ASTContext.cpp revision cac18add73d095eaab600aefe27ea7174aec4922
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/Basic/Builtins.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Support/Capacity.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include <map>
40
41using namespace clang;
42
43unsigned ASTContext::NumImplicitDefaultConstructors;
44unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyConstructors;
46unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
47unsigned ASTContext::NumImplicitMoveConstructors;
48unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
49unsigned ASTContext::NumImplicitCopyAssignmentOperators;
50unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
51unsigned ASTContext::NumImplicitMoveAssignmentOperators;
52unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
53unsigned ASTContext::NumImplicitDestructors;
54unsigned ASTContext::NumImplicitDestructorsDeclared;
55
56enum FloatingRank {
57  HalfRank, FloatRank, DoubleRank, LongDoubleRank
58};
59
60RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
61  if (!CommentsLoaded && ExternalSource) {
62    ExternalSource->ReadComments();
63    CommentsLoaded = true;
64  }
65
66  assert(D);
67
68  // User can not attach documentation to implicit declarations.
69  if (D->isImplicit())
70    return NULL;
71
72  // User can not attach documentation to implicit instantiations.
73  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
75      return NULL;
76  }
77
78  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
79    if (VD->isStaticDataMember() &&
80        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
81      return NULL;
82  }
83
84  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
85    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
86      return NULL;
87  }
88
89  if (const ClassTemplateSpecializationDecl *CTSD =
90          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
91    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
92    if (TSK == TSK_ImplicitInstantiation ||
93        TSK == TSK_Undeclared)
94      return NULL;
95  }
96
97  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
98    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
99      return NULL;
100  }
101  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
102    // When tag declaration (but not definition!) is part of the
103    // decl-specifier-seq of some other declaration, it doesn't get comment
104    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
105      return NULL;
106  }
107  // TODO: handle comments for function parameters properly.
108  if (isa<ParmVarDecl>(D))
109    return NULL;
110
111  // TODO: we could look up template parameter documentation in the template
112  // documentation.
113  if (isa<TemplateTypeParmDecl>(D) ||
114      isa<NonTypeTemplateParmDecl>(D) ||
115      isa<TemplateTemplateParmDecl>(D))
116    return NULL;
117
118  ArrayRef<RawComment *> RawComments = Comments.getComments();
119
120  // If there are no comments anywhere, we won't find anything.
121  if (RawComments.empty())
122    return NULL;
123
124  // Find declaration location.
125  // For Objective-C declarations we generally don't expect to have multiple
126  // declarators, thus use declaration starting location as the "declaration
127  // location".
128  // For all other declarations multiple declarators are used quite frequently,
129  // so we use the location of the identifier as the "declaration location".
130  SourceLocation DeclLoc;
131  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
132      isa<ObjCPropertyDecl>(D) ||
133      isa<RedeclarableTemplateDecl>(D) ||
134      isa<ClassTemplateSpecializationDecl>(D))
135    DeclLoc = D->getLocStart();
136  else
137    DeclLoc = D->getLocation();
138
139  // If the declaration doesn't map directly to a location in a file, we
140  // can't find the comment.
141  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
142    return NULL;
143
144  // Find the comment that occurs just after this declaration.
145  ArrayRef<RawComment *>::iterator Comment;
146  {
147    // When searching for comments during parsing, the comment we are looking
148    // for is usually among the last two comments we parsed -- check them
149    // first.
150    RawComment CommentAtDeclLoc(
151        SourceMgr, SourceRange(DeclLoc), false,
152        LangOpts.CommentOpts.ParseAllComments);
153    BeforeThanCompare<RawComment> Compare(SourceMgr);
154    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
155    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
156    if (!Found && RawComments.size() >= 2) {
157      MaybeBeforeDecl--;
158      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
159    }
160
161    if (Found) {
162      Comment = MaybeBeforeDecl + 1;
163      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
164                                         &CommentAtDeclLoc, Compare));
165    } else {
166      // Slow path.
167      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
168                                 &CommentAtDeclLoc, Compare);
169    }
170  }
171
172  // Decompose the location for the declaration and find the beginning of the
173  // file buffer.
174  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
175
176  // First check whether we have a trailing comment.
177  if (Comment != RawComments.end() &&
178      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
179      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
180    std::pair<FileID, unsigned> CommentBeginDecomp
181      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
182    // Check that Doxygen trailing comment comes after the declaration, starts
183    // on the same line and in the same file as the declaration.
184    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
185        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
186          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
187                                     CommentBeginDecomp.second)) {
188      return *Comment;
189    }
190  }
191
192  // The comment just after the declaration was not a trailing comment.
193  // Let's look at the previous comment.
194  if (Comment == RawComments.begin())
195    return NULL;
196  --Comment;
197
198  // Check that we actually have a non-member Doxygen comment.
199  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
200    return NULL;
201
202  // Decompose the end of the comment.
203  std::pair<FileID, unsigned> CommentEndDecomp
204    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
205
206  // If the comment and the declaration aren't in the same file, then they
207  // aren't related.
208  if (DeclLocDecomp.first != CommentEndDecomp.first)
209    return NULL;
210
211  // Get the corresponding buffer.
212  bool Invalid = false;
213  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
214                                               &Invalid).data();
215  if (Invalid)
216    return NULL;
217
218  // Extract text between the comment and declaration.
219  StringRef Text(Buffer + CommentEndDecomp.second,
220                 DeclLocDecomp.second - CommentEndDecomp.second);
221
222  // There should be no other declarations or preprocessor directives between
223  // comment and declaration.
224  if (Text.find_first_of(",;{}#@") != StringRef::npos)
225    return NULL;
226
227  return *Comment;
228}
229
230namespace {
231/// If we have a 'templated' declaration for a template, adjust 'D' to
232/// refer to the actual template.
233/// If we have an implicit instantiation, adjust 'D' to refer to template.
234const Decl *adjustDeclToTemplate(const Decl *D) {
235  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
236    // Is this function declaration part of a function template?
237    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
238      return FTD;
239
240    // Nothing to do if function is not an implicit instantiation.
241    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
242      return D;
243
244    // Function is an implicit instantiation of a function template?
245    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
246      return FTD;
247
248    // Function is instantiated from a member definition of a class template?
249    if (const FunctionDecl *MemberDecl =
250            FD->getInstantiatedFromMemberFunction())
251      return MemberDecl;
252
253    return D;
254  }
255  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
256    // Static data member is instantiated from a member definition of a class
257    // template?
258    if (VD->isStaticDataMember())
259      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
260        return MemberDecl;
261
262    return D;
263  }
264  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
265    // Is this class declaration part of a class template?
266    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
267      return CTD;
268
269    // Class is an implicit instantiation of a class template or partial
270    // specialization?
271    if (const ClassTemplateSpecializationDecl *CTSD =
272            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
273      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
274        return D;
275      llvm::PointerUnion<ClassTemplateDecl *,
276                         ClassTemplatePartialSpecializationDecl *>
277          PU = CTSD->getSpecializedTemplateOrPartial();
278      return PU.is<ClassTemplateDecl*>() ?
279          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
280          static_cast<const Decl*>(
281              PU.get<ClassTemplatePartialSpecializationDecl *>());
282    }
283
284    // Class is instantiated from a member definition of a class template?
285    if (const MemberSpecializationInfo *Info =
286                   CRD->getMemberSpecializationInfo())
287      return Info->getInstantiatedFrom();
288
289    return D;
290  }
291  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
292    // Enum is instantiated from a member definition of a class template?
293    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
294      return MemberDecl;
295
296    return D;
297  }
298  // FIXME: Adjust alias templates?
299  return D;
300}
301} // unnamed namespace
302
303const RawComment *ASTContext::getRawCommentForAnyRedecl(
304                                                const Decl *D,
305                                                const Decl **OriginalDecl) const {
306  D = adjustDeclToTemplate(D);
307
308  // Check whether we have cached a comment for this declaration already.
309  {
310    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
311        RedeclComments.find(D);
312    if (Pos != RedeclComments.end()) {
313      const RawCommentAndCacheFlags &Raw = Pos->second;
314      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
315        if (OriginalDecl)
316          *OriginalDecl = Raw.getOriginalDecl();
317        return Raw.getRaw();
318      }
319    }
320  }
321
322  // Search for comments attached to declarations in the redeclaration chain.
323  const RawComment *RC = NULL;
324  const Decl *OriginalDeclForRC = NULL;
325  for (Decl::redecl_iterator I = D->redecls_begin(),
326                             E = D->redecls_end();
327       I != E; ++I) {
328    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
329        RedeclComments.find(*I);
330    if (Pos != RedeclComments.end()) {
331      const RawCommentAndCacheFlags &Raw = Pos->second;
332      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
333        RC = Raw.getRaw();
334        OriginalDeclForRC = Raw.getOriginalDecl();
335        break;
336      }
337    } else {
338      RC = getRawCommentForDeclNoCache(*I);
339      OriginalDeclForRC = *I;
340      RawCommentAndCacheFlags Raw;
341      if (RC) {
342        Raw.setRaw(RC);
343        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
344      } else
345        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
346      Raw.setOriginalDecl(*I);
347      RedeclComments[*I] = Raw;
348      if (RC)
349        break;
350    }
351  }
352
353  // If we found a comment, it should be a documentation comment.
354  assert(!RC || RC->isDocumentation());
355
356  if (OriginalDecl)
357    *OriginalDecl = OriginalDeclForRC;
358
359  // Update cache for every declaration in the redeclaration chain.
360  RawCommentAndCacheFlags Raw;
361  Raw.setRaw(RC);
362  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
363  Raw.setOriginalDecl(OriginalDeclForRC);
364
365  for (Decl::redecl_iterator I = D->redecls_begin(),
366                             E = D->redecls_end();
367       I != E; ++I) {
368    RawCommentAndCacheFlags &R = RedeclComments[*I];
369    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
370      R = Raw;
371  }
372
373  return RC;
374}
375
376static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
377                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
378  const DeclContext *DC = ObjCMethod->getDeclContext();
379  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
380    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
381    if (!ID)
382      return;
383    // Add redeclared method here.
384    for (ObjCInterfaceDecl::known_extensions_iterator
385           Ext = ID->known_extensions_begin(),
386           ExtEnd = ID->known_extensions_end();
387         Ext != ExtEnd; ++Ext) {
388      if (ObjCMethodDecl *RedeclaredMethod =
389            Ext->getMethod(ObjCMethod->getSelector(),
390                                  ObjCMethod->isInstanceMethod()))
391        Redeclared.push_back(RedeclaredMethod);
392    }
393  }
394}
395
396comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
397                                                    const Decl *D) const {
398  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
399  ThisDeclInfo->CommentDecl = D;
400  ThisDeclInfo->IsFilled = false;
401  ThisDeclInfo->fill();
402  ThisDeclInfo->CommentDecl = FC->getDecl();
403  comments::FullComment *CFC =
404    new (*this) comments::FullComment(FC->getBlocks(),
405                                      ThisDeclInfo);
406  return CFC;
407
408}
409
410comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
411  const RawComment *RC = getRawCommentForDeclNoCache(D);
412  return RC ? RC->parse(*this, 0, D) : 0;
413}
414
415comments::FullComment *ASTContext::getCommentForDecl(
416                                              const Decl *D,
417                                              const Preprocessor *PP) const {
418  if (D->isInvalidDecl())
419    return NULL;
420  D = adjustDeclToTemplate(D);
421
422  const Decl *Canonical = D->getCanonicalDecl();
423  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
424      ParsedComments.find(Canonical);
425
426  if (Pos != ParsedComments.end()) {
427    if (Canonical != D) {
428      comments::FullComment *FC = Pos->second;
429      comments::FullComment *CFC = cloneFullComment(FC, D);
430      return CFC;
431    }
432    return Pos->second;
433  }
434
435  const Decl *OriginalDecl;
436
437  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
438  if (!RC) {
439    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
440      SmallVector<const NamedDecl*, 8> Overridden;
441      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
442      if (OMD && OMD->isPropertyAccessor())
443        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
444          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
445            return cloneFullComment(FC, D);
446      if (OMD)
447        addRedeclaredMethods(OMD, Overridden);
448      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
449      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
450        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
451          return cloneFullComment(FC, D);
452    }
453    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
454      // Attach any tag type's documentation to its typedef if latter
455      // does not have one of its own.
456      QualType QT = TD->getUnderlyingType();
457      if (const TagType *TT = QT->getAs<TagType>())
458        if (const Decl *TD = TT->getDecl())
459          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
460            return cloneFullComment(FC, D);
461    }
462    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
463      while (IC->getSuperClass()) {
464        IC = IC->getSuperClass();
465        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
466          return cloneFullComment(FC, D);
467      }
468    }
469    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
470      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
471        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
472          return cloneFullComment(FC, D);
473    }
474    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
475      if (!(RD = RD->getDefinition()))
476        return NULL;
477      // Check non-virtual bases.
478      for (CXXRecordDecl::base_class_const_iterator I =
479           RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
480        if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
481          continue;
482        QualType Ty = I->getType();
483        if (Ty.isNull())
484          continue;
485        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
486          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
487            continue;
488
489          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
490            return cloneFullComment(FC, D);
491        }
492      }
493      // Check virtual bases.
494      for (CXXRecordDecl::base_class_const_iterator I =
495           RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
496        if (I->getAccessSpecifier() != AS_public)
497          continue;
498        QualType Ty = I->getType();
499        if (Ty.isNull())
500          continue;
501        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
502          if (!(VirtualBase= VirtualBase->getDefinition()))
503            continue;
504          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
505            return cloneFullComment(FC, D);
506        }
507      }
508    }
509    return NULL;
510  }
511
512  // If the RawComment was attached to other redeclaration of this Decl, we
513  // should parse the comment in context of that other Decl.  This is important
514  // because comments can contain references to parameter names which can be
515  // different across redeclarations.
516  if (D != OriginalDecl)
517    return getCommentForDecl(OriginalDecl, PP);
518
519  comments::FullComment *FC = RC->parse(*this, PP, D);
520  ParsedComments[Canonical] = FC;
521  return FC;
522}
523
524void
525ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
526                                               TemplateTemplateParmDecl *Parm) {
527  ID.AddInteger(Parm->getDepth());
528  ID.AddInteger(Parm->getPosition());
529  ID.AddBoolean(Parm->isParameterPack());
530
531  TemplateParameterList *Params = Parm->getTemplateParameters();
532  ID.AddInteger(Params->size());
533  for (TemplateParameterList::const_iterator P = Params->begin(),
534                                          PEnd = Params->end();
535       P != PEnd; ++P) {
536    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
537      ID.AddInteger(0);
538      ID.AddBoolean(TTP->isParameterPack());
539      continue;
540    }
541
542    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
543      ID.AddInteger(1);
544      ID.AddBoolean(NTTP->isParameterPack());
545      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
546      if (NTTP->isExpandedParameterPack()) {
547        ID.AddBoolean(true);
548        ID.AddInteger(NTTP->getNumExpansionTypes());
549        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
550          QualType T = NTTP->getExpansionType(I);
551          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
552        }
553      } else
554        ID.AddBoolean(false);
555      continue;
556    }
557
558    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
559    ID.AddInteger(2);
560    Profile(ID, TTP);
561  }
562}
563
564TemplateTemplateParmDecl *
565ASTContext::getCanonicalTemplateTemplateParmDecl(
566                                          TemplateTemplateParmDecl *TTP) const {
567  // Check if we already have a canonical template template parameter.
568  llvm::FoldingSetNodeID ID;
569  CanonicalTemplateTemplateParm::Profile(ID, TTP);
570  void *InsertPos = 0;
571  CanonicalTemplateTemplateParm *Canonical
572    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
573  if (Canonical)
574    return Canonical->getParam();
575
576  // Build a canonical template parameter list.
577  TemplateParameterList *Params = TTP->getTemplateParameters();
578  SmallVector<NamedDecl *, 4> CanonParams;
579  CanonParams.reserve(Params->size());
580  for (TemplateParameterList::const_iterator P = Params->begin(),
581                                          PEnd = Params->end();
582       P != PEnd; ++P) {
583    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
584      CanonParams.push_back(
585                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
586                                               SourceLocation(),
587                                               SourceLocation(),
588                                               TTP->getDepth(),
589                                               TTP->getIndex(), 0, false,
590                                               TTP->isParameterPack()));
591    else if (NonTypeTemplateParmDecl *NTTP
592             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
593      QualType T = getCanonicalType(NTTP->getType());
594      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
595      NonTypeTemplateParmDecl *Param;
596      if (NTTP->isExpandedParameterPack()) {
597        SmallVector<QualType, 2> ExpandedTypes;
598        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
599        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
600          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
601          ExpandedTInfos.push_back(
602                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
603        }
604
605        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
606                                                SourceLocation(),
607                                                SourceLocation(),
608                                                NTTP->getDepth(),
609                                                NTTP->getPosition(), 0,
610                                                T,
611                                                TInfo,
612                                                ExpandedTypes.data(),
613                                                ExpandedTypes.size(),
614                                                ExpandedTInfos.data());
615      } else {
616        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
617                                                SourceLocation(),
618                                                SourceLocation(),
619                                                NTTP->getDepth(),
620                                                NTTP->getPosition(), 0,
621                                                T,
622                                                NTTP->isParameterPack(),
623                                                TInfo);
624      }
625      CanonParams.push_back(Param);
626
627    } else
628      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
629                                           cast<TemplateTemplateParmDecl>(*P)));
630  }
631
632  TemplateTemplateParmDecl *CanonTTP
633    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
634                                       SourceLocation(), TTP->getDepth(),
635                                       TTP->getPosition(),
636                                       TTP->isParameterPack(),
637                                       0,
638                         TemplateParameterList::Create(*this, SourceLocation(),
639                                                       SourceLocation(),
640                                                       CanonParams.data(),
641                                                       CanonParams.size(),
642                                                       SourceLocation()));
643
644  // Get the new insert position for the node we care about.
645  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
646  assert(Canonical == 0 && "Shouldn't be in the map!");
647  (void)Canonical;
648
649  // Create the canonical template template parameter entry.
650  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
651  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
652  return CanonTTP;
653}
654
655CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
656  if (!LangOpts.CPlusPlus) return 0;
657
658  switch (T.getCXXABI().getKind()) {
659  case TargetCXXABI::GenericARM:
660  case TargetCXXABI::iOS:
661    return CreateARMCXXABI(*this);
662  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
663  case TargetCXXABI::GenericItanium:
664    return CreateItaniumCXXABI(*this);
665  case TargetCXXABI::Microsoft:
666    return CreateMicrosoftCXXABI(*this);
667  }
668  llvm_unreachable("Invalid CXXABI type!");
669}
670
671static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
672                                             const LangOptions &LOpts) {
673  if (LOpts.FakeAddressSpaceMap) {
674    // The fake address space map must have a distinct entry for each
675    // language-specific address space.
676    static const unsigned FakeAddrSpaceMap[] = {
677      1, // opencl_global
678      2, // opencl_local
679      3, // opencl_constant
680      4, // cuda_device
681      5, // cuda_constant
682      6  // cuda_shared
683    };
684    return &FakeAddrSpaceMap;
685  } else {
686    return &T.getAddressSpaceMap();
687  }
688}
689
690ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
691                       const TargetInfo *t,
692                       IdentifierTable &idents, SelectorTable &sels,
693                       Builtin::Context &builtins,
694                       unsigned size_reserve,
695                       bool DelayInitialization)
696  : FunctionProtoTypes(this_()),
697    TemplateSpecializationTypes(this_()),
698    DependentTemplateSpecializationTypes(this_()),
699    SubstTemplateTemplateParmPacks(this_()),
700    GlobalNestedNameSpecifier(0),
701    Int128Decl(0), UInt128Decl(0), Float128StubDecl(0),
702    BuiltinVaListDecl(0),
703    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
704    BOOLDecl(0),
705    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
706    FILEDecl(0),
707    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
708    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
709    cudaConfigureCallDecl(0),
710    NullTypeSourceInfo(QualType()),
711    FirstLocalImport(), LastLocalImport(),
712    SourceMgr(SM), LangOpts(LOpts),
713    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
714    Idents(idents), Selectors(sels),
715    BuiltinInfo(builtins),
716    DeclarationNames(*this),
717    ExternalSource(0), Listener(0),
718    Comments(SM), CommentsLoaded(false),
719    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
720    LastSDM(0, 0)
721{
722  if (size_reserve > 0) Types.reserve(size_reserve);
723  TUDecl = TranslationUnitDecl::Create(*this);
724
725  if (!DelayInitialization) {
726    assert(t && "No target supplied for ASTContext initialization");
727    InitBuiltinTypes(*t);
728  }
729}
730
731ASTContext::~ASTContext() {
732  // Release the DenseMaps associated with DeclContext objects.
733  // FIXME: Is this the ideal solution?
734  ReleaseDeclContextMaps();
735
736  // Call all of the deallocation functions on all of their targets.
737  for (DeallocationMap::const_iterator I = Deallocations.begin(),
738           E = Deallocations.end(); I != E; ++I)
739    for (unsigned J = 0, N = I->second.size(); J != N; ++J)
740      (I->first)((I->second)[J]);
741
742  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
743  // because they can contain DenseMaps.
744  for (llvm::DenseMap<const ObjCContainerDecl*,
745       const ASTRecordLayout*>::iterator
746       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
747    // Increment in loop to prevent using deallocated memory.
748    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
749      R->Destroy(*this);
750
751  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
752       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
753    // Increment in loop to prevent using deallocated memory.
754    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
755      R->Destroy(*this);
756  }
757
758  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
759                                                    AEnd = DeclAttrs.end();
760       A != AEnd; ++A)
761    A->second->~AttrVec();
762}
763
764void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
765  Deallocations[Callback].push_back(Data);
766}
767
768void
769ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
770  ExternalSource.reset(Source.take());
771}
772
773void ASTContext::PrintStats() const {
774  llvm::errs() << "\n*** AST Context Stats:\n";
775  llvm::errs() << "  " << Types.size() << " types total.\n";
776
777  unsigned counts[] = {
778#define TYPE(Name, Parent) 0,
779#define ABSTRACT_TYPE(Name, Parent)
780#include "clang/AST/TypeNodes.def"
781    0 // Extra
782  };
783
784  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
785    Type *T = Types[i];
786    counts[(unsigned)T->getTypeClass()]++;
787  }
788
789  unsigned Idx = 0;
790  unsigned TotalBytes = 0;
791#define TYPE(Name, Parent)                                              \
792  if (counts[Idx])                                                      \
793    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
794                 << " types\n";                                         \
795  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
796  ++Idx;
797#define ABSTRACT_TYPE(Name, Parent)
798#include "clang/AST/TypeNodes.def"
799
800  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
801
802  // Implicit special member functions.
803  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
804               << NumImplicitDefaultConstructors
805               << " implicit default constructors created\n";
806  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
807               << NumImplicitCopyConstructors
808               << " implicit copy constructors created\n";
809  if (getLangOpts().CPlusPlus)
810    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
811                 << NumImplicitMoveConstructors
812                 << " implicit move constructors created\n";
813  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
814               << NumImplicitCopyAssignmentOperators
815               << " implicit copy assignment operators created\n";
816  if (getLangOpts().CPlusPlus)
817    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
818                 << NumImplicitMoveAssignmentOperators
819                 << " implicit move assignment operators created\n";
820  llvm::errs() << NumImplicitDestructorsDeclared << "/"
821               << NumImplicitDestructors
822               << " implicit destructors created\n";
823
824  if (ExternalSource.get()) {
825    llvm::errs() << "\n";
826    ExternalSource->PrintStats();
827  }
828
829  BumpAlloc.PrintStats();
830}
831
832TypedefDecl *ASTContext::getInt128Decl() const {
833  if (!Int128Decl) {
834    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
835    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
836                                     getTranslationUnitDecl(),
837                                     SourceLocation(),
838                                     SourceLocation(),
839                                     &Idents.get("__int128_t"),
840                                     TInfo);
841  }
842
843  return Int128Decl;
844}
845
846TypedefDecl *ASTContext::getUInt128Decl() const {
847  if (!UInt128Decl) {
848    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
849    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
850                                     getTranslationUnitDecl(),
851                                     SourceLocation(),
852                                     SourceLocation(),
853                                     &Idents.get("__uint128_t"),
854                                     TInfo);
855  }
856
857  return UInt128Decl;
858}
859
860TypeDecl *ASTContext::getFloat128StubType() const {
861  if (!Float128StubDecl) {
862    Float128StubDecl = RecordDecl::Create(const_cast<ASTContext &>(*this),
863                                          TTK_Struct,
864                                          getTranslationUnitDecl(),
865                                          SourceLocation(),
866                                          SourceLocation(),
867                                          &Idents.get("__float128"));
868  }
869
870  return Float128StubDecl;
871}
872
873void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
874  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
875  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
876  Types.push_back(Ty);
877}
878
879void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
880  assert((!this->Target || this->Target == &Target) &&
881         "Incorrect target reinitialization");
882  assert(VoidTy.isNull() && "Context reinitialized?");
883
884  this->Target = &Target;
885
886  ABI.reset(createCXXABI(Target));
887  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
888
889  // C99 6.2.5p19.
890  InitBuiltinType(VoidTy,              BuiltinType::Void);
891
892  // C99 6.2.5p2.
893  InitBuiltinType(BoolTy,              BuiltinType::Bool);
894  // C99 6.2.5p3.
895  if (LangOpts.CharIsSigned)
896    InitBuiltinType(CharTy,            BuiltinType::Char_S);
897  else
898    InitBuiltinType(CharTy,            BuiltinType::Char_U);
899  // C99 6.2.5p4.
900  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
901  InitBuiltinType(ShortTy,             BuiltinType::Short);
902  InitBuiltinType(IntTy,               BuiltinType::Int);
903  InitBuiltinType(LongTy,              BuiltinType::Long);
904  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
905
906  // C99 6.2.5p6.
907  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
908  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
909  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
910  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
911  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
912
913  // C99 6.2.5p10.
914  InitBuiltinType(FloatTy,             BuiltinType::Float);
915  InitBuiltinType(DoubleTy,            BuiltinType::Double);
916  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
917
918  // GNU extension, 128-bit integers.
919  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
920  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
921
922  // C++ 3.9.1p5
923  if (TargetInfo::isTypeSigned(Target.getWCharType()))
924    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
925  else  // -fshort-wchar makes wchar_t be unsigned.
926    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
927  if (LangOpts.CPlusPlus && LangOpts.WChar)
928    WideCharTy = WCharTy;
929  else {
930    // C99 (or C++ using -fno-wchar).
931    WideCharTy = getFromTargetType(Target.getWCharType());
932  }
933
934  WIntTy = getFromTargetType(Target.getWIntType());
935
936  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
937    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
938  else // C99
939    Char16Ty = getFromTargetType(Target.getChar16Type());
940
941  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
942    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
943  else // C99
944    Char32Ty = getFromTargetType(Target.getChar32Type());
945
946  // Placeholder type for type-dependent expressions whose type is
947  // completely unknown. No code should ever check a type against
948  // DependentTy and users should never see it; however, it is here to
949  // help diagnose failures to properly check for type-dependent
950  // expressions.
951  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
952
953  // Placeholder type for functions.
954  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
955
956  // Placeholder type for bound members.
957  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
958
959  // Placeholder type for pseudo-objects.
960  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
961
962  // "any" type; useful for debugger-like clients.
963  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
964
965  // Placeholder type for unbridged ARC casts.
966  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
967
968  // Placeholder type for builtin functions.
969  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
970
971  // C99 6.2.5p11.
972  FloatComplexTy      = getComplexType(FloatTy);
973  DoubleComplexTy     = getComplexType(DoubleTy);
974  LongDoubleComplexTy = getComplexType(LongDoubleTy);
975
976  // Builtin types for 'id', 'Class', and 'SEL'.
977  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
978  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
979  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
980
981  if (LangOpts.OpenCL) {
982    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
983    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
984    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
985    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
986    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
987    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
988
989    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
990    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
991  }
992
993  // Builtin type for __objc_yes and __objc_no
994  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
995                       SignedCharTy : BoolTy);
996
997  ObjCConstantStringType = QualType();
998
999  ObjCSuperType = QualType();
1000
1001  // void * type
1002  VoidPtrTy = getPointerType(VoidTy);
1003
1004  // nullptr type (C++0x 2.14.7)
1005  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1006
1007  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1008  InitBuiltinType(HalfTy, BuiltinType::Half);
1009
1010  // Builtin type used to help define __builtin_va_list.
1011  VaListTagTy = QualType();
1012}
1013
1014DiagnosticsEngine &ASTContext::getDiagnostics() const {
1015  return SourceMgr.getDiagnostics();
1016}
1017
1018AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1019  AttrVec *&Result = DeclAttrs[D];
1020  if (!Result) {
1021    void *Mem = Allocate(sizeof(AttrVec));
1022    Result = new (Mem) AttrVec;
1023  }
1024
1025  return *Result;
1026}
1027
1028/// \brief Erase the attributes corresponding to the given declaration.
1029void ASTContext::eraseDeclAttrs(const Decl *D) {
1030  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1031  if (Pos != DeclAttrs.end()) {
1032    Pos->second->~AttrVec();
1033    DeclAttrs.erase(Pos);
1034  }
1035}
1036
1037MemberSpecializationInfo *
1038ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1039  assert(Var->isStaticDataMember() && "Not a static data member");
1040  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
1041    = InstantiatedFromStaticDataMember.find(Var);
1042  if (Pos == InstantiatedFromStaticDataMember.end())
1043    return 0;
1044
1045  return Pos->second;
1046}
1047
1048void
1049ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1050                                                TemplateSpecializationKind TSK,
1051                                          SourceLocation PointOfInstantiation) {
1052  assert(Inst->isStaticDataMember() && "Not a static data member");
1053  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1054  assert(!InstantiatedFromStaticDataMember[Inst] &&
1055         "Already noted what static data member was instantiated from");
1056  InstantiatedFromStaticDataMember[Inst]
1057    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
1058}
1059
1060FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1061                                                     const FunctionDecl *FD){
1062  assert(FD && "Specialization is 0");
1063  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1064    = ClassScopeSpecializationPattern.find(FD);
1065  if (Pos == ClassScopeSpecializationPattern.end())
1066    return 0;
1067
1068  return Pos->second;
1069}
1070
1071void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1072                                        FunctionDecl *Pattern) {
1073  assert(FD && "Specialization is 0");
1074  assert(Pattern && "Class scope specialization pattern is 0");
1075  ClassScopeSpecializationPattern[FD] = Pattern;
1076}
1077
1078NamedDecl *
1079ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1080  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1081    = InstantiatedFromUsingDecl.find(UUD);
1082  if (Pos == InstantiatedFromUsingDecl.end())
1083    return 0;
1084
1085  return Pos->second;
1086}
1087
1088void
1089ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1090  assert((isa<UsingDecl>(Pattern) ||
1091          isa<UnresolvedUsingValueDecl>(Pattern) ||
1092          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1093         "pattern decl is not a using decl");
1094  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1095  InstantiatedFromUsingDecl[Inst] = Pattern;
1096}
1097
1098UsingShadowDecl *
1099ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1100  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1101    = InstantiatedFromUsingShadowDecl.find(Inst);
1102  if (Pos == InstantiatedFromUsingShadowDecl.end())
1103    return 0;
1104
1105  return Pos->second;
1106}
1107
1108void
1109ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1110                                               UsingShadowDecl *Pattern) {
1111  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1112  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1113}
1114
1115FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1116  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1117    = InstantiatedFromUnnamedFieldDecl.find(Field);
1118  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1119    return 0;
1120
1121  return Pos->second;
1122}
1123
1124void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1125                                                     FieldDecl *Tmpl) {
1126  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1127  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1128  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1129         "Already noted what unnamed field was instantiated from");
1130
1131  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1132}
1133
1134bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1135                                    const FieldDecl *LastFD) const {
1136  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1137          FD->getBitWidthValue(*this) == 0);
1138}
1139
1140bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1141                                             const FieldDecl *LastFD) const {
1142  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1143          FD->getBitWidthValue(*this) == 0 &&
1144          LastFD->getBitWidthValue(*this) != 0);
1145}
1146
1147bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1148                                         const FieldDecl *LastFD) const {
1149  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1150          FD->getBitWidthValue(*this) &&
1151          LastFD->getBitWidthValue(*this));
1152}
1153
1154bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1155                                         const FieldDecl *LastFD) const {
1156  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1157          LastFD->getBitWidthValue(*this));
1158}
1159
1160bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1161                                             const FieldDecl *LastFD) const {
1162  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1163          FD->getBitWidthValue(*this));
1164}
1165
1166ASTContext::overridden_cxx_method_iterator
1167ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1168  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1169    = OverriddenMethods.find(Method->getCanonicalDecl());
1170  if (Pos == OverriddenMethods.end())
1171    return 0;
1172
1173  return Pos->second.begin();
1174}
1175
1176ASTContext::overridden_cxx_method_iterator
1177ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1178  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1179    = OverriddenMethods.find(Method->getCanonicalDecl());
1180  if (Pos == OverriddenMethods.end())
1181    return 0;
1182
1183  return Pos->second.end();
1184}
1185
1186unsigned
1187ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1188  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1189    = OverriddenMethods.find(Method->getCanonicalDecl());
1190  if (Pos == OverriddenMethods.end())
1191    return 0;
1192
1193  return Pos->second.size();
1194}
1195
1196void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1197                                     const CXXMethodDecl *Overridden) {
1198  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1199  OverriddenMethods[Method].push_back(Overridden);
1200}
1201
1202void ASTContext::getOverriddenMethods(
1203                      const NamedDecl *D,
1204                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1205  assert(D);
1206
1207  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1208    Overridden.append(overridden_methods_begin(CXXMethod),
1209                      overridden_methods_end(CXXMethod));
1210    return;
1211  }
1212
1213  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1214  if (!Method)
1215    return;
1216
1217  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1218  Method->getOverriddenMethods(OverDecls);
1219  Overridden.append(OverDecls.begin(), OverDecls.end());
1220}
1221
1222void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1223  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1224  assert(!Import->isFromASTFile() && "Non-local import declaration");
1225  if (!FirstLocalImport) {
1226    FirstLocalImport = Import;
1227    LastLocalImport = Import;
1228    return;
1229  }
1230
1231  LastLocalImport->NextLocalImport = Import;
1232  LastLocalImport = Import;
1233}
1234
1235//===----------------------------------------------------------------------===//
1236//                         Type Sizing and Analysis
1237//===----------------------------------------------------------------------===//
1238
1239/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1240/// scalar floating point type.
1241const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1242  const BuiltinType *BT = T->getAs<BuiltinType>();
1243  assert(BT && "Not a floating point type!");
1244  switch (BT->getKind()) {
1245  default: llvm_unreachable("Not a floating point type!");
1246  case BuiltinType::Half:       return Target->getHalfFormat();
1247  case BuiltinType::Float:      return Target->getFloatFormat();
1248  case BuiltinType::Double:     return Target->getDoubleFormat();
1249  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1250  }
1251}
1252
1253/// getDeclAlign - Return a conservative estimate of the alignment of the
1254/// specified decl.  Note that bitfields do not have a valid alignment, so
1255/// this method will assert on them.
1256/// If @p RefAsPointee, references are treated like their underlying type
1257/// (for alignof), else they're treated like pointers (for CodeGen).
1258CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1259  unsigned Align = Target->getCharWidth();
1260
1261  bool UseAlignAttrOnly = false;
1262  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1263    Align = AlignFromAttr;
1264
1265    // __attribute__((aligned)) can increase or decrease alignment
1266    // *except* on a struct or struct member, where it only increases
1267    // alignment unless 'packed' is also specified.
1268    //
1269    // It is an error for alignas to decrease alignment, so we can
1270    // ignore that possibility;  Sema should diagnose it.
1271    if (isa<FieldDecl>(D)) {
1272      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1273        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1274    } else {
1275      UseAlignAttrOnly = true;
1276    }
1277  }
1278  else if (isa<FieldDecl>(D))
1279      UseAlignAttrOnly =
1280        D->hasAttr<PackedAttr>() ||
1281        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1282
1283  // If we're using the align attribute only, just ignore everything
1284  // else about the declaration and its type.
1285  if (UseAlignAttrOnly) {
1286    // do nothing
1287
1288  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1289    QualType T = VD->getType();
1290    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1291      if (RefAsPointee)
1292        T = RT->getPointeeType();
1293      else
1294        T = getPointerType(RT->getPointeeType());
1295    }
1296    if (!T->isIncompleteType() && !T->isFunctionType()) {
1297      // Adjust alignments of declarations with array type by the
1298      // large-array alignment on the target.
1299      unsigned MinWidth = Target->getLargeArrayMinWidth();
1300      const ArrayType *arrayType;
1301      if (MinWidth && (arrayType = getAsArrayType(T))) {
1302        if (isa<VariableArrayType>(arrayType))
1303          Align = std::max(Align, Target->getLargeArrayAlign());
1304        else if (isa<ConstantArrayType>(arrayType) &&
1305                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1306          Align = std::max(Align, Target->getLargeArrayAlign());
1307
1308        // Walk through any array types while we're at it.
1309        T = getBaseElementType(arrayType);
1310      }
1311      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1312      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1313        if (VD->hasGlobalStorage())
1314          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1315      }
1316    }
1317
1318    // Fields can be subject to extra alignment constraints, like if
1319    // the field is packed, the struct is packed, or the struct has a
1320    // a max-field-alignment constraint (#pragma pack).  So calculate
1321    // the actual alignment of the field within the struct, and then
1322    // (as we're expected to) constrain that by the alignment of the type.
1323    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1324      // So calculate the alignment of the field.
1325      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1326
1327      // Start with the record's overall alignment.
1328      unsigned fieldAlign = toBits(layout.getAlignment());
1329
1330      // Use the GCD of that and the offset within the record.
1331      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1332      if (offset > 0) {
1333        // Alignment is always a power of 2, so the GCD will be a power of 2,
1334        // which means we get to do this crazy thing instead of Euclid's.
1335        uint64_t lowBitOfOffset = offset & (~offset + 1);
1336        if (lowBitOfOffset < fieldAlign)
1337          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1338      }
1339
1340      Align = std::min(Align, fieldAlign);
1341    }
1342  }
1343
1344  return toCharUnitsFromBits(Align);
1345}
1346
1347// getTypeInfoDataSizeInChars - Return the size of a type, in
1348// chars. If the type is a record, its data size is returned.  This is
1349// the size of the memcpy that's performed when assigning this type
1350// using a trivial copy/move assignment operator.
1351std::pair<CharUnits, CharUnits>
1352ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1353  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1354
1355  // In C++, objects can sometimes be allocated into the tail padding
1356  // of a base-class subobject.  We decide whether that's possible
1357  // during class layout, so here we can just trust the layout results.
1358  if (getLangOpts().CPlusPlus) {
1359    if (const RecordType *RT = T->getAs<RecordType>()) {
1360      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1361      sizeAndAlign.first = layout.getDataSize();
1362    }
1363  }
1364
1365  return sizeAndAlign;
1366}
1367
1368/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1369/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1370std::pair<CharUnits, CharUnits>
1371static getConstantArrayInfoInChars(const ASTContext &Context,
1372                                   const ConstantArrayType *CAT) {
1373  std::pair<CharUnits, CharUnits> EltInfo =
1374      Context.getTypeInfoInChars(CAT->getElementType());
1375  uint64_t Size = CAT->getSize().getZExtValue();
1376  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1377              (uint64_t)(-1)/Size) &&
1378         "Overflow in array type char size evaluation");
1379  uint64_t Width = EltInfo.first.getQuantity() * Size;
1380  unsigned Align = EltInfo.second.getQuantity();
1381  Width = llvm::RoundUpToAlignment(Width, Align);
1382  return std::make_pair(CharUnits::fromQuantity(Width),
1383                        CharUnits::fromQuantity(Align));
1384}
1385
1386std::pair<CharUnits, CharUnits>
1387ASTContext::getTypeInfoInChars(const Type *T) const {
1388  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1389    return getConstantArrayInfoInChars(*this, CAT);
1390  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1391  return std::make_pair(toCharUnitsFromBits(Info.first),
1392                        toCharUnitsFromBits(Info.second));
1393}
1394
1395std::pair<CharUnits, CharUnits>
1396ASTContext::getTypeInfoInChars(QualType T) const {
1397  return getTypeInfoInChars(T.getTypePtr());
1398}
1399
1400std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1401  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1402  if (it != MemoizedTypeInfo.end())
1403    return it->second;
1404
1405  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1406  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1407  return Info;
1408}
1409
1410/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1411/// method does not work on incomplete types.
1412///
1413/// FIXME: Pointers into different addr spaces could have different sizes and
1414/// alignment requirements: getPointerInfo should take an AddrSpace, this
1415/// should take a QualType, &c.
1416std::pair<uint64_t, unsigned>
1417ASTContext::getTypeInfoImpl(const Type *T) const {
1418  uint64_t Width=0;
1419  unsigned Align=8;
1420  switch (T->getTypeClass()) {
1421#define TYPE(Class, Base)
1422#define ABSTRACT_TYPE(Class, Base)
1423#define NON_CANONICAL_TYPE(Class, Base)
1424#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1425#include "clang/AST/TypeNodes.def"
1426    llvm_unreachable("Should not see dependent types");
1427
1428  case Type::FunctionNoProto:
1429  case Type::FunctionProto:
1430    // GCC extension: alignof(function) = 32 bits
1431    Width = 0;
1432    Align = 32;
1433    break;
1434
1435  case Type::IncompleteArray:
1436  case Type::VariableArray:
1437    Width = 0;
1438    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1439    break;
1440
1441  case Type::ConstantArray: {
1442    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1443
1444    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1445    uint64_t Size = CAT->getSize().getZExtValue();
1446    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1447           "Overflow in array type bit size evaluation");
1448    Width = EltInfo.first*Size;
1449    Align = EltInfo.second;
1450    Width = llvm::RoundUpToAlignment(Width, Align);
1451    break;
1452  }
1453  case Type::ExtVector:
1454  case Type::Vector: {
1455    const VectorType *VT = cast<VectorType>(T);
1456    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1457    Width = EltInfo.first*VT->getNumElements();
1458    Align = Width;
1459    // If the alignment is not a power of 2, round up to the next power of 2.
1460    // This happens for non-power-of-2 length vectors.
1461    if (Align & (Align-1)) {
1462      Align = llvm::NextPowerOf2(Align);
1463      Width = llvm::RoundUpToAlignment(Width, Align);
1464    }
1465    // Adjust the alignment based on the target max.
1466    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1467    if (TargetVectorAlign && TargetVectorAlign < Align)
1468      Align = TargetVectorAlign;
1469    break;
1470  }
1471
1472  case Type::Builtin:
1473    switch (cast<BuiltinType>(T)->getKind()) {
1474    default: llvm_unreachable("Unknown builtin type!");
1475    case BuiltinType::Void:
1476      // GCC extension: alignof(void) = 8 bits.
1477      Width = 0;
1478      Align = 8;
1479      break;
1480
1481    case BuiltinType::Bool:
1482      Width = Target->getBoolWidth();
1483      Align = Target->getBoolAlign();
1484      break;
1485    case BuiltinType::Char_S:
1486    case BuiltinType::Char_U:
1487    case BuiltinType::UChar:
1488    case BuiltinType::SChar:
1489      Width = Target->getCharWidth();
1490      Align = Target->getCharAlign();
1491      break;
1492    case BuiltinType::WChar_S:
1493    case BuiltinType::WChar_U:
1494      Width = Target->getWCharWidth();
1495      Align = Target->getWCharAlign();
1496      break;
1497    case BuiltinType::Char16:
1498      Width = Target->getChar16Width();
1499      Align = Target->getChar16Align();
1500      break;
1501    case BuiltinType::Char32:
1502      Width = Target->getChar32Width();
1503      Align = Target->getChar32Align();
1504      break;
1505    case BuiltinType::UShort:
1506    case BuiltinType::Short:
1507      Width = Target->getShortWidth();
1508      Align = Target->getShortAlign();
1509      break;
1510    case BuiltinType::UInt:
1511    case BuiltinType::Int:
1512      Width = Target->getIntWidth();
1513      Align = Target->getIntAlign();
1514      break;
1515    case BuiltinType::ULong:
1516    case BuiltinType::Long:
1517      Width = Target->getLongWidth();
1518      Align = Target->getLongAlign();
1519      break;
1520    case BuiltinType::ULongLong:
1521    case BuiltinType::LongLong:
1522      Width = Target->getLongLongWidth();
1523      Align = Target->getLongLongAlign();
1524      break;
1525    case BuiltinType::Int128:
1526    case BuiltinType::UInt128:
1527      Width = 128;
1528      Align = 128; // int128_t is 128-bit aligned on all targets.
1529      break;
1530    case BuiltinType::Half:
1531      Width = Target->getHalfWidth();
1532      Align = Target->getHalfAlign();
1533      break;
1534    case BuiltinType::Float:
1535      Width = Target->getFloatWidth();
1536      Align = Target->getFloatAlign();
1537      break;
1538    case BuiltinType::Double:
1539      Width = Target->getDoubleWidth();
1540      Align = Target->getDoubleAlign();
1541      break;
1542    case BuiltinType::LongDouble:
1543      Width = Target->getLongDoubleWidth();
1544      Align = Target->getLongDoubleAlign();
1545      break;
1546    case BuiltinType::NullPtr:
1547      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1548      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1549      break;
1550    case BuiltinType::ObjCId:
1551    case BuiltinType::ObjCClass:
1552    case BuiltinType::ObjCSel:
1553      Width = Target->getPointerWidth(0);
1554      Align = Target->getPointerAlign(0);
1555      break;
1556    case BuiltinType::OCLSampler:
1557      // Samplers are modeled as integers.
1558      Width = Target->getIntWidth();
1559      Align = Target->getIntAlign();
1560      break;
1561    case BuiltinType::OCLEvent:
1562    case BuiltinType::OCLImage1d:
1563    case BuiltinType::OCLImage1dArray:
1564    case BuiltinType::OCLImage1dBuffer:
1565    case BuiltinType::OCLImage2d:
1566    case BuiltinType::OCLImage2dArray:
1567    case BuiltinType::OCLImage3d:
1568      // Currently these types are pointers to opaque types.
1569      Width = Target->getPointerWidth(0);
1570      Align = Target->getPointerAlign(0);
1571      break;
1572    }
1573    break;
1574  case Type::ObjCObjectPointer:
1575    Width = Target->getPointerWidth(0);
1576    Align = Target->getPointerAlign(0);
1577    break;
1578  case Type::BlockPointer: {
1579    unsigned AS = getTargetAddressSpace(
1580        cast<BlockPointerType>(T)->getPointeeType());
1581    Width = Target->getPointerWidth(AS);
1582    Align = Target->getPointerAlign(AS);
1583    break;
1584  }
1585  case Type::LValueReference:
1586  case Type::RValueReference: {
1587    // alignof and sizeof should never enter this code path here, so we go
1588    // the pointer route.
1589    unsigned AS = getTargetAddressSpace(
1590        cast<ReferenceType>(T)->getPointeeType());
1591    Width = Target->getPointerWidth(AS);
1592    Align = Target->getPointerAlign(AS);
1593    break;
1594  }
1595  case Type::Pointer: {
1596    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1597    Width = Target->getPointerWidth(AS);
1598    Align = Target->getPointerAlign(AS);
1599    break;
1600  }
1601  case Type::MemberPointer: {
1602    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1603    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1604    break;
1605  }
1606  case Type::Complex: {
1607    // Complex types have the same alignment as their elements, but twice the
1608    // size.
1609    std::pair<uint64_t, unsigned> EltInfo =
1610      getTypeInfo(cast<ComplexType>(T)->getElementType());
1611    Width = EltInfo.first*2;
1612    Align = EltInfo.second;
1613    break;
1614  }
1615  case Type::ObjCObject:
1616    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1617  case Type::ObjCInterface: {
1618    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1619    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1620    Width = toBits(Layout.getSize());
1621    Align = toBits(Layout.getAlignment());
1622    break;
1623  }
1624  case Type::Record:
1625  case Type::Enum: {
1626    const TagType *TT = cast<TagType>(T);
1627
1628    if (TT->getDecl()->isInvalidDecl()) {
1629      Width = 8;
1630      Align = 8;
1631      break;
1632    }
1633
1634    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1635      return getTypeInfo(ET->getDecl()->getIntegerType());
1636
1637    const RecordType *RT = cast<RecordType>(TT);
1638    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1639    Width = toBits(Layout.getSize());
1640    Align = toBits(Layout.getAlignment());
1641    break;
1642  }
1643
1644  case Type::SubstTemplateTypeParm:
1645    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1646                       getReplacementType().getTypePtr());
1647
1648  case Type::Auto: {
1649    const AutoType *A = cast<AutoType>(T);
1650    assert(!A->getDeducedType().isNull() &&
1651           "cannot request the size of an undeduced or dependent auto type");
1652    return getTypeInfo(A->getDeducedType().getTypePtr());
1653  }
1654
1655  case Type::Paren:
1656    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1657
1658  case Type::Typedef: {
1659    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1660    std::pair<uint64_t, unsigned> Info
1661      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1662    // If the typedef has an aligned attribute on it, it overrides any computed
1663    // alignment we have.  This violates the GCC documentation (which says that
1664    // attribute(aligned) can only round up) but matches its implementation.
1665    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1666      Align = AttrAlign;
1667    else
1668      Align = Info.second;
1669    Width = Info.first;
1670    break;
1671  }
1672
1673  case Type::TypeOfExpr:
1674    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1675                         .getTypePtr());
1676
1677  case Type::TypeOf:
1678    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1679
1680  case Type::Decltype:
1681    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1682                        .getTypePtr());
1683
1684  case Type::UnaryTransform:
1685    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1686
1687  case Type::Elaborated:
1688    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1689
1690  case Type::Attributed:
1691    return getTypeInfo(
1692                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1693
1694  case Type::TemplateSpecialization: {
1695    assert(getCanonicalType(T) != T &&
1696           "Cannot request the size of a dependent type");
1697    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1698    // A type alias template specialization may refer to a typedef with the
1699    // aligned attribute on it.
1700    if (TST->isTypeAlias())
1701      return getTypeInfo(TST->getAliasedType().getTypePtr());
1702    else
1703      return getTypeInfo(getCanonicalType(T));
1704  }
1705
1706  case Type::Atomic: {
1707    // Start with the base type information.
1708    std::pair<uint64_t, unsigned> Info
1709      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1710    Width = Info.first;
1711    Align = Info.second;
1712
1713    // If the size of the type doesn't exceed the platform's max
1714    // atomic promotion width, make the size and alignment more
1715    // favorable to atomic operations:
1716    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1717      // Round the size up to a power of 2.
1718      if (!llvm::isPowerOf2_64(Width))
1719        Width = llvm::NextPowerOf2(Width);
1720
1721      // Set the alignment equal to the size.
1722      Align = static_cast<unsigned>(Width);
1723    }
1724  }
1725
1726  }
1727
1728  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1729  return std::make_pair(Width, Align);
1730}
1731
1732/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1733CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1734  return CharUnits::fromQuantity(BitSize / getCharWidth());
1735}
1736
1737/// toBits - Convert a size in characters to a size in characters.
1738int64_t ASTContext::toBits(CharUnits CharSize) const {
1739  return CharSize.getQuantity() * getCharWidth();
1740}
1741
1742/// getTypeSizeInChars - Return the size of the specified type, in characters.
1743/// This method does not work on incomplete types.
1744CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1745  return getTypeInfoInChars(T).first;
1746}
1747CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1748  return getTypeInfoInChars(T).first;
1749}
1750
1751/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1752/// characters. This method does not work on incomplete types.
1753CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1754  return toCharUnitsFromBits(getTypeAlign(T));
1755}
1756CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1757  return toCharUnitsFromBits(getTypeAlign(T));
1758}
1759
1760/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1761/// type for the current target in bits.  This can be different than the ABI
1762/// alignment in cases where it is beneficial for performance to overalign
1763/// a data type.
1764unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1765  unsigned ABIAlign = getTypeAlign(T);
1766
1767  // Double and long long should be naturally aligned if possible.
1768  if (const ComplexType* CT = T->getAs<ComplexType>())
1769    T = CT->getElementType().getTypePtr();
1770  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1771      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1772      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1773    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1774
1775  return ABIAlign;
1776}
1777
1778/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1779/// to a global variable of the specified type.
1780unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1781  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1782}
1783
1784/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1785/// should be given to a global variable of the specified type.
1786CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1787  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1788}
1789
1790/// DeepCollectObjCIvars -
1791/// This routine first collects all declared, but not synthesized, ivars in
1792/// super class and then collects all ivars, including those synthesized for
1793/// current class. This routine is used for implementation of current class
1794/// when all ivars, declared and synthesized are known.
1795///
1796void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1797                                      bool leafClass,
1798                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1799  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1800    DeepCollectObjCIvars(SuperClass, false, Ivars);
1801  if (!leafClass) {
1802    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1803         E = OI->ivar_end(); I != E; ++I)
1804      Ivars.push_back(*I);
1805  } else {
1806    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1807    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1808         Iv= Iv->getNextIvar())
1809      Ivars.push_back(Iv);
1810  }
1811}
1812
1813/// CollectInheritedProtocols - Collect all protocols in current class and
1814/// those inherited by it.
1815void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1816                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1817  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1818    // We can use protocol_iterator here instead of
1819    // all_referenced_protocol_iterator since we are walking all categories.
1820    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1821         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1822      ObjCProtocolDecl *Proto = (*P);
1823      Protocols.insert(Proto->getCanonicalDecl());
1824      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1825           PE = Proto->protocol_end(); P != PE; ++P) {
1826        Protocols.insert((*P)->getCanonicalDecl());
1827        CollectInheritedProtocols(*P, Protocols);
1828      }
1829    }
1830
1831    // Categories of this Interface.
1832    for (ObjCInterfaceDecl::visible_categories_iterator
1833           Cat = OI->visible_categories_begin(),
1834           CatEnd = OI->visible_categories_end();
1835         Cat != CatEnd; ++Cat) {
1836      CollectInheritedProtocols(*Cat, Protocols);
1837    }
1838
1839    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1840      while (SD) {
1841        CollectInheritedProtocols(SD, Protocols);
1842        SD = SD->getSuperClass();
1843      }
1844  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1845    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1846         PE = OC->protocol_end(); P != PE; ++P) {
1847      ObjCProtocolDecl *Proto = (*P);
1848      Protocols.insert(Proto->getCanonicalDecl());
1849      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1850           PE = Proto->protocol_end(); P != PE; ++P)
1851        CollectInheritedProtocols(*P, Protocols);
1852    }
1853  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1854    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1855         PE = OP->protocol_end(); P != PE; ++P) {
1856      ObjCProtocolDecl *Proto = (*P);
1857      Protocols.insert(Proto->getCanonicalDecl());
1858      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1859           PE = Proto->protocol_end(); P != PE; ++P)
1860        CollectInheritedProtocols(*P, Protocols);
1861    }
1862  }
1863}
1864
1865unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1866  unsigned count = 0;
1867  // Count ivars declared in class extension.
1868  for (ObjCInterfaceDecl::known_extensions_iterator
1869         Ext = OI->known_extensions_begin(),
1870         ExtEnd = OI->known_extensions_end();
1871       Ext != ExtEnd; ++Ext) {
1872    count += Ext->ivar_size();
1873  }
1874
1875  // Count ivar defined in this class's implementation.  This
1876  // includes synthesized ivars.
1877  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1878    count += ImplDecl->ivar_size();
1879
1880  return count;
1881}
1882
1883bool ASTContext::isSentinelNullExpr(const Expr *E) {
1884  if (!E)
1885    return false;
1886
1887  // nullptr_t is always treated as null.
1888  if (E->getType()->isNullPtrType()) return true;
1889
1890  if (E->getType()->isAnyPointerType() &&
1891      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1892                                                Expr::NPC_ValueDependentIsNull))
1893    return true;
1894
1895  // Unfortunately, __null has type 'int'.
1896  if (isa<GNUNullExpr>(E)) return true;
1897
1898  return false;
1899}
1900
1901/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1902ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1903  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1904    I = ObjCImpls.find(D);
1905  if (I != ObjCImpls.end())
1906    return cast<ObjCImplementationDecl>(I->second);
1907  return 0;
1908}
1909/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1910ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1911  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1912    I = ObjCImpls.find(D);
1913  if (I != ObjCImpls.end())
1914    return cast<ObjCCategoryImplDecl>(I->second);
1915  return 0;
1916}
1917
1918/// \brief Set the implementation of ObjCInterfaceDecl.
1919void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1920                           ObjCImplementationDecl *ImplD) {
1921  assert(IFaceD && ImplD && "Passed null params");
1922  ObjCImpls[IFaceD] = ImplD;
1923}
1924/// \brief Set the implementation of ObjCCategoryDecl.
1925void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1926                           ObjCCategoryImplDecl *ImplD) {
1927  assert(CatD && ImplD && "Passed null params");
1928  ObjCImpls[CatD] = ImplD;
1929}
1930
1931const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1932                                              const NamedDecl *ND) const {
1933  if (const ObjCInterfaceDecl *ID =
1934          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1935    return ID;
1936  if (const ObjCCategoryDecl *CD =
1937          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1938    return CD->getClassInterface();
1939  if (const ObjCImplDecl *IMD =
1940          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1941    return IMD->getClassInterface();
1942
1943  return 0;
1944}
1945
1946/// \brief Get the copy initialization expression of VarDecl,or NULL if
1947/// none exists.
1948Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1949  assert(VD && "Passed null params");
1950  assert(VD->hasAttr<BlocksAttr>() &&
1951         "getBlockVarCopyInits - not __block var");
1952  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1953    I = BlockVarCopyInits.find(VD);
1954  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1955}
1956
1957/// \brief Set the copy inialization expression of a block var decl.
1958void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1959  assert(VD && Init && "Passed null params");
1960  assert(VD->hasAttr<BlocksAttr>() &&
1961         "setBlockVarCopyInits - not __block var");
1962  BlockVarCopyInits[VD] = Init;
1963}
1964
1965TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1966                                                 unsigned DataSize) const {
1967  if (!DataSize)
1968    DataSize = TypeLoc::getFullDataSizeForType(T);
1969  else
1970    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1971           "incorrect data size provided to CreateTypeSourceInfo!");
1972
1973  TypeSourceInfo *TInfo =
1974    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1975  new (TInfo) TypeSourceInfo(T);
1976  return TInfo;
1977}
1978
1979TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1980                                                     SourceLocation L) const {
1981  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1982  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1983  return DI;
1984}
1985
1986const ASTRecordLayout &
1987ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1988  return getObjCLayout(D, 0);
1989}
1990
1991const ASTRecordLayout &
1992ASTContext::getASTObjCImplementationLayout(
1993                                        const ObjCImplementationDecl *D) const {
1994  return getObjCLayout(D->getClassInterface(), D);
1995}
1996
1997//===----------------------------------------------------------------------===//
1998//                   Type creation/memoization methods
1999//===----------------------------------------------------------------------===//
2000
2001QualType
2002ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2003  unsigned fastQuals = quals.getFastQualifiers();
2004  quals.removeFastQualifiers();
2005
2006  // Check if we've already instantiated this type.
2007  llvm::FoldingSetNodeID ID;
2008  ExtQuals::Profile(ID, baseType, quals);
2009  void *insertPos = 0;
2010  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2011    assert(eq->getQualifiers() == quals);
2012    return QualType(eq, fastQuals);
2013  }
2014
2015  // If the base type is not canonical, make the appropriate canonical type.
2016  QualType canon;
2017  if (!baseType->isCanonicalUnqualified()) {
2018    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2019    canonSplit.Quals.addConsistentQualifiers(quals);
2020    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2021
2022    // Re-find the insert position.
2023    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2024  }
2025
2026  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2027  ExtQualNodes.InsertNode(eq, insertPos);
2028  return QualType(eq, fastQuals);
2029}
2030
2031QualType
2032ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2033  QualType CanT = getCanonicalType(T);
2034  if (CanT.getAddressSpace() == AddressSpace)
2035    return T;
2036
2037  // If we are composing extended qualifiers together, merge together
2038  // into one ExtQuals node.
2039  QualifierCollector Quals;
2040  const Type *TypeNode = Quals.strip(T);
2041
2042  // If this type already has an address space specified, it cannot get
2043  // another one.
2044  assert(!Quals.hasAddressSpace() &&
2045         "Type cannot be in multiple addr spaces!");
2046  Quals.addAddressSpace(AddressSpace);
2047
2048  return getExtQualType(TypeNode, Quals);
2049}
2050
2051QualType ASTContext::getObjCGCQualType(QualType T,
2052                                       Qualifiers::GC GCAttr) const {
2053  QualType CanT = getCanonicalType(T);
2054  if (CanT.getObjCGCAttr() == GCAttr)
2055    return T;
2056
2057  if (const PointerType *ptr = T->getAs<PointerType>()) {
2058    QualType Pointee = ptr->getPointeeType();
2059    if (Pointee->isAnyPointerType()) {
2060      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2061      return getPointerType(ResultType);
2062    }
2063  }
2064
2065  // If we are composing extended qualifiers together, merge together
2066  // into one ExtQuals node.
2067  QualifierCollector Quals;
2068  const Type *TypeNode = Quals.strip(T);
2069
2070  // If this type already has an ObjCGC specified, it cannot get
2071  // another one.
2072  assert(!Quals.hasObjCGCAttr() &&
2073         "Type cannot have multiple ObjCGCs!");
2074  Quals.addObjCGCAttr(GCAttr);
2075
2076  return getExtQualType(TypeNode, Quals);
2077}
2078
2079const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2080                                                   FunctionType::ExtInfo Info) {
2081  if (T->getExtInfo() == Info)
2082    return T;
2083
2084  QualType Result;
2085  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2086    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2087  } else {
2088    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2089    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2090    EPI.ExtInfo = Info;
2091    Result = getFunctionType(FPT->getResultType(), FPT->getArgTypes(), EPI);
2092  }
2093
2094  return cast<FunctionType>(Result.getTypePtr());
2095}
2096
2097void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2098                                                 QualType ResultType) {
2099  FD = FD->getMostRecentDecl();
2100  while (true) {
2101    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2102    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2103    FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2104    if (FunctionDecl *Next = FD->getPreviousDecl())
2105      FD = Next;
2106    else
2107      break;
2108  }
2109  if (ASTMutationListener *L = getASTMutationListener())
2110    L->DeducedReturnType(FD, ResultType);
2111}
2112
2113/// getComplexType - Return the uniqued reference to the type for a complex
2114/// number with the specified element type.
2115QualType ASTContext::getComplexType(QualType T) const {
2116  // Unique pointers, to guarantee there is only one pointer of a particular
2117  // structure.
2118  llvm::FoldingSetNodeID ID;
2119  ComplexType::Profile(ID, T);
2120
2121  void *InsertPos = 0;
2122  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2123    return QualType(CT, 0);
2124
2125  // If the pointee type isn't canonical, this won't be a canonical type either,
2126  // so fill in the canonical type field.
2127  QualType Canonical;
2128  if (!T.isCanonical()) {
2129    Canonical = getComplexType(getCanonicalType(T));
2130
2131    // Get the new insert position for the node we care about.
2132    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2133    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2134  }
2135  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2136  Types.push_back(New);
2137  ComplexTypes.InsertNode(New, InsertPos);
2138  return QualType(New, 0);
2139}
2140
2141/// getPointerType - Return the uniqued reference to the type for a pointer to
2142/// the specified type.
2143QualType ASTContext::getPointerType(QualType T) const {
2144  // Unique pointers, to guarantee there is only one pointer of a particular
2145  // structure.
2146  llvm::FoldingSetNodeID ID;
2147  PointerType::Profile(ID, T);
2148
2149  void *InsertPos = 0;
2150  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2151    return QualType(PT, 0);
2152
2153  // If the pointee type isn't canonical, this won't be a canonical type either,
2154  // so fill in the canonical type field.
2155  QualType Canonical;
2156  if (!T.isCanonical()) {
2157    Canonical = getPointerType(getCanonicalType(T));
2158
2159    // Get the new insert position for the node we care about.
2160    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2161    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2162  }
2163  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2164  Types.push_back(New);
2165  PointerTypes.InsertNode(New, InsertPos);
2166  return QualType(New, 0);
2167}
2168
2169/// getBlockPointerType - Return the uniqued reference to the type for
2170/// a pointer to the specified block.
2171QualType ASTContext::getBlockPointerType(QualType T) const {
2172  assert(T->isFunctionType() && "block of function types only");
2173  // Unique pointers, to guarantee there is only one block of a particular
2174  // structure.
2175  llvm::FoldingSetNodeID ID;
2176  BlockPointerType::Profile(ID, T);
2177
2178  void *InsertPos = 0;
2179  if (BlockPointerType *PT =
2180        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2181    return QualType(PT, 0);
2182
2183  // If the block pointee type isn't canonical, this won't be a canonical
2184  // type either so fill in the canonical type field.
2185  QualType Canonical;
2186  if (!T.isCanonical()) {
2187    Canonical = getBlockPointerType(getCanonicalType(T));
2188
2189    // Get the new insert position for the node we care about.
2190    BlockPointerType *NewIP =
2191      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2192    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2193  }
2194  BlockPointerType *New
2195    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2196  Types.push_back(New);
2197  BlockPointerTypes.InsertNode(New, InsertPos);
2198  return QualType(New, 0);
2199}
2200
2201/// getLValueReferenceType - Return the uniqued reference to the type for an
2202/// lvalue reference to the specified type.
2203QualType
2204ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2205  assert(getCanonicalType(T) != OverloadTy &&
2206         "Unresolved overloaded function type");
2207
2208  // Unique pointers, to guarantee there is only one pointer of a particular
2209  // structure.
2210  llvm::FoldingSetNodeID ID;
2211  ReferenceType::Profile(ID, T, SpelledAsLValue);
2212
2213  void *InsertPos = 0;
2214  if (LValueReferenceType *RT =
2215        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2216    return QualType(RT, 0);
2217
2218  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2219
2220  // If the referencee type isn't canonical, this won't be a canonical type
2221  // either, so fill in the canonical type field.
2222  QualType Canonical;
2223  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2224    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2225    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2226
2227    // Get the new insert position for the node we care about.
2228    LValueReferenceType *NewIP =
2229      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2230    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2231  }
2232
2233  LValueReferenceType *New
2234    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2235                                                     SpelledAsLValue);
2236  Types.push_back(New);
2237  LValueReferenceTypes.InsertNode(New, InsertPos);
2238
2239  return QualType(New, 0);
2240}
2241
2242/// getRValueReferenceType - Return the uniqued reference to the type for an
2243/// rvalue reference to the specified type.
2244QualType ASTContext::getRValueReferenceType(QualType T) const {
2245  // Unique pointers, to guarantee there is only one pointer of a particular
2246  // structure.
2247  llvm::FoldingSetNodeID ID;
2248  ReferenceType::Profile(ID, T, false);
2249
2250  void *InsertPos = 0;
2251  if (RValueReferenceType *RT =
2252        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2253    return QualType(RT, 0);
2254
2255  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2256
2257  // If the referencee type isn't canonical, this won't be a canonical type
2258  // either, so fill in the canonical type field.
2259  QualType Canonical;
2260  if (InnerRef || !T.isCanonical()) {
2261    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2262    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2263
2264    // Get the new insert position for the node we care about.
2265    RValueReferenceType *NewIP =
2266      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2267    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2268  }
2269
2270  RValueReferenceType *New
2271    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2272  Types.push_back(New);
2273  RValueReferenceTypes.InsertNode(New, InsertPos);
2274  return QualType(New, 0);
2275}
2276
2277/// getMemberPointerType - Return the uniqued reference to the type for a
2278/// member pointer to the specified type, in the specified class.
2279QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2280  // Unique pointers, to guarantee there is only one pointer of a particular
2281  // structure.
2282  llvm::FoldingSetNodeID ID;
2283  MemberPointerType::Profile(ID, T, Cls);
2284
2285  void *InsertPos = 0;
2286  if (MemberPointerType *PT =
2287      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2288    return QualType(PT, 0);
2289
2290  // If the pointee or class type isn't canonical, this won't be a canonical
2291  // type either, so fill in the canonical type field.
2292  QualType Canonical;
2293  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2294    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2295
2296    // Get the new insert position for the node we care about.
2297    MemberPointerType *NewIP =
2298      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2299    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2300  }
2301  MemberPointerType *New
2302    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2303  Types.push_back(New);
2304  MemberPointerTypes.InsertNode(New, InsertPos);
2305  return QualType(New, 0);
2306}
2307
2308/// getConstantArrayType - Return the unique reference to the type for an
2309/// array of the specified element type.
2310QualType ASTContext::getConstantArrayType(QualType EltTy,
2311                                          const llvm::APInt &ArySizeIn,
2312                                          ArrayType::ArraySizeModifier ASM,
2313                                          unsigned IndexTypeQuals) const {
2314  assert((EltTy->isDependentType() ||
2315          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2316         "Constant array of VLAs is illegal!");
2317
2318  // Convert the array size into a canonical width matching the pointer size for
2319  // the target.
2320  llvm::APInt ArySize(ArySizeIn);
2321  ArySize =
2322    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2323
2324  llvm::FoldingSetNodeID ID;
2325  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2326
2327  void *InsertPos = 0;
2328  if (ConstantArrayType *ATP =
2329      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2330    return QualType(ATP, 0);
2331
2332  // If the element type isn't canonical or has qualifiers, this won't
2333  // be a canonical type either, so fill in the canonical type field.
2334  QualType Canon;
2335  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2336    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2337    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2338                                 ASM, IndexTypeQuals);
2339    Canon = getQualifiedType(Canon, canonSplit.Quals);
2340
2341    // Get the new insert position for the node we care about.
2342    ConstantArrayType *NewIP =
2343      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2344    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2345  }
2346
2347  ConstantArrayType *New = new(*this,TypeAlignment)
2348    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2349  ConstantArrayTypes.InsertNode(New, InsertPos);
2350  Types.push_back(New);
2351  return QualType(New, 0);
2352}
2353
2354/// getVariableArrayDecayedType - Turns the given type, which may be
2355/// variably-modified, into the corresponding type with all the known
2356/// sizes replaced with [*].
2357QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2358  // Vastly most common case.
2359  if (!type->isVariablyModifiedType()) return type;
2360
2361  QualType result;
2362
2363  SplitQualType split = type.getSplitDesugaredType();
2364  const Type *ty = split.Ty;
2365  switch (ty->getTypeClass()) {
2366#define TYPE(Class, Base)
2367#define ABSTRACT_TYPE(Class, Base)
2368#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2369#include "clang/AST/TypeNodes.def"
2370    llvm_unreachable("didn't desugar past all non-canonical types?");
2371
2372  // These types should never be variably-modified.
2373  case Type::Builtin:
2374  case Type::Complex:
2375  case Type::Vector:
2376  case Type::ExtVector:
2377  case Type::DependentSizedExtVector:
2378  case Type::ObjCObject:
2379  case Type::ObjCInterface:
2380  case Type::ObjCObjectPointer:
2381  case Type::Record:
2382  case Type::Enum:
2383  case Type::UnresolvedUsing:
2384  case Type::TypeOfExpr:
2385  case Type::TypeOf:
2386  case Type::Decltype:
2387  case Type::UnaryTransform:
2388  case Type::DependentName:
2389  case Type::InjectedClassName:
2390  case Type::TemplateSpecialization:
2391  case Type::DependentTemplateSpecialization:
2392  case Type::TemplateTypeParm:
2393  case Type::SubstTemplateTypeParmPack:
2394  case Type::Auto:
2395  case Type::PackExpansion:
2396    llvm_unreachable("type should never be variably-modified");
2397
2398  // These types can be variably-modified but should never need to
2399  // further decay.
2400  case Type::FunctionNoProto:
2401  case Type::FunctionProto:
2402  case Type::BlockPointer:
2403  case Type::MemberPointer:
2404    return type;
2405
2406  // These types can be variably-modified.  All these modifications
2407  // preserve structure except as noted by comments.
2408  // TODO: if we ever care about optimizing VLAs, there are no-op
2409  // optimizations available here.
2410  case Type::Pointer:
2411    result = getPointerType(getVariableArrayDecayedType(
2412                              cast<PointerType>(ty)->getPointeeType()));
2413    break;
2414
2415  case Type::LValueReference: {
2416    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2417    result = getLValueReferenceType(
2418                 getVariableArrayDecayedType(lv->getPointeeType()),
2419                                    lv->isSpelledAsLValue());
2420    break;
2421  }
2422
2423  case Type::RValueReference: {
2424    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2425    result = getRValueReferenceType(
2426                 getVariableArrayDecayedType(lv->getPointeeType()));
2427    break;
2428  }
2429
2430  case Type::Atomic: {
2431    const AtomicType *at = cast<AtomicType>(ty);
2432    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2433    break;
2434  }
2435
2436  case Type::ConstantArray: {
2437    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2438    result = getConstantArrayType(
2439                 getVariableArrayDecayedType(cat->getElementType()),
2440                                  cat->getSize(),
2441                                  cat->getSizeModifier(),
2442                                  cat->getIndexTypeCVRQualifiers());
2443    break;
2444  }
2445
2446  case Type::DependentSizedArray: {
2447    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2448    result = getDependentSizedArrayType(
2449                 getVariableArrayDecayedType(dat->getElementType()),
2450                                        dat->getSizeExpr(),
2451                                        dat->getSizeModifier(),
2452                                        dat->getIndexTypeCVRQualifiers(),
2453                                        dat->getBracketsRange());
2454    break;
2455  }
2456
2457  // Turn incomplete types into [*] types.
2458  case Type::IncompleteArray: {
2459    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2460    result = getVariableArrayType(
2461                 getVariableArrayDecayedType(iat->getElementType()),
2462                                  /*size*/ 0,
2463                                  ArrayType::Normal,
2464                                  iat->getIndexTypeCVRQualifiers(),
2465                                  SourceRange());
2466    break;
2467  }
2468
2469  // Turn VLA types into [*] types.
2470  case Type::VariableArray: {
2471    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2472    result = getVariableArrayType(
2473                 getVariableArrayDecayedType(vat->getElementType()),
2474                                  /*size*/ 0,
2475                                  ArrayType::Star,
2476                                  vat->getIndexTypeCVRQualifiers(),
2477                                  vat->getBracketsRange());
2478    break;
2479  }
2480  }
2481
2482  // Apply the top-level qualifiers from the original.
2483  return getQualifiedType(result, split.Quals);
2484}
2485
2486/// getVariableArrayType - Returns a non-unique reference to the type for a
2487/// variable array of the specified element type.
2488QualType ASTContext::getVariableArrayType(QualType EltTy,
2489                                          Expr *NumElts,
2490                                          ArrayType::ArraySizeModifier ASM,
2491                                          unsigned IndexTypeQuals,
2492                                          SourceRange Brackets) const {
2493  // Since we don't unique expressions, it isn't possible to unique VLA's
2494  // that have an expression provided for their size.
2495  QualType Canon;
2496
2497  // Be sure to pull qualifiers off the element type.
2498  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2499    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2500    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2501                                 IndexTypeQuals, Brackets);
2502    Canon = getQualifiedType(Canon, canonSplit.Quals);
2503  }
2504
2505  VariableArrayType *New = new(*this, TypeAlignment)
2506    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2507
2508  VariableArrayTypes.push_back(New);
2509  Types.push_back(New);
2510  return QualType(New, 0);
2511}
2512
2513/// getDependentSizedArrayType - Returns a non-unique reference to
2514/// the type for a dependently-sized array of the specified element
2515/// type.
2516QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2517                                                Expr *numElements,
2518                                                ArrayType::ArraySizeModifier ASM,
2519                                                unsigned elementTypeQuals,
2520                                                SourceRange brackets) const {
2521  assert((!numElements || numElements->isTypeDependent() ||
2522          numElements->isValueDependent()) &&
2523         "Size must be type- or value-dependent!");
2524
2525  // Dependently-sized array types that do not have a specified number
2526  // of elements will have their sizes deduced from a dependent
2527  // initializer.  We do no canonicalization here at all, which is okay
2528  // because they can't be used in most locations.
2529  if (!numElements) {
2530    DependentSizedArrayType *newType
2531      = new (*this, TypeAlignment)
2532          DependentSizedArrayType(*this, elementType, QualType(),
2533                                  numElements, ASM, elementTypeQuals,
2534                                  brackets);
2535    Types.push_back(newType);
2536    return QualType(newType, 0);
2537  }
2538
2539  // Otherwise, we actually build a new type every time, but we
2540  // also build a canonical type.
2541
2542  SplitQualType canonElementType = getCanonicalType(elementType).split();
2543
2544  void *insertPos = 0;
2545  llvm::FoldingSetNodeID ID;
2546  DependentSizedArrayType::Profile(ID, *this,
2547                                   QualType(canonElementType.Ty, 0),
2548                                   ASM, elementTypeQuals, numElements);
2549
2550  // Look for an existing type with these properties.
2551  DependentSizedArrayType *canonTy =
2552    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2553
2554  // If we don't have one, build one.
2555  if (!canonTy) {
2556    canonTy = new (*this, TypeAlignment)
2557      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2558                              QualType(), numElements, ASM, elementTypeQuals,
2559                              brackets);
2560    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2561    Types.push_back(canonTy);
2562  }
2563
2564  // Apply qualifiers from the element type to the array.
2565  QualType canon = getQualifiedType(QualType(canonTy,0),
2566                                    canonElementType.Quals);
2567
2568  // If we didn't need extra canonicalization for the element type,
2569  // then just use that as our result.
2570  if (QualType(canonElementType.Ty, 0) == elementType)
2571    return canon;
2572
2573  // Otherwise, we need to build a type which follows the spelling
2574  // of the element type.
2575  DependentSizedArrayType *sugaredType
2576    = new (*this, TypeAlignment)
2577        DependentSizedArrayType(*this, elementType, canon, numElements,
2578                                ASM, elementTypeQuals, brackets);
2579  Types.push_back(sugaredType);
2580  return QualType(sugaredType, 0);
2581}
2582
2583QualType ASTContext::getIncompleteArrayType(QualType elementType,
2584                                            ArrayType::ArraySizeModifier ASM,
2585                                            unsigned elementTypeQuals) const {
2586  llvm::FoldingSetNodeID ID;
2587  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2588
2589  void *insertPos = 0;
2590  if (IncompleteArrayType *iat =
2591       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2592    return QualType(iat, 0);
2593
2594  // If the element type isn't canonical, this won't be a canonical type
2595  // either, so fill in the canonical type field.  We also have to pull
2596  // qualifiers off the element type.
2597  QualType canon;
2598
2599  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2600    SplitQualType canonSplit = getCanonicalType(elementType).split();
2601    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2602                                   ASM, elementTypeQuals);
2603    canon = getQualifiedType(canon, canonSplit.Quals);
2604
2605    // Get the new insert position for the node we care about.
2606    IncompleteArrayType *existing =
2607      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2608    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2609  }
2610
2611  IncompleteArrayType *newType = new (*this, TypeAlignment)
2612    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2613
2614  IncompleteArrayTypes.InsertNode(newType, insertPos);
2615  Types.push_back(newType);
2616  return QualType(newType, 0);
2617}
2618
2619/// getVectorType - Return the unique reference to a vector type of
2620/// the specified element type and size. VectorType must be a built-in type.
2621QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2622                                   VectorType::VectorKind VecKind) const {
2623  assert(vecType->isBuiltinType());
2624
2625  // Check if we've already instantiated a vector of this type.
2626  llvm::FoldingSetNodeID ID;
2627  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2628
2629  void *InsertPos = 0;
2630  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2631    return QualType(VTP, 0);
2632
2633  // If the element type isn't canonical, this won't be a canonical type either,
2634  // so fill in the canonical type field.
2635  QualType Canonical;
2636  if (!vecType.isCanonical()) {
2637    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2638
2639    // Get the new insert position for the node we care about.
2640    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2641    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2642  }
2643  VectorType *New = new (*this, TypeAlignment)
2644    VectorType(vecType, NumElts, Canonical, VecKind);
2645  VectorTypes.InsertNode(New, InsertPos);
2646  Types.push_back(New);
2647  return QualType(New, 0);
2648}
2649
2650/// getExtVectorType - Return the unique reference to an extended vector type of
2651/// the specified element type and size. VectorType must be a built-in type.
2652QualType
2653ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2654  assert(vecType->isBuiltinType() || vecType->isDependentType());
2655
2656  // Check if we've already instantiated a vector of this type.
2657  llvm::FoldingSetNodeID ID;
2658  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2659                      VectorType::GenericVector);
2660  void *InsertPos = 0;
2661  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2662    return QualType(VTP, 0);
2663
2664  // If the element type isn't canonical, this won't be a canonical type either,
2665  // so fill in the canonical type field.
2666  QualType Canonical;
2667  if (!vecType.isCanonical()) {
2668    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2669
2670    // Get the new insert position for the node we care about.
2671    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2672    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2673  }
2674  ExtVectorType *New = new (*this, TypeAlignment)
2675    ExtVectorType(vecType, NumElts, Canonical);
2676  VectorTypes.InsertNode(New, InsertPos);
2677  Types.push_back(New);
2678  return QualType(New, 0);
2679}
2680
2681QualType
2682ASTContext::getDependentSizedExtVectorType(QualType vecType,
2683                                           Expr *SizeExpr,
2684                                           SourceLocation AttrLoc) const {
2685  llvm::FoldingSetNodeID ID;
2686  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2687                                       SizeExpr);
2688
2689  void *InsertPos = 0;
2690  DependentSizedExtVectorType *Canon
2691    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2692  DependentSizedExtVectorType *New;
2693  if (Canon) {
2694    // We already have a canonical version of this array type; use it as
2695    // the canonical type for a newly-built type.
2696    New = new (*this, TypeAlignment)
2697      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2698                                  SizeExpr, AttrLoc);
2699  } else {
2700    QualType CanonVecTy = getCanonicalType(vecType);
2701    if (CanonVecTy == vecType) {
2702      New = new (*this, TypeAlignment)
2703        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2704                                    AttrLoc);
2705
2706      DependentSizedExtVectorType *CanonCheck
2707        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2708      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2709      (void)CanonCheck;
2710      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2711    } else {
2712      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2713                                                      SourceLocation());
2714      New = new (*this, TypeAlignment)
2715        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2716    }
2717  }
2718
2719  Types.push_back(New);
2720  return QualType(New, 0);
2721}
2722
2723/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2724///
2725QualType
2726ASTContext::getFunctionNoProtoType(QualType ResultTy,
2727                                   const FunctionType::ExtInfo &Info) const {
2728  const CallingConv DefaultCC = Info.getCC();
2729  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2730                               CC_X86StdCall : DefaultCC;
2731  // Unique functions, to guarantee there is only one function of a particular
2732  // structure.
2733  llvm::FoldingSetNodeID ID;
2734  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2735
2736  void *InsertPos = 0;
2737  if (FunctionNoProtoType *FT =
2738        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2739    return QualType(FT, 0);
2740
2741  QualType Canonical;
2742  if (!ResultTy.isCanonical() ||
2743      getCanonicalCallConv(CallConv) != CallConv) {
2744    Canonical =
2745      getFunctionNoProtoType(getCanonicalType(ResultTy),
2746                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2747
2748    // Get the new insert position for the node we care about.
2749    FunctionNoProtoType *NewIP =
2750      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2751    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2752  }
2753
2754  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2755  FunctionNoProtoType *New = new (*this, TypeAlignment)
2756    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2757  Types.push_back(New);
2758  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2759  return QualType(New, 0);
2760}
2761
2762/// \brief Determine whether \p T is canonical as the result type of a function.
2763static bool isCanonicalResultType(QualType T) {
2764  return T.isCanonical() &&
2765         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2766          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2767}
2768
2769/// getFunctionType - Return a normal function type with a typed argument
2770/// list.  isVariadic indicates whether the argument list includes '...'.
2771QualType
2772ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2773                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2774  size_t NumArgs = ArgArray.size();
2775
2776  // Unique functions, to guarantee there is only one function of a particular
2777  // structure.
2778  llvm::FoldingSetNodeID ID;
2779  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2780                             *this);
2781
2782  void *InsertPos = 0;
2783  if (FunctionProtoType *FTP =
2784        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2785    return QualType(FTP, 0);
2786
2787  // Determine whether the type being created is already canonical or not.
2788  bool isCanonical =
2789    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2790    !EPI.HasTrailingReturn;
2791  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2792    if (!ArgArray[i].isCanonicalAsParam())
2793      isCanonical = false;
2794
2795  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2796  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2797                               CC_X86StdCall : DefaultCC;
2798
2799  // If this type isn't canonical, get the canonical version of it.
2800  // The exception spec is not part of the canonical type.
2801  QualType Canonical;
2802  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2803    SmallVector<QualType, 16> CanonicalArgs;
2804    CanonicalArgs.reserve(NumArgs);
2805    for (unsigned i = 0; i != NumArgs; ++i)
2806      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2807
2808    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2809    CanonicalEPI.HasTrailingReturn = false;
2810    CanonicalEPI.ExceptionSpecType = EST_None;
2811    CanonicalEPI.NumExceptions = 0;
2812    CanonicalEPI.ExtInfo
2813      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2814
2815    // Result types do not have ARC lifetime qualifiers.
2816    QualType CanResultTy = getCanonicalType(ResultTy);
2817    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2818      Qualifiers Qs = CanResultTy.getQualifiers();
2819      Qs.removeObjCLifetime();
2820      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2821    }
2822
2823    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2824
2825    // Get the new insert position for the node we care about.
2826    FunctionProtoType *NewIP =
2827      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2828    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2829  }
2830
2831  // FunctionProtoType objects are allocated with extra bytes after
2832  // them for three variable size arrays at the end:
2833  //  - parameter types
2834  //  - exception types
2835  //  - consumed-arguments flags
2836  // Instead of the exception types, there could be a noexcept
2837  // expression, or information used to resolve the exception
2838  // specification.
2839  size_t Size = sizeof(FunctionProtoType) +
2840                NumArgs * sizeof(QualType);
2841  if (EPI.ExceptionSpecType == EST_Dynamic) {
2842    Size += EPI.NumExceptions * sizeof(QualType);
2843  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2844    Size += sizeof(Expr*);
2845  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2846    Size += 2 * sizeof(FunctionDecl*);
2847  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2848    Size += sizeof(FunctionDecl*);
2849  }
2850  if (EPI.ConsumedArguments)
2851    Size += NumArgs * sizeof(bool);
2852
2853  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2854  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2855  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2856  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2857  Types.push_back(FTP);
2858  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2859  return QualType(FTP, 0);
2860}
2861
2862#ifndef NDEBUG
2863static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2864  if (!isa<CXXRecordDecl>(D)) return false;
2865  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2866  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2867    return true;
2868  if (RD->getDescribedClassTemplate() &&
2869      !isa<ClassTemplateSpecializationDecl>(RD))
2870    return true;
2871  return false;
2872}
2873#endif
2874
2875/// getInjectedClassNameType - Return the unique reference to the
2876/// injected class name type for the specified templated declaration.
2877QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2878                                              QualType TST) const {
2879  assert(NeedsInjectedClassNameType(Decl));
2880  if (Decl->TypeForDecl) {
2881    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2882  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2883    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2884    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2885    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2886  } else {
2887    Type *newType =
2888      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2889    Decl->TypeForDecl = newType;
2890    Types.push_back(newType);
2891  }
2892  return QualType(Decl->TypeForDecl, 0);
2893}
2894
2895/// getTypeDeclType - Return the unique reference to the type for the
2896/// specified type declaration.
2897QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2898  assert(Decl && "Passed null for Decl param");
2899  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2900
2901  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2902    return getTypedefType(Typedef);
2903
2904  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2905         "Template type parameter types are always available.");
2906
2907  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2908    assert(!Record->getPreviousDecl() &&
2909           "struct/union has previous declaration");
2910    assert(!NeedsInjectedClassNameType(Record));
2911    return getRecordType(Record);
2912  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2913    assert(!Enum->getPreviousDecl() &&
2914           "enum has previous declaration");
2915    return getEnumType(Enum);
2916  } else if (const UnresolvedUsingTypenameDecl *Using =
2917               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2918    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2919    Decl->TypeForDecl = newType;
2920    Types.push_back(newType);
2921  } else
2922    llvm_unreachable("TypeDecl without a type?");
2923
2924  return QualType(Decl->TypeForDecl, 0);
2925}
2926
2927/// getTypedefType - Return the unique reference to the type for the
2928/// specified typedef name decl.
2929QualType
2930ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2931                           QualType Canonical) const {
2932  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2933
2934  if (Canonical.isNull())
2935    Canonical = getCanonicalType(Decl->getUnderlyingType());
2936  TypedefType *newType = new(*this, TypeAlignment)
2937    TypedefType(Type::Typedef, Decl, Canonical);
2938  Decl->TypeForDecl = newType;
2939  Types.push_back(newType);
2940  return QualType(newType, 0);
2941}
2942
2943QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2944  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2945
2946  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2947    if (PrevDecl->TypeForDecl)
2948      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2949
2950  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2951  Decl->TypeForDecl = newType;
2952  Types.push_back(newType);
2953  return QualType(newType, 0);
2954}
2955
2956QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2957  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2958
2959  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2960    if (PrevDecl->TypeForDecl)
2961      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2962
2963  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2964  Decl->TypeForDecl = newType;
2965  Types.push_back(newType);
2966  return QualType(newType, 0);
2967}
2968
2969QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2970                                       QualType modifiedType,
2971                                       QualType equivalentType) {
2972  llvm::FoldingSetNodeID id;
2973  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2974
2975  void *insertPos = 0;
2976  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2977  if (type) return QualType(type, 0);
2978
2979  QualType canon = getCanonicalType(equivalentType);
2980  type = new (*this, TypeAlignment)
2981           AttributedType(canon, attrKind, modifiedType, equivalentType);
2982
2983  Types.push_back(type);
2984  AttributedTypes.InsertNode(type, insertPos);
2985
2986  return QualType(type, 0);
2987}
2988
2989
2990/// \brief Retrieve a substitution-result type.
2991QualType
2992ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2993                                         QualType Replacement) const {
2994  assert(Replacement.isCanonical()
2995         && "replacement types must always be canonical");
2996
2997  llvm::FoldingSetNodeID ID;
2998  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2999  void *InsertPos = 0;
3000  SubstTemplateTypeParmType *SubstParm
3001    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3002
3003  if (!SubstParm) {
3004    SubstParm = new (*this, TypeAlignment)
3005      SubstTemplateTypeParmType(Parm, Replacement);
3006    Types.push_back(SubstParm);
3007    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3008  }
3009
3010  return QualType(SubstParm, 0);
3011}
3012
3013/// \brief Retrieve a
3014QualType ASTContext::getSubstTemplateTypeParmPackType(
3015                                          const TemplateTypeParmType *Parm,
3016                                              const TemplateArgument &ArgPack) {
3017#ifndef NDEBUG
3018  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
3019                                    PEnd = ArgPack.pack_end();
3020       P != PEnd; ++P) {
3021    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3022    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
3023  }
3024#endif
3025
3026  llvm::FoldingSetNodeID ID;
3027  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3028  void *InsertPos = 0;
3029  if (SubstTemplateTypeParmPackType *SubstParm
3030        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3031    return QualType(SubstParm, 0);
3032
3033  QualType Canon;
3034  if (!Parm->isCanonicalUnqualified()) {
3035    Canon = getCanonicalType(QualType(Parm, 0));
3036    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3037                                             ArgPack);
3038    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3039  }
3040
3041  SubstTemplateTypeParmPackType *SubstParm
3042    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3043                                                               ArgPack);
3044  Types.push_back(SubstParm);
3045  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3046  return QualType(SubstParm, 0);
3047}
3048
3049/// \brief Retrieve the template type parameter type for a template
3050/// parameter or parameter pack with the given depth, index, and (optionally)
3051/// name.
3052QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3053                                             bool ParameterPack,
3054                                             TemplateTypeParmDecl *TTPDecl) const {
3055  llvm::FoldingSetNodeID ID;
3056  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3057  void *InsertPos = 0;
3058  TemplateTypeParmType *TypeParm
3059    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3060
3061  if (TypeParm)
3062    return QualType(TypeParm, 0);
3063
3064  if (TTPDecl) {
3065    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3066    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3067
3068    TemplateTypeParmType *TypeCheck
3069      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3070    assert(!TypeCheck && "Template type parameter canonical type broken");
3071    (void)TypeCheck;
3072  } else
3073    TypeParm = new (*this, TypeAlignment)
3074      TemplateTypeParmType(Depth, Index, ParameterPack);
3075
3076  Types.push_back(TypeParm);
3077  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3078
3079  return QualType(TypeParm, 0);
3080}
3081
3082TypeSourceInfo *
3083ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3084                                              SourceLocation NameLoc,
3085                                        const TemplateArgumentListInfo &Args,
3086                                              QualType Underlying) const {
3087  assert(!Name.getAsDependentTemplateName() &&
3088         "No dependent template names here!");
3089  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3090
3091  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3092  TemplateSpecializationTypeLoc TL =
3093      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3094  TL.setTemplateKeywordLoc(SourceLocation());
3095  TL.setTemplateNameLoc(NameLoc);
3096  TL.setLAngleLoc(Args.getLAngleLoc());
3097  TL.setRAngleLoc(Args.getRAngleLoc());
3098  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3099    TL.setArgLocInfo(i, Args[i].getLocInfo());
3100  return DI;
3101}
3102
3103QualType
3104ASTContext::getTemplateSpecializationType(TemplateName Template,
3105                                          const TemplateArgumentListInfo &Args,
3106                                          QualType Underlying) const {
3107  assert(!Template.getAsDependentTemplateName() &&
3108         "No dependent template names here!");
3109
3110  unsigned NumArgs = Args.size();
3111
3112  SmallVector<TemplateArgument, 4> ArgVec;
3113  ArgVec.reserve(NumArgs);
3114  for (unsigned i = 0; i != NumArgs; ++i)
3115    ArgVec.push_back(Args[i].getArgument());
3116
3117  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3118                                       Underlying);
3119}
3120
3121#ifndef NDEBUG
3122static bool hasAnyPackExpansions(const TemplateArgument *Args,
3123                                 unsigned NumArgs) {
3124  for (unsigned I = 0; I != NumArgs; ++I)
3125    if (Args[I].isPackExpansion())
3126      return true;
3127
3128  return true;
3129}
3130#endif
3131
3132QualType
3133ASTContext::getTemplateSpecializationType(TemplateName Template,
3134                                          const TemplateArgument *Args,
3135                                          unsigned NumArgs,
3136                                          QualType Underlying) const {
3137  assert(!Template.getAsDependentTemplateName() &&
3138         "No dependent template names here!");
3139  // Look through qualified template names.
3140  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3141    Template = TemplateName(QTN->getTemplateDecl());
3142
3143  bool IsTypeAlias =
3144    Template.getAsTemplateDecl() &&
3145    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3146  QualType CanonType;
3147  if (!Underlying.isNull())
3148    CanonType = getCanonicalType(Underlying);
3149  else {
3150    // We can get here with an alias template when the specialization contains
3151    // a pack expansion that does not match up with a parameter pack.
3152    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3153           "Caller must compute aliased type");
3154    IsTypeAlias = false;
3155    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3156                                                       NumArgs);
3157  }
3158
3159  // Allocate the (non-canonical) template specialization type, but don't
3160  // try to unique it: these types typically have location information that
3161  // we don't unique and don't want to lose.
3162  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3163                       sizeof(TemplateArgument) * NumArgs +
3164                       (IsTypeAlias? sizeof(QualType) : 0),
3165                       TypeAlignment);
3166  TemplateSpecializationType *Spec
3167    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3168                                         IsTypeAlias ? Underlying : QualType());
3169
3170  Types.push_back(Spec);
3171  return QualType(Spec, 0);
3172}
3173
3174QualType
3175ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3176                                                   const TemplateArgument *Args,
3177                                                   unsigned NumArgs) const {
3178  assert(!Template.getAsDependentTemplateName() &&
3179         "No dependent template names here!");
3180
3181  // Look through qualified template names.
3182  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3183    Template = TemplateName(QTN->getTemplateDecl());
3184
3185  // Build the canonical template specialization type.
3186  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3187  SmallVector<TemplateArgument, 4> CanonArgs;
3188  CanonArgs.reserve(NumArgs);
3189  for (unsigned I = 0; I != NumArgs; ++I)
3190    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3191
3192  // Determine whether this canonical template specialization type already
3193  // exists.
3194  llvm::FoldingSetNodeID ID;
3195  TemplateSpecializationType::Profile(ID, CanonTemplate,
3196                                      CanonArgs.data(), NumArgs, *this);
3197
3198  void *InsertPos = 0;
3199  TemplateSpecializationType *Spec
3200    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3201
3202  if (!Spec) {
3203    // Allocate a new canonical template specialization type.
3204    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3205                          sizeof(TemplateArgument) * NumArgs),
3206                         TypeAlignment);
3207    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3208                                                CanonArgs.data(), NumArgs,
3209                                                QualType(), QualType());
3210    Types.push_back(Spec);
3211    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3212  }
3213
3214  assert(Spec->isDependentType() &&
3215         "Non-dependent template-id type must have a canonical type");
3216  return QualType(Spec, 0);
3217}
3218
3219QualType
3220ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3221                              NestedNameSpecifier *NNS,
3222                              QualType NamedType) const {
3223  llvm::FoldingSetNodeID ID;
3224  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3225
3226  void *InsertPos = 0;
3227  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3228  if (T)
3229    return QualType(T, 0);
3230
3231  QualType Canon = NamedType;
3232  if (!Canon.isCanonical()) {
3233    Canon = getCanonicalType(NamedType);
3234    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3235    assert(!CheckT && "Elaborated canonical type broken");
3236    (void)CheckT;
3237  }
3238
3239  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3240  Types.push_back(T);
3241  ElaboratedTypes.InsertNode(T, InsertPos);
3242  return QualType(T, 0);
3243}
3244
3245QualType
3246ASTContext::getParenType(QualType InnerType) const {
3247  llvm::FoldingSetNodeID ID;
3248  ParenType::Profile(ID, InnerType);
3249
3250  void *InsertPos = 0;
3251  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3252  if (T)
3253    return QualType(T, 0);
3254
3255  QualType Canon = InnerType;
3256  if (!Canon.isCanonical()) {
3257    Canon = getCanonicalType(InnerType);
3258    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3259    assert(!CheckT && "Paren canonical type broken");
3260    (void)CheckT;
3261  }
3262
3263  T = new (*this) ParenType(InnerType, Canon);
3264  Types.push_back(T);
3265  ParenTypes.InsertNode(T, InsertPos);
3266  return QualType(T, 0);
3267}
3268
3269QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3270                                          NestedNameSpecifier *NNS,
3271                                          const IdentifierInfo *Name,
3272                                          QualType Canon) const {
3273  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3274
3275  if (Canon.isNull()) {
3276    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3277    ElaboratedTypeKeyword CanonKeyword = Keyword;
3278    if (Keyword == ETK_None)
3279      CanonKeyword = ETK_Typename;
3280
3281    if (CanonNNS != NNS || CanonKeyword != Keyword)
3282      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3283  }
3284
3285  llvm::FoldingSetNodeID ID;
3286  DependentNameType::Profile(ID, Keyword, NNS, Name);
3287
3288  void *InsertPos = 0;
3289  DependentNameType *T
3290    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3291  if (T)
3292    return QualType(T, 0);
3293
3294  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3295  Types.push_back(T);
3296  DependentNameTypes.InsertNode(T, InsertPos);
3297  return QualType(T, 0);
3298}
3299
3300QualType
3301ASTContext::getDependentTemplateSpecializationType(
3302                                 ElaboratedTypeKeyword Keyword,
3303                                 NestedNameSpecifier *NNS,
3304                                 const IdentifierInfo *Name,
3305                                 const TemplateArgumentListInfo &Args) const {
3306  // TODO: avoid this copy
3307  SmallVector<TemplateArgument, 16> ArgCopy;
3308  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3309    ArgCopy.push_back(Args[I].getArgument());
3310  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3311                                                ArgCopy.size(),
3312                                                ArgCopy.data());
3313}
3314
3315QualType
3316ASTContext::getDependentTemplateSpecializationType(
3317                                 ElaboratedTypeKeyword Keyword,
3318                                 NestedNameSpecifier *NNS,
3319                                 const IdentifierInfo *Name,
3320                                 unsigned NumArgs,
3321                                 const TemplateArgument *Args) const {
3322  assert((!NNS || NNS->isDependent()) &&
3323         "nested-name-specifier must be dependent");
3324
3325  llvm::FoldingSetNodeID ID;
3326  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3327                                               Name, NumArgs, Args);
3328
3329  void *InsertPos = 0;
3330  DependentTemplateSpecializationType *T
3331    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3332  if (T)
3333    return QualType(T, 0);
3334
3335  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3336
3337  ElaboratedTypeKeyword CanonKeyword = Keyword;
3338  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3339
3340  bool AnyNonCanonArgs = false;
3341  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3342  for (unsigned I = 0; I != NumArgs; ++I) {
3343    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3344    if (!CanonArgs[I].structurallyEquals(Args[I]))
3345      AnyNonCanonArgs = true;
3346  }
3347
3348  QualType Canon;
3349  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3350    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3351                                                   Name, NumArgs,
3352                                                   CanonArgs.data());
3353
3354    // Find the insert position again.
3355    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3356  }
3357
3358  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3359                        sizeof(TemplateArgument) * NumArgs),
3360                       TypeAlignment);
3361  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3362                                                    Name, NumArgs, Args, Canon);
3363  Types.push_back(T);
3364  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3365  return QualType(T, 0);
3366}
3367
3368QualType ASTContext::getPackExpansionType(QualType Pattern,
3369                                          Optional<unsigned> NumExpansions) {
3370  llvm::FoldingSetNodeID ID;
3371  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3372
3373  assert(Pattern->containsUnexpandedParameterPack() &&
3374         "Pack expansions must expand one or more parameter packs");
3375  void *InsertPos = 0;
3376  PackExpansionType *T
3377    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3378  if (T)
3379    return QualType(T, 0);
3380
3381  QualType Canon;
3382  if (!Pattern.isCanonical()) {
3383    Canon = getCanonicalType(Pattern);
3384    // The canonical type might not contain an unexpanded parameter pack, if it
3385    // contains an alias template specialization which ignores one of its
3386    // parameters.
3387    if (Canon->containsUnexpandedParameterPack()) {
3388      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3389
3390      // Find the insert position again, in case we inserted an element into
3391      // PackExpansionTypes and invalidated our insert position.
3392      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3393    }
3394  }
3395
3396  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3397  Types.push_back(T);
3398  PackExpansionTypes.InsertNode(T, InsertPos);
3399  return QualType(T, 0);
3400}
3401
3402/// CmpProtocolNames - Comparison predicate for sorting protocols
3403/// alphabetically.
3404static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3405                            const ObjCProtocolDecl *RHS) {
3406  return LHS->getDeclName() < RHS->getDeclName();
3407}
3408
3409static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3410                                unsigned NumProtocols) {
3411  if (NumProtocols == 0) return true;
3412
3413  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3414    return false;
3415
3416  for (unsigned i = 1; i != NumProtocols; ++i)
3417    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3418        Protocols[i]->getCanonicalDecl() != Protocols[i])
3419      return false;
3420  return true;
3421}
3422
3423static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3424                                   unsigned &NumProtocols) {
3425  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3426
3427  // Sort protocols, keyed by name.
3428  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3429
3430  // Canonicalize.
3431  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3432    Protocols[I] = Protocols[I]->getCanonicalDecl();
3433
3434  // Remove duplicates.
3435  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3436  NumProtocols = ProtocolsEnd-Protocols;
3437}
3438
3439QualType ASTContext::getObjCObjectType(QualType BaseType,
3440                                       ObjCProtocolDecl * const *Protocols,
3441                                       unsigned NumProtocols) const {
3442  // If the base type is an interface and there aren't any protocols
3443  // to add, then the interface type will do just fine.
3444  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3445    return BaseType;
3446
3447  // Look in the folding set for an existing type.
3448  llvm::FoldingSetNodeID ID;
3449  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3450  void *InsertPos = 0;
3451  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3452    return QualType(QT, 0);
3453
3454  // Build the canonical type, which has the canonical base type and
3455  // a sorted-and-uniqued list of protocols.
3456  QualType Canonical;
3457  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3458  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3459    if (!ProtocolsSorted) {
3460      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3461                                                     Protocols + NumProtocols);
3462      unsigned UniqueCount = NumProtocols;
3463
3464      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3465      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3466                                    &Sorted[0], UniqueCount);
3467    } else {
3468      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3469                                    Protocols, NumProtocols);
3470    }
3471
3472    // Regenerate InsertPos.
3473    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3474  }
3475
3476  unsigned Size = sizeof(ObjCObjectTypeImpl);
3477  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3478  void *Mem = Allocate(Size, TypeAlignment);
3479  ObjCObjectTypeImpl *T =
3480    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3481
3482  Types.push_back(T);
3483  ObjCObjectTypes.InsertNode(T, InsertPos);
3484  return QualType(T, 0);
3485}
3486
3487/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3488/// the given object type.
3489QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3490  llvm::FoldingSetNodeID ID;
3491  ObjCObjectPointerType::Profile(ID, ObjectT);
3492
3493  void *InsertPos = 0;
3494  if (ObjCObjectPointerType *QT =
3495              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3496    return QualType(QT, 0);
3497
3498  // Find the canonical object type.
3499  QualType Canonical;
3500  if (!ObjectT.isCanonical()) {
3501    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3502
3503    // Regenerate InsertPos.
3504    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3505  }
3506
3507  // No match.
3508  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3509  ObjCObjectPointerType *QType =
3510    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3511
3512  Types.push_back(QType);
3513  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3514  return QualType(QType, 0);
3515}
3516
3517/// getObjCInterfaceType - Return the unique reference to the type for the
3518/// specified ObjC interface decl. The list of protocols is optional.
3519QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3520                                          ObjCInterfaceDecl *PrevDecl) const {
3521  if (Decl->TypeForDecl)
3522    return QualType(Decl->TypeForDecl, 0);
3523
3524  if (PrevDecl) {
3525    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3526    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3527    return QualType(PrevDecl->TypeForDecl, 0);
3528  }
3529
3530  // Prefer the definition, if there is one.
3531  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3532    Decl = Def;
3533
3534  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3535  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3536  Decl->TypeForDecl = T;
3537  Types.push_back(T);
3538  return QualType(T, 0);
3539}
3540
3541/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3542/// TypeOfExprType AST's (since expression's are never shared). For example,
3543/// multiple declarations that refer to "typeof(x)" all contain different
3544/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3545/// on canonical type's (which are always unique).
3546QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3547  TypeOfExprType *toe;
3548  if (tofExpr->isTypeDependent()) {
3549    llvm::FoldingSetNodeID ID;
3550    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3551
3552    void *InsertPos = 0;
3553    DependentTypeOfExprType *Canon
3554      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3555    if (Canon) {
3556      // We already have a "canonical" version of an identical, dependent
3557      // typeof(expr) type. Use that as our canonical type.
3558      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3559                                          QualType((TypeOfExprType*)Canon, 0));
3560    } else {
3561      // Build a new, canonical typeof(expr) type.
3562      Canon
3563        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3564      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3565      toe = Canon;
3566    }
3567  } else {
3568    QualType Canonical = getCanonicalType(tofExpr->getType());
3569    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3570  }
3571  Types.push_back(toe);
3572  return QualType(toe, 0);
3573}
3574
3575/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3576/// TypeOfType AST's. The only motivation to unique these nodes would be
3577/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3578/// an issue. This doesn't effect the type checker, since it operates
3579/// on canonical type's (which are always unique).
3580QualType ASTContext::getTypeOfType(QualType tofType) const {
3581  QualType Canonical = getCanonicalType(tofType);
3582  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3583  Types.push_back(tot);
3584  return QualType(tot, 0);
3585}
3586
3587
3588/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3589/// DecltypeType AST's. The only motivation to unique these nodes would be
3590/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3591/// an issue. This doesn't effect the type checker, since it operates
3592/// on canonical types (which are always unique).
3593QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3594  DecltypeType *dt;
3595
3596  // C++0x [temp.type]p2:
3597  //   If an expression e involves a template parameter, decltype(e) denotes a
3598  //   unique dependent type. Two such decltype-specifiers refer to the same
3599  //   type only if their expressions are equivalent (14.5.6.1).
3600  if (e->isInstantiationDependent()) {
3601    llvm::FoldingSetNodeID ID;
3602    DependentDecltypeType::Profile(ID, *this, e);
3603
3604    void *InsertPos = 0;
3605    DependentDecltypeType *Canon
3606      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3607    if (Canon) {
3608      // We already have a "canonical" version of an equivalent, dependent
3609      // decltype type. Use that as our canonical type.
3610      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3611                                       QualType((DecltypeType*)Canon, 0));
3612    } else {
3613      // Build a new, canonical typeof(expr) type.
3614      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3615      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3616      dt = Canon;
3617    }
3618  } else {
3619    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3620                                      getCanonicalType(UnderlyingType));
3621  }
3622  Types.push_back(dt);
3623  return QualType(dt, 0);
3624}
3625
3626/// getUnaryTransformationType - We don't unique these, since the memory
3627/// savings are minimal and these are rare.
3628QualType ASTContext::getUnaryTransformType(QualType BaseType,
3629                                           QualType UnderlyingType,
3630                                           UnaryTransformType::UTTKind Kind)
3631    const {
3632  UnaryTransformType *Ty =
3633    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3634                                                   Kind,
3635                                 UnderlyingType->isDependentType() ?
3636                                 QualType() : getCanonicalType(UnderlyingType));
3637  Types.push_back(Ty);
3638  return QualType(Ty, 0);
3639}
3640
3641/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3642/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3643/// canonical deduced-but-dependent 'auto' type.
3644QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3645                                 bool IsDependent) const {
3646  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3647    return getAutoDeductType();
3648
3649  // Look in the folding set for an existing type.
3650  void *InsertPos = 0;
3651  llvm::FoldingSetNodeID ID;
3652  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3653  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3654    return QualType(AT, 0);
3655
3656  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3657                                                     IsDecltypeAuto,
3658                                                     IsDependent);
3659  Types.push_back(AT);
3660  if (InsertPos)
3661    AutoTypes.InsertNode(AT, InsertPos);
3662  return QualType(AT, 0);
3663}
3664
3665/// getAtomicType - Return the uniqued reference to the atomic type for
3666/// the given value type.
3667QualType ASTContext::getAtomicType(QualType T) const {
3668  // Unique pointers, to guarantee there is only one pointer of a particular
3669  // structure.
3670  llvm::FoldingSetNodeID ID;
3671  AtomicType::Profile(ID, T);
3672
3673  void *InsertPos = 0;
3674  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3675    return QualType(AT, 0);
3676
3677  // If the atomic value type isn't canonical, this won't be a canonical type
3678  // either, so fill in the canonical type field.
3679  QualType Canonical;
3680  if (!T.isCanonical()) {
3681    Canonical = getAtomicType(getCanonicalType(T));
3682
3683    // Get the new insert position for the node we care about.
3684    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3685    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3686  }
3687  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3688  Types.push_back(New);
3689  AtomicTypes.InsertNode(New, InsertPos);
3690  return QualType(New, 0);
3691}
3692
3693/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3694QualType ASTContext::getAutoDeductType() const {
3695  if (AutoDeductTy.isNull())
3696    AutoDeductTy = QualType(
3697      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3698                                          /*dependent*/false),
3699      0);
3700  return AutoDeductTy;
3701}
3702
3703/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3704QualType ASTContext::getAutoRRefDeductType() const {
3705  if (AutoRRefDeductTy.isNull())
3706    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3707  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3708  return AutoRRefDeductTy;
3709}
3710
3711/// getTagDeclType - Return the unique reference to the type for the
3712/// specified TagDecl (struct/union/class/enum) decl.
3713QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3714  assert (Decl);
3715  // FIXME: What is the design on getTagDeclType when it requires casting
3716  // away const?  mutable?
3717  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3718}
3719
3720/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3721/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3722/// needs to agree with the definition in <stddef.h>.
3723CanQualType ASTContext::getSizeType() const {
3724  return getFromTargetType(Target->getSizeType());
3725}
3726
3727/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3728CanQualType ASTContext::getIntMaxType() const {
3729  return getFromTargetType(Target->getIntMaxType());
3730}
3731
3732/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3733CanQualType ASTContext::getUIntMaxType() const {
3734  return getFromTargetType(Target->getUIntMaxType());
3735}
3736
3737/// getSignedWCharType - Return the type of "signed wchar_t".
3738/// Used when in C++, as a GCC extension.
3739QualType ASTContext::getSignedWCharType() const {
3740  // FIXME: derive from "Target" ?
3741  return WCharTy;
3742}
3743
3744/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3745/// Used when in C++, as a GCC extension.
3746QualType ASTContext::getUnsignedWCharType() const {
3747  // FIXME: derive from "Target" ?
3748  return UnsignedIntTy;
3749}
3750
3751QualType ASTContext::getIntPtrType() const {
3752  return getFromTargetType(Target->getIntPtrType());
3753}
3754
3755QualType ASTContext::getUIntPtrType() const {
3756  return getCorrespondingUnsignedType(getIntPtrType());
3757}
3758
3759/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3760/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3761QualType ASTContext::getPointerDiffType() const {
3762  return getFromTargetType(Target->getPtrDiffType(0));
3763}
3764
3765/// \brief Return the unique type for "pid_t" defined in
3766/// <sys/types.h>. We need this to compute the correct type for vfork().
3767QualType ASTContext::getProcessIDType() const {
3768  return getFromTargetType(Target->getProcessIDType());
3769}
3770
3771//===----------------------------------------------------------------------===//
3772//                              Type Operators
3773//===----------------------------------------------------------------------===//
3774
3775CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3776  // Push qualifiers into arrays, and then discard any remaining
3777  // qualifiers.
3778  T = getCanonicalType(T);
3779  T = getVariableArrayDecayedType(T);
3780  const Type *Ty = T.getTypePtr();
3781  QualType Result;
3782  if (isa<ArrayType>(Ty)) {
3783    Result = getArrayDecayedType(QualType(Ty,0));
3784  } else if (isa<FunctionType>(Ty)) {
3785    Result = getPointerType(QualType(Ty, 0));
3786  } else {
3787    Result = QualType(Ty, 0);
3788  }
3789
3790  return CanQualType::CreateUnsafe(Result);
3791}
3792
3793QualType ASTContext::getUnqualifiedArrayType(QualType type,
3794                                             Qualifiers &quals) {
3795  SplitQualType splitType = type.getSplitUnqualifiedType();
3796
3797  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3798  // the unqualified desugared type and then drops it on the floor.
3799  // We then have to strip that sugar back off with
3800  // getUnqualifiedDesugaredType(), which is silly.
3801  const ArrayType *AT =
3802    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3803
3804  // If we don't have an array, just use the results in splitType.
3805  if (!AT) {
3806    quals = splitType.Quals;
3807    return QualType(splitType.Ty, 0);
3808  }
3809
3810  // Otherwise, recurse on the array's element type.
3811  QualType elementType = AT->getElementType();
3812  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3813
3814  // If that didn't change the element type, AT has no qualifiers, so we
3815  // can just use the results in splitType.
3816  if (elementType == unqualElementType) {
3817    assert(quals.empty()); // from the recursive call
3818    quals = splitType.Quals;
3819    return QualType(splitType.Ty, 0);
3820  }
3821
3822  // Otherwise, add in the qualifiers from the outermost type, then
3823  // build the type back up.
3824  quals.addConsistentQualifiers(splitType.Quals);
3825
3826  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3827    return getConstantArrayType(unqualElementType, CAT->getSize(),
3828                                CAT->getSizeModifier(), 0);
3829  }
3830
3831  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3832    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3833  }
3834
3835  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3836    return getVariableArrayType(unqualElementType,
3837                                VAT->getSizeExpr(),
3838                                VAT->getSizeModifier(),
3839                                VAT->getIndexTypeCVRQualifiers(),
3840                                VAT->getBracketsRange());
3841  }
3842
3843  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3844  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3845                                    DSAT->getSizeModifier(), 0,
3846                                    SourceRange());
3847}
3848
3849/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3850/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3851/// they point to and return true. If T1 and T2 aren't pointer types
3852/// or pointer-to-member types, or if they are not similar at this
3853/// level, returns false and leaves T1 and T2 unchanged. Top-level
3854/// qualifiers on T1 and T2 are ignored. This function will typically
3855/// be called in a loop that successively "unwraps" pointer and
3856/// pointer-to-member types to compare them at each level.
3857bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3858  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3859                    *T2PtrType = T2->getAs<PointerType>();
3860  if (T1PtrType && T2PtrType) {
3861    T1 = T1PtrType->getPointeeType();
3862    T2 = T2PtrType->getPointeeType();
3863    return true;
3864  }
3865
3866  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3867                          *T2MPType = T2->getAs<MemberPointerType>();
3868  if (T1MPType && T2MPType &&
3869      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3870                             QualType(T2MPType->getClass(), 0))) {
3871    T1 = T1MPType->getPointeeType();
3872    T2 = T2MPType->getPointeeType();
3873    return true;
3874  }
3875
3876  if (getLangOpts().ObjC1) {
3877    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3878                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3879    if (T1OPType && T2OPType) {
3880      T1 = T1OPType->getPointeeType();
3881      T2 = T2OPType->getPointeeType();
3882      return true;
3883    }
3884  }
3885
3886  // FIXME: Block pointers, too?
3887
3888  return false;
3889}
3890
3891DeclarationNameInfo
3892ASTContext::getNameForTemplate(TemplateName Name,
3893                               SourceLocation NameLoc) const {
3894  switch (Name.getKind()) {
3895  case TemplateName::QualifiedTemplate:
3896  case TemplateName::Template:
3897    // DNInfo work in progress: CHECKME: what about DNLoc?
3898    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3899                               NameLoc);
3900
3901  case TemplateName::OverloadedTemplate: {
3902    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3903    // DNInfo work in progress: CHECKME: what about DNLoc?
3904    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3905  }
3906
3907  case TemplateName::DependentTemplate: {
3908    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3909    DeclarationName DName;
3910    if (DTN->isIdentifier()) {
3911      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3912      return DeclarationNameInfo(DName, NameLoc);
3913    } else {
3914      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3915      // DNInfo work in progress: FIXME: source locations?
3916      DeclarationNameLoc DNLoc;
3917      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3918      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3919      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3920    }
3921  }
3922
3923  case TemplateName::SubstTemplateTemplateParm: {
3924    SubstTemplateTemplateParmStorage *subst
3925      = Name.getAsSubstTemplateTemplateParm();
3926    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3927                               NameLoc);
3928  }
3929
3930  case TemplateName::SubstTemplateTemplateParmPack: {
3931    SubstTemplateTemplateParmPackStorage *subst
3932      = Name.getAsSubstTemplateTemplateParmPack();
3933    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3934                               NameLoc);
3935  }
3936  }
3937
3938  llvm_unreachable("bad template name kind!");
3939}
3940
3941TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3942  switch (Name.getKind()) {
3943  case TemplateName::QualifiedTemplate:
3944  case TemplateName::Template: {
3945    TemplateDecl *Template = Name.getAsTemplateDecl();
3946    if (TemplateTemplateParmDecl *TTP
3947          = dyn_cast<TemplateTemplateParmDecl>(Template))
3948      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3949
3950    // The canonical template name is the canonical template declaration.
3951    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3952  }
3953
3954  case TemplateName::OverloadedTemplate:
3955    llvm_unreachable("cannot canonicalize overloaded template");
3956
3957  case TemplateName::DependentTemplate: {
3958    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3959    assert(DTN && "Non-dependent template names must refer to template decls.");
3960    return DTN->CanonicalTemplateName;
3961  }
3962
3963  case TemplateName::SubstTemplateTemplateParm: {
3964    SubstTemplateTemplateParmStorage *subst
3965      = Name.getAsSubstTemplateTemplateParm();
3966    return getCanonicalTemplateName(subst->getReplacement());
3967  }
3968
3969  case TemplateName::SubstTemplateTemplateParmPack: {
3970    SubstTemplateTemplateParmPackStorage *subst
3971                                  = Name.getAsSubstTemplateTemplateParmPack();
3972    TemplateTemplateParmDecl *canonParameter
3973      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3974    TemplateArgument canonArgPack
3975      = getCanonicalTemplateArgument(subst->getArgumentPack());
3976    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3977  }
3978  }
3979
3980  llvm_unreachable("bad template name!");
3981}
3982
3983bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3984  X = getCanonicalTemplateName(X);
3985  Y = getCanonicalTemplateName(Y);
3986  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3987}
3988
3989TemplateArgument
3990ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3991  switch (Arg.getKind()) {
3992    case TemplateArgument::Null:
3993      return Arg;
3994
3995    case TemplateArgument::Expression:
3996      return Arg;
3997
3998    case TemplateArgument::Declaration: {
3999      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4000      return TemplateArgument(D, Arg.isDeclForReferenceParam());
4001    }
4002
4003    case TemplateArgument::NullPtr:
4004      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4005                              /*isNullPtr*/true);
4006
4007    case TemplateArgument::Template:
4008      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4009
4010    case TemplateArgument::TemplateExpansion:
4011      return TemplateArgument(getCanonicalTemplateName(
4012                                         Arg.getAsTemplateOrTemplatePattern()),
4013                              Arg.getNumTemplateExpansions());
4014
4015    case TemplateArgument::Integral:
4016      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4017
4018    case TemplateArgument::Type:
4019      return TemplateArgument(getCanonicalType(Arg.getAsType()));
4020
4021    case TemplateArgument::Pack: {
4022      if (Arg.pack_size() == 0)
4023        return Arg;
4024
4025      TemplateArgument *CanonArgs
4026        = new (*this) TemplateArgument[Arg.pack_size()];
4027      unsigned Idx = 0;
4028      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4029                                        AEnd = Arg.pack_end();
4030           A != AEnd; (void)++A, ++Idx)
4031        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4032
4033      return TemplateArgument(CanonArgs, Arg.pack_size());
4034    }
4035  }
4036
4037  // Silence GCC warning
4038  llvm_unreachable("Unhandled template argument kind");
4039}
4040
4041NestedNameSpecifier *
4042ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4043  if (!NNS)
4044    return 0;
4045
4046  switch (NNS->getKind()) {
4047  case NestedNameSpecifier::Identifier:
4048    // Canonicalize the prefix but keep the identifier the same.
4049    return NestedNameSpecifier::Create(*this,
4050                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4051                                       NNS->getAsIdentifier());
4052
4053  case NestedNameSpecifier::Namespace:
4054    // A namespace is canonical; build a nested-name-specifier with
4055    // this namespace and no prefix.
4056    return NestedNameSpecifier::Create(*this, 0,
4057                                 NNS->getAsNamespace()->getOriginalNamespace());
4058
4059  case NestedNameSpecifier::NamespaceAlias:
4060    // A namespace is canonical; build a nested-name-specifier with
4061    // this namespace and no prefix.
4062    return NestedNameSpecifier::Create(*this, 0,
4063                                    NNS->getAsNamespaceAlias()->getNamespace()
4064                                                      ->getOriginalNamespace());
4065
4066  case NestedNameSpecifier::TypeSpec:
4067  case NestedNameSpecifier::TypeSpecWithTemplate: {
4068    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4069
4070    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4071    // break it apart into its prefix and identifier, then reconsititute those
4072    // as the canonical nested-name-specifier. This is required to canonicalize
4073    // a dependent nested-name-specifier involving typedefs of dependent-name
4074    // types, e.g.,
4075    //   typedef typename T::type T1;
4076    //   typedef typename T1::type T2;
4077    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4078      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4079                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4080
4081    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4082    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4083    // first place?
4084    return NestedNameSpecifier::Create(*this, 0, false,
4085                                       const_cast<Type*>(T.getTypePtr()));
4086  }
4087
4088  case NestedNameSpecifier::Global:
4089    // The global specifier is canonical and unique.
4090    return NNS;
4091  }
4092
4093  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4094}
4095
4096
4097const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4098  // Handle the non-qualified case efficiently.
4099  if (!T.hasLocalQualifiers()) {
4100    // Handle the common positive case fast.
4101    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4102      return AT;
4103  }
4104
4105  // Handle the common negative case fast.
4106  if (!isa<ArrayType>(T.getCanonicalType()))
4107    return 0;
4108
4109  // Apply any qualifiers from the array type to the element type.  This
4110  // implements C99 6.7.3p8: "If the specification of an array type includes
4111  // any type qualifiers, the element type is so qualified, not the array type."
4112
4113  // If we get here, we either have type qualifiers on the type, or we have
4114  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4115  // we must propagate them down into the element type.
4116
4117  SplitQualType split = T.getSplitDesugaredType();
4118  Qualifiers qs = split.Quals;
4119
4120  // If we have a simple case, just return now.
4121  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4122  if (ATy == 0 || qs.empty())
4123    return ATy;
4124
4125  // Otherwise, we have an array and we have qualifiers on it.  Push the
4126  // qualifiers into the array element type and return a new array type.
4127  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4128
4129  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4130    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4131                                                CAT->getSizeModifier(),
4132                                           CAT->getIndexTypeCVRQualifiers()));
4133  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4134    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4135                                                  IAT->getSizeModifier(),
4136                                           IAT->getIndexTypeCVRQualifiers()));
4137
4138  if (const DependentSizedArrayType *DSAT
4139        = dyn_cast<DependentSizedArrayType>(ATy))
4140    return cast<ArrayType>(
4141                     getDependentSizedArrayType(NewEltTy,
4142                                                DSAT->getSizeExpr(),
4143                                                DSAT->getSizeModifier(),
4144                                              DSAT->getIndexTypeCVRQualifiers(),
4145                                                DSAT->getBracketsRange()));
4146
4147  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4148  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4149                                              VAT->getSizeExpr(),
4150                                              VAT->getSizeModifier(),
4151                                              VAT->getIndexTypeCVRQualifiers(),
4152                                              VAT->getBracketsRange()));
4153}
4154
4155QualType ASTContext::getAdjustedParameterType(QualType T) const {
4156  // C99 6.7.5.3p7:
4157  //   A declaration of a parameter as "array of type" shall be
4158  //   adjusted to "qualified pointer to type", where the type
4159  //   qualifiers (if any) are those specified within the [ and ] of
4160  //   the array type derivation.
4161  if (T->isArrayType())
4162    return getArrayDecayedType(T);
4163
4164  // C99 6.7.5.3p8:
4165  //   A declaration of a parameter as "function returning type"
4166  //   shall be adjusted to "pointer to function returning type", as
4167  //   in 6.3.2.1.
4168  if (T->isFunctionType())
4169    return getPointerType(T);
4170
4171  return T;
4172}
4173
4174QualType ASTContext::getSignatureParameterType(QualType T) const {
4175  T = getVariableArrayDecayedType(T);
4176  T = getAdjustedParameterType(T);
4177  return T.getUnqualifiedType();
4178}
4179
4180/// getArrayDecayedType - Return the properly qualified result of decaying the
4181/// specified array type to a pointer.  This operation is non-trivial when
4182/// handling typedefs etc.  The canonical type of "T" must be an array type,
4183/// this returns a pointer to a properly qualified element of the array.
4184///
4185/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4186QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4187  // Get the element type with 'getAsArrayType' so that we don't lose any
4188  // typedefs in the element type of the array.  This also handles propagation
4189  // of type qualifiers from the array type into the element type if present
4190  // (C99 6.7.3p8).
4191  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4192  assert(PrettyArrayType && "Not an array type!");
4193
4194  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4195
4196  // int x[restrict 4] ->  int *restrict
4197  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4198}
4199
4200QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4201  return getBaseElementType(array->getElementType());
4202}
4203
4204QualType ASTContext::getBaseElementType(QualType type) const {
4205  Qualifiers qs;
4206  while (true) {
4207    SplitQualType split = type.getSplitDesugaredType();
4208    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4209    if (!array) break;
4210
4211    type = array->getElementType();
4212    qs.addConsistentQualifiers(split.Quals);
4213  }
4214
4215  return getQualifiedType(type, qs);
4216}
4217
4218/// getConstantArrayElementCount - Returns number of constant array elements.
4219uint64_t
4220ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4221  uint64_t ElementCount = 1;
4222  do {
4223    ElementCount *= CA->getSize().getZExtValue();
4224    CA = dyn_cast_or_null<ConstantArrayType>(
4225      CA->getElementType()->getAsArrayTypeUnsafe());
4226  } while (CA);
4227  return ElementCount;
4228}
4229
4230/// getFloatingRank - Return a relative rank for floating point types.
4231/// This routine will assert if passed a built-in type that isn't a float.
4232static FloatingRank getFloatingRank(QualType T) {
4233  if (const ComplexType *CT = T->getAs<ComplexType>())
4234    return getFloatingRank(CT->getElementType());
4235
4236  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4237  switch (T->getAs<BuiltinType>()->getKind()) {
4238  default: llvm_unreachable("getFloatingRank(): not a floating type");
4239  case BuiltinType::Half:       return HalfRank;
4240  case BuiltinType::Float:      return FloatRank;
4241  case BuiltinType::Double:     return DoubleRank;
4242  case BuiltinType::LongDouble: return LongDoubleRank;
4243  }
4244}
4245
4246/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4247/// point or a complex type (based on typeDomain/typeSize).
4248/// 'typeDomain' is a real floating point or complex type.
4249/// 'typeSize' is a real floating point or complex type.
4250QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4251                                                       QualType Domain) const {
4252  FloatingRank EltRank = getFloatingRank(Size);
4253  if (Domain->isComplexType()) {
4254    switch (EltRank) {
4255    case HalfRank: llvm_unreachable("Complex half is not supported");
4256    case FloatRank:      return FloatComplexTy;
4257    case DoubleRank:     return DoubleComplexTy;
4258    case LongDoubleRank: return LongDoubleComplexTy;
4259    }
4260  }
4261
4262  assert(Domain->isRealFloatingType() && "Unknown domain!");
4263  switch (EltRank) {
4264  case HalfRank:       return HalfTy;
4265  case FloatRank:      return FloatTy;
4266  case DoubleRank:     return DoubleTy;
4267  case LongDoubleRank: return LongDoubleTy;
4268  }
4269  llvm_unreachable("getFloatingRank(): illegal value for rank");
4270}
4271
4272/// getFloatingTypeOrder - Compare the rank of the two specified floating
4273/// point types, ignoring the domain of the type (i.e. 'double' ==
4274/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4275/// LHS < RHS, return -1.
4276int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4277  FloatingRank LHSR = getFloatingRank(LHS);
4278  FloatingRank RHSR = getFloatingRank(RHS);
4279
4280  if (LHSR == RHSR)
4281    return 0;
4282  if (LHSR > RHSR)
4283    return 1;
4284  return -1;
4285}
4286
4287/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4288/// routine will assert if passed a built-in type that isn't an integer or enum,
4289/// or if it is not canonicalized.
4290unsigned ASTContext::getIntegerRank(const Type *T) const {
4291  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4292
4293  switch (cast<BuiltinType>(T)->getKind()) {
4294  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4295  case BuiltinType::Bool:
4296    return 1 + (getIntWidth(BoolTy) << 3);
4297  case BuiltinType::Char_S:
4298  case BuiltinType::Char_U:
4299  case BuiltinType::SChar:
4300  case BuiltinType::UChar:
4301    return 2 + (getIntWidth(CharTy) << 3);
4302  case BuiltinType::Short:
4303  case BuiltinType::UShort:
4304    return 3 + (getIntWidth(ShortTy) << 3);
4305  case BuiltinType::Int:
4306  case BuiltinType::UInt:
4307    return 4 + (getIntWidth(IntTy) << 3);
4308  case BuiltinType::Long:
4309  case BuiltinType::ULong:
4310    return 5 + (getIntWidth(LongTy) << 3);
4311  case BuiltinType::LongLong:
4312  case BuiltinType::ULongLong:
4313    return 6 + (getIntWidth(LongLongTy) << 3);
4314  case BuiltinType::Int128:
4315  case BuiltinType::UInt128:
4316    return 7 + (getIntWidth(Int128Ty) << 3);
4317  }
4318}
4319
4320/// \brief Whether this is a promotable bitfield reference according
4321/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4322///
4323/// \returns the type this bit-field will promote to, or NULL if no
4324/// promotion occurs.
4325QualType ASTContext::isPromotableBitField(Expr *E) const {
4326  if (E->isTypeDependent() || E->isValueDependent())
4327    return QualType();
4328
4329  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4330  if (!Field)
4331    return QualType();
4332
4333  QualType FT = Field->getType();
4334
4335  uint64_t BitWidth = Field->getBitWidthValue(*this);
4336  uint64_t IntSize = getTypeSize(IntTy);
4337  // GCC extension compatibility: if the bit-field size is less than or equal
4338  // to the size of int, it gets promoted no matter what its type is.
4339  // For instance, unsigned long bf : 4 gets promoted to signed int.
4340  if (BitWidth < IntSize)
4341    return IntTy;
4342
4343  if (BitWidth == IntSize)
4344    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4345
4346  // Types bigger than int are not subject to promotions, and therefore act
4347  // like the base type.
4348  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4349  // is ridiculous.
4350  return QualType();
4351}
4352
4353/// getPromotedIntegerType - Returns the type that Promotable will
4354/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4355/// integer type.
4356QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4357  assert(!Promotable.isNull());
4358  assert(Promotable->isPromotableIntegerType());
4359  if (const EnumType *ET = Promotable->getAs<EnumType>())
4360    return ET->getDecl()->getPromotionType();
4361
4362  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4363    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4364    // (3.9.1) can be converted to a prvalue of the first of the following
4365    // types that can represent all the values of its underlying type:
4366    // int, unsigned int, long int, unsigned long int, long long int, or
4367    // unsigned long long int [...]
4368    // FIXME: Is there some better way to compute this?
4369    if (BT->getKind() == BuiltinType::WChar_S ||
4370        BT->getKind() == BuiltinType::WChar_U ||
4371        BT->getKind() == BuiltinType::Char16 ||
4372        BT->getKind() == BuiltinType::Char32) {
4373      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4374      uint64_t FromSize = getTypeSize(BT);
4375      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4376                                  LongLongTy, UnsignedLongLongTy };
4377      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4378        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4379        if (FromSize < ToSize ||
4380            (FromSize == ToSize &&
4381             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4382          return PromoteTypes[Idx];
4383      }
4384      llvm_unreachable("char type should fit into long long");
4385    }
4386  }
4387
4388  // At this point, we should have a signed or unsigned integer type.
4389  if (Promotable->isSignedIntegerType())
4390    return IntTy;
4391  uint64_t PromotableSize = getIntWidth(Promotable);
4392  uint64_t IntSize = getIntWidth(IntTy);
4393  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4394  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4395}
4396
4397/// \brief Recurses in pointer/array types until it finds an objc retainable
4398/// type and returns its ownership.
4399Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4400  while (!T.isNull()) {
4401    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4402      return T.getObjCLifetime();
4403    if (T->isArrayType())
4404      T = getBaseElementType(T);
4405    else if (const PointerType *PT = T->getAs<PointerType>())
4406      T = PT->getPointeeType();
4407    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4408      T = RT->getPointeeType();
4409    else
4410      break;
4411  }
4412
4413  return Qualifiers::OCL_None;
4414}
4415
4416/// getIntegerTypeOrder - Returns the highest ranked integer type:
4417/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4418/// LHS < RHS, return -1.
4419int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4420  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4421  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4422  if (LHSC == RHSC) return 0;
4423
4424  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4425  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4426
4427  unsigned LHSRank = getIntegerRank(LHSC);
4428  unsigned RHSRank = getIntegerRank(RHSC);
4429
4430  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4431    if (LHSRank == RHSRank) return 0;
4432    return LHSRank > RHSRank ? 1 : -1;
4433  }
4434
4435  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4436  if (LHSUnsigned) {
4437    // If the unsigned [LHS] type is larger, return it.
4438    if (LHSRank >= RHSRank)
4439      return 1;
4440
4441    // If the signed type can represent all values of the unsigned type, it
4442    // wins.  Because we are dealing with 2's complement and types that are
4443    // powers of two larger than each other, this is always safe.
4444    return -1;
4445  }
4446
4447  // If the unsigned [RHS] type is larger, return it.
4448  if (RHSRank >= LHSRank)
4449    return -1;
4450
4451  // If the signed type can represent all values of the unsigned type, it
4452  // wins.  Because we are dealing with 2's complement and types that are
4453  // powers of two larger than each other, this is always safe.
4454  return 1;
4455}
4456
4457static RecordDecl *
4458CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4459                 DeclContext *DC, IdentifierInfo *Id) {
4460  SourceLocation Loc;
4461  if (Ctx.getLangOpts().CPlusPlus)
4462    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4463  else
4464    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4465}
4466
4467// getCFConstantStringType - Return the type used for constant CFStrings.
4468QualType ASTContext::getCFConstantStringType() const {
4469  if (!CFConstantStringTypeDecl) {
4470    CFConstantStringTypeDecl =
4471      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4472                       &Idents.get("NSConstantString"));
4473    CFConstantStringTypeDecl->startDefinition();
4474
4475    QualType FieldTypes[4];
4476
4477    // const int *isa;
4478    FieldTypes[0] = getPointerType(IntTy.withConst());
4479    // int flags;
4480    FieldTypes[1] = IntTy;
4481    // const char *str;
4482    FieldTypes[2] = getPointerType(CharTy.withConst());
4483    // long length;
4484    FieldTypes[3] = LongTy;
4485
4486    // Create fields
4487    for (unsigned i = 0; i < 4; ++i) {
4488      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4489                                           SourceLocation(),
4490                                           SourceLocation(), 0,
4491                                           FieldTypes[i], /*TInfo=*/0,
4492                                           /*BitWidth=*/0,
4493                                           /*Mutable=*/false,
4494                                           ICIS_NoInit);
4495      Field->setAccess(AS_public);
4496      CFConstantStringTypeDecl->addDecl(Field);
4497    }
4498
4499    CFConstantStringTypeDecl->completeDefinition();
4500  }
4501
4502  return getTagDeclType(CFConstantStringTypeDecl);
4503}
4504
4505QualType ASTContext::getObjCSuperType() const {
4506  if (ObjCSuperType.isNull()) {
4507    RecordDecl *ObjCSuperTypeDecl  =
4508      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4509    TUDecl->addDecl(ObjCSuperTypeDecl);
4510    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4511  }
4512  return ObjCSuperType;
4513}
4514
4515void ASTContext::setCFConstantStringType(QualType T) {
4516  const RecordType *Rec = T->getAs<RecordType>();
4517  assert(Rec && "Invalid CFConstantStringType");
4518  CFConstantStringTypeDecl = Rec->getDecl();
4519}
4520
4521QualType ASTContext::getBlockDescriptorType() const {
4522  if (BlockDescriptorType)
4523    return getTagDeclType(BlockDescriptorType);
4524
4525  RecordDecl *T;
4526  // FIXME: Needs the FlagAppleBlock bit.
4527  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4528                       &Idents.get("__block_descriptor"));
4529  T->startDefinition();
4530
4531  QualType FieldTypes[] = {
4532    UnsignedLongTy,
4533    UnsignedLongTy,
4534  };
4535
4536  const char *FieldNames[] = {
4537    "reserved",
4538    "Size"
4539  };
4540
4541  for (size_t i = 0; i < 2; ++i) {
4542    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4543                                         SourceLocation(),
4544                                         &Idents.get(FieldNames[i]),
4545                                         FieldTypes[i], /*TInfo=*/0,
4546                                         /*BitWidth=*/0,
4547                                         /*Mutable=*/false,
4548                                         ICIS_NoInit);
4549    Field->setAccess(AS_public);
4550    T->addDecl(Field);
4551  }
4552
4553  T->completeDefinition();
4554
4555  BlockDescriptorType = T;
4556
4557  return getTagDeclType(BlockDescriptorType);
4558}
4559
4560QualType ASTContext::getBlockDescriptorExtendedType() const {
4561  if (BlockDescriptorExtendedType)
4562    return getTagDeclType(BlockDescriptorExtendedType);
4563
4564  RecordDecl *T;
4565  // FIXME: Needs the FlagAppleBlock bit.
4566  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4567                       &Idents.get("__block_descriptor_withcopydispose"));
4568  T->startDefinition();
4569
4570  QualType FieldTypes[] = {
4571    UnsignedLongTy,
4572    UnsignedLongTy,
4573    getPointerType(VoidPtrTy),
4574    getPointerType(VoidPtrTy)
4575  };
4576
4577  const char *FieldNames[] = {
4578    "reserved",
4579    "Size",
4580    "CopyFuncPtr",
4581    "DestroyFuncPtr"
4582  };
4583
4584  for (size_t i = 0; i < 4; ++i) {
4585    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4586                                         SourceLocation(),
4587                                         &Idents.get(FieldNames[i]),
4588                                         FieldTypes[i], /*TInfo=*/0,
4589                                         /*BitWidth=*/0,
4590                                         /*Mutable=*/false,
4591                                         ICIS_NoInit);
4592    Field->setAccess(AS_public);
4593    T->addDecl(Field);
4594  }
4595
4596  T->completeDefinition();
4597
4598  BlockDescriptorExtendedType = T;
4599
4600  return getTagDeclType(BlockDescriptorExtendedType);
4601}
4602
4603/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4604/// requires copy/dispose. Note that this must match the logic
4605/// in buildByrefHelpers.
4606bool ASTContext::BlockRequiresCopying(QualType Ty,
4607                                      const VarDecl *D) {
4608  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4609    const Expr *copyExpr = getBlockVarCopyInits(D);
4610    if (!copyExpr && record->hasTrivialDestructor()) return false;
4611
4612    return true;
4613  }
4614
4615  if (!Ty->isObjCRetainableType()) return false;
4616
4617  Qualifiers qs = Ty.getQualifiers();
4618
4619  // If we have lifetime, that dominates.
4620  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4621    assert(getLangOpts().ObjCAutoRefCount);
4622
4623    switch (lifetime) {
4624      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4625
4626      // These are just bits as far as the runtime is concerned.
4627      case Qualifiers::OCL_ExplicitNone:
4628      case Qualifiers::OCL_Autoreleasing:
4629        return false;
4630
4631      // Tell the runtime that this is ARC __weak, called by the
4632      // byref routines.
4633      case Qualifiers::OCL_Weak:
4634      // ARC __strong __block variables need to be retained.
4635      case Qualifiers::OCL_Strong:
4636        return true;
4637    }
4638    llvm_unreachable("fell out of lifetime switch!");
4639  }
4640  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4641          Ty->isObjCObjectPointerType());
4642}
4643
4644bool ASTContext::getByrefLifetime(QualType Ty,
4645                              Qualifiers::ObjCLifetime &LifeTime,
4646                              bool &HasByrefExtendedLayout) const {
4647
4648  if (!getLangOpts().ObjC1 ||
4649      getLangOpts().getGC() != LangOptions::NonGC)
4650    return false;
4651
4652  HasByrefExtendedLayout = false;
4653  if (Ty->isRecordType()) {
4654    HasByrefExtendedLayout = true;
4655    LifeTime = Qualifiers::OCL_None;
4656  }
4657  else if (getLangOpts().ObjCAutoRefCount)
4658    LifeTime = Ty.getObjCLifetime();
4659  // MRR.
4660  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4661    LifeTime = Qualifiers::OCL_ExplicitNone;
4662  else
4663    LifeTime = Qualifiers::OCL_None;
4664  return true;
4665}
4666
4667TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4668  if (!ObjCInstanceTypeDecl)
4669    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4670                                               getTranslationUnitDecl(),
4671                                               SourceLocation(),
4672                                               SourceLocation(),
4673                                               &Idents.get("instancetype"),
4674                                     getTrivialTypeSourceInfo(getObjCIdType()));
4675  return ObjCInstanceTypeDecl;
4676}
4677
4678// This returns true if a type has been typedefed to BOOL:
4679// typedef <type> BOOL;
4680static bool isTypeTypedefedAsBOOL(QualType T) {
4681  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4682    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4683      return II->isStr("BOOL");
4684
4685  return false;
4686}
4687
4688/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4689/// purpose.
4690CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4691  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4692    return CharUnits::Zero();
4693
4694  CharUnits sz = getTypeSizeInChars(type);
4695
4696  // Make all integer and enum types at least as large as an int
4697  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4698    sz = std::max(sz, getTypeSizeInChars(IntTy));
4699  // Treat arrays as pointers, since that's how they're passed in.
4700  else if (type->isArrayType())
4701    sz = getTypeSizeInChars(VoidPtrTy);
4702  return sz;
4703}
4704
4705static inline
4706std::string charUnitsToString(const CharUnits &CU) {
4707  return llvm::itostr(CU.getQuantity());
4708}
4709
4710/// getObjCEncodingForBlock - Return the encoded type for this block
4711/// declaration.
4712std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4713  std::string S;
4714
4715  const BlockDecl *Decl = Expr->getBlockDecl();
4716  QualType BlockTy =
4717      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4718  // Encode result type.
4719  if (getLangOpts().EncodeExtendedBlockSig)
4720    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4721                            BlockTy->getAs<FunctionType>()->getResultType(),
4722                            S, true /*Extended*/);
4723  else
4724    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4725                           S);
4726  // Compute size of all parameters.
4727  // Start with computing size of a pointer in number of bytes.
4728  // FIXME: There might(should) be a better way of doing this computation!
4729  SourceLocation Loc;
4730  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4731  CharUnits ParmOffset = PtrSize;
4732  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4733       E = Decl->param_end(); PI != E; ++PI) {
4734    QualType PType = (*PI)->getType();
4735    CharUnits sz = getObjCEncodingTypeSize(PType);
4736    if (sz.isZero())
4737      continue;
4738    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4739    ParmOffset += sz;
4740  }
4741  // Size of the argument frame
4742  S += charUnitsToString(ParmOffset);
4743  // Block pointer and offset.
4744  S += "@?0";
4745
4746  // Argument types.
4747  ParmOffset = PtrSize;
4748  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4749       Decl->param_end(); PI != E; ++PI) {
4750    ParmVarDecl *PVDecl = *PI;
4751    QualType PType = PVDecl->getOriginalType();
4752    if (const ArrayType *AT =
4753          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4754      // Use array's original type only if it has known number of
4755      // elements.
4756      if (!isa<ConstantArrayType>(AT))
4757        PType = PVDecl->getType();
4758    } else if (PType->isFunctionType())
4759      PType = PVDecl->getType();
4760    if (getLangOpts().EncodeExtendedBlockSig)
4761      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4762                                      S, true /*Extended*/);
4763    else
4764      getObjCEncodingForType(PType, S);
4765    S += charUnitsToString(ParmOffset);
4766    ParmOffset += getObjCEncodingTypeSize(PType);
4767  }
4768
4769  return S;
4770}
4771
4772bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4773                                                std::string& S) {
4774  // Encode result type.
4775  getObjCEncodingForType(Decl->getResultType(), S);
4776  CharUnits ParmOffset;
4777  // Compute size of all parameters.
4778  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4779       E = Decl->param_end(); PI != E; ++PI) {
4780    QualType PType = (*PI)->getType();
4781    CharUnits sz = getObjCEncodingTypeSize(PType);
4782    if (sz.isZero())
4783      continue;
4784
4785    assert (sz.isPositive() &&
4786        "getObjCEncodingForFunctionDecl - Incomplete param type");
4787    ParmOffset += sz;
4788  }
4789  S += charUnitsToString(ParmOffset);
4790  ParmOffset = CharUnits::Zero();
4791
4792  // Argument types.
4793  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4794       E = Decl->param_end(); PI != E; ++PI) {
4795    ParmVarDecl *PVDecl = *PI;
4796    QualType PType = PVDecl->getOriginalType();
4797    if (const ArrayType *AT =
4798          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4799      // Use array's original type only if it has known number of
4800      // elements.
4801      if (!isa<ConstantArrayType>(AT))
4802        PType = PVDecl->getType();
4803    } else if (PType->isFunctionType())
4804      PType = PVDecl->getType();
4805    getObjCEncodingForType(PType, S);
4806    S += charUnitsToString(ParmOffset);
4807    ParmOffset += getObjCEncodingTypeSize(PType);
4808  }
4809
4810  return false;
4811}
4812
4813/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4814/// method parameter or return type. If Extended, include class names and
4815/// block object types.
4816void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4817                                                   QualType T, std::string& S,
4818                                                   bool Extended) const {
4819  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4820  getObjCEncodingForTypeQualifier(QT, S);
4821  // Encode parameter type.
4822  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4823                             true     /*OutermostType*/,
4824                             false    /*EncodingProperty*/,
4825                             false    /*StructField*/,
4826                             Extended /*EncodeBlockParameters*/,
4827                             Extended /*EncodeClassNames*/);
4828}
4829
4830/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4831/// declaration.
4832bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4833                                              std::string& S,
4834                                              bool Extended) const {
4835  // FIXME: This is not very efficient.
4836  // Encode return type.
4837  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4838                                    Decl->getResultType(), S, Extended);
4839  // Compute size of all parameters.
4840  // Start with computing size of a pointer in number of bytes.
4841  // FIXME: There might(should) be a better way of doing this computation!
4842  SourceLocation Loc;
4843  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4844  // The first two arguments (self and _cmd) are pointers; account for
4845  // their size.
4846  CharUnits ParmOffset = 2 * PtrSize;
4847  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4848       E = Decl->sel_param_end(); PI != E; ++PI) {
4849    QualType PType = (*PI)->getType();
4850    CharUnits sz = getObjCEncodingTypeSize(PType);
4851    if (sz.isZero())
4852      continue;
4853
4854    assert (sz.isPositive() &&
4855        "getObjCEncodingForMethodDecl - Incomplete param type");
4856    ParmOffset += sz;
4857  }
4858  S += charUnitsToString(ParmOffset);
4859  S += "@0:";
4860  S += charUnitsToString(PtrSize);
4861
4862  // Argument types.
4863  ParmOffset = 2 * PtrSize;
4864  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4865       E = Decl->sel_param_end(); PI != E; ++PI) {
4866    const ParmVarDecl *PVDecl = *PI;
4867    QualType PType = PVDecl->getOriginalType();
4868    if (const ArrayType *AT =
4869          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4870      // Use array's original type only if it has known number of
4871      // elements.
4872      if (!isa<ConstantArrayType>(AT))
4873        PType = PVDecl->getType();
4874    } else if (PType->isFunctionType())
4875      PType = PVDecl->getType();
4876    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4877                                      PType, S, Extended);
4878    S += charUnitsToString(ParmOffset);
4879    ParmOffset += getObjCEncodingTypeSize(PType);
4880  }
4881
4882  return false;
4883}
4884
4885/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4886/// property declaration. If non-NULL, Container must be either an
4887/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4888/// NULL when getting encodings for protocol properties.
4889/// Property attributes are stored as a comma-delimited C string. The simple
4890/// attributes readonly and bycopy are encoded as single characters. The
4891/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4892/// encoded as single characters, followed by an identifier. Property types
4893/// are also encoded as a parametrized attribute. The characters used to encode
4894/// these attributes are defined by the following enumeration:
4895/// @code
4896/// enum PropertyAttributes {
4897/// kPropertyReadOnly = 'R',   // property is read-only.
4898/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4899/// kPropertyByref = '&',  // property is a reference to the value last assigned
4900/// kPropertyDynamic = 'D',    // property is dynamic
4901/// kPropertyGetter = 'G',     // followed by getter selector name
4902/// kPropertySetter = 'S',     // followed by setter selector name
4903/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4904/// kPropertyType = 'T'              // followed by old-style type encoding.
4905/// kPropertyWeak = 'W'              // 'weak' property
4906/// kPropertyStrong = 'P'            // property GC'able
4907/// kPropertyNonAtomic = 'N'         // property non-atomic
4908/// };
4909/// @endcode
4910void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4911                                                const Decl *Container,
4912                                                std::string& S) const {
4913  // Collect information from the property implementation decl(s).
4914  bool Dynamic = false;
4915  ObjCPropertyImplDecl *SynthesizePID = 0;
4916
4917  // FIXME: Duplicated code due to poor abstraction.
4918  if (Container) {
4919    if (const ObjCCategoryImplDecl *CID =
4920        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4921      for (ObjCCategoryImplDecl::propimpl_iterator
4922             i = CID->propimpl_begin(), e = CID->propimpl_end();
4923           i != e; ++i) {
4924        ObjCPropertyImplDecl *PID = *i;
4925        if (PID->getPropertyDecl() == PD) {
4926          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4927            Dynamic = true;
4928          } else {
4929            SynthesizePID = PID;
4930          }
4931        }
4932      }
4933    } else {
4934      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4935      for (ObjCCategoryImplDecl::propimpl_iterator
4936             i = OID->propimpl_begin(), e = OID->propimpl_end();
4937           i != e; ++i) {
4938        ObjCPropertyImplDecl *PID = *i;
4939        if (PID->getPropertyDecl() == PD) {
4940          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4941            Dynamic = true;
4942          } else {
4943            SynthesizePID = PID;
4944          }
4945        }
4946      }
4947    }
4948  }
4949
4950  // FIXME: This is not very efficient.
4951  S = "T";
4952
4953  // Encode result type.
4954  // GCC has some special rules regarding encoding of properties which
4955  // closely resembles encoding of ivars.
4956  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4957                             true /* outermost type */,
4958                             true /* encoding for property */);
4959
4960  if (PD->isReadOnly()) {
4961    S += ",R";
4962    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
4963      S += ",C";
4964    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
4965      S += ",&";
4966  } else {
4967    switch (PD->getSetterKind()) {
4968    case ObjCPropertyDecl::Assign: break;
4969    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4970    case ObjCPropertyDecl::Retain: S += ",&"; break;
4971    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4972    }
4973  }
4974
4975  // It really isn't clear at all what this means, since properties
4976  // are "dynamic by default".
4977  if (Dynamic)
4978    S += ",D";
4979
4980  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4981    S += ",N";
4982
4983  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4984    S += ",G";
4985    S += PD->getGetterName().getAsString();
4986  }
4987
4988  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4989    S += ",S";
4990    S += PD->getSetterName().getAsString();
4991  }
4992
4993  if (SynthesizePID) {
4994    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4995    S += ",V";
4996    S += OID->getNameAsString();
4997  }
4998
4999  // FIXME: OBJCGC: weak & strong
5000}
5001
5002/// getLegacyIntegralTypeEncoding -
5003/// Another legacy compatibility encoding: 32-bit longs are encoded as
5004/// 'l' or 'L' , but not always.  For typedefs, we need to use
5005/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5006///
5007void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5008  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5009    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5010      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5011        PointeeTy = UnsignedIntTy;
5012      else
5013        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5014          PointeeTy = IntTy;
5015    }
5016  }
5017}
5018
5019void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5020                                        const FieldDecl *Field) const {
5021  // We follow the behavior of gcc, expanding structures which are
5022  // directly pointed to, and expanding embedded structures. Note that
5023  // these rules are sufficient to prevent recursive encoding of the
5024  // same type.
5025  getObjCEncodingForTypeImpl(T, S, true, true, Field,
5026                             true /* outermost type */);
5027}
5028
5029static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5030                                            BuiltinType::Kind kind) {
5031    switch (kind) {
5032    case BuiltinType::Void:       return 'v';
5033    case BuiltinType::Bool:       return 'B';
5034    case BuiltinType::Char_U:
5035    case BuiltinType::UChar:      return 'C';
5036    case BuiltinType::Char16:
5037    case BuiltinType::UShort:     return 'S';
5038    case BuiltinType::Char32:
5039    case BuiltinType::UInt:       return 'I';
5040    case BuiltinType::ULong:
5041        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5042    case BuiltinType::UInt128:    return 'T';
5043    case BuiltinType::ULongLong:  return 'Q';
5044    case BuiltinType::Char_S:
5045    case BuiltinType::SChar:      return 'c';
5046    case BuiltinType::Short:      return 's';
5047    case BuiltinType::WChar_S:
5048    case BuiltinType::WChar_U:
5049    case BuiltinType::Int:        return 'i';
5050    case BuiltinType::Long:
5051      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5052    case BuiltinType::LongLong:   return 'q';
5053    case BuiltinType::Int128:     return 't';
5054    case BuiltinType::Float:      return 'f';
5055    case BuiltinType::Double:     return 'd';
5056    case BuiltinType::LongDouble: return 'D';
5057    case BuiltinType::NullPtr:    return '*'; // like char*
5058
5059    case BuiltinType::Half:
5060      // FIXME: potentially need @encodes for these!
5061      return ' ';
5062
5063    case BuiltinType::ObjCId:
5064    case BuiltinType::ObjCClass:
5065    case BuiltinType::ObjCSel:
5066      llvm_unreachable("@encoding ObjC primitive type");
5067
5068    // OpenCL and placeholder types don't need @encodings.
5069    case BuiltinType::OCLImage1d:
5070    case BuiltinType::OCLImage1dArray:
5071    case BuiltinType::OCLImage1dBuffer:
5072    case BuiltinType::OCLImage2d:
5073    case BuiltinType::OCLImage2dArray:
5074    case BuiltinType::OCLImage3d:
5075    case BuiltinType::OCLEvent:
5076    case BuiltinType::OCLSampler:
5077    case BuiltinType::Dependent:
5078#define BUILTIN_TYPE(KIND, ID)
5079#define PLACEHOLDER_TYPE(KIND, ID) \
5080    case BuiltinType::KIND:
5081#include "clang/AST/BuiltinTypes.def"
5082      llvm_unreachable("invalid builtin type for @encode");
5083    }
5084    llvm_unreachable("invalid BuiltinType::Kind value");
5085}
5086
5087static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5088  EnumDecl *Enum = ET->getDecl();
5089
5090  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5091  if (!Enum->isFixed())
5092    return 'i';
5093
5094  // The encoding of a fixed enum type matches its fixed underlying type.
5095  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5096  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5097}
5098
5099static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5100                           QualType T, const FieldDecl *FD) {
5101  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5102  S += 'b';
5103  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5104  // The GNU runtime requires more information; bitfields are encoded as b,
5105  // then the offset (in bits) of the first element, then the type of the
5106  // bitfield, then the size in bits.  For example, in this structure:
5107  //
5108  // struct
5109  // {
5110  //    int integer;
5111  //    int flags:2;
5112  // };
5113  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5114  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5115  // information is not especially sensible, but we're stuck with it for
5116  // compatibility with GCC, although providing it breaks anything that
5117  // actually uses runtime introspection and wants to work on both runtimes...
5118  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5119    const RecordDecl *RD = FD->getParent();
5120    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5121    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5122    if (const EnumType *ET = T->getAs<EnumType>())
5123      S += ObjCEncodingForEnumType(Ctx, ET);
5124    else {
5125      const BuiltinType *BT = T->castAs<BuiltinType>();
5126      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5127    }
5128  }
5129  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5130}
5131
5132// FIXME: Use SmallString for accumulating string.
5133void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5134                                            bool ExpandPointedToStructures,
5135                                            bool ExpandStructures,
5136                                            const FieldDecl *FD,
5137                                            bool OutermostType,
5138                                            bool EncodingProperty,
5139                                            bool StructField,
5140                                            bool EncodeBlockParameters,
5141                                            bool EncodeClassNames,
5142                                            bool EncodePointerToObjCTypedef) const {
5143  CanQualType CT = getCanonicalType(T);
5144  switch (CT->getTypeClass()) {
5145  case Type::Builtin:
5146  case Type::Enum:
5147    if (FD && FD->isBitField())
5148      return EncodeBitField(this, S, T, FD);
5149    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5150      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5151    else
5152      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5153    return;
5154
5155  case Type::Complex: {
5156    const ComplexType *CT = T->castAs<ComplexType>();
5157    S += 'j';
5158    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5159                               false);
5160    return;
5161  }
5162
5163  case Type::Atomic: {
5164    const AtomicType *AT = T->castAs<AtomicType>();
5165    S += 'A';
5166    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5167                               false, false);
5168    return;
5169  }
5170
5171  // encoding for pointer or reference types.
5172  case Type::Pointer:
5173  case Type::LValueReference:
5174  case Type::RValueReference: {
5175    QualType PointeeTy;
5176    if (isa<PointerType>(CT)) {
5177      const PointerType *PT = T->castAs<PointerType>();
5178      if (PT->isObjCSelType()) {
5179        S += ':';
5180        return;
5181      }
5182      PointeeTy = PT->getPointeeType();
5183    } else {
5184      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5185    }
5186
5187    bool isReadOnly = false;
5188    // For historical/compatibility reasons, the read-only qualifier of the
5189    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5190    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5191    // Also, do not emit the 'r' for anything but the outermost type!
5192    if (isa<TypedefType>(T.getTypePtr())) {
5193      if (OutermostType && T.isConstQualified()) {
5194        isReadOnly = true;
5195        S += 'r';
5196      }
5197    } else if (OutermostType) {
5198      QualType P = PointeeTy;
5199      while (P->getAs<PointerType>())
5200        P = P->getAs<PointerType>()->getPointeeType();
5201      if (P.isConstQualified()) {
5202        isReadOnly = true;
5203        S += 'r';
5204      }
5205    }
5206    if (isReadOnly) {
5207      // Another legacy compatibility encoding. Some ObjC qualifier and type
5208      // combinations need to be rearranged.
5209      // Rewrite "in const" from "nr" to "rn"
5210      if (StringRef(S).endswith("nr"))
5211        S.replace(S.end()-2, S.end(), "rn");
5212    }
5213
5214    if (PointeeTy->isCharType()) {
5215      // char pointer types should be encoded as '*' unless it is a
5216      // type that has been typedef'd to 'BOOL'.
5217      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5218        S += '*';
5219        return;
5220      }
5221    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5222      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5223      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5224        S += '#';
5225        return;
5226      }
5227      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5228      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5229        S += '@';
5230        return;
5231      }
5232      // fall through...
5233    }
5234    S += '^';
5235    getLegacyIntegralTypeEncoding(PointeeTy);
5236
5237    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5238                               NULL);
5239    return;
5240  }
5241
5242  case Type::ConstantArray:
5243  case Type::IncompleteArray:
5244  case Type::VariableArray: {
5245    const ArrayType *AT = cast<ArrayType>(CT);
5246
5247    if (isa<IncompleteArrayType>(AT) && !StructField) {
5248      // Incomplete arrays are encoded as a pointer to the array element.
5249      S += '^';
5250
5251      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5252                                 false, ExpandStructures, FD);
5253    } else {
5254      S += '[';
5255
5256      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5257        S += llvm::utostr(CAT->getSize().getZExtValue());
5258      else {
5259        //Variable length arrays are encoded as a regular array with 0 elements.
5260        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5261               "Unknown array type!");
5262        S += '0';
5263      }
5264
5265      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5266                                 false, ExpandStructures, FD);
5267      S += ']';
5268    }
5269    return;
5270  }
5271
5272  case Type::FunctionNoProto:
5273  case Type::FunctionProto:
5274    S += '?';
5275    return;
5276
5277  case Type::Record: {
5278    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5279    S += RDecl->isUnion() ? '(' : '{';
5280    // Anonymous structures print as '?'
5281    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5282      S += II->getName();
5283      if (ClassTemplateSpecializationDecl *Spec
5284          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5285        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5286        llvm::raw_string_ostream OS(S);
5287        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5288                                            TemplateArgs.data(),
5289                                            TemplateArgs.size(),
5290                                            (*this).getPrintingPolicy());
5291      }
5292    } else {
5293      S += '?';
5294    }
5295    if (ExpandStructures) {
5296      S += '=';
5297      if (!RDecl->isUnion()) {
5298        getObjCEncodingForStructureImpl(RDecl, S, FD);
5299      } else {
5300        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5301                                     FieldEnd = RDecl->field_end();
5302             Field != FieldEnd; ++Field) {
5303          if (FD) {
5304            S += '"';
5305            S += Field->getNameAsString();
5306            S += '"';
5307          }
5308
5309          // Special case bit-fields.
5310          if (Field->isBitField()) {
5311            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5312                                       *Field);
5313          } else {
5314            QualType qt = Field->getType();
5315            getLegacyIntegralTypeEncoding(qt);
5316            getObjCEncodingForTypeImpl(qt, S, false, true,
5317                                       FD, /*OutermostType*/false,
5318                                       /*EncodingProperty*/false,
5319                                       /*StructField*/true);
5320          }
5321        }
5322      }
5323    }
5324    S += RDecl->isUnion() ? ')' : '}';
5325    return;
5326  }
5327
5328  case Type::BlockPointer: {
5329    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5330    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5331    if (EncodeBlockParameters) {
5332      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5333
5334      S += '<';
5335      // Block return type
5336      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5337                                 ExpandPointedToStructures, ExpandStructures,
5338                                 FD,
5339                                 false /* OutermostType */,
5340                                 EncodingProperty,
5341                                 false /* StructField */,
5342                                 EncodeBlockParameters,
5343                                 EncodeClassNames);
5344      // Block self
5345      S += "@?";
5346      // Block parameters
5347      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5348        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5349               E = FPT->arg_type_end(); I && (I != E); ++I) {
5350          getObjCEncodingForTypeImpl(*I, S,
5351                                     ExpandPointedToStructures,
5352                                     ExpandStructures,
5353                                     FD,
5354                                     false /* OutermostType */,
5355                                     EncodingProperty,
5356                                     false /* StructField */,
5357                                     EncodeBlockParameters,
5358                                     EncodeClassNames);
5359        }
5360      }
5361      S += '>';
5362    }
5363    return;
5364  }
5365
5366  case Type::ObjCObject:
5367  case Type::ObjCInterface: {
5368    // Ignore protocol qualifiers when mangling at this level.
5369    T = T->castAs<ObjCObjectType>()->getBaseType();
5370
5371    // The assumption seems to be that this assert will succeed
5372    // because nested levels will have filtered out 'id' and 'Class'.
5373    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5374    // @encode(class_name)
5375    ObjCInterfaceDecl *OI = OIT->getDecl();
5376    S += '{';
5377    const IdentifierInfo *II = OI->getIdentifier();
5378    S += II->getName();
5379    S += '=';
5380    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5381    DeepCollectObjCIvars(OI, true, Ivars);
5382    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5383      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5384      if (Field->isBitField())
5385        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5386      else
5387        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5388                                   false, false, false, false, false,
5389                                   EncodePointerToObjCTypedef);
5390    }
5391    S += '}';
5392    return;
5393  }
5394
5395  case Type::ObjCObjectPointer: {
5396    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5397    if (OPT->isObjCIdType()) {
5398      S += '@';
5399      return;
5400    }
5401
5402    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5403      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5404      // Since this is a binary compatibility issue, need to consult with runtime
5405      // folks. Fortunately, this is a *very* obsure construct.
5406      S += '#';
5407      return;
5408    }
5409
5410    if (OPT->isObjCQualifiedIdType()) {
5411      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5412                                 ExpandPointedToStructures,
5413                                 ExpandStructures, FD);
5414      if (FD || EncodingProperty || EncodeClassNames) {
5415        // Note that we do extended encoding of protocol qualifer list
5416        // Only when doing ivar or property encoding.
5417        S += '"';
5418        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5419             E = OPT->qual_end(); I != E; ++I) {
5420          S += '<';
5421          S += (*I)->getNameAsString();
5422          S += '>';
5423        }
5424        S += '"';
5425      }
5426      return;
5427    }
5428
5429    QualType PointeeTy = OPT->getPointeeType();
5430    if (!EncodingProperty &&
5431        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5432        !EncodePointerToObjCTypedef) {
5433      // Another historical/compatibility reason.
5434      // We encode the underlying type which comes out as
5435      // {...};
5436      S += '^';
5437      getObjCEncodingForTypeImpl(PointeeTy, S,
5438                                 false, ExpandPointedToStructures,
5439                                 NULL,
5440                                 false, false, false, false, false,
5441                                 /*EncodePointerToObjCTypedef*/true);
5442      return;
5443    }
5444
5445    S += '@';
5446    if (OPT->getInterfaceDecl() &&
5447        (FD || EncodingProperty || EncodeClassNames)) {
5448      S += '"';
5449      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5450      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5451           E = OPT->qual_end(); I != E; ++I) {
5452        S += '<';
5453        S += (*I)->getNameAsString();
5454        S += '>';
5455      }
5456      S += '"';
5457    }
5458    return;
5459  }
5460
5461  // gcc just blithely ignores member pointers.
5462  // FIXME: we shoul do better than that.  'M' is available.
5463  case Type::MemberPointer:
5464    return;
5465
5466  case Type::Vector:
5467  case Type::ExtVector:
5468    // This matches gcc's encoding, even though technically it is
5469    // insufficient.
5470    // FIXME. We should do a better job than gcc.
5471    return;
5472
5473  case Type::Auto:
5474    // We could see an undeduced auto type here during error recovery.
5475    // Just ignore it.
5476    return;
5477
5478#define ABSTRACT_TYPE(KIND, BASE)
5479#define TYPE(KIND, BASE)
5480#define DEPENDENT_TYPE(KIND, BASE) \
5481  case Type::KIND:
5482#define NON_CANONICAL_TYPE(KIND, BASE) \
5483  case Type::KIND:
5484#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5485  case Type::KIND:
5486#include "clang/AST/TypeNodes.def"
5487    llvm_unreachable("@encode for dependent type!");
5488  }
5489  llvm_unreachable("bad type kind!");
5490}
5491
5492void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5493                                                 std::string &S,
5494                                                 const FieldDecl *FD,
5495                                                 bool includeVBases) const {
5496  assert(RDecl && "Expected non-null RecordDecl");
5497  assert(!RDecl->isUnion() && "Should not be called for unions");
5498  if (!RDecl->getDefinition())
5499    return;
5500
5501  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5502  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5503  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5504
5505  if (CXXRec) {
5506    for (CXXRecordDecl::base_class_iterator
5507           BI = CXXRec->bases_begin(),
5508           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5509      if (!BI->isVirtual()) {
5510        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5511        if (base->isEmpty())
5512          continue;
5513        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5514        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5515                                  std::make_pair(offs, base));
5516      }
5517    }
5518  }
5519
5520  unsigned i = 0;
5521  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5522                               FieldEnd = RDecl->field_end();
5523       Field != FieldEnd; ++Field, ++i) {
5524    uint64_t offs = layout.getFieldOffset(i);
5525    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5526                              std::make_pair(offs, *Field));
5527  }
5528
5529  if (CXXRec && includeVBases) {
5530    for (CXXRecordDecl::base_class_iterator
5531           BI = CXXRec->vbases_begin(),
5532           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5533      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5534      if (base->isEmpty())
5535        continue;
5536      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5537      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5538        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5539                                  std::make_pair(offs, base));
5540    }
5541  }
5542
5543  CharUnits size;
5544  if (CXXRec) {
5545    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5546  } else {
5547    size = layout.getSize();
5548  }
5549
5550  uint64_t CurOffs = 0;
5551  std::multimap<uint64_t, NamedDecl *>::iterator
5552    CurLayObj = FieldOrBaseOffsets.begin();
5553
5554  if (CXXRec && CXXRec->isDynamicClass() &&
5555      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5556    if (FD) {
5557      S += "\"_vptr$";
5558      std::string recname = CXXRec->getNameAsString();
5559      if (recname.empty()) recname = "?";
5560      S += recname;
5561      S += '"';
5562    }
5563    S += "^^?";
5564    CurOffs += getTypeSize(VoidPtrTy);
5565  }
5566
5567  if (!RDecl->hasFlexibleArrayMember()) {
5568    // Mark the end of the structure.
5569    uint64_t offs = toBits(size);
5570    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5571                              std::make_pair(offs, (NamedDecl*)0));
5572  }
5573
5574  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5575    assert(CurOffs <= CurLayObj->first);
5576
5577    if (CurOffs < CurLayObj->first) {
5578      uint64_t padding = CurLayObj->first - CurOffs;
5579      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5580      // packing/alignment of members is different that normal, in which case
5581      // the encoding will be out-of-sync with the real layout.
5582      // If the runtime switches to just consider the size of types without
5583      // taking into account alignment, we could make padding explicit in the
5584      // encoding (e.g. using arrays of chars). The encoding strings would be
5585      // longer then though.
5586      CurOffs += padding;
5587    }
5588
5589    NamedDecl *dcl = CurLayObj->second;
5590    if (dcl == 0)
5591      break; // reached end of structure.
5592
5593    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5594      // We expand the bases without their virtual bases since those are going
5595      // in the initial structure. Note that this differs from gcc which
5596      // expands virtual bases each time one is encountered in the hierarchy,
5597      // making the encoding type bigger than it really is.
5598      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5599      assert(!base->isEmpty());
5600      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5601    } else {
5602      FieldDecl *field = cast<FieldDecl>(dcl);
5603      if (FD) {
5604        S += '"';
5605        S += field->getNameAsString();
5606        S += '"';
5607      }
5608
5609      if (field->isBitField()) {
5610        EncodeBitField(this, S, field->getType(), field);
5611        CurOffs += field->getBitWidthValue(*this);
5612      } else {
5613        QualType qt = field->getType();
5614        getLegacyIntegralTypeEncoding(qt);
5615        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5616                                   /*OutermostType*/false,
5617                                   /*EncodingProperty*/false,
5618                                   /*StructField*/true);
5619        CurOffs += getTypeSize(field->getType());
5620      }
5621    }
5622  }
5623}
5624
5625void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5626                                                 std::string& S) const {
5627  if (QT & Decl::OBJC_TQ_In)
5628    S += 'n';
5629  if (QT & Decl::OBJC_TQ_Inout)
5630    S += 'N';
5631  if (QT & Decl::OBJC_TQ_Out)
5632    S += 'o';
5633  if (QT & Decl::OBJC_TQ_Bycopy)
5634    S += 'O';
5635  if (QT & Decl::OBJC_TQ_Byref)
5636    S += 'R';
5637  if (QT & Decl::OBJC_TQ_Oneway)
5638    S += 'V';
5639}
5640
5641TypedefDecl *ASTContext::getObjCIdDecl() const {
5642  if (!ObjCIdDecl) {
5643    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5644    T = getObjCObjectPointerType(T);
5645    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5646    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5647                                     getTranslationUnitDecl(),
5648                                     SourceLocation(), SourceLocation(),
5649                                     &Idents.get("id"), IdInfo);
5650  }
5651
5652  return ObjCIdDecl;
5653}
5654
5655TypedefDecl *ASTContext::getObjCSelDecl() const {
5656  if (!ObjCSelDecl) {
5657    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5658    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5659    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5660                                      getTranslationUnitDecl(),
5661                                      SourceLocation(), SourceLocation(),
5662                                      &Idents.get("SEL"), SelInfo);
5663  }
5664  return ObjCSelDecl;
5665}
5666
5667TypedefDecl *ASTContext::getObjCClassDecl() const {
5668  if (!ObjCClassDecl) {
5669    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5670    T = getObjCObjectPointerType(T);
5671    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5672    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5673                                        getTranslationUnitDecl(),
5674                                        SourceLocation(), SourceLocation(),
5675                                        &Idents.get("Class"), ClassInfo);
5676  }
5677
5678  return ObjCClassDecl;
5679}
5680
5681ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5682  if (!ObjCProtocolClassDecl) {
5683    ObjCProtocolClassDecl
5684      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5685                                  SourceLocation(),
5686                                  &Idents.get("Protocol"),
5687                                  /*PrevDecl=*/0,
5688                                  SourceLocation(), true);
5689  }
5690
5691  return ObjCProtocolClassDecl;
5692}
5693
5694//===----------------------------------------------------------------------===//
5695// __builtin_va_list Construction Functions
5696//===----------------------------------------------------------------------===//
5697
5698static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5699  // typedef char* __builtin_va_list;
5700  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5701  TypeSourceInfo *TInfo
5702    = Context->getTrivialTypeSourceInfo(CharPtrType);
5703
5704  TypedefDecl *VaListTypeDecl
5705    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5706                          Context->getTranslationUnitDecl(),
5707                          SourceLocation(), SourceLocation(),
5708                          &Context->Idents.get("__builtin_va_list"),
5709                          TInfo);
5710  return VaListTypeDecl;
5711}
5712
5713static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5714  // typedef void* __builtin_va_list;
5715  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5716  TypeSourceInfo *TInfo
5717    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5718
5719  TypedefDecl *VaListTypeDecl
5720    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5721                          Context->getTranslationUnitDecl(),
5722                          SourceLocation(), SourceLocation(),
5723                          &Context->Idents.get("__builtin_va_list"),
5724                          TInfo);
5725  return VaListTypeDecl;
5726}
5727
5728static TypedefDecl *
5729CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5730  RecordDecl *VaListTagDecl;
5731  if (Context->getLangOpts().CPlusPlus) {
5732    // namespace std { struct __va_list {
5733    NamespaceDecl *NS;
5734    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5735                               Context->getTranslationUnitDecl(),
5736                               /*Inline*/false, SourceLocation(),
5737                               SourceLocation(), &Context->Idents.get("std"),
5738                               /*PrevDecl*/0);
5739
5740    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5741                                          Context->getTranslationUnitDecl(),
5742                                          SourceLocation(), SourceLocation(),
5743                                          &Context->Idents.get("__va_list"));
5744    VaListTagDecl->setDeclContext(NS);
5745  } else {
5746    // struct __va_list
5747    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5748                                   Context->getTranslationUnitDecl(),
5749                                   &Context->Idents.get("__va_list"));
5750  }
5751
5752  VaListTagDecl->startDefinition();
5753
5754  const size_t NumFields = 5;
5755  QualType FieldTypes[NumFields];
5756  const char *FieldNames[NumFields];
5757
5758  // void *__stack;
5759  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5760  FieldNames[0] = "__stack";
5761
5762  // void *__gr_top;
5763  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5764  FieldNames[1] = "__gr_top";
5765
5766  // void *__vr_top;
5767  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5768  FieldNames[2] = "__vr_top";
5769
5770  // int __gr_offs;
5771  FieldTypes[3] = Context->IntTy;
5772  FieldNames[3] = "__gr_offs";
5773
5774  // int __vr_offs;
5775  FieldTypes[4] = Context->IntTy;
5776  FieldNames[4] = "__vr_offs";
5777
5778  // Create fields
5779  for (unsigned i = 0; i < NumFields; ++i) {
5780    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5781                                         VaListTagDecl,
5782                                         SourceLocation(),
5783                                         SourceLocation(),
5784                                         &Context->Idents.get(FieldNames[i]),
5785                                         FieldTypes[i], /*TInfo=*/0,
5786                                         /*BitWidth=*/0,
5787                                         /*Mutable=*/false,
5788                                         ICIS_NoInit);
5789    Field->setAccess(AS_public);
5790    VaListTagDecl->addDecl(Field);
5791  }
5792  VaListTagDecl->completeDefinition();
5793  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5794  Context->VaListTagTy = VaListTagType;
5795
5796  // } __builtin_va_list;
5797  TypedefDecl *VaListTypedefDecl
5798    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5799                          Context->getTranslationUnitDecl(),
5800                          SourceLocation(), SourceLocation(),
5801                          &Context->Idents.get("__builtin_va_list"),
5802                          Context->getTrivialTypeSourceInfo(VaListTagType));
5803
5804  return VaListTypedefDecl;
5805}
5806
5807static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5808  // typedef struct __va_list_tag {
5809  RecordDecl *VaListTagDecl;
5810
5811  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5812                                   Context->getTranslationUnitDecl(),
5813                                   &Context->Idents.get("__va_list_tag"));
5814  VaListTagDecl->startDefinition();
5815
5816  const size_t NumFields = 5;
5817  QualType FieldTypes[NumFields];
5818  const char *FieldNames[NumFields];
5819
5820  //   unsigned char gpr;
5821  FieldTypes[0] = Context->UnsignedCharTy;
5822  FieldNames[0] = "gpr";
5823
5824  //   unsigned char fpr;
5825  FieldTypes[1] = Context->UnsignedCharTy;
5826  FieldNames[1] = "fpr";
5827
5828  //   unsigned short reserved;
5829  FieldTypes[2] = Context->UnsignedShortTy;
5830  FieldNames[2] = "reserved";
5831
5832  //   void* overflow_arg_area;
5833  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5834  FieldNames[3] = "overflow_arg_area";
5835
5836  //   void* reg_save_area;
5837  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5838  FieldNames[4] = "reg_save_area";
5839
5840  // Create fields
5841  for (unsigned i = 0; i < NumFields; ++i) {
5842    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5843                                         SourceLocation(),
5844                                         SourceLocation(),
5845                                         &Context->Idents.get(FieldNames[i]),
5846                                         FieldTypes[i], /*TInfo=*/0,
5847                                         /*BitWidth=*/0,
5848                                         /*Mutable=*/false,
5849                                         ICIS_NoInit);
5850    Field->setAccess(AS_public);
5851    VaListTagDecl->addDecl(Field);
5852  }
5853  VaListTagDecl->completeDefinition();
5854  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5855  Context->VaListTagTy = VaListTagType;
5856
5857  // } __va_list_tag;
5858  TypedefDecl *VaListTagTypedefDecl
5859    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5860                          Context->getTranslationUnitDecl(),
5861                          SourceLocation(), SourceLocation(),
5862                          &Context->Idents.get("__va_list_tag"),
5863                          Context->getTrivialTypeSourceInfo(VaListTagType));
5864  QualType VaListTagTypedefType =
5865    Context->getTypedefType(VaListTagTypedefDecl);
5866
5867  // typedef __va_list_tag __builtin_va_list[1];
5868  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5869  QualType VaListTagArrayType
5870    = Context->getConstantArrayType(VaListTagTypedefType,
5871                                    Size, ArrayType::Normal, 0);
5872  TypeSourceInfo *TInfo
5873    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5874  TypedefDecl *VaListTypedefDecl
5875    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5876                          Context->getTranslationUnitDecl(),
5877                          SourceLocation(), SourceLocation(),
5878                          &Context->Idents.get("__builtin_va_list"),
5879                          TInfo);
5880
5881  return VaListTypedefDecl;
5882}
5883
5884static TypedefDecl *
5885CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5886  // typedef struct __va_list_tag {
5887  RecordDecl *VaListTagDecl;
5888  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5889                                   Context->getTranslationUnitDecl(),
5890                                   &Context->Idents.get("__va_list_tag"));
5891  VaListTagDecl->startDefinition();
5892
5893  const size_t NumFields = 4;
5894  QualType FieldTypes[NumFields];
5895  const char *FieldNames[NumFields];
5896
5897  //   unsigned gp_offset;
5898  FieldTypes[0] = Context->UnsignedIntTy;
5899  FieldNames[0] = "gp_offset";
5900
5901  //   unsigned fp_offset;
5902  FieldTypes[1] = Context->UnsignedIntTy;
5903  FieldNames[1] = "fp_offset";
5904
5905  //   void* overflow_arg_area;
5906  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5907  FieldNames[2] = "overflow_arg_area";
5908
5909  //   void* reg_save_area;
5910  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5911  FieldNames[3] = "reg_save_area";
5912
5913  // Create fields
5914  for (unsigned i = 0; i < NumFields; ++i) {
5915    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5916                                         VaListTagDecl,
5917                                         SourceLocation(),
5918                                         SourceLocation(),
5919                                         &Context->Idents.get(FieldNames[i]),
5920                                         FieldTypes[i], /*TInfo=*/0,
5921                                         /*BitWidth=*/0,
5922                                         /*Mutable=*/false,
5923                                         ICIS_NoInit);
5924    Field->setAccess(AS_public);
5925    VaListTagDecl->addDecl(Field);
5926  }
5927  VaListTagDecl->completeDefinition();
5928  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5929  Context->VaListTagTy = VaListTagType;
5930
5931  // } __va_list_tag;
5932  TypedefDecl *VaListTagTypedefDecl
5933    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5934                          Context->getTranslationUnitDecl(),
5935                          SourceLocation(), SourceLocation(),
5936                          &Context->Idents.get("__va_list_tag"),
5937                          Context->getTrivialTypeSourceInfo(VaListTagType));
5938  QualType VaListTagTypedefType =
5939    Context->getTypedefType(VaListTagTypedefDecl);
5940
5941  // typedef __va_list_tag __builtin_va_list[1];
5942  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5943  QualType VaListTagArrayType
5944    = Context->getConstantArrayType(VaListTagTypedefType,
5945                                      Size, ArrayType::Normal,0);
5946  TypeSourceInfo *TInfo
5947    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5948  TypedefDecl *VaListTypedefDecl
5949    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5950                          Context->getTranslationUnitDecl(),
5951                          SourceLocation(), SourceLocation(),
5952                          &Context->Idents.get("__builtin_va_list"),
5953                          TInfo);
5954
5955  return VaListTypedefDecl;
5956}
5957
5958static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5959  // typedef int __builtin_va_list[4];
5960  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5961  QualType IntArrayType
5962    = Context->getConstantArrayType(Context->IntTy,
5963				    Size, ArrayType::Normal, 0);
5964  TypedefDecl *VaListTypedefDecl
5965    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5966                          Context->getTranslationUnitDecl(),
5967                          SourceLocation(), SourceLocation(),
5968                          &Context->Idents.get("__builtin_va_list"),
5969                          Context->getTrivialTypeSourceInfo(IntArrayType));
5970
5971  return VaListTypedefDecl;
5972}
5973
5974static TypedefDecl *
5975CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5976  RecordDecl *VaListDecl;
5977  if (Context->getLangOpts().CPlusPlus) {
5978    // namespace std { struct __va_list {
5979    NamespaceDecl *NS;
5980    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5981                               Context->getTranslationUnitDecl(),
5982                               /*Inline*/false, SourceLocation(),
5983                               SourceLocation(), &Context->Idents.get("std"),
5984                               /*PrevDecl*/0);
5985
5986    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5987                                       Context->getTranslationUnitDecl(),
5988                                       SourceLocation(), SourceLocation(),
5989                                       &Context->Idents.get("__va_list"));
5990
5991    VaListDecl->setDeclContext(NS);
5992
5993  } else {
5994    // struct __va_list {
5995    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5996                                  Context->getTranslationUnitDecl(),
5997                                  &Context->Idents.get("__va_list"));
5998  }
5999
6000  VaListDecl->startDefinition();
6001
6002  // void * __ap;
6003  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6004                                       VaListDecl,
6005                                       SourceLocation(),
6006                                       SourceLocation(),
6007                                       &Context->Idents.get("__ap"),
6008                                       Context->getPointerType(Context->VoidTy),
6009                                       /*TInfo=*/0,
6010                                       /*BitWidth=*/0,
6011                                       /*Mutable=*/false,
6012                                       ICIS_NoInit);
6013  Field->setAccess(AS_public);
6014  VaListDecl->addDecl(Field);
6015
6016  // };
6017  VaListDecl->completeDefinition();
6018
6019  // typedef struct __va_list __builtin_va_list;
6020  TypeSourceInfo *TInfo
6021    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
6022
6023  TypedefDecl *VaListTypeDecl
6024    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6025                          Context->getTranslationUnitDecl(),
6026                          SourceLocation(), SourceLocation(),
6027                          &Context->Idents.get("__builtin_va_list"),
6028                          TInfo);
6029
6030  return VaListTypeDecl;
6031}
6032
6033static TypedefDecl *
6034CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6035  // typedef struct __va_list_tag {
6036  RecordDecl *VaListTagDecl;
6037  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
6038                                   Context->getTranslationUnitDecl(),
6039                                   &Context->Idents.get("__va_list_tag"));
6040  VaListTagDecl->startDefinition();
6041
6042  const size_t NumFields = 4;
6043  QualType FieldTypes[NumFields];
6044  const char *FieldNames[NumFields];
6045
6046  //   long __gpr;
6047  FieldTypes[0] = Context->LongTy;
6048  FieldNames[0] = "__gpr";
6049
6050  //   long __fpr;
6051  FieldTypes[1] = Context->LongTy;
6052  FieldNames[1] = "__fpr";
6053
6054  //   void *__overflow_arg_area;
6055  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6056  FieldNames[2] = "__overflow_arg_area";
6057
6058  //   void *__reg_save_area;
6059  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6060  FieldNames[3] = "__reg_save_area";
6061
6062  // Create fields
6063  for (unsigned i = 0; i < NumFields; ++i) {
6064    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6065                                         VaListTagDecl,
6066                                         SourceLocation(),
6067                                         SourceLocation(),
6068                                         &Context->Idents.get(FieldNames[i]),
6069                                         FieldTypes[i], /*TInfo=*/0,
6070                                         /*BitWidth=*/0,
6071                                         /*Mutable=*/false,
6072                                         ICIS_NoInit);
6073    Field->setAccess(AS_public);
6074    VaListTagDecl->addDecl(Field);
6075  }
6076  VaListTagDecl->completeDefinition();
6077  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6078  Context->VaListTagTy = VaListTagType;
6079
6080  // } __va_list_tag;
6081  TypedefDecl *VaListTagTypedefDecl
6082    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6083                          Context->getTranslationUnitDecl(),
6084                          SourceLocation(), SourceLocation(),
6085                          &Context->Idents.get("__va_list_tag"),
6086                          Context->getTrivialTypeSourceInfo(VaListTagType));
6087  QualType VaListTagTypedefType =
6088    Context->getTypedefType(VaListTagTypedefDecl);
6089
6090  // typedef __va_list_tag __builtin_va_list[1];
6091  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6092  QualType VaListTagArrayType
6093    = Context->getConstantArrayType(VaListTagTypedefType,
6094                                      Size, ArrayType::Normal,0);
6095  TypeSourceInfo *TInfo
6096    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6097  TypedefDecl *VaListTypedefDecl
6098    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6099                          Context->getTranslationUnitDecl(),
6100                          SourceLocation(), SourceLocation(),
6101                          &Context->Idents.get("__builtin_va_list"),
6102                          TInfo);
6103
6104  return VaListTypedefDecl;
6105}
6106
6107static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6108                                     TargetInfo::BuiltinVaListKind Kind) {
6109  switch (Kind) {
6110  case TargetInfo::CharPtrBuiltinVaList:
6111    return CreateCharPtrBuiltinVaListDecl(Context);
6112  case TargetInfo::VoidPtrBuiltinVaList:
6113    return CreateVoidPtrBuiltinVaListDecl(Context);
6114  case TargetInfo::AArch64ABIBuiltinVaList:
6115    return CreateAArch64ABIBuiltinVaListDecl(Context);
6116  case TargetInfo::PowerABIBuiltinVaList:
6117    return CreatePowerABIBuiltinVaListDecl(Context);
6118  case TargetInfo::X86_64ABIBuiltinVaList:
6119    return CreateX86_64ABIBuiltinVaListDecl(Context);
6120  case TargetInfo::PNaClABIBuiltinVaList:
6121    return CreatePNaClABIBuiltinVaListDecl(Context);
6122  case TargetInfo::AAPCSABIBuiltinVaList:
6123    return CreateAAPCSABIBuiltinVaListDecl(Context);
6124  case TargetInfo::SystemZBuiltinVaList:
6125    return CreateSystemZBuiltinVaListDecl(Context);
6126  }
6127
6128  llvm_unreachable("Unhandled __builtin_va_list type kind");
6129}
6130
6131TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6132  if (!BuiltinVaListDecl)
6133    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6134
6135  return BuiltinVaListDecl;
6136}
6137
6138QualType ASTContext::getVaListTagType() const {
6139  // Force the creation of VaListTagTy by building the __builtin_va_list
6140  // declaration.
6141  if (VaListTagTy.isNull())
6142    (void) getBuiltinVaListDecl();
6143
6144  return VaListTagTy;
6145}
6146
6147void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6148  assert(ObjCConstantStringType.isNull() &&
6149         "'NSConstantString' type already set!");
6150
6151  ObjCConstantStringType = getObjCInterfaceType(Decl);
6152}
6153
6154/// \brief Retrieve the template name that corresponds to a non-empty
6155/// lookup.
6156TemplateName
6157ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6158                                      UnresolvedSetIterator End) const {
6159  unsigned size = End - Begin;
6160  assert(size > 1 && "set is not overloaded!");
6161
6162  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6163                          size * sizeof(FunctionTemplateDecl*));
6164  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6165
6166  NamedDecl **Storage = OT->getStorage();
6167  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6168    NamedDecl *D = *I;
6169    assert(isa<FunctionTemplateDecl>(D) ||
6170           (isa<UsingShadowDecl>(D) &&
6171            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6172    *Storage++ = D;
6173  }
6174
6175  return TemplateName(OT);
6176}
6177
6178/// \brief Retrieve the template name that represents a qualified
6179/// template name such as \c std::vector.
6180TemplateName
6181ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6182                                     bool TemplateKeyword,
6183                                     TemplateDecl *Template) const {
6184  assert(NNS && "Missing nested-name-specifier in qualified template name");
6185
6186  // FIXME: Canonicalization?
6187  llvm::FoldingSetNodeID ID;
6188  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6189
6190  void *InsertPos = 0;
6191  QualifiedTemplateName *QTN =
6192    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6193  if (!QTN) {
6194    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6195        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6196    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6197  }
6198
6199  return TemplateName(QTN);
6200}
6201
6202/// \brief Retrieve the template name that represents a dependent
6203/// template name such as \c MetaFun::template apply.
6204TemplateName
6205ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6206                                     const IdentifierInfo *Name) const {
6207  assert((!NNS || NNS->isDependent()) &&
6208         "Nested name specifier must be dependent");
6209
6210  llvm::FoldingSetNodeID ID;
6211  DependentTemplateName::Profile(ID, NNS, Name);
6212
6213  void *InsertPos = 0;
6214  DependentTemplateName *QTN =
6215    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6216
6217  if (QTN)
6218    return TemplateName(QTN);
6219
6220  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6221  if (CanonNNS == NNS) {
6222    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6223        DependentTemplateName(NNS, Name);
6224  } else {
6225    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6226    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6227        DependentTemplateName(NNS, Name, Canon);
6228    DependentTemplateName *CheckQTN =
6229      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6230    assert(!CheckQTN && "Dependent type name canonicalization broken");
6231    (void)CheckQTN;
6232  }
6233
6234  DependentTemplateNames.InsertNode(QTN, InsertPos);
6235  return TemplateName(QTN);
6236}
6237
6238/// \brief Retrieve the template name that represents a dependent
6239/// template name such as \c MetaFun::template operator+.
6240TemplateName
6241ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6242                                     OverloadedOperatorKind Operator) const {
6243  assert((!NNS || NNS->isDependent()) &&
6244         "Nested name specifier must be dependent");
6245
6246  llvm::FoldingSetNodeID ID;
6247  DependentTemplateName::Profile(ID, NNS, Operator);
6248
6249  void *InsertPos = 0;
6250  DependentTemplateName *QTN
6251    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6252
6253  if (QTN)
6254    return TemplateName(QTN);
6255
6256  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6257  if (CanonNNS == NNS) {
6258    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6259        DependentTemplateName(NNS, Operator);
6260  } else {
6261    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6262    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6263        DependentTemplateName(NNS, Operator, Canon);
6264
6265    DependentTemplateName *CheckQTN
6266      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6267    assert(!CheckQTN && "Dependent template name canonicalization broken");
6268    (void)CheckQTN;
6269  }
6270
6271  DependentTemplateNames.InsertNode(QTN, InsertPos);
6272  return TemplateName(QTN);
6273}
6274
6275TemplateName
6276ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6277                                         TemplateName replacement) const {
6278  llvm::FoldingSetNodeID ID;
6279  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6280
6281  void *insertPos = 0;
6282  SubstTemplateTemplateParmStorage *subst
6283    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6284
6285  if (!subst) {
6286    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6287    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6288  }
6289
6290  return TemplateName(subst);
6291}
6292
6293TemplateName
6294ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6295                                       const TemplateArgument &ArgPack) const {
6296  ASTContext &Self = const_cast<ASTContext &>(*this);
6297  llvm::FoldingSetNodeID ID;
6298  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6299
6300  void *InsertPos = 0;
6301  SubstTemplateTemplateParmPackStorage *Subst
6302    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6303
6304  if (!Subst) {
6305    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6306                                                           ArgPack.pack_size(),
6307                                                         ArgPack.pack_begin());
6308    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6309  }
6310
6311  return TemplateName(Subst);
6312}
6313
6314/// getFromTargetType - Given one of the integer types provided by
6315/// TargetInfo, produce the corresponding type. The unsigned @p Type
6316/// is actually a value of type @c TargetInfo::IntType.
6317CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6318  switch (Type) {
6319  case TargetInfo::NoInt: return CanQualType();
6320  case TargetInfo::SignedShort: return ShortTy;
6321  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6322  case TargetInfo::SignedInt: return IntTy;
6323  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6324  case TargetInfo::SignedLong: return LongTy;
6325  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6326  case TargetInfo::SignedLongLong: return LongLongTy;
6327  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6328  }
6329
6330  llvm_unreachable("Unhandled TargetInfo::IntType value");
6331}
6332
6333//===----------------------------------------------------------------------===//
6334//                        Type Predicates.
6335//===----------------------------------------------------------------------===//
6336
6337/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6338/// garbage collection attribute.
6339///
6340Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6341  if (getLangOpts().getGC() == LangOptions::NonGC)
6342    return Qualifiers::GCNone;
6343
6344  assert(getLangOpts().ObjC1);
6345  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6346
6347  // Default behaviour under objective-C's gc is for ObjC pointers
6348  // (or pointers to them) be treated as though they were declared
6349  // as __strong.
6350  if (GCAttrs == Qualifiers::GCNone) {
6351    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6352      return Qualifiers::Strong;
6353    else if (Ty->isPointerType())
6354      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6355  } else {
6356    // It's not valid to set GC attributes on anything that isn't a
6357    // pointer.
6358#ifndef NDEBUG
6359    QualType CT = Ty->getCanonicalTypeInternal();
6360    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6361      CT = AT->getElementType();
6362    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6363#endif
6364  }
6365  return GCAttrs;
6366}
6367
6368//===----------------------------------------------------------------------===//
6369//                        Type Compatibility Testing
6370//===----------------------------------------------------------------------===//
6371
6372/// areCompatVectorTypes - Return true if the two specified vector types are
6373/// compatible.
6374static bool areCompatVectorTypes(const VectorType *LHS,
6375                                 const VectorType *RHS) {
6376  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6377  return LHS->getElementType() == RHS->getElementType() &&
6378         LHS->getNumElements() == RHS->getNumElements();
6379}
6380
6381bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6382                                          QualType SecondVec) {
6383  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6384  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6385
6386  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6387    return true;
6388
6389  // Treat Neon vector types and most AltiVec vector types as if they are the
6390  // equivalent GCC vector types.
6391  const VectorType *First = FirstVec->getAs<VectorType>();
6392  const VectorType *Second = SecondVec->getAs<VectorType>();
6393  if (First->getNumElements() == Second->getNumElements() &&
6394      hasSameType(First->getElementType(), Second->getElementType()) &&
6395      First->getVectorKind() != VectorType::AltiVecPixel &&
6396      First->getVectorKind() != VectorType::AltiVecBool &&
6397      Second->getVectorKind() != VectorType::AltiVecPixel &&
6398      Second->getVectorKind() != VectorType::AltiVecBool)
6399    return true;
6400
6401  return false;
6402}
6403
6404//===----------------------------------------------------------------------===//
6405// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6406//===----------------------------------------------------------------------===//
6407
6408/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6409/// inheritance hierarchy of 'rProto'.
6410bool
6411ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6412                                           ObjCProtocolDecl *rProto) const {
6413  if (declaresSameEntity(lProto, rProto))
6414    return true;
6415  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6416       E = rProto->protocol_end(); PI != E; ++PI)
6417    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6418      return true;
6419  return false;
6420}
6421
6422/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6423/// return true if lhs's protocols conform to rhs's protocol; false
6424/// otherwise.
6425bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6426  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6427    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6428  return false;
6429}
6430
6431/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6432/// Class<pr1, ...>.
6433bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6434                                                      QualType rhs) {
6435  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6436  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6437  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6438
6439  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6440       E = lhsQID->qual_end(); I != E; ++I) {
6441    bool match = false;
6442    ObjCProtocolDecl *lhsProto = *I;
6443    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6444         E = rhsOPT->qual_end(); J != E; ++J) {
6445      ObjCProtocolDecl *rhsProto = *J;
6446      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6447        match = true;
6448        break;
6449      }
6450    }
6451    if (!match)
6452      return false;
6453  }
6454  return true;
6455}
6456
6457/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6458/// ObjCQualifiedIDType.
6459bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6460                                                   bool compare) {
6461  // Allow id<P..> and an 'id' or void* type in all cases.
6462  if (lhs->isVoidPointerType() ||
6463      lhs->isObjCIdType() || lhs->isObjCClassType())
6464    return true;
6465  else if (rhs->isVoidPointerType() ||
6466           rhs->isObjCIdType() || rhs->isObjCClassType())
6467    return true;
6468
6469  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6470    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6471
6472    if (!rhsOPT) return false;
6473
6474    if (rhsOPT->qual_empty()) {
6475      // If the RHS is a unqualified interface pointer "NSString*",
6476      // make sure we check the class hierarchy.
6477      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6478        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6479             E = lhsQID->qual_end(); I != E; ++I) {
6480          // when comparing an id<P> on lhs with a static type on rhs,
6481          // see if static class implements all of id's protocols, directly or
6482          // through its super class and categories.
6483          if (!rhsID->ClassImplementsProtocol(*I, true))
6484            return false;
6485        }
6486      }
6487      // If there are no qualifiers and no interface, we have an 'id'.
6488      return true;
6489    }
6490    // Both the right and left sides have qualifiers.
6491    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6492         E = lhsQID->qual_end(); I != E; ++I) {
6493      ObjCProtocolDecl *lhsProto = *I;
6494      bool match = false;
6495
6496      // when comparing an id<P> on lhs with a static type on rhs,
6497      // see if static class implements all of id's protocols, directly or
6498      // through its super class and categories.
6499      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6500           E = rhsOPT->qual_end(); J != E; ++J) {
6501        ObjCProtocolDecl *rhsProto = *J;
6502        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6503            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6504          match = true;
6505          break;
6506        }
6507      }
6508      // If the RHS is a qualified interface pointer "NSString<P>*",
6509      // make sure we check the class hierarchy.
6510      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6511        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6512             E = lhsQID->qual_end(); I != E; ++I) {
6513          // when comparing an id<P> on lhs with a static type on rhs,
6514          // see if static class implements all of id's protocols, directly or
6515          // through its super class and categories.
6516          if (rhsID->ClassImplementsProtocol(*I, true)) {
6517            match = true;
6518            break;
6519          }
6520        }
6521      }
6522      if (!match)
6523        return false;
6524    }
6525
6526    return true;
6527  }
6528
6529  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6530  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6531
6532  if (const ObjCObjectPointerType *lhsOPT =
6533        lhs->getAsObjCInterfacePointerType()) {
6534    // If both the right and left sides have qualifiers.
6535    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6536         E = lhsOPT->qual_end(); I != E; ++I) {
6537      ObjCProtocolDecl *lhsProto = *I;
6538      bool match = false;
6539
6540      // when comparing an id<P> on rhs with a static type on lhs,
6541      // see if static class implements all of id's protocols, directly or
6542      // through its super class and categories.
6543      // First, lhs protocols in the qualifier list must be found, direct
6544      // or indirect in rhs's qualifier list or it is a mismatch.
6545      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6546           E = rhsQID->qual_end(); J != E; ++J) {
6547        ObjCProtocolDecl *rhsProto = *J;
6548        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6549            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6550          match = true;
6551          break;
6552        }
6553      }
6554      if (!match)
6555        return false;
6556    }
6557
6558    // Static class's protocols, or its super class or category protocols
6559    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6560    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6561      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6562      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6563      // This is rather dubious but matches gcc's behavior. If lhs has
6564      // no type qualifier and its class has no static protocol(s)
6565      // assume that it is mismatch.
6566      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6567        return false;
6568      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6569           LHSInheritedProtocols.begin(),
6570           E = LHSInheritedProtocols.end(); I != E; ++I) {
6571        bool match = false;
6572        ObjCProtocolDecl *lhsProto = (*I);
6573        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6574             E = rhsQID->qual_end(); J != E; ++J) {
6575          ObjCProtocolDecl *rhsProto = *J;
6576          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6577              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6578            match = true;
6579            break;
6580          }
6581        }
6582        if (!match)
6583          return false;
6584      }
6585    }
6586    return true;
6587  }
6588  return false;
6589}
6590
6591/// canAssignObjCInterfaces - Return true if the two interface types are
6592/// compatible for assignment from RHS to LHS.  This handles validation of any
6593/// protocol qualifiers on the LHS or RHS.
6594///
6595bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6596                                         const ObjCObjectPointerType *RHSOPT) {
6597  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6598  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6599
6600  // If either type represents the built-in 'id' or 'Class' types, return true.
6601  if (LHS->isObjCUnqualifiedIdOrClass() ||
6602      RHS->isObjCUnqualifiedIdOrClass())
6603    return true;
6604
6605  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6606    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6607                                             QualType(RHSOPT,0),
6608                                             false);
6609
6610  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6611    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6612                                                QualType(RHSOPT,0));
6613
6614  // If we have 2 user-defined types, fall into that path.
6615  if (LHS->getInterface() && RHS->getInterface())
6616    return canAssignObjCInterfaces(LHS, RHS);
6617
6618  return false;
6619}
6620
6621/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6622/// for providing type-safety for objective-c pointers used to pass/return
6623/// arguments in block literals. When passed as arguments, passing 'A*' where
6624/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6625/// not OK. For the return type, the opposite is not OK.
6626bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6627                                         const ObjCObjectPointerType *LHSOPT,
6628                                         const ObjCObjectPointerType *RHSOPT,
6629                                         bool BlockReturnType) {
6630  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6631    return true;
6632
6633  if (LHSOPT->isObjCBuiltinType()) {
6634    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6635  }
6636
6637  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6638    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6639                                             QualType(RHSOPT,0),
6640                                             false);
6641
6642  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6643  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6644  if (LHS && RHS)  { // We have 2 user-defined types.
6645    if (LHS != RHS) {
6646      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6647        return BlockReturnType;
6648      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6649        return !BlockReturnType;
6650    }
6651    else
6652      return true;
6653  }
6654  return false;
6655}
6656
6657/// getIntersectionOfProtocols - This routine finds the intersection of set
6658/// of protocols inherited from two distinct objective-c pointer objects.
6659/// It is used to build composite qualifier list of the composite type of
6660/// the conditional expression involving two objective-c pointer objects.
6661static
6662void getIntersectionOfProtocols(ASTContext &Context,
6663                                const ObjCObjectPointerType *LHSOPT,
6664                                const ObjCObjectPointerType *RHSOPT,
6665      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6666
6667  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6668  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6669  assert(LHS->getInterface() && "LHS must have an interface base");
6670  assert(RHS->getInterface() && "RHS must have an interface base");
6671
6672  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6673  unsigned LHSNumProtocols = LHS->getNumProtocols();
6674  if (LHSNumProtocols > 0)
6675    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6676  else {
6677    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6678    Context.CollectInheritedProtocols(LHS->getInterface(),
6679                                      LHSInheritedProtocols);
6680    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6681                                LHSInheritedProtocols.end());
6682  }
6683
6684  unsigned RHSNumProtocols = RHS->getNumProtocols();
6685  if (RHSNumProtocols > 0) {
6686    ObjCProtocolDecl **RHSProtocols =
6687      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6688    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6689      if (InheritedProtocolSet.count(RHSProtocols[i]))
6690        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6691  } else {
6692    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6693    Context.CollectInheritedProtocols(RHS->getInterface(),
6694                                      RHSInheritedProtocols);
6695    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6696         RHSInheritedProtocols.begin(),
6697         E = RHSInheritedProtocols.end(); I != E; ++I)
6698      if (InheritedProtocolSet.count((*I)))
6699        IntersectionOfProtocols.push_back((*I));
6700  }
6701}
6702
6703/// areCommonBaseCompatible - Returns common base class of the two classes if
6704/// one found. Note that this is O'2 algorithm. But it will be called as the
6705/// last type comparison in a ?-exp of ObjC pointer types before a
6706/// warning is issued. So, its invokation is extremely rare.
6707QualType ASTContext::areCommonBaseCompatible(
6708                                          const ObjCObjectPointerType *Lptr,
6709                                          const ObjCObjectPointerType *Rptr) {
6710  const ObjCObjectType *LHS = Lptr->getObjectType();
6711  const ObjCObjectType *RHS = Rptr->getObjectType();
6712  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6713  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6714  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6715    return QualType();
6716
6717  do {
6718    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6719    if (canAssignObjCInterfaces(LHS, RHS)) {
6720      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6721      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6722
6723      QualType Result = QualType(LHS, 0);
6724      if (!Protocols.empty())
6725        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6726      Result = getObjCObjectPointerType(Result);
6727      return Result;
6728    }
6729  } while ((LDecl = LDecl->getSuperClass()));
6730
6731  return QualType();
6732}
6733
6734bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6735                                         const ObjCObjectType *RHS) {
6736  assert(LHS->getInterface() && "LHS is not an interface type");
6737  assert(RHS->getInterface() && "RHS is not an interface type");
6738
6739  // Verify that the base decls are compatible: the RHS must be a subclass of
6740  // the LHS.
6741  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6742    return false;
6743
6744  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6745  // protocol qualified at all, then we are good.
6746  if (LHS->getNumProtocols() == 0)
6747    return true;
6748
6749  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6750  // more detailed analysis is required.
6751  if (RHS->getNumProtocols() == 0) {
6752    // OK, if LHS is a superclass of RHS *and*
6753    // this superclass is assignment compatible with LHS.
6754    // false otherwise.
6755    bool IsSuperClass =
6756      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6757    if (IsSuperClass) {
6758      // OK if conversion of LHS to SuperClass results in narrowing of types
6759      // ; i.e., SuperClass may implement at least one of the protocols
6760      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6761      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6762      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6763      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6764      // If super class has no protocols, it is not a match.
6765      if (SuperClassInheritedProtocols.empty())
6766        return false;
6767
6768      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6769           LHSPE = LHS->qual_end();
6770           LHSPI != LHSPE; LHSPI++) {
6771        bool SuperImplementsProtocol = false;
6772        ObjCProtocolDecl *LHSProto = (*LHSPI);
6773
6774        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6775             SuperClassInheritedProtocols.begin(),
6776             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6777          ObjCProtocolDecl *SuperClassProto = (*I);
6778          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6779            SuperImplementsProtocol = true;
6780            break;
6781          }
6782        }
6783        if (!SuperImplementsProtocol)
6784          return false;
6785      }
6786      return true;
6787    }
6788    return false;
6789  }
6790
6791  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6792                                     LHSPE = LHS->qual_end();
6793       LHSPI != LHSPE; LHSPI++) {
6794    bool RHSImplementsProtocol = false;
6795
6796    // If the RHS doesn't implement the protocol on the left, the types
6797    // are incompatible.
6798    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6799                                       RHSPE = RHS->qual_end();
6800         RHSPI != RHSPE; RHSPI++) {
6801      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6802        RHSImplementsProtocol = true;
6803        break;
6804      }
6805    }
6806    // FIXME: For better diagnostics, consider passing back the protocol name.
6807    if (!RHSImplementsProtocol)
6808      return false;
6809  }
6810  // The RHS implements all protocols listed on the LHS.
6811  return true;
6812}
6813
6814bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6815  // get the "pointed to" types
6816  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6817  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6818
6819  if (!LHSOPT || !RHSOPT)
6820    return false;
6821
6822  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6823         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6824}
6825
6826bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6827  return canAssignObjCInterfaces(
6828                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6829                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6830}
6831
6832/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6833/// both shall have the identically qualified version of a compatible type.
6834/// C99 6.2.7p1: Two types have compatible types if their types are the
6835/// same. See 6.7.[2,3,5] for additional rules.
6836bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6837                                    bool CompareUnqualified) {
6838  if (getLangOpts().CPlusPlus)
6839    return hasSameType(LHS, RHS);
6840
6841  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6842}
6843
6844bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6845  return typesAreCompatible(LHS, RHS);
6846}
6847
6848bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6849  return !mergeTypes(LHS, RHS, true).isNull();
6850}
6851
6852/// mergeTransparentUnionType - if T is a transparent union type and a member
6853/// of T is compatible with SubType, return the merged type, else return
6854/// QualType()
6855QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6856                                               bool OfBlockPointer,
6857                                               bool Unqualified) {
6858  if (const RecordType *UT = T->getAsUnionType()) {
6859    RecordDecl *UD = UT->getDecl();
6860    if (UD->hasAttr<TransparentUnionAttr>()) {
6861      for (RecordDecl::field_iterator it = UD->field_begin(),
6862           itend = UD->field_end(); it != itend; ++it) {
6863        QualType ET = it->getType().getUnqualifiedType();
6864        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6865        if (!MT.isNull())
6866          return MT;
6867      }
6868    }
6869  }
6870
6871  return QualType();
6872}
6873
6874/// mergeFunctionArgumentTypes - merge two types which appear as function
6875/// argument types
6876QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6877                                                bool OfBlockPointer,
6878                                                bool Unqualified) {
6879  // GNU extension: two types are compatible if they appear as a function
6880  // argument, one of the types is a transparent union type and the other
6881  // type is compatible with a union member
6882  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6883                                              Unqualified);
6884  if (!lmerge.isNull())
6885    return lmerge;
6886
6887  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6888                                              Unqualified);
6889  if (!rmerge.isNull())
6890    return rmerge;
6891
6892  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6893}
6894
6895QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6896                                        bool OfBlockPointer,
6897                                        bool Unqualified) {
6898  const FunctionType *lbase = lhs->getAs<FunctionType>();
6899  const FunctionType *rbase = rhs->getAs<FunctionType>();
6900  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6901  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6902  bool allLTypes = true;
6903  bool allRTypes = true;
6904
6905  // Check return type
6906  QualType retType;
6907  if (OfBlockPointer) {
6908    QualType RHS = rbase->getResultType();
6909    QualType LHS = lbase->getResultType();
6910    bool UnqualifiedResult = Unqualified;
6911    if (!UnqualifiedResult)
6912      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6913    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6914  }
6915  else
6916    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6917                         Unqualified);
6918  if (retType.isNull()) return QualType();
6919
6920  if (Unqualified)
6921    retType = retType.getUnqualifiedType();
6922
6923  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6924  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6925  if (Unqualified) {
6926    LRetType = LRetType.getUnqualifiedType();
6927    RRetType = RRetType.getUnqualifiedType();
6928  }
6929
6930  if (getCanonicalType(retType) != LRetType)
6931    allLTypes = false;
6932  if (getCanonicalType(retType) != RRetType)
6933    allRTypes = false;
6934
6935  // FIXME: double check this
6936  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6937  //                           rbase->getRegParmAttr() != 0 &&
6938  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6939  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6940  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6941
6942  // Compatible functions must have compatible calling conventions
6943  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6944    return QualType();
6945
6946  // Regparm is part of the calling convention.
6947  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6948    return QualType();
6949  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6950    return QualType();
6951
6952  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6953    return QualType();
6954
6955  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6956  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6957
6958  if (lbaseInfo.getNoReturn() != NoReturn)
6959    allLTypes = false;
6960  if (rbaseInfo.getNoReturn() != NoReturn)
6961    allRTypes = false;
6962
6963  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6964
6965  if (lproto && rproto) { // two C99 style function prototypes
6966    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6967           "C++ shouldn't be here");
6968    unsigned lproto_nargs = lproto->getNumArgs();
6969    unsigned rproto_nargs = rproto->getNumArgs();
6970
6971    // Compatible functions must have the same number of arguments
6972    if (lproto_nargs != rproto_nargs)
6973      return QualType();
6974
6975    // Variadic and non-variadic functions aren't compatible
6976    if (lproto->isVariadic() != rproto->isVariadic())
6977      return QualType();
6978
6979    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6980      return QualType();
6981
6982    if (LangOpts.ObjCAutoRefCount &&
6983        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6984      return QualType();
6985
6986    // Check argument compatibility
6987    SmallVector<QualType, 10> types;
6988    for (unsigned i = 0; i < lproto_nargs; i++) {
6989      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6990      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6991      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6992                                                    OfBlockPointer,
6993                                                    Unqualified);
6994      if (argtype.isNull()) return QualType();
6995
6996      if (Unqualified)
6997        argtype = argtype.getUnqualifiedType();
6998
6999      types.push_back(argtype);
7000      if (Unqualified) {
7001        largtype = largtype.getUnqualifiedType();
7002        rargtype = rargtype.getUnqualifiedType();
7003      }
7004
7005      if (getCanonicalType(argtype) != getCanonicalType(largtype))
7006        allLTypes = false;
7007      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
7008        allRTypes = false;
7009    }
7010
7011    if (allLTypes) return lhs;
7012    if (allRTypes) return rhs;
7013
7014    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7015    EPI.ExtInfo = einfo;
7016    return getFunctionType(retType, types, EPI);
7017  }
7018
7019  if (lproto) allRTypes = false;
7020  if (rproto) allLTypes = false;
7021
7022  const FunctionProtoType *proto = lproto ? lproto : rproto;
7023  if (proto) {
7024    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7025    if (proto->isVariadic()) return QualType();
7026    // Check that the types are compatible with the types that
7027    // would result from default argument promotions (C99 6.7.5.3p15).
7028    // The only types actually affected are promotable integer
7029    // types and floats, which would be passed as a different
7030    // type depending on whether the prototype is visible.
7031    unsigned proto_nargs = proto->getNumArgs();
7032    for (unsigned i = 0; i < proto_nargs; ++i) {
7033      QualType argTy = proto->getArgType(i);
7034
7035      // Look at the converted type of enum types, since that is the type used
7036      // to pass enum values.
7037      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
7038        argTy = Enum->getDecl()->getIntegerType();
7039        if (argTy.isNull())
7040          return QualType();
7041      }
7042
7043      if (argTy->isPromotableIntegerType() ||
7044          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
7045        return QualType();
7046    }
7047
7048    if (allLTypes) return lhs;
7049    if (allRTypes) return rhs;
7050
7051    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7052    EPI.ExtInfo = einfo;
7053    return getFunctionType(retType, proto->getArgTypes(), EPI);
7054  }
7055
7056  if (allLTypes) return lhs;
7057  if (allRTypes) return rhs;
7058  return getFunctionNoProtoType(retType, einfo);
7059}
7060
7061/// Given that we have an enum type and a non-enum type, try to merge them.
7062static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7063                                     QualType other, bool isBlockReturnType) {
7064  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7065  // a signed integer type, or an unsigned integer type.
7066  // Compatibility is based on the underlying type, not the promotion
7067  // type.
7068  QualType underlyingType = ET->getDecl()->getIntegerType();
7069  if (underlyingType.isNull()) return QualType();
7070  if (Context.hasSameType(underlyingType, other))
7071    return other;
7072
7073  // In block return types, we're more permissive and accept any
7074  // integral type of the same size.
7075  if (isBlockReturnType && other->isIntegerType() &&
7076      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7077    return other;
7078
7079  return QualType();
7080}
7081
7082QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7083                                bool OfBlockPointer,
7084                                bool Unqualified, bool BlockReturnType) {
7085  // C++ [expr]: If an expression initially has the type "reference to T", the
7086  // type is adjusted to "T" prior to any further analysis, the expression
7087  // designates the object or function denoted by the reference, and the
7088  // expression is an lvalue unless the reference is an rvalue reference and
7089  // the expression is a function call (possibly inside parentheses).
7090  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7091  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7092
7093  if (Unqualified) {
7094    LHS = LHS.getUnqualifiedType();
7095    RHS = RHS.getUnqualifiedType();
7096  }
7097
7098  QualType LHSCan = getCanonicalType(LHS),
7099           RHSCan = getCanonicalType(RHS);
7100
7101  // If two types are identical, they are compatible.
7102  if (LHSCan == RHSCan)
7103    return LHS;
7104
7105  // If the qualifiers are different, the types aren't compatible... mostly.
7106  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7107  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7108  if (LQuals != RQuals) {
7109    // If any of these qualifiers are different, we have a type
7110    // mismatch.
7111    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7112        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7113        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7114      return QualType();
7115
7116    // Exactly one GC qualifier difference is allowed: __strong is
7117    // okay if the other type has no GC qualifier but is an Objective
7118    // C object pointer (i.e. implicitly strong by default).  We fix
7119    // this by pretending that the unqualified type was actually
7120    // qualified __strong.
7121    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7122    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7123    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7124
7125    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7126      return QualType();
7127
7128    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7129      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7130    }
7131    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7132      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7133    }
7134    return QualType();
7135  }
7136
7137  // Okay, qualifiers are equal.
7138
7139  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7140  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7141
7142  // We want to consider the two function types to be the same for these
7143  // comparisons, just force one to the other.
7144  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7145  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7146
7147  // Same as above for arrays
7148  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7149    LHSClass = Type::ConstantArray;
7150  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7151    RHSClass = Type::ConstantArray;
7152
7153  // ObjCInterfaces are just specialized ObjCObjects.
7154  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7155  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7156
7157  // Canonicalize ExtVector -> Vector.
7158  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7159  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7160
7161  // If the canonical type classes don't match.
7162  if (LHSClass != RHSClass) {
7163    // Note that we only have special rules for turning block enum
7164    // returns into block int returns, not vice-versa.
7165    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7166      return mergeEnumWithInteger(*this, ETy, RHS, false);
7167    }
7168    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7169      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7170    }
7171    // allow block pointer type to match an 'id' type.
7172    if (OfBlockPointer && !BlockReturnType) {
7173       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7174         return LHS;
7175      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7176        return RHS;
7177    }
7178
7179    return QualType();
7180  }
7181
7182  // The canonical type classes match.
7183  switch (LHSClass) {
7184#define TYPE(Class, Base)
7185#define ABSTRACT_TYPE(Class, Base)
7186#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7187#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7188#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7189#include "clang/AST/TypeNodes.def"
7190    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7191
7192  case Type::Auto:
7193  case Type::LValueReference:
7194  case Type::RValueReference:
7195  case Type::MemberPointer:
7196    llvm_unreachable("C++ should never be in mergeTypes");
7197
7198  case Type::ObjCInterface:
7199  case Type::IncompleteArray:
7200  case Type::VariableArray:
7201  case Type::FunctionProto:
7202  case Type::ExtVector:
7203    llvm_unreachable("Types are eliminated above");
7204
7205  case Type::Pointer:
7206  {
7207    // Merge two pointer types, while trying to preserve typedef info
7208    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7209    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7210    if (Unqualified) {
7211      LHSPointee = LHSPointee.getUnqualifiedType();
7212      RHSPointee = RHSPointee.getUnqualifiedType();
7213    }
7214    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7215                                     Unqualified);
7216    if (ResultType.isNull()) return QualType();
7217    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7218      return LHS;
7219    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7220      return RHS;
7221    return getPointerType(ResultType);
7222  }
7223  case Type::BlockPointer:
7224  {
7225    // Merge two block pointer types, while trying to preserve typedef info
7226    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7227    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7228    if (Unqualified) {
7229      LHSPointee = LHSPointee.getUnqualifiedType();
7230      RHSPointee = RHSPointee.getUnqualifiedType();
7231    }
7232    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7233                                     Unqualified);
7234    if (ResultType.isNull()) return QualType();
7235    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7236      return LHS;
7237    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7238      return RHS;
7239    return getBlockPointerType(ResultType);
7240  }
7241  case Type::Atomic:
7242  {
7243    // Merge two pointer types, while trying to preserve typedef info
7244    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7245    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7246    if (Unqualified) {
7247      LHSValue = LHSValue.getUnqualifiedType();
7248      RHSValue = RHSValue.getUnqualifiedType();
7249    }
7250    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7251                                     Unqualified);
7252    if (ResultType.isNull()) return QualType();
7253    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7254      return LHS;
7255    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7256      return RHS;
7257    return getAtomicType(ResultType);
7258  }
7259  case Type::ConstantArray:
7260  {
7261    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7262    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7263    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7264      return QualType();
7265
7266    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7267    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7268    if (Unqualified) {
7269      LHSElem = LHSElem.getUnqualifiedType();
7270      RHSElem = RHSElem.getUnqualifiedType();
7271    }
7272
7273    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7274    if (ResultType.isNull()) return QualType();
7275    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7276      return LHS;
7277    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7278      return RHS;
7279    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7280                                          ArrayType::ArraySizeModifier(), 0);
7281    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7282                                          ArrayType::ArraySizeModifier(), 0);
7283    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7284    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7285    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7286      return LHS;
7287    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7288      return RHS;
7289    if (LVAT) {
7290      // FIXME: This isn't correct! But tricky to implement because
7291      // the array's size has to be the size of LHS, but the type
7292      // has to be different.
7293      return LHS;
7294    }
7295    if (RVAT) {
7296      // FIXME: This isn't correct! But tricky to implement because
7297      // the array's size has to be the size of RHS, but the type
7298      // has to be different.
7299      return RHS;
7300    }
7301    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7302    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7303    return getIncompleteArrayType(ResultType,
7304                                  ArrayType::ArraySizeModifier(), 0);
7305  }
7306  case Type::FunctionNoProto:
7307    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7308  case Type::Record:
7309  case Type::Enum:
7310    return QualType();
7311  case Type::Builtin:
7312    // Only exactly equal builtin types are compatible, which is tested above.
7313    return QualType();
7314  case Type::Complex:
7315    // Distinct complex types are incompatible.
7316    return QualType();
7317  case Type::Vector:
7318    // FIXME: The merged type should be an ExtVector!
7319    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7320                             RHSCan->getAs<VectorType>()))
7321      return LHS;
7322    return QualType();
7323  case Type::ObjCObject: {
7324    // Check if the types are assignment compatible.
7325    // FIXME: This should be type compatibility, e.g. whether
7326    // "LHS x; RHS x;" at global scope is legal.
7327    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7328    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7329    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7330      return LHS;
7331
7332    return QualType();
7333  }
7334  case Type::ObjCObjectPointer: {
7335    if (OfBlockPointer) {
7336      if (canAssignObjCInterfacesInBlockPointer(
7337                                          LHS->getAs<ObjCObjectPointerType>(),
7338                                          RHS->getAs<ObjCObjectPointerType>(),
7339                                          BlockReturnType))
7340        return LHS;
7341      return QualType();
7342    }
7343    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7344                                RHS->getAs<ObjCObjectPointerType>()))
7345      return LHS;
7346
7347    return QualType();
7348  }
7349  }
7350
7351  llvm_unreachable("Invalid Type::Class!");
7352}
7353
7354bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7355                   const FunctionProtoType *FromFunctionType,
7356                   const FunctionProtoType *ToFunctionType) {
7357  if (FromFunctionType->hasAnyConsumedArgs() !=
7358      ToFunctionType->hasAnyConsumedArgs())
7359    return false;
7360  FunctionProtoType::ExtProtoInfo FromEPI =
7361    FromFunctionType->getExtProtoInfo();
7362  FunctionProtoType::ExtProtoInfo ToEPI =
7363    ToFunctionType->getExtProtoInfo();
7364  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7365    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7366         ArgIdx != NumArgs; ++ArgIdx)  {
7367      if (FromEPI.ConsumedArguments[ArgIdx] !=
7368          ToEPI.ConsumedArguments[ArgIdx])
7369        return false;
7370    }
7371  return true;
7372}
7373
7374/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7375/// 'RHS' attributes and returns the merged version; including for function
7376/// return types.
7377QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7378  QualType LHSCan = getCanonicalType(LHS),
7379  RHSCan = getCanonicalType(RHS);
7380  // If two types are identical, they are compatible.
7381  if (LHSCan == RHSCan)
7382    return LHS;
7383  if (RHSCan->isFunctionType()) {
7384    if (!LHSCan->isFunctionType())
7385      return QualType();
7386    QualType OldReturnType =
7387      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7388    QualType NewReturnType =
7389      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7390    QualType ResReturnType =
7391      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7392    if (ResReturnType.isNull())
7393      return QualType();
7394    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7395      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7396      // In either case, use OldReturnType to build the new function type.
7397      const FunctionType *F = LHS->getAs<FunctionType>();
7398      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7399        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7400        EPI.ExtInfo = getFunctionExtInfo(LHS);
7401        QualType ResultType =
7402            getFunctionType(OldReturnType, FPT->getArgTypes(), EPI);
7403        return ResultType;
7404      }
7405    }
7406    return QualType();
7407  }
7408
7409  // If the qualifiers are different, the types can still be merged.
7410  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7411  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7412  if (LQuals != RQuals) {
7413    // If any of these qualifiers are different, we have a type mismatch.
7414    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7415        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7416      return QualType();
7417
7418    // Exactly one GC qualifier difference is allowed: __strong is
7419    // okay if the other type has no GC qualifier but is an Objective
7420    // C object pointer (i.e. implicitly strong by default).  We fix
7421    // this by pretending that the unqualified type was actually
7422    // qualified __strong.
7423    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7424    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7425    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7426
7427    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7428      return QualType();
7429
7430    if (GC_L == Qualifiers::Strong)
7431      return LHS;
7432    if (GC_R == Qualifiers::Strong)
7433      return RHS;
7434    return QualType();
7435  }
7436
7437  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7438    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7439    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7440    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7441    if (ResQT == LHSBaseQT)
7442      return LHS;
7443    if (ResQT == RHSBaseQT)
7444      return RHS;
7445  }
7446  return QualType();
7447}
7448
7449//===----------------------------------------------------------------------===//
7450//                         Integer Predicates
7451//===----------------------------------------------------------------------===//
7452
7453unsigned ASTContext::getIntWidth(QualType T) const {
7454  if (const EnumType *ET = dyn_cast<EnumType>(T))
7455    T = ET->getDecl()->getIntegerType();
7456  if (T->isBooleanType())
7457    return 1;
7458  // For builtin types, just use the standard type sizing method
7459  return (unsigned)getTypeSize(T);
7460}
7461
7462QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7463  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7464
7465  // Turn <4 x signed int> -> <4 x unsigned int>
7466  if (const VectorType *VTy = T->getAs<VectorType>())
7467    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7468                         VTy->getNumElements(), VTy->getVectorKind());
7469
7470  // For enums, we return the unsigned version of the base type.
7471  if (const EnumType *ETy = T->getAs<EnumType>())
7472    T = ETy->getDecl()->getIntegerType();
7473
7474  const BuiltinType *BTy = T->getAs<BuiltinType>();
7475  assert(BTy && "Unexpected signed integer type");
7476  switch (BTy->getKind()) {
7477  case BuiltinType::Char_S:
7478  case BuiltinType::SChar:
7479    return UnsignedCharTy;
7480  case BuiltinType::Short:
7481    return UnsignedShortTy;
7482  case BuiltinType::Int:
7483    return UnsignedIntTy;
7484  case BuiltinType::Long:
7485    return UnsignedLongTy;
7486  case BuiltinType::LongLong:
7487    return UnsignedLongLongTy;
7488  case BuiltinType::Int128:
7489    return UnsignedInt128Ty;
7490  default:
7491    llvm_unreachable("Unexpected signed integer type");
7492  }
7493}
7494
7495ASTMutationListener::~ASTMutationListener() { }
7496
7497void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7498                                            QualType ReturnType) {}
7499
7500//===----------------------------------------------------------------------===//
7501//                          Builtin Type Computation
7502//===----------------------------------------------------------------------===//
7503
7504/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7505/// pointer over the consumed characters.  This returns the resultant type.  If
7506/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7507/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7508/// a vector of "i*".
7509///
7510/// RequiresICE is filled in on return to indicate whether the value is required
7511/// to be an Integer Constant Expression.
7512static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7513                                  ASTContext::GetBuiltinTypeError &Error,
7514                                  bool &RequiresICE,
7515                                  bool AllowTypeModifiers) {
7516  // Modifiers.
7517  int HowLong = 0;
7518  bool Signed = false, Unsigned = false;
7519  RequiresICE = false;
7520
7521  // Read the prefixed modifiers first.
7522  bool Done = false;
7523  while (!Done) {
7524    switch (*Str++) {
7525    default: Done = true; --Str; break;
7526    case 'I':
7527      RequiresICE = true;
7528      break;
7529    case 'S':
7530      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7531      assert(!Signed && "Can't use 'S' modifier multiple times!");
7532      Signed = true;
7533      break;
7534    case 'U':
7535      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7536      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7537      Unsigned = true;
7538      break;
7539    case 'L':
7540      assert(HowLong <= 2 && "Can't have LLLL modifier");
7541      ++HowLong;
7542      break;
7543    }
7544  }
7545
7546  QualType Type;
7547
7548  // Read the base type.
7549  switch (*Str++) {
7550  default: llvm_unreachable("Unknown builtin type letter!");
7551  case 'v':
7552    assert(HowLong == 0 && !Signed && !Unsigned &&
7553           "Bad modifiers used with 'v'!");
7554    Type = Context.VoidTy;
7555    break;
7556  case 'f':
7557    assert(HowLong == 0 && !Signed && !Unsigned &&
7558           "Bad modifiers used with 'f'!");
7559    Type = Context.FloatTy;
7560    break;
7561  case 'd':
7562    assert(HowLong < 2 && !Signed && !Unsigned &&
7563           "Bad modifiers used with 'd'!");
7564    if (HowLong)
7565      Type = Context.LongDoubleTy;
7566    else
7567      Type = Context.DoubleTy;
7568    break;
7569  case 's':
7570    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7571    if (Unsigned)
7572      Type = Context.UnsignedShortTy;
7573    else
7574      Type = Context.ShortTy;
7575    break;
7576  case 'i':
7577    if (HowLong == 3)
7578      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7579    else if (HowLong == 2)
7580      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7581    else if (HowLong == 1)
7582      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7583    else
7584      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7585    break;
7586  case 'c':
7587    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7588    if (Signed)
7589      Type = Context.SignedCharTy;
7590    else if (Unsigned)
7591      Type = Context.UnsignedCharTy;
7592    else
7593      Type = Context.CharTy;
7594    break;
7595  case 'b': // boolean
7596    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7597    Type = Context.BoolTy;
7598    break;
7599  case 'z':  // size_t.
7600    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7601    Type = Context.getSizeType();
7602    break;
7603  case 'F':
7604    Type = Context.getCFConstantStringType();
7605    break;
7606  case 'G':
7607    Type = Context.getObjCIdType();
7608    break;
7609  case 'H':
7610    Type = Context.getObjCSelType();
7611    break;
7612  case 'M':
7613    Type = Context.getObjCSuperType();
7614    break;
7615  case 'a':
7616    Type = Context.getBuiltinVaListType();
7617    assert(!Type.isNull() && "builtin va list type not initialized!");
7618    break;
7619  case 'A':
7620    // This is a "reference" to a va_list; however, what exactly
7621    // this means depends on how va_list is defined. There are two
7622    // different kinds of va_list: ones passed by value, and ones
7623    // passed by reference.  An example of a by-value va_list is
7624    // x86, where va_list is a char*. An example of by-ref va_list
7625    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7626    // we want this argument to be a char*&; for x86-64, we want
7627    // it to be a __va_list_tag*.
7628    Type = Context.getBuiltinVaListType();
7629    assert(!Type.isNull() && "builtin va list type not initialized!");
7630    if (Type->isArrayType())
7631      Type = Context.getArrayDecayedType(Type);
7632    else
7633      Type = Context.getLValueReferenceType(Type);
7634    break;
7635  case 'V': {
7636    char *End;
7637    unsigned NumElements = strtoul(Str, &End, 10);
7638    assert(End != Str && "Missing vector size");
7639    Str = End;
7640
7641    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7642                                             RequiresICE, false);
7643    assert(!RequiresICE && "Can't require vector ICE");
7644
7645    // TODO: No way to make AltiVec vectors in builtins yet.
7646    Type = Context.getVectorType(ElementType, NumElements,
7647                                 VectorType::GenericVector);
7648    break;
7649  }
7650  case 'E': {
7651    char *End;
7652
7653    unsigned NumElements = strtoul(Str, &End, 10);
7654    assert(End != Str && "Missing vector size");
7655
7656    Str = End;
7657
7658    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7659                                             false);
7660    Type = Context.getExtVectorType(ElementType, NumElements);
7661    break;
7662  }
7663  case 'X': {
7664    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7665                                             false);
7666    assert(!RequiresICE && "Can't require complex ICE");
7667    Type = Context.getComplexType(ElementType);
7668    break;
7669  }
7670  case 'Y' : {
7671    Type = Context.getPointerDiffType();
7672    break;
7673  }
7674  case 'P':
7675    Type = Context.getFILEType();
7676    if (Type.isNull()) {
7677      Error = ASTContext::GE_Missing_stdio;
7678      return QualType();
7679    }
7680    break;
7681  case 'J':
7682    if (Signed)
7683      Type = Context.getsigjmp_bufType();
7684    else
7685      Type = Context.getjmp_bufType();
7686
7687    if (Type.isNull()) {
7688      Error = ASTContext::GE_Missing_setjmp;
7689      return QualType();
7690    }
7691    break;
7692  case 'K':
7693    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7694    Type = Context.getucontext_tType();
7695
7696    if (Type.isNull()) {
7697      Error = ASTContext::GE_Missing_ucontext;
7698      return QualType();
7699    }
7700    break;
7701  case 'p':
7702    Type = Context.getProcessIDType();
7703    break;
7704  }
7705
7706  // If there are modifiers and if we're allowed to parse them, go for it.
7707  Done = !AllowTypeModifiers;
7708  while (!Done) {
7709    switch (char c = *Str++) {
7710    default: Done = true; --Str; break;
7711    case '*':
7712    case '&': {
7713      // Both pointers and references can have their pointee types
7714      // qualified with an address space.
7715      char *End;
7716      unsigned AddrSpace = strtoul(Str, &End, 10);
7717      if (End != Str && AddrSpace != 0) {
7718        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7719        Str = End;
7720      }
7721      if (c == '*')
7722        Type = Context.getPointerType(Type);
7723      else
7724        Type = Context.getLValueReferenceType(Type);
7725      break;
7726    }
7727    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7728    case 'C':
7729      Type = Type.withConst();
7730      break;
7731    case 'D':
7732      Type = Context.getVolatileType(Type);
7733      break;
7734    case 'R':
7735      Type = Type.withRestrict();
7736      break;
7737    }
7738  }
7739
7740  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7741         "Integer constant 'I' type must be an integer");
7742
7743  return Type;
7744}
7745
7746/// GetBuiltinType - Return the type for the specified builtin.
7747QualType ASTContext::GetBuiltinType(unsigned Id,
7748                                    GetBuiltinTypeError &Error,
7749                                    unsigned *IntegerConstantArgs) const {
7750  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7751
7752  SmallVector<QualType, 8> ArgTypes;
7753
7754  bool RequiresICE = false;
7755  Error = GE_None;
7756  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7757                                       RequiresICE, true);
7758  if (Error != GE_None)
7759    return QualType();
7760
7761  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7762
7763  while (TypeStr[0] && TypeStr[0] != '.') {
7764    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7765    if (Error != GE_None)
7766      return QualType();
7767
7768    // If this argument is required to be an IntegerConstantExpression and the
7769    // caller cares, fill in the bitmask we return.
7770    if (RequiresICE && IntegerConstantArgs)
7771      *IntegerConstantArgs |= 1 << ArgTypes.size();
7772
7773    // Do array -> pointer decay.  The builtin should use the decayed type.
7774    if (Ty->isArrayType())
7775      Ty = getArrayDecayedType(Ty);
7776
7777    ArgTypes.push_back(Ty);
7778  }
7779
7780  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7781         "'.' should only occur at end of builtin type list!");
7782
7783  FunctionType::ExtInfo EI;
7784  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7785
7786  bool Variadic = (TypeStr[0] == '.');
7787
7788  // We really shouldn't be making a no-proto type here, especially in C++.
7789  if (ArgTypes.empty() && Variadic)
7790    return getFunctionNoProtoType(ResType, EI);
7791
7792  FunctionProtoType::ExtProtoInfo EPI;
7793  EPI.ExtInfo = EI;
7794  EPI.Variadic = Variadic;
7795
7796  return getFunctionType(ResType, ArgTypes, EPI);
7797}
7798
7799GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7800  if (!FD->isExternallyVisible())
7801    return GVA_Internal;
7802
7803  GVALinkage External = GVA_StrongExternal;
7804  switch (FD->getTemplateSpecializationKind()) {
7805  case TSK_Undeclared:
7806  case TSK_ExplicitSpecialization:
7807    External = GVA_StrongExternal;
7808    break;
7809
7810  case TSK_ExplicitInstantiationDefinition:
7811    return GVA_ExplicitTemplateInstantiation;
7812
7813  case TSK_ExplicitInstantiationDeclaration:
7814  case TSK_ImplicitInstantiation:
7815    External = GVA_TemplateInstantiation;
7816    break;
7817  }
7818
7819  if (!FD->isInlined())
7820    return External;
7821
7822  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7823    // GNU or C99 inline semantics. Determine whether this symbol should be
7824    // externally visible.
7825    if (FD->isInlineDefinitionExternallyVisible())
7826      return External;
7827
7828    // C99 inline semantics, where the symbol is not externally visible.
7829    return GVA_C99Inline;
7830  }
7831
7832  // C++0x [temp.explicit]p9:
7833  //   [ Note: The intent is that an inline function that is the subject of
7834  //   an explicit instantiation declaration will still be implicitly
7835  //   instantiated when used so that the body can be considered for
7836  //   inlining, but that no out-of-line copy of the inline function would be
7837  //   generated in the translation unit. -- end note ]
7838  if (FD->getTemplateSpecializationKind()
7839                                       == TSK_ExplicitInstantiationDeclaration)
7840    return GVA_C99Inline;
7841
7842  return GVA_CXXInline;
7843}
7844
7845GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7846  if (!VD->isExternallyVisible())
7847    return GVA_Internal;
7848
7849  // If this is a static data member, compute the kind of template
7850  // specialization. Otherwise, this variable is not part of a
7851  // template.
7852  TemplateSpecializationKind TSK = TSK_Undeclared;
7853  if (VD->isStaticDataMember())
7854    TSK = VD->getTemplateSpecializationKind();
7855
7856  switch (TSK) {
7857  case TSK_Undeclared:
7858  case TSK_ExplicitSpecialization:
7859    return GVA_StrongExternal;
7860
7861  case TSK_ExplicitInstantiationDeclaration:
7862    llvm_unreachable("Variable should not be instantiated");
7863  // Fall through to treat this like any other instantiation.
7864
7865  case TSK_ExplicitInstantiationDefinition:
7866    return GVA_ExplicitTemplateInstantiation;
7867
7868  case TSK_ImplicitInstantiation:
7869    return GVA_TemplateInstantiation;
7870  }
7871
7872  llvm_unreachable("Invalid Linkage!");
7873}
7874
7875bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7876  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7877    if (!VD->isFileVarDecl())
7878      return false;
7879  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7880    // We never need to emit an uninstantiated function template.
7881    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7882      return false;
7883  } else
7884    return false;
7885
7886  // If this is a member of a class template, we do not need to emit it.
7887  if (D->getDeclContext()->isDependentContext())
7888    return false;
7889
7890  // Weak references don't produce any output by themselves.
7891  if (D->hasAttr<WeakRefAttr>())
7892    return false;
7893
7894  // Aliases and used decls are required.
7895  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7896    return true;
7897
7898  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7899    // Forward declarations aren't required.
7900    if (!FD->doesThisDeclarationHaveABody())
7901      return FD->doesDeclarationForceExternallyVisibleDefinition();
7902
7903    // Constructors and destructors are required.
7904    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7905      return true;
7906
7907    // The key function for a class is required.  This rule only comes
7908    // into play when inline functions can be key functions, though.
7909    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7910      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7911        const CXXRecordDecl *RD = MD->getParent();
7912        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7913          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7914          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7915            return true;
7916        }
7917      }
7918    }
7919
7920    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7921
7922    // static, static inline, always_inline, and extern inline functions can
7923    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7924    // Implicit template instantiations can also be deferred in C++.
7925    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7926        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7927      return false;
7928    return true;
7929  }
7930
7931  const VarDecl *VD = cast<VarDecl>(D);
7932  assert(VD->isFileVarDecl() && "Expected file scoped var");
7933
7934  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7935    return false;
7936
7937  // Variables that can be needed in other TUs are required.
7938  GVALinkage L = GetGVALinkageForVariable(VD);
7939  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7940    return true;
7941
7942  // Variables that have destruction with side-effects are required.
7943  if (VD->getType().isDestructedType())
7944    return true;
7945
7946  // Variables that have initialization with side-effects are required.
7947  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7948    return true;
7949
7950  return false;
7951}
7952
7953CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7954  // Pass through to the C++ ABI object
7955  return ABI->getDefaultMethodCallConv(isVariadic);
7956}
7957
7958CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7959  if (CC == CC_C && !LangOpts.MRTD &&
7960      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7961    return CC_Default;
7962  return CC;
7963}
7964
7965bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7966  // Pass through to the C++ ABI object
7967  return ABI->isNearlyEmpty(RD);
7968}
7969
7970MangleContext *ASTContext::createMangleContext() {
7971  switch (Target->getCXXABI().getKind()) {
7972  case TargetCXXABI::GenericAArch64:
7973  case TargetCXXABI::GenericItanium:
7974  case TargetCXXABI::GenericARM:
7975  case TargetCXXABI::iOS:
7976    return createItaniumMangleContext(*this, getDiagnostics());
7977  case TargetCXXABI::Microsoft:
7978    return createMicrosoftMangleContext(*this, getDiagnostics());
7979  }
7980  llvm_unreachable("Unsupported ABI");
7981}
7982
7983CXXABI::~CXXABI() {}
7984
7985size_t ASTContext::getSideTableAllocatedMemory() const {
7986  return ASTRecordLayouts.getMemorySize()
7987    + llvm::capacity_in_bytes(ObjCLayouts)
7988    + llvm::capacity_in_bytes(KeyFunctions)
7989    + llvm::capacity_in_bytes(ObjCImpls)
7990    + llvm::capacity_in_bytes(BlockVarCopyInits)
7991    + llvm::capacity_in_bytes(DeclAttrs)
7992    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7993    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7994    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7995    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7996    + llvm::capacity_in_bytes(OverriddenMethods)
7997    + llvm::capacity_in_bytes(Types)
7998    + llvm::capacity_in_bytes(VariableArrayTypes)
7999    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8000}
8001
8002void ASTContext::addUnnamedTag(const TagDecl *Tag) {
8003  // FIXME: This mangling should be applied to function local classes too
8004  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
8005      !isa<CXXRecordDecl>(Tag->getParent()))
8006    return;
8007
8008  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
8009    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
8010  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
8011}
8012
8013int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
8014  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
8015    UnnamedMangleNumbers.find(Tag);
8016  return I != UnnamedMangleNumbers.end() ? I->second : -1;
8017}
8018
8019unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
8020  CXXRecordDecl *Lambda = CallOperator->getParent();
8021  return LambdaMangleContexts[Lambda->getDeclContext()]
8022           .getManglingNumber(CallOperator);
8023}
8024
8025
8026void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8027  ParamIndices[D] = index;
8028}
8029
8030unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8031  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8032  assert(I != ParamIndices.end() &&
8033         "ParmIndices lacks entry set by ParmVarDecl");
8034  return I->second;
8035}
8036
8037APValue *
8038ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8039                                          bool MayCreate) {
8040  assert(E && E->getStorageDuration() == SD_Static &&
8041         "don't need to cache the computed value for this temporary");
8042  if (MayCreate)
8043    return &MaterializedTemporaryValues[E];
8044
8045  llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8046      MaterializedTemporaryValues.find(E);
8047  return I == MaterializedTemporaryValues.end() ? 0 : &I->second;
8048}
8049
8050bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8051  const llvm::Triple &T = getTargetInfo().getTriple();
8052  if (!T.isOSDarwin())
8053    return false;
8054
8055  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8056  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8057  uint64_t Size = sizeChars.getQuantity();
8058  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8059  unsigned Align = alignChars.getQuantity();
8060  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8061  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8062}
8063
8064namespace {
8065
8066  /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8067  /// parents as defined by the \c RecursiveASTVisitor.
8068  ///
8069  /// Note that the relationship described here is purely in terms of AST
8070  /// traversal - there are other relationships (for example declaration context)
8071  /// in the AST that are better modeled by special matchers.
8072  ///
8073  /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8074  class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8075
8076  public:
8077    /// \brief Builds and returns the translation unit's parent map.
8078    ///
8079    ///  The caller takes ownership of the returned \c ParentMap.
8080    static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8081      ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8082      Visitor.TraverseDecl(&TU);
8083      return Visitor.Parents;
8084    }
8085
8086  private:
8087    typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8088
8089    ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8090    }
8091
8092    bool shouldVisitTemplateInstantiations() const {
8093      return true;
8094    }
8095    bool shouldVisitImplicitCode() const {
8096      return true;
8097    }
8098    // Disables data recursion. We intercept Traverse* methods in the RAV, which
8099    // are not triggered during data recursion.
8100    bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8101      return false;
8102    }
8103
8104    template <typename T>
8105    bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8106      if (Node == NULL)
8107        return true;
8108      if (ParentStack.size() > 0)
8109        // FIXME: Currently we add the same parent multiple times, for example
8110        // when we visit all subexpressions of template instantiations; this is
8111        // suboptimal, bug benign: the only way to visit those is with
8112        // hasAncestor / hasParent, and those do not create new matches.
8113        // The plan is to enable DynTypedNode to be storable in a map or hash
8114        // map. The main problem there is to implement hash functions /
8115        // comparison operators for all types that DynTypedNode supports that
8116        // do not have pointer identity.
8117        (*Parents)[Node].push_back(ParentStack.back());
8118      ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8119      bool Result = (this ->* traverse) (Node);
8120      ParentStack.pop_back();
8121      return Result;
8122    }
8123
8124    bool TraverseDecl(Decl *DeclNode) {
8125      return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8126    }
8127
8128    bool TraverseStmt(Stmt *StmtNode) {
8129      return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8130    }
8131
8132    ASTContext::ParentMap *Parents;
8133    llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8134
8135    friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8136  };
8137
8138} // end namespace
8139
8140ASTContext::ParentVector
8141ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8142  assert(Node.getMemoizationData() &&
8143         "Invariant broken: only nodes that support memoization may be "
8144         "used in the parent map.");
8145  if (!AllParents) {
8146    // We always need to run over the whole translation unit, as
8147    // hasAncestor can escape any subtree.
8148    AllParents.reset(
8149        ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8150  }
8151  ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8152  if (I == AllParents->end()) {
8153    return ParentVector();
8154  }
8155  return I->second;
8156}
8157