ASTContext.cpp revision cf807c4dfdb23e8fa3f400e0b24ef5b79db7a530
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "CXXABI.h"
32
33using namespace clang;
34
35unsigned ASTContext::NumImplicitDefaultConstructors;
36unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
37unsigned ASTContext::NumImplicitCopyConstructors;
38unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
39unsigned ASTContext::NumImplicitCopyAssignmentOperators;
40unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
41unsigned ASTContext::NumImplicitDestructors;
42unsigned ASTContext::NumImplicitDestructorsDeclared;
43
44enum FloatingRank {
45  FloatRank, DoubleRank, LongDoubleRank
46};
47
48void
49ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
50                                               TemplateTemplateParmDecl *Parm) {
51  ID.AddInteger(Parm->getDepth());
52  ID.AddInteger(Parm->getPosition());
53  // FIXME: Parameter pack
54
55  TemplateParameterList *Params = Parm->getTemplateParameters();
56  ID.AddInteger(Params->size());
57  for (TemplateParameterList::const_iterator P = Params->begin(),
58                                          PEnd = Params->end();
59       P != PEnd; ++P) {
60    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
61      ID.AddInteger(0);
62      ID.AddBoolean(TTP->isParameterPack());
63      continue;
64    }
65
66    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
67      ID.AddInteger(1);
68      // FIXME: Parameter pack
69      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
70      continue;
71    }
72
73    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
74    ID.AddInteger(2);
75    Profile(ID, TTP);
76  }
77}
78
79TemplateTemplateParmDecl *
80ASTContext::getCanonicalTemplateTemplateParmDecl(
81                                                 TemplateTemplateParmDecl *TTP) {
82  // Check if we already have a canonical template template parameter.
83  llvm::FoldingSetNodeID ID;
84  CanonicalTemplateTemplateParm::Profile(ID, TTP);
85  void *InsertPos = 0;
86  CanonicalTemplateTemplateParm *Canonical
87    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
88  if (Canonical)
89    return Canonical->getParam();
90
91  // Build a canonical template parameter list.
92  TemplateParameterList *Params = TTP->getTemplateParameters();
93  llvm::SmallVector<NamedDecl *, 4> CanonParams;
94  CanonParams.reserve(Params->size());
95  for (TemplateParameterList::const_iterator P = Params->begin(),
96                                          PEnd = Params->end();
97       P != PEnd; ++P) {
98    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
99      CanonParams.push_back(
100                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
101                                               SourceLocation(), TTP->getDepth(),
102                                               TTP->getIndex(), 0, false,
103                                               TTP->isParameterPack()));
104    else if (NonTypeTemplateParmDecl *NTTP
105             = dyn_cast<NonTypeTemplateParmDecl>(*P))
106      CanonParams.push_back(
107            NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
108                                            SourceLocation(), NTTP->getDepth(),
109                                            NTTP->getPosition(), 0,
110                                            getCanonicalType(NTTP->getType()),
111                                            0));
112    else
113      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
114                                           cast<TemplateTemplateParmDecl>(*P)));
115  }
116
117  TemplateTemplateParmDecl *CanonTTP
118    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
119                                       SourceLocation(), TTP->getDepth(),
120                                       TTP->getPosition(), 0,
121                         TemplateParameterList::Create(*this, SourceLocation(),
122                                                       SourceLocation(),
123                                                       CanonParams.data(),
124                                                       CanonParams.size(),
125                                                       SourceLocation()));
126
127  // Get the new insert position for the node we care about.
128  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
129  assert(Canonical == 0 && "Shouldn't be in the map!");
130  (void)Canonical;
131
132  // Create the canonical template template parameter entry.
133  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
134  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
135  return CanonTTP;
136}
137
138CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
139  if (!LangOpts.CPlusPlus) return NULL;
140  if (T.getCXXABI() == "microsoft")
141    return CreateMicrosoftCXXABI(*this);
142  else
143    return CreateItaniumCXXABI(*this);
144}
145
146ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
147                       const TargetInfo &t,
148                       IdentifierTable &idents, SelectorTable &sels,
149                       Builtin::Context &builtins,
150                       unsigned size_reserve) :
151  TemplateSpecializationTypes(this_()),
152  DependentTemplateSpecializationTypes(this_()),
153  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
154  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
155  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
156  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
157  NullTypeSourceInfo(QualType()),
158  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
159  Idents(idents), Selectors(sels),
160  BuiltinInfo(builtins),
161  DeclarationNames(*this),
162  ExternalSource(0), PrintingPolicy(LOpts),
163  LastSDM(0, 0),
164  UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
165  ObjCIdRedefinitionType = QualType();
166  ObjCClassRedefinitionType = QualType();
167  ObjCSelRedefinitionType = QualType();
168  if (size_reserve > 0) Types.reserve(size_reserve);
169  TUDecl = TranslationUnitDecl::Create(*this);
170  InitBuiltinTypes();
171}
172
173ASTContext::~ASTContext() {
174  // Release the DenseMaps associated with DeclContext objects.
175  // FIXME: Is this the ideal solution?
176  ReleaseDeclContextMaps();
177
178  // Call all of the deallocation functions.
179  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
180    Deallocations[I].first(Deallocations[I].second);
181
182  // Release all of the memory associated with overridden C++ methods.
183  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
184         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
185       OM != OMEnd; ++OM)
186    OM->second.Destroy();
187
188  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
189  // because they can contain DenseMaps.
190  for (llvm::DenseMap<const ObjCContainerDecl*,
191       const ASTRecordLayout*>::iterator
192       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
193    // Increment in loop to prevent using deallocated memory.
194    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
195      R->Destroy(*this);
196
197  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
198       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
199    // Increment in loop to prevent using deallocated memory.
200    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
201      R->Destroy(*this);
202  }
203  }
204
205void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
206  Deallocations.push_back(std::make_pair(Callback, Data));
207}
208
209void
210ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
211  ExternalSource.reset(Source.take());
212}
213
214void ASTContext::PrintStats() const {
215  fprintf(stderr, "*** AST Context Stats:\n");
216  fprintf(stderr, "  %d types total.\n", (int)Types.size());
217
218  unsigned counts[] = {
219#define TYPE(Name, Parent) 0,
220#define ABSTRACT_TYPE(Name, Parent)
221#include "clang/AST/TypeNodes.def"
222    0 // Extra
223  };
224
225  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
226    Type *T = Types[i];
227    counts[(unsigned)T->getTypeClass()]++;
228  }
229
230  unsigned Idx = 0;
231  unsigned TotalBytes = 0;
232#define TYPE(Name, Parent)                                              \
233  if (counts[Idx])                                                      \
234    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
235  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
236  ++Idx;
237#define ABSTRACT_TYPE(Name, Parent)
238#include "clang/AST/TypeNodes.def"
239
240  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
241
242  // Implicit special member functions.
243  fprintf(stderr, "  %u/%u implicit default constructors created\n",
244          NumImplicitDefaultConstructorsDeclared,
245          NumImplicitDefaultConstructors);
246  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
247          NumImplicitCopyConstructorsDeclared,
248          NumImplicitCopyConstructors);
249  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
250          NumImplicitCopyAssignmentOperatorsDeclared,
251          NumImplicitCopyAssignmentOperators);
252  fprintf(stderr, "  %u/%u implicit destructors created\n",
253          NumImplicitDestructorsDeclared, NumImplicitDestructors);
254
255  if (ExternalSource.get()) {
256    fprintf(stderr, "\n");
257    ExternalSource->PrintStats();
258  }
259
260  BumpAlloc.PrintStats();
261}
262
263
264void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
265  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
266  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
267  Types.push_back(Ty);
268}
269
270void ASTContext::InitBuiltinTypes() {
271  assert(VoidTy.isNull() && "Context reinitialized?");
272
273  // C99 6.2.5p19.
274  InitBuiltinType(VoidTy,              BuiltinType::Void);
275
276  // C99 6.2.5p2.
277  InitBuiltinType(BoolTy,              BuiltinType::Bool);
278  // C99 6.2.5p3.
279  if (LangOpts.CharIsSigned)
280    InitBuiltinType(CharTy,            BuiltinType::Char_S);
281  else
282    InitBuiltinType(CharTy,            BuiltinType::Char_U);
283  // C99 6.2.5p4.
284  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
285  InitBuiltinType(ShortTy,             BuiltinType::Short);
286  InitBuiltinType(IntTy,               BuiltinType::Int);
287  InitBuiltinType(LongTy,              BuiltinType::Long);
288  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
289
290  // C99 6.2.5p6.
291  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
292  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
293  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
294  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
295  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
296
297  // C99 6.2.5p10.
298  InitBuiltinType(FloatTy,             BuiltinType::Float);
299  InitBuiltinType(DoubleTy,            BuiltinType::Double);
300  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
301
302  // GNU extension, 128-bit integers.
303  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
304  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
305
306  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
307    InitBuiltinType(WCharTy,           BuiltinType::WChar);
308  else // C99
309    WCharTy = getFromTargetType(Target.getWCharType());
310
311  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
312    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
313  else // C99
314    Char16Ty = getFromTargetType(Target.getChar16Type());
315
316  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
317    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
318  else // C99
319    Char32Ty = getFromTargetType(Target.getChar32Type());
320
321  // Placeholder type for functions.
322  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
323
324  // Placeholder type for type-dependent expressions whose type is
325  // completely unknown. No code should ever check a type against
326  // DependentTy and users should never see it; however, it is here to
327  // help diagnose failures to properly check for type-dependent
328  // expressions.
329  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
330
331  // Placeholder type for C++0x auto declarations whose real type has
332  // not yet been deduced.
333  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
334
335  // C99 6.2.5p11.
336  FloatComplexTy      = getComplexType(FloatTy);
337  DoubleComplexTy     = getComplexType(DoubleTy);
338  LongDoubleComplexTy = getComplexType(LongDoubleTy);
339
340  BuiltinVaListType = QualType();
341
342  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
343  ObjCIdTypedefType = QualType();
344  ObjCClassTypedefType = QualType();
345  ObjCSelTypedefType = QualType();
346
347  // Builtin types for 'id', 'Class', and 'SEL'.
348  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
349  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
350  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
351
352  ObjCConstantStringType = QualType();
353
354  // void * type
355  VoidPtrTy = getPointerType(VoidTy);
356
357  // nullptr type (C++0x 2.14.7)
358  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
359}
360
361MemberSpecializationInfo *
362ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
363  assert(Var->isStaticDataMember() && "Not a static data member");
364  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
365    = InstantiatedFromStaticDataMember.find(Var);
366  if (Pos == InstantiatedFromStaticDataMember.end())
367    return 0;
368
369  return Pos->second;
370}
371
372void
373ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
374                                                TemplateSpecializationKind TSK,
375                                          SourceLocation PointOfInstantiation) {
376  assert(Inst->isStaticDataMember() && "Not a static data member");
377  assert(Tmpl->isStaticDataMember() && "Not a static data member");
378  assert(!InstantiatedFromStaticDataMember[Inst] &&
379         "Already noted what static data member was instantiated from");
380  InstantiatedFromStaticDataMember[Inst]
381    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
382}
383
384NamedDecl *
385ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
386  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
387    = InstantiatedFromUsingDecl.find(UUD);
388  if (Pos == InstantiatedFromUsingDecl.end())
389    return 0;
390
391  return Pos->second;
392}
393
394void
395ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
396  assert((isa<UsingDecl>(Pattern) ||
397          isa<UnresolvedUsingValueDecl>(Pattern) ||
398          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
399         "pattern decl is not a using decl");
400  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
401  InstantiatedFromUsingDecl[Inst] = Pattern;
402}
403
404UsingShadowDecl *
405ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
406  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
407    = InstantiatedFromUsingShadowDecl.find(Inst);
408  if (Pos == InstantiatedFromUsingShadowDecl.end())
409    return 0;
410
411  return Pos->second;
412}
413
414void
415ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
416                                               UsingShadowDecl *Pattern) {
417  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
418  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
419}
420
421FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
422  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
423    = InstantiatedFromUnnamedFieldDecl.find(Field);
424  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
425    return 0;
426
427  return Pos->second;
428}
429
430void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
431                                                     FieldDecl *Tmpl) {
432  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
433  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
434  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
435         "Already noted what unnamed field was instantiated from");
436
437  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
438}
439
440ASTContext::overridden_cxx_method_iterator
441ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
442  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
443    = OverriddenMethods.find(Method);
444  if (Pos == OverriddenMethods.end())
445    return 0;
446
447  return Pos->second.begin();
448}
449
450ASTContext::overridden_cxx_method_iterator
451ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
452  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
453    = OverriddenMethods.find(Method);
454  if (Pos == OverriddenMethods.end())
455    return 0;
456
457  return Pos->second.end();
458}
459
460unsigned
461ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
462  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
463    = OverriddenMethods.find(Method);
464  if (Pos == OverriddenMethods.end())
465    return 0;
466
467  return Pos->second.size();
468}
469
470void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
471                                     const CXXMethodDecl *Overridden) {
472  OverriddenMethods[Method].push_back(Overridden);
473}
474
475//===----------------------------------------------------------------------===//
476//                         Type Sizing and Analysis
477//===----------------------------------------------------------------------===//
478
479/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
480/// scalar floating point type.
481const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
482  const BuiltinType *BT = T->getAs<BuiltinType>();
483  assert(BT && "Not a floating point type!");
484  switch (BT->getKind()) {
485  default: assert(0 && "Not a floating point type!");
486  case BuiltinType::Float:      return Target.getFloatFormat();
487  case BuiltinType::Double:     return Target.getDoubleFormat();
488  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
489  }
490}
491
492/// getDeclAlign - Return a conservative estimate of the alignment of the
493/// specified decl.  Note that bitfields do not have a valid alignment, so
494/// this method will assert on them.
495/// If @p RefAsPointee, references are treated like their underlying type
496/// (for alignof), else they're treated like pointers (for CodeGen).
497CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
498  unsigned Align = Target.getCharWidth();
499
500  Align = std::max(Align, D->getMaxAlignment());
501
502  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
503    QualType T = VD->getType();
504    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
505      if (RefAsPointee)
506        T = RT->getPointeeType();
507      else
508        T = getPointerType(RT->getPointeeType());
509    }
510    if (!T->isIncompleteType() && !T->isFunctionType()) {
511      unsigned MinWidth = Target.getLargeArrayMinWidth();
512      unsigned ArrayAlign = Target.getLargeArrayAlign();
513      if (isa<VariableArrayType>(T) && MinWidth != 0)
514        Align = std::max(Align, ArrayAlign);
515      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
516        unsigned Size = getTypeSize(CT);
517        if (MinWidth != 0 && MinWidth <= Size)
518          Align = std::max(Align, ArrayAlign);
519      }
520      // Incomplete or function types default to 1.
521      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
522        T = cast<ArrayType>(T)->getElementType();
523
524      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
525    }
526    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
527      // In the case of a field in a packed struct, we want the minimum
528      // of the alignment of the field and the alignment of the struct.
529      Align = std::min(Align,
530        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
531    }
532  }
533
534  return CharUnits::fromQuantity(Align / Target.getCharWidth());
535}
536
537std::pair<CharUnits, CharUnits>
538ASTContext::getTypeInfoInChars(const Type *T) {
539  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
540  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
541                        CharUnits::fromQuantity(Info.second / getCharWidth()));
542}
543
544std::pair<CharUnits, CharUnits>
545ASTContext::getTypeInfoInChars(QualType T) {
546  return getTypeInfoInChars(T.getTypePtr());
547}
548
549/// getTypeSize - Return the size of the specified type, in bits.  This method
550/// does not work on incomplete types.
551///
552/// FIXME: Pointers into different addr spaces could have different sizes and
553/// alignment requirements: getPointerInfo should take an AddrSpace, this
554/// should take a QualType, &c.
555std::pair<uint64_t, unsigned>
556ASTContext::getTypeInfo(const Type *T) {
557  uint64_t Width=0;
558  unsigned Align=8;
559  switch (T->getTypeClass()) {
560#define TYPE(Class, Base)
561#define ABSTRACT_TYPE(Class, Base)
562#define NON_CANONICAL_TYPE(Class, Base)
563#define DEPENDENT_TYPE(Class, Base) case Type::Class:
564#include "clang/AST/TypeNodes.def"
565    assert(false && "Should not see dependent types");
566    break;
567
568  case Type::FunctionNoProto:
569  case Type::FunctionProto:
570    // GCC extension: alignof(function) = 32 bits
571    Width = 0;
572    Align = 32;
573    break;
574
575  case Type::IncompleteArray:
576  case Type::VariableArray:
577    Width = 0;
578    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
579    break;
580
581  case Type::ConstantArray: {
582    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
583
584    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
585    Width = EltInfo.first*CAT->getSize().getZExtValue();
586    Align = EltInfo.second;
587    break;
588  }
589  case Type::ExtVector:
590  case Type::Vector: {
591    const VectorType *VT = cast<VectorType>(T);
592    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
593    Width = EltInfo.first*VT->getNumElements();
594    Align = Width;
595    // If the alignment is not a power of 2, round up to the next power of 2.
596    // This happens for non-power-of-2 length vectors.
597    if (Align & (Align-1)) {
598      Align = llvm::NextPowerOf2(Align);
599      Width = llvm::RoundUpToAlignment(Width, Align);
600    }
601    break;
602  }
603
604  case Type::Builtin:
605    switch (cast<BuiltinType>(T)->getKind()) {
606    default: assert(0 && "Unknown builtin type!");
607    case BuiltinType::Void:
608      // GCC extension: alignof(void) = 8 bits.
609      Width = 0;
610      Align = 8;
611      break;
612
613    case BuiltinType::Bool:
614      Width = Target.getBoolWidth();
615      Align = Target.getBoolAlign();
616      break;
617    case BuiltinType::Char_S:
618    case BuiltinType::Char_U:
619    case BuiltinType::UChar:
620    case BuiltinType::SChar:
621      Width = Target.getCharWidth();
622      Align = Target.getCharAlign();
623      break;
624    case BuiltinType::WChar:
625      Width = Target.getWCharWidth();
626      Align = Target.getWCharAlign();
627      break;
628    case BuiltinType::Char16:
629      Width = Target.getChar16Width();
630      Align = Target.getChar16Align();
631      break;
632    case BuiltinType::Char32:
633      Width = Target.getChar32Width();
634      Align = Target.getChar32Align();
635      break;
636    case BuiltinType::UShort:
637    case BuiltinType::Short:
638      Width = Target.getShortWidth();
639      Align = Target.getShortAlign();
640      break;
641    case BuiltinType::UInt:
642    case BuiltinType::Int:
643      Width = Target.getIntWidth();
644      Align = Target.getIntAlign();
645      break;
646    case BuiltinType::ULong:
647    case BuiltinType::Long:
648      Width = Target.getLongWidth();
649      Align = Target.getLongAlign();
650      break;
651    case BuiltinType::ULongLong:
652    case BuiltinType::LongLong:
653      Width = Target.getLongLongWidth();
654      Align = Target.getLongLongAlign();
655      break;
656    case BuiltinType::Int128:
657    case BuiltinType::UInt128:
658      Width = 128;
659      Align = 128; // int128_t is 128-bit aligned on all targets.
660      break;
661    case BuiltinType::Float:
662      Width = Target.getFloatWidth();
663      Align = Target.getFloatAlign();
664      break;
665    case BuiltinType::Double:
666      Width = Target.getDoubleWidth();
667      Align = Target.getDoubleAlign();
668      break;
669    case BuiltinType::LongDouble:
670      Width = Target.getLongDoubleWidth();
671      Align = Target.getLongDoubleAlign();
672      break;
673    case BuiltinType::NullPtr:
674      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
675      Align = Target.getPointerAlign(0); //   == sizeof(void*)
676      break;
677    case BuiltinType::ObjCId:
678    case BuiltinType::ObjCClass:
679    case BuiltinType::ObjCSel:
680      Width = Target.getPointerWidth(0);
681      Align = Target.getPointerAlign(0);
682      break;
683    }
684    break;
685  case Type::ObjCObjectPointer:
686    Width = Target.getPointerWidth(0);
687    Align = Target.getPointerAlign(0);
688    break;
689  case Type::BlockPointer: {
690    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
691    Width = Target.getPointerWidth(AS);
692    Align = Target.getPointerAlign(AS);
693    break;
694  }
695  case Type::LValueReference:
696  case Type::RValueReference: {
697    // alignof and sizeof should never enter this code path here, so we go
698    // the pointer route.
699    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
700    Width = Target.getPointerWidth(AS);
701    Align = Target.getPointerAlign(AS);
702    break;
703  }
704  case Type::Pointer: {
705    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
706    Width = Target.getPointerWidth(AS);
707    Align = Target.getPointerAlign(AS);
708    break;
709  }
710  case Type::MemberPointer: {
711    const MemberPointerType *MPT = cast<MemberPointerType>(T);
712    std::pair<uint64_t, unsigned> PtrDiffInfo =
713      getTypeInfo(getPointerDiffType());
714    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
715    Align = PtrDiffInfo.second;
716    break;
717  }
718  case Type::Complex: {
719    // Complex types have the same alignment as their elements, but twice the
720    // size.
721    std::pair<uint64_t, unsigned> EltInfo =
722      getTypeInfo(cast<ComplexType>(T)->getElementType());
723    Width = EltInfo.first*2;
724    Align = EltInfo.second;
725    break;
726  }
727  case Type::ObjCObject:
728    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
729  case Type::ObjCInterface: {
730    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
731    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
732    Width = Layout.getSize();
733    Align = Layout.getAlignment();
734    break;
735  }
736  case Type::Record:
737  case Type::Enum: {
738    const TagType *TT = cast<TagType>(T);
739
740    if (TT->getDecl()->isInvalidDecl()) {
741      Width = 1;
742      Align = 1;
743      break;
744    }
745
746    if (const EnumType *ET = dyn_cast<EnumType>(TT))
747      return getTypeInfo(ET->getDecl()->getIntegerType());
748
749    const RecordType *RT = cast<RecordType>(TT);
750    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
751    Width = Layout.getSize();
752    Align = Layout.getAlignment();
753    break;
754  }
755
756  case Type::SubstTemplateTypeParm:
757    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
758                       getReplacementType().getTypePtr());
759
760  case Type::Typedef: {
761    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
762    Align = std::max(Typedef->getMaxAlignment(),
763                     getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
764    Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
765    break;
766  }
767
768  case Type::TypeOfExpr:
769    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
770                         .getTypePtr());
771
772  case Type::TypeOf:
773    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
774
775  case Type::Decltype:
776    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
777                        .getTypePtr());
778
779  case Type::Elaborated:
780    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
781
782  case Type::TemplateSpecialization:
783    assert(getCanonicalType(T) != T &&
784           "Cannot request the size of a dependent type");
785    // FIXME: this is likely to be wrong once we support template
786    // aliases, since a template alias could refer to a typedef that
787    // has an __aligned__ attribute on it.
788    return getTypeInfo(getCanonicalType(T));
789  }
790
791  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
792  return std::make_pair(Width, Align);
793}
794
795/// getTypeSizeInChars - Return the size of the specified type, in characters.
796/// This method does not work on incomplete types.
797CharUnits ASTContext::getTypeSizeInChars(QualType T) {
798  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
799}
800CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
801  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
802}
803
804/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
805/// characters. This method does not work on incomplete types.
806CharUnits ASTContext::getTypeAlignInChars(QualType T) {
807  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
808}
809CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
810  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
811}
812
813/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
814/// type for the current target in bits.  This can be different than the ABI
815/// alignment in cases where it is beneficial for performance to overalign
816/// a data type.
817unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
818  unsigned ABIAlign = getTypeAlign(T);
819
820  // Double and long long should be naturally aligned if possible.
821  if (const ComplexType* CT = T->getAs<ComplexType>())
822    T = CT->getElementType().getTypePtr();
823  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
824      T->isSpecificBuiltinType(BuiltinType::LongLong))
825    return std::max(ABIAlign, (unsigned)getTypeSize(T));
826
827  return ABIAlign;
828}
829
830static void CollectLocalObjCIvars(ASTContext *Ctx,
831                                  const ObjCInterfaceDecl *OI,
832                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
833  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
834       E = OI->ivar_end(); I != E; ++I) {
835    ObjCIvarDecl *IVDecl = *I;
836    if (!IVDecl->isInvalidDecl())
837      Fields.push_back(cast<FieldDecl>(IVDecl));
838  }
839}
840
841void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
842                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
843  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
844    CollectObjCIvars(SuperClass, Fields);
845  CollectLocalObjCIvars(this, OI, Fields);
846}
847
848/// ShallowCollectObjCIvars -
849/// Collect all ivars, including those synthesized, in the current class.
850///
851void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
852                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
853  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
854         E = OI->ivar_end(); I != E; ++I) {
855     Ivars.push_back(*I);
856  }
857
858  CollectNonClassIvars(OI, Ivars);
859}
860
861/// CollectNonClassIvars -
862/// This routine collects all other ivars which are not declared in the class.
863/// This includes synthesized ivars (via @synthesize) and those in
864//  class's @implementation.
865///
866void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
867                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
868  // Find ivars declared in class extension.
869  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
870       CDecl = CDecl->getNextClassExtension()) {
871    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
872         E = CDecl->ivar_end(); I != E; ++I) {
873      Ivars.push_back(*I);
874    }
875  }
876
877  // Also add any ivar defined in this class's implementation.  This
878  // includes synthesized ivars.
879  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
880    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
881         E = ImplDecl->ivar_end(); I != E; ++I)
882      Ivars.push_back(*I);
883  }
884}
885
886/// CollectInheritedProtocols - Collect all protocols in current class and
887/// those inherited by it.
888void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
889                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
890  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
891    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
892         PE = OI->protocol_end(); P != PE; ++P) {
893      ObjCProtocolDecl *Proto = (*P);
894      Protocols.insert(Proto);
895      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
896           PE = Proto->protocol_end(); P != PE; ++P) {
897        Protocols.insert(*P);
898        CollectInheritedProtocols(*P, Protocols);
899      }
900    }
901
902    // Categories of this Interface.
903    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
904         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
905      CollectInheritedProtocols(CDeclChain, Protocols);
906    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
907      while (SD) {
908        CollectInheritedProtocols(SD, Protocols);
909        SD = SD->getSuperClass();
910      }
911  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
912    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
913         PE = OC->protocol_end(); P != PE; ++P) {
914      ObjCProtocolDecl *Proto = (*P);
915      Protocols.insert(Proto);
916      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
917           PE = Proto->protocol_end(); P != PE; ++P)
918        CollectInheritedProtocols(*P, Protocols);
919    }
920  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
921    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
922         PE = OP->protocol_end(); P != PE; ++P) {
923      ObjCProtocolDecl *Proto = (*P);
924      Protocols.insert(Proto);
925      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
926           PE = Proto->protocol_end(); P != PE; ++P)
927        CollectInheritedProtocols(*P, Protocols);
928    }
929  }
930}
931
932unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
933  unsigned count = 0;
934  // Count ivars declared in class extension.
935  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
936       CDecl = CDecl->getNextClassExtension())
937    count += CDecl->ivar_size();
938
939  // Count ivar defined in this class's implementation.  This
940  // includes synthesized ivars.
941  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
942    count += ImplDecl->ivar_size();
943
944  return count;
945}
946
947/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
948ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
949  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
950    I = ObjCImpls.find(D);
951  if (I != ObjCImpls.end())
952    return cast<ObjCImplementationDecl>(I->second);
953  return 0;
954}
955/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
956ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
957  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
958    I = ObjCImpls.find(D);
959  if (I != ObjCImpls.end())
960    return cast<ObjCCategoryImplDecl>(I->second);
961  return 0;
962}
963
964/// \brief Set the implementation of ObjCInterfaceDecl.
965void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
966                           ObjCImplementationDecl *ImplD) {
967  assert(IFaceD && ImplD && "Passed null params");
968  ObjCImpls[IFaceD] = ImplD;
969}
970/// \brief Set the implementation of ObjCCategoryDecl.
971void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
972                           ObjCCategoryImplDecl *ImplD) {
973  assert(CatD && ImplD && "Passed null params");
974  ObjCImpls[CatD] = ImplD;
975}
976
977/// \brief Allocate an uninitialized TypeSourceInfo.
978///
979/// The caller should initialize the memory held by TypeSourceInfo using
980/// the TypeLoc wrappers.
981///
982/// \param T the type that will be the basis for type source info. This type
983/// should refer to how the declarator was written in source code, not to
984/// what type semantic analysis resolved the declarator to.
985TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
986                                                 unsigned DataSize) {
987  if (!DataSize)
988    DataSize = TypeLoc::getFullDataSizeForType(T);
989  else
990    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
991           "incorrect data size provided to CreateTypeSourceInfo!");
992
993  TypeSourceInfo *TInfo =
994    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
995  new (TInfo) TypeSourceInfo(T);
996  return TInfo;
997}
998
999TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1000                                                     SourceLocation L) {
1001  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1002  DI->getTypeLoc().initialize(L);
1003  return DI;
1004}
1005
1006const ASTRecordLayout &
1007ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1008  return getObjCLayout(D, 0);
1009}
1010
1011const ASTRecordLayout &
1012ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1013  return getObjCLayout(D->getClassInterface(), D);
1014}
1015
1016//===----------------------------------------------------------------------===//
1017//                   Type creation/memoization methods
1018//===----------------------------------------------------------------------===//
1019
1020QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1021  unsigned Fast = Quals.getFastQualifiers();
1022  Quals.removeFastQualifiers();
1023
1024  // Check if we've already instantiated this type.
1025  llvm::FoldingSetNodeID ID;
1026  ExtQuals::Profile(ID, TypeNode, Quals);
1027  void *InsertPos = 0;
1028  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1029    assert(EQ->getQualifiers() == Quals);
1030    QualType T = QualType(EQ, Fast);
1031    return T;
1032  }
1033
1034  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1035  ExtQualNodes.InsertNode(New, InsertPos);
1036  QualType T = QualType(New, Fast);
1037  return T;
1038}
1039
1040QualType ASTContext::getVolatileType(QualType T) {
1041  QualType CanT = getCanonicalType(T);
1042  if (CanT.isVolatileQualified()) return T;
1043
1044  QualifierCollector Quals;
1045  const Type *TypeNode = Quals.strip(T);
1046  Quals.addVolatile();
1047
1048  return getExtQualType(TypeNode, Quals);
1049}
1050
1051QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1052  QualType CanT = getCanonicalType(T);
1053  if (CanT.getAddressSpace() == AddressSpace)
1054    return T;
1055
1056  // If we are composing extended qualifiers together, merge together
1057  // into one ExtQuals node.
1058  QualifierCollector Quals;
1059  const Type *TypeNode = Quals.strip(T);
1060
1061  // If this type already has an address space specified, it cannot get
1062  // another one.
1063  assert(!Quals.hasAddressSpace() &&
1064         "Type cannot be in multiple addr spaces!");
1065  Quals.addAddressSpace(AddressSpace);
1066
1067  return getExtQualType(TypeNode, Quals);
1068}
1069
1070QualType ASTContext::getObjCGCQualType(QualType T,
1071                                       Qualifiers::GC GCAttr) {
1072  QualType CanT = getCanonicalType(T);
1073  if (CanT.getObjCGCAttr() == GCAttr)
1074    return T;
1075
1076  if (T->isPointerType()) {
1077    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1078    if (Pointee->isAnyPointerType()) {
1079      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1080      return getPointerType(ResultType);
1081    }
1082  }
1083
1084  // If we are composing extended qualifiers together, merge together
1085  // into one ExtQuals node.
1086  QualifierCollector Quals;
1087  const Type *TypeNode = Quals.strip(T);
1088
1089  // If this type already has an ObjCGC specified, it cannot get
1090  // another one.
1091  assert(!Quals.hasObjCGCAttr() &&
1092         "Type cannot have multiple ObjCGCs!");
1093  Quals.addObjCGCAttr(GCAttr);
1094
1095  return getExtQualType(TypeNode, Quals);
1096}
1097
1098static QualType getExtFunctionType(ASTContext& Context, QualType T,
1099                                        const FunctionType::ExtInfo &Info) {
1100  QualType ResultType;
1101  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1102    QualType Pointee = Pointer->getPointeeType();
1103    ResultType = getExtFunctionType(Context, Pointee, Info);
1104    if (ResultType == Pointee)
1105      return T;
1106
1107    ResultType = Context.getPointerType(ResultType);
1108  } else if (const BlockPointerType *BlockPointer
1109                                              = T->getAs<BlockPointerType>()) {
1110    QualType Pointee = BlockPointer->getPointeeType();
1111    ResultType = getExtFunctionType(Context, Pointee, Info);
1112    if (ResultType == Pointee)
1113      return T;
1114
1115    ResultType = Context.getBlockPointerType(ResultType);
1116   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1117    if (F->getExtInfo() == Info)
1118      return T;
1119
1120    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1121      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1122                                                  Info);
1123    } else {
1124      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1125      ResultType
1126        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1127                                  FPT->getNumArgs(), FPT->isVariadic(),
1128                                  FPT->getTypeQuals(),
1129                                  FPT->hasExceptionSpec(),
1130                                  FPT->hasAnyExceptionSpec(),
1131                                  FPT->getNumExceptions(),
1132                                  FPT->exception_begin(),
1133                                  Info);
1134    }
1135  } else
1136    return T;
1137
1138  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1139}
1140
1141QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1142  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1143  return getExtFunctionType(*this, T,
1144                                 Info.withNoReturn(AddNoReturn));
1145}
1146
1147QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1148  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1149  return getExtFunctionType(*this, T,
1150                            Info.withCallingConv(CallConv));
1151}
1152
1153QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1154  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1155  return getExtFunctionType(*this, T,
1156                                 Info.withRegParm(RegParm));
1157}
1158
1159/// getComplexType - Return the uniqued reference to the type for a complex
1160/// number with the specified element type.
1161QualType ASTContext::getComplexType(QualType T) {
1162  // Unique pointers, to guarantee there is only one pointer of a particular
1163  // structure.
1164  llvm::FoldingSetNodeID ID;
1165  ComplexType::Profile(ID, T);
1166
1167  void *InsertPos = 0;
1168  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1169    return QualType(CT, 0);
1170
1171  // If the pointee type isn't canonical, this won't be a canonical type either,
1172  // so fill in the canonical type field.
1173  QualType Canonical;
1174  if (!T.isCanonical()) {
1175    Canonical = getComplexType(getCanonicalType(T));
1176
1177    // Get the new insert position for the node we care about.
1178    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1179    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1180  }
1181  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1182  Types.push_back(New);
1183  ComplexTypes.InsertNode(New, InsertPos);
1184  return QualType(New, 0);
1185}
1186
1187/// getPointerType - Return the uniqued reference to the type for a pointer to
1188/// the specified type.
1189QualType ASTContext::getPointerType(QualType T) {
1190  // Unique pointers, to guarantee there is only one pointer of a particular
1191  // structure.
1192  llvm::FoldingSetNodeID ID;
1193  PointerType::Profile(ID, T);
1194
1195  void *InsertPos = 0;
1196  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1197    return QualType(PT, 0);
1198
1199  // If the pointee type isn't canonical, this won't be a canonical type either,
1200  // so fill in the canonical type field.
1201  QualType Canonical;
1202  if (!T.isCanonical()) {
1203    Canonical = getPointerType(getCanonicalType(T));
1204
1205    // Get the new insert position for the node we care about.
1206    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1207    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1208  }
1209  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1210  Types.push_back(New);
1211  PointerTypes.InsertNode(New, InsertPos);
1212  return QualType(New, 0);
1213}
1214
1215/// getBlockPointerType - Return the uniqued reference to the type for
1216/// a pointer to the specified block.
1217QualType ASTContext::getBlockPointerType(QualType T) {
1218  assert(T->isFunctionType() && "block of function types only");
1219  // Unique pointers, to guarantee there is only one block of a particular
1220  // structure.
1221  llvm::FoldingSetNodeID ID;
1222  BlockPointerType::Profile(ID, T);
1223
1224  void *InsertPos = 0;
1225  if (BlockPointerType *PT =
1226        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1227    return QualType(PT, 0);
1228
1229  // If the block pointee type isn't canonical, this won't be a canonical
1230  // type either so fill in the canonical type field.
1231  QualType Canonical;
1232  if (!T.isCanonical()) {
1233    Canonical = getBlockPointerType(getCanonicalType(T));
1234
1235    // Get the new insert position for the node we care about.
1236    BlockPointerType *NewIP =
1237      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1238    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1239  }
1240  BlockPointerType *New
1241    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1242  Types.push_back(New);
1243  BlockPointerTypes.InsertNode(New, InsertPos);
1244  return QualType(New, 0);
1245}
1246
1247/// getLValueReferenceType - Return the uniqued reference to the type for an
1248/// lvalue reference to the specified type.
1249QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1250  // Unique pointers, to guarantee there is only one pointer of a particular
1251  // structure.
1252  llvm::FoldingSetNodeID ID;
1253  ReferenceType::Profile(ID, T, SpelledAsLValue);
1254
1255  void *InsertPos = 0;
1256  if (LValueReferenceType *RT =
1257        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1258    return QualType(RT, 0);
1259
1260  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1261
1262  // If the referencee type isn't canonical, this won't be a canonical type
1263  // either, so fill in the canonical type field.
1264  QualType Canonical;
1265  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1266    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1267    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1268
1269    // Get the new insert position for the node we care about.
1270    LValueReferenceType *NewIP =
1271      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1272    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1273  }
1274
1275  LValueReferenceType *New
1276    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1277                                                     SpelledAsLValue);
1278  Types.push_back(New);
1279  LValueReferenceTypes.InsertNode(New, InsertPos);
1280
1281  return QualType(New, 0);
1282}
1283
1284/// getRValueReferenceType - Return the uniqued reference to the type for an
1285/// rvalue reference to the specified type.
1286QualType ASTContext::getRValueReferenceType(QualType T) {
1287  // Unique pointers, to guarantee there is only one pointer of a particular
1288  // structure.
1289  llvm::FoldingSetNodeID ID;
1290  ReferenceType::Profile(ID, T, false);
1291
1292  void *InsertPos = 0;
1293  if (RValueReferenceType *RT =
1294        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1295    return QualType(RT, 0);
1296
1297  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1298
1299  // If the referencee type isn't canonical, this won't be a canonical type
1300  // either, so fill in the canonical type field.
1301  QualType Canonical;
1302  if (InnerRef || !T.isCanonical()) {
1303    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1304    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1305
1306    // Get the new insert position for the node we care about.
1307    RValueReferenceType *NewIP =
1308      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1309    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1310  }
1311
1312  RValueReferenceType *New
1313    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1314  Types.push_back(New);
1315  RValueReferenceTypes.InsertNode(New, InsertPos);
1316  return QualType(New, 0);
1317}
1318
1319/// getMemberPointerType - Return the uniqued reference to the type for a
1320/// member pointer to the specified type, in the specified class.
1321QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1322  // Unique pointers, to guarantee there is only one pointer of a particular
1323  // structure.
1324  llvm::FoldingSetNodeID ID;
1325  MemberPointerType::Profile(ID, T, Cls);
1326
1327  void *InsertPos = 0;
1328  if (MemberPointerType *PT =
1329      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1330    return QualType(PT, 0);
1331
1332  // If the pointee or class type isn't canonical, this won't be a canonical
1333  // type either, so fill in the canonical type field.
1334  QualType Canonical;
1335  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1336    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1337
1338    // Get the new insert position for the node we care about.
1339    MemberPointerType *NewIP =
1340      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1341    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1342  }
1343  MemberPointerType *New
1344    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1345  Types.push_back(New);
1346  MemberPointerTypes.InsertNode(New, InsertPos);
1347  return QualType(New, 0);
1348}
1349
1350/// getConstantArrayType - Return the unique reference to the type for an
1351/// array of the specified element type.
1352QualType ASTContext::getConstantArrayType(QualType EltTy,
1353                                          const llvm::APInt &ArySizeIn,
1354                                          ArrayType::ArraySizeModifier ASM,
1355                                          unsigned EltTypeQuals) {
1356  assert((EltTy->isDependentType() ||
1357          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1358         "Constant array of VLAs is illegal!");
1359
1360  // Convert the array size into a canonical width matching the pointer size for
1361  // the target.
1362  llvm::APInt ArySize(ArySizeIn);
1363  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1364
1365  llvm::FoldingSetNodeID ID;
1366  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1367
1368  void *InsertPos = 0;
1369  if (ConstantArrayType *ATP =
1370      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1371    return QualType(ATP, 0);
1372
1373  // If the element type isn't canonical, this won't be a canonical type either,
1374  // so fill in the canonical type field.
1375  QualType Canonical;
1376  if (!EltTy.isCanonical()) {
1377    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1378                                     ASM, EltTypeQuals);
1379    // Get the new insert position for the node we care about.
1380    ConstantArrayType *NewIP =
1381      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1382    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1383  }
1384
1385  ConstantArrayType *New = new(*this,TypeAlignment)
1386    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1387  ConstantArrayTypes.InsertNode(New, InsertPos);
1388  Types.push_back(New);
1389  return QualType(New, 0);
1390}
1391
1392/// getVariableArrayType - Returns a non-unique reference to the type for a
1393/// variable array of the specified element type.
1394QualType ASTContext::getVariableArrayType(QualType EltTy,
1395                                          Expr *NumElts,
1396                                          ArrayType::ArraySizeModifier ASM,
1397                                          unsigned EltTypeQuals,
1398                                          SourceRange Brackets) {
1399  // Since we don't unique expressions, it isn't possible to unique VLA's
1400  // that have an expression provided for their size.
1401  QualType CanonType;
1402
1403  if (!EltTy.isCanonical()) {
1404    if (NumElts)
1405      NumElts->Retain();
1406    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1407                                     EltTypeQuals, Brackets);
1408  }
1409
1410  VariableArrayType *New = new(*this, TypeAlignment)
1411    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1412
1413  VariableArrayTypes.push_back(New);
1414  Types.push_back(New);
1415  return QualType(New, 0);
1416}
1417
1418/// getDependentSizedArrayType - Returns a non-unique reference to
1419/// the type for a dependently-sized array of the specified element
1420/// type.
1421QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1422                                                Expr *NumElts,
1423                                                ArrayType::ArraySizeModifier ASM,
1424                                                unsigned EltTypeQuals,
1425                                                SourceRange Brackets) {
1426  assert((!NumElts || NumElts->isTypeDependent() ||
1427          NumElts->isValueDependent()) &&
1428         "Size must be type- or value-dependent!");
1429
1430  void *InsertPos = 0;
1431  DependentSizedArrayType *Canon = 0;
1432  llvm::FoldingSetNodeID ID;
1433
1434  if (NumElts) {
1435    // Dependently-sized array types that do not have a specified
1436    // number of elements will have their sizes deduced from an
1437    // initializer.
1438    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1439                                     EltTypeQuals, NumElts);
1440
1441    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1442  }
1443
1444  DependentSizedArrayType *New;
1445  if (Canon) {
1446    // We already have a canonical version of this array type; use it as
1447    // the canonical type for a newly-built type.
1448    New = new (*this, TypeAlignment)
1449      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1450                              NumElts, ASM, EltTypeQuals, Brackets);
1451  } else {
1452    QualType CanonEltTy = getCanonicalType(EltTy);
1453    if (CanonEltTy == EltTy) {
1454      New = new (*this, TypeAlignment)
1455        DependentSizedArrayType(*this, EltTy, QualType(),
1456                                NumElts, ASM, EltTypeQuals, Brackets);
1457
1458      if (NumElts) {
1459        DependentSizedArrayType *CanonCheck
1460          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1461        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1462        (void)CanonCheck;
1463        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1464      }
1465    } else {
1466      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1467                                                  ASM, EltTypeQuals,
1468                                                  SourceRange());
1469      New = new (*this, TypeAlignment)
1470        DependentSizedArrayType(*this, EltTy, Canon,
1471                                NumElts, ASM, EltTypeQuals, Brackets);
1472    }
1473  }
1474
1475  Types.push_back(New);
1476  return QualType(New, 0);
1477}
1478
1479QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1480                                            ArrayType::ArraySizeModifier ASM,
1481                                            unsigned EltTypeQuals) {
1482  llvm::FoldingSetNodeID ID;
1483  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1484
1485  void *InsertPos = 0;
1486  if (IncompleteArrayType *ATP =
1487       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1488    return QualType(ATP, 0);
1489
1490  // If the element type isn't canonical, this won't be a canonical type
1491  // either, so fill in the canonical type field.
1492  QualType Canonical;
1493
1494  if (!EltTy.isCanonical()) {
1495    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1496                                       ASM, EltTypeQuals);
1497
1498    // Get the new insert position for the node we care about.
1499    IncompleteArrayType *NewIP =
1500      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1501    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1502  }
1503
1504  IncompleteArrayType *New = new (*this, TypeAlignment)
1505    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1506
1507  IncompleteArrayTypes.InsertNode(New, InsertPos);
1508  Types.push_back(New);
1509  return QualType(New, 0);
1510}
1511
1512/// getVectorType - Return the unique reference to a vector type of
1513/// the specified element type and size. VectorType must be a built-in type.
1514QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1515    VectorType::AltiVecSpecific AltiVecSpec) {
1516  BuiltinType *baseType;
1517
1518  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1519  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1520
1521  // Check if we've already instantiated a vector of this type.
1522  llvm::FoldingSetNodeID ID;
1523  VectorType::Profile(ID, vecType, NumElts, Type::Vector, AltiVecSpec);
1524
1525  void *InsertPos = 0;
1526  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1527    return QualType(VTP, 0);
1528
1529  // If the element type isn't canonical, this won't be a canonical type either,
1530  // so fill in the canonical type field.
1531  QualType Canonical;
1532  if (!vecType.isCanonical()) {
1533    Canonical = getVectorType(getCanonicalType(vecType), NumElts,
1534      VectorType::NotAltiVec);
1535
1536    // Get the new insert position for the node we care about.
1537    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1538    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1539  }
1540  VectorType *New = new (*this, TypeAlignment)
1541    VectorType(vecType, NumElts, Canonical, AltiVecSpec);
1542  VectorTypes.InsertNode(New, InsertPos);
1543  Types.push_back(New);
1544  return QualType(New, 0);
1545}
1546
1547/// getExtVectorType - Return the unique reference to an extended vector type of
1548/// the specified element type and size. VectorType must be a built-in type.
1549QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1550  BuiltinType *baseType;
1551
1552  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1553  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1554
1555  // Check if we've already instantiated a vector of this type.
1556  llvm::FoldingSetNodeID ID;
1557  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1558                      VectorType::NotAltiVec);
1559  void *InsertPos = 0;
1560  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1561    return QualType(VTP, 0);
1562
1563  // If the element type isn't canonical, this won't be a canonical type either,
1564  // so fill in the canonical type field.
1565  QualType Canonical;
1566  if (!vecType.isCanonical()) {
1567    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1568
1569    // Get the new insert position for the node we care about.
1570    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1571    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1572  }
1573  ExtVectorType *New = new (*this, TypeAlignment)
1574    ExtVectorType(vecType, NumElts, Canonical);
1575  VectorTypes.InsertNode(New, InsertPos);
1576  Types.push_back(New);
1577  return QualType(New, 0);
1578}
1579
1580QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1581                                                    Expr *SizeExpr,
1582                                                    SourceLocation AttrLoc) {
1583  llvm::FoldingSetNodeID ID;
1584  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1585                                       SizeExpr);
1586
1587  void *InsertPos = 0;
1588  DependentSizedExtVectorType *Canon
1589    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1590  DependentSizedExtVectorType *New;
1591  if (Canon) {
1592    // We already have a canonical version of this array type; use it as
1593    // the canonical type for a newly-built type.
1594    New = new (*this, TypeAlignment)
1595      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1596                                  SizeExpr, AttrLoc);
1597  } else {
1598    QualType CanonVecTy = getCanonicalType(vecType);
1599    if (CanonVecTy == vecType) {
1600      New = new (*this, TypeAlignment)
1601        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1602                                    AttrLoc);
1603
1604      DependentSizedExtVectorType *CanonCheck
1605        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1606      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1607      (void)CanonCheck;
1608      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1609    } else {
1610      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1611                                                      SourceLocation());
1612      New = new (*this, TypeAlignment)
1613        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1614    }
1615  }
1616
1617  Types.push_back(New);
1618  return QualType(New, 0);
1619}
1620
1621/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1622///
1623QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1624                                            const FunctionType::ExtInfo &Info) {
1625  const CallingConv CallConv = Info.getCC();
1626  // Unique functions, to guarantee there is only one function of a particular
1627  // structure.
1628  llvm::FoldingSetNodeID ID;
1629  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1630
1631  void *InsertPos = 0;
1632  if (FunctionNoProtoType *FT =
1633        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1634    return QualType(FT, 0);
1635
1636  QualType Canonical;
1637  if (!ResultTy.isCanonical() ||
1638      getCanonicalCallConv(CallConv) != CallConv) {
1639    Canonical =
1640      getFunctionNoProtoType(getCanonicalType(ResultTy),
1641                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1642
1643    // Get the new insert position for the node we care about.
1644    FunctionNoProtoType *NewIP =
1645      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1646    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1647  }
1648
1649  FunctionNoProtoType *New = new (*this, TypeAlignment)
1650    FunctionNoProtoType(ResultTy, Canonical, Info);
1651  Types.push_back(New);
1652  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1653  return QualType(New, 0);
1654}
1655
1656/// getFunctionType - Return a normal function type with a typed argument
1657/// list.  isVariadic indicates whether the argument list includes '...'.
1658QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1659                                     unsigned NumArgs, bool isVariadic,
1660                                     unsigned TypeQuals, bool hasExceptionSpec,
1661                                     bool hasAnyExceptionSpec, unsigned NumExs,
1662                                     const QualType *ExArray,
1663                                     const FunctionType::ExtInfo &Info) {
1664  const CallingConv CallConv= Info.getCC();
1665  // Unique functions, to guarantee there is only one function of a particular
1666  // structure.
1667  llvm::FoldingSetNodeID ID;
1668  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1669                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1670                             NumExs, ExArray, Info);
1671
1672  void *InsertPos = 0;
1673  if (FunctionProtoType *FTP =
1674        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1675    return QualType(FTP, 0);
1676
1677  // Determine whether the type being created is already canonical or not.
1678  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1679  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1680    if (!ArgArray[i].isCanonicalAsParam())
1681      isCanonical = false;
1682
1683  // If this type isn't canonical, get the canonical version of it.
1684  // The exception spec is not part of the canonical type.
1685  QualType Canonical;
1686  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1687    llvm::SmallVector<QualType, 16> CanonicalArgs;
1688    CanonicalArgs.reserve(NumArgs);
1689    for (unsigned i = 0; i != NumArgs; ++i)
1690      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1691
1692    Canonical = getFunctionType(getCanonicalType(ResultTy),
1693                                CanonicalArgs.data(), NumArgs,
1694                                isVariadic, TypeQuals, false,
1695                                false, 0, 0,
1696                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1697
1698    // Get the new insert position for the node we care about.
1699    FunctionProtoType *NewIP =
1700      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1701    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1702  }
1703
1704  // FunctionProtoType objects are allocated with extra bytes after them
1705  // for two variable size arrays (for parameter and exception types) at the
1706  // end of them.
1707  FunctionProtoType *FTP =
1708    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1709                                 NumArgs*sizeof(QualType) +
1710                                 NumExs*sizeof(QualType), TypeAlignment);
1711  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1712                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1713                              ExArray, NumExs, Canonical, Info);
1714  Types.push_back(FTP);
1715  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1716  return QualType(FTP, 0);
1717}
1718
1719#ifndef NDEBUG
1720static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1721  if (!isa<CXXRecordDecl>(D)) return false;
1722  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1723  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1724    return true;
1725  if (RD->getDescribedClassTemplate() &&
1726      !isa<ClassTemplateSpecializationDecl>(RD))
1727    return true;
1728  return false;
1729}
1730#endif
1731
1732/// getInjectedClassNameType - Return the unique reference to the
1733/// injected class name type for the specified templated declaration.
1734QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1735                                              QualType TST) {
1736  assert(NeedsInjectedClassNameType(Decl));
1737  if (Decl->TypeForDecl) {
1738    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1739  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1740    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1741    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1742    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1743  } else {
1744    Decl->TypeForDecl =
1745      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1746    Types.push_back(Decl->TypeForDecl);
1747  }
1748  return QualType(Decl->TypeForDecl, 0);
1749}
1750
1751/// getTypeDeclType - Return the unique reference to the type for the
1752/// specified type declaration.
1753QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1754  assert(Decl && "Passed null for Decl param");
1755  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1756
1757  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1758    return getTypedefType(Typedef);
1759
1760  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1761         "Template type parameter types are always available.");
1762
1763  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1764    assert(!Record->getPreviousDeclaration() &&
1765           "struct/union has previous declaration");
1766    assert(!NeedsInjectedClassNameType(Record));
1767    return getRecordType(Record);
1768  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1769    assert(!Enum->getPreviousDeclaration() &&
1770           "enum has previous declaration");
1771    return getEnumType(Enum);
1772  } else if (const UnresolvedUsingTypenameDecl *Using =
1773               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1774    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1775  } else
1776    llvm_unreachable("TypeDecl without a type?");
1777
1778  Types.push_back(Decl->TypeForDecl);
1779  return QualType(Decl->TypeForDecl, 0);
1780}
1781
1782/// getTypedefType - Return the unique reference to the type for the
1783/// specified typename decl.
1784QualType
1785ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) {
1786  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1787
1788  if (Canonical.isNull())
1789    Canonical = getCanonicalType(Decl->getUnderlyingType());
1790  Decl->TypeForDecl = new(*this, TypeAlignment)
1791    TypedefType(Type::Typedef, Decl, Canonical);
1792  Types.push_back(Decl->TypeForDecl);
1793  return QualType(Decl->TypeForDecl, 0);
1794}
1795
1796QualType ASTContext::getRecordType(const RecordDecl *Decl) {
1797  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1798
1799  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
1800    if (PrevDecl->TypeForDecl)
1801      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1802
1803  Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
1804  Types.push_back(Decl->TypeForDecl);
1805  return QualType(Decl->TypeForDecl, 0);
1806}
1807
1808QualType ASTContext::getEnumType(const EnumDecl *Decl) {
1809  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1810
1811  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
1812    if (PrevDecl->TypeForDecl)
1813      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1814
1815  Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
1816  Types.push_back(Decl->TypeForDecl);
1817  return QualType(Decl->TypeForDecl, 0);
1818}
1819
1820/// \brief Retrieve a substitution-result type.
1821QualType
1822ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1823                                         QualType Replacement) {
1824  assert(Replacement.isCanonical()
1825         && "replacement types must always be canonical");
1826
1827  llvm::FoldingSetNodeID ID;
1828  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1829  void *InsertPos = 0;
1830  SubstTemplateTypeParmType *SubstParm
1831    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1832
1833  if (!SubstParm) {
1834    SubstParm = new (*this, TypeAlignment)
1835      SubstTemplateTypeParmType(Parm, Replacement);
1836    Types.push_back(SubstParm);
1837    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1838  }
1839
1840  return QualType(SubstParm, 0);
1841}
1842
1843/// \brief Retrieve the template type parameter type for a template
1844/// parameter or parameter pack with the given depth, index, and (optionally)
1845/// name.
1846QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1847                                             bool ParameterPack,
1848                                             IdentifierInfo *Name) {
1849  llvm::FoldingSetNodeID ID;
1850  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1851  void *InsertPos = 0;
1852  TemplateTypeParmType *TypeParm
1853    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1854
1855  if (TypeParm)
1856    return QualType(TypeParm, 0);
1857
1858  if (Name) {
1859    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1860    TypeParm = new (*this, TypeAlignment)
1861      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1862
1863    TemplateTypeParmType *TypeCheck
1864      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1865    assert(!TypeCheck && "Template type parameter canonical type broken");
1866    (void)TypeCheck;
1867  } else
1868    TypeParm = new (*this, TypeAlignment)
1869      TemplateTypeParmType(Depth, Index, ParameterPack);
1870
1871  Types.push_back(TypeParm);
1872  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1873
1874  return QualType(TypeParm, 0);
1875}
1876
1877TypeSourceInfo *
1878ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1879                                              SourceLocation NameLoc,
1880                                        const TemplateArgumentListInfo &Args,
1881                                              QualType CanonType) {
1882  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1883
1884  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1885  TemplateSpecializationTypeLoc TL
1886    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1887  TL.setTemplateNameLoc(NameLoc);
1888  TL.setLAngleLoc(Args.getLAngleLoc());
1889  TL.setRAngleLoc(Args.getRAngleLoc());
1890  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1891    TL.setArgLocInfo(i, Args[i].getLocInfo());
1892  return DI;
1893}
1894
1895QualType
1896ASTContext::getTemplateSpecializationType(TemplateName Template,
1897                                          const TemplateArgumentListInfo &Args,
1898                                          QualType Canon) {
1899  unsigned NumArgs = Args.size();
1900
1901  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1902  ArgVec.reserve(NumArgs);
1903  for (unsigned i = 0; i != NumArgs; ++i)
1904    ArgVec.push_back(Args[i].getArgument());
1905
1906  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1907                                       Canon);
1908}
1909
1910QualType
1911ASTContext::getTemplateSpecializationType(TemplateName Template,
1912                                          const TemplateArgument *Args,
1913                                          unsigned NumArgs,
1914                                          QualType Canon) {
1915  if (!Canon.isNull())
1916    Canon = getCanonicalType(Canon);
1917  else
1918    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
1919
1920  // Allocate the (non-canonical) template specialization type, but don't
1921  // try to unique it: these types typically have location information that
1922  // we don't unique and don't want to lose.
1923  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1924                        sizeof(TemplateArgument) * NumArgs),
1925                       TypeAlignment);
1926  TemplateSpecializationType *Spec
1927    = new (Mem) TemplateSpecializationType(Template,
1928                                           Args, NumArgs,
1929                                           Canon);
1930
1931  Types.push_back(Spec);
1932  return QualType(Spec, 0);
1933}
1934
1935QualType
1936ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
1937                                                   const TemplateArgument *Args,
1938                                                   unsigned NumArgs) {
1939  // Build the canonical template specialization type.
1940  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1941  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1942  CanonArgs.reserve(NumArgs);
1943  for (unsigned I = 0; I != NumArgs; ++I)
1944    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1945
1946  // Determine whether this canonical template specialization type already
1947  // exists.
1948  llvm::FoldingSetNodeID ID;
1949  TemplateSpecializationType::Profile(ID, CanonTemplate,
1950                                      CanonArgs.data(), NumArgs, *this);
1951
1952  void *InsertPos = 0;
1953  TemplateSpecializationType *Spec
1954    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1955
1956  if (!Spec) {
1957    // Allocate a new canonical template specialization type.
1958    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1959                          sizeof(TemplateArgument) * NumArgs),
1960                         TypeAlignment);
1961    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
1962                                                CanonArgs.data(), NumArgs,
1963                                                QualType());
1964    Types.push_back(Spec);
1965    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1966  }
1967
1968  assert(Spec->isDependentType() &&
1969         "Non-dependent template-id type must have a canonical type");
1970  return QualType(Spec, 0);
1971}
1972
1973QualType
1974ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1975                              NestedNameSpecifier *NNS,
1976                              QualType NamedType) {
1977  llvm::FoldingSetNodeID ID;
1978  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1979
1980  void *InsertPos = 0;
1981  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1982  if (T)
1983    return QualType(T, 0);
1984
1985  QualType Canon = NamedType;
1986  if (!Canon.isCanonical()) {
1987    Canon = getCanonicalType(NamedType);
1988    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1989    assert(!CheckT && "Elaborated canonical type broken");
1990    (void)CheckT;
1991  }
1992
1993  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
1994  Types.push_back(T);
1995  ElaboratedTypes.InsertNode(T, InsertPos);
1996  return QualType(T, 0);
1997}
1998
1999QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2000                                          NestedNameSpecifier *NNS,
2001                                          const IdentifierInfo *Name,
2002                                          QualType Canon) {
2003  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2004
2005  if (Canon.isNull()) {
2006    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2007    ElaboratedTypeKeyword CanonKeyword = Keyword;
2008    if (Keyword == ETK_None)
2009      CanonKeyword = ETK_Typename;
2010
2011    if (CanonNNS != NNS || CanonKeyword != Keyword)
2012      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2013  }
2014
2015  llvm::FoldingSetNodeID ID;
2016  DependentNameType::Profile(ID, Keyword, NNS, Name);
2017
2018  void *InsertPos = 0;
2019  DependentNameType *T
2020    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2021  if (T)
2022    return QualType(T, 0);
2023
2024  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2025  Types.push_back(T);
2026  DependentNameTypes.InsertNode(T, InsertPos);
2027  return QualType(T, 0);
2028}
2029
2030QualType
2031ASTContext::getDependentTemplateSpecializationType(
2032                                 ElaboratedTypeKeyword Keyword,
2033                                 NestedNameSpecifier *NNS,
2034                                 const IdentifierInfo *Name,
2035                                 const TemplateArgumentListInfo &Args) {
2036  // TODO: avoid this copy
2037  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2038  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2039    ArgCopy.push_back(Args[I].getArgument());
2040  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2041                                                ArgCopy.size(),
2042                                                ArgCopy.data());
2043}
2044
2045QualType
2046ASTContext::getDependentTemplateSpecializationType(
2047                                 ElaboratedTypeKeyword Keyword,
2048                                 NestedNameSpecifier *NNS,
2049                                 const IdentifierInfo *Name,
2050                                 unsigned NumArgs,
2051                                 const TemplateArgument *Args) {
2052  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2053
2054  llvm::FoldingSetNodeID ID;
2055  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2056                                               Name, NumArgs, Args);
2057
2058  void *InsertPos = 0;
2059  DependentTemplateSpecializationType *T
2060    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2061  if (T)
2062    return QualType(T, 0);
2063
2064  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2065
2066  ElaboratedTypeKeyword CanonKeyword = Keyword;
2067  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2068
2069  bool AnyNonCanonArgs = false;
2070  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2071  for (unsigned I = 0; I != NumArgs; ++I) {
2072    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2073    if (!CanonArgs[I].structurallyEquals(Args[I]))
2074      AnyNonCanonArgs = true;
2075  }
2076
2077  QualType Canon;
2078  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2079    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2080                                                   Name, NumArgs,
2081                                                   CanonArgs.data());
2082
2083    // Find the insert position again.
2084    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2085  }
2086
2087  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2088                        sizeof(TemplateArgument) * NumArgs),
2089                       TypeAlignment);
2090  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2091                                                    Name, NumArgs, Args, Canon);
2092  Types.push_back(T);
2093  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2094  return QualType(T, 0);
2095}
2096
2097/// CmpProtocolNames - Comparison predicate for sorting protocols
2098/// alphabetically.
2099static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2100                            const ObjCProtocolDecl *RHS) {
2101  return LHS->getDeclName() < RHS->getDeclName();
2102}
2103
2104static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2105                                unsigned NumProtocols) {
2106  if (NumProtocols == 0) return true;
2107
2108  for (unsigned i = 1; i != NumProtocols; ++i)
2109    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2110      return false;
2111  return true;
2112}
2113
2114static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2115                                   unsigned &NumProtocols) {
2116  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2117
2118  // Sort protocols, keyed by name.
2119  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2120
2121  // Remove duplicates.
2122  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2123  NumProtocols = ProtocolsEnd-Protocols;
2124}
2125
2126QualType ASTContext::getObjCObjectType(QualType BaseType,
2127                                       ObjCProtocolDecl * const *Protocols,
2128                                       unsigned NumProtocols) {
2129  // If the base type is an interface and there aren't any protocols
2130  // to add, then the interface type will do just fine.
2131  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2132    return BaseType;
2133
2134  // Look in the folding set for an existing type.
2135  llvm::FoldingSetNodeID ID;
2136  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2137  void *InsertPos = 0;
2138  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2139    return QualType(QT, 0);
2140
2141  // Build the canonical type, which has the canonical base type and
2142  // a sorted-and-uniqued list of protocols.
2143  QualType Canonical;
2144  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2145  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2146    if (!ProtocolsSorted) {
2147      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2148                                                     Protocols + NumProtocols);
2149      unsigned UniqueCount = NumProtocols;
2150
2151      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2152      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2153                                    &Sorted[0], UniqueCount);
2154    } else {
2155      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2156                                    Protocols, NumProtocols);
2157    }
2158
2159    // Regenerate InsertPos.
2160    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2161  }
2162
2163  unsigned Size = sizeof(ObjCObjectTypeImpl);
2164  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2165  void *Mem = Allocate(Size, TypeAlignment);
2166  ObjCObjectTypeImpl *T =
2167    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2168
2169  Types.push_back(T);
2170  ObjCObjectTypes.InsertNode(T, InsertPos);
2171  return QualType(T, 0);
2172}
2173
2174/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2175/// the given object type.
2176QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2177  llvm::FoldingSetNodeID ID;
2178  ObjCObjectPointerType::Profile(ID, ObjectT);
2179
2180  void *InsertPos = 0;
2181  if (ObjCObjectPointerType *QT =
2182              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2183    return QualType(QT, 0);
2184
2185  // Find the canonical object type.
2186  QualType Canonical;
2187  if (!ObjectT.isCanonical()) {
2188    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2189
2190    // Regenerate InsertPos.
2191    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2192  }
2193
2194  // No match.
2195  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2196  ObjCObjectPointerType *QType =
2197    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2198
2199  Types.push_back(QType);
2200  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2201  return QualType(QType, 0);
2202}
2203
2204/// getObjCInterfaceType - Return the unique reference to the type for the
2205/// specified ObjC interface decl. The list of protocols is optional.
2206QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2207  if (Decl->TypeForDecl)
2208    return QualType(Decl->TypeForDecl, 0);
2209
2210  // FIXME: redeclarations?
2211  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2212  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2213  Decl->TypeForDecl = T;
2214  Types.push_back(T);
2215  return QualType(T, 0);
2216}
2217
2218/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2219/// TypeOfExprType AST's (since expression's are never shared). For example,
2220/// multiple declarations that refer to "typeof(x)" all contain different
2221/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2222/// on canonical type's (which are always unique).
2223QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2224  TypeOfExprType *toe;
2225  if (tofExpr->isTypeDependent()) {
2226    llvm::FoldingSetNodeID ID;
2227    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2228
2229    void *InsertPos = 0;
2230    DependentTypeOfExprType *Canon
2231      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2232    if (Canon) {
2233      // We already have a "canonical" version of an identical, dependent
2234      // typeof(expr) type. Use that as our canonical type.
2235      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2236                                          QualType((TypeOfExprType*)Canon, 0));
2237    }
2238    else {
2239      // Build a new, canonical typeof(expr) type.
2240      Canon
2241        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2242      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2243      toe = Canon;
2244    }
2245  } else {
2246    QualType Canonical = getCanonicalType(tofExpr->getType());
2247    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2248  }
2249  Types.push_back(toe);
2250  return QualType(toe, 0);
2251}
2252
2253/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2254/// TypeOfType AST's. The only motivation to unique these nodes would be
2255/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2256/// an issue. This doesn't effect the type checker, since it operates
2257/// on canonical type's (which are always unique).
2258QualType ASTContext::getTypeOfType(QualType tofType) {
2259  QualType Canonical = getCanonicalType(tofType);
2260  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2261  Types.push_back(tot);
2262  return QualType(tot, 0);
2263}
2264
2265/// getDecltypeForExpr - Given an expr, will return the decltype for that
2266/// expression, according to the rules in C++0x [dcl.type.simple]p4
2267static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2268  if (e->isTypeDependent())
2269    return Context.DependentTy;
2270
2271  // If e is an id expression or a class member access, decltype(e) is defined
2272  // as the type of the entity named by e.
2273  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2274    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2275      return VD->getType();
2276  }
2277  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2278    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2279      return FD->getType();
2280  }
2281  // If e is a function call or an invocation of an overloaded operator,
2282  // (parentheses around e are ignored), decltype(e) is defined as the
2283  // return type of that function.
2284  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2285    return CE->getCallReturnType();
2286
2287  QualType T = e->getType();
2288
2289  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2290  // defined as T&, otherwise decltype(e) is defined as T.
2291  if (e->isLvalue(Context) == Expr::LV_Valid)
2292    T = Context.getLValueReferenceType(T);
2293
2294  return T;
2295}
2296
2297/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2298/// DecltypeType AST's. The only motivation to unique these nodes would be
2299/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2300/// an issue. This doesn't effect the type checker, since it operates
2301/// on canonical type's (which are always unique).
2302QualType ASTContext::getDecltypeType(Expr *e) {
2303  DecltypeType *dt;
2304  if (e->isTypeDependent()) {
2305    llvm::FoldingSetNodeID ID;
2306    DependentDecltypeType::Profile(ID, *this, e);
2307
2308    void *InsertPos = 0;
2309    DependentDecltypeType *Canon
2310      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2311    if (Canon) {
2312      // We already have a "canonical" version of an equivalent, dependent
2313      // decltype type. Use that as our canonical type.
2314      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2315                                       QualType((DecltypeType*)Canon, 0));
2316    }
2317    else {
2318      // Build a new, canonical typeof(expr) type.
2319      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2320      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2321      dt = Canon;
2322    }
2323  } else {
2324    QualType T = getDecltypeForExpr(e, *this);
2325    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2326  }
2327  Types.push_back(dt);
2328  return QualType(dt, 0);
2329}
2330
2331/// getTagDeclType - Return the unique reference to the type for the
2332/// specified TagDecl (struct/union/class/enum) decl.
2333QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2334  assert (Decl);
2335  // FIXME: What is the design on getTagDeclType when it requires casting
2336  // away const?  mutable?
2337  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2338}
2339
2340/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2341/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2342/// needs to agree with the definition in <stddef.h>.
2343CanQualType ASTContext::getSizeType() const {
2344  return getFromTargetType(Target.getSizeType());
2345}
2346
2347/// getSignedWCharType - Return the type of "signed wchar_t".
2348/// Used when in C++, as a GCC extension.
2349QualType ASTContext::getSignedWCharType() const {
2350  // FIXME: derive from "Target" ?
2351  return WCharTy;
2352}
2353
2354/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2355/// Used when in C++, as a GCC extension.
2356QualType ASTContext::getUnsignedWCharType() const {
2357  // FIXME: derive from "Target" ?
2358  return UnsignedIntTy;
2359}
2360
2361/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2362/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2363QualType ASTContext::getPointerDiffType() const {
2364  return getFromTargetType(Target.getPtrDiffType(0));
2365}
2366
2367//===----------------------------------------------------------------------===//
2368//                              Type Operators
2369//===----------------------------------------------------------------------===//
2370
2371CanQualType ASTContext::getCanonicalParamType(QualType T) {
2372  // Push qualifiers into arrays, and then discard any remaining
2373  // qualifiers.
2374  T = getCanonicalType(T);
2375  const Type *Ty = T.getTypePtr();
2376
2377  QualType Result;
2378  if (isa<ArrayType>(Ty)) {
2379    Result = getArrayDecayedType(QualType(Ty,0));
2380  } else if (isa<FunctionType>(Ty)) {
2381    Result = getPointerType(QualType(Ty, 0));
2382  } else {
2383    Result = QualType(Ty, 0);
2384  }
2385
2386  return CanQualType::CreateUnsafe(Result);
2387}
2388
2389/// getCanonicalType - Return the canonical (structural) type corresponding to
2390/// the specified potentially non-canonical type.  The non-canonical version
2391/// of a type may have many "decorated" versions of types.  Decorators can
2392/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2393/// to be free of any of these, allowing two canonical types to be compared
2394/// for exact equality with a simple pointer comparison.
2395CanQualType ASTContext::getCanonicalType(QualType T) {
2396  QualifierCollector Quals;
2397  const Type *Ptr = Quals.strip(T);
2398  QualType CanType = Ptr->getCanonicalTypeInternal();
2399
2400  // The canonical internal type will be the canonical type *except*
2401  // that we push type qualifiers down through array types.
2402
2403  // If there are no new qualifiers to push down, stop here.
2404  if (!Quals.hasQualifiers())
2405    return CanQualType::CreateUnsafe(CanType);
2406
2407  // If the type qualifiers are on an array type, get the canonical
2408  // type of the array with the qualifiers applied to the element
2409  // type.
2410  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2411  if (!AT)
2412    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2413
2414  // Get the canonical version of the element with the extra qualifiers on it.
2415  // This can recursively sink qualifiers through multiple levels of arrays.
2416  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2417  NewEltTy = getCanonicalType(NewEltTy);
2418
2419  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2420    return CanQualType::CreateUnsafe(
2421             getConstantArrayType(NewEltTy, CAT->getSize(),
2422                                  CAT->getSizeModifier(),
2423                                  CAT->getIndexTypeCVRQualifiers()));
2424  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2425    return CanQualType::CreateUnsafe(
2426             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2427                                    IAT->getIndexTypeCVRQualifiers()));
2428
2429  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2430    return CanQualType::CreateUnsafe(
2431             getDependentSizedArrayType(NewEltTy,
2432                                        DSAT->getSizeExpr() ?
2433                                          DSAT->getSizeExpr()->Retain() : 0,
2434                                        DSAT->getSizeModifier(),
2435                                        DSAT->getIndexTypeCVRQualifiers(),
2436                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2437
2438  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2439  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2440                                                        VAT->getSizeExpr() ?
2441                                              VAT->getSizeExpr()->Retain() : 0,
2442                                                        VAT->getSizeModifier(),
2443                                              VAT->getIndexTypeCVRQualifiers(),
2444                                                     VAT->getBracketsRange()));
2445}
2446
2447QualType ASTContext::getUnqualifiedArrayType(QualType T,
2448                                             Qualifiers &Quals) {
2449  Quals = T.getQualifiers();
2450  const ArrayType *AT = getAsArrayType(T);
2451  if (!AT) {
2452    return T.getUnqualifiedType();
2453  }
2454
2455  QualType Elt = AT->getElementType();
2456  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2457  if (Elt == UnqualElt)
2458    return T;
2459
2460  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2461    return getConstantArrayType(UnqualElt, CAT->getSize(),
2462                                CAT->getSizeModifier(), 0);
2463  }
2464
2465  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2466    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2467  }
2468
2469  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2470    return getVariableArrayType(UnqualElt,
2471                                VAT->getSizeExpr() ?
2472                                VAT->getSizeExpr()->Retain() : 0,
2473                                VAT->getSizeModifier(),
2474                                VAT->getIndexTypeCVRQualifiers(),
2475                                VAT->getBracketsRange());
2476  }
2477
2478  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2479  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2480                                    DSAT->getSizeModifier(), 0,
2481                                    SourceRange());
2482}
2483
2484/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2485/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2486/// they point to and return true. If T1 and T2 aren't pointer types
2487/// or pointer-to-member types, or if they are not similar at this
2488/// level, returns false and leaves T1 and T2 unchanged. Top-level
2489/// qualifiers on T1 and T2 are ignored. This function will typically
2490/// be called in a loop that successively "unwraps" pointer and
2491/// pointer-to-member types to compare them at each level.
2492bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2493  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2494                    *T2PtrType = T2->getAs<PointerType>();
2495  if (T1PtrType && T2PtrType) {
2496    T1 = T1PtrType->getPointeeType();
2497    T2 = T2PtrType->getPointeeType();
2498    return true;
2499  }
2500
2501  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2502                          *T2MPType = T2->getAs<MemberPointerType>();
2503  if (T1MPType && T2MPType &&
2504      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2505                             QualType(T2MPType->getClass(), 0))) {
2506    T1 = T1MPType->getPointeeType();
2507    T2 = T2MPType->getPointeeType();
2508    return true;
2509  }
2510
2511  if (getLangOptions().ObjC1) {
2512    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2513                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2514    if (T1OPType && T2OPType) {
2515      T1 = T1OPType->getPointeeType();
2516      T2 = T2OPType->getPointeeType();
2517      return true;
2518    }
2519  }
2520
2521  // FIXME: Block pointers, too?
2522
2523  return false;
2524}
2525
2526DeclarationNameInfo ASTContext::getNameForTemplate(TemplateName Name,
2527                                                   SourceLocation NameLoc) {
2528  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2529    // DNInfo work in progress: CHECKME: what about DNLoc?
2530    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2531
2532  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2533    DeclarationName DName;
2534    if (DTN->isIdentifier()) {
2535      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2536      return DeclarationNameInfo(DName, NameLoc);
2537    } else {
2538      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2539      // DNInfo work in progress: FIXME: source locations?
2540      DeclarationNameLoc DNLoc;
2541      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2542      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2543      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2544    }
2545  }
2546
2547  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2548  assert(Storage);
2549  // DNInfo work in progress: CHECKME: what about DNLoc?
2550  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2551}
2552
2553TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2554  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2555    if (TemplateTemplateParmDecl *TTP
2556                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2557      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2558
2559    // The canonical template name is the canonical template declaration.
2560    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2561  }
2562
2563  assert(!Name.getAsOverloadedTemplate());
2564
2565  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2566  assert(DTN && "Non-dependent template names must refer to template decls.");
2567  return DTN->CanonicalTemplateName;
2568}
2569
2570bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2571  X = getCanonicalTemplateName(X);
2572  Y = getCanonicalTemplateName(Y);
2573  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2574}
2575
2576TemplateArgument
2577ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2578  switch (Arg.getKind()) {
2579    case TemplateArgument::Null:
2580      return Arg;
2581
2582    case TemplateArgument::Expression:
2583      return Arg;
2584
2585    case TemplateArgument::Declaration:
2586      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2587
2588    case TemplateArgument::Template:
2589      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2590
2591    case TemplateArgument::Integral:
2592      return TemplateArgument(*Arg.getAsIntegral(),
2593                              getCanonicalType(Arg.getIntegralType()));
2594
2595    case TemplateArgument::Type:
2596      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2597
2598    case TemplateArgument::Pack: {
2599      // FIXME: Allocate in ASTContext
2600      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2601      unsigned Idx = 0;
2602      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2603                                        AEnd = Arg.pack_end();
2604           A != AEnd; (void)++A, ++Idx)
2605        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2606
2607      TemplateArgument Result;
2608      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2609      return Result;
2610    }
2611  }
2612
2613  // Silence GCC warning
2614  assert(false && "Unhandled template argument kind");
2615  return TemplateArgument();
2616}
2617
2618NestedNameSpecifier *
2619ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2620  if (!NNS)
2621    return 0;
2622
2623  switch (NNS->getKind()) {
2624  case NestedNameSpecifier::Identifier:
2625    // Canonicalize the prefix but keep the identifier the same.
2626    return NestedNameSpecifier::Create(*this,
2627                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2628                                       NNS->getAsIdentifier());
2629
2630  case NestedNameSpecifier::Namespace:
2631    // A namespace is canonical; build a nested-name-specifier with
2632    // this namespace and no prefix.
2633    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2634
2635  case NestedNameSpecifier::TypeSpec:
2636  case NestedNameSpecifier::TypeSpecWithTemplate: {
2637    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2638    return NestedNameSpecifier::Create(*this, 0,
2639                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2640                                       T.getTypePtr());
2641  }
2642
2643  case NestedNameSpecifier::Global:
2644    // The global specifier is canonical and unique.
2645    return NNS;
2646  }
2647
2648  // Required to silence a GCC warning
2649  return 0;
2650}
2651
2652
2653const ArrayType *ASTContext::getAsArrayType(QualType T) {
2654  // Handle the non-qualified case efficiently.
2655  if (!T.hasLocalQualifiers()) {
2656    // Handle the common positive case fast.
2657    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2658      return AT;
2659  }
2660
2661  // Handle the common negative case fast.
2662  QualType CType = T->getCanonicalTypeInternal();
2663  if (!isa<ArrayType>(CType))
2664    return 0;
2665
2666  // Apply any qualifiers from the array type to the element type.  This
2667  // implements C99 6.7.3p8: "If the specification of an array type includes
2668  // any type qualifiers, the element type is so qualified, not the array type."
2669
2670  // If we get here, we either have type qualifiers on the type, or we have
2671  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2672  // we must propagate them down into the element type.
2673
2674  QualifierCollector Qs;
2675  const Type *Ty = Qs.strip(T.getDesugaredType());
2676
2677  // If we have a simple case, just return now.
2678  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2679  if (ATy == 0 || Qs.empty())
2680    return ATy;
2681
2682  // Otherwise, we have an array and we have qualifiers on it.  Push the
2683  // qualifiers into the array element type and return a new array type.
2684  // Get the canonical version of the element with the extra qualifiers on it.
2685  // This can recursively sink qualifiers through multiple levels of arrays.
2686  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2687
2688  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2689    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2690                                                CAT->getSizeModifier(),
2691                                           CAT->getIndexTypeCVRQualifiers()));
2692  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2693    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2694                                                  IAT->getSizeModifier(),
2695                                           IAT->getIndexTypeCVRQualifiers()));
2696
2697  if (const DependentSizedArrayType *DSAT
2698        = dyn_cast<DependentSizedArrayType>(ATy))
2699    return cast<ArrayType>(
2700                     getDependentSizedArrayType(NewEltTy,
2701                                                DSAT->getSizeExpr() ?
2702                                              DSAT->getSizeExpr()->Retain() : 0,
2703                                                DSAT->getSizeModifier(),
2704                                              DSAT->getIndexTypeCVRQualifiers(),
2705                                                DSAT->getBracketsRange()));
2706
2707  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2708  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2709                                              VAT->getSizeExpr() ?
2710                                              VAT->getSizeExpr()->Retain() : 0,
2711                                              VAT->getSizeModifier(),
2712                                              VAT->getIndexTypeCVRQualifiers(),
2713                                              VAT->getBracketsRange()));
2714}
2715
2716
2717/// getArrayDecayedType - Return the properly qualified result of decaying the
2718/// specified array type to a pointer.  This operation is non-trivial when
2719/// handling typedefs etc.  The canonical type of "T" must be an array type,
2720/// this returns a pointer to a properly qualified element of the array.
2721///
2722/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2723QualType ASTContext::getArrayDecayedType(QualType Ty) {
2724  // Get the element type with 'getAsArrayType' so that we don't lose any
2725  // typedefs in the element type of the array.  This also handles propagation
2726  // of type qualifiers from the array type into the element type if present
2727  // (C99 6.7.3p8).
2728  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2729  assert(PrettyArrayType && "Not an array type!");
2730
2731  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2732
2733  // int x[restrict 4] ->  int *restrict
2734  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2735}
2736
2737QualType ASTContext::getBaseElementType(QualType QT) {
2738  QualifierCollector Qs;
2739  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2740    QT = AT->getElementType();
2741  return Qs.apply(QT);
2742}
2743
2744QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2745  QualType ElemTy = AT->getElementType();
2746
2747  if (const ArrayType *AT = getAsArrayType(ElemTy))
2748    return getBaseElementType(AT);
2749
2750  return ElemTy;
2751}
2752
2753/// getConstantArrayElementCount - Returns number of constant array elements.
2754uint64_t
2755ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2756  uint64_t ElementCount = 1;
2757  do {
2758    ElementCount *= CA->getSize().getZExtValue();
2759    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2760  } while (CA);
2761  return ElementCount;
2762}
2763
2764/// getFloatingRank - Return a relative rank for floating point types.
2765/// This routine will assert if passed a built-in type that isn't a float.
2766static FloatingRank getFloatingRank(QualType T) {
2767  if (const ComplexType *CT = T->getAs<ComplexType>())
2768    return getFloatingRank(CT->getElementType());
2769
2770  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2771  switch (T->getAs<BuiltinType>()->getKind()) {
2772  default: assert(0 && "getFloatingRank(): not a floating type");
2773  case BuiltinType::Float:      return FloatRank;
2774  case BuiltinType::Double:     return DoubleRank;
2775  case BuiltinType::LongDouble: return LongDoubleRank;
2776  }
2777}
2778
2779/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2780/// point or a complex type (based on typeDomain/typeSize).
2781/// 'typeDomain' is a real floating point or complex type.
2782/// 'typeSize' is a real floating point or complex type.
2783QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2784                                                       QualType Domain) const {
2785  FloatingRank EltRank = getFloatingRank(Size);
2786  if (Domain->isComplexType()) {
2787    switch (EltRank) {
2788    default: assert(0 && "getFloatingRank(): illegal value for rank");
2789    case FloatRank:      return FloatComplexTy;
2790    case DoubleRank:     return DoubleComplexTy;
2791    case LongDoubleRank: return LongDoubleComplexTy;
2792    }
2793  }
2794
2795  assert(Domain->isRealFloatingType() && "Unknown domain!");
2796  switch (EltRank) {
2797  default: assert(0 && "getFloatingRank(): illegal value for rank");
2798  case FloatRank:      return FloatTy;
2799  case DoubleRank:     return DoubleTy;
2800  case LongDoubleRank: return LongDoubleTy;
2801  }
2802}
2803
2804/// getFloatingTypeOrder - Compare the rank of the two specified floating
2805/// point types, ignoring the domain of the type (i.e. 'double' ==
2806/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2807/// LHS < RHS, return -1.
2808int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2809  FloatingRank LHSR = getFloatingRank(LHS);
2810  FloatingRank RHSR = getFloatingRank(RHS);
2811
2812  if (LHSR == RHSR)
2813    return 0;
2814  if (LHSR > RHSR)
2815    return 1;
2816  return -1;
2817}
2818
2819/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2820/// routine will assert if passed a built-in type that isn't an integer or enum,
2821/// or if it is not canonicalized.
2822unsigned ASTContext::getIntegerRank(Type *T) {
2823  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2824  if (EnumType* ET = dyn_cast<EnumType>(T))
2825    T = ET->getDecl()->getPromotionType().getTypePtr();
2826
2827  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2828    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2829
2830  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2831    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2832
2833  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2834    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2835
2836  switch (cast<BuiltinType>(T)->getKind()) {
2837  default: assert(0 && "getIntegerRank(): not a built-in integer");
2838  case BuiltinType::Bool:
2839    return 1 + (getIntWidth(BoolTy) << 3);
2840  case BuiltinType::Char_S:
2841  case BuiltinType::Char_U:
2842  case BuiltinType::SChar:
2843  case BuiltinType::UChar:
2844    return 2 + (getIntWidth(CharTy) << 3);
2845  case BuiltinType::Short:
2846  case BuiltinType::UShort:
2847    return 3 + (getIntWidth(ShortTy) << 3);
2848  case BuiltinType::Int:
2849  case BuiltinType::UInt:
2850    return 4 + (getIntWidth(IntTy) << 3);
2851  case BuiltinType::Long:
2852  case BuiltinType::ULong:
2853    return 5 + (getIntWidth(LongTy) << 3);
2854  case BuiltinType::LongLong:
2855  case BuiltinType::ULongLong:
2856    return 6 + (getIntWidth(LongLongTy) << 3);
2857  case BuiltinType::Int128:
2858  case BuiltinType::UInt128:
2859    return 7 + (getIntWidth(Int128Ty) << 3);
2860  }
2861}
2862
2863/// \brief Whether this is a promotable bitfield reference according
2864/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2865///
2866/// \returns the type this bit-field will promote to, or NULL if no
2867/// promotion occurs.
2868QualType ASTContext::isPromotableBitField(Expr *E) {
2869  if (E->isTypeDependent() || E->isValueDependent())
2870    return QualType();
2871
2872  FieldDecl *Field = E->getBitField();
2873  if (!Field)
2874    return QualType();
2875
2876  QualType FT = Field->getType();
2877
2878  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2879  uint64_t BitWidth = BitWidthAP.getZExtValue();
2880  uint64_t IntSize = getTypeSize(IntTy);
2881  // GCC extension compatibility: if the bit-field size is less than or equal
2882  // to the size of int, it gets promoted no matter what its type is.
2883  // For instance, unsigned long bf : 4 gets promoted to signed int.
2884  if (BitWidth < IntSize)
2885    return IntTy;
2886
2887  if (BitWidth == IntSize)
2888    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2889
2890  // Types bigger than int are not subject to promotions, and therefore act
2891  // like the base type.
2892  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2893  // is ridiculous.
2894  return QualType();
2895}
2896
2897/// getPromotedIntegerType - Returns the type that Promotable will
2898/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2899/// integer type.
2900QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2901  assert(!Promotable.isNull());
2902  assert(Promotable->isPromotableIntegerType());
2903  if (const EnumType *ET = Promotable->getAs<EnumType>())
2904    return ET->getDecl()->getPromotionType();
2905  if (Promotable->isSignedIntegerType())
2906    return IntTy;
2907  uint64_t PromotableSize = getTypeSize(Promotable);
2908  uint64_t IntSize = getTypeSize(IntTy);
2909  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2910  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2911}
2912
2913/// getIntegerTypeOrder - Returns the highest ranked integer type:
2914/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2915/// LHS < RHS, return -1.
2916int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2917  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2918  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2919  if (LHSC == RHSC) return 0;
2920
2921  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2922  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2923
2924  unsigned LHSRank = getIntegerRank(LHSC);
2925  unsigned RHSRank = getIntegerRank(RHSC);
2926
2927  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2928    if (LHSRank == RHSRank) return 0;
2929    return LHSRank > RHSRank ? 1 : -1;
2930  }
2931
2932  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2933  if (LHSUnsigned) {
2934    // If the unsigned [LHS] type is larger, return it.
2935    if (LHSRank >= RHSRank)
2936      return 1;
2937
2938    // If the signed type can represent all values of the unsigned type, it
2939    // wins.  Because we are dealing with 2's complement and types that are
2940    // powers of two larger than each other, this is always safe.
2941    return -1;
2942  }
2943
2944  // If the unsigned [RHS] type is larger, return it.
2945  if (RHSRank >= LHSRank)
2946    return -1;
2947
2948  // If the signed type can represent all values of the unsigned type, it
2949  // wins.  Because we are dealing with 2's complement and types that are
2950  // powers of two larger than each other, this is always safe.
2951  return 1;
2952}
2953
2954static RecordDecl *
2955CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2956                 SourceLocation L, IdentifierInfo *Id) {
2957  if (Ctx.getLangOptions().CPlusPlus)
2958    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2959  else
2960    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2961}
2962
2963// getCFConstantStringType - Return the type used for constant CFStrings.
2964QualType ASTContext::getCFConstantStringType() {
2965  if (!CFConstantStringTypeDecl) {
2966    CFConstantStringTypeDecl =
2967      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2968                       &Idents.get("NSConstantString"));
2969    CFConstantStringTypeDecl->startDefinition();
2970
2971    QualType FieldTypes[4];
2972
2973    // const int *isa;
2974    FieldTypes[0] = getPointerType(IntTy.withConst());
2975    // int flags;
2976    FieldTypes[1] = IntTy;
2977    // const char *str;
2978    FieldTypes[2] = getPointerType(CharTy.withConst());
2979    // long length;
2980    FieldTypes[3] = LongTy;
2981
2982    // Create fields
2983    for (unsigned i = 0; i < 4; ++i) {
2984      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2985                                           SourceLocation(), 0,
2986                                           FieldTypes[i], /*TInfo=*/0,
2987                                           /*BitWidth=*/0,
2988                                           /*Mutable=*/false);
2989      Field->setAccess(AS_public);
2990      CFConstantStringTypeDecl->addDecl(Field);
2991    }
2992
2993    CFConstantStringTypeDecl->completeDefinition();
2994  }
2995
2996  return getTagDeclType(CFConstantStringTypeDecl);
2997}
2998
2999void ASTContext::setCFConstantStringType(QualType T) {
3000  const RecordType *Rec = T->getAs<RecordType>();
3001  assert(Rec && "Invalid CFConstantStringType");
3002  CFConstantStringTypeDecl = Rec->getDecl();
3003}
3004
3005// getNSConstantStringType - Return the type used for constant NSStrings.
3006QualType ASTContext::getNSConstantStringType() {
3007  if (!NSConstantStringTypeDecl) {
3008    NSConstantStringTypeDecl =
3009    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3010                     &Idents.get("__builtin_NSString"));
3011    NSConstantStringTypeDecl->startDefinition();
3012
3013    QualType FieldTypes[3];
3014
3015    // const int *isa;
3016    FieldTypes[0] = getPointerType(IntTy.withConst());
3017    // const char *str;
3018    FieldTypes[1] = getPointerType(CharTy.withConst());
3019    // unsigned int length;
3020    FieldTypes[2] = UnsignedIntTy;
3021
3022    // Create fields
3023    for (unsigned i = 0; i < 3; ++i) {
3024      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3025                                           SourceLocation(), 0,
3026                                           FieldTypes[i], /*TInfo=*/0,
3027                                           /*BitWidth=*/0,
3028                                           /*Mutable=*/false);
3029      Field->setAccess(AS_public);
3030      NSConstantStringTypeDecl->addDecl(Field);
3031    }
3032
3033    NSConstantStringTypeDecl->completeDefinition();
3034  }
3035
3036  return getTagDeclType(NSConstantStringTypeDecl);
3037}
3038
3039void ASTContext::setNSConstantStringType(QualType T) {
3040  const RecordType *Rec = T->getAs<RecordType>();
3041  assert(Rec && "Invalid NSConstantStringType");
3042  NSConstantStringTypeDecl = Rec->getDecl();
3043}
3044
3045QualType ASTContext::getObjCFastEnumerationStateType() {
3046  if (!ObjCFastEnumerationStateTypeDecl) {
3047    ObjCFastEnumerationStateTypeDecl =
3048      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3049                       &Idents.get("__objcFastEnumerationState"));
3050    ObjCFastEnumerationStateTypeDecl->startDefinition();
3051
3052    QualType FieldTypes[] = {
3053      UnsignedLongTy,
3054      getPointerType(ObjCIdTypedefType),
3055      getPointerType(UnsignedLongTy),
3056      getConstantArrayType(UnsignedLongTy,
3057                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3058    };
3059
3060    for (size_t i = 0; i < 4; ++i) {
3061      FieldDecl *Field = FieldDecl::Create(*this,
3062                                           ObjCFastEnumerationStateTypeDecl,
3063                                           SourceLocation(), 0,
3064                                           FieldTypes[i], /*TInfo=*/0,
3065                                           /*BitWidth=*/0,
3066                                           /*Mutable=*/false);
3067      Field->setAccess(AS_public);
3068      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3069    }
3070    if (getLangOptions().CPlusPlus)
3071      if (CXXRecordDecl *CXXRD =
3072            dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
3073        CXXRD->setEmpty(false);
3074
3075    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3076  }
3077
3078  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3079}
3080
3081QualType ASTContext::getBlockDescriptorType() {
3082  if (BlockDescriptorType)
3083    return getTagDeclType(BlockDescriptorType);
3084
3085  RecordDecl *T;
3086  // FIXME: Needs the FlagAppleBlock bit.
3087  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3088                       &Idents.get("__block_descriptor"));
3089  T->startDefinition();
3090
3091  QualType FieldTypes[] = {
3092    UnsignedLongTy,
3093    UnsignedLongTy,
3094  };
3095
3096  const char *FieldNames[] = {
3097    "reserved",
3098    "Size"
3099  };
3100
3101  for (size_t i = 0; i < 2; ++i) {
3102    FieldDecl *Field = FieldDecl::Create(*this,
3103                                         T,
3104                                         SourceLocation(),
3105                                         &Idents.get(FieldNames[i]),
3106                                         FieldTypes[i], /*TInfo=*/0,
3107                                         /*BitWidth=*/0,
3108                                         /*Mutable=*/false);
3109    Field->setAccess(AS_public);
3110    T->addDecl(Field);
3111  }
3112
3113  T->completeDefinition();
3114
3115  BlockDescriptorType = T;
3116
3117  return getTagDeclType(BlockDescriptorType);
3118}
3119
3120void ASTContext::setBlockDescriptorType(QualType T) {
3121  const RecordType *Rec = T->getAs<RecordType>();
3122  assert(Rec && "Invalid BlockDescriptorType");
3123  BlockDescriptorType = Rec->getDecl();
3124}
3125
3126QualType ASTContext::getBlockDescriptorExtendedType() {
3127  if (BlockDescriptorExtendedType)
3128    return getTagDeclType(BlockDescriptorExtendedType);
3129
3130  RecordDecl *T;
3131  // FIXME: Needs the FlagAppleBlock bit.
3132  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3133                       &Idents.get("__block_descriptor_withcopydispose"));
3134  T->startDefinition();
3135
3136  QualType FieldTypes[] = {
3137    UnsignedLongTy,
3138    UnsignedLongTy,
3139    getPointerType(VoidPtrTy),
3140    getPointerType(VoidPtrTy)
3141  };
3142
3143  const char *FieldNames[] = {
3144    "reserved",
3145    "Size",
3146    "CopyFuncPtr",
3147    "DestroyFuncPtr"
3148  };
3149
3150  for (size_t i = 0; i < 4; ++i) {
3151    FieldDecl *Field = FieldDecl::Create(*this,
3152                                         T,
3153                                         SourceLocation(),
3154                                         &Idents.get(FieldNames[i]),
3155                                         FieldTypes[i], /*TInfo=*/0,
3156                                         /*BitWidth=*/0,
3157                                         /*Mutable=*/false);
3158    Field->setAccess(AS_public);
3159    T->addDecl(Field);
3160  }
3161
3162  T->completeDefinition();
3163
3164  BlockDescriptorExtendedType = T;
3165
3166  return getTagDeclType(BlockDescriptorExtendedType);
3167}
3168
3169void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3170  const RecordType *Rec = T->getAs<RecordType>();
3171  assert(Rec && "Invalid BlockDescriptorType");
3172  BlockDescriptorExtendedType = Rec->getDecl();
3173}
3174
3175bool ASTContext::BlockRequiresCopying(QualType Ty) {
3176  if (Ty->isBlockPointerType())
3177    return true;
3178  if (isObjCNSObjectType(Ty))
3179    return true;
3180  if (Ty->isObjCObjectPointerType())
3181    return true;
3182  return false;
3183}
3184
3185QualType ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) {
3186  //  type = struct __Block_byref_1_X {
3187  //    void *__isa;
3188  //    struct __Block_byref_1_X *__forwarding;
3189  //    unsigned int __flags;
3190  //    unsigned int __size;
3191  //    void *__copy_helper;		// as needed
3192  //    void *__destroy_help		// as needed
3193  //    int X;
3194  //  } *
3195
3196  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3197
3198  // FIXME: Move up
3199  llvm::SmallString<36> Name;
3200  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3201                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3202  RecordDecl *T;
3203  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3204                       &Idents.get(Name.str()));
3205  T->startDefinition();
3206  QualType Int32Ty = IntTy;
3207  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3208  QualType FieldTypes[] = {
3209    getPointerType(VoidPtrTy),
3210    getPointerType(getTagDeclType(T)),
3211    Int32Ty,
3212    Int32Ty,
3213    getPointerType(VoidPtrTy),
3214    getPointerType(VoidPtrTy),
3215    Ty
3216  };
3217
3218  llvm::StringRef FieldNames[] = {
3219    "__isa",
3220    "__forwarding",
3221    "__flags",
3222    "__size",
3223    "__copy_helper",
3224    "__destroy_helper",
3225    DeclName,
3226  };
3227
3228  for (size_t i = 0; i < 7; ++i) {
3229    if (!HasCopyAndDispose && i >=4 && i <= 5)
3230      continue;
3231    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3232                                         &Idents.get(FieldNames[i]),
3233                                         FieldTypes[i], /*TInfo=*/0,
3234                                         /*BitWidth=*/0, /*Mutable=*/false);
3235    Field->setAccess(AS_public);
3236    T->addDecl(Field);
3237  }
3238
3239  T->completeDefinition();
3240
3241  return getPointerType(getTagDeclType(T));
3242}
3243
3244
3245QualType ASTContext::getBlockParmType(
3246  bool BlockHasCopyDispose,
3247  llvm::SmallVectorImpl<const Expr *> &Layout) {
3248
3249  // FIXME: Move up
3250  llvm::SmallString<36> Name;
3251  llvm::raw_svector_ostream(Name) << "__block_literal_"
3252                                  << ++UniqueBlockParmTypeID;
3253  RecordDecl *T;
3254  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3255                       &Idents.get(Name.str()));
3256  T->startDefinition();
3257  QualType FieldTypes[] = {
3258    getPointerType(VoidPtrTy),
3259    IntTy,
3260    IntTy,
3261    getPointerType(VoidPtrTy),
3262    (BlockHasCopyDispose ?
3263     getPointerType(getBlockDescriptorExtendedType()) :
3264     getPointerType(getBlockDescriptorType()))
3265  };
3266
3267  const char *FieldNames[] = {
3268    "__isa",
3269    "__flags",
3270    "__reserved",
3271    "__FuncPtr",
3272    "__descriptor"
3273  };
3274
3275  for (size_t i = 0; i < 5; ++i) {
3276    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3277                                         &Idents.get(FieldNames[i]),
3278                                         FieldTypes[i], /*TInfo=*/0,
3279                                         /*BitWidth=*/0, /*Mutable=*/false);
3280    Field->setAccess(AS_public);
3281    T->addDecl(Field);
3282  }
3283
3284  for (unsigned i = 0; i < Layout.size(); ++i) {
3285    const Expr *E = Layout[i];
3286
3287    QualType FieldType = E->getType();
3288    IdentifierInfo *FieldName = 0;
3289    if (isa<CXXThisExpr>(E)) {
3290      FieldName = &Idents.get("this");
3291    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3292      const ValueDecl *D = BDRE->getDecl();
3293      FieldName = D->getIdentifier();
3294      if (BDRE->isByRef())
3295        FieldType = BuildByRefType(D->getName(), FieldType);
3296    } else {
3297      // Padding.
3298      assert(isa<ConstantArrayType>(FieldType) &&
3299             isa<DeclRefExpr>(E) &&
3300             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3301             "doesn't match characteristics of padding decl");
3302    }
3303
3304    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3305                                         FieldName, FieldType, /*TInfo=*/0,
3306                                         /*BitWidth=*/0, /*Mutable=*/false);
3307    Field->setAccess(AS_public);
3308    T->addDecl(Field);
3309  }
3310
3311  T->completeDefinition();
3312
3313  return getPointerType(getTagDeclType(T));
3314}
3315
3316void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3317  const RecordType *Rec = T->getAs<RecordType>();
3318  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3319  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3320}
3321
3322// This returns true if a type has been typedefed to BOOL:
3323// typedef <type> BOOL;
3324static bool isTypeTypedefedAsBOOL(QualType T) {
3325  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3326    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3327      return II->isStr("BOOL");
3328
3329  return false;
3330}
3331
3332/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3333/// purpose.
3334CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3335  CharUnits sz = getTypeSizeInChars(type);
3336
3337  // Make all integer and enum types at least as large as an int
3338  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3339    sz = std::max(sz, getTypeSizeInChars(IntTy));
3340  // Treat arrays as pointers, since that's how they're passed in.
3341  else if (type->isArrayType())
3342    sz = getTypeSizeInChars(VoidPtrTy);
3343  return sz;
3344}
3345
3346static inline
3347std::string charUnitsToString(const CharUnits &CU) {
3348  return llvm::itostr(CU.getQuantity());
3349}
3350
3351/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3352/// declaration.
3353void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3354                                             std::string& S) {
3355  const BlockDecl *Decl = Expr->getBlockDecl();
3356  QualType BlockTy =
3357      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3358  // Encode result type.
3359  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3360  // Compute size of all parameters.
3361  // Start with computing size of a pointer in number of bytes.
3362  // FIXME: There might(should) be a better way of doing this computation!
3363  SourceLocation Loc;
3364  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3365  CharUnits ParmOffset = PtrSize;
3366  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3367       E = Decl->param_end(); PI != E; ++PI) {
3368    QualType PType = (*PI)->getType();
3369    CharUnits sz = getObjCEncodingTypeSize(PType);
3370    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3371    ParmOffset += sz;
3372  }
3373  // Size of the argument frame
3374  S += charUnitsToString(ParmOffset);
3375  // Block pointer and offset.
3376  S += "@?0";
3377  ParmOffset = PtrSize;
3378
3379  // Argument types.
3380  ParmOffset = PtrSize;
3381  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3382       Decl->param_end(); PI != E; ++PI) {
3383    ParmVarDecl *PVDecl = *PI;
3384    QualType PType = PVDecl->getOriginalType();
3385    if (const ArrayType *AT =
3386          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3387      // Use array's original type only if it has known number of
3388      // elements.
3389      if (!isa<ConstantArrayType>(AT))
3390        PType = PVDecl->getType();
3391    } else if (PType->isFunctionType())
3392      PType = PVDecl->getType();
3393    getObjCEncodingForType(PType, S);
3394    S += charUnitsToString(ParmOffset);
3395    ParmOffset += getObjCEncodingTypeSize(PType);
3396  }
3397}
3398
3399/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3400/// declaration.
3401void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3402                                              std::string& S) {
3403  // FIXME: This is not very efficient.
3404  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3405  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3406  // Encode result type.
3407  getObjCEncodingForType(Decl->getResultType(), S);
3408  // Compute size of all parameters.
3409  // Start with computing size of a pointer in number of bytes.
3410  // FIXME: There might(should) be a better way of doing this computation!
3411  SourceLocation Loc;
3412  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3413  // The first two arguments (self and _cmd) are pointers; account for
3414  // their size.
3415  CharUnits ParmOffset = 2 * PtrSize;
3416  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3417       E = Decl->sel_param_end(); PI != E; ++PI) {
3418    QualType PType = (*PI)->getType();
3419    CharUnits sz = getObjCEncodingTypeSize(PType);
3420    assert (sz.isPositive() &&
3421        "getObjCEncodingForMethodDecl - Incomplete param type");
3422    ParmOffset += sz;
3423  }
3424  S += charUnitsToString(ParmOffset);
3425  S += "@0:";
3426  S += charUnitsToString(PtrSize);
3427
3428  // Argument types.
3429  ParmOffset = 2 * PtrSize;
3430  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3431       E = Decl->sel_param_end(); PI != E; ++PI) {
3432    ParmVarDecl *PVDecl = *PI;
3433    QualType PType = PVDecl->getOriginalType();
3434    if (const ArrayType *AT =
3435          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3436      // Use array's original type only if it has known number of
3437      // elements.
3438      if (!isa<ConstantArrayType>(AT))
3439        PType = PVDecl->getType();
3440    } else if (PType->isFunctionType())
3441      PType = PVDecl->getType();
3442    // Process argument qualifiers for user supplied arguments; such as,
3443    // 'in', 'inout', etc.
3444    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3445    getObjCEncodingForType(PType, S);
3446    S += charUnitsToString(ParmOffset);
3447    ParmOffset += getObjCEncodingTypeSize(PType);
3448  }
3449}
3450
3451/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3452/// property declaration. If non-NULL, Container must be either an
3453/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3454/// NULL when getting encodings for protocol properties.
3455/// Property attributes are stored as a comma-delimited C string. The simple
3456/// attributes readonly and bycopy are encoded as single characters. The
3457/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3458/// encoded as single characters, followed by an identifier. Property types
3459/// are also encoded as a parametrized attribute. The characters used to encode
3460/// these attributes are defined by the following enumeration:
3461/// @code
3462/// enum PropertyAttributes {
3463/// kPropertyReadOnly = 'R',   // property is read-only.
3464/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3465/// kPropertyByref = '&',  // property is a reference to the value last assigned
3466/// kPropertyDynamic = 'D',    // property is dynamic
3467/// kPropertyGetter = 'G',     // followed by getter selector name
3468/// kPropertySetter = 'S',     // followed by setter selector name
3469/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3470/// kPropertyType = 't'              // followed by old-style type encoding.
3471/// kPropertyWeak = 'W'              // 'weak' property
3472/// kPropertyStrong = 'P'            // property GC'able
3473/// kPropertyNonAtomic = 'N'         // property non-atomic
3474/// };
3475/// @endcode
3476void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3477                                                const Decl *Container,
3478                                                std::string& S) {
3479  // Collect information from the property implementation decl(s).
3480  bool Dynamic = false;
3481  ObjCPropertyImplDecl *SynthesizePID = 0;
3482
3483  // FIXME: Duplicated code due to poor abstraction.
3484  if (Container) {
3485    if (const ObjCCategoryImplDecl *CID =
3486        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3487      for (ObjCCategoryImplDecl::propimpl_iterator
3488             i = CID->propimpl_begin(), e = CID->propimpl_end();
3489           i != e; ++i) {
3490        ObjCPropertyImplDecl *PID = *i;
3491        if (PID->getPropertyDecl() == PD) {
3492          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3493            Dynamic = true;
3494          } else {
3495            SynthesizePID = PID;
3496          }
3497        }
3498      }
3499    } else {
3500      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3501      for (ObjCCategoryImplDecl::propimpl_iterator
3502             i = OID->propimpl_begin(), e = OID->propimpl_end();
3503           i != e; ++i) {
3504        ObjCPropertyImplDecl *PID = *i;
3505        if (PID->getPropertyDecl() == PD) {
3506          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3507            Dynamic = true;
3508          } else {
3509            SynthesizePID = PID;
3510          }
3511        }
3512      }
3513    }
3514  }
3515
3516  // FIXME: This is not very efficient.
3517  S = "T";
3518
3519  // Encode result type.
3520  // GCC has some special rules regarding encoding of properties which
3521  // closely resembles encoding of ivars.
3522  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3523                             true /* outermost type */,
3524                             true /* encoding for property */);
3525
3526  if (PD->isReadOnly()) {
3527    S += ",R";
3528  } else {
3529    switch (PD->getSetterKind()) {
3530    case ObjCPropertyDecl::Assign: break;
3531    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3532    case ObjCPropertyDecl::Retain: S += ",&"; break;
3533    }
3534  }
3535
3536  // It really isn't clear at all what this means, since properties
3537  // are "dynamic by default".
3538  if (Dynamic)
3539    S += ",D";
3540
3541  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3542    S += ",N";
3543
3544  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3545    S += ",G";
3546    S += PD->getGetterName().getAsString();
3547  }
3548
3549  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3550    S += ",S";
3551    S += PD->getSetterName().getAsString();
3552  }
3553
3554  if (SynthesizePID) {
3555    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3556    S += ",V";
3557    S += OID->getNameAsString();
3558  }
3559
3560  // FIXME: OBJCGC: weak & strong
3561}
3562
3563/// getLegacyIntegralTypeEncoding -
3564/// Another legacy compatibility encoding: 32-bit longs are encoded as
3565/// 'l' or 'L' , but not always.  For typedefs, we need to use
3566/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3567///
3568void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3569  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3570    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3571      if (BT->getKind() == BuiltinType::ULong &&
3572          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3573        PointeeTy = UnsignedIntTy;
3574      else
3575        if (BT->getKind() == BuiltinType::Long &&
3576            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3577          PointeeTy = IntTy;
3578    }
3579  }
3580}
3581
3582void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3583                                        const FieldDecl *Field) {
3584  // We follow the behavior of gcc, expanding structures which are
3585  // directly pointed to, and expanding embedded structures. Note that
3586  // these rules are sufficient to prevent recursive encoding of the
3587  // same type.
3588  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3589                             true /* outermost type */);
3590}
3591
3592static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3593    switch (T->getAs<BuiltinType>()->getKind()) {
3594    default: assert(0 && "Unhandled builtin type kind");
3595    case BuiltinType::Void:       return 'v';
3596    case BuiltinType::Bool:       return 'B';
3597    case BuiltinType::Char_U:
3598    case BuiltinType::UChar:      return 'C';
3599    case BuiltinType::UShort:     return 'S';
3600    case BuiltinType::UInt:       return 'I';
3601    case BuiltinType::ULong:
3602        return
3603          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3604    case BuiltinType::UInt128:    return 'T';
3605    case BuiltinType::ULongLong:  return 'Q';
3606    case BuiltinType::Char_S:
3607    case BuiltinType::SChar:      return 'c';
3608    case BuiltinType::Short:      return 's';
3609    case BuiltinType::WChar:
3610    case BuiltinType::Int:        return 'i';
3611    case BuiltinType::Long:
3612      return
3613        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3614    case BuiltinType::LongLong:   return 'q';
3615    case BuiltinType::Int128:     return 't';
3616    case BuiltinType::Float:      return 'f';
3617    case BuiltinType::Double:     return 'd';
3618    case BuiltinType::LongDouble: return 'd';
3619    }
3620}
3621
3622static void EncodeBitField(const ASTContext *Context, std::string& S,
3623                           QualType T, const FieldDecl *FD) {
3624  const Expr *E = FD->getBitWidth();
3625  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3626  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3627  S += 'b';
3628  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3629  // The GNU runtime requires more information; bitfields are encoded as b,
3630  // then the offset (in bits) of the first element, then the type of the
3631  // bitfield, then the size in bits.  For example, in this structure:
3632  //
3633  // struct
3634  // {
3635  //    int integer;
3636  //    int flags:2;
3637  // };
3638  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3639  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3640  // information is not especially sensible, but we're stuck with it for
3641  // compatibility with GCC, although providing it breaks anything that
3642  // actually uses runtime introspection and wants to work on both runtimes...
3643  if (!Ctx->getLangOptions().NeXTRuntime) {
3644    const RecordDecl *RD = FD->getParent();
3645    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3646    // FIXME: This same linear search is also used in ExprConstant - it might
3647    // be better if the FieldDecl stored its offset.  We'd be increasing the
3648    // size of the object slightly, but saving some time every time it is used.
3649    unsigned i = 0;
3650    for (RecordDecl::field_iterator Field = RD->field_begin(),
3651                                 FieldEnd = RD->field_end();
3652         Field != FieldEnd; (void)++Field, ++i) {
3653      if (*Field == FD)
3654        break;
3655    }
3656    S += llvm::utostr(RL.getFieldOffset(i));
3657    S += ObjCEncodingForPrimitiveKind(Context, T);
3658  }
3659  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3660  S += llvm::utostr(N);
3661}
3662
3663// FIXME: Use SmallString for accumulating string.
3664void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3665                                            bool ExpandPointedToStructures,
3666                                            bool ExpandStructures,
3667                                            const FieldDecl *FD,
3668                                            bool OutermostType,
3669                                            bool EncodingProperty) {
3670  if (T->getAs<BuiltinType>()) {
3671    if (FD && FD->isBitField())
3672      return EncodeBitField(this, S, T, FD);
3673    S += ObjCEncodingForPrimitiveKind(this, T);
3674    return;
3675  }
3676
3677  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3678    S += 'j';
3679    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3680                               false);
3681    return;
3682  }
3683
3684  // encoding for pointer or r3eference types.
3685  QualType PointeeTy;
3686  if (const PointerType *PT = T->getAs<PointerType>()) {
3687    if (PT->isObjCSelType()) {
3688      S += ':';
3689      return;
3690    }
3691    PointeeTy = PT->getPointeeType();
3692  }
3693  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3694    PointeeTy = RT->getPointeeType();
3695  if (!PointeeTy.isNull()) {
3696    bool isReadOnly = false;
3697    // For historical/compatibility reasons, the read-only qualifier of the
3698    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3699    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3700    // Also, do not emit the 'r' for anything but the outermost type!
3701    if (isa<TypedefType>(T.getTypePtr())) {
3702      if (OutermostType && T.isConstQualified()) {
3703        isReadOnly = true;
3704        S += 'r';
3705      }
3706    } else if (OutermostType) {
3707      QualType P = PointeeTy;
3708      while (P->getAs<PointerType>())
3709        P = P->getAs<PointerType>()->getPointeeType();
3710      if (P.isConstQualified()) {
3711        isReadOnly = true;
3712        S += 'r';
3713      }
3714    }
3715    if (isReadOnly) {
3716      // Another legacy compatibility encoding. Some ObjC qualifier and type
3717      // combinations need to be rearranged.
3718      // Rewrite "in const" from "nr" to "rn"
3719      if (llvm::StringRef(S).endswith("nr"))
3720        S.replace(S.end()-2, S.end(), "rn");
3721    }
3722
3723    if (PointeeTy->isCharType()) {
3724      // char pointer types should be encoded as '*' unless it is a
3725      // type that has been typedef'd to 'BOOL'.
3726      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3727        S += '*';
3728        return;
3729      }
3730    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3731      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3732      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3733        S += '#';
3734        return;
3735      }
3736      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3737      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3738        S += '@';
3739        return;
3740      }
3741      // fall through...
3742    }
3743    S += '^';
3744    getLegacyIntegralTypeEncoding(PointeeTy);
3745
3746    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3747                               NULL);
3748    return;
3749  }
3750
3751  if (const ArrayType *AT =
3752      // Ignore type qualifiers etc.
3753        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3754    if (isa<IncompleteArrayType>(AT)) {
3755      // Incomplete arrays are encoded as a pointer to the array element.
3756      S += '^';
3757
3758      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3759                                 false, ExpandStructures, FD);
3760    } else {
3761      S += '[';
3762
3763      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3764        S += llvm::utostr(CAT->getSize().getZExtValue());
3765      else {
3766        //Variable length arrays are encoded as a regular array with 0 elements.
3767        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3768        S += '0';
3769      }
3770
3771      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3772                                 false, ExpandStructures, FD);
3773      S += ']';
3774    }
3775    return;
3776  }
3777
3778  if (T->getAs<FunctionType>()) {
3779    S += '?';
3780    return;
3781  }
3782
3783  if (const RecordType *RTy = T->getAs<RecordType>()) {
3784    RecordDecl *RDecl = RTy->getDecl();
3785    S += RDecl->isUnion() ? '(' : '{';
3786    // Anonymous structures print as '?'
3787    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3788      S += II->getName();
3789      if (ClassTemplateSpecializationDecl *Spec
3790          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3791        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3792        std::string TemplateArgsStr
3793          = TemplateSpecializationType::PrintTemplateArgumentList(
3794                                            TemplateArgs.getFlatArgumentList(),
3795                                            TemplateArgs.flat_size(),
3796                                            (*this).PrintingPolicy);
3797
3798        S += TemplateArgsStr;
3799      }
3800    } else {
3801      S += '?';
3802    }
3803    if (ExpandStructures) {
3804      S += '=';
3805      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3806                                   FieldEnd = RDecl->field_end();
3807           Field != FieldEnd; ++Field) {
3808        if (FD) {
3809          S += '"';
3810          S += Field->getNameAsString();
3811          S += '"';
3812        }
3813
3814        // Special case bit-fields.
3815        if (Field->isBitField()) {
3816          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3817                                     (*Field));
3818        } else {
3819          QualType qt = Field->getType();
3820          getLegacyIntegralTypeEncoding(qt);
3821          getObjCEncodingForTypeImpl(qt, S, false, true,
3822                                     FD);
3823        }
3824      }
3825    }
3826    S += RDecl->isUnion() ? ')' : '}';
3827    return;
3828  }
3829
3830  if (T->isEnumeralType()) {
3831    if (FD && FD->isBitField())
3832      EncodeBitField(this, S, T, FD);
3833    else
3834      S += 'i';
3835    return;
3836  }
3837
3838  if (T->isBlockPointerType()) {
3839    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3840    return;
3841  }
3842
3843  // Ignore protocol qualifiers when mangling at this level.
3844  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3845    T = OT->getBaseType();
3846
3847  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3848    // @encode(class_name)
3849    ObjCInterfaceDecl *OI = OIT->getDecl();
3850    S += '{';
3851    const IdentifierInfo *II = OI->getIdentifier();
3852    S += II->getName();
3853    S += '=';
3854    llvm::SmallVector<FieldDecl*, 32> RecFields;
3855    CollectObjCIvars(OI, RecFields);
3856    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3857      if (RecFields[i]->isBitField())
3858        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3859                                   RecFields[i]);
3860      else
3861        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3862                                   FD);
3863    }
3864    S += '}';
3865    return;
3866  }
3867
3868  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3869    if (OPT->isObjCIdType()) {
3870      S += '@';
3871      return;
3872    }
3873
3874    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3875      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3876      // Since this is a binary compatibility issue, need to consult with runtime
3877      // folks. Fortunately, this is a *very* obsure construct.
3878      S += '#';
3879      return;
3880    }
3881
3882    if (OPT->isObjCQualifiedIdType()) {
3883      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3884                                 ExpandPointedToStructures,
3885                                 ExpandStructures, FD);
3886      if (FD || EncodingProperty) {
3887        // Note that we do extended encoding of protocol qualifer list
3888        // Only when doing ivar or property encoding.
3889        S += '"';
3890        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3891             E = OPT->qual_end(); I != E; ++I) {
3892          S += '<';
3893          S += (*I)->getNameAsString();
3894          S += '>';
3895        }
3896        S += '"';
3897      }
3898      return;
3899    }
3900
3901    QualType PointeeTy = OPT->getPointeeType();
3902    if (!EncodingProperty &&
3903        isa<TypedefType>(PointeeTy.getTypePtr())) {
3904      // Another historical/compatibility reason.
3905      // We encode the underlying type which comes out as
3906      // {...};
3907      S += '^';
3908      getObjCEncodingForTypeImpl(PointeeTy, S,
3909                                 false, ExpandPointedToStructures,
3910                                 NULL);
3911      return;
3912    }
3913
3914    S += '@';
3915    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3916      S += '"';
3917      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3918      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3919           E = OPT->qual_end(); I != E; ++I) {
3920        S += '<';
3921        S += (*I)->getNameAsString();
3922        S += '>';
3923      }
3924      S += '"';
3925    }
3926    return;
3927  }
3928
3929  // gcc just blithely ignores member pointers.
3930  // TODO: maybe there should be a mangling for these
3931  if (T->getAs<MemberPointerType>())
3932    return;
3933
3934  assert(0 && "@encode for type not implemented!");
3935}
3936
3937void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3938                                                 std::string& S) const {
3939  if (QT & Decl::OBJC_TQ_In)
3940    S += 'n';
3941  if (QT & Decl::OBJC_TQ_Inout)
3942    S += 'N';
3943  if (QT & Decl::OBJC_TQ_Out)
3944    S += 'o';
3945  if (QT & Decl::OBJC_TQ_Bycopy)
3946    S += 'O';
3947  if (QT & Decl::OBJC_TQ_Byref)
3948    S += 'R';
3949  if (QT & Decl::OBJC_TQ_Oneway)
3950    S += 'V';
3951}
3952
3953void ASTContext::setBuiltinVaListType(QualType T) {
3954  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3955
3956  BuiltinVaListType = T;
3957}
3958
3959void ASTContext::setObjCIdType(QualType T) {
3960  ObjCIdTypedefType = T;
3961}
3962
3963void ASTContext::setObjCSelType(QualType T) {
3964  ObjCSelTypedefType = T;
3965}
3966
3967void ASTContext::setObjCProtoType(QualType QT) {
3968  ObjCProtoType = QT;
3969}
3970
3971void ASTContext::setObjCClassType(QualType T) {
3972  ObjCClassTypedefType = T;
3973}
3974
3975void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3976  assert(ObjCConstantStringType.isNull() &&
3977         "'NSConstantString' type already set!");
3978
3979  ObjCConstantStringType = getObjCInterfaceType(Decl);
3980}
3981
3982/// \brief Retrieve the template name that corresponds to a non-empty
3983/// lookup.
3984TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3985                                                   UnresolvedSetIterator End) {
3986  unsigned size = End - Begin;
3987  assert(size > 1 && "set is not overloaded!");
3988
3989  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3990                          size * sizeof(FunctionTemplateDecl*));
3991  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3992
3993  NamedDecl **Storage = OT->getStorage();
3994  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3995    NamedDecl *D = *I;
3996    assert(isa<FunctionTemplateDecl>(D) ||
3997           (isa<UsingShadowDecl>(D) &&
3998            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3999    *Storage++ = D;
4000  }
4001
4002  return TemplateName(OT);
4003}
4004
4005/// \brief Retrieve the template name that represents a qualified
4006/// template name such as \c std::vector.
4007TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4008                                                  bool TemplateKeyword,
4009                                                  TemplateDecl *Template) {
4010  // FIXME: Canonicalization?
4011  llvm::FoldingSetNodeID ID;
4012  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4013
4014  void *InsertPos = 0;
4015  QualifiedTemplateName *QTN =
4016    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4017  if (!QTN) {
4018    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4019    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4020  }
4021
4022  return TemplateName(QTN);
4023}
4024
4025/// \brief Retrieve the template name that represents a dependent
4026/// template name such as \c MetaFun::template apply.
4027TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4028                                                  const IdentifierInfo *Name) {
4029  assert((!NNS || NNS->isDependent()) &&
4030         "Nested name specifier must be dependent");
4031
4032  llvm::FoldingSetNodeID ID;
4033  DependentTemplateName::Profile(ID, NNS, Name);
4034
4035  void *InsertPos = 0;
4036  DependentTemplateName *QTN =
4037    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4038
4039  if (QTN)
4040    return TemplateName(QTN);
4041
4042  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4043  if (CanonNNS == NNS) {
4044    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4045  } else {
4046    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4047    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4048    DependentTemplateName *CheckQTN =
4049      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4050    assert(!CheckQTN && "Dependent type name canonicalization broken");
4051    (void)CheckQTN;
4052  }
4053
4054  DependentTemplateNames.InsertNode(QTN, InsertPos);
4055  return TemplateName(QTN);
4056}
4057
4058/// \brief Retrieve the template name that represents a dependent
4059/// template name such as \c MetaFun::template operator+.
4060TemplateName
4061ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4062                                     OverloadedOperatorKind Operator) {
4063  assert((!NNS || NNS->isDependent()) &&
4064         "Nested name specifier must be dependent");
4065
4066  llvm::FoldingSetNodeID ID;
4067  DependentTemplateName::Profile(ID, NNS, Operator);
4068
4069  void *InsertPos = 0;
4070  DependentTemplateName *QTN
4071    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4072
4073  if (QTN)
4074    return TemplateName(QTN);
4075
4076  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4077  if (CanonNNS == NNS) {
4078    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4079  } else {
4080    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4081    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4082
4083    DependentTemplateName *CheckQTN
4084      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4085    assert(!CheckQTN && "Dependent template name canonicalization broken");
4086    (void)CheckQTN;
4087  }
4088
4089  DependentTemplateNames.InsertNode(QTN, InsertPos);
4090  return TemplateName(QTN);
4091}
4092
4093/// getFromTargetType - Given one of the integer types provided by
4094/// TargetInfo, produce the corresponding type. The unsigned @p Type
4095/// is actually a value of type @c TargetInfo::IntType.
4096CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4097  switch (Type) {
4098  case TargetInfo::NoInt: return CanQualType();
4099  case TargetInfo::SignedShort: return ShortTy;
4100  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4101  case TargetInfo::SignedInt: return IntTy;
4102  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4103  case TargetInfo::SignedLong: return LongTy;
4104  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4105  case TargetInfo::SignedLongLong: return LongLongTy;
4106  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4107  }
4108
4109  assert(false && "Unhandled TargetInfo::IntType value");
4110  return CanQualType();
4111}
4112
4113//===----------------------------------------------------------------------===//
4114//                        Type Predicates.
4115//===----------------------------------------------------------------------===//
4116
4117/// isObjCNSObjectType - Return true if this is an NSObject object using
4118/// NSObject attribute on a c-style pointer type.
4119/// FIXME - Make it work directly on types.
4120/// FIXME: Move to Type.
4121///
4122bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4123  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4124    if (TypedefDecl *TD = TDT->getDecl())
4125      if (TD->getAttr<ObjCNSObjectAttr>())
4126        return true;
4127  }
4128  return false;
4129}
4130
4131/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4132/// garbage collection attribute.
4133///
4134Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4135  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4136  if (getLangOptions().ObjC1 &&
4137      getLangOptions().getGCMode() != LangOptions::NonGC) {
4138    GCAttrs = Ty.getObjCGCAttr();
4139    // Default behavious under objective-c's gc is for objective-c pointers
4140    // (or pointers to them) be treated as though they were declared
4141    // as __strong.
4142    if (GCAttrs == Qualifiers::GCNone) {
4143      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4144        GCAttrs = Qualifiers::Strong;
4145      else if (Ty->isPointerType())
4146        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4147    }
4148    // Non-pointers have none gc'able attribute regardless of the attribute
4149    // set on them.
4150    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4151      return Qualifiers::GCNone;
4152  }
4153  return GCAttrs;
4154}
4155
4156//===----------------------------------------------------------------------===//
4157//                        Type Compatibility Testing
4158//===----------------------------------------------------------------------===//
4159
4160/// areCompatVectorTypes - Return true if the two specified vector types are
4161/// compatible.
4162static bool areCompatVectorTypes(const VectorType *LHS,
4163                                 const VectorType *RHS) {
4164  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4165  return LHS->getElementType() == RHS->getElementType() &&
4166         LHS->getNumElements() == RHS->getNumElements();
4167}
4168
4169bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4170                                          QualType SecondVec) {
4171  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4172  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4173
4174  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4175    return true;
4176
4177  // AltiVec vectors types are identical to equivalent GCC vector types
4178  const VectorType *First = FirstVec->getAs<VectorType>();
4179  const VectorType *Second = SecondVec->getAs<VectorType>();
4180  if ((((First->getAltiVecSpecific() == VectorType::AltiVec) &&
4181        (Second->getAltiVecSpecific() == VectorType::NotAltiVec)) ||
4182       ((First->getAltiVecSpecific() == VectorType::NotAltiVec) &&
4183        (Second->getAltiVecSpecific() == VectorType::AltiVec))) &&
4184      hasSameType(First->getElementType(), Second->getElementType()) &&
4185      (First->getNumElements() == Second->getNumElements()))
4186    return true;
4187
4188  return false;
4189}
4190
4191//===----------------------------------------------------------------------===//
4192// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4193//===----------------------------------------------------------------------===//
4194
4195/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4196/// inheritance hierarchy of 'rProto'.
4197bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4198                                                ObjCProtocolDecl *rProto) {
4199  if (lProto == rProto)
4200    return true;
4201  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4202       E = rProto->protocol_end(); PI != E; ++PI)
4203    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4204      return true;
4205  return false;
4206}
4207
4208/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4209/// return true if lhs's protocols conform to rhs's protocol; false
4210/// otherwise.
4211bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4212  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4213    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4214  return false;
4215}
4216
4217/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4218/// Class<p1, ...>.
4219bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4220                                                      QualType rhs) {
4221  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4222  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4223  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4224
4225  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4226       E = lhsQID->qual_end(); I != E; ++I) {
4227    bool match = false;
4228    ObjCProtocolDecl *lhsProto = *I;
4229    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4230         E = rhsOPT->qual_end(); J != E; ++J) {
4231      ObjCProtocolDecl *rhsProto = *J;
4232      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4233        match = true;
4234        break;
4235      }
4236    }
4237    if (!match)
4238      return false;
4239  }
4240  return true;
4241}
4242
4243/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4244/// ObjCQualifiedIDType.
4245bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4246                                                   bool compare) {
4247  // Allow id<P..> and an 'id' or void* type in all cases.
4248  if (lhs->isVoidPointerType() ||
4249      lhs->isObjCIdType() || lhs->isObjCClassType())
4250    return true;
4251  else if (rhs->isVoidPointerType() ||
4252           rhs->isObjCIdType() || rhs->isObjCClassType())
4253    return true;
4254
4255  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4256    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4257
4258    if (!rhsOPT) return false;
4259
4260    if (rhsOPT->qual_empty()) {
4261      // If the RHS is a unqualified interface pointer "NSString*",
4262      // make sure we check the class hierarchy.
4263      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4264        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4265             E = lhsQID->qual_end(); I != E; ++I) {
4266          // when comparing an id<P> on lhs with a static type on rhs,
4267          // see if static class implements all of id's protocols, directly or
4268          // through its super class and categories.
4269          if (!rhsID->ClassImplementsProtocol(*I, true))
4270            return false;
4271        }
4272      }
4273      // If there are no qualifiers and no interface, we have an 'id'.
4274      return true;
4275    }
4276    // Both the right and left sides have qualifiers.
4277    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4278         E = lhsQID->qual_end(); I != E; ++I) {
4279      ObjCProtocolDecl *lhsProto = *I;
4280      bool match = false;
4281
4282      // when comparing an id<P> on lhs with a static type on rhs,
4283      // see if static class implements all of id's protocols, directly or
4284      // through its super class and categories.
4285      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4286           E = rhsOPT->qual_end(); J != E; ++J) {
4287        ObjCProtocolDecl *rhsProto = *J;
4288        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4289            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4290          match = true;
4291          break;
4292        }
4293      }
4294      // If the RHS is a qualified interface pointer "NSString<P>*",
4295      // make sure we check the class hierarchy.
4296      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4297        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4298             E = lhsQID->qual_end(); I != E; ++I) {
4299          // when comparing an id<P> on lhs with a static type on rhs,
4300          // see if static class implements all of id's protocols, directly or
4301          // through its super class and categories.
4302          if (rhsID->ClassImplementsProtocol(*I, true)) {
4303            match = true;
4304            break;
4305          }
4306        }
4307      }
4308      if (!match)
4309        return false;
4310    }
4311
4312    return true;
4313  }
4314
4315  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4316  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4317
4318  if (const ObjCObjectPointerType *lhsOPT =
4319        lhs->getAsObjCInterfacePointerType()) {
4320    if (lhsOPT->qual_empty()) {
4321      bool match = false;
4322      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4323        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4324             E = rhsQID->qual_end(); I != E; ++I) {
4325          // when comparing an id<P> on rhs with a static type on lhs,
4326          // static class must implement all of id's protocols directly or
4327          // indirectly through its super class.
4328          if (lhsID->ClassImplementsProtocol(*I, true)) {
4329            match = true;
4330            break;
4331          }
4332        }
4333        if (!match)
4334          return false;
4335      }
4336      return true;
4337    }
4338    // Both the right and left sides have qualifiers.
4339    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4340         E = lhsOPT->qual_end(); I != E; ++I) {
4341      ObjCProtocolDecl *lhsProto = *I;
4342      bool match = false;
4343
4344      // when comparing an id<P> on lhs with a static type on rhs,
4345      // see if static class implements all of id's protocols, directly or
4346      // through its super class and categories.
4347      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4348           E = rhsQID->qual_end(); J != E; ++J) {
4349        ObjCProtocolDecl *rhsProto = *J;
4350        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4351            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4352          match = true;
4353          break;
4354        }
4355      }
4356      if (!match)
4357        return false;
4358    }
4359    return true;
4360  }
4361  return false;
4362}
4363
4364/// canAssignObjCInterfaces - Return true if the two interface types are
4365/// compatible for assignment from RHS to LHS.  This handles validation of any
4366/// protocol qualifiers on the LHS or RHS.
4367///
4368bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4369                                         const ObjCObjectPointerType *RHSOPT) {
4370  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4371  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4372
4373  // If either type represents the built-in 'id' or 'Class' types, return true.
4374  if (LHS->isObjCUnqualifiedIdOrClass() ||
4375      RHS->isObjCUnqualifiedIdOrClass())
4376    return true;
4377
4378  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4379    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4380                                             QualType(RHSOPT,0),
4381                                             false);
4382
4383  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4384    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4385                                                QualType(RHSOPT,0));
4386
4387  // If we have 2 user-defined types, fall into that path.
4388  if (LHS->getInterface() && RHS->getInterface())
4389    return canAssignObjCInterfaces(LHS, RHS);
4390
4391  return false;
4392}
4393
4394/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4395/// for providing type-safty for objective-c pointers used to pass/return
4396/// arguments in block literals. When passed as arguments, passing 'A*' where
4397/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4398/// not OK. For the return type, the opposite is not OK.
4399bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4400                                         const ObjCObjectPointerType *LHSOPT,
4401                                         const ObjCObjectPointerType *RHSOPT) {
4402  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4403    return true;
4404
4405  if (LHSOPT->isObjCBuiltinType()) {
4406    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4407  }
4408
4409  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4410    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4411                                             QualType(RHSOPT,0),
4412                                             false);
4413
4414  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4415  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4416  if (LHS && RHS)  { // We have 2 user-defined types.
4417    if (LHS != RHS) {
4418      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4419        return false;
4420      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4421        return true;
4422    }
4423    else
4424      return true;
4425  }
4426  return false;
4427}
4428
4429/// getIntersectionOfProtocols - This routine finds the intersection of set
4430/// of protocols inherited from two distinct objective-c pointer objects.
4431/// It is used to build composite qualifier list of the composite type of
4432/// the conditional expression involving two objective-c pointer objects.
4433static
4434void getIntersectionOfProtocols(ASTContext &Context,
4435                                const ObjCObjectPointerType *LHSOPT,
4436                                const ObjCObjectPointerType *RHSOPT,
4437      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4438
4439  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4440  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4441  assert(LHS->getInterface() && "LHS must have an interface base");
4442  assert(RHS->getInterface() && "RHS must have an interface base");
4443
4444  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4445  unsigned LHSNumProtocols = LHS->getNumProtocols();
4446  if (LHSNumProtocols > 0)
4447    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4448  else {
4449    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4450    Context.CollectInheritedProtocols(LHS->getInterface(),
4451                                      LHSInheritedProtocols);
4452    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4453                                LHSInheritedProtocols.end());
4454  }
4455
4456  unsigned RHSNumProtocols = RHS->getNumProtocols();
4457  if (RHSNumProtocols > 0) {
4458    ObjCProtocolDecl **RHSProtocols =
4459      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4460    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4461      if (InheritedProtocolSet.count(RHSProtocols[i]))
4462        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4463  }
4464  else {
4465    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4466    Context.CollectInheritedProtocols(RHS->getInterface(),
4467                                      RHSInheritedProtocols);
4468    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4469         RHSInheritedProtocols.begin(),
4470         E = RHSInheritedProtocols.end(); I != E; ++I)
4471      if (InheritedProtocolSet.count((*I)))
4472        IntersectionOfProtocols.push_back((*I));
4473  }
4474}
4475
4476/// areCommonBaseCompatible - Returns common base class of the two classes if
4477/// one found. Note that this is O'2 algorithm. But it will be called as the
4478/// last type comparison in a ?-exp of ObjC pointer types before a
4479/// warning is issued. So, its invokation is extremely rare.
4480QualType ASTContext::areCommonBaseCompatible(
4481                                          const ObjCObjectPointerType *Lptr,
4482                                          const ObjCObjectPointerType *Rptr) {
4483  const ObjCObjectType *LHS = Lptr->getObjectType();
4484  const ObjCObjectType *RHS = Rptr->getObjectType();
4485  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4486  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4487  if (!LDecl || !RDecl)
4488    return QualType();
4489
4490  while ((LDecl = LDecl->getSuperClass())) {
4491    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4492    if (canAssignObjCInterfaces(LHS, RHS)) {
4493      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4494      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4495
4496      QualType Result = QualType(LHS, 0);
4497      if (!Protocols.empty())
4498        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4499      Result = getObjCObjectPointerType(Result);
4500      return Result;
4501    }
4502  }
4503
4504  return QualType();
4505}
4506
4507bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4508                                         const ObjCObjectType *RHS) {
4509  assert(LHS->getInterface() && "LHS is not an interface type");
4510  assert(RHS->getInterface() && "RHS is not an interface type");
4511
4512  // Verify that the base decls are compatible: the RHS must be a subclass of
4513  // the LHS.
4514  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4515    return false;
4516
4517  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4518  // protocol qualified at all, then we are good.
4519  if (LHS->getNumProtocols() == 0)
4520    return true;
4521
4522  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4523  // isn't a superset.
4524  if (RHS->getNumProtocols() == 0)
4525    return true;  // FIXME: should return false!
4526
4527  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4528                                     LHSPE = LHS->qual_end();
4529       LHSPI != LHSPE; LHSPI++) {
4530    bool RHSImplementsProtocol = false;
4531
4532    // If the RHS doesn't implement the protocol on the left, the types
4533    // are incompatible.
4534    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4535                                       RHSPE = RHS->qual_end();
4536         RHSPI != RHSPE; RHSPI++) {
4537      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4538        RHSImplementsProtocol = true;
4539        break;
4540      }
4541    }
4542    // FIXME: For better diagnostics, consider passing back the protocol name.
4543    if (!RHSImplementsProtocol)
4544      return false;
4545  }
4546  // The RHS implements all protocols listed on the LHS.
4547  return true;
4548}
4549
4550bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4551  // get the "pointed to" types
4552  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4553  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4554
4555  if (!LHSOPT || !RHSOPT)
4556    return false;
4557
4558  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4559         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4560}
4561
4562bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4563  return canAssignObjCInterfaces(
4564                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4565                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4566}
4567
4568/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4569/// both shall have the identically qualified version of a compatible type.
4570/// C99 6.2.7p1: Two types have compatible types if their types are the
4571/// same. See 6.7.[2,3,5] for additional rules.
4572bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4573                                    bool CompareUnqualified) {
4574  if (getLangOptions().CPlusPlus)
4575    return hasSameType(LHS, RHS);
4576
4577  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4578}
4579
4580bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4581  return !mergeTypes(LHS, RHS, true).isNull();
4582}
4583
4584QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4585                                        bool OfBlockPointer,
4586                                        bool Unqualified) {
4587  const FunctionType *lbase = lhs->getAs<FunctionType>();
4588  const FunctionType *rbase = rhs->getAs<FunctionType>();
4589  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4590  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4591  bool allLTypes = true;
4592  bool allRTypes = true;
4593
4594  // Check return type
4595  QualType retType;
4596  if (OfBlockPointer)
4597    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
4598                         Unqualified);
4599  else
4600   retType = mergeTypes(lbase->getResultType(), rbase->getResultType(),
4601                        false, Unqualified);
4602  if (retType.isNull()) return QualType();
4603
4604  if (Unqualified)
4605    retType = retType.getUnqualifiedType();
4606
4607  CanQualType LRetType = getCanonicalType(lbase->getResultType());
4608  CanQualType RRetType = getCanonicalType(rbase->getResultType());
4609  if (Unqualified) {
4610    LRetType = LRetType.getUnqualifiedType();
4611    RRetType = RRetType.getUnqualifiedType();
4612  }
4613
4614  if (getCanonicalType(retType) != LRetType)
4615    allLTypes = false;
4616  if (getCanonicalType(retType) != RRetType)
4617    allRTypes = false;
4618  // FIXME: double check this
4619  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4620  //                           rbase->getRegParmAttr() != 0 &&
4621  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4622  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4623  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4624  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4625      lbaseInfo.getRegParm();
4626  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4627  if (NoReturn != lbaseInfo.getNoReturn() ||
4628      RegParm != lbaseInfo.getRegParm())
4629    allLTypes = false;
4630  if (NoReturn != rbaseInfo.getNoReturn() ||
4631      RegParm != rbaseInfo.getRegParm())
4632    allRTypes = false;
4633  CallingConv lcc = lbaseInfo.getCC();
4634  CallingConv rcc = rbaseInfo.getCC();
4635  // Compatible functions must have compatible calling conventions
4636  if (!isSameCallConv(lcc, rcc))
4637    return QualType();
4638
4639  if (lproto && rproto) { // two C99 style function prototypes
4640    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4641           "C++ shouldn't be here");
4642    unsigned lproto_nargs = lproto->getNumArgs();
4643    unsigned rproto_nargs = rproto->getNumArgs();
4644
4645    // Compatible functions must have the same number of arguments
4646    if (lproto_nargs != rproto_nargs)
4647      return QualType();
4648
4649    // Variadic and non-variadic functions aren't compatible
4650    if (lproto->isVariadic() != rproto->isVariadic())
4651      return QualType();
4652
4653    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4654      return QualType();
4655
4656    // Check argument compatibility
4657    llvm::SmallVector<QualType, 10> types;
4658    for (unsigned i = 0; i < lproto_nargs; i++) {
4659      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4660      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4661      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer,
4662                                    Unqualified);
4663      if (argtype.isNull()) return QualType();
4664
4665      if (Unqualified)
4666        argtype = argtype.getUnqualifiedType();
4667
4668      types.push_back(argtype);
4669      if (Unqualified) {
4670        largtype = largtype.getUnqualifiedType();
4671        rargtype = rargtype.getUnqualifiedType();
4672      }
4673
4674      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4675        allLTypes = false;
4676      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4677        allRTypes = false;
4678    }
4679    if (allLTypes) return lhs;
4680    if (allRTypes) return rhs;
4681    return getFunctionType(retType, types.begin(), types.size(),
4682                           lproto->isVariadic(), lproto->getTypeQuals(),
4683                           false, false, 0, 0,
4684                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4685  }
4686
4687  if (lproto) allRTypes = false;
4688  if (rproto) allLTypes = false;
4689
4690  const FunctionProtoType *proto = lproto ? lproto : rproto;
4691  if (proto) {
4692    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4693    if (proto->isVariadic()) return QualType();
4694    // Check that the types are compatible with the types that
4695    // would result from default argument promotions (C99 6.7.5.3p15).
4696    // The only types actually affected are promotable integer
4697    // types and floats, which would be passed as a different
4698    // type depending on whether the prototype is visible.
4699    unsigned proto_nargs = proto->getNumArgs();
4700    for (unsigned i = 0; i < proto_nargs; ++i) {
4701      QualType argTy = proto->getArgType(i);
4702
4703      // Look at the promotion type of enum types, since that is the type used
4704      // to pass enum values.
4705      if (const EnumType *Enum = argTy->getAs<EnumType>())
4706        argTy = Enum->getDecl()->getPromotionType();
4707
4708      if (argTy->isPromotableIntegerType() ||
4709          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4710        return QualType();
4711    }
4712
4713    if (allLTypes) return lhs;
4714    if (allRTypes) return rhs;
4715    return getFunctionType(retType, proto->arg_type_begin(),
4716                           proto->getNumArgs(), proto->isVariadic(),
4717                           proto->getTypeQuals(),
4718                           false, false, 0, 0,
4719                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4720  }
4721
4722  if (allLTypes) return lhs;
4723  if (allRTypes) return rhs;
4724  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4725  return getFunctionNoProtoType(retType, Info);
4726}
4727
4728QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4729                                bool OfBlockPointer,
4730                                bool Unqualified) {
4731  // C++ [expr]: If an expression initially has the type "reference to T", the
4732  // type is adjusted to "T" prior to any further analysis, the expression
4733  // designates the object or function denoted by the reference, and the
4734  // expression is an lvalue unless the reference is an rvalue reference and
4735  // the expression is a function call (possibly inside parentheses).
4736  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4737  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4738
4739  if (Unqualified) {
4740    LHS = LHS.getUnqualifiedType();
4741    RHS = RHS.getUnqualifiedType();
4742  }
4743
4744  QualType LHSCan = getCanonicalType(LHS),
4745           RHSCan = getCanonicalType(RHS);
4746
4747  // If two types are identical, they are compatible.
4748  if (LHSCan == RHSCan)
4749    return LHS;
4750
4751  // If the qualifiers are different, the types aren't compatible... mostly.
4752  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4753  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4754  if (LQuals != RQuals) {
4755    // If any of these qualifiers are different, we have a type
4756    // mismatch.
4757    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4758        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4759      return QualType();
4760
4761    // Exactly one GC qualifier difference is allowed: __strong is
4762    // okay if the other type has no GC qualifier but is an Objective
4763    // C object pointer (i.e. implicitly strong by default).  We fix
4764    // this by pretending that the unqualified type was actually
4765    // qualified __strong.
4766    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4767    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4768    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4769
4770    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4771      return QualType();
4772
4773    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4774      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4775    }
4776    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4777      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4778    }
4779    return QualType();
4780  }
4781
4782  // Okay, qualifiers are equal.
4783
4784  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4785  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4786
4787  // We want to consider the two function types to be the same for these
4788  // comparisons, just force one to the other.
4789  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4790  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4791
4792  // Same as above for arrays
4793  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4794    LHSClass = Type::ConstantArray;
4795  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4796    RHSClass = Type::ConstantArray;
4797
4798  // ObjCInterfaces are just specialized ObjCObjects.
4799  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4800  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4801
4802  // Canonicalize ExtVector -> Vector.
4803  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4804  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4805
4806  // If the canonical type classes don't match.
4807  if (LHSClass != RHSClass) {
4808    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4809    // a signed integer type, or an unsigned integer type.
4810    // Compatibility is based on the underlying type, not the promotion
4811    // type.
4812    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4813      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4814        return RHS;
4815    }
4816    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4817      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4818        return LHS;
4819    }
4820
4821    return QualType();
4822  }
4823
4824  // The canonical type classes match.
4825  switch (LHSClass) {
4826#define TYPE(Class, Base)
4827#define ABSTRACT_TYPE(Class, Base)
4828#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4829#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4830#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4831#include "clang/AST/TypeNodes.def"
4832    assert(false && "Non-canonical and dependent types shouldn't get here");
4833    return QualType();
4834
4835  case Type::LValueReference:
4836  case Type::RValueReference:
4837  case Type::MemberPointer:
4838    assert(false && "C++ should never be in mergeTypes");
4839    return QualType();
4840
4841  case Type::ObjCInterface:
4842  case Type::IncompleteArray:
4843  case Type::VariableArray:
4844  case Type::FunctionProto:
4845  case Type::ExtVector:
4846    assert(false && "Types are eliminated above");
4847    return QualType();
4848
4849  case Type::Pointer:
4850  {
4851    // Merge two pointer types, while trying to preserve typedef info
4852    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4853    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4854    if (Unqualified) {
4855      LHSPointee = LHSPointee.getUnqualifiedType();
4856      RHSPointee = RHSPointee.getUnqualifiedType();
4857    }
4858    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
4859                                     Unqualified);
4860    if (ResultType.isNull()) return QualType();
4861    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4862      return LHS;
4863    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4864      return RHS;
4865    return getPointerType(ResultType);
4866  }
4867  case Type::BlockPointer:
4868  {
4869    // Merge two block pointer types, while trying to preserve typedef info
4870    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4871    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4872    if (Unqualified) {
4873      LHSPointee = LHSPointee.getUnqualifiedType();
4874      RHSPointee = RHSPointee.getUnqualifiedType();
4875    }
4876    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
4877                                     Unqualified);
4878    if (ResultType.isNull()) return QualType();
4879    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4880      return LHS;
4881    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4882      return RHS;
4883    return getBlockPointerType(ResultType);
4884  }
4885  case Type::ConstantArray:
4886  {
4887    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4888    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4889    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4890      return QualType();
4891
4892    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4893    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4894    if (Unqualified) {
4895      LHSElem = LHSElem.getUnqualifiedType();
4896      RHSElem = RHSElem.getUnqualifiedType();
4897    }
4898
4899    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
4900    if (ResultType.isNull()) return QualType();
4901    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4902      return LHS;
4903    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4904      return RHS;
4905    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4906                                          ArrayType::ArraySizeModifier(), 0);
4907    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4908                                          ArrayType::ArraySizeModifier(), 0);
4909    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4910    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4911    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4912      return LHS;
4913    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4914      return RHS;
4915    if (LVAT) {
4916      // FIXME: This isn't correct! But tricky to implement because
4917      // the array's size has to be the size of LHS, but the type
4918      // has to be different.
4919      return LHS;
4920    }
4921    if (RVAT) {
4922      // FIXME: This isn't correct! But tricky to implement because
4923      // the array's size has to be the size of RHS, but the type
4924      // has to be different.
4925      return RHS;
4926    }
4927    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4928    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4929    return getIncompleteArrayType(ResultType,
4930                                  ArrayType::ArraySizeModifier(), 0);
4931  }
4932  case Type::FunctionNoProto:
4933    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
4934  case Type::Record:
4935  case Type::Enum:
4936    return QualType();
4937  case Type::Builtin:
4938    // Only exactly equal builtin types are compatible, which is tested above.
4939    return QualType();
4940  case Type::Complex:
4941    // Distinct complex types are incompatible.
4942    return QualType();
4943  case Type::Vector:
4944    // FIXME: The merged type should be an ExtVector!
4945    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4946                             RHSCan->getAs<VectorType>()))
4947      return LHS;
4948    return QualType();
4949  case Type::ObjCObject: {
4950    // Check if the types are assignment compatible.
4951    // FIXME: This should be type compatibility, e.g. whether
4952    // "LHS x; RHS x;" at global scope is legal.
4953    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
4954    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
4955    if (canAssignObjCInterfaces(LHSIface, RHSIface))
4956      return LHS;
4957
4958    return QualType();
4959  }
4960  case Type::ObjCObjectPointer: {
4961    if (OfBlockPointer) {
4962      if (canAssignObjCInterfacesInBlockPointer(
4963                                          LHS->getAs<ObjCObjectPointerType>(),
4964                                          RHS->getAs<ObjCObjectPointerType>()))
4965      return LHS;
4966      return QualType();
4967    }
4968    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4969                                RHS->getAs<ObjCObjectPointerType>()))
4970      return LHS;
4971
4972    return QualType();
4973    }
4974  }
4975
4976  return QualType();
4977}
4978
4979/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
4980/// 'RHS' attributes and returns the merged version; including for function
4981/// return types.
4982QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
4983  QualType LHSCan = getCanonicalType(LHS),
4984  RHSCan = getCanonicalType(RHS);
4985  // If two types are identical, they are compatible.
4986  if (LHSCan == RHSCan)
4987    return LHS;
4988  if (RHSCan->isFunctionType()) {
4989    if (!LHSCan->isFunctionType())
4990      return QualType();
4991    QualType OldReturnType =
4992      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
4993    QualType NewReturnType =
4994      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
4995    QualType ResReturnType =
4996      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
4997    if (ResReturnType.isNull())
4998      return QualType();
4999    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5000      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5001      // In either case, use OldReturnType to build the new function type.
5002      const FunctionType *F = LHS->getAs<FunctionType>();
5003      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5004        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
5005        QualType ResultType
5006          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5007                                  FPT->getNumArgs(), FPT->isVariadic(),
5008                                  FPT->getTypeQuals(),
5009                                  FPT->hasExceptionSpec(),
5010                                  FPT->hasAnyExceptionSpec(),
5011                                  FPT->getNumExceptions(),
5012                                  FPT->exception_begin(),
5013                                  Info);
5014        return ResultType;
5015      }
5016    }
5017    return QualType();
5018  }
5019
5020  // If the qualifiers are different, the types can still be merged.
5021  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5022  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5023  if (LQuals != RQuals) {
5024    // If any of these qualifiers are different, we have a type mismatch.
5025    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5026        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5027      return QualType();
5028
5029    // Exactly one GC qualifier difference is allowed: __strong is
5030    // okay if the other type has no GC qualifier but is an Objective
5031    // C object pointer (i.e. implicitly strong by default).  We fix
5032    // this by pretending that the unqualified type was actually
5033    // qualified __strong.
5034    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5035    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5036    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5037
5038    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5039      return QualType();
5040
5041    if (GC_L == Qualifiers::Strong)
5042      return LHS;
5043    if (GC_R == Qualifiers::Strong)
5044      return RHS;
5045    return QualType();
5046  }
5047
5048  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5049    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5050    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5051    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5052    if (ResQT == LHSBaseQT)
5053      return LHS;
5054    if (ResQT == RHSBaseQT)
5055      return RHS;
5056  }
5057  return QualType();
5058}
5059
5060//===----------------------------------------------------------------------===//
5061//                         Integer Predicates
5062//===----------------------------------------------------------------------===//
5063
5064unsigned ASTContext::getIntWidth(QualType T) {
5065  if (T->isBooleanType())
5066    return 1;
5067  if (EnumType *ET = dyn_cast<EnumType>(T))
5068    T = ET->getDecl()->getIntegerType();
5069  // For builtin types, just use the standard type sizing method
5070  return (unsigned)getTypeSize(T);
5071}
5072
5073QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5074  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5075
5076  // Turn <4 x signed int> -> <4 x unsigned int>
5077  if (const VectorType *VTy = T->getAs<VectorType>())
5078    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5079             VTy->getNumElements(), VTy->getAltiVecSpecific());
5080
5081  // For enums, we return the unsigned version of the base type.
5082  if (const EnumType *ETy = T->getAs<EnumType>())
5083    T = ETy->getDecl()->getIntegerType();
5084
5085  const BuiltinType *BTy = T->getAs<BuiltinType>();
5086  assert(BTy && "Unexpected signed integer type");
5087  switch (BTy->getKind()) {
5088  case BuiltinType::Char_S:
5089  case BuiltinType::SChar:
5090    return UnsignedCharTy;
5091  case BuiltinType::Short:
5092    return UnsignedShortTy;
5093  case BuiltinType::Int:
5094    return UnsignedIntTy;
5095  case BuiltinType::Long:
5096    return UnsignedLongTy;
5097  case BuiltinType::LongLong:
5098    return UnsignedLongLongTy;
5099  case BuiltinType::Int128:
5100    return UnsignedInt128Ty;
5101  default:
5102    assert(0 && "Unexpected signed integer type");
5103    return QualType();
5104  }
5105}
5106
5107ExternalASTSource::~ExternalASTSource() { }
5108
5109void ExternalASTSource::PrintStats() { }
5110
5111
5112//===----------------------------------------------------------------------===//
5113//                          Builtin Type Computation
5114//===----------------------------------------------------------------------===//
5115
5116/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5117/// pointer over the consumed characters.  This returns the resultant type.
5118static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
5119                                  ASTContext::GetBuiltinTypeError &Error,
5120                                  bool AllowTypeModifiers = true) {
5121  // Modifiers.
5122  int HowLong = 0;
5123  bool Signed = false, Unsigned = false;
5124
5125  // Read the modifiers first.
5126  bool Done = false;
5127  while (!Done) {
5128    switch (*Str++) {
5129    default: Done = true; --Str; break;
5130    case 'S':
5131      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5132      assert(!Signed && "Can't use 'S' modifier multiple times!");
5133      Signed = true;
5134      break;
5135    case 'U':
5136      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5137      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5138      Unsigned = true;
5139      break;
5140    case 'L':
5141      assert(HowLong <= 2 && "Can't have LLLL modifier");
5142      ++HowLong;
5143      break;
5144    }
5145  }
5146
5147  QualType Type;
5148
5149  // Read the base type.
5150  switch (*Str++) {
5151  default: assert(0 && "Unknown builtin type letter!");
5152  case 'v':
5153    assert(HowLong == 0 && !Signed && !Unsigned &&
5154           "Bad modifiers used with 'v'!");
5155    Type = Context.VoidTy;
5156    break;
5157  case 'f':
5158    assert(HowLong == 0 && !Signed && !Unsigned &&
5159           "Bad modifiers used with 'f'!");
5160    Type = Context.FloatTy;
5161    break;
5162  case 'd':
5163    assert(HowLong < 2 && !Signed && !Unsigned &&
5164           "Bad modifiers used with 'd'!");
5165    if (HowLong)
5166      Type = Context.LongDoubleTy;
5167    else
5168      Type = Context.DoubleTy;
5169    break;
5170  case 's':
5171    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5172    if (Unsigned)
5173      Type = Context.UnsignedShortTy;
5174    else
5175      Type = Context.ShortTy;
5176    break;
5177  case 'i':
5178    if (HowLong == 3)
5179      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5180    else if (HowLong == 2)
5181      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5182    else if (HowLong == 1)
5183      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5184    else
5185      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5186    break;
5187  case 'c':
5188    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5189    if (Signed)
5190      Type = Context.SignedCharTy;
5191    else if (Unsigned)
5192      Type = Context.UnsignedCharTy;
5193    else
5194      Type = Context.CharTy;
5195    break;
5196  case 'b': // boolean
5197    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5198    Type = Context.BoolTy;
5199    break;
5200  case 'z':  // size_t.
5201    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5202    Type = Context.getSizeType();
5203    break;
5204  case 'F':
5205    Type = Context.getCFConstantStringType();
5206    break;
5207  case 'a':
5208    Type = Context.getBuiltinVaListType();
5209    assert(!Type.isNull() && "builtin va list type not initialized!");
5210    break;
5211  case 'A':
5212    // This is a "reference" to a va_list; however, what exactly
5213    // this means depends on how va_list is defined. There are two
5214    // different kinds of va_list: ones passed by value, and ones
5215    // passed by reference.  An example of a by-value va_list is
5216    // x86, where va_list is a char*. An example of by-ref va_list
5217    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5218    // we want this argument to be a char*&; for x86-64, we want
5219    // it to be a __va_list_tag*.
5220    Type = Context.getBuiltinVaListType();
5221    assert(!Type.isNull() && "builtin va list type not initialized!");
5222    if (Type->isArrayType()) {
5223      Type = Context.getArrayDecayedType(Type);
5224    } else {
5225      Type = Context.getLValueReferenceType(Type);
5226    }
5227    break;
5228  case 'V': {
5229    char *End;
5230    unsigned NumElements = strtoul(Str, &End, 10);
5231    assert(End != Str && "Missing vector size");
5232
5233    Str = End;
5234
5235    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5236    // FIXME: Don't know what to do about AltiVec.
5237    Type = Context.getVectorType(ElementType, NumElements,
5238                                 VectorType::NotAltiVec);
5239    break;
5240  }
5241  case 'X': {
5242    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5243    Type = Context.getComplexType(ElementType);
5244    break;
5245  }
5246  case 'P':
5247    Type = Context.getFILEType();
5248    if (Type.isNull()) {
5249      Error = ASTContext::GE_Missing_stdio;
5250      return QualType();
5251    }
5252    break;
5253  case 'J':
5254    if (Signed)
5255      Type = Context.getsigjmp_bufType();
5256    else
5257      Type = Context.getjmp_bufType();
5258
5259    if (Type.isNull()) {
5260      Error = ASTContext::GE_Missing_setjmp;
5261      return QualType();
5262    }
5263    break;
5264  }
5265
5266  if (!AllowTypeModifiers)
5267    return Type;
5268
5269  Done = false;
5270  while (!Done) {
5271    switch (char c = *Str++) {
5272      default: Done = true; --Str; break;
5273      case '*':
5274      case '&':
5275        {
5276          // Both pointers and references can have their pointee types
5277          // qualified with an address space.
5278          char *End;
5279          unsigned AddrSpace = strtoul(Str, &End, 10);
5280          if (End != Str && AddrSpace != 0) {
5281            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5282            Str = End;
5283          }
5284        }
5285        if (c == '*')
5286          Type = Context.getPointerType(Type);
5287        else
5288          Type = Context.getLValueReferenceType(Type);
5289        break;
5290      // FIXME: There's no way to have a built-in with an rvalue ref arg.
5291      case 'C':
5292        Type = Type.withConst();
5293        break;
5294      case 'D':
5295        Type = Context.getVolatileType(Type);
5296        break;
5297    }
5298  }
5299
5300  return Type;
5301}
5302
5303/// GetBuiltinType - Return the type for the specified builtin.
5304QualType ASTContext::GetBuiltinType(unsigned id,
5305                                    GetBuiltinTypeError &Error) {
5306  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5307
5308  llvm::SmallVector<QualType, 8> ArgTypes;
5309
5310  Error = GE_None;
5311  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5312  if (Error != GE_None)
5313    return QualType();
5314  while (TypeStr[0] && TypeStr[0] != '.') {
5315    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5316    if (Error != GE_None)
5317      return QualType();
5318
5319    // Do array -> pointer decay.  The builtin should use the decayed type.
5320    if (Ty->isArrayType())
5321      Ty = getArrayDecayedType(Ty);
5322
5323    ArgTypes.push_back(Ty);
5324  }
5325
5326  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5327         "'.' should only occur at end of builtin type list!");
5328
5329  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5330  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5331    return getFunctionNoProtoType(ResType);
5332
5333  // FIXME: Should we create noreturn types?
5334  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5335                         TypeStr[0] == '.', 0, false, false, 0, 0,
5336                         FunctionType::ExtInfo());
5337}
5338
5339QualType
5340ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5341  // Perform the usual unary conversions. We do this early so that
5342  // integral promotions to "int" can allow us to exit early, in the
5343  // lhs == rhs check. Also, for conversion purposes, we ignore any
5344  // qualifiers.  For example, "const float" and "float" are
5345  // equivalent.
5346  if (lhs->isPromotableIntegerType())
5347    lhs = getPromotedIntegerType(lhs);
5348  else
5349    lhs = lhs.getUnqualifiedType();
5350  if (rhs->isPromotableIntegerType())
5351    rhs = getPromotedIntegerType(rhs);
5352  else
5353    rhs = rhs.getUnqualifiedType();
5354
5355  // If both types are identical, no conversion is needed.
5356  if (lhs == rhs)
5357    return lhs;
5358
5359  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5360  // The caller can deal with this (e.g. pointer + int).
5361  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5362    return lhs;
5363
5364  // At this point, we have two different arithmetic types.
5365
5366  // Handle complex types first (C99 6.3.1.8p1).
5367  if (lhs->isComplexType() || rhs->isComplexType()) {
5368    // if we have an integer operand, the result is the complex type.
5369    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5370      // convert the rhs to the lhs complex type.
5371      return lhs;
5372    }
5373    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5374      // convert the lhs to the rhs complex type.
5375      return rhs;
5376    }
5377    // This handles complex/complex, complex/float, or float/complex.
5378    // When both operands are complex, the shorter operand is converted to the
5379    // type of the longer, and that is the type of the result. This corresponds
5380    // to what is done when combining two real floating-point operands.
5381    // The fun begins when size promotion occur across type domains.
5382    // From H&S 6.3.4: When one operand is complex and the other is a real
5383    // floating-point type, the less precise type is converted, within it's
5384    // real or complex domain, to the precision of the other type. For example,
5385    // when combining a "long double" with a "double _Complex", the
5386    // "double _Complex" is promoted to "long double _Complex".
5387    int result = getFloatingTypeOrder(lhs, rhs);
5388
5389    if (result > 0) { // The left side is bigger, convert rhs.
5390      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5391    } else if (result < 0) { // The right side is bigger, convert lhs.
5392      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5393    }
5394    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5395    // domains match. This is a requirement for our implementation, C99
5396    // does not require this promotion.
5397    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5398      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5399        return rhs;
5400      } else { // handle "_Complex double, double".
5401        return lhs;
5402      }
5403    }
5404    return lhs; // The domain/size match exactly.
5405  }
5406  // Now handle "real" floating types (i.e. float, double, long double).
5407  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5408    // if we have an integer operand, the result is the real floating type.
5409    if (rhs->isIntegerType()) {
5410      // convert rhs to the lhs floating point type.
5411      return lhs;
5412    }
5413    if (rhs->isComplexIntegerType()) {
5414      // convert rhs to the complex floating point type.
5415      return getComplexType(lhs);
5416    }
5417    if (lhs->isIntegerType()) {
5418      // convert lhs to the rhs floating point type.
5419      return rhs;
5420    }
5421    if (lhs->isComplexIntegerType()) {
5422      // convert lhs to the complex floating point type.
5423      return getComplexType(rhs);
5424    }
5425    // We have two real floating types, float/complex combos were handled above.
5426    // Convert the smaller operand to the bigger result.
5427    int result = getFloatingTypeOrder(lhs, rhs);
5428    if (result > 0) // convert the rhs
5429      return lhs;
5430    assert(result < 0 && "illegal float comparison");
5431    return rhs;   // convert the lhs
5432  }
5433  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5434    // Handle GCC complex int extension.
5435    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5436    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5437
5438    if (lhsComplexInt && rhsComplexInt) {
5439      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5440                              rhsComplexInt->getElementType()) >= 0)
5441        return lhs; // convert the rhs
5442      return rhs;
5443    } else if (lhsComplexInt && rhs->isIntegerType()) {
5444      // convert the rhs to the lhs complex type.
5445      return lhs;
5446    } else if (rhsComplexInt && lhs->isIntegerType()) {
5447      // convert the lhs to the rhs complex type.
5448      return rhs;
5449    }
5450  }
5451  // Finally, we have two differing integer types.
5452  // The rules for this case are in C99 6.3.1.8
5453  int compare = getIntegerTypeOrder(lhs, rhs);
5454  bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
5455       rhsSigned = rhs->hasSignedIntegerRepresentation();
5456  QualType destType;
5457  if (lhsSigned == rhsSigned) {
5458    // Same signedness; use the higher-ranked type
5459    destType = compare >= 0 ? lhs : rhs;
5460  } else if (compare != (lhsSigned ? 1 : -1)) {
5461    // The unsigned type has greater than or equal rank to the
5462    // signed type, so use the unsigned type
5463    destType = lhsSigned ? rhs : lhs;
5464  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5465    // The two types are different widths; if we are here, that
5466    // means the signed type is larger than the unsigned type, so
5467    // use the signed type.
5468    destType = lhsSigned ? lhs : rhs;
5469  } else {
5470    // The signed type is higher-ranked than the unsigned type,
5471    // but isn't actually any bigger (like unsigned int and long
5472    // on most 32-bit systems).  Use the unsigned type corresponding
5473    // to the signed type.
5474    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5475  }
5476  return destType;
5477}
5478
5479GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5480  GVALinkage External = GVA_StrongExternal;
5481
5482  Linkage L = FD->getLinkage();
5483  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5484      FD->getType()->getLinkage() == UniqueExternalLinkage)
5485    L = UniqueExternalLinkage;
5486
5487  switch (L) {
5488  case NoLinkage:
5489  case InternalLinkage:
5490  case UniqueExternalLinkage:
5491    return GVA_Internal;
5492
5493  case ExternalLinkage:
5494    switch (FD->getTemplateSpecializationKind()) {
5495    case TSK_Undeclared:
5496    case TSK_ExplicitSpecialization:
5497      External = GVA_StrongExternal;
5498      break;
5499
5500    case TSK_ExplicitInstantiationDefinition:
5501      return GVA_ExplicitTemplateInstantiation;
5502
5503    case TSK_ExplicitInstantiationDeclaration:
5504    case TSK_ImplicitInstantiation:
5505      External = GVA_TemplateInstantiation;
5506      break;
5507    }
5508  }
5509
5510  if (!FD->isInlined())
5511    return External;
5512
5513  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5514    // GNU or C99 inline semantics. Determine whether this symbol should be
5515    // externally visible.
5516    if (FD->isInlineDefinitionExternallyVisible())
5517      return External;
5518
5519    // C99 inline semantics, where the symbol is not externally visible.
5520    return GVA_C99Inline;
5521  }
5522
5523  // C++0x [temp.explicit]p9:
5524  //   [ Note: The intent is that an inline function that is the subject of
5525  //   an explicit instantiation declaration will still be implicitly
5526  //   instantiated when used so that the body can be considered for
5527  //   inlining, but that no out-of-line copy of the inline function would be
5528  //   generated in the translation unit. -- end note ]
5529  if (FD->getTemplateSpecializationKind()
5530                                       == TSK_ExplicitInstantiationDeclaration)
5531    return GVA_C99Inline;
5532
5533  return GVA_CXXInline;
5534}
5535
5536GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5537  // If this is a static data member, compute the kind of template
5538  // specialization. Otherwise, this variable is not part of a
5539  // template.
5540  TemplateSpecializationKind TSK = TSK_Undeclared;
5541  if (VD->isStaticDataMember())
5542    TSK = VD->getTemplateSpecializationKind();
5543
5544  Linkage L = VD->getLinkage();
5545  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5546      VD->getType()->getLinkage() == UniqueExternalLinkage)
5547    L = UniqueExternalLinkage;
5548
5549  switch (L) {
5550  case NoLinkage:
5551  case InternalLinkage:
5552  case UniqueExternalLinkage:
5553    return GVA_Internal;
5554
5555  case ExternalLinkage:
5556    switch (TSK) {
5557    case TSK_Undeclared:
5558    case TSK_ExplicitSpecialization:
5559      return GVA_StrongExternal;
5560
5561    case TSK_ExplicitInstantiationDeclaration:
5562      llvm_unreachable("Variable should not be instantiated");
5563      // Fall through to treat this like any other instantiation.
5564
5565    case TSK_ExplicitInstantiationDefinition:
5566      return GVA_ExplicitTemplateInstantiation;
5567
5568    case TSK_ImplicitInstantiation:
5569      return GVA_TemplateInstantiation;
5570    }
5571  }
5572
5573  return GVA_StrongExternal;
5574}
5575
5576bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5577  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5578    if (!VD->isFileVarDecl())
5579      return false;
5580  } else if (!isa<FunctionDecl>(D))
5581    return false;
5582
5583  // Weak references don't produce any output by themselves.
5584  if (D->hasAttr<WeakRefAttr>())
5585    return false;
5586
5587  // Aliases and used decls are required.
5588  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5589    return true;
5590
5591  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5592    // Forward declarations aren't required.
5593    if (!FD->isThisDeclarationADefinition())
5594      return false;
5595
5596    // Constructors and destructors are required.
5597    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5598      return true;
5599
5600    // The key function for a class is required.
5601    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5602      const CXXRecordDecl *RD = MD->getParent();
5603      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5604        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5605        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5606          return true;
5607      }
5608    }
5609
5610    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5611
5612    // static, static inline, always_inline, and extern inline functions can
5613    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5614    // Implicit template instantiations can also be deferred in C++.
5615    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5616        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5617      return false;
5618    return true;
5619  }
5620
5621  const VarDecl *VD = cast<VarDecl>(D);
5622  assert(VD->isFileVarDecl() && "Expected file scoped var");
5623
5624  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5625    return false;
5626
5627  // Structs that have non-trivial constructors or destructors are required.
5628
5629  // FIXME: Handle references.
5630  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5631    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5632      if (RD->hasDefinition() &&
5633          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5634        return true;
5635    }
5636  }
5637
5638  GVALinkage L = GetGVALinkageForVariable(VD);
5639  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5640    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5641      return false;
5642  }
5643
5644  return true;
5645}
5646
5647CXXABI::~CXXABI() {}
5648