ASTContext.cpp revision bf9eb88792e022e54a658657bf22e1925948e384
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34#include <map>
35
36using namespace clang;
37
38unsigned ASTContext::NumImplicitDefaultConstructors;
39unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyConstructors;
41unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
42unsigned ASTContext::NumImplicitMoveConstructors;
43unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyAssignmentOperators;
45unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
46unsigned ASTContext::NumImplicitMoveAssignmentOperators;
47unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitDestructors;
49unsigned ASTContext::NumImplicitDestructorsDeclared;
50
51enum FloatingRank {
52  FloatRank, DoubleRank, LongDoubleRank
53};
54
55void
56ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
57                                               TemplateTemplateParmDecl *Parm) {
58  ID.AddInteger(Parm->getDepth());
59  ID.AddInteger(Parm->getPosition());
60  ID.AddBoolean(Parm->isParameterPack());
61
62  TemplateParameterList *Params = Parm->getTemplateParameters();
63  ID.AddInteger(Params->size());
64  for (TemplateParameterList::const_iterator P = Params->begin(),
65                                          PEnd = Params->end();
66       P != PEnd; ++P) {
67    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
68      ID.AddInteger(0);
69      ID.AddBoolean(TTP->isParameterPack());
70      continue;
71    }
72
73    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
74      ID.AddInteger(1);
75      ID.AddBoolean(NTTP->isParameterPack());
76      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
77      if (NTTP->isExpandedParameterPack()) {
78        ID.AddBoolean(true);
79        ID.AddInteger(NTTP->getNumExpansionTypes());
80        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
81          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
82      } else
83        ID.AddBoolean(false);
84      continue;
85    }
86
87    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
88    ID.AddInteger(2);
89    Profile(ID, TTP);
90  }
91}
92
93TemplateTemplateParmDecl *
94ASTContext::getCanonicalTemplateTemplateParmDecl(
95                                          TemplateTemplateParmDecl *TTP) const {
96  // Check if we already have a canonical template template parameter.
97  llvm::FoldingSetNodeID ID;
98  CanonicalTemplateTemplateParm::Profile(ID, TTP);
99  void *InsertPos = 0;
100  CanonicalTemplateTemplateParm *Canonical
101    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
102  if (Canonical)
103    return Canonical->getParam();
104
105  // Build a canonical template parameter list.
106  TemplateParameterList *Params = TTP->getTemplateParameters();
107  llvm::SmallVector<NamedDecl *, 4> CanonParams;
108  CanonParams.reserve(Params->size());
109  for (TemplateParameterList::const_iterator P = Params->begin(),
110                                          PEnd = Params->end();
111       P != PEnd; ++P) {
112    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
113      CanonParams.push_back(
114                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
115                                               SourceLocation(),
116                                               SourceLocation(),
117                                               TTP->getDepth(),
118                                               TTP->getIndex(), 0, false,
119                                               TTP->isParameterPack()));
120    else if (NonTypeTemplateParmDecl *NTTP
121             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
122      QualType T = getCanonicalType(NTTP->getType());
123      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
124      NonTypeTemplateParmDecl *Param;
125      if (NTTP->isExpandedParameterPack()) {
126        llvm::SmallVector<QualType, 2> ExpandedTypes;
127        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
128        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
129          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
130          ExpandedTInfos.push_back(
131                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
132        }
133
134        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
135                                                SourceLocation(),
136                                                SourceLocation(),
137                                                NTTP->getDepth(),
138                                                NTTP->getPosition(), 0,
139                                                T,
140                                                TInfo,
141                                                ExpandedTypes.data(),
142                                                ExpandedTypes.size(),
143                                                ExpandedTInfos.data());
144      } else {
145        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
146                                                SourceLocation(),
147                                                SourceLocation(),
148                                                NTTP->getDepth(),
149                                                NTTP->getPosition(), 0,
150                                                T,
151                                                NTTP->isParameterPack(),
152                                                TInfo);
153      }
154      CanonParams.push_back(Param);
155
156    } else
157      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
158                                           cast<TemplateTemplateParmDecl>(*P)));
159  }
160
161  TemplateTemplateParmDecl *CanonTTP
162    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
163                                       SourceLocation(), TTP->getDepth(),
164                                       TTP->getPosition(),
165                                       TTP->isParameterPack(),
166                                       0,
167                         TemplateParameterList::Create(*this, SourceLocation(),
168                                                       SourceLocation(),
169                                                       CanonParams.data(),
170                                                       CanonParams.size(),
171                                                       SourceLocation()));
172
173  // Get the new insert position for the node we care about.
174  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
175  assert(Canonical == 0 && "Shouldn't be in the map!");
176  (void)Canonical;
177
178  // Create the canonical template template parameter entry.
179  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
180  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
181  return CanonTTP;
182}
183
184CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
185  if (!LangOpts.CPlusPlus) return 0;
186
187  switch (T.getCXXABI()) {
188  case CXXABI_ARM:
189    return CreateARMCXXABI(*this);
190  case CXXABI_Itanium:
191    return CreateItaniumCXXABI(*this);
192  case CXXABI_Microsoft:
193    return CreateMicrosoftCXXABI(*this);
194  }
195  return 0;
196}
197
198static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
199                                             const LangOptions &LOpts) {
200  if (LOpts.FakeAddressSpaceMap) {
201    // The fake address space map must have a distinct entry for each
202    // language-specific address space.
203    static const unsigned FakeAddrSpaceMap[] = {
204      1, // opencl_global
205      2, // opencl_local
206      3  // opencl_constant
207    };
208    return FakeAddrSpaceMap;
209  } else {
210    return T.getAddressSpaceMap();
211  }
212}
213
214ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
215                       const TargetInfo &t,
216                       IdentifierTable &idents, SelectorTable &sels,
217                       Builtin::Context &builtins,
218                       unsigned size_reserve) :
219  FunctionProtoTypes(this_()),
220  TemplateSpecializationTypes(this_()),
221  DependentTemplateSpecializationTypes(this_()),
222  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
223  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
224  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
225  jmp_bufDecl(0), sigjmp_bufDecl(0), BlockDescriptorType(0),
226  BlockDescriptorExtendedType(0), cudaConfigureCallDecl(0),
227  NullTypeSourceInfo(QualType()),
228  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
229  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
230  Idents(idents), Selectors(sels),
231  BuiltinInfo(builtins),
232  DeclarationNames(*this),
233  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
234  LastSDM(0, 0),
235  UniqueBlockByRefTypeID(0) {
236  ObjCIdRedefinitionType = QualType();
237  ObjCClassRedefinitionType = QualType();
238  ObjCSelRedefinitionType = QualType();
239  if (size_reserve > 0) Types.reserve(size_reserve);
240  TUDecl = TranslationUnitDecl::Create(*this);
241  InitBuiltinTypes();
242}
243
244ASTContext::~ASTContext() {
245  // Release the DenseMaps associated with DeclContext objects.
246  // FIXME: Is this the ideal solution?
247  ReleaseDeclContextMaps();
248
249  // Call all of the deallocation functions.
250  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
251    Deallocations[I].first(Deallocations[I].second);
252
253  // Release all of the memory associated with overridden C++ methods.
254  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
255         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
256       OM != OMEnd; ++OM)
257    OM->second.Destroy();
258
259  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
260  // because they can contain DenseMaps.
261  for (llvm::DenseMap<const ObjCContainerDecl*,
262       const ASTRecordLayout*>::iterator
263       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
264    // Increment in loop to prevent using deallocated memory.
265    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
266      R->Destroy(*this);
267
268  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
269       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
270    // Increment in loop to prevent using deallocated memory.
271    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
272      R->Destroy(*this);
273  }
274
275  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
276                                                    AEnd = DeclAttrs.end();
277       A != AEnd; ++A)
278    A->second->~AttrVec();
279}
280
281void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
282  Deallocations.push_back(std::make_pair(Callback, Data));
283}
284
285void
286ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
287  ExternalSource.reset(Source.take());
288}
289
290void ASTContext::PrintStats() const {
291  fprintf(stderr, "*** AST Context Stats:\n");
292  fprintf(stderr, "  %d types total.\n", (int)Types.size());
293
294  unsigned counts[] = {
295#define TYPE(Name, Parent) 0,
296#define ABSTRACT_TYPE(Name, Parent)
297#include "clang/AST/TypeNodes.def"
298    0 // Extra
299  };
300
301  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
302    Type *T = Types[i];
303    counts[(unsigned)T->getTypeClass()]++;
304  }
305
306  unsigned Idx = 0;
307  unsigned TotalBytes = 0;
308#define TYPE(Name, Parent)                                              \
309  if (counts[Idx])                                                      \
310    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
311  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
312  ++Idx;
313#define ABSTRACT_TYPE(Name, Parent)
314#include "clang/AST/TypeNodes.def"
315
316  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
317
318  // Implicit special member functions.
319  fprintf(stderr, "  %u/%u implicit default constructors created\n",
320          NumImplicitDefaultConstructorsDeclared,
321          NumImplicitDefaultConstructors);
322  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
323          NumImplicitCopyConstructorsDeclared,
324          NumImplicitCopyConstructors);
325  if (getLangOptions().CPlusPlus)
326    fprintf(stderr, "  %u/%u implicit move constructors created\n",
327            NumImplicitMoveConstructorsDeclared,
328            NumImplicitMoveConstructors);
329  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
330          NumImplicitCopyAssignmentOperatorsDeclared,
331          NumImplicitCopyAssignmentOperators);
332  if (getLangOptions().CPlusPlus)
333    fprintf(stderr, "  %u/%u implicit move assignment operators created\n",
334            NumImplicitMoveAssignmentOperatorsDeclared,
335            NumImplicitMoveAssignmentOperators);
336  fprintf(stderr, "  %u/%u implicit destructors created\n",
337          NumImplicitDestructorsDeclared, NumImplicitDestructors);
338
339  if (ExternalSource.get()) {
340    fprintf(stderr, "\n");
341    ExternalSource->PrintStats();
342  }
343
344  BumpAlloc.PrintStats();
345}
346
347
348void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
349  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
350  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
351  Types.push_back(Ty);
352}
353
354void ASTContext::InitBuiltinTypes() {
355  assert(VoidTy.isNull() && "Context reinitialized?");
356
357  // C99 6.2.5p19.
358  InitBuiltinType(VoidTy,              BuiltinType::Void);
359
360  // C99 6.2.5p2.
361  InitBuiltinType(BoolTy,              BuiltinType::Bool);
362  // C99 6.2.5p3.
363  if (LangOpts.CharIsSigned)
364    InitBuiltinType(CharTy,            BuiltinType::Char_S);
365  else
366    InitBuiltinType(CharTy,            BuiltinType::Char_U);
367  // C99 6.2.5p4.
368  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
369  InitBuiltinType(ShortTy,             BuiltinType::Short);
370  InitBuiltinType(IntTy,               BuiltinType::Int);
371  InitBuiltinType(LongTy,              BuiltinType::Long);
372  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
373
374  // C99 6.2.5p6.
375  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
376  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
377  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
378  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
379  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
380
381  // C99 6.2.5p10.
382  InitBuiltinType(FloatTy,             BuiltinType::Float);
383  InitBuiltinType(DoubleTy,            BuiltinType::Double);
384  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
385
386  // GNU extension, 128-bit integers.
387  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
388  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
389
390  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
391    if (TargetInfo::isTypeSigned(Target.getWCharType()))
392      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
393    else  // -fshort-wchar makes wchar_t be unsigned.
394      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
395  } else // C99
396    WCharTy = getFromTargetType(Target.getWCharType());
397
398  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
399    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
400  else // C99
401    Char16Ty = getFromTargetType(Target.getChar16Type());
402
403  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
404    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
405  else // C99
406    Char32Ty = getFromTargetType(Target.getChar32Type());
407
408  // Placeholder type for type-dependent expressions whose type is
409  // completely unknown. No code should ever check a type against
410  // DependentTy and users should never see it; however, it is here to
411  // help diagnose failures to properly check for type-dependent
412  // expressions.
413  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
414
415  // Placeholder type for functions.
416  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
417
418  // Placeholder type for bound members.
419  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
420
421  // "any" type; useful for debugger-like clients.
422  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
423
424  // C99 6.2.5p11.
425  FloatComplexTy      = getComplexType(FloatTy);
426  DoubleComplexTy     = getComplexType(DoubleTy);
427  LongDoubleComplexTy = getComplexType(LongDoubleTy);
428
429  BuiltinVaListType = QualType();
430
431  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
432  ObjCIdTypedefType = QualType();
433  ObjCClassTypedefType = QualType();
434  ObjCSelTypedefType = QualType();
435
436  // Builtin types for 'id', 'Class', and 'SEL'.
437  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
438  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
439  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
440
441  ObjCConstantStringType = QualType();
442
443  // void * type
444  VoidPtrTy = getPointerType(VoidTy);
445
446  // nullptr type (C++0x 2.14.7)
447  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
448}
449
450Diagnostic &ASTContext::getDiagnostics() const {
451  return SourceMgr.getDiagnostics();
452}
453
454AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
455  AttrVec *&Result = DeclAttrs[D];
456  if (!Result) {
457    void *Mem = Allocate(sizeof(AttrVec));
458    Result = new (Mem) AttrVec;
459  }
460
461  return *Result;
462}
463
464/// \brief Erase the attributes corresponding to the given declaration.
465void ASTContext::eraseDeclAttrs(const Decl *D) {
466  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
467  if (Pos != DeclAttrs.end()) {
468    Pos->second->~AttrVec();
469    DeclAttrs.erase(Pos);
470  }
471}
472
473MemberSpecializationInfo *
474ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
475  assert(Var->isStaticDataMember() && "Not a static data member");
476  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
477    = InstantiatedFromStaticDataMember.find(Var);
478  if (Pos == InstantiatedFromStaticDataMember.end())
479    return 0;
480
481  return Pos->second;
482}
483
484void
485ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
486                                                TemplateSpecializationKind TSK,
487                                          SourceLocation PointOfInstantiation) {
488  assert(Inst->isStaticDataMember() && "Not a static data member");
489  assert(Tmpl->isStaticDataMember() && "Not a static data member");
490  assert(!InstantiatedFromStaticDataMember[Inst] &&
491         "Already noted what static data member was instantiated from");
492  InstantiatedFromStaticDataMember[Inst]
493    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
494}
495
496NamedDecl *
497ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
498  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
499    = InstantiatedFromUsingDecl.find(UUD);
500  if (Pos == InstantiatedFromUsingDecl.end())
501    return 0;
502
503  return Pos->second;
504}
505
506void
507ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
508  assert((isa<UsingDecl>(Pattern) ||
509          isa<UnresolvedUsingValueDecl>(Pattern) ||
510          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
511         "pattern decl is not a using decl");
512  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
513  InstantiatedFromUsingDecl[Inst] = Pattern;
514}
515
516UsingShadowDecl *
517ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
518  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
519    = InstantiatedFromUsingShadowDecl.find(Inst);
520  if (Pos == InstantiatedFromUsingShadowDecl.end())
521    return 0;
522
523  return Pos->second;
524}
525
526void
527ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
528                                               UsingShadowDecl *Pattern) {
529  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
530  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
531}
532
533FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
534  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
535    = InstantiatedFromUnnamedFieldDecl.find(Field);
536  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
537    return 0;
538
539  return Pos->second;
540}
541
542void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
543                                                     FieldDecl *Tmpl) {
544  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
545  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
546  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
547         "Already noted what unnamed field was instantiated from");
548
549  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
550}
551
552bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
553                                    const FieldDecl *LastFD) const {
554  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
555          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
556
557}
558
559bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
560                                             const FieldDecl *LastFD) const {
561  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
562          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
563          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
564
565}
566
567bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
568                                         const FieldDecl *LastFD) const {
569  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
570          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
571          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
572}
573
574bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
575                                         const FieldDecl *LastFD) const {
576  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
577          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
578}
579
580bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
581                                             const FieldDecl *LastFD) const {
582  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
583          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
584}
585
586ASTContext::overridden_cxx_method_iterator
587ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
588  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
589    = OverriddenMethods.find(Method);
590  if (Pos == OverriddenMethods.end())
591    return 0;
592
593  return Pos->second.begin();
594}
595
596ASTContext::overridden_cxx_method_iterator
597ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
598  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
599    = OverriddenMethods.find(Method);
600  if (Pos == OverriddenMethods.end())
601    return 0;
602
603  return Pos->second.end();
604}
605
606unsigned
607ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
608  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
609    = OverriddenMethods.find(Method);
610  if (Pos == OverriddenMethods.end())
611    return 0;
612
613  return Pos->second.size();
614}
615
616void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
617                                     const CXXMethodDecl *Overridden) {
618  OverriddenMethods[Method].push_back(Overridden);
619}
620
621//===----------------------------------------------------------------------===//
622//                         Type Sizing and Analysis
623//===----------------------------------------------------------------------===//
624
625/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
626/// scalar floating point type.
627const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
628  const BuiltinType *BT = T->getAs<BuiltinType>();
629  assert(BT && "Not a floating point type!");
630  switch (BT->getKind()) {
631  default: assert(0 && "Not a floating point type!");
632  case BuiltinType::Float:      return Target.getFloatFormat();
633  case BuiltinType::Double:     return Target.getDoubleFormat();
634  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
635  }
636}
637
638/// getDeclAlign - Return a conservative estimate of the alignment of the
639/// specified decl.  Note that bitfields do not have a valid alignment, so
640/// this method will assert on them.
641/// If @p RefAsPointee, references are treated like their underlying type
642/// (for alignof), else they're treated like pointers (for CodeGen).
643CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
644  unsigned Align = Target.getCharWidth();
645
646  bool UseAlignAttrOnly = false;
647  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
648    Align = AlignFromAttr;
649
650    // __attribute__((aligned)) can increase or decrease alignment
651    // *except* on a struct or struct member, where it only increases
652    // alignment unless 'packed' is also specified.
653    //
654    // It is an error for [[align]] to decrease alignment, so we can
655    // ignore that possibility;  Sema should diagnose it.
656    if (isa<FieldDecl>(D)) {
657      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
658        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
659    } else {
660      UseAlignAttrOnly = true;
661    }
662  }
663  else if (isa<FieldDecl>(D))
664      UseAlignAttrOnly =
665        D->hasAttr<PackedAttr>() ||
666        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
667
668  // If we're using the align attribute only, just ignore everything
669  // else about the declaration and its type.
670  if (UseAlignAttrOnly) {
671    // do nothing
672
673  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
674    QualType T = VD->getType();
675    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
676      if (RefAsPointee)
677        T = RT->getPointeeType();
678      else
679        T = getPointerType(RT->getPointeeType());
680    }
681    if (!T->isIncompleteType() && !T->isFunctionType()) {
682      // Adjust alignments of declarations with array type by the
683      // large-array alignment on the target.
684      unsigned MinWidth = Target.getLargeArrayMinWidth();
685      const ArrayType *arrayType;
686      if (MinWidth && (arrayType = getAsArrayType(T))) {
687        if (isa<VariableArrayType>(arrayType))
688          Align = std::max(Align, Target.getLargeArrayAlign());
689        else if (isa<ConstantArrayType>(arrayType) &&
690                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
691          Align = std::max(Align, Target.getLargeArrayAlign());
692
693        // Walk through any array types while we're at it.
694        T = getBaseElementType(arrayType);
695      }
696      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
697    }
698
699    // Fields can be subject to extra alignment constraints, like if
700    // the field is packed, the struct is packed, or the struct has a
701    // a max-field-alignment constraint (#pragma pack).  So calculate
702    // the actual alignment of the field within the struct, and then
703    // (as we're expected to) constrain that by the alignment of the type.
704    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
705      // So calculate the alignment of the field.
706      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
707
708      // Start with the record's overall alignment.
709      unsigned fieldAlign = toBits(layout.getAlignment());
710
711      // Use the GCD of that and the offset within the record.
712      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
713      if (offset > 0) {
714        // Alignment is always a power of 2, so the GCD will be a power of 2,
715        // which means we get to do this crazy thing instead of Euclid's.
716        uint64_t lowBitOfOffset = offset & (~offset + 1);
717        if (lowBitOfOffset < fieldAlign)
718          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
719      }
720
721      Align = std::min(Align, fieldAlign);
722    }
723  }
724
725  return toCharUnitsFromBits(Align);
726}
727
728std::pair<CharUnits, CharUnits>
729ASTContext::getTypeInfoInChars(const Type *T) const {
730  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
731  return std::make_pair(toCharUnitsFromBits(Info.first),
732                        toCharUnitsFromBits(Info.second));
733}
734
735std::pair<CharUnits, CharUnits>
736ASTContext::getTypeInfoInChars(QualType T) const {
737  return getTypeInfoInChars(T.getTypePtr());
738}
739
740/// getTypeSize - Return the size of the specified type, in bits.  This method
741/// does not work on incomplete types.
742///
743/// FIXME: Pointers into different addr spaces could have different sizes and
744/// alignment requirements: getPointerInfo should take an AddrSpace, this
745/// should take a QualType, &c.
746std::pair<uint64_t, unsigned>
747ASTContext::getTypeInfo(const Type *T) const {
748  uint64_t Width=0;
749  unsigned Align=8;
750  switch (T->getTypeClass()) {
751#define TYPE(Class, Base)
752#define ABSTRACT_TYPE(Class, Base)
753#define NON_CANONICAL_TYPE(Class, Base)
754#define DEPENDENT_TYPE(Class, Base) case Type::Class:
755#include "clang/AST/TypeNodes.def"
756    llvm_unreachable("Should not see dependent types");
757    break;
758
759  case Type::FunctionNoProto:
760  case Type::FunctionProto:
761    // GCC extension: alignof(function) = 32 bits
762    Width = 0;
763    Align = 32;
764    break;
765
766  case Type::IncompleteArray:
767  case Type::VariableArray:
768    Width = 0;
769    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
770    break;
771
772  case Type::ConstantArray: {
773    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
774
775    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
776    Width = EltInfo.first*CAT->getSize().getZExtValue();
777    Align = EltInfo.second;
778    Width = llvm::RoundUpToAlignment(Width, Align);
779    break;
780  }
781  case Type::ExtVector:
782  case Type::Vector: {
783    const VectorType *VT = cast<VectorType>(T);
784    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
785    Width = EltInfo.first*VT->getNumElements();
786    Align = Width;
787    // If the alignment is not a power of 2, round up to the next power of 2.
788    // This happens for non-power-of-2 length vectors.
789    if (Align & (Align-1)) {
790      Align = llvm::NextPowerOf2(Align);
791      Width = llvm::RoundUpToAlignment(Width, Align);
792    }
793    break;
794  }
795
796  case Type::Builtin:
797    switch (cast<BuiltinType>(T)->getKind()) {
798    default: assert(0 && "Unknown builtin type!");
799    case BuiltinType::Void:
800      // GCC extension: alignof(void) = 8 bits.
801      Width = 0;
802      Align = 8;
803      break;
804
805    case BuiltinType::Bool:
806      Width = Target.getBoolWidth();
807      Align = Target.getBoolAlign();
808      break;
809    case BuiltinType::Char_S:
810    case BuiltinType::Char_U:
811    case BuiltinType::UChar:
812    case BuiltinType::SChar:
813      Width = Target.getCharWidth();
814      Align = Target.getCharAlign();
815      break;
816    case BuiltinType::WChar_S:
817    case BuiltinType::WChar_U:
818      Width = Target.getWCharWidth();
819      Align = Target.getWCharAlign();
820      break;
821    case BuiltinType::Char16:
822      Width = Target.getChar16Width();
823      Align = Target.getChar16Align();
824      break;
825    case BuiltinType::Char32:
826      Width = Target.getChar32Width();
827      Align = Target.getChar32Align();
828      break;
829    case BuiltinType::UShort:
830    case BuiltinType::Short:
831      Width = Target.getShortWidth();
832      Align = Target.getShortAlign();
833      break;
834    case BuiltinType::UInt:
835    case BuiltinType::Int:
836      Width = Target.getIntWidth();
837      Align = Target.getIntAlign();
838      break;
839    case BuiltinType::ULong:
840    case BuiltinType::Long:
841      Width = Target.getLongWidth();
842      Align = Target.getLongAlign();
843      break;
844    case BuiltinType::ULongLong:
845    case BuiltinType::LongLong:
846      Width = Target.getLongLongWidth();
847      Align = Target.getLongLongAlign();
848      break;
849    case BuiltinType::Int128:
850    case BuiltinType::UInt128:
851      Width = 128;
852      Align = 128; // int128_t is 128-bit aligned on all targets.
853      break;
854    case BuiltinType::Float:
855      Width = Target.getFloatWidth();
856      Align = Target.getFloatAlign();
857      break;
858    case BuiltinType::Double:
859      Width = Target.getDoubleWidth();
860      Align = Target.getDoubleAlign();
861      break;
862    case BuiltinType::LongDouble:
863      Width = Target.getLongDoubleWidth();
864      Align = Target.getLongDoubleAlign();
865      break;
866    case BuiltinType::NullPtr:
867      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
868      Align = Target.getPointerAlign(0); //   == sizeof(void*)
869      break;
870    case BuiltinType::ObjCId:
871    case BuiltinType::ObjCClass:
872    case BuiltinType::ObjCSel:
873      Width = Target.getPointerWidth(0);
874      Align = Target.getPointerAlign(0);
875      break;
876    }
877    break;
878  case Type::ObjCObjectPointer:
879    Width = Target.getPointerWidth(0);
880    Align = Target.getPointerAlign(0);
881    break;
882  case Type::BlockPointer: {
883    unsigned AS = getTargetAddressSpace(
884        cast<BlockPointerType>(T)->getPointeeType());
885    Width = Target.getPointerWidth(AS);
886    Align = Target.getPointerAlign(AS);
887    break;
888  }
889  case Type::LValueReference:
890  case Type::RValueReference: {
891    // alignof and sizeof should never enter this code path here, so we go
892    // the pointer route.
893    unsigned AS = getTargetAddressSpace(
894        cast<ReferenceType>(T)->getPointeeType());
895    Width = Target.getPointerWidth(AS);
896    Align = Target.getPointerAlign(AS);
897    break;
898  }
899  case Type::Pointer: {
900    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
901    Width = Target.getPointerWidth(AS);
902    Align = Target.getPointerAlign(AS);
903    break;
904  }
905  case Type::MemberPointer: {
906    const MemberPointerType *MPT = cast<MemberPointerType>(T);
907    std::pair<uint64_t, unsigned> PtrDiffInfo =
908      getTypeInfo(getPointerDiffType());
909    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
910    Align = PtrDiffInfo.second;
911    break;
912  }
913  case Type::Complex: {
914    // Complex types have the same alignment as their elements, but twice the
915    // size.
916    std::pair<uint64_t, unsigned> EltInfo =
917      getTypeInfo(cast<ComplexType>(T)->getElementType());
918    Width = EltInfo.first*2;
919    Align = EltInfo.second;
920    break;
921  }
922  case Type::ObjCObject:
923    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
924  case Type::ObjCInterface: {
925    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
926    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
927    Width = toBits(Layout.getSize());
928    Align = toBits(Layout.getAlignment());
929    break;
930  }
931  case Type::Record:
932  case Type::Enum: {
933    const TagType *TT = cast<TagType>(T);
934
935    if (TT->getDecl()->isInvalidDecl()) {
936      Width = 8;
937      Align = 8;
938      break;
939    }
940
941    if (const EnumType *ET = dyn_cast<EnumType>(TT))
942      return getTypeInfo(ET->getDecl()->getIntegerType());
943
944    const RecordType *RT = cast<RecordType>(TT);
945    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
946    Width = toBits(Layout.getSize());
947    Align = toBits(Layout.getAlignment());
948    break;
949  }
950
951  case Type::SubstTemplateTypeParm:
952    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
953                       getReplacementType().getTypePtr());
954
955  case Type::Auto: {
956    const AutoType *A = cast<AutoType>(T);
957    assert(A->isDeduced() && "Cannot request the size of a dependent type");
958    return getTypeInfo(A->getDeducedType().getTypePtr());
959  }
960
961  case Type::Paren:
962    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
963
964  case Type::Typedef: {
965    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
966    std::pair<uint64_t, unsigned> Info
967      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
968    // If the typedef has an aligned attribute on it, it overrides any computed
969    // alignment we have.  This violates the GCC documentation (which says that
970    // attribute(aligned) can only round up) but matches its implementation.
971    if (unsigned AttrAlign = Typedef->getMaxAlignment())
972      Align = AttrAlign;
973    else
974      Align = Info.second;
975    Width = Info.first;
976    break;
977  }
978
979  case Type::TypeOfExpr:
980    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
981                         .getTypePtr());
982
983  case Type::TypeOf:
984    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
985
986  case Type::Decltype:
987    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
988                        .getTypePtr());
989
990  case Type::UnaryTransform:
991    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
992
993  case Type::Elaborated:
994    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
995
996  case Type::Attributed:
997    return getTypeInfo(
998                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
999
1000  case Type::TemplateSpecialization: {
1001    assert(getCanonicalType(T) != T &&
1002           "Cannot request the size of a dependent type");
1003    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1004    // A type alias template specialization may refer to a typedef with the
1005    // aligned attribute on it.
1006    if (TST->isTypeAlias())
1007      return getTypeInfo(TST->getAliasedType().getTypePtr());
1008    else
1009      return getTypeInfo(getCanonicalType(T));
1010  }
1011
1012  }
1013
1014  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1015  return std::make_pair(Width, Align);
1016}
1017
1018/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1019CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1020  return CharUnits::fromQuantity(BitSize / getCharWidth());
1021}
1022
1023/// toBits - Convert a size in characters to a size in characters.
1024int64_t ASTContext::toBits(CharUnits CharSize) const {
1025  return CharSize.getQuantity() * getCharWidth();
1026}
1027
1028/// getTypeSizeInChars - Return the size of the specified type, in characters.
1029/// This method does not work on incomplete types.
1030CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1031  return toCharUnitsFromBits(getTypeSize(T));
1032}
1033CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1034  return toCharUnitsFromBits(getTypeSize(T));
1035}
1036
1037/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1038/// characters. This method does not work on incomplete types.
1039CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1040  return toCharUnitsFromBits(getTypeAlign(T));
1041}
1042CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1043  return toCharUnitsFromBits(getTypeAlign(T));
1044}
1045
1046/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1047/// type for the current target in bits.  This can be different than the ABI
1048/// alignment in cases where it is beneficial for performance to overalign
1049/// a data type.
1050unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1051  unsigned ABIAlign = getTypeAlign(T);
1052
1053  // Double and long long should be naturally aligned if possible.
1054  if (const ComplexType* CT = T->getAs<ComplexType>())
1055    T = CT->getElementType().getTypePtr();
1056  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1057      T->isSpecificBuiltinType(BuiltinType::LongLong))
1058    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1059
1060  return ABIAlign;
1061}
1062
1063/// ShallowCollectObjCIvars -
1064/// Collect all ivars, including those synthesized, in the current class.
1065///
1066void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1067                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1068  // FIXME. This need be removed but there are two many places which
1069  // assume const-ness of ObjCInterfaceDecl
1070  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1071  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1072        Iv= Iv->getNextIvar())
1073    Ivars.push_back(Iv);
1074}
1075
1076/// DeepCollectObjCIvars -
1077/// This routine first collects all declared, but not synthesized, ivars in
1078/// super class and then collects all ivars, including those synthesized for
1079/// current class. This routine is used for implementation of current class
1080/// when all ivars, declared and synthesized are known.
1081///
1082void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1083                                      bool leafClass,
1084                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1085  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1086    DeepCollectObjCIvars(SuperClass, false, Ivars);
1087  if (!leafClass) {
1088    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1089         E = OI->ivar_end(); I != E; ++I)
1090      Ivars.push_back(*I);
1091  }
1092  else {
1093    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1094    for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1095         Iv= Iv->getNextIvar())
1096      Ivars.push_back(Iv);
1097  }
1098}
1099
1100/// CollectInheritedProtocols - Collect all protocols in current class and
1101/// those inherited by it.
1102void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1103                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1104  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1105    // We can use protocol_iterator here instead of
1106    // all_referenced_protocol_iterator since we are walking all categories.
1107    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1108         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1109      ObjCProtocolDecl *Proto = (*P);
1110      Protocols.insert(Proto);
1111      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1112           PE = Proto->protocol_end(); P != PE; ++P) {
1113        Protocols.insert(*P);
1114        CollectInheritedProtocols(*P, Protocols);
1115      }
1116    }
1117
1118    // Categories of this Interface.
1119    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1120         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1121      CollectInheritedProtocols(CDeclChain, Protocols);
1122    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1123      while (SD) {
1124        CollectInheritedProtocols(SD, Protocols);
1125        SD = SD->getSuperClass();
1126      }
1127  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1128    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1129         PE = OC->protocol_end(); P != PE; ++P) {
1130      ObjCProtocolDecl *Proto = (*P);
1131      Protocols.insert(Proto);
1132      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1133           PE = Proto->protocol_end(); P != PE; ++P)
1134        CollectInheritedProtocols(*P, Protocols);
1135    }
1136  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1137    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1138         PE = OP->protocol_end(); P != PE; ++P) {
1139      ObjCProtocolDecl *Proto = (*P);
1140      Protocols.insert(Proto);
1141      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1142           PE = Proto->protocol_end(); P != PE; ++P)
1143        CollectInheritedProtocols(*P, Protocols);
1144    }
1145  }
1146}
1147
1148unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1149  unsigned count = 0;
1150  // Count ivars declared in class extension.
1151  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1152       CDecl = CDecl->getNextClassExtension())
1153    count += CDecl->ivar_size();
1154
1155  // Count ivar defined in this class's implementation.  This
1156  // includes synthesized ivars.
1157  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1158    count += ImplDecl->ivar_size();
1159
1160  return count;
1161}
1162
1163/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1164ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1165  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1166    I = ObjCImpls.find(D);
1167  if (I != ObjCImpls.end())
1168    return cast<ObjCImplementationDecl>(I->second);
1169  return 0;
1170}
1171/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1172ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1173  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1174    I = ObjCImpls.find(D);
1175  if (I != ObjCImpls.end())
1176    return cast<ObjCCategoryImplDecl>(I->second);
1177  return 0;
1178}
1179
1180/// \brief Set the implementation of ObjCInterfaceDecl.
1181void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1182                           ObjCImplementationDecl *ImplD) {
1183  assert(IFaceD && ImplD && "Passed null params");
1184  ObjCImpls[IFaceD] = ImplD;
1185}
1186/// \brief Set the implementation of ObjCCategoryDecl.
1187void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1188                           ObjCCategoryImplDecl *ImplD) {
1189  assert(CatD && ImplD && "Passed null params");
1190  ObjCImpls[CatD] = ImplD;
1191}
1192
1193/// \brief Get the copy initialization expression of VarDecl,or NULL if
1194/// none exists.
1195Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1196  assert(VD && "Passed null params");
1197  assert(VD->hasAttr<BlocksAttr>() &&
1198         "getBlockVarCopyInits - not __block var");
1199  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1200    I = BlockVarCopyInits.find(VD);
1201  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1202}
1203
1204/// \brief Set the copy inialization expression of a block var decl.
1205void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1206  assert(VD && Init && "Passed null params");
1207  assert(VD->hasAttr<BlocksAttr>() &&
1208         "setBlockVarCopyInits - not __block var");
1209  BlockVarCopyInits[VD] = Init;
1210}
1211
1212/// \brief Allocate an uninitialized TypeSourceInfo.
1213///
1214/// The caller should initialize the memory held by TypeSourceInfo using
1215/// the TypeLoc wrappers.
1216///
1217/// \param T the type that will be the basis for type source info. This type
1218/// should refer to how the declarator was written in source code, not to
1219/// what type semantic analysis resolved the declarator to.
1220TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1221                                                 unsigned DataSize) const {
1222  if (!DataSize)
1223    DataSize = TypeLoc::getFullDataSizeForType(T);
1224  else
1225    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1226           "incorrect data size provided to CreateTypeSourceInfo!");
1227
1228  TypeSourceInfo *TInfo =
1229    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1230  new (TInfo) TypeSourceInfo(T);
1231  return TInfo;
1232}
1233
1234TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1235                                                     SourceLocation L) const {
1236  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1237  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1238  return DI;
1239}
1240
1241const ASTRecordLayout &
1242ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1243  return getObjCLayout(D, 0);
1244}
1245
1246const ASTRecordLayout &
1247ASTContext::getASTObjCImplementationLayout(
1248                                        const ObjCImplementationDecl *D) const {
1249  return getObjCLayout(D->getClassInterface(), D);
1250}
1251
1252//===----------------------------------------------------------------------===//
1253//                   Type creation/memoization methods
1254//===----------------------------------------------------------------------===//
1255
1256QualType
1257ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1258  unsigned fastQuals = quals.getFastQualifiers();
1259  quals.removeFastQualifiers();
1260
1261  // Check if we've already instantiated this type.
1262  llvm::FoldingSetNodeID ID;
1263  ExtQuals::Profile(ID, baseType, quals);
1264  void *insertPos = 0;
1265  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1266    assert(eq->getQualifiers() == quals);
1267    return QualType(eq, fastQuals);
1268  }
1269
1270  // If the base type is not canonical, make the appropriate canonical type.
1271  QualType canon;
1272  if (!baseType->isCanonicalUnqualified()) {
1273    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1274    canonSplit.second.addConsistentQualifiers(quals);
1275    canon = getExtQualType(canonSplit.first, canonSplit.second);
1276
1277    // Re-find the insert position.
1278    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1279  }
1280
1281  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1282  ExtQualNodes.InsertNode(eq, insertPos);
1283  return QualType(eq, fastQuals);
1284}
1285
1286QualType
1287ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1288  QualType CanT = getCanonicalType(T);
1289  if (CanT.getAddressSpace() == AddressSpace)
1290    return T;
1291
1292  // If we are composing extended qualifiers together, merge together
1293  // into one ExtQuals node.
1294  QualifierCollector Quals;
1295  const Type *TypeNode = Quals.strip(T);
1296
1297  // If this type already has an address space specified, it cannot get
1298  // another one.
1299  assert(!Quals.hasAddressSpace() &&
1300         "Type cannot be in multiple addr spaces!");
1301  Quals.addAddressSpace(AddressSpace);
1302
1303  return getExtQualType(TypeNode, Quals);
1304}
1305
1306QualType ASTContext::getObjCGCQualType(QualType T,
1307                                       Qualifiers::GC GCAttr) const {
1308  QualType CanT = getCanonicalType(T);
1309  if (CanT.getObjCGCAttr() == GCAttr)
1310    return T;
1311
1312  if (const PointerType *ptr = T->getAs<PointerType>()) {
1313    QualType Pointee = ptr->getPointeeType();
1314    if (Pointee->isAnyPointerType()) {
1315      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1316      return getPointerType(ResultType);
1317    }
1318  }
1319
1320  // If we are composing extended qualifiers together, merge together
1321  // into one ExtQuals node.
1322  QualifierCollector Quals;
1323  const Type *TypeNode = Quals.strip(T);
1324
1325  // If this type already has an ObjCGC specified, it cannot get
1326  // another one.
1327  assert(!Quals.hasObjCGCAttr() &&
1328         "Type cannot have multiple ObjCGCs!");
1329  Quals.addObjCGCAttr(GCAttr);
1330
1331  return getExtQualType(TypeNode, Quals);
1332}
1333
1334const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1335                                                   FunctionType::ExtInfo Info) {
1336  if (T->getExtInfo() == Info)
1337    return T;
1338
1339  QualType Result;
1340  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1341    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1342  } else {
1343    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1344    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1345    EPI.ExtInfo = Info;
1346    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1347                             FPT->getNumArgs(), EPI);
1348  }
1349
1350  return cast<FunctionType>(Result.getTypePtr());
1351}
1352
1353/// getComplexType - Return the uniqued reference to the type for a complex
1354/// number with the specified element type.
1355QualType ASTContext::getComplexType(QualType T) const {
1356  // Unique pointers, to guarantee there is only one pointer of a particular
1357  // structure.
1358  llvm::FoldingSetNodeID ID;
1359  ComplexType::Profile(ID, T);
1360
1361  void *InsertPos = 0;
1362  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1363    return QualType(CT, 0);
1364
1365  // If the pointee type isn't canonical, this won't be a canonical type either,
1366  // so fill in the canonical type field.
1367  QualType Canonical;
1368  if (!T.isCanonical()) {
1369    Canonical = getComplexType(getCanonicalType(T));
1370
1371    // Get the new insert position for the node we care about.
1372    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1373    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1374  }
1375  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1376  Types.push_back(New);
1377  ComplexTypes.InsertNode(New, InsertPos);
1378  return QualType(New, 0);
1379}
1380
1381/// getPointerType - Return the uniqued reference to the type for a pointer to
1382/// the specified type.
1383QualType ASTContext::getPointerType(QualType T) const {
1384  // Unique pointers, to guarantee there is only one pointer of a particular
1385  // structure.
1386  llvm::FoldingSetNodeID ID;
1387  PointerType::Profile(ID, T);
1388
1389  void *InsertPos = 0;
1390  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1391    return QualType(PT, 0);
1392
1393  // If the pointee type isn't canonical, this won't be a canonical type either,
1394  // so fill in the canonical type field.
1395  QualType Canonical;
1396  if (!T.isCanonical()) {
1397    Canonical = getPointerType(getCanonicalType(T));
1398
1399    // Get the new insert position for the node we care about.
1400    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1401    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1402  }
1403  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1404  Types.push_back(New);
1405  PointerTypes.InsertNode(New, InsertPos);
1406  return QualType(New, 0);
1407}
1408
1409/// getBlockPointerType - Return the uniqued reference to the type for
1410/// a pointer to the specified block.
1411QualType ASTContext::getBlockPointerType(QualType T) const {
1412  assert(T->isFunctionType() && "block of function types only");
1413  // Unique pointers, to guarantee there is only one block of a particular
1414  // structure.
1415  llvm::FoldingSetNodeID ID;
1416  BlockPointerType::Profile(ID, T);
1417
1418  void *InsertPos = 0;
1419  if (BlockPointerType *PT =
1420        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1421    return QualType(PT, 0);
1422
1423  // If the block pointee type isn't canonical, this won't be a canonical
1424  // type either so fill in the canonical type field.
1425  QualType Canonical;
1426  if (!T.isCanonical()) {
1427    Canonical = getBlockPointerType(getCanonicalType(T));
1428
1429    // Get the new insert position for the node we care about.
1430    BlockPointerType *NewIP =
1431      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1432    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1433  }
1434  BlockPointerType *New
1435    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1436  Types.push_back(New);
1437  BlockPointerTypes.InsertNode(New, InsertPos);
1438  return QualType(New, 0);
1439}
1440
1441/// getLValueReferenceType - Return the uniqued reference to the type for an
1442/// lvalue reference to the specified type.
1443QualType
1444ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1445  assert(getCanonicalType(T) != OverloadTy &&
1446         "Unresolved overloaded function type");
1447
1448  // Unique pointers, to guarantee there is only one pointer of a particular
1449  // structure.
1450  llvm::FoldingSetNodeID ID;
1451  ReferenceType::Profile(ID, T, SpelledAsLValue);
1452
1453  void *InsertPos = 0;
1454  if (LValueReferenceType *RT =
1455        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1456    return QualType(RT, 0);
1457
1458  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1459
1460  // If the referencee type isn't canonical, this won't be a canonical type
1461  // either, so fill in the canonical type field.
1462  QualType Canonical;
1463  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1464    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1465    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1466
1467    // Get the new insert position for the node we care about.
1468    LValueReferenceType *NewIP =
1469      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1470    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1471  }
1472
1473  LValueReferenceType *New
1474    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1475                                                     SpelledAsLValue);
1476  Types.push_back(New);
1477  LValueReferenceTypes.InsertNode(New, InsertPos);
1478
1479  return QualType(New, 0);
1480}
1481
1482/// getRValueReferenceType - Return the uniqued reference to the type for an
1483/// rvalue reference to the specified type.
1484QualType ASTContext::getRValueReferenceType(QualType T) const {
1485  // Unique pointers, to guarantee there is only one pointer of a particular
1486  // structure.
1487  llvm::FoldingSetNodeID ID;
1488  ReferenceType::Profile(ID, T, false);
1489
1490  void *InsertPos = 0;
1491  if (RValueReferenceType *RT =
1492        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1493    return QualType(RT, 0);
1494
1495  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1496
1497  // If the referencee type isn't canonical, this won't be a canonical type
1498  // either, so fill in the canonical type field.
1499  QualType Canonical;
1500  if (InnerRef || !T.isCanonical()) {
1501    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1502    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1503
1504    // Get the new insert position for the node we care about.
1505    RValueReferenceType *NewIP =
1506      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1507    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1508  }
1509
1510  RValueReferenceType *New
1511    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1512  Types.push_back(New);
1513  RValueReferenceTypes.InsertNode(New, InsertPos);
1514  return QualType(New, 0);
1515}
1516
1517/// getMemberPointerType - Return the uniqued reference to the type for a
1518/// member pointer to the specified type, in the specified class.
1519QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1520  // Unique pointers, to guarantee there is only one pointer of a particular
1521  // structure.
1522  llvm::FoldingSetNodeID ID;
1523  MemberPointerType::Profile(ID, T, Cls);
1524
1525  void *InsertPos = 0;
1526  if (MemberPointerType *PT =
1527      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1528    return QualType(PT, 0);
1529
1530  // If the pointee or class type isn't canonical, this won't be a canonical
1531  // type either, so fill in the canonical type field.
1532  QualType Canonical;
1533  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1534    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1535
1536    // Get the new insert position for the node we care about.
1537    MemberPointerType *NewIP =
1538      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1539    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1540  }
1541  MemberPointerType *New
1542    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1543  Types.push_back(New);
1544  MemberPointerTypes.InsertNode(New, InsertPos);
1545  return QualType(New, 0);
1546}
1547
1548/// getConstantArrayType - Return the unique reference to the type for an
1549/// array of the specified element type.
1550QualType ASTContext::getConstantArrayType(QualType EltTy,
1551                                          const llvm::APInt &ArySizeIn,
1552                                          ArrayType::ArraySizeModifier ASM,
1553                                          unsigned IndexTypeQuals) const {
1554  assert((EltTy->isDependentType() ||
1555          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1556         "Constant array of VLAs is illegal!");
1557
1558  // Convert the array size into a canonical width matching the pointer size for
1559  // the target.
1560  llvm::APInt ArySize(ArySizeIn);
1561  ArySize =
1562    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1563
1564  llvm::FoldingSetNodeID ID;
1565  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1566
1567  void *InsertPos = 0;
1568  if (ConstantArrayType *ATP =
1569      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1570    return QualType(ATP, 0);
1571
1572  // If the element type isn't canonical or has qualifiers, this won't
1573  // be a canonical type either, so fill in the canonical type field.
1574  QualType Canon;
1575  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1576    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1577    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1578                                 ASM, IndexTypeQuals);
1579    Canon = getQualifiedType(Canon, canonSplit.second);
1580
1581    // Get the new insert position for the node we care about.
1582    ConstantArrayType *NewIP =
1583      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1584    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1585  }
1586
1587  ConstantArrayType *New = new(*this,TypeAlignment)
1588    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1589  ConstantArrayTypes.InsertNode(New, InsertPos);
1590  Types.push_back(New);
1591  return QualType(New, 0);
1592}
1593
1594/// getVariableArrayDecayedType - Turns the given type, which may be
1595/// variably-modified, into the corresponding type with all the known
1596/// sizes replaced with [*].
1597QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1598  // Vastly most common case.
1599  if (!type->isVariablyModifiedType()) return type;
1600
1601  QualType result;
1602
1603  SplitQualType split = type.getSplitDesugaredType();
1604  const Type *ty = split.first;
1605  switch (ty->getTypeClass()) {
1606#define TYPE(Class, Base)
1607#define ABSTRACT_TYPE(Class, Base)
1608#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1609#include "clang/AST/TypeNodes.def"
1610    llvm_unreachable("didn't desugar past all non-canonical types?");
1611
1612  // These types should never be variably-modified.
1613  case Type::Builtin:
1614  case Type::Complex:
1615  case Type::Vector:
1616  case Type::ExtVector:
1617  case Type::DependentSizedExtVector:
1618  case Type::ObjCObject:
1619  case Type::ObjCInterface:
1620  case Type::ObjCObjectPointer:
1621  case Type::Record:
1622  case Type::Enum:
1623  case Type::UnresolvedUsing:
1624  case Type::TypeOfExpr:
1625  case Type::TypeOf:
1626  case Type::Decltype:
1627  case Type::UnaryTransform:
1628  case Type::DependentName:
1629  case Type::InjectedClassName:
1630  case Type::TemplateSpecialization:
1631  case Type::DependentTemplateSpecialization:
1632  case Type::TemplateTypeParm:
1633  case Type::SubstTemplateTypeParmPack:
1634  case Type::Auto:
1635  case Type::PackExpansion:
1636    llvm_unreachable("type should never be variably-modified");
1637
1638  // These types can be variably-modified but should never need to
1639  // further decay.
1640  case Type::FunctionNoProto:
1641  case Type::FunctionProto:
1642  case Type::BlockPointer:
1643  case Type::MemberPointer:
1644    return type;
1645
1646  // These types can be variably-modified.  All these modifications
1647  // preserve structure except as noted by comments.
1648  // TODO: if we ever care about optimizing VLAs, there are no-op
1649  // optimizations available here.
1650  case Type::Pointer:
1651    result = getPointerType(getVariableArrayDecayedType(
1652                              cast<PointerType>(ty)->getPointeeType()));
1653    break;
1654
1655  case Type::LValueReference: {
1656    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1657    result = getLValueReferenceType(
1658                 getVariableArrayDecayedType(lv->getPointeeType()),
1659                                    lv->isSpelledAsLValue());
1660    break;
1661  }
1662
1663  case Type::RValueReference: {
1664    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1665    result = getRValueReferenceType(
1666                 getVariableArrayDecayedType(lv->getPointeeType()));
1667    break;
1668  }
1669
1670  case Type::ConstantArray: {
1671    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1672    result = getConstantArrayType(
1673                 getVariableArrayDecayedType(cat->getElementType()),
1674                                  cat->getSize(),
1675                                  cat->getSizeModifier(),
1676                                  cat->getIndexTypeCVRQualifiers());
1677    break;
1678  }
1679
1680  case Type::DependentSizedArray: {
1681    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1682    result = getDependentSizedArrayType(
1683                 getVariableArrayDecayedType(dat->getElementType()),
1684                                        dat->getSizeExpr(),
1685                                        dat->getSizeModifier(),
1686                                        dat->getIndexTypeCVRQualifiers(),
1687                                        dat->getBracketsRange());
1688    break;
1689  }
1690
1691  // Turn incomplete types into [*] types.
1692  case Type::IncompleteArray: {
1693    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1694    result = getVariableArrayType(
1695                 getVariableArrayDecayedType(iat->getElementType()),
1696                                  /*size*/ 0,
1697                                  ArrayType::Normal,
1698                                  iat->getIndexTypeCVRQualifiers(),
1699                                  SourceRange());
1700    break;
1701  }
1702
1703  // Turn VLA types into [*] types.
1704  case Type::VariableArray: {
1705    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1706    result = getVariableArrayType(
1707                 getVariableArrayDecayedType(vat->getElementType()),
1708                                  /*size*/ 0,
1709                                  ArrayType::Star,
1710                                  vat->getIndexTypeCVRQualifiers(),
1711                                  vat->getBracketsRange());
1712    break;
1713  }
1714  }
1715
1716  // Apply the top-level qualifiers from the original.
1717  return getQualifiedType(result, split.second);
1718}
1719
1720/// getVariableArrayType - Returns a non-unique reference to the type for a
1721/// variable array of the specified element type.
1722QualType ASTContext::getVariableArrayType(QualType EltTy,
1723                                          Expr *NumElts,
1724                                          ArrayType::ArraySizeModifier ASM,
1725                                          unsigned IndexTypeQuals,
1726                                          SourceRange Brackets) const {
1727  // Since we don't unique expressions, it isn't possible to unique VLA's
1728  // that have an expression provided for their size.
1729  QualType Canon;
1730
1731  // Be sure to pull qualifiers off the element type.
1732  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1733    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1734    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1735                                 IndexTypeQuals, Brackets);
1736    Canon = getQualifiedType(Canon, canonSplit.second);
1737  }
1738
1739  VariableArrayType *New = new(*this, TypeAlignment)
1740    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1741
1742  VariableArrayTypes.push_back(New);
1743  Types.push_back(New);
1744  return QualType(New, 0);
1745}
1746
1747/// getDependentSizedArrayType - Returns a non-unique reference to
1748/// the type for a dependently-sized array of the specified element
1749/// type.
1750QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1751                                                Expr *numElements,
1752                                                ArrayType::ArraySizeModifier ASM,
1753                                                unsigned elementTypeQuals,
1754                                                SourceRange brackets) const {
1755  assert((!numElements || numElements->isTypeDependent() ||
1756          numElements->isValueDependent()) &&
1757         "Size must be type- or value-dependent!");
1758
1759  // Dependently-sized array types that do not have a specified number
1760  // of elements will have their sizes deduced from a dependent
1761  // initializer.  We do no canonicalization here at all, which is okay
1762  // because they can't be used in most locations.
1763  if (!numElements) {
1764    DependentSizedArrayType *newType
1765      = new (*this, TypeAlignment)
1766          DependentSizedArrayType(*this, elementType, QualType(),
1767                                  numElements, ASM, elementTypeQuals,
1768                                  brackets);
1769    Types.push_back(newType);
1770    return QualType(newType, 0);
1771  }
1772
1773  // Otherwise, we actually build a new type every time, but we
1774  // also build a canonical type.
1775
1776  SplitQualType canonElementType = getCanonicalType(elementType).split();
1777
1778  void *insertPos = 0;
1779  llvm::FoldingSetNodeID ID;
1780  DependentSizedArrayType::Profile(ID, *this,
1781                                   QualType(canonElementType.first, 0),
1782                                   ASM, elementTypeQuals, numElements);
1783
1784  // Look for an existing type with these properties.
1785  DependentSizedArrayType *canonTy =
1786    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1787
1788  // If we don't have one, build one.
1789  if (!canonTy) {
1790    canonTy = new (*this, TypeAlignment)
1791      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1792                              QualType(), numElements, ASM, elementTypeQuals,
1793                              brackets);
1794    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1795    Types.push_back(canonTy);
1796  }
1797
1798  // Apply qualifiers from the element type to the array.
1799  QualType canon = getQualifiedType(QualType(canonTy,0),
1800                                    canonElementType.second);
1801
1802  // If we didn't need extra canonicalization for the element type,
1803  // then just use that as our result.
1804  if (QualType(canonElementType.first, 0) == elementType)
1805    return canon;
1806
1807  // Otherwise, we need to build a type which follows the spelling
1808  // of the element type.
1809  DependentSizedArrayType *sugaredType
1810    = new (*this, TypeAlignment)
1811        DependentSizedArrayType(*this, elementType, canon, numElements,
1812                                ASM, elementTypeQuals, brackets);
1813  Types.push_back(sugaredType);
1814  return QualType(sugaredType, 0);
1815}
1816
1817QualType ASTContext::getIncompleteArrayType(QualType elementType,
1818                                            ArrayType::ArraySizeModifier ASM,
1819                                            unsigned elementTypeQuals) const {
1820  llvm::FoldingSetNodeID ID;
1821  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1822
1823  void *insertPos = 0;
1824  if (IncompleteArrayType *iat =
1825       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1826    return QualType(iat, 0);
1827
1828  // If the element type isn't canonical, this won't be a canonical type
1829  // either, so fill in the canonical type field.  We also have to pull
1830  // qualifiers off the element type.
1831  QualType canon;
1832
1833  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1834    SplitQualType canonSplit = getCanonicalType(elementType).split();
1835    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1836                                   ASM, elementTypeQuals);
1837    canon = getQualifiedType(canon, canonSplit.second);
1838
1839    // Get the new insert position for the node we care about.
1840    IncompleteArrayType *existing =
1841      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1842    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1843  }
1844
1845  IncompleteArrayType *newType = new (*this, TypeAlignment)
1846    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1847
1848  IncompleteArrayTypes.InsertNode(newType, insertPos);
1849  Types.push_back(newType);
1850  return QualType(newType, 0);
1851}
1852
1853/// getVectorType - Return the unique reference to a vector type of
1854/// the specified element type and size. VectorType must be a built-in type.
1855QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1856                                   VectorType::VectorKind VecKind) const {
1857  assert(vecType->isBuiltinType());
1858
1859  // Check if we've already instantiated a vector of this type.
1860  llvm::FoldingSetNodeID ID;
1861  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1862
1863  void *InsertPos = 0;
1864  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1865    return QualType(VTP, 0);
1866
1867  // If the element type isn't canonical, this won't be a canonical type either,
1868  // so fill in the canonical type field.
1869  QualType Canonical;
1870  if (!vecType.isCanonical()) {
1871    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1872
1873    // Get the new insert position for the node we care about.
1874    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1875    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1876  }
1877  VectorType *New = new (*this, TypeAlignment)
1878    VectorType(vecType, NumElts, Canonical, VecKind);
1879  VectorTypes.InsertNode(New, InsertPos);
1880  Types.push_back(New);
1881  return QualType(New, 0);
1882}
1883
1884/// getExtVectorType - Return the unique reference to an extended vector type of
1885/// the specified element type and size. VectorType must be a built-in type.
1886QualType
1887ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1888  assert(vecType->isBuiltinType() || vecType->isDependentType());
1889
1890  // Check if we've already instantiated a vector of this type.
1891  llvm::FoldingSetNodeID ID;
1892  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1893                      VectorType::GenericVector);
1894  void *InsertPos = 0;
1895  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1896    return QualType(VTP, 0);
1897
1898  // If the element type isn't canonical, this won't be a canonical type either,
1899  // so fill in the canonical type field.
1900  QualType Canonical;
1901  if (!vecType.isCanonical()) {
1902    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1903
1904    // Get the new insert position for the node we care about.
1905    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1906    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1907  }
1908  ExtVectorType *New = new (*this, TypeAlignment)
1909    ExtVectorType(vecType, NumElts, Canonical);
1910  VectorTypes.InsertNode(New, InsertPos);
1911  Types.push_back(New);
1912  return QualType(New, 0);
1913}
1914
1915QualType
1916ASTContext::getDependentSizedExtVectorType(QualType vecType,
1917                                           Expr *SizeExpr,
1918                                           SourceLocation AttrLoc) const {
1919  llvm::FoldingSetNodeID ID;
1920  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1921                                       SizeExpr);
1922
1923  void *InsertPos = 0;
1924  DependentSizedExtVectorType *Canon
1925    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1926  DependentSizedExtVectorType *New;
1927  if (Canon) {
1928    // We already have a canonical version of this array type; use it as
1929    // the canonical type for a newly-built type.
1930    New = new (*this, TypeAlignment)
1931      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1932                                  SizeExpr, AttrLoc);
1933  } else {
1934    QualType CanonVecTy = getCanonicalType(vecType);
1935    if (CanonVecTy == vecType) {
1936      New = new (*this, TypeAlignment)
1937        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1938                                    AttrLoc);
1939
1940      DependentSizedExtVectorType *CanonCheck
1941        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1942      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1943      (void)CanonCheck;
1944      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1945    } else {
1946      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1947                                                      SourceLocation());
1948      New = new (*this, TypeAlignment)
1949        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1950    }
1951  }
1952
1953  Types.push_back(New);
1954  return QualType(New, 0);
1955}
1956
1957/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1958///
1959QualType
1960ASTContext::getFunctionNoProtoType(QualType ResultTy,
1961                                   const FunctionType::ExtInfo &Info) const {
1962  const CallingConv DefaultCC = Info.getCC();
1963  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1964                               CC_X86StdCall : DefaultCC;
1965  // Unique functions, to guarantee there is only one function of a particular
1966  // structure.
1967  llvm::FoldingSetNodeID ID;
1968  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1969
1970  void *InsertPos = 0;
1971  if (FunctionNoProtoType *FT =
1972        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1973    return QualType(FT, 0);
1974
1975  QualType Canonical;
1976  if (!ResultTy.isCanonical() ||
1977      getCanonicalCallConv(CallConv) != CallConv) {
1978    Canonical =
1979      getFunctionNoProtoType(getCanonicalType(ResultTy),
1980                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1981
1982    // Get the new insert position for the node we care about.
1983    FunctionNoProtoType *NewIP =
1984      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1985    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1986  }
1987
1988  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1989  FunctionNoProtoType *New = new (*this, TypeAlignment)
1990    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1991  Types.push_back(New);
1992  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1993  return QualType(New, 0);
1994}
1995
1996/// getFunctionType - Return a normal function type with a typed argument
1997/// list.  isVariadic indicates whether the argument list includes '...'.
1998QualType
1999ASTContext::getFunctionType(QualType ResultTy,
2000                            const QualType *ArgArray, unsigned NumArgs,
2001                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2002  // Unique functions, to guarantee there is only one function of a particular
2003  // structure.
2004  llvm::FoldingSetNodeID ID;
2005  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2006
2007  void *InsertPos = 0;
2008  if (FunctionProtoType *FTP =
2009        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2010    return QualType(FTP, 0);
2011
2012  // Determine whether the type being created is already canonical or not.
2013  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2014  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2015    if (!ArgArray[i].isCanonicalAsParam())
2016      isCanonical = false;
2017
2018  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2019  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2020                               CC_X86StdCall : DefaultCC;
2021
2022  // If this type isn't canonical, get the canonical version of it.
2023  // The exception spec is not part of the canonical type.
2024  QualType Canonical;
2025  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2026    llvm::SmallVector<QualType, 16> CanonicalArgs;
2027    CanonicalArgs.reserve(NumArgs);
2028    for (unsigned i = 0; i != NumArgs; ++i)
2029      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2030
2031    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2032    CanonicalEPI.ExceptionSpecType = EST_None;
2033    CanonicalEPI.NumExceptions = 0;
2034    CanonicalEPI.ExtInfo
2035      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2036
2037    Canonical = getFunctionType(getCanonicalType(ResultTy),
2038                                CanonicalArgs.data(), NumArgs,
2039                                CanonicalEPI);
2040
2041    // Get the new insert position for the node we care about.
2042    FunctionProtoType *NewIP =
2043      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2044    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2045  }
2046
2047  // FunctionProtoType objects are allocated with extra bytes after
2048  // them for three variable size arrays at the end:
2049  //  - parameter types
2050  //  - exception types
2051  //  - consumed-arguments flags
2052  // Instead of the exception types, there could be a noexcept
2053  // expression.
2054  size_t Size = sizeof(FunctionProtoType) +
2055                NumArgs * sizeof(QualType);
2056  if (EPI.ExceptionSpecType == EST_Dynamic)
2057    Size += EPI.NumExceptions * sizeof(QualType);
2058  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2059    Size += sizeof(Expr*);
2060  }
2061  if (EPI.ConsumedArguments)
2062    Size += NumArgs * sizeof(bool);
2063
2064  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2065  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2066  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2067  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2068  Types.push_back(FTP);
2069  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2070  return QualType(FTP, 0);
2071}
2072
2073#ifndef NDEBUG
2074static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2075  if (!isa<CXXRecordDecl>(D)) return false;
2076  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2077  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2078    return true;
2079  if (RD->getDescribedClassTemplate() &&
2080      !isa<ClassTemplateSpecializationDecl>(RD))
2081    return true;
2082  return false;
2083}
2084#endif
2085
2086/// getInjectedClassNameType - Return the unique reference to the
2087/// injected class name type for the specified templated declaration.
2088QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2089                                              QualType TST) const {
2090  assert(NeedsInjectedClassNameType(Decl));
2091  if (Decl->TypeForDecl) {
2092    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2093  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2094    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2095    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2096    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2097  } else {
2098    Type *newType =
2099      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2100    Decl->TypeForDecl = newType;
2101    Types.push_back(newType);
2102  }
2103  return QualType(Decl->TypeForDecl, 0);
2104}
2105
2106/// getTypeDeclType - Return the unique reference to the type for the
2107/// specified type declaration.
2108QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2109  assert(Decl && "Passed null for Decl param");
2110  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2111
2112  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2113    return getTypedefType(Typedef);
2114
2115  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2116         "Template type parameter types are always available.");
2117
2118  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2119    assert(!Record->getPreviousDeclaration() &&
2120           "struct/union has previous declaration");
2121    assert(!NeedsInjectedClassNameType(Record));
2122    return getRecordType(Record);
2123  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2124    assert(!Enum->getPreviousDeclaration() &&
2125           "enum has previous declaration");
2126    return getEnumType(Enum);
2127  } else if (const UnresolvedUsingTypenameDecl *Using =
2128               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2129    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2130    Decl->TypeForDecl = newType;
2131    Types.push_back(newType);
2132  } else
2133    llvm_unreachable("TypeDecl without a type?");
2134
2135  return QualType(Decl->TypeForDecl, 0);
2136}
2137
2138/// getTypedefType - Return the unique reference to the type for the
2139/// specified typedef name decl.
2140QualType
2141ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2142                           QualType Canonical) const {
2143  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2144
2145  if (Canonical.isNull())
2146    Canonical = getCanonicalType(Decl->getUnderlyingType());
2147  TypedefType *newType = new(*this, TypeAlignment)
2148    TypedefType(Type::Typedef, Decl, Canonical);
2149  Decl->TypeForDecl = newType;
2150  Types.push_back(newType);
2151  return QualType(newType, 0);
2152}
2153
2154QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2155  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2156
2157  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2158    if (PrevDecl->TypeForDecl)
2159      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2160
2161  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2162  Decl->TypeForDecl = newType;
2163  Types.push_back(newType);
2164  return QualType(newType, 0);
2165}
2166
2167QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2168  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2169
2170  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2171    if (PrevDecl->TypeForDecl)
2172      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2173
2174  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2175  Decl->TypeForDecl = newType;
2176  Types.push_back(newType);
2177  return QualType(newType, 0);
2178}
2179
2180QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2181                                       QualType modifiedType,
2182                                       QualType equivalentType) {
2183  llvm::FoldingSetNodeID id;
2184  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2185
2186  void *insertPos = 0;
2187  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2188  if (type) return QualType(type, 0);
2189
2190  QualType canon = getCanonicalType(equivalentType);
2191  type = new (*this, TypeAlignment)
2192           AttributedType(canon, attrKind, modifiedType, equivalentType);
2193
2194  Types.push_back(type);
2195  AttributedTypes.InsertNode(type, insertPos);
2196
2197  return QualType(type, 0);
2198}
2199
2200
2201/// \brief Retrieve a substitution-result type.
2202QualType
2203ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2204                                         QualType Replacement) const {
2205  assert(Replacement.isCanonical()
2206         && "replacement types must always be canonical");
2207
2208  llvm::FoldingSetNodeID ID;
2209  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2210  void *InsertPos = 0;
2211  SubstTemplateTypeParmType *SubstParm
2212    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2213
2214  if (!SubstParm) {
2215    SubstParm = new (*this, TypeAlignment)
2216      SubstTemplateTypeParmType(Parm, Replacement);
2217    Types.push_back(SubstParm);
2218    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2219  }
2220
2221  return QualType(SubstParm, 0);
2222}
2223
2224/// \brief Retrieve a
2225QualType ASTContext::getSubstTemplateTypeParmPackType(
2226                                          const TemplateTypeParmType *Parm,
2227                                              const TemplateArgument &ArgPack) {
2228#ifndef NDEBUG
2229  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2230                                    PEnd = ArgPack.pack_end();
2231       P != PEnd; ++P) {
2232    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2233    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2234  }
2235#endif
2236
2237  llvm::FoldingSetNodeID ID;
2238  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2239  void *InsertPos = 0;
2240  if (SubstTemplateTypeParmPackType *SubstParm
2241        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2242    return QualType(SubstParm, 0);
2243
2244  QualType Canon;
2245  if (!Parm->isCanonicalUnqualified()) {
2246    Canon = getCanonicalType(QualType(Parm, 0));
2247    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2248                                             ArgPack);
2249    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2250  }
2251
2252  SubstTemplateTypeParmPackType *SubstParm
2253    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2254                                                               ArgPack);
2255  Types.push_back(SubstParm);
2256  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2257  return QualType(SubstParm, 0);
2258}
2259
2260/// \brief Retrieve the template type parameter type for a template
2261/// parameter or parameter pack with the given depth, index, and (optionally)
2262/// name.
2263QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2264                                             bool ParameterPack,
2265                                             TemplateTypeParmDecl *TTPDecl) const {
2266  llvm::FoldingSetNodeID ID;
2267  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2268  void *InsertPos = 0;
2269  TemplateTypeParmType *TypeParm
2270    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2271
2272  if (TypeParm)
2273    return QualType(TypeParm, 0);
2274
2275  if (TTPDecl) {
2276    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2277    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2278
2279    TemplateTypeParmType *TypeCheck
2280      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2281    assert(!TypeCheck && "Template type parameter canonical type broken");
2282    (void)TypeCheck;
2283  } else
2284    TypeParm = new (*this, TypeAlignment)
2285      TemplateTypeParmType(Depth, Index, ParameterPack);
2286
2287  Types.push_back(TypeParm);
2288  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2289
2290  return QualType(TypeParm, 0);
2291}
2292
2293TypeSourceInfo *
2294ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2295                                              SourceLocation NameLoc,
2296                                        const TemplateArgumentListInfo &Args,
2297                                              QualType Underlying) const {
2298  assert(!Name.getAsDependentTemplateName() &&
2299         "No dependent template names here!");
2300  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2301
2302  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2303  TemplateSpecializationTypeLoc TL
2304    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2305  TL.setTemplateNameLoc(NameLoc);
2306  TL.setLAngleLoc(Args.getLAngleLoc());
2307  TL.setRAngleLoc(Args.getRAngleLoc());
2308  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2309    TL.setArgLocInfo(i, Args[i].getLocInfo());
2310  return DI;
2311}
2312
2313QualType
2314ASTContext::getTemplateSpecializationType(TemplateName Template,
2315                                          const TemplateArgumentListInfo &Args,
2316                                          QualType Underlying) const {
2317  assert(!Template.getAsDependentTemplateName() &&
2318         "No dependent template names here!");
2319
2320  unsigned NumArgs = Args.size();
2321
2322  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2323  ArgVec.reserve(NumArgs);
2324  for (unsigned i = 0; i != NumArgs; ++i)
2325    ArgVec.push_back(Args[i].getArgument());
2326
2327  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2328                                       Underlying);
2329}
2330
2331QualType
2332ASTContext::getTemplateSpecializationType(TemplateName Template,
2333                                          const TemplateArgument *Args,
2334                                          unsigned NumArgs,
2335                                          QualType Underlying) const {
2336  assert(!Template.getAsDependentTemplateName() &&
2337         "No dependent template names here!");
2338  // Look through qualified template names.
2339  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2340    Template = TemplateName(QTN->getTemplateDecl());
2341
2342  bool isTypeAlias =
2343    Template.getAsTemplateDecl() &&
2344    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2345
2346  QualType CanonType;
2347  if (!Underlying.isNull())
2348    CanonType = getCanonicalType(Underlying);
2349  else {
2350    assert(!isTypeAlias &&
2351           "Underlying type for template alias must be computed by caller");
2352    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2353                                                       NumArgs);
2354  }
2355
2356  // Allocate the (non-canonical) template specialization type, but don't
2357  // try to unique it: these types typically have location information that
2358  // we don't unique and don't want to lose.
2359  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2360                       sizeof(TemplateArgument) * NumArgs +
2361                       (isTypeAlias ? sizeof(QualType) : 0),
2362                       TypeAlignment);
2363  TemplateSpecializationType *Spec
2364    = new (Mem) TemplateSpecializationType(Template,
2365                                           Args, NumArgs,
2366                                           CanonType,
2367                                         isTypeAlias ? Underlying : QualType());
2368
2369  Types.push_back(Spec);
2370  return QualType(Spec, 0);
2371}
2372
2373QualType
2374ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2375                                                   const TemplateArgument *Args,
2376                                                   unsigned NumArgs) const {
2377  assert(!Template.getAsDependentTemplateName() &&
2378         "No dependent template names here!");
2379  assert((!Template.getAsTemplateDecl() ||
2380          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2381         "Underlying type for template alias must be computed by caller");
2382
2383  // Look through qualified template names.
2384  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2385    Template = TemplateName(QTN->getTemplateDecl());
2386
2387  // Build the canonical template specialization type.
2388  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2389  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2390  CanonArgs.reserve(NumArgs);
2391  for (unsigned I = 0; I != NumArgs; ++I)
2392    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2393
2394  // Determine whether this canonical template specialization type already
2395  // exists.
2396  llvm::FoldingSetNodeID ID;
2397  TemplateSpecializationType::Profile(ID, CanonTemplate,
2398                                      CanonArgs.data(), NumArgs, *this);
2399
2400  void *InsertPos = 0;
2401  TemplateSpecializationType *Spec
2402    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2403
2404  if (!Spec) {
2405    // Allocate a new canonical template specialization type.
2406    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2407                          sizeof(TemplateArgument) * NumArgs),
2408                         TypeAlignment);
2409    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2410                                                CanonArgs.data(), NumArgs,
2411                                                QualType(), QualType());
2412    Types.push_back(Spec);
2413    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2414  }
2415
2416  assert(Spec->isDependentType() &&
2417         "Non-dependent template-id type must have a canonical type");
2418  return QualType(Spec, 0);
2419}
2420
2421QualType
2422ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2423                              NestedNameSpecifier *NNS,
2424                              QualType NamedType) const {
2425  llvm::FoldingSetNodeID ID;
2426  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2427
2428  void *InsertPos = 0;
2429  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2430  if (T)
2431    return QualType(T, 0);
2432
2433  QualType Canon = NamedType;
2434  if (!Canon.isCanonical()) {
2435    Canon = getCanonicalType(NamedType);
2436    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2437    assert(!CheckT && "Elaborated canonical type broken");
2438    (void)CheckT;
2439  }
2440
2441  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2442  Types.push_back(T);
2443  ElaboratedTypes.InsertNode(T, InsertPos);
2444  return QualType(T, 0);
2445}
2446
2447QualType
2448ASTContext::getParenType(QualType InnerType) const {
2449  llvm::FoldingSetNodeID ID;
2450  ParenType::Profile(ID, InnerType);
2451
2452  void *InsertPos = 0;
2453  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2454  if (T)
2455    return QualType(T, 0);
2456
2457  QualType Canon = InnerType;
2458  if (!Canon.isCanonical()) {
2459    Canon = getCanonicalType(InnerType);
2460    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2461    assert(!CheckT && "Paren canonical type broken");
2462    (void)CheckT;
2463  }
2464
2465  T = new (*this) ParenType(InnerType, Canon);
2466  Types.push_back(T);
2467  ParenTypes.InsertNode(T, InsertPos);
2468  return QualType(T, 0);
2469}
2470
2471QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2472                                          NestedNameSpecifier *NNS,
2473                                          const IdentifierInfo *Name,
2474                                          QualType Canon) const {
2475  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2476
2477  if (Canon.isNull()) {
2478    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2479    ElaboratedTypeKeyword CanonKeyword = Keyword;
2480    if (Keyword == ETK_None)
2481      CanonKeyword = ETK_Typename;
2482
2483    if (CanonNNS != NNS || CanonKeyword != Keyword)
2484      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2485  }
2486
2487  llvm::FoldingSetNodeID ID;
2488  DependentNameType::Profile(ID, Keyword, NNS, Name);
2489
2490  void *InsertPos = 0;
2491  DependentNameType *T
2492    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2493  if (T)
2494    return QualType(T, 0);
2495
2496  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2497  Types.push_back(T);
2498  DependentNameTypes.InsertNode(T, InsertPos);
2499  return QualType(T, 0);
2500}
2501
2502QualType
2503ASTContext::getDependentTemplateSpecializationType(
2504                                 ElaboratedTypeKeyword Keyword,
2505                                 NestedNameSpecifier *NNS,
2506                                 const IdentifierInfo *Name,
2507                                 const TemplateArgumentListInfo &Args) const {
2508  // TODO: avoid this copy
2509  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2510  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2511    ArgCopy.push_back(Args[I].getArgument());
2512  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2513                                                ArgCopy.size(),
2514                                                ArgCopy.data());
2515}
2516
2517QualType
2518ASTContext::getDependentTemplateSpecializationType(
2519                                 ElaboratedTypeKeyword Keyword,
2520                                 NestedNameSpecifier *NNS,
2521                                 const IdentifierInfo *Name,
2522                                 unsigned NumArgs,
2523                                 const TemplateArgument *Args) const {
2524  assert((!NNS || NNS->isDependent()) &&
2525         "nested-name-specifier must be dependent");
2526
2527  llvm::FoldingSetNodeID ID;
2528  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2529                                               Name, NumArgs, Args);
2530
2531  void *InsertPos = 0;
2532  DependentTemplateSpecializationType *T
2533    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2534  if (T)
2535    return QualType(T, 0);
2536
2537  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2538
2539  ElaboratedTypeKeyword CanonKeyword = Keyword;
2540  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2541
2542  bool AnyNonCanonArgs = false;
2543  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2544  for (unsigned I = 0; I != NumArgs; ++I) {
2545    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2546    if (!CanonArgs[I].structurallyEquals(Args[I]))
2547      AnyNonCanonArgs = true;
2548  }
2549
2550  QualType Canon;
2551  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2552    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2553                                                   Name, NumArgs,
2554                                                   CanonArgs.data());
2555
2556    // Find the insert position again.
2557    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2558  }
2559
2560  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2561                        sizeof(TemplateArgument) * NumArgs),
2562                       TypeAlignment);
2563  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2564                                                    Name, NumArgs, Args, Canon);
2565  Types.push_back(T);
2566  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2567  return QualType(T, 0);
2568}
2569
2570QualType ASTContext::getPackExpansionType(QualType Pattern,
2571                                      llvm::Optional<unsigned> NumExpansions) {
2572  llvm::FoldingSetNodeID ID;
2573  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2574
2575  assert(Pattern->containsUnexpandedParameterPack() &&
2576         "Pack expansions must expand one or more parameter packs");
2577  void *InsertPos = 0;
2578  PackExpansionType *T
2579    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2580  if (T)
2581    return QualType(T, 0);
2582
2583  QualType Canon;
2584  if (!Pattern.isCanonical()) {
2585    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2586
2587    // Find the insert position again.
2588    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2589  }
2590
2591  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2592  Types.push_back(T);
2593  PackExpansionTypes.InsertNode(T, InsertPos);
2594  return QualType(T, 0);
2595}
2596
2597/// CmpProtocolNames - Comparison predicate for sorting protocols
2598/// alphabetically.
2599static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2600                            const ObjCProtocolDecl *RHS) {
2601  return LHS->getDeclName() < RHS->getDeclName();
2602}
2603
2604static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2605                                unsigned NumProtocols) {
2606  if (NumProtocols == 0) return true;
2607
2608  for (unsigned i = 1; i != NumProtocols; ++i)
2609    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2610      return false;
2611  return true;
2612}
2613
2614static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2615                                   unsigned &NumProtocols) {
2616  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2617
2618  // Sort protocols, keyed by name.
2619  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2620
2621  // Remove duplicates.
2622  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2623  NumProtocols = ProtocolsEnd-Protocols;
2624}
2625
2626QualType ASTContext::getObjCObjectType(QualType BaseType,
2627                                       ObjCProtocolDecl * const *Protocols,
2628                                       unsigned NumProtocols) const {
2629  // If the base type is an interface and there aren't any protocols
2630  // to add, then the interface type will do just fine.
2631  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2632    return BaseType;
2633
2634  // Look in the folding set for an existing type.
2635  llvm::FoldingSetNodeID ID;
2636  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2637  void *InsertPos = 0;
2638  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2639    return QualType(QT, 0);
2640
2641  // Build the canonical type, which has the canonical base type and
2642  // a sorted-and-uniqued list of protocols.
2643  QualType Canonical;
2644  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2645  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2646    if (!ProtocolsSorted) {
2647      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2648                                                     Protocols + NumProtocols);
2649      unsigned UniqueCount = NumProtocols;
2650
2651      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2652      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2653                                    &Sorted[0], UniqueCount);
2654    } else {
2655      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2656                                    Protocols, NumProtocols);
2657    }
2658
2659    // Regenerate InsertPos.
2660    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2661  }
2662
2663  unsigned Size = sizeof(ObjCObjectTypeImpl);
2664  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2665  void *Mem = Allocate(Size, TypeAlignment);
2666  ObjCObjectTypeImpl *T =
2667    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2668
2669  Types.push_back(T);
2670  ObjCObjectTypes.InsertNode(T, InsertPos);
2671  return QualType(T, 0);
2672}
2673
2674/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2675/// the given object type.
2676QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2677  llvm::FoldingSetNodeID ID;
2678  ObjCObjectPointerType::Profile(ID, ObjectT);
2679
2680  void *InsertPos = 0;
2681  if (ObjCObjectPointerType *QT =
2682              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2683    return QualType(QT, 0);
2684
2685  // Find the canonical object type.
2686  QualType Canonical;
2687  if (!ObjectT.isCanonical()) {
2688    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2689
2690    // Regenerate InsertPos.
2691    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2692  }
2693
2694  // No match.
2695  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2696  ObjCObjectPointerType *QType =
2697    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2698
2699  Types.push_back(QType);
2700  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2701  return QualType(QType, 0);
2702}
2703
2704/// getObjCInterfaceType - Return the unique reference to the type for the
2705/// specified ObjC interface decl. The list of protocols is optional.
2706QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2707  if (Decl->TypeForDecl)
2708    return QualType(Decl->TypeForDecl, 0);
2709
2710  // FIXME: redeclarations?
2711  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2712  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2713  Decl->TypeForDecl = T;
2714  Types.push_back(T);
2715  return QualType(T, 0);
2716}
2717
2718/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2719/// TypeOfExprType AST's (since expression's are never shared). For example,
2720/// multiple declarations that refer to "typeof(x)" all contain different
2721/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2722/// on canonical type's (which are always unique).
2723QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2724  TypeOfExprType *toe;
2725  if (tofExpr->isTypeDependent()) {
2726    llvm::FoldingSetNodeID ID;
2727    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2728
2729    void *InsertPos = 0;
2730    DependentTypeOfExprType *Canon
2731      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2732    if (Canon) {
2733      // We already have a "canonical" version of an identical, dependent
2734      // typeof(expr) type. Use that as our canonical type.
2735      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2736                                          QualType((TypeOfExprType*)Canon, 0));
2737    }
2738    else {
2739      // Build a new, canonical typeof(expr) type.
2740      Canon
2741        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2742      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2743      toe = Canon;
2744    }
2745  } else {
2746    QualType Canonical = getCanonicalType(tofExpr->getType());
2747    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2748  }
2749  Types.push_back(toe);
2750  return QualType(toe, 0);
2751}
2752
2753/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2754/// TypeOfType AST's. The only motivation to unique these nodes would be
2755/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2756/// an issue. This doesn't effect the type checker, since it operates
2757/// on canonical type's (which are always unique).
2758QualType ASTContext::getTypeOfType(QualType tofType) const {
2759  QualType Canonical = getCanonicalType(tofType);
2760  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2761  Types.push_back(tot);
2762  return QualType(tot, 0);
2763}
2764
2765/// getDecltypeForExpr - Given an expr, will return the decltype for that
2766/// expression, according to the rules in C++0x [dcl.type.simple]p4
2767static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2768  if (e->isTypeDependent())
2769    return Context.DependentTy;
2770
2771  // If e is an id expression or a class member access, decltype(e) is defined
2772  // as the type of the entity named by e.
2773  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2774    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2775      return VD->getType();
2776  }
2777  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2778    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2779      return FD->getType();
2780  }
2781  // If e is a function call or an invocation of an overloaded operator,
2782  // (parentheses around e are ignored), decltype(e) is defined as the
2783  // return type of that function.
2784  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2785    return CE->getCallReturnType();
2786
2787  QualType T = e->getType();
2788
2789  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2790  // defined as T&, otherwise decltype(e) is defined as T.
2791  if (e->isLValue())
2792    T = Context.getLValueReferenceType(T);
2793
2794  return T;
2795}
2796
2797/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2798/// DecltypeType AST's. The only motivation to unique these nodes would be
2799/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2800/// an issue. This doesn't effect the type checker, since it operates
2801/// on canonical type's (which are always unique).
2802QualType ASTContext::getDecltypeType(Expr *e) const {
2803  DecltypeType *dt;
2804  if (e->isTypeDependent()) {
2805    llvm::FoldingSetNodeID ID;
2806    DependentDecltypeType::Profile(ID, *this, e);
2807
2808    void *InsertPos = 0;
2809    DependentDecltypeType *Canon
2810      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2811    if (Canon) {
2812      // We already have a "canonical" version of an equivalent, dependent
2813      // decltype type. Use that as our canonical type.
2814      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2815                                       QualType((DecltypeType*)Canon, 0));
2816    }
2817    else {
2818      // Build a new, canonical typeof(expr) type.
2819      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2820      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2821      dt = Canon;
2822    }
2823  } else {
2824    QualType T = getDecltypeForExpr(e, *this);
2825    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2826  }
2827  Types.push_back(dt);
2828  return QualType(dt, 0);
2829}
2830
2831/// getUnaryTransformationType - We don't unique these, since the memory
2832/// savings are minimal and these are rare.
2833QualType ASTContext::getUnaryTransformType(QualType BaseType,
2834                                           QualType UnderlyingType,
2835                                           UnaryTransformType::UTTKind Kind)
2836    const {
2837  UnaryTransformType *Ty =
2838    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2839                                                   Kind,
2840                                 UnderlyingType->isDependentType() ?
2841                                    QualType() : UnderlyingType);
2842  Types.push_back(Ty);
2843  return QualType(Ty, 0);
2844}
2845
2846/// getAutoType - We only unique auto types after they've been deduced.
2847QualType ASTContext::getAutoType(QualType DeducedType) const {
2848  void *InsertPos = 0;
2849  if (!DeducedType.isNull()) {
2850    // Look in the folding set for an existing type.
2851    llvm::FoldingSetNodeID ID;
2852    AutoType::Profile(ID, DeducedType);
2853    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2854      return QualType(AT, 0);
2855  }
2856
2857  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2858  Types.push_back(AT);
2859  if (InsertPos)
2860    AutoTypes.InsertNode(AT, InsertPos);
2861  return QualType(AT, 0);
2862}
2863
2864/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2865QualType ASTContext::getAutoDeductType() const {
2866  if (AutoDeductTy.isNull())
2867    AutoDeductTy = getAutoType(QualType());
2868  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2869  return AutoDeductTy;
2870}
2871
2872/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2873QualType ASTContext::getAutoRRefDeductType() const {
2874  if (AutoRRefDeductTy.isNull())
2875    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2876  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2877  return AutoRRefDeductTy;
2878}
2879
2880/// getTagDeclType - Return the unique reference to the type for the
2881/// specified TagDecl (struct/union/class/enum) decl.
2882QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2883  assert (Decl);
2884  // FIXME: What is the design on getTagDeclType when it requires casting
2885  // away const?  mutable?
2886  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2887}
2888
2889/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2890/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2891/// needs to agree with the definition in <stddef.h>.
2892CanQualType ASTContext::getSizeType() const {
2893  return getFromTargetType(Target.getSizeType());
2894}
2895
2896/// getSignedWCharType - Return the type of "signed wchar_t".
2897/// Used when in C++, as a GCC extension.
2898QualType ASTContext::getSignedWCharType() const {
2899  // FIXME: derive from "Target" ?
2900  return WCharTy;
2901}
2902
2903/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2904/// Used when in C++, as a GCC extension.
2905QualType ASTContext::getUnsignedWCharType() const {
2906  // FIXME: derive from "Target" ?
2907  return UnsignedIntTy;
2908}
2909
2910/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2911/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2912QualType ASTContext::getPointerDiffType() const {
2913  return getFromTargetType(Target.getPtrDiffType(0));
2914}
2915
2916//===----------------------------------------------------------------------===//
2917//                              Type Operators
2918//===----------------------------------------------------------------------===//
2919
2920CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2921  // Push qualifiers into arrays, and then discard any remaining
2922  // qualifiers.
2923  T = getCanonicalType(T);
2924  T = getVariableArrayDecayedType(T);
2925  const Type *Ty = T.getTypePtr();
2926  QualType Result;
2927  if (isa<ArrayType>(Ty)) {
2928    Result = getArrayDecayedType(QualType(Ty,0));
2929  } else if (isa<FunctionType>(Ty)) {
2930    Result = getPointerType(QualType(Ty, 0));
2931  } else {
2932    Result = QualType(Ty, 0);
2933  }
2934
2935  return CanQualType::CreateUnsafe(Result);
2936}
2937
2938QualType ASTContext::getUnqualifiedArrayType(QualType type,
2939                                             Qualifiers &quals) {
2940  SplitQualType splitType = type.getSplitUnqualifiedType();
2941
2942  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2943  // the unqualified desugared type and then drops it on the floor.
2944  // We then have to strip that sugar back off with
2945  // getUnqualifiedDesugaredType(), which is silly.
2946  const ArrayType *AT =
2947    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2948
2949  // If we don't have an array, just use the results in splitType.
2950  if (!AT) {
2951    quals = splitType.second;
2952    return QualType(splitType.first, 0);
2953  }
2954
2955  // Otherwise, recurse on the array's element type.
2956  QualType elementType = AT->getElementType();
2957  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2958
2959  // If that didn't change the element type, AT has no qualifiers, so we
2960  // can just use the results in splitType.
2961  if (elementType == unqualElementType) {
2962    assert(quals.empty()); // from the recursive call
2963    quals = splitType.second;
2964    return QualType(splitType.first, 0);
2965  }
2966
2967  // Otherwise, add in the qualifiers from the outermost type, then
2968  // build the type back up.
2969  quals.addConsistentQualifiers(splitType.second);
2970
2971  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2972    return getConstantArrayType(unqualElementType, CAT->getSize(),
2973                                CAT->getSizeModifier(), 0);
2974  }
2975
2976  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2977    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2978  }
2979
2980  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2981    return getVariableArrayType(unqualElementType,
2982                                VAT->getSizeExpr(),
2983                                VAT->getSizeModifier(),
2984                                VAT->getIndexTypeCVRQualifiers(),
2985                                VAT->getBracketsRange());
2986  }
2987
2988  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2989  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2990                                    DSAT->getSizeModifier(), 0,
2991                                    SourceRange());
2992}
2993
2994/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2995/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2996/// they point to and return true. If T1 and T2 aren't pointer types
2997/// or pointer-to-member types, or if they are not similar at this
2998/// level, returns false and leaves T1 and T2 unchanged. Top-level
2999/// qualifiers on T1 and T2 are ignored. This function will typically
3000/// be called in a loop that successively "unwraps" pointer and
3001/// pointer-to-member types to compare them at each level.
3002bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3003  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3004                    *T2PtrType = T2->getAs<PointerType>();
3005  if (T1PtrType && T2PtrType) {
3006    T1 = T1PtrType->getPointeeType();
3007    T2 = T2PtrType->getPointeeType();
3008    return true;
3009  }
3010
3011  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3012                          *T2MPType = T2->getAs<MemberPointerType>();
3013  if (T1MPType && T2MPType &&
3014      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3015                             QualType(T2MPType->getClass(), 0))) {
3016    T1 = T1MPType->getPointeeType();
3017    T2 = T2MPType->getPointeeType();
3018    return true;
3019  }
3020
3021  if (getLangOptions().ObjC1) {
3022    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3023                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3024    if (T1OPType && T2OPType) {
3025      T1 = T1OPType->getPointeeType();
3026      T2 = T2OPType->getPointeeType();
3027      return true;
3028    }
3029  }
3030
3031  // FIXME: Block pointers, too?
3032
3033  return false;
3034}
3035
3036DeclarationNameInfo
3037ASTContext::getNameForTemplate(TemplateName Name,
3038                               SourceLocation NameLoc) const {
3039  if (TemplateDecl *TD = Name.getAsTemplateDecl())
3040    // DNInfo work in progress: CHECKME: what about DNLoc?
3041    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
3042
3043  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
3044    DeclarationName DName;
3045    if (DTN->isIdentifier()) {
3046      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3047      return DeclarationNameInfo(DName, NameLoc);
3048    } else {
3049      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3050      // DNInfo work in progress: FIXME: source locations?
3051      DeclarationNameLoc DNLoc;
3052      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3053      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3054      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3055    }
3056  }
3057
3058  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3059  assert(Storage);
3060  // DNInfo work in progress: CHECKME: what about DNLoc?
3061  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3062}
3063
3064TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3065  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3066    if (TemplateTemplateParmDecl *TTP
3067                              = dyn_cast<TemplateTemplateParmDecl>(Template))
3068      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3069
3070    // The canonical template name is the canonical template declaration.
3071    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3072  }
3073
3074  if (SubstTemplateTemplateParmPackStorage *SubstPack
3075                                  = Name.getAsSubstTemplateTemplateParmPack()) {
3076    TemplateTemplateParmDecl *CanonParam
3077      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
3078    TemplateArgument CanonArgPack
3079      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
3080    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
3081  }
3082
3083  assert(!Name.getAsOverloadedTemplate());
3084
3085  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3086  assert(DTN && "Non-dependent template names must refer to template decls.");
3087  return DTN->CanonicalTemplateName;
3088}
3089
3090bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3091  X = getCanonicalTemplateName(X);
3092  Y = getCanonicalTemplateName(Y);
3093  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3094}
3095
3096TemplateArgument
3097ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3098  switch (Arg.getKind()) {
3099    case TemplateArgument::Null:
3100      return Arg;
3101
3102    case TemplateArgument::Expression:
3103      return Arg;
3104
3105    case TemplateArgument::Declaration:
3106      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3107
3108    case TemplateArgument::Template:
3109      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3110
3111    case TemplateArgument::TemplateExpansion:
3112      return TemplateArgument(getCanonicalTemplateName(
3113                                         Arg.getAsTemplateOrTemplatePattern()),
3114                              Arg.getNumTemplateExpansions());
3115
3116    case TemplateArgument::Integral:
3117      return TemplateArgument(*Arg.getAsIntegral(),
3118                              getCanonicalType(Arg.getIntegralType()));
3119
3120    case TemplateArgument::Type:
3121      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3122
3123    case TemplateArgument::Pack: {
3124      if (Arg.pack_size() == 0)
3125        return Arg;
3126
3127      TemplateArgument *CanonArgs
3128        = new (*this) TemplateArgument[Arg.pack_size()];
3129      unsigned Idx = 0;
3130      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3131                                        AEnd = Arg.pack_end();
3132           A != AEnd; (void)++A, ++Idx)
3133        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3134
3135      return TemplateArgument(CanonArgs, Arg.pack_size());
3136    }
3137  }
3138
3139  // Silence GCC warning
3140  assert(false && "Unhandled template argument kind");
3141  return TemplateArgument();
3142}
3143
3144NestedNameSpecifier *
3145ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3146  if (!NNS)
3147    return 0;
3148
3149  switch (NNS->getKind()) {
3150  case NestedNameSpecifier::Identifier:
3151    // Canonicalize the prefix but keep the identifier the same.
3152    return NestedNameSpecifier::Create(*this,
3153                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3154                                       NNS->getAsIdentifier());
3155
3156  case NestedNameSpecifier::Namespace:
3157    // A namespace is canonical; build a nested-name-specifier with
3158    // this namespace and no prefix.
3159    return NestedNameSpecifier::Create(*this, 0,
3160                                 NNS->getAsNamespace()->getOriginalNamespace());
3161
3162  case NestedNameSpecifier::NamespaceAlias:
3163    // A namespace is canonical; build a nested-name-specifier with
3164    // this namespace and no prefix.
3165    return NestedNameSpecifier::Create(*this, 0,
3166                                    NNS->getAsNamespaceAlias()->getNamespace()
3167                                                      ->getOriginalNamespace());
3168
3169  case NestedNameSpecifier::TypeSpec:
3170  case NestedNameSpecifier::TypeSpecWithTemplate: {
3171    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3172
3173    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3174    // break it apart into its prefix and identifier, then reconsititute those
3175    // as the canonical nested-name-specifier. This is required to canonicalize
3176    // a dependent nested-name-specifier involving typedefs of dependent-name
3177    // types, e.g.,
3178    //   typedef typename T::type T1;
3179    //   typedef typename T1::type T2;
3180    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3181      NestedNameSpecifier *Prefix
3182        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3183      return NestedNameSpecifier::Create(*this, Prefix,
3184                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3185    }
3186
3187    // Do the same thing as above, but with dependent-named specializations.
3188    if (const DependentTemplateSpecializationType *DTST
3189          = T->getAs<DependentTemplateSpecializationType>()) {
3190      NestedNameSpecifier *Prefix
3191        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3192
3193      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3194                                                 Prefix, DTST->getIdentifier(),
3195                                                 DTST->getNumArgs(),
3196                                                 DTST->getArgs());
3197      T = getCanonicalType(T);
3198    }
3199
3200    return NestedNameSpecifier::Create(*this, 0, false,
3201                                       const_cast<Type*>(T.getTypePtr()));
3202  }
3203
3204  case NestedNameSpecifier::Global:
3205    // The global specifier is canonical and unique.
3206    return NNS;
3207  }
3208
3209  // Required to silence a GCC warning
3210  return 0;
3211}
3212
3213
3214const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3215  // Handle the non-qualified case efficiently.
3216  if (!T.hasLocalQualifiers()) {
3217    // Handle the common positive case fast.
3218    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3219      return AT;
3220  }
3221
3222  // Handle the common negative case fast.
3223  if (!isa<ArrayType>(T.getCanonicalType()))
3224    return 0;
3225
3226  // Apply any qualifiers from the array type to the element type.  This
3227  // implements C99 6.7.3p8: "If the specification of an array type includes
3228  // any type qualifiers, the element type is so qualified, not the array type."
3229
3230  // If we get here, we either have type qualifiers on the type, or we have
3231  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3232  // we must propagate them down into the element type.
3233
3234  SplitQualType split = T.getSplitDesugaredType();
3235  Qualifiers qs = split.second;
3236
3237  // If we have a simple case, just return now.
3238  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3239  if (ATy == 0 || qs.empty())
3240    return ATy;
3241
3242  // Otherwise, we have an array and we have qualifiers on it.  Push the
3243  // qualifiers into the array element type and return a new array type.
3244  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3245
3246  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3247    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3248                                                CAT->getSizeModifier(),
3249                                           CAT->getIndexTypeCVRQualifiers()));
3250  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3251    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3252                                                  IAT->getSizeModifier(),
3253                                           IAT->getIndexTypeCVRQualifiers()));
3254
3255  if (const DependentSizedArrayType *DSAT
3256        = dyn_cast<DependentSizedArrayType>(ATy))
3257    return cast<ArrayType>(
3258                     getDependentSizedArrayType(NewEltTy,
3259                                                DSAT->getSizeExpr(),
3260                                                DSAT->getSizeModifier(),
3261                                              DSAT->getIndexTypeCVRQualifiers(),
3262                                                DSAT->getBracketsRange()));
3263
3264  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3265  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3266                                              VAT->getSizeExpr(),
3267                                              VAT->getSizeModifier(),
3268                                              VAT->getIndexTypeCVRQualifiers(),
3269                                              VAT->getBracketsRange()));
3270}
3271
3272/// getArrayDecayedType - Return the properly qualified result of decaying the
3273/// specified array type to a pointer.  This operation is non-trivial when
3274/// handling typedefs etc.  The canonical type of "T" must be an array type,
3275/// this returns a pointer to a properly qualified element of the array.
3276///
3277/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3278QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3279  // Get the element type with 'getAsArrayType' so that we don't lose any
3280  // typedefs in the element type of the array.  This also handles propagation
3281  // of type qualifiers from the array type into the element type if present
3282  // (C99 6.7.3p8).
3283  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3284  assert(PrettyArrayType && "Not an array type!");
3285
3286  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3287
3288  // int x[restrict 4] ->  int *restrict
3289  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3290}
3291
3292QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3293  return getBaseElementType(array->getElementType());
3294}
3295
3296QualType ASTContext::getBaseElementType(QualType type) const {
3297  Qualifiers qs;
3298  while (true) {
3299    SplitQualType split = type.getSplitDesugaredType();
3300    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3301    if (!array) break;
3302
3303    type = array->getElementType();
3304    qs.addConsistentQualifiers(split.second);
3305  }
3306
3307  return getQualifiedType(type, qs);
3308}
3309
3310/// getConstantArrayElementCount - Returns number of constant array elements.
3311uint64_t
3312ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3313  uint64_t ElementCount = 1;
3314  do {
3315    ElementCount *= CA->getSize().getZExtValue();
3316    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3317  } while (CA);
3318  return ElementCount;
3319}
3320
3321/// getFloatingRank - Return a relative rank for floating point types.
3322/// This routine will assert if passed a built-in type that isn't a float.
3323static FloatingRank getFloatingRank(QualType T) {
3324  if (const ComplexType *CT = T->getAs<ComplexType>())
3325    return getFloatingRank(CT->getElementType());
3326
3327  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3328  switch (T->getAs<BuiltinType>()->getKind()) {
3329  default: assert(0 && "getFloatingRank(): not a floating type");
3330  case BuiltinType::Float:      return FloatRank;
3331  case BuiltinType::Double:     return DoubleRank;
3332  case BuiltinType::LongDouble: return LongDoubleRank;
3333  }
3334}
3335
3336/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3337/// point or a complex type (based on typeDomain/typeSize).
3338/// 'typeDomain' is a real floating point or complex type.
3339/// 'typeSize' is a real floating point or complex type.
3340QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3341                                                       QualType Domain) const {
3342  FloatingRank EltRank = getFloatingRank(Size);
3343  if (Domain->isComplexType()) {
3344    switch (EltRank) {
3345    default: assert(0 && "getFloatingRank(): illegal value for rank");
3346    case FloatRank:      return FloatComplexTy;
3347    case DoubleRank:     return DoubleComplexTy;
3348    case LongDoubleRank: return LongDoubleComplexTy;
3349    }
3350  }
3351
3352  assert(Domain->isRealFloatingType() && "Unknown domain!");
3353  switch (EltRank) {
3354  default: assert(0 && "getFloatingRank(): illegal value for rank");
3355  case FloatRank:      return FloatTy;
3356  case DoubleRank:     return DoubleTy;
3357  case LongDoubleRank: return LongDoubleTy;
3358  }
3359}
3360
3361/// getFloatingTypeOrder - Compare the rank of the two specified floating
3362/// point types, ignoring the domain of the type (i.e. 'double' ==
3363/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3364/// LHS < RHS, return -1.
3365int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3366  FloatingRank LHSR = getFloatingRank(LHS);
3367  FloatingRank RHSR = getFloatingRank(RHS);
3368
3369  if (LHSR == RHSR)
3370    return 0;
3371  if (LHSR > RHSR)
3372    return 1;
3373  return -1;
3374}
3375
3376/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3377/// routine will assert if passed a built-in type that isn't an integer or enum,
3378/// or if it is not canonicalized.
3379unsigned ASTContext::getIntegerRank(const Type *T) const {
3380  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3381  if (const EnumType* ET = dyn_cast<EnumType>(T))
3382    T = ET->getDecl()->getPromotionType().getTypePtr();
3383
3384  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3385      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3386    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3387
3388  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3389    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3390
3391  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3392    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3393
3394  switch (cast<BuiltinType>(T)->getKind()) {
3395  default: assert(0 && "getIntegerRank(): not a built-in integer");
3396  case BuiltinType::Bool:
3397    return 1 + (getIntWidth(BoolTy) << 3);
3398  case BuiltinType::Char_S:
3399  case BuiltinType::Char_U:
3400  case BuiltinType::SChar:
3401  case BuiltinType::UChar:
3402    return 2 + (getIntWidth(CharTy) << 3);
3403  case BuiltinType::Short:
3404  case BuiltinType::UShort:
3405    return 3 + (getIntWidth(ShortTy) << 3);
3406  case BuiltinType::Int:
3407  case BuiltinType::UInt:
3408    return 4 + (getIntWidth(IntTy) << 3);
3409  case BuiltinType::Long:
3410  case BuiltinType::ULong:
3411    return 5 + (getIntWidth(LongTy) << 3);
3412  case BuiltinType::LongLong:
3413  case BuiltinType::ULongLong:
3414    return 6 + (getIntWidth(LongLongTy) << 3);
3415  case BuiltinType::Int128:
3416  case BuiltinType::UInt128:
3417    return 7 + (getIntWidth(Int128Ty) << 3);
3418  }
3419}
3420
3421/// \brief Whether this is a promotable bitfield reference according
3422/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3423///
3424/// \returns the type this bit-field will promote to, or NULL if no
3425/// promotion occurs.
3426QualType ASTContext::isPromotableBitField(Expr *E) const {
3427  if (E->isTypeDependent() || E->isValueDependent())
3428    return QualType();
3429
3430  FieldDecl *Field = E->getBitField();
3431  if (!Field)
3432    return QualType();
3433
3434  QualType FT = Field->getType();
3435
3436  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3437  uint64_t BitWidth = BitWidthAP.getZExtValue();
3438  uint64_t IntSize = getTypeSize(IntTy);
3439  // GCC extension compatibility: if the bit-field size is less than or equal
3440  // to the size of int, it gets promoted no matter what its type is.
3441  // For instance, unsigned long bf : 4 gets promoted to signed int.
3442  if (BitWidth < IntSize)
3443    return IntTy;
3444
3445  if (BitWidth == IntSize)
3446    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3447
3448  // Types bigger than int are not subject to promotions, and therefore act
3449  // like the base type.
3450  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3451  // is ridiculous.
3452  return QualType();
3453}
3454
3455/// getPromotedIntegerType - Returns the type that Promotable will
3456/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3457/// integer type.
3458QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3459  assert(!Promotable.isNull());
3460  assert(Promotable->isPromotableIntegerType());
3461  if (const EnumType *ET = Promotable->getAs<EnumType>())
3462    return ET->getDecl()->getPromotionType();
3463  if (Promotable->isSignedIntegerType())
3464    return IntTy;
3465  uint64_t PromotableSize = getTypeSize(Promotable);
3466  uint64_t IntSize = getTypeSize(IntTy);
3467  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3468  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3469}
3470
3471/// getIntegerTypeOrder - Returns the highest ranked integer type:
3472/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3473/// LHS < RHS, return -1.
3474int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3475  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3476  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3477  if (LHSC == RHSC) return 0;
3478
3479  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3480  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3481
3482  unsigned LHSRank = getIntegerRank(LHSC);
3483  unsigned RHSRank = getIntegerRank(RHSC);
3484
3485  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3486    if (LHSRank == RHSRank) return 0;
3487    return LHSRank > RHSRank ? 1 : -1;
3488  }
3489
3490  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3491  if (LHSUnsigned) {
3492    // If the unsigned [LHS] type is larger, return it.
3493    if (LHSRank >= RHSRank)
3494      return 1;
3495
3496    // If the signed type can represent all values of the unsigned type, it
3497    // wins.  Because we are dealing with 2's complement and types that are
3498    // powers of two larger than each other, this is always safe.
3499    return -1;
3500  }
3501
3502  // If the unsigned [RHS] type is larger, return it.
3503  if (RHSRank >= LHSRank)
3504    return -1;
3505
3506  // If the signed type can represent all values of the unsigned type, it
3507  // wins.  Because we are dealing with 2's complement and types that are
3508  // powers of two larger than each other, this is always safe.
3509  return 1;
3510}
3511
3512static RecordDecl *
3513CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3514                 DeclContext *DC, IdentifierInfo *Id) {
3515  SourceLocation Loc;
3516  if (Ctx.getLangOptions().CPlusPlus)
3517    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3518  else
3519    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3520}
3521
3522// getCFConstantStringType - Return the type used for constant CFStrings.
3523QualType ASTContext::getCFConstantStringType() const {
3524  if (!CFConstantStringTypeDecl) {
3525    CFConstantStringTypeDecl =
3526      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3527                       &Idents.get("NSConstantString"));
3528    CFConstantStringTypeDecl->startDefinition();
3529
3530    QualType FieldTypes[4];
3531
3532    // const int *isa;
3533    FieldTypes[0] = getPointerType(IntTy.withConst());
3534    // int flags;
3535    FieldTypes[1] = IntTy;
3536    // const char *str;
3537    FieldTypes[2] = getPointerType(CharTy.withConst());
3538    // long length;
3539    FieldTypes[3] = LongTy;
3540
3541    // Create fields
3542    for (unsigned i = 0; i < 4; ++i) {
3543      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3544                                           SourceLocation(),
3545                                           SourceLocation(), 0,
3546                                           FieldTypes[i], /*TInfo=*/0,
3547                                           /*BitWidth=*/0,
3548                                           /*Mutable=*/false,
3549                                           /*HasInit=*/false);
3550      Field->setAccess(AS_public);
3551      CFConstantStringTypeDecl->addDecl(Field);
3552    }
3553
3554    CFConstantStringTypeDecl->completeDefinition();
3555  }
3556
3557  return getTagDeclType(CFConstantStringTypeDecl);
3558}
3559
3560void ASTContext::setCFConstantStringType(QualType T) {
3561  const RecordType *Rec = T->getAs<RecordType>();
3562  assert(Rec && "Invalid CFConstantStringType");
3563  CFConstantStringTypeDecl = Rec->getDecl();
3564}
3565
3566// getNSConstantStringType - Return the type used for constant NSStrings.
3567QualType ASTContext::getNSConstantStringType() const {
3568  if (!NSConstantStringTypeDecl) {
3569    NSConstantStringTypeDecl =
3570    CreateRecordDecl(*this, TTK_Struct, TUDecl,
3571                     &Idents.get("__builtin_NSString"));
3572    NSConstantStringTypeDecl->startDefinition();
3573
3574    QualType FieldTypes[3];
3575
3576    // const int *isa;
3577    FieldTypes[0] = getPointerType(IntTy.withConst());
3578    // const char *str;
3579    FieldTypes[1] = getPointerType(CharTy.withConst());
3580    // unsigned int length;
3581    FieldTypes[2] = UnsignedIntTy;
3582
3583    // Create fields
3584    for (unsigned i = 0; i < 3; ++i) {
3585      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3586                                           SourceLocation(),
3587                                           SourceLocation(), 0,
3588                                           FieldTypes[i], /*TInfo=*/0,
3589                                           /*BitWidth=*/0,
3590                                           /*Mutable=*/false,
3591                                           /*HasInit=*/false);
3592      Field->setAccess(AS_public);
3593      NSConstantStringTypeDecl->addDecl(Field);
3594    }
3595
3596    NSConstantStringTypeDecl->completeDefinition();
3597  }
3598
3599  return getTagDeclType(NSConstantStringTypeDecl);
3600}
3601
3602void ASTContext::setNSConstantStringType(QualType T) {
3603  const RecordType *Rec = T->getAs<RecordType>();
3604  assert(Rec && "Invalid NSConstantStringType");
3605  NSConstantStringTypeDecl = Rec->getDecl();
3606}
3607
3608QualType ASTContext::getObjCFastEnumerationStateType() const {
3609  if (!ObjCFastEnumerationStateTypeDecl) {
3610    ObjCFastEnumerationStateTypeDecl =
3611      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3612                       &Idents.get("__objcFastEnumerationState"));
3613    ObjCFastEnumerationStateTypeDecl->startDefinition();
3614
3615    QualType FieldTypes[] = {
3616      UnsignedLongTy,
3617      getPointerType(ObjCIdTypedefType),
3618      getPointerType(UnsignedLongTy),
3619      getConstantArrayType(UnsignedLongTy,
3620                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3621    };
3622
3623    for (size_t i = 0; i < 4; ++i) {
3624      FieldDecl *Field = FieldDecl::Create(*this,
3625                                           ObjCFastEnumerationStateTypeDecl,
3626                                           SourceLocation(),
3627                                           SourceLocation(), 0,
3628                                           FieldTypes[i], /*TInfo=*/0,
3629                                           /*BitWidth=*/0,
3630                                           /*Mutable=*/false,
3631                                           /*HasInit=*/false);
3632      Field->setAccess(AS_public);
3633      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3634    }
3635
3636    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3637  }
3638
3639  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3640}
3641
3642QualType ASTContext::getBlockDescriptorType() const {
3643  if (BlockDescriptorType)
3644    return getTagDeclType(BlockDescriptorType);
3645
3646  RecordDecl *T;
3647  // FIXME: Needs the FlagAppleBlock bit.
3648  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3649                       &Idents.get("__block_descriptor"));
3650  T->startDefinition();
3651
3652  QualType FieldTypes[] = {
3653    UnsignedLongTy,
3654    UnsignedLongTy,
3655  };
3656
3657  const char *FieldNames[] = {
3658    "reserved",
3659    "Size"
3660  };
3661
3662  for (size_t i = 0; i < 2; ++i) {
3663    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3664                                         SourceLocation(),
3665                                         &Idents.get(FieldNames[i]),
3666                                         FieldTypes[i], /*TInfo=*/0,
3667                                         /*BitWidth=*/0,
3668                                         /*Mutable=*/false,
3669                                         /*HasInit=*/false);
3670    Field->setAccess(AS_public);
3671    T->addDecl(Field);
3672  }
3673
3674  T->completeDefinition();
3675
3676  BlockDescriptorType = T;
3677
3678  return getTagDeclType(BlockDescriptorType);
3679}
3680
3681void ASTContext::setBlockDescriptorType(QualType T) {
3682  const RecordType *Rec = T->getAs<RecordType>();
3683  assert(Rec && "Invalid BlockDescriptorType");
3684  BlockDescriptorType = Rec->getDecl();
3685}
3686
3687QualType ASTContext::getBlockDescriptorExtendedType() const {
3688  if (BlockDescriptorExtendedType)
3689    return getTagDeclType(BlockDescriptorExtendedType);
3690
3691  RecordDecl *T;
3692  // FIXME: Needs the FlagAppleBlock bit.
3693  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3694                       &Idents.get("__block_descriptor_withcopydispose"));
3695  T->startDefinition();
3696
3697  QualType FieldTypes[] = {
3698    UnsignedLongTy,
3699    UnsignedLongTy,
3700    getPointerType(VoidPtrTy),
3701    getPointerType(VoidPtrTy)
3702  };
3703
3704  const char *FieldNames[] = {
3705    "reserved",
3706    "Size",
3707    "CopyFuncPtr",
3708    "DestroyFuncPtr"
3709  };
3710
3711  for (size_t i = 0; i < 4; ++i) {
3712    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3713                                         SourceLocation(),
3714                                         &Idents.get(FieldNames[i]),
3715                                         FieldTypes[i], /*TInfo=*/0,
3716                                         /*BitWidth=*/0,
3717                                         /*Mutable=*/false,
3718                                         /*HasInit=*/false);
3719    Field->setAccess(AS_public);
3720    T->addDecl(Field);
3721  }
3722
3723  T->completeDefinition();
3724
3725  BlockDescriptorExtendedType = T;
3726
3727  return getTagDeclType(BlockDescriptorExtendedType);
3728}
3729
3730void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3731  const RecordType *Rec = T->getAs<RecordType>();
3732  assert(Rec && "Invalid BlockDescriptorType");
3733  BlockDescriptorExtendedType = Rec->getDecl();
3734}
3735
3736bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3737  if (Ty->isObjCRetainableType())
3738    return true;
3739  if (getLangOptions().CPlusPlus) {
3740    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3741      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3742      return RD->hasConstCopyConstructor();
3743
3744    }
3745  }
3746  return false;
3747}
3748
3749QualType
3750ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3751  //  type = struct __Block_byref_1_X {
3752  //    void *__isa;
3753  //    struct __Block_byref_1_X *__forwarding;
3754  //    unsigned int __flags;
3755  //    unsigned int __size;
3756  //    void *__copy_helper;            // as needed
3757  //    void *__destroy_help            // as needed
3758  //    int X;
3759  //  } *
3760
3761  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3762
3763  // FIXME: Move up
3764  llvm::SmallString<36> Name;
3765  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3766                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3767  RecordDecl *T;
3768  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3769  T->startDefinition();
3770  QualType Int32Ty = IntTy;
3771  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3772  QualType FieldTypes[] = {
3773    getPointerType(VoidPtrTy),
3774    getPointerType(getTagDeclType(T)),
3775    Int32Ty,
3776    Int32Ty,
3777    getPointerType(VoidPtrTy),
3778    getPointerType(VoidPtrTy),
3779    Ty
3780  };
3781
3782  llvm::StringRef FieldNames[] = {
3783    "__isa",
3784    "__forwarding",
3785    "__flags",
3786    "__size",
3787    "__copy_helper",
3788    "__destroy_helper",
3789    DeclName,
3790  };
3791
3792  for (size_t i = 0; i < 7; ++i) {
3793    if (!HasCopyAndDispose && i >=4 && i <= 5)
3794      continue;
3795    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3796                                         SourceLocation(),
3797                                         &Idents.get(FieldNames[i]),
3798                                         FieldTypes[i], /*TInfo=*/0,
3799                                         /*BitWidth=*/0, /*Mutable=*/false,
3800                                         /*HasInit=*/false);
3801    Field->setAccess(AS_public);
3802    T->addDecl(Field);
3803  }
3804
3805  T->completeDefinition();
3806
3807  return getPointerType(getTagDeclType(T));
3808}
3809
3810void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3811  const RecordType *Rec = T->getAs<RecordType>();
3812  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3813  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3814}
3815
3816// This returns true if a type has been typedefed to BOOL:
3817// typedef <type> BOOL;
3818static bool isTypeTypedefedAsBOOL(QualType T) {
3819  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3820    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3821      return II->isStr("BOOL");
3822
3823  return false;
3824}
3825
3826/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3827/// purpose.
3828CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3829  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3830    return CharUnits::Zero();
3831
3832  CharUnits sz = getTypeSizeInChars(type);
3833
3834  // Make all integer and enum types at least as large as an int
3835  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3836    sz = std::max(sz, getTypeSizeInChars(IntTy));
3837  // Treat arrays as pointers, since that's how they're passed in.
3838  else if (type->isArrayType())
3839    sz = getTypeSizeInChars(VoidPtrTy);
3840  return sz;
3841}
3842
3843static inline
3844std::string charUnitsToString(const CharUnits &CU) {
3845  return llvm::itostr(CU.getQuantity());
3846}
3847
3848/// getObjCEncodingForBlock - Return the encoded type for this block
3849/// declaration.
3850std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3851  std::string S;
3852
3853  const BlockDecl *Decl = Expr->getBlockDecl();
3854  QualType BlockTy =
3855      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3856  // Encode result type.
3857  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3858  // Compute size of all parameters.
3859  // Start with computing size of a pointer in number of bytes.
3860  // FIXME: There might(should) be a better way of doing this computation!
3861  SourceLocation Loc;
3862  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3863  CharUnits ParmOffset = PtrSize;
3864  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3865       E = Decl->param_end(); PI != E; ++PI) {
3866    QualType PType = (*PI)->getType();
3867    CharUnits sz = getObjCEncodingTypeSize(PType);
3868    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3869    ParmOffset += sz;
3870  }
3871  // Size of the argument frame
3872  S += charUnitsToString(ParmOffset);
3873  // Block pointer and offset.
3874  S += "@?0";
3875  ParmOffset = PtrSize;
3876
3877  // Argument types.
3878  ParmOffset = PtrSize;
3879  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3880       Decl->param_end(); PI != E; ++PI) {
3881    ParmVarDecl *PVDecl = *PI;
3882    QualType PType = PVDecl->getOriginalType();
3883    if (const ArrayType *AT =
3884          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3885      // Use array's original type only if it has known number of
3886      // elements.
3887      if (!isa<ConstantArrayType>(AT))
3888        PType = PVDecl->getType();
3889    } else if (PType->isFunctionType())
3890      PType = PVDecl->getType();
3891    getObjCEncodingForType(PType, S);
3892    S += charUnitsToString(ParmOffset);
3893    ParmOffset += getObjCEncodingTypeSize(PType);
3894  }
3895
3896  return S;
3897}
3898
3899bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3900                                                std::string& S) {
3901  // Encode result type.
3902  getObjCEncodingForType(Decl->getResultType(), S);
3903  CharUnits ParmOffset;
3904  // Compute size of all parameters.
3905  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3906       E = Decl->param_end(); PI != E; ++PI) {
3907    QualType PType = (*PI)->getType();
3908    CharUnits sz = getObjCEncodingTypeSize(PType);
3909    if (sz.isZero())
3910      return true;
3911
3912    assert (sz.isPositive() &&
3913        "getObjCEncodingForFunctionDecl - Incomplete param type");
3914    ParmOffset += sz;
3915  }
3916  S += charUnitsToString(ParmOffset);
3917  ParmOffset = CharUnits::Zero();
3918
3919  // Argument types.
3920  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3921       E = Decl->param_end(); PI != E; ++PI) {
3922    ParmVarDecl *PVDecl = *PI;
3923    QualType PType = PVDecl->getOriginalType();
3924    if (const ArrayType *AT =
3925          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3926      // Use array's original type only if it has known number of
3927      // elements.
3928      if (!isa<ConstantArrayType>(AT))
3929        PType = PVDecl->getType();
3930    } else if (PType->isFunctionType())
3931      PType = PVDecl->getType();
3932    getObjCEncodingForType(PType, S);
3933    S += charUnitsToString(ParmOffset);
3934    ParmOffset += getObjCEncodingTypeSize(PType);
3935  }
3936
3937  return false;
3938}
3939
3940/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3941/// declaration.
3942bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3943                                              std::string& S) const {
3944  // FIXME: This is not very efficient.
3945  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3946  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3947  // Encode result type.
3948  getObjCEncodingForType(Decl->getResultType(), S);
3949  // Compute size of all parameters.
3950  // Start with computing size of a pointer in number of bytes.
3951  // FIXME: There might(should) be a better way of doing this computation!
3952  SourceLocation Loc;
3953  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3954  // The first two arguments (self and _cmd) are pointers; account for
3955  // their size.
3956  CharUnits ParmOffset = 2 * PtrSize;
3957  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3958       E = Decl->sel_param_end(); PI != E; ++PI) {
3959    QualType PType = (*PI)->getType();
3960    CharUnits sz = getObjCEncodingTypeSize(PType);
3961    if (sz.isZero())
3962      return true;
3963
3964    assert (sz.isPositive() &&
3965        "getObjCEncodingForMethodDecl - Incomplete param type");
3966    ParmOffset += sz;
3967  }
3968  S += charUnitsToString(ParmOffset);
3969  S += "@0:";
3970  S += charUnitsToString(PtrSize);
3971
3972  // Argument types.
3973  ParmOffset = 2 * PtrSize;
3974  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3975       E = Decl->sel_param_end(); PI != E; ++PI) {
3976    ParmVarDecl *PVDecl = *PI;
3977    QualType PType = PVDecl->getOriginalType();
3978    if (const ArrayType *AT =
3979          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3980      // Use array's original type only if it has known number of
3981      // elements.
3982      if (!isa<ConstantArrayType>(AT))
3983        PType = PVDecl->getType();
3984    } else if (PType->isFunctionType())
3985      PType = PVDecl->getType();
3986    // Process argument qualifiers for user supplied arguments; such as,
3987    // 'in', 'inout', etc.
3988    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3989    getObjCEncodingForType(PType, S);
3990    S += charUnitsToString(ParmOffset);
3991    ParmOffset += getObjCEncodingTypeSize(PType);
3992  }
3993
3994  return false;
3995}
3996
3997/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3998/// property declaration. If non-NULL, Container must be either an
3999/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4000/// NULL when getting encodings for protocol properties.
4001/// Property attributes are stored as a comma-delimited C string. The simple
4002/// attributes readonly and bycopy are encoded as single characters. The
4003/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4004/// encoded as single characters, followed by an identifier. Property types
4005/// are also encoded as a parametrized attribute. The characters used to encode
4006/// these attributes are defined by the following enumeration:
4007/// @code
4008/// enum PropertyAttributes {
4009/// kPropertyReadOnly = 'R',   // property is read-only.
4010/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4011/// kPropertyByref = '&',  // property is a reference to the value last assigned
4012/// kPropertyDynamic = 'D',    // property is dynamic
4013/// kPropertyGetter = 'G',     // followed by getter selector name
4014/// kPropertySetter = 'S',     // followed by setter selector name
4015/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4016/// kPropertyType = 't'              // followed by old-style type encoding.
4017/// kPropertyWeak = 'W'              // 'weak' property
4018/// kPropertyStrong = 'P'            // property GC'able
4019/// kPropertyNonAtomic = 'N'         // property non-atomic
4020/// };
4021/// @endcode
4022void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4023                                                const Decl *Container,
4024                                                std::string& S) const {
4025  // Collect information from the property implementation decl(s).
4026  bool Dynamic = false;
4027  ObjCPropertyImplDecl *SynthesizePID = 0;
4028
4029  // FIXME: Duplicated code due to poor abstraction.
4030  if (Container) {
4031    if (const ObjCCategoryImplDecl *CID =
4032        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4033      for (ObjCCategoryImplDecl::propimpl_iterator
4034             i = CID->propimpl_begin(), e = CID->propimpl_end();
4035           i != e; ++i) {
4036        ObjCPropertyImplDecl *PID = *i;
4037        if (PID->getPropertyDecl() == PD) {
4038          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4039            Dynamic = true;
4040          } else {
4041            SynthesizePID = PID;
4042          }
4043        }
4044      }
4045    } else {
4046      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4047      for (ObjCCategoryImplDecl::propimpl_iterator
4048             i = OID->propimpl_begin(), e = OID->propimpl_end();
4049           i != e; ++i) {
4050        ObjCPropertyImplDecl *PID = *i;
4051        if (PID->getPropertyDecl() == PD) {
4052          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4053            Dynamic = true;
4054          } else {
4055            SynthesizePID = PID;
4056          }
4057        }
4058      }
4059    }
4060  }
4061
4062  // FIXME: This is not very efficient.
4063  S = "T";
4064
4065  // Encode result type.
4066  // GCC has some special rules regarding encoding of properties which
4067  // closely resembles encoding of ivars.
4068  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4069                             true /* outermost type */,
4070                             true /* encoding for property */);
4071
4072  if (PD->isReadOnly()) {
4073    S += ",R";
4074  } else {
4075    switch (PD->getSetterKind()) {
4076    case ObjCPropertyDecl::Assign: break;
4077    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4078    case ObjCPropertyDecl::Retain: S += ",&"; break;
4079    }
4080  }
4081
4082  // It really isn't clear at all what this means, since properties
4083  // are "dynamic by default".
4084  if (Dynamic)
4085    S += ",D";
4086
4087  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4088    S += ",N";
4089
4090  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4091    S += ",G";
4092    S += PD->getGetterName().getAsString();
4093  }
4094
4095  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4096    S += ",S";
4097    S += PD->getSetterName().getAsString();
4098  }
4099
4100  if (SynthesizePID) {
4101    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4102    S += ",V";
4103    S += OID->getNameAsString();
4104  }
4105
4106  // FIXME: OBJCGC: weak & strong
4107}
4108
4109/// getLegacyIntegralTypeEncoding -
4110/// Another legacy compatibility encoding: 32-bit longs are encoded as
4111/// 'l' or 'L' , but not always.  For typedefs, we need to use
4112/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4113///
4114void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4115  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4116    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4117      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4118        PointeeTy = UnsignedIntTy;
4119      else
4120        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4121          PointeeTy = IntTy;
4122    }
4123  }
4124}
4125
4126void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4127                                        const FieldDecl *Field) const {
4128  // We follow the behavior of gcc, expanding structures which are
4129  // directly pointed to, and expanding embedded structures. Note that
4130  // these rules are sufficient to prevent recursive encoding of the
4131  // same type.
4132  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4133                             true /* outermost type */);
4134}
4135
4136static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4137    switch (T->getAs<BuiltinType>()->getKind()) {
4138    default: assert(0 && "Unhandled builtin type kind");
4139    case BuiltinType::Void:       return 'v';
4140    case BuiltinType::Bool:       return 'B';
4141    case BuiltinType::Char_U:
4142    case BuiltinType::UChar:      return 'C';
4143    case BuiltinType::UShort:     return 'S';
4144    case BuiltinType::UInt:       return 'I';
4145    case BuiltinType::ULong:
4146        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4147    case BuiltinType::UInt128:    return 'T';
4148    case BuiltinType::ULongLong:  return 'Q';
4149    case BuiltinType::Char_S:
4150    case BuiltinType::SChar:      return 'c';
4151    case BuiltinType::Short:      return 's';
4152    case BuiltinType::WChar_S:
4153    case BuiltinType::WChar_U:
4154    case BuiltinType::Int:        return 'i';
4155    case BuiltinType::Long:
4156      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4157    case BuiltinType::LongLong:   return 'q';
4158    case BuiltinType::Int128:     return 't';
4159    case BuiltinType::Float:      return 'f';
4160    case BuiltinType::Double:     return 'd';
4161    case BuiltinType::LongDouble: return 'D';
4162    }
4163}
4164
4165static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4166                           QualType T, const FieldDecl *FD) {
4167  const Expr *E = FD->getBitWidth();
4168  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4169  S += 'b';
4170  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4171  // The GNU runtime requires more information; bitfields are encoded as b,
4172  // then the offset (in bits) of the first element, then the type of the
4173  // bitfield, then the size in bits.  For example, in this structure:
4174  //
4175  // struct
4176  // {
4177  //    int integer;
4178  //    int flags:2;
4179  // };
4180  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4181  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4182  // information is not especially sensible, but we're stuck with it for
4183  // compatibility with GCC, although providing it breaks anything that
4184  // actually uses runtime introspection and wants to work on both runtimes...
4185  if (!Ctx->getLangOptions().NeXTRuntime) {
4186    const RecordDecl *RD = FD->getParent();
4187    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4188    // FIXME: This same linear search is also used in ExprConstant - it might
4189    // be better if the FieldDecl stored its offset.  We'd be increasing the
4190    // size of the object slightly, but saving some time every time it is used.
4191    unsigned i = 0;
4192    for (RecordDecl::field_iterator Field = RD->field_begin(),
4193                                 FieldEnd = RD->field_end();
4194         Field != FieldEnd; (void)++Field, ++i) {
4195      if (*Field == FD)
4196        break;
4197    }
4198    S += llvm::utostr(RL.getFieldOffset(i));
4199    if (T->isEnumeralType())
4200      S += 'i';
4201    else
4202      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4203  }
4204  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4205  S += llvm::utostr(N);
4206}
4207
4208// FIXME: Use SmallString for accumulating string.
4209void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4210                                            bool ExpandPointedToStructures,
4211                                            bool ExpandStructures,
4212                                            const FieldDecl *FD,
4213                                            bool OutermostType,
4214                                            bool EncodingProperty,
4215                                            bool StructField) const {
4216  if (T->getAs<BuiltinType>()) {
4217    if (FD && FD->isBitField())
4218      return EncodeBitField(this, S, T, FD);
4219    S += ObjCEncodingForPrimitiveKind(this, T);
4220    return;
4221  }
4222
4223  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4224    S += 'j';
4225    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4226                               false);
4227    return;
4228  }
4229
4230  // encoding for pointer or r3eference types.
4231  QualType PointeeTy;
4232  if (const PointerType *PT = T->getAs<PointerType>()) {
4233    if (PT->isObjCSelType()) {
4234      S += ':';
4235      return;
4236    }
4237    PointeeTy = PT->getPointeeType();
4238  }
4239  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4240    PointeeTy = RT->getPointeeType();
4241  if (!PointeeTy.isNull()) {
4242    bool isReadOnly = false;
4243    // For historical/compatibility reasons, the read-only qualifier of the
4244    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4245    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4246    // Also, do not emit the 'r' for anything but the outermost type!
4247    if (isa<TypedefType>(T.getTypePtr())) {
4248      if (OutermostType && T.isConstQualified()) {
4249        isReadOnly = true;
4250        S += 'r';
4251      }
4252    } else if (OutermostType) {
4253      QualType P = PointeeTy;
4254      while (P->getAs<PointerType>())
4255        P = P->getAs<PointerType>()->getPointeeType();
4256      if (P.isConstQualified()) {
4257        isReadOnly = true;
4258        S += 'r';
4259      }
4260    }
4261    if (isReadOnly) {
4262      // Another legacy compatibility encoding. Some ObjC qualifier and type
4263      // combinations need to be rearranged.
4264      // Rewrite "in const" from "nr" to "rn"
4265      if (llvm::StringRef(S).endswith("nr"))
4266        S.replace(S.end()-2, S.end(), "rn");
4267    }
4268
4269    if (PointeeTy->isCharType()) {
4270      // char pointer types should be encoded as '*' unless it is a
4271      // type that has been typedef'd to 'BOOL'.
4272      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4273        S += '*';
4274        return;
4275      }
4276    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4277      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4278      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4279        S += '#';
4280        return;
4281      }
4282      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4283      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4284        S += '@';
4285        return;
4286      }
4287      // fall through...
4288    }
4289    S += '^';
4290    getLegacyIntegralTypeEncoding(PointeeTy);
4291
4292    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4293                               NULL);
4294    return;
4295  }
4296
4297  if (const ArrayType *AT =
4298      // Ignore type qualifiers etc.
4299        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4300    if (isa<IncompleteArrayType>(AT) && !StructField) {
4301      // Incomplete arrays are encoded as a pointer to the array element.
4302      S += '^';
4303
4304      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4305                                 false, ExpandStructures, FD);
4306    } else {
4307      S += '[';
4308
4309      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4310        if (getTypeSize(CAT->getElementType()) == 0)
4311          S += '0';
4312        else
4313          S += llvm::utostr(CAT->getSize().getZExtValue());
4314      } else {
4315        //Variable length arrays are encoded as a regular array with 0 elements.
4316        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4317               "Unknown array type!");
4318        S += '0';
4319      }
4320
4321      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4322                                 false, ExpandStructures, FD);
4323      S += ']';
4324    }
4325    return;
4326  }
4327
4328  if (T->getAs<FunctionType>()) {
4329    S += '?';
4330    return;
4331  }
4332
4333  if (const RecordType *RTy = T->getAs<RecordType>()) {
4334    RecordDecl *RDecl = RTy->getDecl();
4335    S += RDecl->isUnion() ? '(' : '{';
4336    // Anonymous structures print as '?'
4337    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4338      S += II->getName();
4339      if (ClassTemplateSpecializationDecl *Spec
4340          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4341        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4342        std::string TemplateArgsStr
4343          = TemplateSpecializationType::PrintTemplateArgumentList(
4344                                            TemplateArgs.data(),
4345                                            TemplateArgs.size(),
4346                                            (*this).PrintingPolicy);
4347
4348        S += TemplateArgsStr;
4349      }
4350    } else {
4351      S += '?';
4352    }
4353    if (ExpandStructures) {
4354      S += '=';
4355      if (!RDecl->isUnion()) {
4356        getObjCEncodingForStructureImpl(RDecl, S, FD);
4357      } else {
4358        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4359                                     FieldEnd = RDecl->field_end();
4360             Field != FieldEnd; ++Field) {
4361          if (FD) {
4362            S += '"';
4363            S += Field->getNameAsString();
4364            S += '"';
4365          }
4366
4367          // Special case bit-fields.
4368          if (Field->isBitField()) {
4369            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4370                                       (*Field));
4371          } else {
4372            QualType qt = Field->getType();
4373            getLegacyIntegralTypeEncoding(qt);
4374            getObjCEncodingForTypeImpl(qt, S, false, true,
4375                                       FD, /*OutermostType*/false,
4376                                       /*EncodingProperty*/false,
4377                                       /*StructField*/true);
4378          }
4379        }
4380      }
4381    }
4382    S += RDecl->isUnion() ? ')' : '}';
4383    return;
4384  }
4385
4386  if (T->isEnumeralType()) {
4387    if (FD && FD->isBitField())
4388      EncodeBitField(this, S, T, FD);
4389    else
4390      S += 'i';
4391    return;
4392  }
4393
4394  if (T->isBlockPointerType()) {
4395    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4396    return;
4397  }
4398
4399  // Ignore protocol qualifiers when mangling at this level.
4400  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4401    T = OT->getBaseType();
4402
4403  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4404    // @encode(class_name)
4405    ObjCInterfaceDecl *OI = OIT->getDecl();
4406    S += '{';
4407    const IdentifierInfo *II = OI->getIdentifier();
4408    S += II->getName();
4409    S += '=';
4410    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4411    DeepCollectObjCIvars(OI, true, Ivars);
4412    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4413      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4414      if (Field->isBitField())
4415        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4416      else
4417        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4418    }
4419    S += '}';
4420    return;
4421  }
4422
4423  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4424    if (OPT->isObjCIdType()) {
4425      S += '@';
4426      return;
4427    }
4428
4429    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4430      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4431      // Since this is a binary compatibility issue, need to consult with runtime
4432      // folks. Fortunately, this is a *very* obsure construct.
4433      S += '#';
4434      return;
4435    }
4436
4437    if (OPT->isObjCQualifiedIdType()) {
4438      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4439                                 ExpandPointedToStructures,
4440                                 ExpandStructures, FD);
4441      if (FD || EncodingProperty) {
4442        // Note that we do extended encoding of protocol qualifer list
4443        // Only when doing ivar or property encoding.
4444        S += '"';
4445        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4446             E = OPT->qual_end(); I != E; ++I) {
4447          S += '<';
4448          S += (*I)->getNameAsString();
4449          S += '>';
4450        }
4451        S += '"';
4452      }
4453      return;
4454    }
4455
4456    QualType PointeeTy = OPT->getPointeeType();
4457    if (!EncodingProperty &&
4458        isa<TypedefType>(PointeeTy.getTypePtr())) {
4459      // Another historical/compatibility reason.
4460      // We encode the underlying type which comes out as
4461      // {...};
4462      S += '^';
4463      getObjCEncodingForTypeImpl(PointeeTy, S,
4464                                 false, ExpandPointedToStructures,
4465                                 NULL);
4466      return;
4467    }
4468
4469    S += '@';
4470    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4471      S += '"';
4472      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4473      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4474           E = OPT->qual_end(); I != E; ++I) {
4475        S += '<';
4476        S += (*I)->getNameAsString();
4477        S += '>';
4478      }
4479      S += '"';
4480    }
4481    return;
4482  }
4483
4484  // gcc just blithely ignores member pointers.
4485  // TODO: maybe there should be a mangling for these
4486  if (T->getAs<MemberPointerType>())
4487    return;
4488
4489  if (T->isVectorType()) {
4490    // This matches gcc's encoding, even though technically it is
4491    // insufficient.
4492    // FIXME. We should do a better job than gcc.
4493    return;
4494  }
4495
4496  assert(0 && "@encode for type not implemented!");
4497}
4498
4499void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4500                                                 std::string &S,
4501                                                 const FieldDecl *FD,
4502                                                 bool includeVBases) const {
4503  assert(RDecl && "Expected non-null RecordDecl");
4504  assert(!RDecl->isUnion() && "Should not be called for unions");
4505  if (!RDecl->getDefinition())
4506    return;
4507
4508  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4509  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4510  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4511
4512  if (CXXRec) {
4513    for (CXXRecordDecl::base_class_iterator
4514           BI = CXXRec->bases_begin(),
4515           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4516      if (!BI->isVirtual()) {
4517        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4518        if (base->isEmpty())
4519          continue;
4520        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4521        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4522                                  std::make_pair(offs, base));
4523      }
4524    }
4525  }
4526
4527  unsigned i = 0;
4528  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4529                               FieldEnd = RDecl->field_end();
4530       Field != FieldEnd; ++Field, ++i) {
4531    uint64_t offs = layout.getFieldOffset(i);
4532    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4533                              std::make_pair(offs, *Field));
4534  }
4535
4536  if (CXXRec && includeVBases) {
4537    for (CXXRecordDecl::base_class_iterator
4538           BI = CXXRec->vbases_begin(),
4539           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4540      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4541      if (base->isEmpty())
4542        continue;
4543      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4544      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4545                                std::make_pair(offs, base));
4546    }
4547  }
4548
4549  CharUnits size;
4550  if (CXXRec) {
4551    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4552  } else {
4553    size = layout.getSize();
4554  }
4555
4556  uint64_t CurOffs = 0;
4557  std::multimap<uint64_t, NamedDecl *>::iterator
4558    CurLayObj = FieldOrBaseOffsets.begin();
4559
4560  if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4561    assert(CXXRec && CXXRec->isDynamicClass() &&
4562           "Offset 0 was empty but no VTable ?");
4563    if (FD) {
4564      S += "\"_vptr$";
4565      std::string recname = CXXRec->getNameAsString();
4566      if (recname.empty()) recname = "?";
4567      S += recname;
4568      S += '"';
4569    }
4570    S += "^^?";
4571    CurOffs += getTypeSize(VoidPtrTy);
4572  }
4573
4574  if (!RDecl->hasFlexibleArrayMember()) {
4575    // Mark the end of the structure.
4576    uint64_t offs = toBits(size);
4577    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4578                              std::make_pair(offs, (NamedDecl*)0));
4579  }
4580
4581  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4582    assert(CurOffs <= CurLayObj->first);
4583
4584    if (CurOffs < CurLayObj->first) {
4585      uint64_t padding = CurLayObj->first - CurOffs;
4586      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4587      // packing/alignment of members is different that normal, in which case
4588      // the encoding will be out-of-sync with the real layout.
4589      // If the runtime switches to just consider the size of types without
4590      // taking into account alignment, we could make padding explicit in the
4591      // encoding (e.g. using arrays of chars). The encoding strings would be
4592      // longer then though.
4593      CurOffs += padding;
4594    }
4595
4596    NamedDecl *dcl = CurLayObj->second;
4597    if (dcl == 0)
4598      break; // reached end of structure.
4599
4600    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4601      // We expand the bases without their virtual bases since those are going
4602      // in the initial structure. Note that this differs from gcc which
4603      // expands virtual bases each time one is encountered in the hierarchy,
4604      // making the encoding type bigger than it really is.
4605      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4606      assert(!base->isEmpty());
4607      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4608    } else {
4609      FieldDecl *field = cast<FieldDecl>(dcl);
4610      if (FD) {
4611        S += '"';
4612        S += field->getNameAsString();
4613        S += '"';
4614      }
4615
4616      if (field->isBitField()) {
4617        EncodeBitField(this, S, field->getType(), field);
4618        CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4619      } else {
4620        QualType qt = field->getType();
4621        getLegacyIntegralTypeEncoding(qt);
4622        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4623                                   /*OutermostType*/false,
4624                                   /*EncodingProperty*/false,
4625                                   /*StructField*/true);
4626        CurOffs += getTypeSize(field->getType());
4627      }
4628    }
4629  }
4630}
4631
4632void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4633                                                 std::string& S) const {
4634  if (QT & Decl::OBJC_TQ_In)
4635    S += 'n';
4636  if (QT & Decl::OBJC_TQ_Inout)
4637    S += 'N';
4638  if (QT & Decl::OBJC_TQ_Out)
4639    S += 'o';
4640  if (QT & Decl::OBJC_TQ_Bycopy)
4641    S += 'O';
4642  if (QT & Decl::OBJC_TQ_Byref)
4643    S += 'R';
4644  if (QT & Decl::OBJC_TQ_Oneway)
4645    S += 'V';
4646}
4647
4648void ASTContext::setBuiltinVaListType(QualType T) {
4649  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4650
4651  BuiltinVaListType = T;
4652}
4653
4654void ASTContext::setObjCIdType(QualType T) {
4655  ObjCIdTypedefType = T;
4656}
4657
4658void ASTContext::setObjCSelType(QualType T) {
4659  ObjCSelTypedefType = T;
4660}
4661
4662void ASTContext::setObjCProtoType(QualType QT) {
4663  ObjCProtoType = QT;
4664}
4665
4666void ASTContext::setObjCClassType(QualType T) {
4667  ObjCClassTypedefType = T;
4668}
4669
4670void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4671  assert(ObjCConstantStringType.isNull() &&
4672         "'NSConstantString' type already set!");
4673
4674  ObjCConstantStringType = getObjCInterfaceType(Decl);
4675}
4676
4677/// \brief Retrieve the template name that corresponds to a non-empty
4678/// lookup.
4679TemplateName
4680ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4681                                      UnresolvedSetIterator End) const {
4682  unsigned size = End - Begin;
4683  assert(size > 1 && "set is not overloaded!");
4684
4685  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4686                          size * sizeof(FunctionTemplateDecl*));
4687  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4688
4689  NamedDecl **Storage = OT->getStorage();
4690  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4691    NamedDecl *D = *I;
4692    assert(isa<FunctionTemplateDecl>(D) ||
4693           (isa<UsingShadowDecl>(D) &&
4694            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4695    *Storage++ = D;
4696  }
4697
4698  return TemplateName(OT);
4699}
4700
4701/// \brief Retrieve the template name that represents a qualified
4702/// template name such as \c std::vector.
4703TemplateName
4704ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4705                                     bool TemplateKeyword,
4706                                     TemplateDecl *Template) const {
4707  assert(NNS && "Missing nested-name-specifier in qualified template name");
4708
4709  // FIXME: Canonicalization?
4710  llvm::FoldingSetNodeID ID;
4711  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4712
4713  void *InsertPos = 0;
4714  QualifiedTemplateName *QTN =
4715    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4716  if (!QTN) {
4717    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4718    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4719  }
4720
4721  return TemplateName(QTN);
4722}
4723
4724/// \brief Retrieve the template name that represents a dependent
4725/// template name such as \c MetaFun::template apply.
4726TemplateName
4727ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4728                                     const IdentifierInfo *Name) const {
4729  assert((!NNS || NNS->isDependent()) &&
4730         "Nested name specifier must be dependent");
4731
4732  llvm::FoldingSetNodeID ID;
4733  DependentTemplateName::Profile(ID, NNS, Name);
4734
4735  void *InsertPos = 0;
4736  DependentTemplateName *QTN =
4737    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4738
4739  if (QTN)
4740    return TemplateName(QTN);
4741
4742  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4743  if (CanonNNS == NNS) {
4744    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4745  } else {
4746    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4747    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4748    DependentTemplateName *CheckQTN =
4749      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4750    assert(!CheckQTN && "Dependent type name canonicalization broken");
4751    (void)CheckQTN;
4752  }
4753
4754  DependentTemplateNames.InsertNode(QTN, InsertPos);
4755  return TemplateName(QTN);
4756}
4757
4758/// \brief Retrieve the template name that represents a dependent
4759/// template name such as \c MetaFun::template operator+.
4760TemplateName
4761ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4762                                     OverloadedOperatorKind Operator) const {
4763  assert((!NNS || NNS->isDependent()) &&
4764         "Nested name specifier must be dependent");
4765
4766  llvm::FoldingSetNodeID ID;
4767  DependentTemplateName::Profile(ID, NNS, Operator);
4768
4769  void *InsertPos = 0;
4770  DependentTemplateName *QTN
4771    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4772
4773  if (QTN)
4774    return TemplateName(QTN);
4775
4776  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4777  if (CanonNNS == NNS) {
4778    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4779  } else {
4780    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4781    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4782
4783    DependentTemplateName *CheckQTN
4784      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4785    assert(!CheckQTN && "Dependent template name canonicalization broken");
4786    (void)CheckQTN;
4787  }
4788
4789  DependentTemplateNames.InsertNode(QTN, InsertPos);
4790  return TemplateName(QTN);
4791}
4792
4793TemplateName
4794ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4795                                       const TemplateArgument &ArgPack) const {
4796  ASTContext &Self = const_cast<ASTContext &>(*this);
4797  llvm::FoldingSetNodeID ID;
4798  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4799
4800  void *InsertPos = 0;
4801  SubstTemplateTemplateParmPackStorage *Subst
4802    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4803
4804  if (!Subst) {
4805    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param,
4806                                                           ArgPack.pack_size(),
4807                                                         ArgPack.pack_begin());
4808    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4809  }
4810
4811  return TemplateName(Subst);
4812}
4813
4814/// getFromTargetType - Given one of the integer types provided by
4815/// TargetInfo, produce the corresponding type. The unsigned @p Type
4816/// is actually a value of type @c TargetInfo::IntType.
4817CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4818  switch (Type) {
4819  case TargetInfo::NoInt: return CanQualType();
4820  case TargetInfo::SignedShort: return ShortTy;
4821  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4822  case TargetInfo::SignedInt: return IntTy;
4823  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4824  case TargetInfo::SignedLong: return LongTy;
4825  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4826  case TargetInfo::SignedLongLong: return LongLongTy;
4827  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4828  }
4829
4830  assert(false && "Unhandled TargetInfo::IntType value");
4831  return CanQualType();
4832}
4833
4834//===----------------------------------------------------------------------===//
4835//                        Type Predicates.
4836//===----------------------------------------------------------------------===//
4837
4838/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4839/// garbage collection attribute.
4840///
4841Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4842  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4843    return Qualifiers::GCNone;
4844
4845  assert(getLangOptions().ObjC1);
4846  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4847
4848  // Default behaviour under objective-C's gc is for ObjC pointers
4849  // (or pointers to them) be treated as though they were declared
4850  // as __strong.
4851  if (GCAttrs == Qualifiers::GCNone) {
4852    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4853      return Qualifiers::Strong;
4854    else if (Ty->isPointerType())
4855      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4856  } else {
4857    // It's not valid to set GC attributes on anything that isn't a
4858    // pointer.
4859#ifndef NDEBUG
4860    QualType CT = Ty->getCanonicalTypeInternal();
4861    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4862      CT = AT->getElementType();
4863    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4864#endif
4865  }
4866  return GCAttrs;
4867}
4868
4869//===----------------------------------------------------------------------===//
4870//                        Type Compatibility Testing
4871//===----------------------------------------------------------------------===//
4872
4873/// areCompatVectorTypes - Return true if the two specified vector types are
4874/// compatible.
4875static bool areCompatVectorTypes(const VectorType *LHS,
4876                                 const VectorType *RHS) {
4877  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4878  return LHS->getElementType() == RHS->getElementType() &&
4879         LHS->getNumElements() == RHS->getNumElements();
4880}
4881
4882bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4883                                          QualType SecondVec) {
4884  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4885  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4886
4887  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4888    return true;
4889
4890  // Treat Neon vector types and most AltiVec vector types as if they are the
4891  // equivalent GCC vector types.
4892  const VectorType *First = FirstVec->getAs<VectorType>();
4893  const VectorType *Second = SecondVec->getAs<VectorType>();
4894  if (First->getNumElements() == Second->getNumElements() &&
4895      hasSameType(First->getElementType(), Second->getElementType()) &&
4896      First->getVectorKind() != VectorType::AltiVecPixel &&
4897      First->getVectorKind() != VectorType::AltiVecBool &&
4898      Second->getVectorKind() != VectorType::AltiVecPixel &&
4899      Second->getVectorKind() != VectorType::AltiVecBool)
4900    return true;
4901
4902  return false;
4903}
4904
4905//===----------------------------------------------------------------------===//
4906// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4907//===----------------------------------------------------------------------===//
4908
4909/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4910/// inheritance hierarchy of 'rProto'.
4911bool
4912ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4913                                           ObjCProtocolDecl *rProto) const {
4914  if (lProto == rProto)
4915    return true;
4916  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4917       E = rProto->protocol_end(); PI != E; ++PI)
4918    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4919      return true;
4920  return false;
4921}
4922
4923/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4924/// return true if lhs's protocols conform to rhs's protocol; false
4925/// otherwise.
4926bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4927  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4928    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4929  return false;
4930}
4931
4932/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4933/// Class<p1, ...>.
4934bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4935                                                      QualType rhs) {
4936  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4937  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4938  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4939
4940  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4941       E = lhsQID->qual_end(); I != E; ++I) {
4942    bool match = false;
4943    ObjCProtocolDecl *lhsProto = *I;
4944    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4945         E = rhsOPT->qual_end(); J != E; ++J) {
4946      ObjCProtocolDecl *rhsProto = *J;
4947      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4948        match = true;
4949        break;
4950      }
4951    }
4952    if (!match)
4953      return false;
4954  }
4955  return true;
4956}
4957
4958/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4959/// ObjCQualifiedIDType.
4960bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4961                                                   bool compare) {
4962  // Allow id<P..> and an 'id' or void* type in all cases.
4963  if (lhs->isVoidPointerType() ||
4964      lhs->isObjCIdType() || lhs->isObjCClassType())
4965    return true;
4966  else if (rhs->isVoidPointerType() ||
4967           rhs->isObjCIdType() || rhs->isObjCClassType())
4968    return true;
4969
4970  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4971    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4972
4973    if (!rhsOPT) return false;
4974
4975    if (rhsOPT->qual_empty()) {
4976      // If the RHS is a unqualified interface pointer "NSString*",
4977      // make sure we check the class hierarchy.
4978      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4979        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4980             E = lhsQID->qual_end(); I != E; ++I) {
4981          // when comparing an id<P> on lhs with a static type on rhs,
4982          // see if static class implements all of id's protocols, directly or
4983          // through its super class and categories.
4984          if (!rhsID->ClassImplementsProtocol(*I, true))
4985            return false;
4986        }
4987      }
4988      // If there are no qualifiers and no interface, we have an 'id'.
4989      return true;
4990    }
4991    // Both the right and left sides have qualifiers.
4992    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4993         E = lhsQID->qual_end(); I != E; ++I) {
4994      ObjCProtocolDecl *lhsProto = *I;
4995      bool match = false;
4996
4997      // when comparing an id<P> on lhs with a static type on rhs,
4998      // see if static class implements all of id's protocols, directly or
4999      // through its super class and categories.
5000      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5001           E = rhsOPT->qual_end(); J != E; ++J) {
5002        ObjCProtocolDecl *rhsProto = *J;
5003        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5004            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5005          match = true;
5006          break;
5007        }
5008      }
5009      // If the RHS is a qualified interface pointer "NSString<P>*",
5010      // make sure we check the class hierarchy.
5011      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5012        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5013             E = lhsQID->qual_end(); I != E; ++I) {
5014          // when comparing an id<P> on lhs with a static type on rhs,
5015          // see if static class implements all of id's protocols, directly or
5016          // through its super class and categories.
5017          if (rhsID->ClassImplementsProtocol(*I, true)) {
5018            match = true;
5019            break;
5020          }
5021        }
5022      }
5023      if (!match)
5024        return false;
5025    }
5026
5027    return true;
5028  }
5029
5030  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5031  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5032
5033  if (const ObjCObjectPointerType *lhsOPT =
5034        lhs->getAsObjCInterfacePointerType()) {
5035    // If both the right and left sides have qualifiers.
5036    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5037         E = lhsOPT->qual_end(); I != E; ++I) {
5038      ObjCProtocolDecl *lhsProto = *I;
5039      bool match = false;
5040
5041      // when comparing an id<P> on rhs with a static type on lhs,
5042      // see if static class implements all of id's protocols, directly or
5043      // through its super class and categories.
5044      // First, lhs protocols in the qualifier list must be found, direct
5045      // or indirect in rhs's qualifier list or it is a mismatch.
5046      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5047           E = rhsQID->qual_end(); J != E; ++J) {
5048        ObjCProtocolDecl *rhsProto = *J;
5049        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5050            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5051          match = true;
5052          break;
5053        }
5054      }
5055      if (!match)
5056        return false;
5057    }
5058
5059    // Static class's protocols, or its super class or category protocols
5060    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5061    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5062      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5063      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5064      // This is rather dubious but matches gcc's behavior. If lhs has
5065      // no type qualifier and its class has no static protocol(s)
5066      // assume that it is mismatch.
5067      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5068        return false;
5069      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5070           LHSInheritedProtocols.begin(),
5071           E = LHSInheritedProtocols.end(); I != E; ++I) {
5072        bool match = false;
5073        ObjCProtocolDecl *lhsProto = (*I);
5074        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5075             E = rhsQID->qual_end(); J != E; ++J) {
5076          ObjCProtocolDecl *rhsProto = *J;
5077          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5078              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5079            match = true;
5080            break;
5081          }
5082        }
5083        if (!match)
5084          return false;
5085      }
5086    }
5087    return true;
5088  }
5089  return false;
5090}
5091
5092/// canAssignObjCInterfaces - Return true if the two interface types are
5093/// compatible for assignment from RHS to LHS.  This handles validation of any
5094/// protocol qualifiers on the LHS or RHS.
5095///
5096bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5097                                         const ObjCObjectPointerType *RHSOPT) {
5098  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5099  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5100
5101  // If either type represents the built-in 'id' or 'Class' types, return true.
5102  if (LHS->isObjCUnqualifiedIdOrClass() ||
5103      RHS->isObjCUnqualifiedIdOrClass())
5104    return true;
5105
5106  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5107    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5108                                             QualType(RHSOPT,0),
5109                                             false);
5110
5111  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5112    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5113                                                QualType(RHSOPT,0));
5114
5115  // If we have 2 user-defined types, fall into that path.
5116  if (LHS->getInterface() && RHS->getInterface())
5117    return canAssignObjCInterfaces(LHS, RHS);
5118
5119  return false;
5120}
5121
5122/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5123/// for providing type-safety for objective-c pointers used to pass/return
5124/// arguments in block literals. When passed as arguments, passing 'A*' where
5125/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5126/// not OK. For the return type, the opposite is not OK.
5127bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5128                                         const ObjCObjectPointerType *LHSOPT,
5129                                         const ObjCObjectPointerType *RHSOPT,
5130                                         bool BlockReturnType) {
5131  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5132    return true;
5133
5134  if (LHSOPT->isObjCBuiltinType()) {
5135    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5136  }
5137
5138  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5139    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5140                                             QualType(RHSOPT,0),
5141                                             false);
5142
5143  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5144  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5145  if (LHS && RHS)  { // We have 2 user-defined types.
5146    if (LHS != RHS) {
5147      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5148        return BlockReturnType;
5149      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5150        return !BlockReturnType;
5151    }
5152    else
5153      return true;
5154  }
5155  return false;
5156}
5157
5158/// getIntersectionOfProtocols - This routine finds the intersection of set
5159/// of protocols inherited from two distinct objective-c pointer objects.
5160/// It is used to build composite qualifier list of the composite type of
5161/// the conditional expression involving two objective-c pointer objects.
5162static
5163void getIntersectionOfProtocols(ASTContext &Context,
5164                                const ObjCObjectPointerType *LHSOPT,
5165                                const ObjCObjectPointerType *RHSOPT,
5166      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5167
5168  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5169  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5170  assert(LHS->getInterface() && "LHS must have an interface base");
5171  assert(RHS->getInterface() && "RHS must have an interface base");
5172
5173  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5174  unsigned LHSNumProtocols = LHS->getNumProtocols();
5175  if (LHSNumProtocols > 0)
5176    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5177  else {
5178    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5179    Context.CollectInheritedProtocols(LHS->getInterface(),
5180                                      LHSInheritedProtocols);
5181    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5182                                LHSInheritedProtocols.end());
5183  }
5184
5185  unsigned RHSNumProtocols = RHS->getNumProtocols();
5186  if (RHSNumProtocols > 0) {
5187    ObjCProtocolDecl **RHSProtocols =
5188      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5189    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5190      if (InheritedProtocolSet.count(RHSProtocols[i]))
5191        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5192  }
5193  else {
5194    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5195    Context.CollectInheritedProtocols(RHS->getInterface(),
5196                                      RHSInheritedProtocols);
5197    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5198         RHSInheritedProtocols.begin(),
5199         E = RHSInheritedProtocols.end(); I != E; ++I)
5200      if (InheritedProtocolSet.count((*I)))
5201        IntersectionOfProtocols.push_back((*I));
5202  }
5203}
5204
5205/// areCommonBaseCompatible - Returns common base class of the two classes if
5206/// one found. Note that this is O'2 algorithm. But it will be called as the
5207/// last type comparison in a ?-exp of ObjC pointer types before a
5208/// warning is issued. So, its invokation is extremely rare.
5209QualType ASTContext::areCommonBaseCompatible(
5210                                          const ObjCObjectPointerType *Lptr,
5211                                          const ObjCObjectPointerType *Rptr) {
5212  const ObjCObjectType *LHS = Lptr->getObjectType();
5213  const ObjCObjectType *RHS = Rptr->getObjectType();
5214  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5215  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5216  if (!LDecl || !RDecl || (LDecl == RDecl))
5217    return QualType();
5218
5219  do {
5220    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5221    if (canAssignObjCInterfaces(LHS, RHS)) {
5222      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
5223      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5224
5225      QualType Result = QualType(LHS, 0);
5226      if (!Protocols.empty())
5227        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5228      Result = getObjCObjectPointerType(Result);
5229      return Result;
5230    }
5231  } while ((LDecl = LDecl->getSuperClass()));
5232
5233  return QualType();
5234}
5235
5236bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5237                                         const ObjCObjectType *RHS) {
5238  assert(LHS->getInterface() && "LHS is not an interface type");
5239  assert(RHS->getInterface() && "RHS is not an interface type");
5240
5241  // Verify that the base decls are compatible: the RHS must be a subclass of
5242  // the LHS.
5243  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5244    return false;
5245
5246  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5247  // protocol qualified at all, then we are good.
5248  if (LHS->getNumProtocols() == 0)
5249    return true;
5250
5251  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5252  // more detailed analysis is required.
5253  if (RHS->getNumProtocols() == 0) {
5254    // OK, if LHS is a superclass of RHS *and*
5255    // this superclass is assignment compatible with LHS.
5256    // false otherwise.
5257    bool IsSuperClass =
5258      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5259    if (IsSuperClass) {
5260      // OK if conversion of LHS to SuperClass results in narrowing of types
5261      // ; i.e., SuperClass may implement at least one of the protocols
5262      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5263      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5264      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5265      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5266      // If super class has no protocols, it is not a match.
5267      if (SuperClassInheritedProtocols.empty())
5268        return false;
5269
5270      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5271           LHSPE = LHS->qual_end();
5272           LHSPI != LHSPE; LHSPI++) {
5273        bool SuperImplementsProtocol = false;
5274        ObjCProtocolDecl *LHSProto = (*LHSPI);
5275
5276        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5277             SuperClassInheritedProtocols.begin(),
5278             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5279          ObjCProtocolDecl *SuperClassProto = (*I);
5280          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5281            SuperImplementsProtocol = true;
5282            break;
5283          }
5284        }
5285        if (!SuperImplementsProtocol)
5286          return false;
5287      }
5288      return true;
5289    }
5290    return false;
5291  }
5292
5293  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5294                                     LHSPE = LHS->qual_end();
5295       LHSPI != LHSPE; LHSPI++) {
5296    bool RHSImplementsProtocol = false;
5297
5298    // If the RHS doesn't implement the protocol on the left, the types
5299    // are incompatible.
5300    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5301                                       RHSPE = RHS->qual_end();
5302         RHSPI != RHSPE; RHSPI++) {
5303      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5304        RHSImplementsProtocol = true;
5305        break;
5306      }
5307    }
5308    // FIXME: For better diagnostics, consider passing back the protocol name.
5309    if (!RHSImplementsProtocol)
5310      return false;
5311  }
5312  // The RHS implements all protocols listed on the LHS.
5313  return true;
5314}
5315
5316bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5317  // get the "pointed to" types
5318  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5319  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5320
5321  if (!LHSOPT || !RHSOPT)
5322    return false;
5323
5324  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5325         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5326}
5327
5328bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5329  return canAssignObjCInterfaces(
5330                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5331                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5332}
5333
5334/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5335/// both shall have the identically qualified version of a compatible type.
5336/// C99 6.2.7p1: Two types have compatible types if their types are the
5337/// same. See 6.7.[2,3,5] for additional rules.
5338bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5339                                    bool CompareUnqualified) {
5340  if (getLangOptions().CPlusPlus)
5341    return hasSameType(LHS, RHS);
5342
5343  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5344}
5345
5346bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5347  return !mergeTypes(LHS, RHS, true).isNull();
5348}
5349
5350/// mergeTransparentUnionType - if T is a transparent union type and a member
5351/// of T is compatible with SubType, return the merged type, else return
5352/// QualType()
5353QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5354                                               bool OfBlockPointer,
5355                                               bool Unqualified) {
5356  if (const RecordType *UT = T->getAsUnionType()) {
5357    RecordDecl *UD = UT->getDecl();
5358    if (UD->hasAttr<TransparentUnionAttr>()) {
5359      for (RecordDecl::field_iterator it = UD->field_begin(),
5360           itend = UD->field_end(); it != itend; ++it) {
5361        QualType ET = it->getType().getUnqualifiedType();
5362        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5363        if (!MT.isNull())
5364          return MT;
5365      }
5366    }
5367  }
5368
5369  return QualType();
5370}
5371
5372/// mergeFunctionArgumentTypes - merge two types which appear as function
5373/// argument types
5374QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5375                                                bool OfBlockPointer,
5376                                                bool Unqualified) {
5377  // GNU extension: two types are compatible if they appear as a function
5378  // argument, one of the types is a transparent union type and the other
5379  // type is compatible with a union member
5380  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5381                                              Unqualified);
5382  if (!lmerge.isNull())
5383    return lmerge;
5384
5385  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5386                                              Unqualified);
5387  if (!rmerge.isNull())
5388    return rmerge;
5389
5390  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5391}
5392
5393QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5394                                        bool OfBlockPointer,
5395                                        bool Unqualified) {
5396  const FunctionType *lbase = lhs->getAs<FunctionType>();
5397  const FunctionType *rbase = rhs->getAs<FunctionType>();
5398  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5399  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5400  bool allLTypes = true;
5401  bool allRTypes = true;
5402
5403  // Check return type
5404  QualType retType;
5405  if (OfBlockPointer) {
5406    QualType RHS = rbase->getResultType();
5407    QualType LHS = lbase->getResultType();
5408    bool UnqualifiedResult = Unqualified;
5409    if (!UnqualifiedResult)
5410      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5411    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5412  }
5413  else
5414    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5415                         Unqualified);
5416  if (retType.isNull()) return QualType();
5417
5418  if (Unqualified)
5419    retType = retType.getUnqualifiedType();
5420
5421  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5422  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5423  if (Unqualified) {
5424    LRetType = LRetType.getUnqualifiedType();
5425    RRetType = RRetType.getUnqualifiedType();
5426  }
5427
5428  if (getCanonicalType(retType) != LRetType)
5429    allLTypes = false;
5430  if (getCanonicalType(retType) != RRetType)
5431    allRTypes = false;
5432
5433  // FIXME: double check this
5434  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5435  //                           rbase->getRegParmAttr() != 0 &&
5436  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5437  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5438  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5439
5440  // Compatible functions must have compatible calling conventions
5441  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5442    return QualType();
5443
5444  // Regparm is part of the calling convention.
5445  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5446    return QualType();
5447  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5448    return QualType();
5449
5450  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5451    return QualType();
5452
5453  // It's noreturn if either type is.
5454  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5455  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5456  if (NoReturn != lbaseInfo.getNoReturn())
5457    allLTypes = false;
5458  if (NoReturn != rbaseInfo.getNoReturn())
5459    allRTypes = false;
5460
5461  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5462
5463  if (lproto && rproto) { // two C99 style function prototypes
5464    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5465           "C++ shouldn't be here");
5466    unsigned lproto_nargs = lproto->getNumArgs();
5467    unsigned rproto_nargs = rproto->getNumArgs();
5468
5469    // Compatible functions must have the same number of arguments
5470    if (lproto_nargs != rproto_nargs)
5471      return QualType();
5472
5473    // Variadic and non-variadic functions aren't compatible
5474    if (lproto->isVariadic() != rproto->isVariadic())
5475      return QualType();
5476
5477    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5478      return QualType();
5479
5480    // Check argument compatibility
5481    llvm::SmallVector<QualType, 10> types;
5482    for (unsigned i = 0; i < lproto_nargs; i++) {
5483      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5484      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5485      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5486                                                    OfBlockPointer,
5487                                                    Unqualified);
5488      if (argtype.isNull()) return QualType();
5489
5490      if (Unqualified)
5491        argtype = argtype.getUnqualifiedType();
5492
5493      types.push_back(argtype);
5494      if (Unqualified) {
5495        largtype = largtype.getUnqualifiedType();
5496        rargtype = rargtype.getUnqualifiedType();
5497      }
5498
5499      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5500        allLTypes = false;
5501      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5502        allRTypes = false;
5503    }
5504    if (allLTypes) return lhs;
5505    if (allRTypes) return rhs;
5506
5507    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5508    EPI.ExtInfo = einfo;
5509    return getFunctionType(retType, types.begin(), types.size(), EPI);
5510  }
5511
5512  if (lproto) allRTypes = false;
5513  if (rproto) allLTypes = false;
5514
5515  const FunctionProtoType *proto = lproto ? lproto : rproto;
5516  if (proto) {
5517    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5518    if (proto->isVariadic()) return QualType();
5519    // Check that the types are compatible with the types that
5520    // would result from default argument promotions (C99 6.7.5.3p15).
5521    // The only types actually affected are promotable integer
5522    // types and floats, which would be passed as a different
5523    // type depending on whether the prototype is visible.
5524    unsigned proto_nargs = proto->getNumArgs();
5525    for (unsigned i = 0; i < proto_nargs; ++i) {
5526      QualType argTy = proto->getArgType(i);
5527
5528      // Look at the promotion type of enum types, since that is the type used
5529      // to pass enum values.
5530      if (const EnumType *Enum = argTy->getAs<EnumType>())
5531        argTy = Enum->getDecl()->getPromotionType();
5532
5533      if (argTy->isPromotableIntegerType() ||
5534          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5535        return QualType();
5536    }
5537
5538    if (allLTypes) return lhs;
5539    if (allRTypes) return rhs;
5540
5541    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5542    EPI.ExtInfo = einfo;
5543    return getFunctionType(retType, proto->arg_type_begin(),
5544                           proto->getNumArgs(), EPI);
5545  }
5546
5547  if (allLTypes) return lhs;
5548  if (allRTypes) return rhs;
5549  return getFunctionNoProtoType(retType, einfo);
5550}
5551
5552QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5553                                bool OfBlockPointer,
5554                                bool Unqualified, bool BlockReturnType) {
5555  // C++ [expr]: If an expression initially has the type "reference to T", the
5556  // type is adjusted to "T" prior to any further analysis, the expression
5557  // designates the object or function denoted by the reference, and the
5558  // expression is an lvalue unless the reference is an rvalue reference and
5559  // the expression is a function call (possibly inside parentheses).
5560  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5561  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5562
5563  if (Unqualified) {
5564    LHS = LHS.getUnqualifiedType();
5565    RHS = RHS.getUnqualifiedType();
5566  }
5567
5568  QualType LHSCan = getCanonicalType(LHS),
5569           RHSCan = getCanonicalType(RHS);
5570
5571  // If two types are identical, they are compatible.
5572  if (LHSCan == RHSCan)
5573    return LHS;
5574
5575  // If the qualifiers are different, the types aren't compatible... mostly.
5576  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5577  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5578  if (LQuals != RQuals) {
5579    // If any of these qualifiers are different, we have a type
5580    // mismatch.
5581    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5582        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5583        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5584      return QualType();
5585
5586    // Exactly one GC qualifier difference is allowed: __strong is
5587    // okay if the other type has no GC qualifier but is an Objective
5588    // C object pointer (i.e. implicitly strong by default).  We fix
5589    // this by pretending that the unqualified type was actually
5590    // qualified __strong.
5591    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5592    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5593    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5594
5595    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5596      return QualType();
5597
5598    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5599      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5600    }
5601    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5602      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5603    }
5604    return QualType();
5605  }
5606
5607  // Okay, qualifiers are equal.
5608
5609  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5610  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5611
5612  // We want to consider the two function types to be the same for these
5613  // comparisons, just force one to the other.
5614  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5615  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5616
5617  // Same as above for arrays
5618  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5619    LHSClass = Type::ConstantArray;
5620  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5621    RHSClass = Type::ConstantArray;
5622
5623  // ObjCInterfaces are just specialized ObjCObjects.
5624  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5625  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5626
5627  // Canonicalize ExtVector -> Vector.
5628  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5629  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5630
5631  // If the canonical type classes don't match.
5632  if (LHSClass != RHSClass) {
5633    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5634    // a signed integer type, or an unsigned integer type.
5635    // Compatibility is based on the underlying type, not the promotion
5636    // type.
5637    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5638      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5639        return RHS;
5640    }
5641    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5642      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5643        return LHS;
5644    }
5645
5646    return QualType();
5647  }
5648
5649  // The canonical type classes match.
5650  switch (LHSClass) {
5651#define TYPE(Class, Base)
5652#define ABSTRACT_TYPE(Class, Base)
5653#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5654#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5655#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5656#include "clang/AST/TypeNodes.def"
5657    assert(false && "Non-canonical and dependent types shouldn't get here");
5658    return QualType();
5659
5660  case Type::LValueReference:
5661  case Type::RValueReference:
5662  case Type::MemberPointer:
5663    assert(false && "C++ should never be in mergeTypes");
5664    return QualType();
5665
5666  case Type::ObjCInterface:
5667  case Type::IncompleteArray:
5668  case Type::VariableArray:
5669  case Type::FunctionProto:
5670  case Type::ExtVector:
5671    assert(false && "Types are eliminated above");
5672    return QualType();
5673
5674  case Type::Pointer:
5675  {
5676    // Merge two pointer types, while trying to preserve typedef info
5677    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5678    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5679    if (Unqualified) {
5680      LHSPointee = LHSPointee.getUnqualifiedType();
5681      RHSPointee = RHSPointee.getUnqualifiedType();
5682    }
5683    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5684                                     Unqualified);
5685    if (ResultType.isNull()) return QualType();
5686    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5687      return LHS;
5688    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5689      return RHS;
5690    return getPointerType(ResultType);
5691  }
5692  case Type::BlockPointer:
5693  {
5694    // Merge two block pointer types, while trying to preserve typedef info
5695    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5696    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5697    if (Unqualified) {
5698      LHSPointee = LHSPointee.getUnqualifiedType();
5699      RHSPointee = RHSPointee.getUnqualifiedType();
5700    }
5701    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5702                                     Unqualified);
5703    if (ResultType.isNull()) return QualType();
5704    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5705      return LHS;
5706    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5707      return RHS;
5708    return getBlockPointerType(ResultType);
5709  }
5710  case Type::ConstantArray:
5711  {
5712    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5713    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5714    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5715      return QualType();
5716
5717    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5718    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5719    if (Unqualified) {
5720      LHSElem = LHSElem.getUnqualifiedType();
5721      RHSElem = RHSElem.getUnqualifiedType();
5722    }
5723
5724    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5725    if (ResultType.isNull()) return QualType();
5726    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5727      return LHS;
5728    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5729      return RHS;
5730    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5731                                          ArrayType::ArraySizeModifier(), 0);
5732    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5733                                          ArrayType::ArraySizeModifier(), 0);
5734    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5735    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5736    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5737      return LHS;
5738    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5739      return RHS;
5740    if (LVAT) {
5741      // FIXME: This isn't correct! But tricky to implement because
5742      // the array's size has to be the size of LHS, but the type
5743      // has to be different.
5744      return LHS;
5745    }
5746    if (RVAT) {
5747      // FIXME: This isn't correct! But tricky to implement because
5748      // the array's size has to be the size of RHS, but the type
5749      // has to be different.
5750      return RHS;
5751    }
5752    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5753    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5754    return getIncompleteArrayType(ResultType,
5755                                  ArrayType::ArraySizeModifier(), 0);
5756  }
5757  case Type::FunctionNoProto:
5758    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5759  case Type::Record:
5760  case Type::Enum:
5761    return QualType();
5762  case Type::Builtin:
5763    // Only exactly equal builtin types are compatible, which is tested above.
5764    return QualType();
5765  case Type::Complex:
5766    // Distinct complex types are incompatible.
5767    return QualType();
5768  case Type::Vector:
5769    // FIXME: The merged type should be an ExtVector!
5770    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5771                             RHSCan->getAs<VectorType>()))
5772      return LHS;
5773    return QualType();
5774  case Type::ObjCObject: {
5775    // Check if the types are assignment compatible.
5776    // FIXME: This should be type compatibility, e.g. whether
5777    // "LHS x; RHS x;" at global scope is legal.
5778    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5779    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5780    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5781      return LHS;
5782
5783    return QualType();
5784  }
5785  case Type::ObjCObjectPointer: {
5786    if (OfBlockPointer) {
5787      if (canAssignObjCInterfacesInBlockPointer(
5788                                          LHS->getAs<ObjCObjectPointerType>(),
5789                                          RHS->getAs<ObjCObjectPointerType>(),
5790                                          BlockReturnType))
5791      return LHS;
5792      return QualType();
5793    }
5794    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5795                                RHS->getAs<ObjCObjectPointerType>()))
5796      return LHS;
5797
5798    return QualType();
5799    }
5800  }
5801
5802  return QualType();
5803}
5804
5805/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5806/// 'RHS' attributes and returns the merged version; including for function
5807/// return types.
5808QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5809  QualType LHSCan = getCanonicalType(LHS),
5810  RHSCan = getCanonicalType(RHS);
5811  // If two types are identical, they are compatible.
5812  if (LHSCan == RHSCan)
5813    return LHS;
5814  if (RHSCan->isFunctionType()) {
5815    if (!LHSCan->isFunctionType())
5816      return QualType();
5817    QualType OldReturnType =
5818      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5819    QualType NewReturnType =
5820      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5821    QualType ResReturnType =
5822      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5823    if (ResReturnType.isNull())
5824      return QualType();
5825    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5826      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5827      // In either case, use OldReturnType to build the new function type.
5828      const FunctionType *F = LHS->getAs<FunctionType>();
5829      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5830        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5831        EPI.ExtInfo = getFunctionExtInfo(LHS);
5832        QualType ResultType
5833          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5834                            FPT->getNumArgs(), EPI);
5835        return ResultType;
5836      }
5837    }
5838    return QualType();
5839  }
5840
5841  // If the qualifiers are different, the types can still be merged.
5842  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5843  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5844  if (LQuals != RQuals) {
5845    // If any of these qualifiers are different, we have a type mismatch.
5846    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5847        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5848      return QualType();
5849
5850    // Exactly one GC qualifier difference is allowed: __strong is
5851    // okay if the other type has no GC qualifier but is an Objective
5852    // C object pointer (i.e. implicitly strong by default).  We fix
5853    // this by pretending that the unqualified type was actually
5854    // qualified __strong.
5855    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5856    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5857    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5858
5859    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5860      return QualType();
5861
5862    if (GC_L == Qualifiers::Strong)
5863      return LHS;
5864    if (GC_R == Qualifiers::Strong)
5865      return RHS;
5866    return QualType();
5867  }
5868
5869  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5870    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5871    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5872    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5873    if (ResQT == LHSBaseQT)
5874      return LHS;
5875    if (ResQT == RHSBaseQT)
5876      return RHS;
5877  }
5878  return QualType();
5879}
5880
5881//===----------------------------------------------------------------------===//
5882//                         Integer Predicates
5883//===----------------------------------------------------------------------===//
5884
5885unsigned ASTContext::getIntWidth(QualType T) const {
5886  if (const EnumType *ET = dyn_cast<EnumType>(T))
5887    T = ET->getDecl()->getIntegerType();
5888  if (T->isBooleanType())
5889    return 1;
5890  // For builtin types, just use the standard type sizing method
5891  return (unsigned)getTypeSize(T);
5892}
5893
5894QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5895  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5896
5897  // Turn <4 x signed int> -> <4 x unsigned int>
5898  if (const VectorType *VTy = T->getAs<VectorType>())
5899    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5900                         VTy->getNumElements(), VTy->getVectorKind());
5901
5902  // For enums, we return the unsigned version of the base type.
5903  if (const EnumType *ETy = T->getAs<EnumType>())
5904    T = ETy->getDecl()->getIntegerType();
5905
5906  const BuiltinType *BTy = T->getAs<BuiltinType>();
5907  assert(BTy && "Unexpected signed integer type");
5908  switch (BTy->getKind()) {
5909  case BuiltinType::Char_S:
5910  case BuiltinType::SChar:
5911    return UnsignedCharTy;
5912  case BuiltinType::Short:
5913    return UnsignedShortTy;
5914  case BuiltinType::Int:
5915    return UnsignedIntTy;
5916  case BuiltinType::Long:
5917    return UnsignedLongTy;
5918  case BuiltinType::LongLong:
5919    return UnsignedLongLongTy;
5920  case BuiltinType::Int128:
5921    return UnsignedInt128Ty;
5922  default:
5923    assert(0 && "Unexpected signed integer type");
5924    return QualType();
5925  }
5926}
5927
5928ASTMutationListener::~ASTMutationListener() { }
5929
5930
5931//===----------------------------------------------------------------------===//
5932//                          Builtin Type Computation
5933//===----------------------------------------------------------------------===//
5934
5935/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5936/// pointer over the consumed characters.  This returns the resultant type.  If
5937/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5938/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5939/// a vector of "i*".
5940///
5941/// RequiresICE is filled in on return to indicate whether the value is required
5942/// to be an Integer Constant Expression.
5943static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5944                                  ASTContext::GetBuiltinTypeError &Error,
5945                                  bool &RequiresICE,
5946                                  bool AllowTypeModifiers) {
5947  // Modifiers.
5948  int HowLong = 0;
5949  bool Signed = false, Unsigned = false;
5950  RequiresICE = false;
5951
5952  // Read the prefixed modifiers first.
5953  bool Done = false;
5954  while (!Done) {
5955    switch (*Str++) {
5956    default: Done = true; --Str; break;
5957    case 'I':
5958      RequiresICE = true;
5959      break;
5960    case 'S':
5961      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5962      assert(!Signed && "Can't use 'S' modifier multiple times!");
5963      Signed = true;
5964      break;
5965    case 'U':
5966      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5967      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5968      Unsigned = true;
5969      break;
5970    case 'L':
5971      assert(HowLong <= 2 && "Can't have LLLL modifier");
5972      ++HowLong;
5973      break;
5974    }
5975  }
5976
5977  QualType Type;
5978
5979  // Read the base type.
5980  switch (*Str++) {
5981  default: assert(0 && "Unknown builtin type letter!");
5982  case 'v':
5983    assert(HowLong == 0 && !Signed && !Unsigned &&
5984           "Bad modifiers used with 'v'!");
5985    Type = Context.VoidTy;
5986    break;
5987  case 'f':
5988    assert(HowLong == 0 && !Signed && !Unsigned &&
5989           "Bad modifiers used with 'f'!");
5990    Type = Context.FloatTy;
5991    break;
5992  case 'd':
5993    assert(HowLong < 2 && !Signed && !Unsigned &&
5994           "Bad modifiers used with 'd'!");
5995    if (HowLong)
5996      Type = Context.LongDoubleTy;
5997    else
5998      Type = Context.DoubleTy;
5999    break;
6000  case 's':
6001    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6002    if (Unsigned)
6003      Type = Context.UnsignedShortTy;
6004    else
6005      Type = Context.ShortTy;
6006    break;
6007  case 'i':
6008    if (HowLong == 3)
6009      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6010    else if (HowLong == 2)
6011      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6012    else if (HowLong == 1)
6013      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6014    else
6015      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6016    break;
6017  case 'c':
6018    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6019    if (Signed)
6020      Type = Context.SignedCharTy;
6021    else if (Unsigned)
6022      Type = Context.UnsignedCharTy;
6023    else
6024      Type = Context.CharTy;
6025    break;
6026  case 'b': // boolean
6027    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6028    Type = Context.BoolTy;
6029    break;
6030  case 'z':  // size_t.
6031    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6032    Type = Context.getSizeType();
6033    break;
6034  case 'F':
6035    Type = Context.getCFConstantStringType();
6036    break;
6037  case 'G':
6038    Type = Context.getObjCIdType();
6039    break;
6040  case 'H':
6041    Type = Context.getObjCSelType();
6042    break;
6043  case 'a':
6044    Type = Context.getBuiltinVaListType();
6045    assert(!Type.isNull() && "builtin va list type not initialized!");
6046    break;
6047  case 'A':
6048    // This is a "reference" to a va_list; however, what exactly
6049    // this means depends on how va_list is defined. There are two
6050    // different kinds of va_list: ones passed by value, and ones
6051    // passed by reference.  An example of a by-value va_list is
6052    // x86, where va_list is a char*. An example of by-ref va_list
6053    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6054    // we want this argument to be a char*&; for x86-64, we want
6055    // it to be a __va_list_tag*.
6056    Type = Context.getBuiltinVaListType();
6057    assert(!Type.isNull() && "builtin va list type not initialized!");
6058    if (Type->isArrayType())
6059      Type = Context.getArrayDecayedType(Type);
6060    else
6061      Type = Context.getLValueReferenceType(Type);
6062    break;
6063  case 'V': {
6064    char *End;
6065    unsigned NumElements = strtoul(Str, &End, 10);
6066    assert(End != Str && "Missing vector size");
6067    Str = End;
6068
6069    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6070                                             RequiresICE, false);
6071    assert(!RequiresICE && "Can't require vector ICE");
6072
6073    // TODO: No way to make AltiVec vectors in builtins yet.
6074    Type = Context.getVectorType(ElementType, NumElements,
6075                                 VectorType::GenericVector);
6076    break;
6077  }
6078  case 'X': {
6079    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6080                                             false);
6081    assert(!RequiresICE && "Can't require complex ICE");
6082    Type = Context.getComplexType(ElementType);
6083    break;
6084  }
6085  case 'P':
6086    Type = Context.getFILEType();
6087    if (Type.isNull()) {
6088      Error = ASTContext::GE_Missing_stdio;
6089      return QualType();
6090    }
6091    break;
6092  case 'J':
6093    if (Signed)
6094      Type = Context.getsigjmp_bufType();
6095    else
6096      Type = Context.getjmp_bufType();
6097
6098    if (Type.isNull()) {
6099      Error = ASTContext::GE_Missing_setjmp;
6100      return QualType();
6101    }
6102    break;
6103  }
6104
6105  // If there are modifiers and if we're allowed to parse them, go for it.
6106  Done = !AllowTypeModifiers;
6107  while (!Done) {
6108    switch (char c = *Str++) {
6109    default: Done = true; --Str; break;
6110    case '*':
6111    case '&': {
6112      // Both pointers and references can have their pointee types
6113      // qualified with an address space.
6114      char *End;
6115      unsigned AddrSpace = strtoul(Str, &End, 10);
6116      if (End != Str && AddrSpace != 0) {
6117        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6118        Str = End;
6119      }
6120      if (c == '*')
6121        Type = Context.getPointerType(Type);
6122      else
6123        Type = Context.getLValueReferenceType(Type);
6124      break;
6125    }
6126    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6127    case 'C':
6128      Type = Type.withConst();
6129      break;
6130    case 'D':
6131      Type = Context.getVolatileType(Type);
6132      break;
6133    }
6134  }
6135
6136  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6137         "Integer constant 'I' type must be an integer");
6138
6139  return Type;
6140}
6141
6142/// GetBuiltinType - Return the type for the specified builtin.
6143QualType ASTContext::GetBuiltinType(unsigned Id,
6144                                    GetBuiltinTypeError &Error,
6145                                    unsigned *IntegerConstantArgs) const {
6146  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6147
6148  llvm::SmallVector<QualType, 8> ArgTypes;
6149
6150  bool RequiresICE = false;
6151  Error = GE_None;
6152  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6153                                       RequiresICE, true);
6154  if (Error != GE_None)
6155    return QualType();
6156
6157  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6158
6159  while (TypeStr[0] && TypeStr[0] != '.') {
6160    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6161    if (Error != GE_None)
6162      return QualType();
6163
6164    // If this argument is required to be an IntegerConstantExpression and the
6165    // caller cares, fill in the bitmask we return.
6166    if (RequiresICE && IntegerConstantArgs)
6167      *IntegerConstantArgs |= 1 << ArgTypes.size();
6168
6169    // Do array -> pointer decay.  The builtin should use the decayed type.
6170    if (Ty->isArrayType())
6171      Ty = getArrayDecayedType(Ty);
6172
6173    ArgTypes.push_back(Ty);
6174  }
6175
6176  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6177         "'.' should only occur at end of builtin type list!");
6178
6179  FunctionType::ExtInfo EI;
6180  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6181
6182  bool Variadic = (TypeStr[0] == '.');
6183
6184  // We really shouldn't be making a no-proto type here, especially in C++.
6185  if (ArgTypes.empty() && Variadic)
6186    return getFunctionNoProtoType(ResType, EI);
6187
6188  FunctionProtoType::ExtProtoInfo EPI;
6189  EPI.ExtInfo = EI;
6190  EPI.Variadic = Variadic;
6191
6192  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6193}
6194
6195GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6196  GVALinkage External = GVA_StrongExternal;
6197
6198  Linkage L = FD->getLinkage();
6199  switch (L) {
6200  case NoLinkage:
6201  case InternalLinkage:
6202  case UniqueExternalLinkage:
6203    return GVA_Internal;
6204
6205  case ExternalLinkage:
6206    switch (FD->getTemplateSpecializationKind()) {
6207    case TSK_Undeclared:
6208    case TSK_ExplicitSpecialization:
6209      External = GVA_StrongExternal;
6210      break;
6211
6212    case TSK_ExplicitInstantiationDefinition:
6213      return GVA_ExplicitTemplateInstantiation;
6214
6215    case TSK_ExplicitInstantiationDeclaration:
6216    case TSK_ImplicitInstantiation:
6217      External = GVA_TemplateInstantiation;
6218      break;
6219    }
6220  }
6221
6222  if (!FD->isInlined())
6223    return External;
6224
6225  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6226    // GNU or C99 inline semantics. Determine whether this symbol should be
6227    // externally visible.
6228    if (FD->isInlineDefinitionExternallyVisible())
6229      return External;
6230
6231    // C99 inline semantics, where the symbol is not externally visible.
6232    return GVA_C99Inline;
6233  }
6234
6235  // C++0x [temp.explicit]p9:
6236  //   [ Note: The intent is that an inline function that is the subject of
6237  //   an explicit instantiation declaration will still be implicitly
6238  //   instantiated when used so that the body can be considered for
6239  //   inlining, but that no out-of-line copy of the inline function would be
6240  //   generated in the translation unit. -- end note ]
6241  if (FD->getTemplateSpecializationKind()
6242                                       == TSK_ExplicitInstantiationDeclaration)
6243    return GVA_C99Inline;
6244
6245  return GVA_CXXInline;
6246}
6247
6248GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6249  // If this is a static data member, compute the kind of template
6250  // specialization. Otherwise, this variable is not part of a
6251  // template.
6252  TemplateSpecializationKind TSK = TSK_Undeclared;
6253  if (VD->isStaticDataMember())
6254    TSK = VD->getTemplateSpecializationKind();
6255
6256  Linkage L = VD->getLinkage();
6257  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6258      VD->getType()->getLinkage() == UniqueExternalLinkage)
6259    L = UniqueExternalLinkage;
6260
6261  switch (L) {
6262  case NoLinkage:
6263  case InternalLinkage:
6264  case UniqueExternalLinkage:
6265    return GVA_Internal;
6266
6267  case ExternalLinkage:
6268    switch (TSK) {
6269    case TSK_Undeclared:
6270    case TSK_ExplicitSpecialization:
6271      return GVA_StrongExternal;
6272
6273    case TSK_ExplicitInstantiationDeclaration:
6274      llvm_unreachable("Variable should not be instantiated");
6275      // Fall through to treat this like any other instantiation.
6276
6277    case TSK_ExplicitInstantiationDefinition:
6278      return GVA_ExplicitTemplateInstantiation;
6279
6280    case TSK_ImplicitInstantiation:
6281      return GVA_TemplateInstantiation;
6282    }
6283  }
6284
6285  return GVA_StrongExternal;
6286}
6287
6288bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6289  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6290    if (!VD->isFileVarDecl())
6291      return false;
6292  } else if (!isa<FunctionDecl>(D))
6293    return false;
6294
6295  // Weak references don't produce any output by themselves.
6296  if (D->hasAttr<WeakRefAttr>())
6297    return false;
6298
6299  // Aliases and used decls are required.
6300  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6301    return true;
6302
6303  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6304    // Forward declarations aren't required.
6305    if (!FD->doesThisDeclarationHaveABody())
6306      return false;
6307
6308    // Constructors and destructors are required.
6309    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6310      return true;
6311
6312    // The key function for a class is required.
6313    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6314      const CXXRecordDecl *RD = MD->getParent();
6315      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6316        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6317        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6318          return true;
6319      }
6320    }
6321
6322    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6323
6324    // static, static inline, always_inline, and extern inline functions can
6325    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6326    // Implicit template instantiations can also be deferred in C++.
6327    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6328        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6329      return false;
6330    return true;
6331  }
6332
6333  const VarDecl *VD = cast<VarDecl>(D);
6334  assert(VD->isFileVarDecl() && "Expected file scoped var");
6335
6336  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6337    return false;
6338
6339  // Structs that have non-trivial constructors or destructors are required.
6340
6341  // FIXME: Handle references.
6342  // FIXME: Be more selective about which constructors we care about.
6343  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6344    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6345      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6346                                   RD->hasTrivialCopyConstructor() &&
6347                                   RD->hasTrivialMoveConstructor() &&
6348                                   RD->hasTrivialDestructor()))
6349        return true;
6350    }
6351  }
6352
6353  GVALinkage L = GetGVALinkageForVariable(VD);
6354  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6355    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6356      return false;
6357  }
6358
6359  return true;
6360}
6361
6362CallingConv ASTContext::getDefaultMethodCallConv() {
6363  // Pass through to the C++ ABI object
6364  return ABI->getDefaultMethodCallConv();
6365}
6366
6367bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6368  // Pass through to the C++ ABI object
6369  return ABI->isNearlyEmpty(RD);
6370}
6371
6372MangleContext *ASTContext::createMangleContext() {
6373  switch (Target.getCXXABI()) {
6374  case CXXABI_ARM:
6375  case CXXABI_Itanium:
6376    return createItaniumMangleContext(*this, getDiagnostics());
6377  case CXXABI_Microsoft:
6378    return createMicrosoftMangleContext(*this, getDiagnostics());
6379  }
6380  assert(0 && "Unsupported ABI");
6381  return 0;
6382}
6383
6384CXXABI::~CXXABI() {}
6385
6386size_t ASTContext::getSideTableAllocatedMemory() const {
6387  size_t bytes = 0;
6388  bytes += ASTRecordLayouts.getMemorySize();
6389  bytes += ObjCLayouts.getMemorySize();
6390  bytes += KeyFunctions.getMemorySize();
6391  bytes += ObjCImpls.getMemorySize();
6392  bytes += BlockVarCopyInits.getMemorySize();
6393  bytes += DeclAttrs.getMemorySize();
6394  bytes += InstantiatedFromStaticDataMember.getMemorySize();
6395  bytes += InstantiatedFromUsingDecl.getMemorySize();
6396  bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6397  bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6398  return bytes;
6399}
6400
6401