933        CanonType != QualType(TemplateId, 0)) {
1934      const TemplateSpecializationType *CanonTemplateId
1935        = CanonType->getAs<TemplateSpecializationType>();
1936      assert(CanonTemplateId &&
1937             "Canonical type must also be a template specialization type");
1938      Canon = getDependentNameType(CanonKeyword, CanonNNS, CanonTemplateId);
1939    }
1940
1941    DependentNameType *CheckT
1942      = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1943    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
1944  }
1945
1946  T = new (*this) DependentNameType(Keyword, NNS, TemplateId, Canon);
1947  Types.push_back(T);
1948  DependentNameTypes.InsertNode(T, InsertPos);
1949  return QualType(T, 0);
1950}
1951
1952/// CmpProtocolNames - Comparison predicate for sorting protocols
1953/// alphabetically.
1954static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1955                            const ObjCProtocolDecl *RHS) {
1956  return LHS->getDeclName() < RHS->getDeclName();
1957}
1958
1959static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
1960                                unsigned NumProtocols) {
1961  if (NumProtocols == 0) return true;
1962
1963  for (unsigned i = 1; i != NumProtocols; ++i)
1964    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1965      return false;
1966  return true;
1967}
1968
1969static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
1970                                   unsigned &NumProtocols) {
1971  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1972
1973  // Sort protocols, keyed by name.
1974  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1975
1976  // Remove duplicates.
1977  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1978  NumProtocols = ProtocolsEnd-Protocols;
1979}
1980
1981QualType ASTContext::getObjCObjectType(QualType BaseType,
1982                                       ObjCProtocolDecl * const *Protocols,
1983                                       unsigned NumProtocols) {
1984  // If the base type is an interface and there aren't any protocols
1985  // to add, then the interface type will do just fine.
1986  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
1987    return BaseType;
1988
1989  // Look in the folding set for an existing type.
1990  llvm::FoldingSetNodeID ID;
1991  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
1992  void *InsertPos = 0;
1993  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
1994    return QualType(QT, 0);
1995
1996  // Build the canonical type, which has the canonical base type and
1997  // a sorted-and-uniqued list of protocols.
1998  QualType Canonical;
1999  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2000  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2001    if (!ProtocolsSorted) {
2002      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2003                                                     Protocols + NumProtocols);
2004      unsigned UniqueCount = NumProtocols;
2005
2006      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2007      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2008                                    &Sorted[0], UniqueCount);
2009    } else {
2010      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2011                                    Protocols, NumProtocols);
2012    }
2013
2014    // Regenerate InsertPos.
2015    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2016  }
2017
2018  unsigned Size = sizeof(ObjCObjectTypeImpl);
2019  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2020  void *Mem = Allocate(Size, TypeAlignment);
2021  ObjCObjectTypeImpl *T =
2022    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2023
2024  Types.push_back(T);
2025  ObjCObjectTypes.InsertNode(T, InsertPos);
2026  return QualType(T, 0);
2027}
2028
2029/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2030/// the given object type.
2031QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2032  llvm::FoldingSetNodeID ID;
2033  ObjCObjectPointerType::Profile(ID, ObjectT);
2034
2035  void *InsertPos = 0;
2036  if (ObjCObjectPointerType *QT =
2037              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2038    return QualType(QT, 0);
2039
2040  // Find the canonical object type.
2041  QualType Canonical;
2042  if (!ObjectT.isCanonical()) {
2043    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2044
2045    // Regenerate InsertPos.
2046    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2047  }
2048
2049  // No match.
2050  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2051  ObjCObjectPointerType *QType =
2052    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2053
2054  Types.push_back(QType);
2055  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2056  return QualType(QType, 0);
2057}
2058
2059/// getObjCInterfaceType - Return the unique reference to the type for the
2060/// specified ObjC interface decl. The list of protocols is optional.
2061QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2062  if (Decl->TypeForDecl)
2063    return QualType(Decl->TypeForDecl, 0);
2064
2065  // FIXME: redeclarations?
2066  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2067  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2068  Decl->TypeForDecl = T;
2069  Types.push_back(T);
2070  return QualType(T, 0);
2071}
2072
2073/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2074/// TypeOfExprType AST's (since expression's are never shared). For example,
2075/// multiple declarations that refer to "typeof(x)" all contain different
2076/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2077/// on canonical type's (which are always unique).
2078QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2079  TypeOfExprType *toe;
2080  if (tofExpr->isTypeDependent()) {
2081    llvm::FoldingSetNodeID ID;
2082    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2083
2084    void *InsertPos = 0;
2085    DependentTypeOfExprType *Canon
2086      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2087    if (Canon) {
2088      // We already have a "canonical" version of an identical, dependent
2089      // typeof(expr) type. Use that as our canonical type.
2090      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2091                                          QualType((TypeOfExprType*)Canon, 0));
2092    }
2093    else {
2094      // Build a new, canonical typeof(expr) type.
2095      Canon
2096        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2097      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2098      toe = Canon;
2099    }
2100  } else {
2101    QualType Canonical = getCanonicalType(tofExpr->getType());
2102    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2103  }
2104  Types.push_back(toe);
2105  return QualType(toe, 0);
2106}
2107
2108/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2109/// TypeOfType AST's. The only motivation to unique these nodes would be
2110/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2111/// an issue. This doesn't effect the type checker, since it operates
2112/// on canonical type's (which are always unique).
2113QualType ASTContext::getTypeOfType(QualType tofType) {
2114  QualType Canonical = getCanonicalType(tofType);
2115  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2116  Types.push_back(tot);
2117  return QualType(tot, 0);
2118}
2119
2120/// getDecltypeForExpr - Given an expr, will return the decltype for that
2121/// expression, according to the rules in C++0x [dcl.type.simple]p4
2122static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2123  if (e->isTypeDependent())
2124    return Context.DependentTy;
2125
2126  // If e is an id expression or a class member access, decltype(e) is defined
2127  // as the type of the entity named by e.
2128  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2129    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2130      return VD->getType();
2131  }
2132  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2133    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2134      return FD->getType();
2135  }
2136  // If e is a function call or an invocation of an overloaded operator,
2137  // (parentheses around e are ignored), decltype(e) is defined as the
2138  // return type of that function.
2139  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2140    return CE->getCallReturnType();
2141
2142  QualType T = e->getType();
2143
2144  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2145  // defined as T&, otherwise decltype(e) is defined as T.
2146  if (e->isLvalue(Context) == Expr::LV_Valid)
2147    T = Context.getLValueReferenceType(T);
2148
2149  return T;
2150}
2151
2152/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2153/// DecltypeType AST's. The only motivation to unique these nodes would be
2154/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2155/// an issue. This doesn't effect the type checker, since it operates
2156/// on canonical type's (which are always unique).
2157QualType ASTContext::getDecltypeType(Expr *e) {
2158  DecltypeType *dt;
2159  if (e->isTypeDependent()) {
2160    llvm::FoldingSetNodeID ID;
2161    DependentDecltypeType::Profile(ID, *this, e);
2162
2163    void *InsertPos = 0;
2164    DependentDecltypeType *Canon
2165      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2166    if (Canon) {
2167      // We already have a "canonical" version of an equivalent, dependent
2168      // decltype type. Use that as our canonical type.
2169      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2170                                       QualType((DecltypeType*)Canon, 0));
2171    }
2172    else {
2173      // Build a new, canonical typeof(expr) type.
2174      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2175      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2176      dt = Canon;
2177    }
2178  } else {
2179    QualType T = getDecltypeForExpr(e, *this);
2180    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2181  }
2182  Types.push_back(dt);
2183  return QualType(dt, 0);
2184}
2185
2186/// getTagDeclType - Return the unique reference to the type for the
2187/// specified TagDecl (struct/union/class/enum) decl.
2188QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2189  assert (Decl);
2190  // FIXME: What is the design on getTagDeclType when it requires casting
2191  // away const?  mutable?
2192  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2193}
2194
2195/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2196/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2197/// needs to agree with the definition in <stddef.h>.
2198CanQualType ASTContext::getSizeType() const {
2199  return getFromTargetType(Target.getSizeType());
2200}
2201
2202/// getSignedWCharType - Return the type of "signed wchar_t".
2203/// Used when in C++, as a GCC extension.
2204QualType ASTContext::getSignedWCharType() const {
2205  // FIXME: derive from "Target" ?
2206  return WCharTy;
2207}
2208
2209/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2210/// Used when in C++, as a GCC extension.
2211QualType ASTContext::getUnsignedWCharType() const {
2212  // FIXME: derive from "Target" ?
2213  return UnsignedIntTy;
2214}
2215
2216/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2217/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2218QualType ASTContext::getPointerDiffType() const {
2219  return getFromTargetType(Target.getPtrDiffType(0));
2220}
2221
2222//===----------------------------------------------------------------------===//
2223//                              Type Operators
2224//===----------------------------------------------------------------------===//
2225
2226CanQualType ASTContext::getCanonicalParamType(QualType T) {
2227  // Push qualifiers into arrays, and then discard any remaining
2228  // qualifiers.
2229  T = getCanonicalType(T);
2230  const Type *Ty = T.getTypePtr();
2231
2232  QualType Result;
2233  if (isa<ArrayType>(Ty)) {
2234    Result = getArrayDecayedType(QualType(Ty,0));
2235  } else if (isa<FunctionType>(Ty)) {
2236    Result = getPointerType(QualType(Ty, 0));
2237  } else {
2238    Result = QualType(Ty, 0);
2239  }
2240
2241  return CanQualType::CreateUnsafe(Result);
2242}
2243
2244/// getCanonicalType - Return the canonical (structural) type corresponding to
2245/// the specified potentially non-canonical type.  The non-canonical version
2246/// of a type may have many "decorated" versions of types.  Decorators can
2247/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2248/// to be free of any of these, allowing two canonical types to be compared
2249/// for exact equality with a simple pointer comparison.
2250CanQualType ASTContext::getCanonicalType(QualType T) {
2251  QualifierCollector Quals;
2252  const Type *Ptr = Quals.strip(T);
2253  QualType CanType = Ptr->getCanonicalTypeInternal();
2254
2255  // The canonical internal type will be the canonical type *except*
2256  // that we push type qualifiers down through array types.
2257
2258  // If there are no new qualifiers to push down, stop here.
2259  if (!Quals.hasQualifiers())
2260    return CanQualType::CreateUnsafe(CanType);
2261
2262  // If the type qualifiers are on an array type, get the canonical
2263  // type of the array with the qualifiers applied to the element
2264  // type.
2265  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2266  if (!AT)
2267    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2268
2269  // Get the canonical version of the element with the extra qualifiers on it.
2270  // This can recursively sink qualifiers through multiple levels of arrays.
2271  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2272  NewEltTy = getCanonicalType(NewEltTy);
2273
2274  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2275    return CanQualType::CreateUnsafe(
2276             getConstantArrayType(NewEltTy, CAT->getSize(),
2277                                  CAT->getSizeModifier(),
2278                                  CAT->getIndexTypeCVRQualifiers()));
2279  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2280    return CanQualType::CreateUnsafe(
2281             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2282                                    IAT->getIndexTypeCVRQualifiers()));
2283
2284  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2285    return CanQualType::CreateUnsafe(
2286             getDependentSizedArrayType(NewEltTy,
2287                                        DSAT->getSizeExpr() ?
2288                                          DSAT->getSizeExpr()->Retain() : 0,
2289                                        DSAT->getSizeModifier(),
2290                                        DSAT->getIndexTypeCVRQualifiers(),
2291                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2292
2293  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2294  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2295                                                        VAT->getSizeExpr() ?
2296                                              VAT->getSizeExpr()->Retain() : 0,
2297                                                        VAT->getSizeModifier(),
2298                                              VAT->getIndexTypeCVRQualifiers(),
2299                                                     VAT->getBracketsRange()));
2300}
2301
2302QualType ASTContext::getUnqualifiedArrayType(QualType T,
2303                                             Qualifiers &Quals) {
2304  Quals = T.getQualifiers();
2305  const ArrayType *AT = getAsArrayType(T);
2306  if (!AT) {
2307    return T.getUnqualifiedType();
2308  }
2309
2310  QualType Elt = AT->getElementType();
2311  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2312  if (Elt == UnqualElt)
2313    return T;
2314
2315  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2316    return getConstantArrayType(UnqualElt, CAT->getSize(),
2317                                CAT->getSizeModifier(), 0);
2318  }
2319
2320  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2321    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2322  }
2323
2324  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2325    return getVariableArrayType(UnqualElt,
2326                                VAT->getSizeExpr() ?
2327                                VAT->getSizeExpr()->Retain() : 0,
2328                                VAT->getSizeModifier(),
2329                                VAT->getIndexTypeCVRQualifiers(),
2330                                VAT->getBracketsRange());
2331  }
2332
2333  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2334  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2335                                    DSAT->getSizeModifier(), 0,
2336                                    SourceRange());
2337}
2338
2339DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2340  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2341    return TD->getDeclName();
2342
2343  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2344    if (DTN->isIdentifier()) {
2345      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2346    } else {
2347      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2348    }
2349  }
2350
2351  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2352  assert(Storage);
2353  return (*Storage->begin())->getDeclName();
2354}
2355
2356TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2357  // If this template name refers to a template, the canonical
2358  // template name merely stores the template itself.
2359  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2360    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2361
2362  assert(!Name.getAsOverloadedTemplate());
2363
2364  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2365  assert(DTN && "Non-dependent template names must refer to template decls.");
2366  return DTN->CanonicalTemplateName;
2367}
2368
2369bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2370  X = getCanonicalTemplateName(X);
2371  Y = getCanonicalTemplateName(Y);
2372  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2373}
2374
2375TemplateArgument
2376ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2377  switch (Arg.getKind()) {
2378    case TemplateArgument::Null:
2379      return Arg;
2380
2381    case TemplateArgument::Expression:
2382      return Arg;
2383
2384    case TemplateArgument::Declaration:
2385      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2386
2387    case TemplateArgument::Template:
2388      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2389
2390    case TemplateArgument::Integral:
2391      return TemplateArgument(*Arg.getAsIntegral(),
2392                              getCanonicalType(Arg.getIntegralType()));
2393
2394    case TemplateArgument::Type:
2395      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2396
2397    case TemplateArgument::Pack: {
2398      // FIXME: Allocate in ASTContext
2399      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2400      unsigned Idx = 0;
2401      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2402                                        AEnd = Arg.pack_end();
2403           A != AEnd; (void)++A, ++Idx)
2404        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2405
2406      TemplateArgument Result;
2407      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2408      return Result;
2409    }
2410  }
2411
2412  // Silence GCC warning
2413  assert(false && "Unhandled template argument kind");
2414  return TemplateArgument();
2415}
2416
2417NestedNameSpecifier *
2418ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2419  if (!NNS)
2420    return 0;
2421
2422  switch (NNS->getKind()) {
2423  case NestedNameSpecifier::Identifier:
2424    // Canonicalize the prefix but keep the identifier the same.
2425    return NestedNameSpecifier::Create(*this,
2426                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2427                                       NNS->getAsIdentifier());
2428
2429  case NestedNameSpecifier::Namespace:
2430    // A namespace is canonical; build a nested-name-specifier with
2431    // this namespace and no prefix.
2432    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2433
2434  case NestedNameSpecifier::TypeSpec:
2435  case NestedNameSpecifier::TypeSpecWithTemplate: {
2436    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2437    return NestedNameSpecifier::Create(*this, 0,
2438                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2439                                       T.getTypePtr());
2440  }
2441
2442  case NestedNameSpecifier::Global:
2443    // The global specifier is canonical and unique.
2444    return NNS;
2445  }
2446
2447  // Required to silence a GCC warning
2448  return 0;
2449}
2450
2451
2452const ArrayType *ASTContext::getAsArrayType(QualType T) {
2453  // Handle the non-qualified case efficiently.
2454  if (!T.hasLocalQualifiers()) {
2455    // Handle the common positive case fast.
2456    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2457      return AT;
2458  }
2459
2460  // Handle the common negative case fast.
2461  QualType CType = T->getCanonicalTypeInternal();
2462  if (!isa<ArrayType>(CType))
2463    return 0;
2464
2465  // Apply any qualifiers from the array type to the element type.  This
2466  // implements C99 6.7.3p8: "If the specification of an array type includes
2467  // any type qualifiers, the element type is so qualified, not the array type."
2468
2469  // If we get here, we either have type qualifiers on the type, or we have
2470  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2471  // we must propagate them down into the element type.
2472
2473  QualifierCollector Qs;
2474  const Type *Ty = Qs.strip(T.getDesugaredType());
2475
2476  // If we have a simple case, just return now.
2477  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2478  if (ATy == 0 || Qs.empty())
2479    return ATy;
2480
2481  // Otherwise, we have an array and we have qualifiers on it.  Push the
2482  // qualifiers into the array element type and return a new array type.
2483  // Get the canonical version of the element with the extra qualifiers on it.
2484  // This can recursively sink qualifiers through multiple levels of arrays.
2485  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2486
2487  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2488    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2489                                                CAT->getSizeModifier(),
2490                                           CAT->getIndexTypeCVRQualifiers()));
2491  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2492    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2493                                                  IAT->getSizeModifier(),
2494                                           IAT->getIndexTypeCVRQualifiers()));
2495
2496  if (const DependentSizedArrayType *DSAT
2497        = dyn_cast<DependentSizedArrayType>(ATy))
2498    return cast<ArrayType>(
2499                     getDependentSizedArrayType(NewEltTy,
2500                                                DSAT->getSizeExpr() ?
2501                                              DSAT->getSizeExpr()->Retain() : 0,
2502                                                DSAT->getSizeModifier(),
2503                                              DSAT->getIndexTypeCVRQualifiers(),
2504                                                DSAT->getBracketsRange()));
2505
2506  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2507  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2508                                              VAT->getSizeExpr() ?
2509                                              VAT->getSizeExpr()->Retain() : 0,
2510                                              VAT->getSizeModifier(),
2511                                              VAT->getIndexTypeCVRQualifiers(),
2512                                              VAT->getBracketsRange()));
2513}
2514
2515
2516/// getArrayDecayedType - Return the properly qualified result of decaying the
2517/// specified array type to a pointer.  This operation is non-trivial when
2518/// handling typedefs etc.  The canonical type of "T" must be an array type,
2519/// this returns a pointer to a properly qualified element of the array.
2520///
2521/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2522QualType ASTContext::getArrayDecayedType(QualType Ty) {
2523  // Get the element type with 'getAsArrayType' so that we don't lose any
2524  // typedefs in the element type of the array.  This also handles propagation
2525  // of type qualifiers from the array type into the element type if present
2526  // (C99 6.7.3p8).
2527  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2528  assert(PrettyArrayType && "Not an array type!");
2529
2530  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2531
2532  // int x[restrict 4] ->  int *restrict
2533  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2534}
2535
2536QualType ASTContext::getBaseElementType(QualType QT) {
2537  QualifierCollector Qs;
2538  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2539    QT = AT->getElementType();
2540  return Qs.apply(QT);
2541}
2542
2543QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2544  QualType ElemTy = AT->getElementType();
2545
2546  if (const ArrayType *AT = getAsArrayType(ElemTy))
2547    return getBaseElementType(AT);
2548
2549  return ElemTy;
2550}
2551
2552/// getConstantArrayElementCount - Returns number of constant array elements.
2553uint64_t
2554ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2555  uint64_t ElementCount = 1;
2556  do {
2557    ElementCount *= CA->getSize().getZExtValue();
2558    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2559  } while (CA);
2560  return ElementCount;
2561}
2562
2563/// getFloatingRank - Return a relative rank for floating point types.
2564/// This routine will assert if passed a built-in type that isn't a float.
2565static FloatingRank getFloatingRank(QualType T) {
2566  if (const ComplexType *CT = T->getAs<ComplexType>())
2567    return getFloatingRank(CT->getElementType());
2568
2569  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2570  switch (T->getAs<BuiltinType>()->getKind()) {
2571  default: assert(0 && "getFloatingRank(): not a floating type");
2572  case BuiltinType::Float:      return FloatRank;
2573  case BuiltinType::Double:     return DoubleRank;
2574  case BuiltinType::LongDouble: return LongDoubleRank;
2575  }
2576}
2577
2578/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2579/// point or a complex type (based on typeDomain/typeSize).
2580/// 'typeDomain' is a real floating point or complex type.
2581/// 'typeSize' is a real floating point or complex type.
2582QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2583                                                       QualType Domain) const {
2584  FloatingRank EltRank = getFloatingRank(Size);
2585  if (Domain->isComplexType()) {
2586    switch (EltRank) {
2587    default: assert(0 && "getFloatingRank(): illegal value for rank");
2588    case FloatRank:      return FloatComplexTy;
2589    case DoubleRank:     return DoubleComplexTy;
2590    case LongDoubleRank: return LongDoubleComplexTy;
2591    }
2592  }
2593
2594  assert(Domain->isRealFloatingType() && "Unknown domain!");
2595  switch (EltRank) {
2596  default: assert(0 && "getFloatingRank(): illegal value for rank");
2597  case FloatRank:      return FloatTy;
2598  case DoubleRank:     return DoubleTy;
2599  case LongDoubleRank: return LongDoubleTy;
2600  }
2601}
2602
2603/// getFloatingTypeOrder - Compare the rank of the two specified floating
2604/// point types, ignoring the domain of the type (i.e. 'double' ==
2605/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2606/// LHS < RHS, return -1.
2607int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2608  FloatingRank LHSR = getFloatingRank(LHS);
2609  FloatingRank RHSR = getFloatingRank(RHS);
2610
2611  if (LHSR == RHSR)
2612    return 0;
2613  if (LHSR > RHSR)
2614    return 1;
2615  return -1;
2616}
2617
2618/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2619/// routine will assert if passed a built-in type that isn't an integer or enum,
2620/// or if it is not canonicalized.
2621unsigned ASTContext::getIntegerRank(Type *T) {
2622  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2623  if (EnumType* ET = dyn_cast<EnumType>(T))
2624    T = ET->getDecl()->getPromotionType().getTypePtr();
2625
2626  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2627    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2628
2629  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2630    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2631
2632  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2633    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2634
2635  switch (cast<BuiltinType>(T)->getKind()) {
2636  default: assert(0 && "getIntegerRank(): not a built-in integer");
2637  case BuiltinType::Bool:
2638    return 1 + (getIntWidth(BoolTy) << 3);
2639  case BuiltinType::Char_S:
2640  case BuiltinType::Char_U:
2641  case BuiltinType::SChar:
2642  case BuiltinType::UChar:
2643    return 2 + (getIntWidth(CharTy) << 3);
2644  case BuiltinType::Short:
2645  case BuiltinType::UShort:
2646    return 3 + (getIntWidth(ShortTy) << 3);
2647  case BuiltinType::Int:
2648  case BuiltinType::UInt:
2649    return 4 + (getIntWidth(IntTy) << 3);
2650  case BuiltinType::Long:
2651  case BuiltinType::ULong:
2652    return 5 + (getIntWidth(LongTy) << 3);
2653  case BuiltinType::LongLong:
2654  case BuiltinType::ULongLong:
2655    return 6 + (getIntWidth(LongLongTy) << 3);
2656  case BuiltinType::Int128:
2657  case BuiltinType::UInt128:
2658    return 7 + (getIntWidth(Int128Ty) << 3);
2659  }
2660}
2661
2662/// \brief Whether this is a promotable bitfield reference according
2663/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2664///
2665/// \returns the type this bit-field will promote to, or NULL if no
2666/// promotion occurs.
2667QualType ASTContext::isPromotableBitField(Expr *E) {
2668  if (E->isTypeDependent() || E->isValueDependent())
2669    return QualType();
2670
2671  FieldDecl *Field = E->getBitField();
2672  if (!Field)
2673    return QualType();
2674
2675  QualType FT = Field->getType();
2676
2677  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2678  uint64_t BitWidth = BitWidthAP.getZExtValue();
2679  uint64_t IntSize = getTypeSize(IntTy);
2680  // GCC extension compatibility: if the bit-field size is less than or equal
2681  // to the size of int, it gets promoted no matter what its type is.
2682  // For instance, unsigned long bf : 4 gets promoted to signed int.
2683  if (BitWidth < IntSize)
2684    return IntTy;
2685
2686  if (BitWidth == IntSize)
2687    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2688
2689  // Types bigger than int are not subject to promotions, and therefore act
2690  // like the base type.
2691  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2692  // is ridiculous.
2693  return QualType();
2694}
2695
2696/// getPromotedIntegerType - Returns the type that Promotable will
2697/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2698/// integer type.
2699QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2700  assert(!Promotable.isNull());
2701  assert(Promotable->isPromotableIntegerType());
2702  if (const EnumType *ET = Promotable->getAs<EnumType>())
2703    return ET->getDecl()->getPromotionType();
2704  if (Promotable->isSignedIntegerType())
2705    return IntTy;
2706  uint64_t PromotableSize = getTypeSize(Promotable);
2707  uint64_t IntSize = getTypeSize(IntTy);
2708  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2709  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2710}
2711
2712/// getIntegerTypeOrder - Returns the highest ranked integer type:
2713/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2714/// LHS < RHS, return -1.
2715int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2716  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2717  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2718  if (LHSC == RHSC) return 0;
2719
2720  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2721  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2722
2723  unsigned LHSRank = getIntegerRank(LHSC);
2724  unsigned RHSRank = getIntegerRank(RHSC);
2725
2726  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2727    if (LHSRank == RHSRank) return 0;
2728    return LHSRank > RHSRank ? 1 : -1;
2729  }
2730
2731  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2732  if (LHSUnsigned) {
2733    // If the unsigned [LHS] type is larger, return it.
2734    if (LHSRank >= RHSRank)
2735      return 1;
2736
2737    // If the signed type can represent all values of the unsigned type, it
2738    // wins.  Because we are dealing with 2's complement and types that are
2739    // powers of two larger than each other, this is always safe.
2740    return -1;
2741  }
2742
2743  // If the unsigned [RHS] type is larger, return it.
2744  if (RHSRank >= LHSRank)
2745    return -1;
2746
2747  // If the signed type can represent all values of the unsigned type, it
2748  // wins.  Because we are dealing with 2's complement and types that are
2749  // powers of two larger than each other, this is always safe.
2750  return 1;
2751}
2752
2753static RecordDecl *
2754CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2755                 SourceLocation L, IdentifierInfo *Id) {
2756  if (Ctx.getLangOptions().CPlusPlus)
2757    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2758  else
2759    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2760}
2761
2762// getCFConstantStringType - Return the type used for constant CFStrings.
2763QualType ASTContext::getCFConstantStringType() {
2764  if (!CFConstantStringTypeDecl) {
2765    CFConstantStringTypeDecl =
2766      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2767                       &Idents.get("NSConstantString"));
2768    CFConstantStringTypeDecl->startDefinition();
2769
2770    QualType FieldTypes[4];
2771
2772    // const int *isa;
2773    FieldTypes[0] = getPointerType(IntTy.withConst());
2774    // int flags;
2775    FieldTypes[1] = IntTy;
2776    // const char *str;
2777    FieldTypes[2] = getPointerType(CharTy.withConst());
2778    // long length;
2779    FieldTypes[3] = LongTy;
2780
2781    // Create fields
2782    for (unsigned i = 0; i < 4; ++i) {
2783      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2784                                           SourceLocation(), 0,
2785                                           FieldTypes[i], /*TInfo=*/0,
2786                                           /*BitWidth=*/0,
2787                                           /*Mutable=*/false);
2788      Field->setAccess(AS_public);
2789      CFConstantStringTypeDecl->addDecl(Field);
2790    }
2791
2792    CFConstantStringTypeDecl->completeDefinition();
2793  }
2794
2795  return getTagDeclType(CFConstantStringTypeDecl);
2796}
2797
2798void ASTContext::setCFConstantStringType(QualType T) {
2799  const RecordType *Rec = T->getAs<RecordType>();
2800  assert(Rec && "Invalid CFConstantStringType");
2801  CFConstantStringTypeDecl = Rec->getDecl();
2802}
2803
2804// getNSConstantStringType - Return the type used for constant NSStrings.
2805QualType ASTContext::getNSConstantStringType() {
2806  if (!NSConstantStringTypeDecl) {
2807    NSConstantStringTypeDecl =
2808    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2809                     &Idents.get("__builtin_NSString"));
2810    NSConstantStringTypeDecl->startDefinition();
2811
2812    QualType FieldTypes[3];
2813
2814    // const int *isa;
2815    FieldTypes[0] = getPointerType(IntTy.withConst());
2816    // const char *str;
2817    FieldTypes[1] = getPointerType(CharTy.withConst());
2818    // unsigned int length;
2819    FieldTypes[2] = UnsignedIntTy;
2820
2821    // Create fields
2822    for (unsigned i = 0; i < 3; ++i) {
2823      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
2824                                           SourceLocation(), 0,
2825                                           FieldTypes[i], /*TInfo=*/0,
2826                                           /*BitWidth=*/0,
2827                                           /*Mutable=*/false);
2828      Field->setAccess(AS_public);
2829      NSConstantStringTypeDecl->addDecl(Field);
2830    }
2831
2832    NSConstantStringTypeDecl->completeDefinition();
2833  }
2834
2835  return getTagDeclType(NSConstantStringTypeDecl);
2836}
2837
2838void ASTContext::setNSConstantStringType(QualType T) {
2839  const RecordType *Rec = T->getAs<RecordType>();
2840  assert(Rec && "Invalid NSConstantStringType");
2841  NSConstantStringTypeDecl = Rec->getDecl();
2842}
2843
2844QualType ASTContext::getObjCFastEnumerationStateType() {
2845  if (!ObjCFastEnumerationStateTypeDecl) {
2846    ObjCFastEnumerationStateTypeDecl =
2847      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2848                       &Idents.get("__objcFastEnumerationState"));
2849    ObjCFastEnumerationStateTypeDecl->startDefinition();
2850
2851    QualType FieldTypes[] = {
2852      UnsignedLongTy,
2853      getPointerType(ObjCIdTypedefType),
2854      getPointerType(UnsignedLongTy),
2855      getConstantArrayType(UnsignedLongTy,
2856                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2857    };
2858
2859    for (size_t i = 0; i < 4; ++i) {
2860      FieldDecl *Field = FieldDecl::Create(*this,
2861                                           ObjCFastEnumerationStateTypeDecl,
2862                                           SourceLocation(), 0,
2863                                           FieldTypes[i], /*TInfo=*/0,
2864                                           /*BitWidth=*/0,
2865                                           /*Mutable=*/false);
2866      Field->setAccess(AS_public);
2867      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2868    }
2869    if (getLangOptions().CPlusPlus)
2870      if (CXXRecordDecl *CXXRD =
2871            dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
2872        CXXRD->setEmpty(false);
2873
2874    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2875  }
2876
2877  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2878}
2879
2880QualType ASTContext::getBlockDescriptorType() {
2881  if (BlockDescriptorType)
2882    return getTagDeclType(BlockDescriptorType);
2883
2884  RecordDecl *T;
2885  // FIXME: Needs the FlagAppleBlock bit.
2886  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2887                       &Idents.get("__block_descriptor"));
2888  T->startDefinition();
2889
2890  QualType FieldTypes[] = {
2891    UnsignedLongTy,
2892    UnsignedLongTy,
2893  };
2894
2895  const char *FieldNames[] = {
2896    "reserved",
2897    "Size"
2898  };
2899
2900  for (size_t i = 0; i < 2; ++i) {
2901    FieldDecl *Field = FieldDecl::Create(*this,
2902                                         T,
2903                                         SourceLocation(),
2904                                         &Idents.get(FieldNames[i]),
2905                                         FieldTypes[i], /*TInfo=*/0,
2906                                         /*BitWidth=*/0,
2907                                         /*Mutable=*/false);
2908    Field->setAccess(AS_public);
2909    T->addDecl(Field);
2910  }
2911
2912  T->completeDefinition();
2913
2914  BlockDescriptorType = T;
2915
2916  return getTagDeclType(BlockDescriptorType);
2917}
2918
2919void ASTContext::setBlockDescriptorType(QualType T) {
2920  const RecordType *Rec = T->getAs<RecordType>();
2921  assert(Rec && "Invalid BlockDescriptorType");
2922  BlockDescriptorType = Rec->getDecl();
2923}
2924
2925QualType ASTContext::getBlockDescriptorExtendedType() {
2926  if (BlockDescriptorExtendedType)
2927    return getTagDeclType(BlockDescriptorExtendedType);
2928
2929  RecordDecl *T;
2930  // FIXME: Needs the FlagAppleBlock bit.
2931  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2932                       &Idents.get("__block_descriptor_withcopydispose"));
2933  T->startDefinition();
2934
2935  QualType FieldTypes[] = {
2936    UnsignedLongTy,
2937    UnsignedLongTy,
2938    getPointerType(VoidPtrTy),
2939    getPointerType(VoidPtrTy)
2940  };
2941
2942  const char *FieldNames[] = {
2943    "reserved",
2944    "Size",
2945    "CopyFuncPtr",
2946    "DestroyFuncPtr"
2947  };
2948
2949  for (size_t i = 0; i < 4; ++i) {
2950    FieldDecl *Field = FieldDecl::Create(*this,
2951                                         T,
2952                                         SourceLocation(),
2953                                         &Idents.get(FieldNames[i]),
2954                                         FieldTypes[i], /*TInfo=*/0,
2955                                         /*BitWidth=*/0,
2956                                         /*Mutable=*/false);
2957    Field->setAccess(AS_public);
2958    T->addDecl(Field);
2959  }
2960
2961  T->completeDefinition();
2962
2963  BlockDescriptorExtendedType = T;
2964
2965  return getTagDeclType(BlockDescriptorExtendedType);
2966}
2967
2968void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2969  const RecordType *Rec = T->getAs<RecordType>();
2970  assert(Rec && "Invalid BlockDescriptorType");
2971  BlockDescriptorExtendedType = Rec->getDecl();
2972}
2973
2974bool ASTContext::BlockRequiresCopying(QualType Ty) {
2975  if (Ty->isBlockPointerType())
2976    return true;
2977  if (isObjCNSObjectType(Ty))
2978    return true;
2979  if (Ty->isObjCObjectPointerType())
2980    return true;
2981  return false;
2982}
2983
2984QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2985  //  type = struct __Block_byref_1_X {
2986  //    void *__isa;
2987  //    struct __Block_byref_1_X *__forwarding;
2988  //    unsigned int __flags;
2989  //    unsigned int __size;
2990  //    void *__copy_helper;		// as needed
2991  //    void *__destroy_help		// as needed
2992  //    int X;
2993  //  } *
2994
2995  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2996
2997  // FIXME: Move up
2998  static unsigned int UniqueBlockByRefTypeID = 0;
2999  llvm::SmallString<36> Name;
3000  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3001                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3002  RecordDecl *T;
3003  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3004                       &Idents.get(Name.str()));
3005  T->startDefinition();
3006  QualType Int32Ty = IntTy;
3007  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3008  QualType FieldTypes[] = {
3009    getPointerType(VoidPtrTy),
3010    getPointerType(getTagDeclType(T)),
3011    Int32Ty,
3012    Int32Ty,
3013    getPointerType(VoidPtrTy),
3014    getPointerType(VoidPtrTy),
3015    Ty
3016  };
3017
3018  const char *FieldNames[] = {
3019    "__isa",
3020    "__forwarding",
3021    "__flags",
3022    "__size",
3023    "__copy_helper",
3024    "__destroy_helper",
3025    DeclName,
3026  };
3027
3028  for (size_t i = 0; i < 7; ++i) {
3029    if (!HasCopyAndDispose && i >=4 && i <= 5)
3030      continue;
3031    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3032                                         &Idents.get(FieldNames[i]),
3033                                         FieldTypes[i], /*TInfo=*/0,
3034                                         /*BitWidth=*/0, /*Mutable=*/false);
3035    Field->setAccess(AS_public);
3036    T->addDecl(Field);
3037  }
3038
3039  T->completeDefinition();
3040
3041  return getPointerType(getTagDeclType(T));
3042}
3043
3044
3045QualType ASTContext::getBlockParmType(
3046  bool BlockHasCopyDispose,
3047  llvm::SmallVectorImpl<const Expr *> &Layout) {
3048
3049  // FIXME: Move up
3050  static unsigned int UniqueBlockParmTypeID = 0;
3051  llvm::SmallString<36> Name;
3052  llvm::raw_svector_ostream(Name) << "__block_literal_"
3053                                  << ++UniqueBlockParmTypeID;
3054  RecordDecl *T;
3055  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3056                       &Idents.get(Name.str()));
3057  T->startDefinition();
3058  QualType FieldTypes[] = {
3059    getPointerType(VoidPtrTy),
3060    IntTy,
3061    IntTy,
3062    getPointerType(VoidPtrTy),
3063    (BlockHasCopyDispose ?
3064     getPointerType(getBlockDescriptorExtendedType()) :
3065     getPointerType(getBlockDescriptorType()))
3066  };
3067
3068  const char *FieldNames[] = {
3069    "__isa",
3070    "__flags",
3071    "__reserved",
3072    "__FuncPtr",
3073    "__descriptor"
3074  };
3075
3076  for (size_t i = 0; i < 5; ++i) {
3077    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3078                                         &Idents.get(FieldNames[i]),
3079                                         FieldTypes[i], /*TInfo=*/0,
3080                                         /*BitWidth=*/0, /*Mutable=*/false);
3081    Field->setAccess(AS_public);
3082    T->addDecl(Field);
3083  }
3084
3085  for (unsigned i = 0; i < Layout.size(); ++i) {
3086    const Expr *E = Layout[i];
3087
3088    QualType FieldType = E->getType();
3089    IdentifierInfo *FieldName = 0;
3090    if (isa<CXXThisExpr>(E)) {
3091      FieldName = &Idents.get("this");
3092    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3093      const ValueDecl *D = BDRE->getDecl();
3094      FieldName = D->getIdentifier();
3095      if (BDRE->isByRef())
3096        FieldType = BuildByRefType(D->getNameAsCString(), FieldType);
3097    } else {
3098      // Padding.
3099      assert(isa<ConstantArrayType>(FieldType) &&
3100             isa<DeclRefExpr>(E) &&
3101             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3102             "doesn't match characteristics of padding decl");
3103    }
3104
3105    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3106                                         FieldName, FieldType, /*TInfo=*/0,
3107                                         /*BitWidth=*/0, /*Mutable=*/false);
3108    Field->setAccess(AS_public);
3109    T->addDecl(Field);
3110  }
3111
3112  T->completeDefinition();
3113
3114  return getPointerType(getTagDeclType(T));
3115}
3116
3117void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3118  const RecordType *Rec = T->getAs<RecordType>();
3119  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3120  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3121}
3122
3123// This returns true if a type has been typedefed to BOOL:
3124// typedef <type> BOOL;
3125static bool isTypeTypedefedAsBOOL(QualType T) {
3126  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3127    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3128      return II->isStr("BOOL");
3129
3130  return false;
3131}
3132
3133/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3134/// purpose.
3135CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3136  CharUnits sz = getTypeSizeInChars(type);
3137
3138  // Make all integer and enum types at least as large as an int
3139  if (sz.isPositive() && type->isIntegralType())
3140    sz = std::max(sz, getTypeSizeInChars(IntTy));
3141  // Treat arrays as pointers, since that's how they're passed in.
3142  else if (type->isArrayType())
3143    sz = getTypeSizeInChars(VoidPtrTy);
3144  return sz;
3145}
3146
3147static inline
3148std::string charUnitsToString(const CharUnits &CU) {
3149  return llvm::itostr(CU.getQuantity());
3150}
3151
3152/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3153/// declaration.
3154void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3155                                             std::string& S) {
3156  const BlockDecl *Decl = Expr->getBlockDecl();
3157  QualType BlockTy =
3158      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3159  // Encode result type.
3160  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3161  // Compute size of all parameters.
3162  // Start with computing size of a pointer in number of bytes.
3163  // FIXME: There might(should) be a better way of doing this computation!
3164  SourceLocation Loc;
3165  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3166  CharUnits ParmOffset = PtrSize;
3167  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3168       E = Decl->param_end(); PI != E; ++PI) {
3169    QualType PType = (*PI)->getType();
3170    CharUnits sz = getObjCEncodingTypeSize(PType);
3171    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3172    ParmOffset += sz;
3173  }
3174  // Size of the argument frame
3175  S += charUnitsToString(ParmOffset);
3176  // Block pointer and offset.
3177  S += "@?0";
3178  ParmOffset = PtrSize;
3179
3180  // Argument types.
3181  ParmOffset = PtrSize;
3182  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3183       Decl->param_end(); PI != E; ++PI) {
3184    ParmVarDecl *PVDecl = *PI;
3185    QualType PType = PVDecl->getOriginalType();
3186    if (const ArrayType *AT =
3187          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3188      // Use array's original type only if it has known number of
3189      // elements.
3190      if (!isa<ConstantArrayType>(AT))
3191        PType = PVDecl->getType();
3192    } else if (PType->isFunctionType())
3193      PType = PVDecl->getType();
3194    getObjCEncodingForType(PType, S);
3195    S += charUnitsToString(ParmOffset);
3196    ParmOffset += getObjCEncodingTypeSize(PType);
3197  }
3198}
3199
3200/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3201/// declaration.
3202void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3203                                              std::string& S) {
3204  // FIXME: This is not very efficient.
3205  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3206  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3207  // Encode result type.
3208  getObjCEncodingForType(Decl->getResultType(), S);
3209  // Compute size of all parameters.
3210  // Start with computing size of a pointer in number of bytes.
3211  // FIXME: There might(should) be a better way of doing this computation!
3212  SourceLocation Loc;
3213  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3214  // The first two arguments (self and _cmd) are pointers; account for
3215  // their size.
3216  CharUnits ParmOffset = 2 * PtrSize;
3217  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3218       E = Decl->sel_param_end(); PI != E; ++PI) {
3219    QualType PType = (*PI)->getType();
3220    CharUnits sz = getObjCEncodingTypeSize(PType);
3221    assert (sz.isPositive() &&
3222        "getObjCEncodingForMethodDecl - Incomplete param type");
3223    ParmOffset += sz;
3224  }
3225  S += charUnitsToString(ParmOffset);
3226  S += "@0:";
3227  S += charUnitsToString(PtrSize);
3228
3229  // Argument types.
3230  ParmOffset = 2 * PtrSize;
3231  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3232       E = Decl->sel_param_end(); PI != E; ++PI) {
3233    ParmVarDecl *PVDecl = *PI;
3234    QualType PType = PVDecl->getOriginalType();
3235    if (const ArrayType *AT =
3236          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3237      // Use array's original type only if it has known number of
3238      // elements.
3239      if (!isa<ConstantArrayType>(AT))
3240        PType = PVDecl->getType();
3241    } else if (PType->isFunctionType())
3242      PType = PVDecl->getType();
3243    // Process argument qualifiers for user supplied arguments; such as,
3244    // 'in', 'inout', etc.
3245    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3246    getObjCEncodingForType(PType, S);
3247    S += charUnitsToString(ParmOffset);
3248    ParmOffset += getObjCEncodingTypeSize(PType);
3249  }
3250}
3251
3252/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3253/// property declaration. If non-NULL, Container must be either an
3254/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3255/// NULL when getting encodings for protocol properties.
3256/// Property attributes are stored as a comma-delimited C string. The simple
3257/// attributes readonly and bycopy are encoded as single characters. The
3258/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3259/// encoded as single characters, followed by an identifier. Property types
3260/// are also encoded as a parametrized attribute. The characters used to encode
3261/// these attributes are defined by the following enumeration:
3262/// @code
3263/// enum PropertyAttributes {
3264/// kPropertyReadOnly = 'R',   // property is read-only.
3265/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3266/// kPropertyByref = '&',  // property is a reference to the value last assigned
3267/// kPropertyDynamic = 'D',    // property is dynamic
3268/// kPropertyGetter = 'G',     // followed by getter selector name
3269/// kPropertySetter = 'S',     // followed by setter selector name
3270/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3271/// kPropertyType = 't'              // followed by old-style type encoding.
3272/// kPropertyWeak = 'W'              // 'weak' property
3273/// kPropertyStrong = 'P'            // property GC'able
3274/// kPropertyNonAtomic = 'N'         // property non-atomic
3275/// };
3276/// @endcode
3277void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3278                                                const Decl *Container,
3279                                                std::string& S) {
3280  // Collect information from the property implementation decl(s).
3281  bool Dynamic = false;
3282  ObjCPropertyImplDecl *SynthesizePID = 0;
3283
3284  // FIXME: Duplicated code due to poor abstraction.
3285  if (Container) {
3286    if (const ObjCCategoryImplDecl *CID =
3287        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3288      for (ObjCCategoryImplDecl::propimpl_iterator
3289             i = CID->propimpl_begin(), e = CID->propimpl_end();
3290           i != e; ++i) {
3291        ObjCPropertyImplDecl *PID = *i;
3292        if (PID->getPropertyDecl() == PD) {
3293          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3294            Dynamic = true;
3295          } else {
3296            SynthesizePID = PID;
3297          }
3298        }
3299      }
3300    } else {
3301      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3302      for (ObjCCategoryImplDecl::propimpl_iterator
3303             i = OID->propimpl_begin(), e = OID->propimpl_end();
3304           i != e; ++i) {
3305        ObjCPropertyImplDecl *PID = *i;
3306        if (PID->getPropertyDecl() == PD) {
3307          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3308            Dynamic = true;
3309          } else {
3310            SynthesizePID = PID;
3311          }
3312        }
3313      }
3314    }
3315  }
3316
3317  // FIXME: This is not very efficient.
3318  S = "T";
3319
3320  // Encode result type.
3321  // GCC has some special rules regarding encoding of properties which
3322  // closely resembles encoding of ivars.
3323  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3324                             true /* outermost type */,
3325                             true /* encoding for property */);
3326
3327  if (PD->isReadOnly()) {
3328    S += ",R";
3329  } else {
3330    switch (PD->getSetterKind()) {
3331    case ObjCPropertyDecl::Assign: break;
3332    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3333    case ObjCPropertyDecl::Retain: S += ",&"; break;
3334    }
3335  }
3336
3337  // It really isn't clear at all what this means, since properties
3338  // are "dynamic by default".
3339  if (Dynamic)
3340    S += ",D";
3341
3342  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3343    S += ",N";
3344
3345  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3346    S += ",G";
3347    S += PD->getGetterName().getAsString();
3348  }
3349
3350  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3351    S += ",S";
3352    S += PD->getSetterName().getAsString();
3353  }
3354
3355  if (SynthesizePID) {
3356    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3357    S += ",V";
3358    S += OID->getNameAsString();
3359  }
3360
3361  // FIXME: OBJCGC: weak & strong
3362}
3363
3364/// getLegacyIntegralTypeEncoding -
3365/// Another legacy compatibility encoding: 32-bit longs are encoded as
3366/// 'l' or 'L' , but not always.  For typedefs, we need to use
3367/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3368///
3369void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3370  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3371    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3372      if (BT->getKind() == BuiltinType::ULong &&
3373          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3374        PointeeTy = UnsignedIntTy;
3375      else
3376        if (BT->getKind() == BuiltinType::Long &&
3377            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3378          PointeeTy = IntTy;
3379    }
3380  }
3381}
3382
3383void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3384                                        const FieldDecl *Field) {
3385  // We follow the behavior of gcc, expanding structures which are
3386  // directly pointed to, and expanding embedded structures. Note that
3387  // these rules are sufficient to prevent recursive encoding of the
3388  // same type.
3389  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3390                             true /* outermost type */);
3391}
3392
3393static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3394    switch (T->getAs<BuiltinType>()->getKind()) {
3395    default: assert(0 && "Unhandled builtin type kind");
3396    case BuiltinType::Void:       return 'v';
3397    case BuiltinType::Bool:       return 'B';
3398    case BuiltinType::Char_U:
3399    case BuiltinType::UChar:      return 'C';
3400    case BuiltinType::UShort:     return 'S';
3401    case BuiltinType::UInt:       return 'I';
3402    case BuiltinType::ULong:
3403        return
3404          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3405    case BuiltinType::UInt128:    return 'T';
3406    case BuiltinType::ULongLong:  return 'Q';
3407    case BuiltinType::Char_S:
3408    case BuiltinType::SChar:      return 'c';
3409    case BuiltinType::Short:      return 's';
3410    case BuiltinType::Int:        return 'i';
3411    case BuiltinType::Long:
3412      return
3413        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3414    case BuiltinType::LongLong:   return 'q';
3415    case BuiltinType::Int128:     return 't';
3416    case BuiltinType::Float:      return 'f';
3417    case BuiltinType::Double:     return 'd';
3418    case BuiltinType::LongDouble: return 'd';
3419    }
3420}
3421
3422static void EncodeBitField(const ASTContext *Context, std::string& S,
3423                           QualType T, const FieldDecl *FD) {
3424  const Expr *E = FD->getBitWidth();
3425  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3426  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3427  S += 'b';
3428  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3429  // The GNU runtime requires more information; bitfields are encoded as b,
3430  // then the offset (in bits) of the first element, then the type of the
3431  // bitfield, then the size in bits.  For example, in this structure:
3432  //
3433  // struct
3434  // {
3435  //    int integer;
3436  //    int flags:2;
3437  // };
3438  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3439  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3440  // information is not especially sensible, but we're stuck with it for
3441  // compatibility with GCC, although providing it breaks anything that
3442  // actually uses runtime introspection and wants to work on both runtimes...
3443  if (!Ctx->getLangOptions().NeXTRuntime) {
3444    const RecordDecl *RD = FD->getParent();
3445    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3446    // FIXME: This same linear search is also used in ExprConstant - it might
3447    // be better if the FieldDecl stored its offset.  We'd be increasing the
3448    // size of the object slightly, but saving some time every time it is used.
3449    unsigned i = 0;
3450    for (RecordDecl::field_iterator Field = RD->field_begin(),
3451                                 FieldEnd = RD->field_end();
3452         Field != FieldEnd; (void)++Field, ++i) {
3453      if (*Field == FD)
3454        break;
3455    }
3456    S += llvm::utostr(RL.getFieldOffset(i));
3457    S += ObjCEncodingForPrimitiveKind(Context, T);
3458  }
3459  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3460  S += llvm::utostr(N);
3461}
3462
3463// FIXME: Use SmallString for accumulating string.
3464void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3465                                            bool ExpandPointedToStructures,
3466                                            bool ExpandStructures,
3467                                            const FieldDecl *FD,
3468                                            bool OutermostType,
3469                                            bool EncodingProperty) {
3470  if (T->getAs<BuiltinType>()) {
3471    if (FD && FD->isBitField())
3472      return EncodeBitField(this, S, T, FD);
3473    S += ObjCEncodingForPrimitiveKind(this, T);
3474    return;
3475  }
3476
3477  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3478    S += 'j';
3479    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3480                               false);
3481    return;
3482  }
3483
3484  // encoding for pointer or r3eference types.
3485  QualType PointeeTy;
3486  if (const PointerType *PT = T->getAs<PointerType>()) {
3487    if (PT->isObjCSelType()) {
3488      S += ':';
3489      return;
3490    }
3491    PointeeTy = PT->getPointeeType();
3492  }
3493  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3494    PointeeTy = RT->getPointeeType();
3495  if (!PointeeTy.isNull()) {
3496    bool isReadOnly = false;
3497    // For historical/compatibility reasons, the read-only qualifier of the
3498    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3499    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3500    // Also, do not emit the 'r' for anything but the outermost type!
3501    if (isa<TypedefType>(T.getTypePtr())) {
3502      if (OutermostType && T.isConstQualified()) {
3503        isReadOnly = true;
3504        S += 'r';
3505      }
3506    } else if (OutermostType) {
3507      QualType P = PointeeTy;
3508      while (P->getAs<PointerType>())
3509        P = P->getAs<PointerType>()->getPointeeType();
3510      if (P.isConstQualified()) {
3511        isReadOnly = true;
3512        S += 'r';
3513      }
3514    }
3515    if (isReadOnly) {
3516      // Another legacy compatibility encoding. Some ObjC qualifier and type
3517      // combinations need to be rearranged.
3518      // Rewrite "in const" from "nr" to "rn"
3519      if (llvm::StringRef(S).endswith("nr"))
3520        S.replace(S.end()-2, S.end(), "rn");
3521    }
3522
3523    if (PointeeTy->isCharType()) {
3524      // char pointer types should be encoded as '*' unless it is a
3525      // type that has been typedef'd to 'BOOL'.
3526      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3527        S += '*';
3528        return;
3529      }
3530    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3531      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3532      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3533        S += '#';
3534        return;
3535      }
3536      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3537      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3538        S += '@';
3539        return;
3540      }
3541      // fall through...
3542    }
3543    S += '^';
3544    getLegacyIntegralTypeEncoding(PointeeTy);
3545
3546    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3547                               NULL);
3548    return;
3549  }
3550
3551  if (const ArrayType *AT =
3552      // Ignore type qualifiers etc.
3553        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3554    if (isa<IncompleteArrayType>(AT)) {
3555      // Incomplete arrays are encoded as a pointer to the array element.
3556      S += '^';
3557
3558      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3559                                 false, ExpandStructures, FD);
3560    } else {
3561      S += '[';
3562
3563      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3564        S += llvm::utostr(CAT->getSize().getZExtValue());
3565      else {
3566        //Variable length arrays are encoded as a regular array with 0 elements.
3567        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3568        S += '0';
3569      }
3570
3571      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3572                                 false, ExpandStructures, FD);
3573      S += ']';
3574    }
3575    return;
3576  }
3577
3578  if (T->getAs<FunctionType>()) {
3579    S += '?';
3580    return;
3581  }
3582
3583  if (const RecordType *RTy = T->getAs<RecordType>()) {
3584    RecordDecl *RDecl = RTy->getDecl();
3585    S += RDecl->isUnion() ? '(' : '{';
3586    // Anonymous structures print as '?'
3587    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3588      S += II->getName();
3589      if (ClassTemplateSpecializationDecl *Spec
3590          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3591        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3592        std::string TemplateArgsStr
3593          = TemplateSpecializationType::PrintTemplateArgumentList(
3594                                            TemplateArgs.getFlatArgumentList(),
3595                                            TemplateArgs.flat_size(),
3596                                            (*this).PrintingPolicy);
3597
3598        S += TemplateArgsStr;
3599      }
3600    } else {
3601      S += '?';
3602    }
3603    if (ExpandStructures) {
3604      S += '=';
3605      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3606                                   FieldEnd = RDecl->field_end();
3607           Field != FieldEnd; ++Field) {
3608        if (FD) {
3609          S += '"';
3610          S += Field->getNameAsString();
3611          S += '"';
3612        }
3613
3614        // Special case bit-fields.
3615        if (Field->isBitField()) {
3616          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3617                                     (*Field));
3618        } else {
3619          QualType qt = Field->getType();
3620          getLegacyIntegralTypeEncoding(qt);
3621          getObjCEncodingForTypeImpl(qt, S, false, true,
3622                                     FD);
3623        }
3624      }
3625    }
3626    S += RDecl->isUnion() ? ')' : '}';
3627    return;
3628  }
3629
3630  if (T->isEnumeralType()) {
3631    if (FD && FD->isBitField())
3632      EncodeBitField(this, S, T, FD);
3633    else
3634      S += 'i';
3635    return;
3636  }
3637
3638  if (T->isBlockPointerType()) {
3639    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3640    return;
3641  }
3642
3643  // Ignore protocol qualifiers when mangling at this level.
3644  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3645    T = OT->getBaseType();
3646
3647  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3648    // @encode(class_name)
3649    ObjCInterfaceDecl *OI = OIT->getDecl();
3650    S += '{';
3651    const IdentifierInfo *II = OI->getIdentifier();
3652    S += II->getName();
3653    S += '=';
3654    llvm::SmallVector<FieldDecl*, 32> RecFields;
3655    CollectObjCIvars(OI, RecFields);
3656    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3657      if (RecFields[i]->isBitField())
3658        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3659                                   RecFields[i]);
3660      else
3661        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3662                                   FD);
3663    }
3664    S += '}';
3665    return;
3666  }
3667
3668  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3669    if (OPT->isObjCIdType()) {
3670      S += '@';
3671      return;
3672    }
3673
3674    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3675      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3676      // Since this is a binary compatibility issue, need to consult with runtime
3677      // folks. Fortunately, this is a *very* obsure construct.
3678      S += '#';
3679      return;
3680    }
3681
3682    if (OPT->isObjCQualifiedIdType()) {
3683      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3684                                 ExpandPointedToStructures,
3685                                 ExpandStructures, FD);
3686      if (FD || EncodingProperty) {
3687        // Note that we do extended encoding of protocol qualifer list
3688        // Only when doing ivar or property encoding.
3689        S += '"';
3690        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3691             E = OPT->qual_end(); I != E; ++I) {
3692          S += '<';
3693          S += (*I)->getNameAsString();
3694          S += '>';
3695        }
3696        S += '"';
3697      }
3698      return;
3699    }
3700
3701    QualType PointeeTy = OPT->getPointeeType();
3702    if (!EncodingProperty &&
3703        isa<TypedefType>(PointeeTy.getTypePtr())) {
3704      // Another historical/compatibility reason.
3705      // We encode the underlying type which comes out as
3706      // {...};
3707      S += '^';
3708      getObjCEncodingForTypeImpl(PointeeTy, S,
3709                                 false, ExpandPointedToStructures,
3710                                 NULL);
3711      return;
3712    }
3713
3714    S += '@';
3715    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3716      S += '"';
3717      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3718      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3719           E = OPT->qual_end(); I != E; ++I) {
3720        S += '<';
3721        S += (*I)->getNameAsString();
3722        S += '>';
3723      }
3724      S += '"';
3725    }
3726    return;
3727  }
3728
3729  // gcc just blithely ignores member pointers.
3730  // TODO: maybe there should be a mangling for these
3731  if (T->getAs<MemberPointerType>())
3732    return;
3733
3734  assert(0 && "@encode for type not implemented!");
3735}
3736
3737void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3738                                                 std::string& S) const {
3739  if (QT & Decl::OBJC_TQ_In)
3740    S += 'n';
3741  if (QT & Decl::OBJC_TQ_Inout)
3742    S += 'N';
3743  if (QT & Decl::OBJC_TQ_Out)
3744    S += 'o';
3745  if (QT & Decl::OBJC_TQ_Bycopy)
3746    S += 'O';
3747  if (QT & Decl::OBJC_TQ_Byref)
3748    S += 'R';
3749  if (QT & Decl::OBJC_TQ_Oneway)
3750    S += 'V';
3751}
3752
3753void ASTContext::setBuiltinVaListType(QualType T) {
3754  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3755
3756  BuiltinVaListType = T;
3757}
3758
3759void ASTContext::setObjCIdType(QualType T) {
3760  ObjCIdTypedefType = T;
3761}
3762
3763void ASTContext::setObjCSelType(QualType T) {
3764  ObjCSelTypedefType = T;
3765}
3766
3767void ASTContext::setObjCProtoType(QualType QT) {
3768  ObjCProtoType = QT;
3769}
3770
3771void ASTContext::setObjCClassType(QualType T) {
3772  ObjCClassTypedefType = T;
3773}
3774
3775void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3776  assert(ObjCConstantStringType.isNull() &&
3777         "'NSConstantString' type already set!");
3778
3779  ObjCConstantStringType = getObjCInterfaceType(Decl);
3780}
3781
3782/// \brief Retrieve the template name that corresponds to a non-empty
3783/// lookup.
3784TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3785                                                   UnresolvedSetIterator End) {
3786  unsigned size = End - Begin;
3787  assert(size > 1 && "set is not overloaded!");
3788
3789  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3790                          size * sizeof(FunctionTemplateDecl*));
3791  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3792
3793  NamedDecl **Storage = OT->getStorage();
3794  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3795    NamedDecl *D = *I;
3796    assert(isa<FunctionTemplateDecl>(D) ||
3797           (isa<UsingShadowDecl>(D) &&
3798            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3799    *Storage++ = D;
3800  }
3801
3802  return TemplateName(OT);
3803}
3804
3805/// \brief Retrieve the template name that represents a qualified
3806/// template name such as \c std::vector.
3807TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3808                                                  bool TemplateKeyword,
3809                                                  TemplateDecl *Template) {
3810  // FIXME: Canonicalization?
3811  llvm::FoldingSetNodeID ID;
3812  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3813
3814  void *InsertPos = 0;
3815  QualifiedTemplateName *QTN =
3816    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3817  if (!QTN) {
3818    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3819    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3820  }
3821
3822  return TemplateName(QTN);
3823}
3824
3825/// \brief Retrieve the template name that represents a dependent
3826/// template name such as \c MetaFun::template apply.
3827TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3828                                                  const IdentifierInfo *Name) {
3829  assert((!NNS || NNS->isDependent()) &&
3830         "Nested name specifier must be dependent");
3831
3832  llvm::FoldingSetNodeID ID;
3833  DependentTemplateName::Profile(ID, NNS, Name);
3834
3835  void *InsertPos = 0;
3836  DependentTemplateName *QTN =
3837    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3838
3839  if (QTN)
3840    return TemplateName(QTN);
3841
3842  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3843  if (CanonNNS == NNS) {
3844    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3845  } else {
3846    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3847    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3848    DependentTemplateName *CheckQTN =
3849      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3850    assert(!CheckQTN && "Dependent type name canonicalization broken");
3851    (void)CheckQTN;
3852  }
3853
3854  DependentTemplateNames.InsertNode(QTN, InsertPos);
3855  return TemplateName(QTN);
3856}
3857
3858/// \brief Retrieve the template name that represents a dependent
3859/// template name such as \c MetaFun::template operator+.
3860TemplateName
3861ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3862                                     OverloadedOperatorKind Operator) {
3863  assert((!NNS || NNS->isDependent()) &&
3864         "Nested name specifier must be dependent");
3865
3866  llvm::FoldingSetNodeID ID;
3867  DependentTemplateName::Profile(ID, NNS, Operator);
3868
3869  void *InsertPos = 0;
3870  DependentTemplateName *QTN
3871    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3872
3873  if (QTN)
3874    return TemplateName(QTN);
3875
3876  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3877  if (CanonNNS == NNS) {
3878    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3879  } else {
3880    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3881    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3882
3883    DependentTemplateName *CheckQTN
3884      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3885    assert(!CheckQTN && "Dependent template name canonicalization broken");
3886    (void)CheckQTN;
3887  }
3888
3889  DependentTemplateNames.InsertNode(QTN, InsertPos);
3890  return TemplateName(QTN);
3891}
3892
3893/// getFromTargetType - Given one of the integer types provided by
3894/// TargetInfo, produce the corresponding type. The unsigned @p Type
3895/// is actually a value of type @c TargetInfo::IntType.
3896CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3897  switch (Type) {
3898  case TargetInfo::NoInt: return CanQualType();
3899  case TargetInfo::SignedShort: return ShortTy;
3900  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3901  case TargetInfo::SignedInt: return IntTy;
3902  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3903  case TargetInfo::SignedLong: return LongTy;
3904  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3905  case TargetInfo::SignedLongLong: return LongLongTy;
3906  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3907  }
3908
3909  assert(false && "Unhandled TargetInfo::IntType value");
3910  return CanQualType();
3911}
3912
3913//===----------------------------------------------------------------------===//
3914//                        Type Predicates.
3915//===----------------------------------------------------------------------===//
3916
3917/// isObjCNSObjectType - Return true if this is an NSObject object using
3918/// NSObject attribute on a c-style pointer type.
3919/// FIXME - Make it work directly on types.
3920/// FIXME: Move to Type.
3921///
3922bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3923  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3924    if (TypedefDecl *TD = TDT->getDecl())
3925      if (TD->getAttr<ObjCNSObjectAttr>())
3926        return true;
3927  }
3928  return false;
3929}
3930
3931/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3932/// garbage collection attribute.
3933///
3934Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3935  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3936  if (getLangOptions().ObjC1 &&
3937      getLangOptions().getGCMode() != LangOptions::NonGC) {
3938    GCAttrs = Ty.getObjCGCAttr();
3939    // Default behavious under objective-c's gc is for objective-c pointers
3940    // (or pointers to them) be treated as though they were declared
3941    // as __strong.
3942    if (GCAttrs == Qualifiers::GCNone) {
3943      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3944        GCAttrs = Qualifiers::Strong;
3945      else if (Ty->isPointerType())
3946        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3947    }
3948    // Non-pointers have none gc'able attribute regardless of the attribute
3949    // set on them.
3950    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3951      return Qualifiers::GCNone;
3952  }
3953  return GCAttrs;
3954}
3955
3956//===----------------------------------------------------------------------===//
3957//                        Type Compatibility Testing
3958//===----------------------------------------------------------------------===//
3959
3960/// areCompatVectorTypes - Return true if the two specified vector types are
3961/// compatible.
3962static bool areCompatVectorTypes(const VectorType *LHS,
3963                                 const VectorType *RHS) {
3964  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3965  return LHS->getElementType() == RHS->getElementType() &&
3966         LHS->getNumElements() == RHS->getNumElements();
3967}
3968
3969//===----------------------------------------------------------------------===//
3970// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3971//===----------------------------------------------------------------------===//
3972
3973/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3974/// inheritance hierarchy of 'rProto'.
3975bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3976                                                ObjCProtocolDecl *rProto) {
3977  if (lProto == rProto)
3978    return true;
3979  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3980       E = rProto->protocol_end(); PI != E; ++PI)
3981    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3982      return true;
3983  return false;
3984}
3985
3986/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3987/// return true if lhs's protocols conform to rhs's protocol; false
3988/// otherwise.
3989bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3990  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3991    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3992  return false;
3993}
3994
3995/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3996/// ObjCQualifiedIDType.
3997bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3998                                                   bool compare) {
3999  // Allow id<P..> and an 'id' or void* type in all cases.
4000  if (lhs->isVoidPointerType() ||
4001      lhs->isObjCIdType() || lhs->isObjCClassType())
4002    return true;
4003  else if (rhs->isVoidPointerType() ||
4004           rhs->isObjCIdType() || rhs->isObjCClassType())
4005    return true;
4006
4007  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4008    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4009
4010    if (!rhsOPT) return false;
4011
4012    if (rhsOPT->qual_empty()) {
4013      // If the RHS is a unqualified interface pointer "NSString*",
4014      // make sure we check the class hierarchy.
4015      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4016        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4017             E = lhsQID->qual_end(); I != E; ++I) {
4018          // when comparing an id<P> on lhs with a static type on rhs,
4019          // see if static class implements all of id's protocols, directly or
4020          // through its super class and categories.
4021          if (!rhsID->ClassImplementsProtocol(*I, true))
4022            return false;
4023        }
4024      }
4025      // If there are no qualifiers and no interface, we have an 'id'.
4026      return true;
4027    }
4028    // Both the right and left sides have qualifiers.
4029    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4030         E = lhsQID->qual_end(); I != E; ++I) {
4031      ObjCProtocolDecl *lhsProto = *I;
4032      bool match = false;
4033
4034      // when comparing an id<P> on lhs with a static type on rhs,
4035      // see if static class implements all of id's protocols, directly or
4036      // through its super class and categories.
4037      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4038           E = rhsOPT->qual_end(); J != E; ++J) {
4039        ObjCProtocolDecl *rhsProto = *J;
4040        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4041            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4042          match = true;
4043          break;
4044        }
4045      }
4046      // If the RHS is a qualified interface pointer "NSString<P>*",
4047      // make sure we check the class hierarchy.
4048      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4049        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4050             E = lhsQID->qual_end(); I != E; ++I) {
4051          // when comparing an id<P> on lhs with a static type on rhs,
4052          // see if static class implements all of id's protocols, directly or
4053          // through its super class and categories.
4054          if (rhsID->ClassImplementsProtocol(*I, true)) {
4055            match = true;
4056            break;
4057          }
4058        }
4059      }
4060      if (!match)
4061        return false;
4062    }
4063
4064    return true;
4065  }
4066
4067  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4068  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4069
4070  if (const ObjCObjectPointerType *lhsOPT =
4071        lhs->getAsObjCInterfacePointerType()) {
4072    if (lhsOPT->qual_empty()) {
4073      bool match = false;
4074      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4075        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4076             E = rhsQID->qual_end(); I != E; ++I) {
4077          // when comparing an id<P> on lhs with a static type on rhs,
4078          // see if static class implements all of id's protocols, directly or
4079          // through its super class and categories.
4080          if (lhsID->ClassImplementsProtocol(*I, true)) {
4081            match = true;
4082            break;
4083          }
4084        }
4085        if (!match)
4086          return false;
4087      }
4088      return true;
4089    }
4090    // Both the right and left sides have qualifiers.
4091    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4092         E = lhsOPT->qual_end(); I != E; ++I) {
4093      ObjCProtocolDecl *lhsProto = *I;
4094      bool match = false;
4095
4096      // when comparing an id<P> on lhs with a static type on rhs,
4097      // see if static class implements all of id's protocols, directly or
4098      // through its super class and categories.
4099      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4100           E = rhsQID->qual_end(); J != E; ++J) {
4101        ObjCProtocolDecl *rhsProto = *J;
4102        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4103            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4104          match = true;
4105          break;
4106        }
4107      }
4108      if (!match)
4109        return false;
4110    }
4111    return true;
4112  }
4113  return false;
4114}
4115
4116/// canAssignObjCInterfaces - Return true if the two interface types are
4117/// compatible for assignment from RHS to LHS.  This handles validation of any
4118/// protocol qualifiers on the LHS or RHS.
4119///
4120bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4121                                         const ObjCObjectPointerType *RHSOPT) {
4122  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4123  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4124
4125  // If either type represents the built-in 'id' or 'Class' types, return true.
4126  if (LHS->isObjCUnqualifiedIdOrClass() ||
4127      RHS->isObjCUnqualifiedIdOrClass())
4128    return true;
4129
4130  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4131    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4132                                             QualType(RHSOPT,0),
4133                                             false);
4134
4135  // If we have 2 user-defined types, fall into that path.
4136  if (LHS->getInterface() && RHS->getInterface())
4137    return canAssignObjCInterfaces(LHS, RHS);
4138
4139  return false;
4140}
4141
4142/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4143/// for providing type-safty for objective-c pointers used to pass/return
4144/// arguments in block literals. When passed as arguments, passing 'A*' where
4145/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4146/// not OK. For the return type, the opposite is not OK.
4147bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4148                                         const ObjCObjectPointerType *LHSOPT,
4149                                         const ObjCObjectPointerType *RHSOPT) {
4150  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4151    return true;
4152
4153  if (LHSOPT->isObjCBuiltinType()) {
4154    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4155  }
4156
4157  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4158    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4159                                             QualType(RHSOPT,0),
4160                                             false);
4161
4162  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4163  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4164  if (LHS && RHS)  { // We have 2 user-defined types.
4165    if (LHS != RHS) {
4166      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4167        return false;
4168      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4169        return true;
4170    }
4171    else
4172      return true;
4173  }
4174  return false;
4175}
4176
4177/// getIntersectionOfProtocols - This routine finds the intersection of set
4178/// of protocols inherited from two distinct objective-c pointer objects.
4179/// It is used to build composite qualifier list of the composite type of
4180/// the conditional expression involving two objective-c pointer objects.
4181static
4182void getIntersectionOfProtocols(ASTContext &Context,
4183                                const ObjCObjectPointerType *LHSOPT,
4184                                const ObjCObjectPointerType *RHSOPT,
4185      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4186
4187  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4188  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4189  assert(LHS->getInterface() && "LHS must have an interface base");
4190  assert(RHS->getInterface() && "RHS must have an interface base");
4191
4192  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4193  unsigned LHSNumProtocols = LHS->getNumProtocols();
4194  if (LHSNumProtocols > 0)
4195    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4196  else {
4197    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4198    Context.CollectInheritedProtocols(LHS->getInterface(),
4199                                      LHSInheritedProtocols);
4200    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4201                                LHSInheritedProtocols.end());
4202  }
4203
4204  unsigned RHSNumProtocols = RHS->getNumProtocols();
4205  if (RHSNumProtocols > 0) {
4206    ObjCProtocolDecl **RHSProtocols =
4207      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4208    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4209      if (InheritedProtocolSet.count(RHSProtocols[i]))
4210        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4211  }
4212  else {
4213    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4214    Context.CollectInheritedProtocols(RHS->getInterface(),
4215                                      RHSInheritedProtocols);
4216    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4217         RHSInheritedProtocols.begin(),
4218         E = RHSInheritedProtocols.end(); I != E; ++I)
4219      if (InheritedProtocolSet.count((*I)))
4220        IntersectionOfProtocols.push_back((*I));
4221  }
4222}
4223
4224/// areCommonBaseCompatible - Returns common base class of the two classes if
4225/// one found. Note that this is O'2 algorithm. But it will be called as the
4226/// last type comparison in a ?-exp of ObjC pointer types before a
4227/// warning is issued. So, its invokation is extremely rare.
4228QualType ASTContext::areCommonBaseCompatible(
4229                                          const ObjCObjectPointerType *Lptr,
4230                                          const ObjCObjectPointerType *Rptr) {
4231  const ObjCObjectType *LHS = Lptr->getObjectType();
4232  const ObjCObjectType *RHS = Rptr->getObjectType();
4233  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4234  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4235  if (!LDecl || !RDecl)
4236    return QualType();
4237
4238  while ((LDecl = LDecl->getSuperClass())) {
4239    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4240    if (canAssignObjCInterfaces(LHS, RHS)) {
4241      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4242      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4243
4244      QualType Result = QualType(LHS, 0);
4245      if (!Protocols.empty())
4246        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4247      Result = getObjCObjectPointerType(Result);
4248      return Result;
4249    }
4250  }
4251
4252  return QualType();
4253}
4254
4255bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4256                                         const ObjCObjectType *RHS) {
4257  assert(LHS->getInterface() && "LHS is not an interface type");
4258  assert(RHS->getInterface() && "RHS is not an interface type");
4259
4260  // Verify that the base decls are compatible: the RHS must be a subclass of
4261  // the LHS.
4262  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4263    return false;
4264
4265  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4266  // protocol qualified at all, then we are good.
4267  if (LHS->getNumProtocols() == 0)
4268    return true;
4269
4270  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4271  // isn't a superset.
4272  if (RHS->getNumProtocols() == 0)
4273    return true;  // FIXME: should return false!
4274
4275  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4276                                     LHSPE = LHS->qual_end();
4277       LHSPI != LHSPE; LHSPI++) {
4278    bool RHSImplementsProtocol = false;
4279
4280    // If the RHS doesn't implement the protocol on the left, the types
4281    // are incompatible.
4282    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4283                                       RHSPE = RHS->qual_end();
4284         RHSPI != RHSPE; RHSPI++) {
4285      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4286        RHSImplementsProtocol = true;
4287        break;
4288      }
4289    }
4290    // FIXME: For better diagnostics, consider passing back the protocol name.
4291    if (!RHSImplementsProtocol)
4292      return false;
4293  }
4294  // The RHS implements all protocols listed on the LHS.
4295  return true;
4296}
4297
4298bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4299  // get the "pointed to" types
4300  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4301  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4302
4303  if (!LHSOPT || !RHSOPT)
4304    return false;
4305
4306  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4307         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4308}
4309
4310/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4311/// both shall have the identically qualified version of a compatible type.
4312/// C99 6.2.7p1: Two types have compatible types if their types are the
4313/// same. See 6.7.[2,3,5] for additional rules.
4314bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4315  if (getLangOptions().CPlusPlus)
4316    return hasSameType(LHS, RHS);
4317
4318  return !mergeTypes(LHS, RHS).isNull();
4319}
4320
4321bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4322  return !mergeTypes(LHS, RHS, true).isNull();
4323}
4324
4325QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4326                                        bool OfBlockPointer) {
4327  const FunctionType *lbase = lhs->getAs<FunctionType>();
4328  const FunctionType *rbase = rhs->getAs<FunctionType>();
4329  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4330  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4331  bool allLTypes = true;
4332  bool allRTypes = true;
4333
4334  // Check return type
4335  QualType retType;
4336  if (OfBlockPointer)
4337    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true);
4338  else
4339   retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4340  if (retType.isNull()) return QualType();
4341  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4342    allLTypes = false;
4343  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4344    allRTypes = false;
4345  // FIXME: double check this
4346  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4347  //                           rbase->getRegParmAttr() != 0 &&
4348  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4349  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4350  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4351  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4352      lbaseInfo.getRegParm();
4353  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4354  if (NoReturn != lbaseInfo.getNoReturn() ||
4355      RegParm != lbaseInfo.getRegParm())
4356    allLTypes = false;
4357  if (NoReturn != rbaseInfo.getNoReturn() ||
4358      RegParm != rbaseInfo.getRegParm())
4359    allRTypes = false;
4360  CallingConv lcc = lbaseInfo.getCC();
4361  CallingConv rcc = rbaseInfo.getCC();
4362  // Compatible functions must have compatible calling conventions
4363  if (!isSameCallConv(lcc, rcc))
4364    return QualType();
4365
4366  if (lproto && rproto) { // two C99 style function prototypes
4367    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4368           "C++ shouldn't be here");
4369    unsigned lproto_nargs = lproto->getNumArgs();
4370    unsigned rproto_nargs = rproto->getNumArgs();
4371
4372    // Compatible functions must have the same number of arguments
4373    if (lproto_nargs != rproto_nargs)
4374      return QualType();
4375
4376    // Variadic and non-variadic functions aren't compatible
4377    if (lproto->isVariadic() != rproto->isVariadic())
4378      return QualType();
4379
4380    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4381      return QualType();
4382
4383    // Check argument compatibility
4384    llvm::SmallVector<QualType, 10> types;
4385    for (unsigned i = 0; i < lproto_nargs; i++) {
4386      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4387      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4388      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer);
4389      if (argtype.isNull()) return QualType();
4390      types.push_back(argtype);
4391      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4392        allLTypes = false;
4393      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4394        allRTypes = false;
4395    }
4396    if (allLTypes) return lhs;
4397    if (allRTypes) return rhs;
4398    return getFunctionType(retType, types.begin(), types.size(),
4399                           lproto->isVariadic(), lproto->getTypeQuals(),
4400                           false, false, 0, 0,
4401                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4402  }
4403
4404  if (lproto) allRTypes = false;
4405  if (rproto) allLTypes = false;
4406
4407  const FunctionProtoType *proto = lproto ? lproto : rproto;
4408  if (proto) {
4409    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4410    if (proto->isVariadic()) return QualType();
4411    // Check that the types are compatible with the types that
4412    // would result from default argument promotions (C99 6.7.5.3p15).
4413    // The only types actually affected are promotable integer
4414    // types and floats, which would be passed as a different
4415    // type depending on whether the prototype is visible.
4416    unsigned proto_nargs = proto->getNumArgs();
4417    for (unsigned i = 0; i < proto_nargs; ++i) {
4418      QualType argTy = proto->getArgType(i);
4419
4420      // Look at the promotion type of enum types, since that is the type used
4421      // to pass enum values.
4422      if (const EnumType *Enum = argTy->getAs<EnumType>())
4423        argTy = Enum->getDecl()->getPromotionType();
4424
4425      if (argTy->isPromotableIntegerType() ||
4426          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4427        return QualType();
4428    }
4429
4430    if (allLTypes) return lhs;
4431    if (allRTypes) return rhs;
4432    return getFunctionType(retType, proto->arg_type_begin(),
4433                           proto->getNumArgs(), proto->isVariadic(),
4434                           proto->getTypeQuals(),
4435                           false, false, 0, 0,
4436                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4437  }
4438
4439  if (allLTypes) return lhs;
4440  if (allRTypes) return rhs;
4441  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4442  return getFunctionNoProtoType(retType, Info);
4443}
4444
4445QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4446                                bool OfBlockPointer) {
4447  // C++ [expr]: If an expression initially has the type "reference to T", the
4448  // type is adjusted to "T" prior to any further analysis, the expression
4449  // designates the object or function denoted by the reference, and the
4450  // expression is an lvalue unless the reference is an rvalue reference and
4451  // the expression is a function call (possibly inside parentheses).
4452  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4453  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4454
4455  QualType LHSCan = getCanonicalType(LHS),
4456           RHSCan = getCanonicalType(RHS);
4457
4458  // If two types are identical, they are compatible.
4459  if (LHSCan == RHSCan)
4460    return LHS;
4461
4462  // If the qualifiers are different, the types aren't compatible... mostly.
4463  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4464  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4465  if (LQuals != RQuals) {
4466    // If any of these qualifiers are different, we have a type
4467    // mismatch.
4468    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4469        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4470      return QualType();
4471
4472    // Exactly one GC qualifier difference is allowed: __strong is
4473    // okay if the other type has no GC qualifier but is an Objective
4474    // C object pointer (i.e. implicitly strong by default).  We fix
4475    // this by pretending that the unqualified type was actually
4476    // qualified __strong.
4477    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4478    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4479    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4480
4481    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4482      return QualType();
4483
4484    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4485      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4486    }
4487    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4488      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4489    }
4490    return QualType();
4491  }
4492
4493  // Okay, qualifiers are equal.
4494
4495  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4496  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4497
4498  // We want to consider the two function types to be the same for these
4499  // comparisons, just force one to the other.
4500  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4501  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4502
4503  // Same as above for arrays
4504  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4505    LHSClass = Type::ConstantArray;
4506  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4507    RHSClass = Type::ConstantArray;
4508
4509  // ObjCInterfaces are just specialized ObjCObjects.
4510  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4511  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4512
4513  // Canonicalize ExtVector -> Vector.
4514  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4515  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4516
4517  // If the canonical type classes don't match.
4518  if (LHSClass != RHSClass) {
4519    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4520    // a signed integer type, or an unsigned integer type.
4521    // Compatibility is based on the underlying type, not the promotion
4522    // type.
4523    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4524      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4525        return RHS;
4526    }
4527    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4528      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4529        return LHS;
4530    }
4531
4532    return QualType();
4533  }
4534
4535  // The canonical type classes match.
4536  switch (LHSClass) {
4537#define TYPE(Class, Base)
4538#define ABSTRACT_TYPE(Class, Base)
4539#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4540#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4541#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4542#include "clang/AST/TypeNodes.def"
4543    assert(false && "Non-canonical and dependent types shouldn't get here");
4544    return QualType();
4545
4546  case Type::LValueReference:
4547  case Type::RValueReference:
4548  case Type::MemberPointer:
4549    assert(false && "C++ should never be in mergeTypes");
4550    return QualType();
4551
4552  case Type::ObjCInterface:
4553  case Type::IncompleteArray:
4554  case Type::VariableArray:
4555  case Type::FunctionProto:
4556  case Type::ExtVector:
4557    assert(false && "Types are eliminated above");
4558    return QualType();
4559
4560  case Type::Pointer:
4561  {
4562    // Merge two pointer types, while trying to preserve typedef info
4563    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4564    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4565    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4566    if (ResultType.isNull()) return QualType();
4567    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4568      return LHS;
4569    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4570      return RHS;
4571    return getPointerType(ResultType);
4572  }
4573  case Type::BlockPointer:
4574  {
4575    // Merge two block pointer types, while trying to preserve typedef info
4576    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4577    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4578    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer);
4579    if (ResultType.isNull()) return QualType();
4580    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4581      return LHS;
4582    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4583      return RHS;
4584    return getBlockPointerType(ResultType);
4585  }
4586  case Type::ConstantArray:
4587  {
4588    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4589    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4590    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4591      return QualType();
4592
4593    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4594    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4595    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4596    if (ResultType.isNull()) return QualType();
4597    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4598      return LHS;
4599    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4600      return RHS;
4601    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4602                                          ArrayType::ArraySizeModifier(), 0);
4603    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4604                                          ArrayType::ArraySizeModifier(), 0);
4605    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4606    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4607    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4608      return LHS;
4609    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4610      return RHS;
4611    if (LVAT) {
4612      // FIXME: This isn't correct! But tricky to implement because
4613      // the array's size has to be the size of LHS, but the type
4614      // has to be different.
4615      return LHS;
4616    }
4617    if (RVAT) {
4618      // FIXME: This isn't correct! But tricky to implement because
4619      // the array's size has to be the size of RHS, but the type
4620      // has to be different.
4621      return RHS;
4622    }
4623    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4624    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4625    return getIncompleteArrayType(ResultType,
4626                                  ArrayType::ArraySizeModifier(), 0);
4627  }
4628  case Type::FunctionNoProto:
4629    return mergeFunctionTypes(LHS, RHS, OfBlockPointer);
4630  case Type::Record:
4631  case Type::Enum:
4632    return QualType();
4633  case Type::Builtin:
4634    // Only exactly equal builtin types are compatible, which is tested above.
4635    return QualType();
4636  case Type::Complex:
4637    // Distinct complex types are incompatible.
4638    return QualType();
4639  case Type::Vector:
4640    // FIXME: The merged type should be an ExtVector!
4641    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4642                             RHSCan->getAs<VectorType>()))
4643      return LHS;
4644    return QualType();
4645  case Type::ObjCObject: {
4646    // Check if the types are assignment compatible.
4647    // FIXME: This should be type compatibility, e.g. whether
4648    // "LHS x; RHS x;" at global scope is legal.
4649    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
4650    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
4651    if (canAssignObjCInterfaces(LHSIface, RHSIface))
4652      return LHS;
4653
4654    return QualType();
4655  }
4656  case Type::ObjCObjectPointer: {
4657    if (OfBlockPointer) {
4658      if (canAssignObjCInterfacesInBlockPointer(
4659                                          LHS->getAs<ObjCObjectPointerType>(),
4660                                          RHS->getAs<ObjCObjectPointerType>()))
4661      return LHS;
4662      return QualType();
4663    }
4664    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4665                                RHS->getAs<ObjCObjectPointerType>()))
4666      return LHS;
4667
4668    return QualType();
4669    }
4670  }
4671
4672  return QualType();
4673}
4674
4675/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
4676/// 'RHS' attributes and returns the merged version; including for function
4677/// return types.
4678QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
4679  QualType LHSCan = getCanonicalType(LHS),
4680  RHSCan = getCanonicalType(RHS);
4681  // If two types are identical, they are compatible.
4682  if (LHSCan == RHSCan)
4683    return LHS;
4684  if (RHSCan->isFunctionType()) {
4685    if (!LHSCan->isFunctionType())
4686      return QualType();
4687    QualType OldReturnType =
4688      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
4689    QualType NewReturnType =
4690      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
4691    QualType ResReturnType =
4692      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
4693    if (ResReturnType.isNull())
4694      return QualType();
4695    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
4696      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
4697      // In either case, use OldReturnType to build the new function type.
4698      const FunctionType *F = LHS->getAs<FunctionType>();
4699      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
4700        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
4701        QualType ResultType
4702          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
4703                                  FPT->getNumArgs(), FPT->isVariadic(),
4704                                  FPT->getTypeQuals(),
4705                                  FPT->hasExceptionSpec(),
4706                                  FPT->hasAnyExceptionSpec(),
4707                                  FPT->getNumExceptions(),
4708                                  FPT->exception_begin(),
4709                                  Info);
4710        return ResultType;
4711      }
4712    }
4713    return QualType();
4714  }
4715
4716  // If the qualifiers are different, the types can still be merged.
4717  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4718  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4719  if (LQuals != RQuals) {
4720    // If any of these qualifiers are different, we have a type mismatch.
4721    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4722        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4723      return QualType();
4724
4725    // Exactly one GC qualifier difference is allowed: __strong is
4726    // okay if the other type has no GC qualifier but is an Objective
4727    // C object pointer (i.e. implicitly strong by default).  We fix
4728    // this by pretending that the unqualified type was actually
4729    // qualified __strong.
4730    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4731    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4732    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4733
4734    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4735      return QualType();
4736
4737    if (GC_L == Qualifiers::Strong)
4738      return LHS;
4739    if (GC_R == Qualifiers::Strong)
4740      return RHS;
4741    return QualType();
4742  }
4743
4744  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
4745    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4746    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4747    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
4748    if (ResQT == LHSBaseQT)
4749      return LHS;
4750    if (ResQT == RHSBaseQT)
4751      return RHS;
4752  }
4753  return QualType();
4754}
4755
4756//===----------------------------------------------------------------------===//
4757//                         Integer Predicates
4758//===----------------------------------------------------------------------===//
4759
4760unsigned ASTContext::getIntWidth(QualType T) {
4761  if (T->isBooleanType())
4762    return 1;
4763  if (EnumType *ET = dyn_cast<EnumType>(T))
4764    T = ET->getDecl()->getIntegerType();
4765  // For builtin types, just use the standard type sizing method
4766  return (unsigned)getTypeSize(T);
4767}
4768
4769QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4770  assert(T->isSignedIntegerType() && "Unexpected type");
4771
4772  // Turn <4 x signed int> -> <4 x unsigned int>
4773  if (const VectorType *VTy = T->getAs<VectorType>())
4774    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4775             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4776
4777  // For enums, we return the unsigned version of the base type.
4778  if (const EnumType *ETy = T->getAs<EnumType>())
4779    T = ETy->getDecl()->getIntegerType();
4780
4781  const BuiltinType *BTy = T->getAs<BuiltinType>();
4782  assert(BTy && "Unexpected signed integer type");
4783  switch (BTy->getKind()) {
4784  case BuiltinType::Char_S:
4785  case BuiltinType::SChar:
4786    return UnsignedCharTy;
4787  case BuiltinType::Short:
4788    return UnsignedShortTy;
4789  case BuiltinType::Int:
4790    return UnsignedIntTy;
4791  case BuiltinType::Long:
4792    return UnsignedLongTy;
4793  case BuiltinType::LongLong:
4794    return UnsignedLongLongTy;
4795  case BuiltinType::Int128:
4796    return UnsignedInt128Ty;
4797  default:
4798    assert(0 && "Unexpected signed integer type");
4799    return QualType();
4800  }
4801}
4802
4803ExternalASTSource::~ExternalASTSource() { }
4804
4805void ExternalASTSource::PrintStats() { }
4806
4807
4808//===----------------------------------------------------------------------===//
4809//                          Builtin Type Computation
4810//===----------------------------------------------------------------------===//
4811
4812/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4813/// pointer over the consumed characters.  This returns the resultant type.
4814static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4815                                  ASTContext::GetBuiltinTypeError &Error,
4816                                  bool AllowTypeModifiers = true) {
4817  // Modifiers.
4818  int HowLong = 0;
4819  bool Signed = false, Unsigned = false;
4820
4821  // Read the modifiers first.
4822  bool Done = false;
4823  while (!Done) {
4824    switch (*Str++) {
4825    default: Done = true; --Str; break;
4826    case 'S':
4827      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4828      assert(!Signed && "Can't use 'S' modifier multiple times!");
4829      Signed = true;
4830      break;
4831    case 'U':
4832      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4833      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4834      Unsigned = true;
4835      break;
4836    case 'L':
4837      assert(HowLong <= 2 && "Can't have LLLL modifier");
4838      ++HowLong;
4839      break;
4840    }
4841  }
4842
4843  QualType Type;
4844
4845  // Read the base type.
4846  switch (*Str++) {
4847  default: assert(0 && "Unknown builtin type letter!");
4848  case 'v':
4849    assert(HowLong == 0 && !Signed && !Unsigned &&
4850           "Bad modifiers used with 'v'!");
4851    Type = Context.VoidTy;
4852    break;
4853  case 'f':
4854    assert(HowLong == 0 && !Signed && !Unsigned &&
4855           "Bad modifiers used with 'f'!");
4856    Type = Context.FloatTy;
4857    break;
4858  case 'd':
4859    assert(HowLong < 2 && !Signed && !Unsigned &&
4860           "Bad modifiers used with 'd'!");
4861    if (HowLong)
4862      Type = Context.LongDoubleTy;
4863    else
4864      Type = Context.DoubleTy;
4865    break;
4866  case 's':
4867    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4868    if (Unsigned)
4869      Type = Context.UnsignedShortTy;
4870    else
4871      Type = Context.ShortTy;
4872    break;
4873  case 'i':
4874    if (HowLong == 3)
4875      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4876    else if (HowLong == 2)
4877      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4878    else if (HowLong == 1)
4879      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4880    else
4881      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4882    break;
4883  case 'c':
4884    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4885    if (Signed)
4886      Type = Context.SignedCharTy;
4887    else if (Unsigned)
4888      Type = Context.UnsignedCharTy;
4889    else
4890      Type = Context.CharTy;
4891    break;
4892  case 'b': // boolean
4893    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4894    Type = Context.BoolTy;
4895    break;
4896  case 'z':  // size_t.
4897    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4898    Type = Context.getSizeType();
4899    break;
4900  case 'F':
4901    Type = Context.getCFConstantStringType();
4902    break;
4903  case 'a':
4904    Type = Context.getBuiltinVaListType();
4905    assert(!Type.isNull() && "builtin va list type not initialized!");
4906    break;
4907  case 'A':
4908    // This is a "reference" to a va_list; however, what exactly
4909    // this means depends on how va_list is defined. There are two
4910    // different kinds of va_list: ones passed by value, and ones
4911    // passed by reference.  An example of a by-value va_list is
4912    // x86, where va_list is a char*. An example of by-ref va_list
4913    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4914    // we want this argument to be a char*&; for x86-64, we want
4915    // it to be a __va_list_tag*.
4916    Type = Context.getBuiltinVaListType();
4917    assert(!Type.isNull() && "builtin va list type not initialized!");
4918    if (Type->isArrayType()) {
4919      Type = Context.getArrayDecayedType(Type);
4920    } else {
4921      Type = Context.getLValueReferenceType(Type);
4922    }
4923    break;
4924  case 'V': {
4925    char *End;
4926    unsigned NumElements = strtoul(Str, &End, 10);
4927    assert(End != Str && "Missing vector size");
4928
4929    Str = End;
4930
4931    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4932    // FIXME: Don't know what to do about AltiVec.
4933    Type = Context.getVectorType(ElementType, NumElements, false, false);
4934    break;
4935  }
4936  case 'X': {
4937    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4938    Type = Context.getComplexType(ElementType);
4939    break;
4940  }
4941  case 'P':
4942    Type = Context.getFILEType();
4943    if (Type.isNull()) {
4944      Error = ASTContext::GE_Missing_stdio;
4945      return QualType();
4946    }
4947    break;
4948  case 'J':
4949    if (Signed)
4950      Type = Context.getsigjmp_bufType();
4951    else
4952      Type = Context.getjmp_bufType();
4953
4954    if (Type.isNull()) {
4955      Error = ASTContext::GE_Missing_setjmp;
4956      return QualType();
4957    }
4958    break;
4959  }
4960
4961  if (!AllowTypeModifiers)
4962    return Type;
4963
4964  Done = false;
4965  while (!Done) {
4966    switch (char c = *Str++) {
4967      default: Done = true; --Str; break;
4968      case '*':
4969      case '&':
4970        {
4971          // Both pointers and references can have their pointee types
4972          // qualified with an address space.
4973          char *End;
4974          unsigned AddrSpace = strtoul(Str, &End, 10);
4975          if (End != Str && AddrSpace != 0) {
4976            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
4977            Str = End;
4978          }
4979        }
4980        if (c == '*')
4981          Type = Context.getPointerType(Type);
4982        else
4983          Type = Context.getLValueReferenceType(Type);
4984        break;
4985      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4986      case 'C':
4987        Type = Type.withConst();
4988        break;
4989      case 'D':
4990        Type = Context.getVolatileType(Type);
4991        break;
4992    }
4993  }
4994
4995  return Type;
4996}
4997
4998/// GetBuiltinType - Return the type for the specified builtin.
4999QualType ASTContext::GetBuiltinType(unsigned id,
5000                                    GetBuiltinTypeError &Error) {
5001  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5002
5003  llvm::SmallVector<QualType, 8> ArgTypes;
5004
5005  Error = GE_None;
5006  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5007  if (Error != GE_None)
5008    return QualType();
5009  while (TypeStr[0] && TypeStr[0] != '.') {
5010    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5011    if (Error != GE_None)
5012      return QualType();
5013
5014    // Do array -> pointer decay.  The builtin should use the decayed type.
5015    if (Ty->isArrayType())
5016      Ty = getArrayDecayedType(Ty);
5017
5018    ArgTypes.push_back(Ty);
5019  }
5020
5021  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5022         "'.' should only occur at end of builtin type list!");
5023
5024  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5025  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5026    return getFunctionNoProtoType(ResType);
5027
5028  // FIXME: Should we create noreturn types?
5029  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5030                         TypeStr[0] == '.', 0, false, false, 0, 0,
5031                         FunctionType::ExtInfo());
5032}
5033
5034QualType
5035ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5036  // Perform the usual unary conversions. We do this early so that
5037  // integral promotions to "int" can allow us to exit early, in the
5038  // lhs == rhs check. Also, for conversion purposes, we ignore any
5039  // qualifiers.  For example, "const float" and "float" are
5040  // equivalent.
5041  if (lhs->isPromotableIntegerType())
5042    lhs = getPromotedIntegerType(lhs);
5043  else
5044    lhs = lhs.getUnqualifiedType();
5045  if (rhs->isPromotableIntegerType())
5046    rhs = getPromotedIntegerType(rhs);
5047  else
5048    rhs = rhs.getUnqualifiedType();
5049
5050  // If both types are identical, no conversion is needed.
5051  if (lhs == rhs)
5052    return lhs;
5053
5054  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5055  // The caller can deal with this (e.g. pointer + int).
5056  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5057    return lhs;
5058
5059  // At this point, we have two different arithmetic types.
5060
5061  // Handle complex types first (C99 6.3.1.8p1).
5062  if (lhs->isComplexType() || rhs->isComplexType()) {
5063    // if we have an integer operand, the result is the complex type.
5064    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5065      // convert the rhs to the lhs complex type.
5066      return lhs;
5067    }
5068    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5069      // convert the lhs to the rhs complex type.
5070      return rhs;
5071    }
5072    // This handles complex/complex, complex/float, or float/complex.
5073    // When both operands are complex, the shorter operand is converted to the
5074    // type of the longer, and that is the type of the result. This corresponds
5075    // to what is done when combining two real floating-point operands.
5076    // The fun begins when size promotion occur across type domains.
5077    // From H&S 6.3.4: When one operand is complex and the other is a real
5078    // floating-point type, the less precise type is converted, within it's
5079    // real or complex domain, to the precision of the other type. For example,
5080    // when combining a "long double" with a "double _Complex", the
5081    // "double _Complex" is promoted to "long double _Complex".
5082    int result = getFloatingTypeOrder(lhs, rhs);
5083
5084    if (result > 0) { // The left side is bigger, convert rhs.
5085      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5086    } else if (result < 0) { // The right side is bigger, convert lhs.
5087      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5088    }
5089    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5090    // domains match. This is a requirement for our implementation, C99
5091    // does not require this promotion.
5092    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5093      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5094        return rhs;
5095      } else { // handle "_Complex double, double".
5096        return lhs;
5097      }
5098    }
5099    return lhs; // The domain/size match exactly.
5100  }
5101  // Now handle "real" floating types (i.e. float, double, long double).
5102  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5103    // if we have an integer operand, the result is the real floating type.
5104    if (rhs->isIntegerType()) {
5105      // convert rhs to the lhs floating point type.
5106      return lhs;
5107    }
5108    if (rhs->isComplexIntegerType()) {
5109      // convert rhs to the complex floating point type.
5110      return getComplexType(lhs);
5111    }
5112    if (lhs->isIntegerType()) {
5113      // convert lhs to the rhs floating point type.
5114      return rhs;
5115    }
5116    if (lhs->isComplexIntegerType()) {
5117      // convert lhs to the complex floating point type.
5118      return getComplexType(rhs);
5119    }
5120    // We have two real floating types, float/complex combos were handled above.
5121    // Convert the smaller operand to the bigger result.
5122    int result = getFloatingTypeOrder(lhs, rhs);
5123    if (result > 0) // convert the rhs
5124      return lhs;
5125    assert(result < 0 && "illegal float comparison");
5126    return rhs;   // convert the lhs
5127  }
5128  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5129    // Handle GCC complex int extension.
5130    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5131    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5132
5133    if (lhsComplexInt && rhsComplexInt) {
5134      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5135                              rhsComplexInt->getElementType()) >= 0)
5136        return lhs; // convert the rhs
5137      return rhs;
5138    } else if (lhsComplexInt && rhs->isIntegerType()) {
5139      // convert the rhs to the lhs complex type.
5140      return lhs;
5141    } else if (rhsComplexInt && lhs->isIntegerType()) {
5142      // convert the lhs to the rhs complex type.
5143      return rhs;
5144    }
5145  }
5146  // Finally, we have two differing integer types.
5147  // The rules for this case are in C99 6.3.1.8
5148  int compare = getIntegerTypeOrder(lhs, rhs);
5149  bool lhsSigned = lhs->isSignedIntegerType(),
5150       rhsSigned = rhs->isSignedIntegerType();
5151  QualType destType;
5152  if (lhsSigned == rhsSigned) {
5153    // Same signedness; use the higher-ranked type
5154    destType = compare >= 0 ? lhs : rhs;
5155  } else if (compare != (lhsSigned ? 1 : -1)) {
5156    // The unsigned type has greater than or equal rank to the
5157    // signed type, so use the unsigned type
5158    destType = lhsSigned ? rhs : lhs;
5159  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5160    // The two types are different widths; if we are here, that
5161    // means the signed type is larger than the unsigned type, so
5162    // use the signed type.
5163    destType = lhsSigned ? lhs : rhs;
5164  } else {
5165    // The signed type is higher-ranked than the unsigned type,
5166    // but isn't actually any bigger (like unsigned int and long
5167    // on most 32-bit systems).  Use the unsigned type corresponding
5168    // to the signed type.
5169    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5170  }
5171  return destType;
5172}
5173