ASTContext.cpp revision d8672ef2d343a0dbfe838724fb2d9fb4efea6041
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentLexer.h"
17#include "clang/AST/CommentSema.h"
18#include "clang/AST/CommentParser.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExternalASTSource.h"
26#include "clang/AST/ASTMutationListener.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/Mangle.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Support/Capacity.h"
37#include "CXXABI.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // TODO: handle comments for function parameters properly.
72  if (isa<ParmVarDecl>(D))
73    return NULL;
74
75  ArrayRef<RawComment *> RawComments = Comments.getComments();
76
77  // If there are no comments anywhere, we won't find anything.
78  if (RawComments.empty())
79    return NULL;
80
81  // Find declaration location.
82  // For Objective-C declarations we generally don't expect to have multiple
83  // declarators, thus use declaration starting location as the "declaration
84  // location".
85  // For all other declarations multiple declarators are used quite frequently,
86  // so we use the location of the identifier as the "declaration location".
87  SourceLocation DeclLoc;
88  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
89      isa<ObjCPropertyDecl>(D))
90    DeclLoc = D->getLocStart();
91  else
92    DeclLoc = D->getLocation();
93
94  // If the declaration doesn't map directly to a location in a file, we
95  // can't find the comment.
96  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
97    return NULL;
98
99  // Find the comment that occurs just after this declaration.
100  RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
101  ArrayRef<RawComment *>::iterator Comment
102      = std::lower_bound(RawComments.begin(),
103                         RawComments.end(),
104                         &CommentAtDeclLoc,
105                         BeforeThanCompare<RawComment>(SourceMgr));
106
107  // Decompose the location for the declaration and find the beginning of the
108  // file buffer.
109  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
110
111  // First check whether we have a trailing comment.
112  if (Comment != RawComments.end() &&
113      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
114      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
115    std::pair<FileID, unsigned> CommentBeginDecomp
116      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
117    // Check that Doxygen trailing comment comes after the declaration, starts
118    // on the same line and in the same file as the declaration.
119    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
120        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
121          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
122                                     CommentBeginDecomp.second)) {
123      return *Comment;
124    }
125  }
126
127  // The comment just after the declaration was not a trailing comment.
128  // Let's look at the previous comment.
129  if (Comment == RawComments.begin())
130    return NULL;
131  --Comment;
132
133  // Check that we actually have a non-member Doxygen comment.
134  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
135    return NULL;
136
137  // Decompose the end of the comment.
138  std::pair<FileID, unsigned> CommentEndDecomp
139    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
140
141  // If the comment and the declaration aren't in the same file, then they
142  // aren't related.
143  if (DeclLocDecomp.first != CommentEndDecomp.first)
144    return NULL;
145
146  // Get the corresponding buffer.
147  bool Invalid = false;
148  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
149                                               &Invalid).data();
150  if (Invalid)
151    return NULL;
152
153  // Extract text between the comment and declaration.
154  StringRef Text(Buffer + CommentEndDecomp.second,
155                 DeclLocDecomp.second - CommentEndDecomp.second);
156
157  // There should be no other declarations or preprocessor directives between
158  // comment and declaration.
159  if (Text.find_first_of(",;{}#@") != StringRef::npos)
160    return NULL;
161
162  return *Comment;
163}
164
165const RawComment *ASTContext::getRawCommentForDecl(const Decl *D) const {
166  // Check whether we have cached a comment string for this declaration
167  // already.
168  llvm::DenseMap<const Decl *, RawAndParsedComment>::iterator Pos
169      = DeclComments.find(D);
170  if (Pos != DeclComments.end()) {
171    RawAndParsedComment C = Pos->second;
172    return C.first;
173  }
174
175  RawComment *RC = getRawCommentForDeclNoCache(D);
176  // If we found a comment, it should be a documentation comment.
177  assert(!RC || RC->isDocumentation());
178  DeclComments[D] =
179      RawAndParsedComment(RC, static_cast<comments::FullComment *>(NULL));
180  if (RC)
181    RC->setAttached();
182  return RC;
183}
184
185comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
186  llvm::DenseMap<const Decl *, RawAndParsedComment>::iterator Pos
187      = DeclComments.find(D);
188  const RawComment *RC;
189  if (Pos != DeclComments.end()) {
190    RawAndParsedComment C = Pos->second;
191    if (comments::FullComment *FC = C.second)
192      return FC;
193    RC = C.first;
194  } else
195    RC = getRawCommentForDecl(D);
196
197  if (!RC)
198    return NULL;
199
200  const StringRef RawText = RC->getRawText(SourceMgr);
201  comments::Lexer L(RC->getSourceRange().getBegin(), comments::CommentOptions(),
202                    RawText.begin(), RawText.end());
203
204  comments::Sema S(getAllocator(), getSourceManager(), getDiagnostics());
205  S.setDecl(D);
206  comments::Parser P(L, S, getAllocator(), getSourceManager(),
207                     getDiagnostics());
208
209  comments::FullComment *FC = P.parseFullComment();
210  DeclComments[D].second = FC;
211  return FC;
212}
213
214void
215ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
216                                               TemplateTemplateParmDecl *Parm) {
217  ID.AddInteger(Parm->getDepth());
218  ID.AddInteger(Parm->getPosition());
219  ID.AddBoolean(Parm->isParameterPack());
220
221  TemplateParameterList *Params = Parm->getTemplateParameters();
222  ID.AddInteger(Params->size());
223  for (TemplateParameterList::const_iterator P = Params->begin(),
224                                          PEnd = Params->end();
225       P != PEnd; ++P) {
226    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
227      ID.AddInteger(0);
228      ID.AddBoolean(TTP->isParameterPack());
229      continue;
230    }
231
232    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
233      ID.AddInteger(1);
234      ID.AddBoolean(NTTP->isParameterPack());
235      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
236      if (NTTP->isExpandedParameterPack()) {
237        ID.AddBoolean(true);
238        ID.AddInteger(NTTP->getNumExpansionTypes());
239        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
240          QualType T = NTTP->getExpansionType(I);
241          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
242        }
243      } else
244        ID.AddBoolean(false);
245      continue;
246    }
247
248    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
249    ID.AddInteger(2);
250    Profile(ID, TTP);
251  }
252}
253
254TemplateTemplateParmDecl *
255ASTContext::getCanonicalTemplateTemplateParmDecl(
256                                          TemplateTemplateParmDecl *TTP) const {
257  // Check if we already have a canonical template template parameter.
258  llvm::FoldingSetNodeID ID;
259  CanonicalTemplateTemplateParm::Profile(ID, TTP);
260  void *InsertPos = 0;
261  CanonicalTemplateTemplateParm *Canonical
262    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
263  if (Canonical)
264    return Canonical->getParam();
265
266  // Build a canonical template parameter list.
267  TemplateParameterList *Params = TTP->getTemplateParameters();
268  SmallVector<NamedDecl *, 4> CanonParams;
269  CanonParams.reserve(Params->size());
270  for (TemplateParameterList::const_iterator P = Params->begin(),
271                                          PEnd = Params->end();
272       P != PEnd; ++P) {
273    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
274      CanonParams.push_back(
275                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
276                                               SourceLocation(),
277                                               SourceLocation(),
278                                               TTP->getDepth(),
279                                               TTP->getIndex(), 0, false,
280                                               TTP->isParameterPack()));
281    else if (NonTypeTemplateParmDecl *NTTP
282             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
283      QualType T = getCanonicalType(NTTP->getType());
284      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
285      NonTypeTemplateParmDecl *Param;
286      if (NTTP->isExpandedParameterPack()) {
287        SmallVector<QualType, 2> ExpandedTypes;
288        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
289        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
290          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
291          ExpandedTInfos.push_back(
292                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
293        }
294
295        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
296                                                SourceLocation(),
297                                                SourceLocation(),
298                                                NTTP->getDepth(),
299                                                NTTP->getPosition(), 0,
300                                                T,
301                                                TInfo,
302                                                ExpandedTypes.data(),
303                                                ExpandedTypes.size(),
304                                                ExpandedTInfos.data());
305      } else {
306        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
307                                                SourceLocation(),
308                                                SourceLocation(),
309                                                NTTP->getDepth(),
310                                                NTTP->getPosition(), 0,
311                                                T,
312                                                NTTP->isParameterPack(),
313                                                TInfo);
314      }
315      CanonParams.push_back(Param);
316
317    } else
318      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
319                                           cast<TemplateTemplateParmDecl>(*P)));
320  }
321
322  TemplateTemplateParmDecl *CanonTTP
323    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
324                                       SourceLocation(), TTP->getDepth(),
325                                       TTP->getPosition(),
326                                       TTP->isParameterPack(),
327                                       0,
328                         TemplateParameterList::Create(*this, SourceLocation(),
329                                                       SourceLocation(),
330                                                       CanonParams.data(),
331                                                       CanonParams.size(),
332                                                       SourceLocation()));
333
334  // Get the new insert position for the node we care about.
335  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
336  assert(Canonical == 0 && "Shouldn't be in the map!");
337  (void)Canonical;
338
339  // Create the canonical template template parameter entry.
340  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
341  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
342  return CanonTTP;
343}
344
345CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
346  if (!LangOpts.CPlusPlus) return 0;
347
348  switch (T.getCXXABI()) {
349  case CXXABI_ARM:
350    return CreateARMCXXABI(*this);
351  case CXXABI_Itanium:
352    return CreateItaniumCXXABI(*this);
353  case CXXABI_Microsoft:
354    return CreateMicrosoftCXXABI(*this);
355  }
356  llvm_unreachable("Invalid CXXABI type!");
357}
358
359static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
360                                             const LangOptions &LOpts) {
361  if (LOpts.FakeAddressSpaceMap) {
362    // The fake address space map must have a distinct entry for each
363    // language-specific address space.
364    static const unsigned FakeAddrSpaceMap[] = {
365      1, // opencl_global
366      2, // opencl_local
367      3, // opencl_constant
368      4, // cuda_device
369      5, // cuda_constant
370      6  // cuda_shared
371    };
372    return &FakeAddrSpaceMap;
373  } else {
374    return &T.getAddressSpaceMap();
375  }
376}
377
378ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
379                       const TargetInfo *t,
380                       IdentifierTable &idents, SelectorTable &sels,
381                       Builtin::Context &builtins,
382                       unsigned size_reserve,
383                       bool DelayInitialization)
384  : FunctionProtoTypes(this_()),
385    TemplateSpecializationTypes(this_()),
386    DependentTemplateSpecializationTypes(this_()),
387    SubstTemplateTemplateParmPacks(this_()),
388    GlobalNestedNameSpecifier(0),
389    Int128Decl(0), UInt128Decl(0),
390    BuiltinVaListDecl(0),
391    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
392    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
393    FILEDecl(0),
394    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
395    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
396    cudaConfigureCallDecl(0),
397    NullTypeSourceInfo(QualType()),
398    FirstLocalImport(), LastLocalImport(),
399    SourceMgr(SM), LangOpts(LOpts),
400    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
401    Idents(idents), Selectors(sels),
402    BuiltinInfo(builtins),
403    DeclarationNames(*this),
404    ExternalSource(0), Listener(0),
405    Comments(SM), CommentsLoaded(false),
406    LastSDM(0, 0),
407    UniqueBlockByRefTypeID(0)
408{
409  if (size_reserve > 0) Types.reserve(size_reserve);
410  TUDecl = TranslationUnitDecl::Create(*this);
411
412  if (!DelayInitialization) {
413    assert(t && "No target supplied for ASTContext initialization");
414    InitBuiltinTypes(*t);
415  }
416}
417
418ASTContext::~ASTContext() {
419  // Release the DenseMaps associated with DeclContext objects.
420  // FIXME: Is this the ideal solution?
421  ReleaseDeclContextMaps();
422
423  // Call all of the deallocation functions.
424  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
425    Deallocations[I].first(Deallocations[I].second);
426
427  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
428  // because they can contain DenseMaps.
429  for (llvm::DenseMap<const ObjCContainerDecl*,
430       const ASTRecordLayout*>::iterator
431       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
432    // Increment in loop to prevent using deallocated memory.
433    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
434      R->Destroy(*this);
435
436  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
437       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
438    // Increment in loop to prevent using deallocated memory.
439    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
440      R->Destroy(*this);
441  }
442
443  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
444                                                    AEnd = DeclAttrs.end();
445       A != AEnd; ++A)
446    A->second->~AttrVec();
447}
448
449void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
450  Deallocations.push_back(std::make_pair(Callback, Data));
451}
452
453void
454ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
455  ExternalSource.reset(Source.take());
456}
457
458void ASTContext::PrintStats() const {
459  llvm::errs() << "\n*** AST Context Stats:\n";
460  llvm::errs() << "  " << Types.size() << " types total.\n";
461
462  unsigned counts[] = {
463#define TYPE(Name, Parent) 0,
464#define ABSTRACT_TYPE(Name, Parent)
465#include "clang/AST/TypeNodes.def"
466    0 // Extra
467  };
468
469  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
470    Type *T = Types[i];
471    counts[(unsigned)T->getTypeClass()]++;
472  }
473
474  unsigned Idx = 0;
475  unsigned TotalBytes = 0;
476#define TYPE(Name, Parent)                                              \
477  if (counts[Idx])                                                      \
478    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
479                 << " types\n";                                         \
480  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
481  ++Idx;
482#define ABSTRACT_TYPE(Name, Parent)
483#include "clang/AST/TypeNodes.def"
484
485  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
486
487  // Implicit special member functions.
488  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
489               << NumImplicitDefaultConstructors
490               << " implicit default constructors created\n";
491  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
492               << NumImplicitCopyConstructors
493               << " implicit copy constructors created\n";
494  if (getLangOpts().CPlusPlus)
495    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
496                 << NumImplicitMoveConstructors
497                 << " implicit move constructors created\n";
498  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
499               << NumImplicitCopyAssignmentOperators
500               << " implicit copy assignment operators created\n";
501  if (getLangOpts().CPlusPlus)
502    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
503                 << NumImplicitMoveAssignmentOperators
504                 << " implicit move assignment operators created\n";
505  llvm::errs() << NumImplicitDestructorsDeclared << "/"
506               << NumImplicitDestructors
507               << " implicit destructors created\n";
508
509  if (ExternalSource.get()) {
510    llvm::errs() << "\n";
511    ExternalSource->PrintStats();
512  }
513
514  BumpAlloc.PrintStats();
515}
516
517TypedefDecl *ASTContext::getInt128Decl() const {
518  if (!Int128Decl) {
519    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
520    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
521                                     getTranslationUnitDecl(),
522                                     SourceLocation(),
523                                     SourceLocation(),
524                                     &Idents.get("__int128_t"),
525                                     TInfo);
526  }
527
528  return Int128Decl;
529}
530
531TypedefDecl *ASTContext::getUInt128Decl() const {
532  if (!UInt128Decl) {
533    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
534    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
535                                     getTranslationUnitDecl(),
536                                     SourceLocation(),
537                                     SourceLocation(),
538                                     &Idents.get("__uint128_t"),
539                                     TInfo);
540  }
541
542  return UInt128Decl;
543}
544
545void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
546  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
547  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
548  Types.push_back(Ty);
549}
550
551void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
552  assert((!this->Target || this->Target == &Target) &&
553         "Incorrect target reinitialization");
554  assert(VoidTy.isNull() && "Context reinitialized?");
555
556  this->Target = &Target;
557
558  ABI.reset(createCXXABI(Target));
559  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
560
561  // C99 6.2.5p19.
562  InitBuiltinType(VoidTy,              BuiltinType::Void);
563
564  // C99 6.2.5p2.
565  InitBuiltinType(BoolTy,              BuiltinType::Bool);
566  // C99 6.2.5p3.
567  if (LangOpts.CharIsSigned)
568    InitBuiltinType(CharTy,            BuiltinType::Char_S);
569  else
570    InitBuiltinType(CharTy,            BuiltinType::Char_U);
571  // C99 6.2.5p4.
572  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
573  InitBuiltinType(ShortTy,             BuiltinType::Short);
574  InitBuiltinType(IntTy,               BuiltinType::Int);
575  InitBuiltinType(LongTy,              BuiltinType::Long);
576  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
577
578  // C99 6.2.5p6.
579  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
580  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
581  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
582  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
583  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
584
585  // C99 6.2.5p10.
586  InitBuiltinType(FloatTy,             BuiltinType::Float);
587  InitBuiltinType(DoubleTy,            BuiltinType::Double);
588  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
589
590  // GNU extension, 128-bit integers.
591  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
592  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
593
594  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
595    if (TargetInfo::isTypeSigned(Target.getWCharType()))
596      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
597    else  // -fshort-wchar makes wchar_t be unsigned.
598      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
599  } else // C99
600    WCharTy = getFromTargetType(Target.getWCharType());
601
602  WIntTy = getFromTargetType(Target.getWIntType());
603
604  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
605    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
606  else // C99
607    Char16Ty = getFromTargetType(Target.getChar16Type());
608
609  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
610    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
611  else // C99
612    Char32Ty = getFromTargetType(Target.getChar32Type());
613
614  // Placeholder type for type-dependent expressions whose type is
615  // completely unknown. No code should ever check a type against
616  // DependentTy and users should never see it; however, it is here to
617  // help diagnose failures to properly check for type-dependent
618  // expressions.
619  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
620
621  // Placeholder type for functions.
622  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
623
624  // Placeholder type for bound members.
625  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
626
627  // Placeholder type for pseudo-objects.
628  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
629
630  // "any" type; useful for debugger-like clients.
631  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
632
633  // Placeholder type for unbridged ARC casts.
634  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
635
636  // C99 6.2.5p11.
637  FloatComplexTy      = getComplexType(FloatTy);
638  DoubleComplexTy     = getComplexType(DoubleTy);
639  LongDoubleComplexTy = getComplexType(LongDoubleTy);
640
641  // Builtin types for 'id', 'Class', and 'SEL'.
642  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
643  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
644  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
645
646  // Builtin type for __objc_yes and __objc_no
647  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
648                       SignedCharTy : BoolTy);
649
650  ObjCConstantStringType = QualType();
651
652  // void * type
653  VoidPtrTy = getPointerType(VoidTy);
654
655  // nullptr type (C++0x 2.14.7)
656  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
657
658  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
659  InitBuiltinType(HalfTy, BuiltinType::Half);
660
661  // Builtin type used to help define __builtin_va_list.
662  VaListTagTy = QualType();
663}
664
665DiagnosticsEngine &ASTContext::getDiagnostics() const {
666  return SourceMgr.getDiagnostics();
667}
668
669AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
670  AttrVec *&Result = DeclAttrs[D];
671  if (!Result) {
672    void *Mem = Allocate(sizeof(AttrVec));
673    Result = new (Mem) AttrVec;
674  }
675
676  return *Result;
677}
678
679/// \brief Erase the attributes corresponding to the given declaration.
680void ASTContext::eraseDeclAttrs(const Decl *D) {
681  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
682  if (Pos != DeclAttrs.end()) {
683    Pos->second->~AttrVec();
684    DeclAttrs.erase(Pos);
685  }
686}
687
688MemberSpecializationInfo *
689ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
690  assert(Var->isStaticDataMember() && "Not a static data member");
691  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
692    = InstantiatedFromStaticDataMember.find(Var);
693  if (Pos == InstantiatedFromStaticDataMember.end())
694    return 0;
695
696  return Pos->second;
697}
698
699void
700ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
701                                                TemplateSpecializationKind TSK,
702                                          SourceLocation PointOfInstantiation) {
703  assert(Inst->isStaticDataMember() && "Not a static data member");
704  assert(Tmpl->isStaticDataMember() && "Not a static data member");
705  assert(!InstantiatedFromStaticDataMember[Inst] &&
706         "Already noted what static data member was instantiated from");
707  InstantiatedFromStaticDataMember[Inst]
708    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
709}
710
711FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
712                                                     const FunctionDecl *FD){
713  assert(FD && "Specialization is 0");
714  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
715    = ClassScopeSpecializationPattern.find(FD);
716  if (Pos == ClassScopeSpecializationPattern.end())
717    return 0;
718
719  return Pos->second;
720}
721
722void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
723                                        FunctionDecl *Pattern) {
724  assert(FD && "Specialization is 0");
725  assert(Pattern && "Class scope specialization pattern is 0");
726  ClassScopeSpecializationPattern[FD] = Pattern;
727}
728
729NamedDecl *
730ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
731  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
732    = InstantiatedFromUsingDecl.find(UUD);
733  if (Pos == InstantiatedFromUsingDecl.end())
734    return 0;
735
736  return Pos->second;
737}
738
739void
740ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
741  assert((isa<UsingDecl>(Pattern) ||
742          isa<UnresolvedUsingValueDecl>(Pattern) ||
743          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
744         "pattern decl is not a using decl");
745  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
746  InstantiatedFromUsingDecl[Inst] = Pattern;
747}
748
749UsingShadowDecl *
750ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
751  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
752    = InstantiatedFromUsingShadowDecl.find(Inst);
753  if (Pos == InstantiatedFromUsingShadowDecl.end())
754    return 0;
755
756  return Pos->second;
757}
758
759void
760ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
761                                               UsingShadowDecl *Pattern) {
762  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
763  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
764}
765
766FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
767  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
768    = InstantiatedFromUnnamedFieldDecl.find(Field);
769  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
770    return 0;
771
772  return Pos->second;
773}
774
775void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
776                                                     FieldDecl *Tmpl) {
777  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
778  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
779  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
780         "Already noted what unnamed field was instantiated from");
781
782  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
783}
784
785bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
786                                    const FieldDecl *LastFD) const {
787  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
788          FD->getBitWidthValue(*this) == 0);
789}
790
791bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
792                                             const FieldDecl *LastFD) const {
793  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
794          FD->getBitWidthValue(*this) == 0 &&
795          LastFD->getBitWidthValue(*this) != 0);
796}
797
798bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
799                                         const FieldDecl *LastFD) const {
800  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
801          FD->getBitWidthValue(*this) &&
802          LastFD->getBitWidthValue(*this));
803}
804
805bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
806                                         const FieldDecl *LastFD) const {
807  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
808          LastFD->getBitWidthValue(*this));
809}
810
811bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
812                                             const FieldDecl *LastFD) const {
813  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
814          FD->getBitWidthValue(*this));
815}
816
817ASTContext::overridden_cxx_method_iterator
818ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
819  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
820    = OverriddenMethods.find(Method);
821  if (Pos == OverriddenMethods.end())
822    return 0;
823
824  return Pos->second.begin();
825}
826
827ASTContext::overridden_cxx_method_iterator
828ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
829  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
830    = OverriddenMethods.find(Method);
831  if (Pos == OverriddenMethods.end())
832    return 0;
833
834  return Pos->second.end();
835}
836
837unsigned
838ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
839  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
840    = OverriddenMethods.find(Method);
841  if (Pos == OverriddenMethods.end())
842    return 0;
843
844  return Pos->second.size();
845}
846
847void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
848                                     const CXXMethodDecl *Overridden) {
849  OverriddenMethods[Method].push_back(Overridden);
850}
851
852void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
853  assert(!Import->NextLocalImport && "Import declaration already in the chain");
854  assert(!Import->isFromASTFile() && "Non-local import declaration");
855  if (!FirstLocalImport) {
856    FirstLocalImport = Import;
857    LastLocalImport = Import;
858    return;
859  }
860
861  LastLocalImport->NextLocalImport = Import;
862  LastLocalImport = Import;
863}
864
865//===----------------------------------------------------------------------===//
866//                         Type Sizing and Analysis
867//===----------------------------------------------------------------------===//
868
869/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
870/// scalar floating point type.
871const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
872  const BuiltinType *BT = T->getAs<BuiltinType>();
873  assert(BT && "Not a floating point type!");
874  switch (BT->getKind()) {
875  default: llvm_unreachable("Not a floating point type!");
876  case BuiltinType::Half:       return Target->getHalfFormat();
877  case BuiltinType::Float:      return Target->getFloatFormat();
878  case BuiltinType::Double:     return Target->getDoubleFormat();
879  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
880  }
881}
882
883/// getDeclAlign - Return a conservative estimate of the alignment of the
884/// specified decl.  Note that bitfields do not have a valid alignment, so
885/// this method will assert on them.
886/// If @p RefAsPointee, references are treated like their underlying type
887/// (for alignof), else they're treated like pointers (for CodeGen).
888CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
889  unsigned Align = Target->getCharWidth();
890
891  bool UseAlignAttrOnly = false;
892  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
893    Align = AlignFromAttr;
894
895    // __attribute__((aligned)) can increase or decrease alignment
896    // *except* on a struct or struct member, where it only increases
897    // alignment unless 'packed' is also specified.
898    //
899    // It is an error for alignas to decrease alignment, so we can
900    // ignore that possibility;  Sema should diagnose it.
901    if (isa<FieldDecl>(D)) {
902      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
903        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
904    } else {
905      UseAlignAttrOnly = true;
906    }
907  }
908  else if (isa<FieldDecl>(D))
909      UseAlignAttrOnly =
910        D->hasAttr<PackedAttr>() ||
911        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
912
913  // If we're using the align attribute only, just ignore everything
914  // else about the declaration and its type.
915  if (UseAlignAttrOnly) {
916    // do nothing
917
918  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
919    QualType T = VD->getType();
920    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
921      if (RefAsPointee)
922        T = RT->getPointeeType();
923      else
924        T = getPointerType(RT->getPointeeType());
925    }
926    if (!T->isIncompleteType() && !T->isFunctionType()) {
927      // Adjust alignments of declarations with array type by the
928      // large-array alignment on the target.
929      unsigned MinWidth = Target->getLargeArrayMinWidth();
930      const ArrayType *arrayType;
931      if (MinWidth && (arrayType = getAsArrayType(T))) {
932        if (isa<VariableArrayType>(arrayType))
933          Align = std::max(Align, Target->getLargeArrayAlign());
934        else if (isa<ConstantArrayType>(arrayType) &&
935                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
936          Align = std::max(Align, Target->getLargeArrayAlign());
937
938        // Walk through any array types while we're at it.
939        T = getBaseElementType(arrayType);
940      }
941      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
942    }
943
944    // Fields can be subject to extra alignment constraints, like if
945    // the field is packed, the struct is packed, or the struct has a
946    // a max-field-alignment constraint (#pragma pack).  So calculate
947    // the actual alignment of the field within the struct, and then
948    // (as we're expected to) constrain that by the alignment of the type.
949    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
950      // So calculate the alignment of the field.
951      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
952
953      // Start with the record's overall alignment.
954      unsigned fieldAlign = toBits(layout.getAlignment());
955
956      // Use the GCD of that and the offset within the record.
957      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
958      if (offset > 0) {
959        // Alignment is always a power of 2, so the GCD will be a power of 2,
960        // which means we get to do this crazy thing instead of Euclid's.
961        uint64_t lowBitOfOffset = offset & (~offset + 1);
962        if (lowBitOfOffset < fieldAlign)
963          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
964      }
965
966      Align = std::min(Align, fieldAlign);
967    }
968  }
969
970  return toCharUnitsFromBits(Align);
971}
972
973std::pair<CharUnits, CharUnits>
974ASTContext::getTypeInfoInChars(const Type *T) const {
975  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
976  return std::make_pair(toCharUnitsFromBits(Info.first),
977                        toCharUnitsFromBits(Info.second));
978}
979
980std::pair<CharUnits, CharUnits>
981ASTContext::getTypeInfoInChars(QualType T) const {
982  return getTypeInfoInChars(T.getTypePtr());
983}
984
985std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
986  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
987  if (it != MemoizedTypeInfo.end())
988    return it->second;
989
990  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
991  MemoizedTypeInfo.insert(std::make_pair(T, Info));
992  return Info;
993}
994
995/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
996/// method does not work on incomplete types.
997///
998/// FIXME: Pointers into different addr spaces could have different sizes and
999/// alignment requirements: getPointerInfo should take an AddrSpace, this
1000/// should take a QualType, &c.
1001std::pair<uint64_t, unsigned>
1002ASTContext::getTypeInfoImpl(const Type *T) const {
1003  uint64_t Width=0;
1004  unsigned Align=8;
1005  switch (T->getTypeClass()) {
1006#define TYPE(Class, Base)
1007#define ABSTRACT_TYPE(Class, Base)
1008#define NON_CANONICAL_TYPE(Class, Base)
1009#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1010#include "clang/AST/TypeNodes.def"
1011    llvm_unreachable("Should not see dependent types");
1012
1013  case Type::FunctionNoProto:
1014  case Type::FunctionProto:
1015    // GCC extension: alignof(function) = 32 bits
1016    Width = 0;
1017    Align = 32;
1018    break;
1019
1020  case Type::IncompleteArray:
1021  case Type::VariableArray:
1022    Width = 0;
1023    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1024    break;
1025
1026  case Type::ConstantArray: {
1027    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1028
1029    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1030    uint64_t Size = CAT->getSize().getZExtValue();
1031    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1032           "Overflow in array type bit size evaluation");
1033    Width = EltInfo.first*Size;
1034    Align = EltInfo.second;
1035    Width = llvm::RoundUpToAlignment(Width, Align);
1036    break;
1037  }
1038  case Type::ExtVector:
1039  case Type::Vector: {
1040    const VectorType *VT = cast<VectorType>(T);
1041    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1042    Width = EltInfo.first*VT->getNumElements();
1043    Align = Width;
1044    // If the alignment is not a power of 2, round up to the next power of 2.
1045    // This happens for non-power-of-2 length vectors.
1046    if (Align & (Align-1)) {
1047      Align = llvm::NextPowerOf2(Align);
1048      Width = llvm::RoundUpToAlignment(Width, Align);
1049    }
1050    // Adjust the alignment based on the target max.
1051    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1052    if (TargetVectorAlign && TargetVectorAlign < Align)
1053      Align = TargetVectorAlign;
1054    break;
1055  }
1056
1057  case Type::Builtin:
1058    switch (cast<BuiltinType>(T)->getKind()) {
1059    default: llvm_unreachable("Unknown builtin type!");
1060    case BuiltinType::Void:
1061      // GCC extension: alignof(void) = 8 bits.
1062      Width = 0;
1063      Align = 8;
1064      break;
1065
1066    case BuiltinType::Bool:
1067      Width = Target->getBoolWidth();
1068      Align = Target->getBoolAlign();
1069      break;
1070    case BuiltinType::Char_S:
1071    case BuiltinType::Char_U:
1072    case BuiltinType::UChar:
1073    case BuiltinType::SChar:
1074      Width = Target->getCharWidth();
1075      Align = Target->getCharAlign();
1076      break;
1077    case BuiltinType::WChar_S:
1078    case BuiltinType::WChar_U:
1079      Width = Target->getWCharWidth();
1080      Align = Target->getWCharAlign();
1081      break;
1082    case BuiltinType::Char16:
1083      Width = Target->getChar16Width();
1084      Align = Target->getChar16Align();
1085      break;
1086    case BuiltinType::Char32:
1087      Width = Target->getChar32Width();
1088      Align = Target->getChar32Align();
1089      break;
1090    case BuiltinType::UShort:
1091    case BuiltinType::Short:
1092      Width = Target->getShortWidth();
1093      Align = Target->getShortAlign();
1094      break;
1095    case BuiltinType::UInt:
1096    case BuiltinType::Int:
1097      Width = Target->getIntWidth();
1098      Align = Target->getIntAlign();
1099      break;
1100    case BuiltinType::ULong:
1101    case BuiltinType::Long:
1102      Width = Target->getLongWidth();
1103      Align = Target->getLongAlign();
1104      break;
1105    case BuiltinType::ULongLong:
1106    case BuiltinType::LongLong:
1107      Width = Target->getLongLongWidth();
1108      Align = Target->getLongLongAlign();
1109      break;
1110    case BuiltinType::Int128:
1111    case BuiltinType::UInt128:
1112      Width = 128;
1113      Align = 128; // int128_t is 128-bit aligned on all targets.
1114      break;
1115    case BuiltinType::Half:
1116      Width = Target->getHalfWidth();
1117      Align = Target->getHalfAlign();
1118      break;
1119    case BuiltinType::Float:
1120      Width = Target->getFloatWidth();
1121      Align = Target->getFloatAlign();
1122      break;
1123    case BuiltinType::Double:
1124      Width = Target->getDoubleWidth();
1125      Align = Target->getDoubleAlign();
1126      break;
1127    case BuiltinType::LongDouble:
1128      Width = Target->getLongDoubleWidth();
1129      Align = Target->getLongDoubleAlign();
1130      break;
1131    case BuiltinType::NullPtr:
1132      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1133      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1134      break;
1135    case BuiltinType::ObjCId:
1136    case BuiltinType::ObjCClass:
1137    case BuiltinType::ObjCSel:
1138      Width = Target->getPointerWidth(0);
1139      Align = Target->getPointerAlign(0);
1140      break;
1141    }
1142    break;
1143  case Type::ObjCObjectPointer:
1144    Width = Target->getPointerWidth(0);
1145    Align = Target->getPointerAlign(0);
1146    break;
1147  case Type::BlockPointer: {
1148    unsigned AS = getTargetAddressSpace(
1149        cast<BlockPointerType>(T)->getPointeeType());
1150    Width = Target->getPointerWidth(AS);
1151    Align = Target->getPointerAlign(AS);
1152    break;
1153  }
1154  case Type::LValueReference:
1155  case Type::RValueReference: {
1156    // alignof and sizeof should never enter this code path here, so we go
1157    // the pointer route.
1158    unsigned AS = getTargetAddressSpace(
1159        cast<ReferenceType>(T)->getPointeeType());
1160    Width = Target->getPointerWidth(AS);
1161    Align = Target->getPointerAlign(AS);
1162    break;
1163  }
1164  case Type::Pointer: {
1165    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1166    Width = Target->getPointerWidth(AS);
1167    Align = Target->getPointerAlign(AS);
1168    break;
1169  }
1170  case Type::MemberPointer: {
1171    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1172    std::pair<uint64_t, unsigned> PtrDiffInfo =
1173      getTypeInfo(getPointerDiffType());
1174    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1175    Align = PtrDiffInfo.second;
1176    break;
1177  }
1178  case Type::Complex: {
1179    // Complex types have the same alignment as their elements, but twice the
1180    // size.
1181    std::pair<uint64_t, unsigned> EltInfo =
1182      getTypeInfo(cast<ComplexType>(T)->getElementType());
1183    Width = EltInfo.first*2;
1184    Align = EltInfo.second;
1185    break;
1186  }
1187  case Type::ObjCObject:
1188    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1189  case Type::ObjCInterface: {
1190    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1191    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1192    Width = toBits(Layout.getSize());
1193    Align = toBits(Layout.getAlignment());
1194    break;
1195  }
1196  case Type::Record:
1197  case Type::Enum: {
1198    const TagType *TT = cast<TagType>(T);
1199
1200    if (TT->getDecl()->isInvalidDecl()) {
1201      Width = 8;
1202      Align = 8;
1203      break;
1204    }
1205
1206    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1207      return getTypeInfo(ET->getDecl()->getIntegerType());
1208
1209    const RecordType *RT = cast<RecordType>(TT);
1210    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1211    Width = toBits(Layout.getSize());
1212    Align = toBits(Layout.getAlignment());
1213    break;
1214  }
1215
1216  case Type::SubstTemplateTypeParm:
1217    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1218                       getReplacementType().getTypePtr());
1219
1220  case Type::Auto: {
1221    const AutoType *A = cast<AutoType>(T);
1222    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1223    return getTypeInfo(A->getDeducedType().getTypePtr());
1224  }
1225
1226  case Type::Paren:
1227    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1228
1229  case Type::Typedef: {
1230    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1231    std::pair<uint64_t, unsigned> Info
1232      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1233    // If the typedef has an aligned attribute on it, it overrides any computed
1234    // alignment we have.  This violates the GCC documentation (which says that
1235    // attribute(aligned) can only round up) but matches its implementation.
1236    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1237      Align = AttrAlign;
1238    else
1239      Align = Info.second;
1240    Width = Info.first;
1241    break;
1242  }
1243
1244  case Type::TypeOfExpr:
1245    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1246                         .getTypePtr());
1247
1248  case Type::TypeOf:
1249    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1250
1251  case Type::Decltype:
1252    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1253                        .getTypePtr());
1254
1255  case Type::UnaryTransform:
1256    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1257
1258  case Type::Elaborated:
1259    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1260
1261  case Type::Attributed:
1262    return getTypeInfo(
1263                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1264
1265  case Type::TemplateSpecialization: {
1266    assert(getCanonicalType(T) != T &&
1267           "Cannot request the size of a dependent type");
1268    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1269    // A type alias template specialization may refer to a typedef with the
1270    // aligned attribute on it.
1271    if (TST->isTypeAlias())
1272      return getTypeInfo(TST->getAliasedType().getTypePtr());
1273    else
1274      return getTypeInfo(getCanonicalType(T));
1275  }
1276
1277  case Type::Atomic: {
1278    std::pair<uint64_t, unsigned> Info
1279      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1280    Width = Info.first;
1281    Align = Info.second;
1282    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1283        llvm::isPowerOf2_64(Width)) {
1284      // We can potentially perform lock-free atomic operations for this
1285      // type; promote the alignment appropriately.
1286      // FIXME: We could potentially promote the width here as well...
1287      // is that worthwhile?  (Non-struct atomic types generally have
1288      // power-of-two size anyway, but structs might not.  Requires a bit
1289      // of implementation work to make sure we zero out the extra bits.)
1290      Align = static_cast<unsigned>(Width);
1291    }
1292  }
1293
1294  }
1295
1296  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1297  return std::make_pair(Width, Align);
1298}
1299
1300/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1301CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1302  return CharUnits::fromQuantity(BitSize / getCharWidth());
1303}
1304
1305/// toBits - Convert a size in characters to a size in characters.
1306int64_t ASTContext::toBits(CharUnits CharSize) const {
1307  return CharSize.getQuantity() * getCharWidth();
1308}
1309
1310/// getTypeSizeInChars - Return the size of the specified type, in characters.
1311/// This method does not work on incomplete types.
1312CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1313  return toCharUnitsFromBits(getTypeSize(T));
1314}
1315CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1316  return toCharUnitsFromBits(getTypeSize(T));
1317}
1318
1319/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1320/// characters. This method does not work on incomplete types.
1321CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1322  return toCharUnitsFromBits(getTypeAlign(T));
1323}
1324CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1325  return toCharUnitsFromBits(getTypeAlign(T));
1326}
1327
1328/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1329/// type for the current target in bits.  This can be different than the ABI
1330/// alignment in cases where it is beneficial for performance to overalign
1331/// a data type.
1332unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1333  unsigned ABIAlign = getTypeAlign(T);
1334
1335  // Double and long long should be naturally aligned if possible.
1336  if (const ComplexType* CT = T->getAs<ComplexType>())
1337    T = CT->getElementType().getTypePtr();
1338  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1339      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1340      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1341    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1342
1343  return ABIAlign;
1344}
1345
1346/// DeepCollectObjCIvars -
1347/// This routine first collects all declared, but not synthesized, ivars in
1348/// super class and then collects all ivars, including those synthesized for
1349/// current class. This routine is used for implementation of current class
1350/// when all ivars, declared and synthesized are known.
1351///
1352void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1353                                      bool leafClass,
1354                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1355  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1356    DeepCollectObjCIvars(SuperClass, false, Ivars);
1357  if (!leafClass) {
1358    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1359         E = OI->ivar_end(); I != E; ++I)
1360      Ivars.push_back(*I);
1361  } else {
1362    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1363    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1364         Iv= Iv->getNextIvar())
1365      Ivars.push_back(Iv);
1366  }
1367}
1368
1369/// CollectInheritedProtocols - Collect all protocols in current class and
1370/// those inherited by it.
1371void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1372                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1373  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1374    // We can use protocol_iterator here instead of
1375    // all_referenced_protocol_iterator since we are walking all categories.
1376    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1377         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1378      ObjCProtocolDecl *Proto = (*P);
1379      Protocols.insert(Proto->getCanonicalDecl());
1380      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1381           PE = Proto->protocol_end(); P != PE; ++P) {
1382        Protocols.insert((*P)->getCanonicalDecl());
1383        CollectInheritedProtocols(*P, Protocols);
1384      }
1385    }
1386
1387    // Categories of this Interface.
1388    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1389         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1390      CollectInheritedProtocols(CDeclChain, Protocols);
1391    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1392      while (SD) {
1393        CollectInheritedProtocols(SD, Protocols);
1394        SD = SD->getSuperClass();
1395      }
1396  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1397    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1398         PE = OC->protocol_end(); P != PE; ++P) {
1399      ObjCProtocolDecl *Proto = (*P);
1400      Protocols.insert(Proto->getCanonicalDecl());
1401      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1402           PE = Proto->protocol_end(); P != PE; ++P)
1403        CollectInheritedProtocols(*P, Protocols);
1404    }
1405  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1406    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1407         PE = OP->protocol_end(); P != PE; ++P) {
1408      ObjCProtocolDecl *Proto = (*P);
1409      Protocols.insert(Proto->getCanonicalDecl());
1410      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1411           PE = Proto->protocol_end(); P != PE; ++P)
1412        CollectInheritedProtocols(*P, Protocols);
1413    }
1414  }
1415}
1416
1417unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1418  unsigned count = 0;
1419  // Count ivars declared in class extension.
1420  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1421       CDecl = CDecl->getNextClassExtension())
1422    count += CDecl->ivar_size();
1423
1424  // Count ivar defined in this class's implementation.  This
1425  // includes synthesized ivars.
1426  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1427    count += ImplDecl->ivar_size();
1428
1429  return count;
1430}
1431
1432bool ASTContext::isSentinelNullExpr(const Expr *E) {
1433  if (!E)
1434    return false;
1435
1436  // nullptr_t is always treated as null.
1437  if (E->getType()->isNullPtrType()) return true;
1438
1439  if (E->getType()->isAnyPointerType() &&
1440      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1441                                                Expr::NPC_ValueDependentIsNull))
1442    return true;
1443
1444  // Unfortunately, __null has type 'int'.
1445  if (isa<GNUNullExpr>(E)) return true;
1446
1447  return false;
1448}
1449
1450/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1451ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1452  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1453    I = ObjCImpls.find(D);
1454  if (I != ObjCImpls.end())
1455    return cast<ObjCImplementationDecl>(I->second);
1456  return 0;
1457}
1458/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1459ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1460  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1461    I = ObjCImpls.find(D);
1462  if (I != ObjCImpls.end())
1463    return cast<ObjCCategoryImplDecl>(I->second);
1464  return 0;
1465}
1466
1467/// \brief Set the implementation of ObjCInterfaceDecl.
1468void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1469                           ObjCImplementationDecl *ImplD) {
1470  assert(IFaceD && ImplD && "Passed null params");
1471  ObjCImpls[IFaceD] = ImplD;
1472}
1473/// \brief Set the implementation of ObjCCategoryDecl.
1474void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1475                           ObjCCategoryImplDecl *ImplD) {
1476  assert(CatD && ImplD && "Passed null params");
1477  ObjCImpls[CatD] = ImplD;
1478}
1479
1480ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1481  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1482    return ID;
1483  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1484    return CD->getClassInterface();
1485  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1486    return IMD->getClassInterface();
1487
1488  return 0;
1489}
1490
1491/// \brief Get the copy initialization expression of VarDecl,or NULL if
1492/// none exists.
1493Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1494  assert(VD && "Passed null params");
1495  assert(VD->hasAttr<BlocksAttr>() &&
1496         "getBlockVarCopyInits - not __block var");
1497  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1498    I = BlockVarCopyInits.find(VD);
1499  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1500}
1501
1502/// \brief Set the copy inialization expression of a block var decl.
1503void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1504  assert(VD && Init && "Passed null params");
1505  assert(VD->hasAttr<BlocksAttr>() &&
1506         "setBlockVarCopyInits - not __block var");
1507  BlockVarCopyInits[VD] = Init;
1508}
1509
1510TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1511                                                 unsigned DataSize) const {
1512  if (!DataSize)
1513    DataSize = TypeLoc::getFullDataSizeForType(T);
1514  else
1515    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1516           "incorrect data size provided to CreateTypeSourceInfo!");
1517
1518  TypeSourceInfo *TInfo =
1519    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1520  new (TInfo) TypeSourceInfo(T);
1521  return TInfo;
1522}
1523
1524TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1525                                                     SourceLocation L) const {
1526  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1527  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1528  return DI;
1529}
1530
1531const ASTRecordLayout &
1532ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1533  return getObjCLayout(D, 0);
1534}
1535
1536const ASTRecordLayout &
1537ASTContext::getASTObjCImplementationLayout(
1538                                        const ObjCImplementationDecl *D) const {
1539  return getObjCLayout(D->getClassInterface(), D);
1540}
1541
1542//===----------------------------------------------------------------------===//
1543//                   Type creation/memoization methods
1544//===----------------------------------------------------------------------===//
1545
1546QualType
1547ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1548  unsigned fastQuals = quals.getFastQualifiers();
1549  quals.removeFastQualifiers();
1550
1551  // Check if we've already instantiated this type.
1552  llvm::FoldingSetNodeID ID;
1553  ExtQuals::Profile(ID, baseType, quals);
1554  void *insertPos = 0;
1555  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1556    assert(eq->getQualifiers() == quals);
1557    return QualType(eq, fastQuals);
1558  }
1559
1560  // If the base type is not canonical, make the appropriate canonical type.
1561  QualType canon;
1562  if (!baseType->isCanonicalUnqualified()) {
1563    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1564    canonSplit.Quals.addConsistentQualifiers(quals);
1565    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1566
1567    // Re-find the insert position.
1568    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1569  }
1570
1571  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1572  ExtQualNodes.InsertNode(eq, insertPos);
1573  return QualType(eq, fastQuals);
1574}
1575
1576QualType
1577ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1578  QualType CanT = getCanonicalType(T);
1579  if (CanT.getAddressSpace() == AddressSpace)
1580    return T;
1581
1582  // If we are composing extended qualifiers together, merge together
1583  // into one ExtQuals node.
1584  QualifierCollector Quals;
1585  const Type *TypeNode = Quals.strip(T);
1586
1587  // If this type already has an address space specified, it cannot get
1588  // another one.
1589  assert(!Quals.hasAddressSpace() &&
1590         "Type cannot be in multiple addr spaces!");
1591  Quals.addAddressSpace(AddressSpace);
1592
1593  return getExtQualType(TypeNode, Quals);
1594}
1595
1596QualType ASTContext::getObjCGCQualType(QualType T,
1597                                       Qualifiers::GC GCAttr) const {
1598  QualType CanT = getCanonicalType(T);
1599  if (CanT.getObjCGCAttr() == GCAttr)
1600    return T;
1601
1602  if (const PointerType *ptr = T->getAs<PointerType>()) {
1603    QualType Pointee = ptr->getPointeeType();
1604    if (Pointee->isAnyPointerType()) {
1605      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1606      return getPointerType(ResultType);
1607    }
1608  }
1609
1610  // If we are composing extended qualifiers together, merge together
1611  // into one ExtQuals node.
1612  QualifierCollector Quals;
1613  const Type *TypeNode = Quals.strip(T);
1614
1615  // If this type already has an ObjCGC specified, it cannot get
1616  // another one.
1617  assert(!Quals.hasObjCGCAttr() &&
1618         "Type cannot have multiple ObjCGCs!");
1619  Quals.addObjCGCAttr(GCAttr);
1620
1621  return getExtQualType(TypeNode, Quals);
1622}
1623
1624const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1625                                                   FunctionType::ExtInfo Info) {
1626  if (T->getExtInfo() == Info)
1627    return T;
1628
1629  QualType Result;
1630  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1631    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1632  } else {
1633    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1634    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1635    EPI.ExtInfo = Info;
1636    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1637                             FPT->getNumArgs(), EPI);
1638  }
1639
1640  return cast<FunctionType>(Result.getTypePtr());
1641}
1642
1643/// getComplexType - Return the uniqued reference to the type for a complex
1644/// number with the specified element type.
1645QualType ASTContext::getComplexType(QualType T) const {
1646  // Unique pointers, to guarantee there is only one pointer of a particular
1647  // structure.
1648  llvm::FoldingSetNodeID ID;
1649  ComplexType::Profile(ID, T);
1650
1651  void *InsertPos = 0;
1652  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1653    return QualType(CT, 0);
1654
1655  // If the pointee type isn't canonical, this won't be a canonical type either,
1656  // so fill in the canonical type field.
1657  QualType Canonical;
1658  if (!T.isCanonical()) {
1659    Canonical = getComplexType(getCanonicalType(T));
1660
1661    // Get the new insert position for the node we care about.
1662    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1663    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1664  }
1665  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1666  Types.push_back(New);
1667  ComplexTypes.InsertNode(New, InsertPos);
1668  return QualType(New, 0);
1669}
1670
1671/// getPointerType - Return the uniqued reference to the type for a pointer to
1672/// the specified type.
1673QualType ASTContext::getPointerType(QualType T) const {
1674  // Unique pointers, to guarantee there is only one pointer of a particular
1675  // structure.
1676  llvm::FoldingSetNodeID ID;
1677  PointerType::Profile(ID, T);
1678
1679  void *InsertPos = 0;
1680  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1681    return QualType(PT, 0);
1682
1683  // If the pointee type isn't canonical, this won't be a canonical type either,
1684  // so fill in the canonical type field.
1685  QualType Canonical;
1686  if (!T.isCanonical()) {
1687    Canonical = getPointerType(getCanonicalType(T));
1688
1689    // Get the new insert position for the node we care about.
1690    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1691    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1692  }
1693  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1694  Types.push_back(New);
1695  PointerTypes.InsertNode(New, InsertPos);
1696  return QualType(New, 0);
1697}
1698
1699/// getBlockPointerType - Return the uniqued reference to the type for
1700/// a pointer to the specified block.
1701QualType ASTContext::getBlockPointerType(QualType T) const {
1702  assert(T->isFunctionType() && "block of function types only");
1703  // Unique pointers, to guarantee there is only one block of a particular
1704  // structure.
1705  llvm::FoldingSetNodeID ID;
1706  BlockPointerType::Profile(ID, T);
1707
1708  void *InsertPos = 0;
1709  if (BlockPointerType *PT =
1710        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1711    return QualType(PT, 0);
1712
1713  // If the block pointee type isn't canonical, this won't be a canonical
1714  // type either so fill in the canonical type field.
1715  QualType Canonical;
1716  if (!T.isCanonical()) {
1717    Canonical = getBlockPointerType(getCanonicalType(T));
1718
1719    // Get the new insert position for the node we care about.
1720    BlockPointerType *NewIP =
1721      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1722    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1723  }
1724  BlockPointerType *New
1725    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1726  Types.push_back(New);
1727  BlockPointerTypes.InsertNode(New, InsertPos);
1728  return QualType(New, 0);
1729}
1730
1731/// getLValueReferenceType - Return the uniqued reference to the type for an
1732/// lvalue reference to the specified type.
1733QualType
1734ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1735  assert(getCanonicalType(T) != OverloadTy &&
1736         "Unresolved overloaded function type");
1737
1738  // Unique pointers, to guarantee there is only one pointer of a particular
1739  // structure.
1740  llvm::FoldingSetNodeID ID;
1741  ReferenceType::Profile(ID, T, SpelledAsLValue);
1742
1743  void *InsertPos = 0;
1744  if (LValueReferenceType *RT =
1745        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1746    return QualType(RT, 0);
1747
1748  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1749
1750  // If the referencee type isn't canonical, this won't be a canonical type
1751  // either, so fill in the canonical type field.
1752  QualType Canonical;
1753  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1754    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1755    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1756
1757    // Get the new insert position for the node we care about.
1758    LValueReferenceType *NewIP =
1759      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1760    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1761  }
1762
1763  LValueReferenceType *New
1764    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1765                                                     SpelledAsLValue);
1766  Types.push_back(New);
1767  LValueReferenceTypes.InsertNode(New, InsertPos);
1768
1769  return QualType(New, 0);
1770}
1771
1772/// getRValueReferenceType - Return the uniqued reference to the type for an
1773/// rvalue reference to the specified type.
1774QualType ASTContext::getRValueReferenceType(QualType T) const {
1775  // Unique pointers, to guarantee there is only one pointer of a particular
1776  // structure.
1777  llvm::FoldingSetNodeID ID;
1778  ReferenceType::Profile(ID, T, false);
1779
1780  void *InsertPos = 0;
1781  if (RValueReferenceType *RT =
1782        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1783    return QualType(RT, 0);
1784
1785  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1786
1787  // If the referencee type isn't canonical, this won't be a canonical type
1788  // either, so fill in the canonical type field.
1789  QualType Canonical;
1790  if (InnerRef || !T.isCanonical()) {
1791    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1792    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1793
1794    // Get the new insert position for the node we care about.
1795    RValueReferenceType *NewIP =
1796      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1797    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1798  }
1799
1800  RValueReferenceType *New
1801    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1802  Types.push_back(New);
1803  RValueReferenceTypes.InsertNode(New, InsertPos);
1804  return QualType(New, 0);
1805}
1806
1807/// getMemberPointerType - Return the uniqued reference to the type for a
1808/// member pointer to the specified type, in the specified class.
1809QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1810  // Unique pointers, to guarantee there is only one pointer of a particular
1811  // structure.
1812  llvm::FoldingSetNodeID ID;
1813  MemberPointerType::Profile(ID, T, Cls);
1814
1815  void *InsertPos = 0;
1816  if (MemberPointerType *PT =
1817      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1818    return QualType(PT, 0);
1819
1820  // If the pointee or class type isn't canonical, this won't be a canonical
1821  // type either, so fill in the canonical type field.
1822  QualType Canonical;
1823  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1824    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1825
1826    // Get the new insert position for the node we care about.
1827    MemberPointerType *NewIP =
1828      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1829    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1830  }
1831  MemberPointerType *New
1832    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1833  Types.push_back(New);
1834  MemberPointerTypes.InsertNode(New, InsertPos);
1835  return QualType(New, 0);
1836}
1837
1838/// getConstantArrayType - Return the unique reference to the type for an
1839/// array of the specified element type.
1840QualType ASTContext::getConstantArrayType(QualType EltTy,
1841                                          const llvm::APInt &ArySizeIn,
1842                                          ArrayType::ArraySizeModifier ASM,
1843                                          unsigned IndexTypeQuals) const {
1844  assert((EltTy->isDependentType() ||
1845          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1846         "Constant array of VLAs is illegal!");
1847
1848  // Convert the array size into a canonical width matching the pointer size for
1849  // the target.
1850  llvm::APInt ArySize(ArySizeIn);
1851  ArySize =
1852    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1853
1854  llvm::FoldingSetNodeID ID;
1855  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1856
1857  void *InsertPos = 0;
1858  if (ConstantArrayType *ATP =
1859      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1860    return QualType(ATP, 0);
1861
1862  // If the element type isn't canonical or has qualifiers, this won't
1863  // be a canonical type either, so fill in the canonical type field.
1864  QualType Canon;
1865  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1866    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1867    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1868                                 ASM, IndexTypeQuals);
1869    Canon = getQualifiedType(Canon, canonSplit.Quals);
1870
1871    // Get the new insert position for the node we care about.
1872    ConstantArrayType *NewIP =
1873      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1874    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1875  }
1876
1877  ConstantArrayType *New = new(*this,TypeAlignment)
1878    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1879  ConstantArrayTypes.InsertNode(New, InsertPos);
1880  Types.push_back(New);
1881  return QualType(New, 0);
1882}
1883
1884/// getVariableArrayDecayedType - Turns the given type, which may be
1885/// variably-modified, into the corresponding type with all the known
1886/// sizes replaced with [*].
1887QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1888  // Vastly most common case.
1889  if (!type->isVariablyModifiedType()) return type;
1890
1891  QualType result;
1892
1893  SplitQualType split = type.getSplitDesugaredType();
1894  const Type *ty = split.Ty;
1895  switch (ty->getTypeClass()) {
1896#define TYPE(Class, Base)
1897#define ABSTRACT_TYPE(Class, Base)
1898#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1899#include "clang/AST/TypeNodes.def"
1900    llvm_unreachable("didn't desugar past all non-canonical types?");
1901
1902  // These types should never be variably-modified.
1903  case Type::Builtin:
1904  case Type::Complex:
1905  case Type::Vector:
1906  case Type::ExtVector:
1907  case Type::DependentSizedExtVector:
1908  case Type::ObjCObject:
1909  case Type::ObjCInterface:
1910  case Type::ObjCObjectPointer:
1911  case Type::Record:
1912  case Type::Enum:
1913  case Type::UnresolvedUsing:
1914  case Type::TypeOfExpr:
1915  case Type::TypeOf:
1916  case Type::Decltype:
1917  case Type::UnaryTransform:
1918  case Type::DependentName:
1919  case Type::InjectedClassName:
1920  case Type::TemplateSpecialization:
1921  case Type::DependentTemplateSpecialization:
1922  case Type::TemplateTypeParm:
1923  case Type::SubstTemplateTypeParmPack:
1924  case Type::Auto:
1925  case Type::PackExpansion:
1926    llvm_unreachable("type should never be variably-modified");
1927
1928  // These types can be variably-modified but should never need to
1929  // further decay.
1930  case Type::FunctionNoProto:
1931  case Type::FunctionProto:
1932  case Type::BlockPointer:
1933  case Type::MemberPointer:
1934    return type;
1935
1936  // These types can be variably-modified.  All these modifications
1937  // preserve structure except as noted by comments.
1938  // TODO: if we ever care about optimizing VLAs, there are no-op
1939  // optimizations available here.
1940  case Type::Pointer:
1941    result = getPointerType(getVariableArrayDecayedType(
1942                              cast<PointerType>(ty)->getPointeeType()));
1943    break;
1944
1945  case Type::LValueReference: {
1946    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1947    result = getLValueReferenceType(
1948                 getVariableArrayDecayedType(lv->getPointeeType()),
1949                                    lv->isSpelledAsLValue());
1950    break;
1951  }
1952
1953  case Type::RValueReference: {
1954    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1955    result = getRValueReferenceType(
1956                 getVariableArrayDecayedType(lv->getPointeeType()));
1957    break;
1958  }
1959
1960  case Type::Atomic: {
1961    const AtomicType *at = cast<AtomicType>(ty);
1962    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1963    break;
1964  }
1965
1966  case Type::ConstantArray: {
1967    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1968    result = getConstantArrayType(
1969                 getVariableArrayDecayedType(cat->getElementType()),
1970                                  cat->getSize(),
1971                                  cat->getSizeModifier(),
1972                                  cat->getIndexTypeCVRQualifiers());
1973    break;
1974  }
1975
1976  case Type::DependentSizedArray: {
1977    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1978    result = getDependentSizedArrayType(
1979                 getVariableArrayDecayedType(dat->getElementType()),
1980                                        dat->getSizeExpr(),
1981                                        dat->getSizeModifier(),
1982                                        dat->getIndexTypeCVRQualifiers(),
1983                                        dat->getBracketsRange());
1984    break;
1985  }
1986
1987  // Turn incomplete types into [*] types.
1988  case Type::IncompleteArray: {
1989    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1990    result = getVariableArrayType(
1991                 getVariableArrayDecayedType(iat->getElementType()),
1992                                  /*size*/ 0,
1993                                  ArrayType::Normal,
1994                                  iat->getIndexTypeCVRQualifiers(),
1995                                  SourceRange());
1996    break;
1997  }
1998
1999  // Turn VLA types into [*] types.
2000  case Type::VariableArray: {
2001    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2002    result = getVariableArrayType(
2003                 getVariableArrayDecayedType(vat->getElementType()),
2004                                  /*size*/ 0,
2005                                  ArrayType::Star,
2006                                  vat->getIndexTypeCVRQualifiers(),
2007                                  vat->getBracketsRange());
2008    break;
2009  }
2010  }
2011
2012  // Apply the top-level qualifiers from the original.
2013  return getQualifiedType(result, split.Quals);
2014}
2015
2016/// getVariableArrayType - Returns a non-unique reference to the type for a
2017/// variable array of the specified element type.
2018QualType ASTContext::getVariableArrayType(QualType EltTy,
2019                                          Expr *NumElts,
2020                                          ArrayType::ArraySizeModifier ASM,
2021                                          unsigned IndexTypeQuals,
2022                                          SourceRange Brackets) const {
2023  // Since we don't unique expressions, it isn't possible to unique VLA's
2024  // that have an expression provided for their size.
2025  QualType Canon;
2026
2027  // Be sure to pull qualifiers off the element type.
2028  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2029    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2030    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2031                                 IndexTypeQuals, Brackets);
2032    Canon = getQualifiedType(Canon, canonSplit.Quals);
2033  }
2034
2035  VariableArrayType *New = new(*this, TypeAlignment)
2036    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2037
2038  VariableArrayTypes.push_back(New);
2039  Types.push_back(New);
2040  return QualType(New, 0);
2041}
2042
2043/// getDependentSizedArrayType - Returns a non-unique reference to
2044/// the type for a dependently-sized array of the specified element
2045/// type.
2046QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2047                                                Expr *numElements,
2048                                                ArrayType::ArraySizeModifier ASM,
2049                                                unsigned elementTypeQuals,
2050                                                SourceRange brackets) const {
2051  assert((!numElements || numElements->isTypeDependent() ||
2052          numElements->isValueDependent()) &&
2053         "Size must be type- or value-dependent!");
2054
2055  // Dependently-sized array types that do not have a specified number
2056  // of elements will have their sizes deduced from a dependent
2057  // initializer.  We do no canonicalization here at all, which is okay
2058  // because they can't be used in most locations.
2059  if (!numElements) {
2060    DependentSizedArrayType *newType
2061      = new (*this, TypeAlignment)
2062          DependentSizedArrayType(*this, elementType, QualType(),
2063                                  numElements, ASM, elementTypeQuals,
2064                                  brackets);
2065    Types.push_back(newType);
2066    return QualType(newType, 0);
2067  }
2068
2069  // Otherwise, we actually build a new type every time, but we
2070  // also build a canonical type.
2071
2072  SplitQualType canonElementType = getCanonicalType(elementType).split();
2073
2074  void *insertPos = 0;
2075  llvm::FoldingSetNodeID ID;
2076  DependentSizedArrayType::Profile(ID, *this,
2077                                   QualType(canonElementType.Ty, 0),
2078                                   ASM, elementTypeQuals, numElements);
2079
2080  // Look for an existing type with these properties.
2081  DependentSizedArrayType *canonTy =
2082    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2083
2084  // If we don't have one, build one.
2085  if (!canonTy) {
2086    canonTy = new (*this, TypeAlignment)
2087      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2088                              QualType(), numElements, ASM, elementTypeQuals,
2089                              brackets);
2090    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2091    Types.push_back(canonTy);
2092  }
2093
2094  // Apply qualifiers from the element type to the array.
2095  QualType canon = getQualifiedType(QualType(canonTy,0),
2096                                    canonElementType.Quals);
2097
2098  // If we didn't need extra canonicalization for the element type,
2099  // then just use that as our result.
2100  if (QualType(canonElementType.Ty, 0) == elementType)
2101    return canon;
2102
2103  // Otherwise, we need to build a type which follows the spelling
2104  // of the element type.
2105  DependentSizedArrayType *sugaredType
2106    = new (*this, TypeAlignment)
2107        DependentSizedArrayType(*this, elementType, canon, numElements,
2108                                ASM, elementTypeQuals, brackets);
2109  Types.push_back(sugaredType);
2110  return QualType(sugaredType, 0);
2111}
2112
2113QualType ASTContext::getIncompleteArrayType(QualType elementType,
2114                                            ArrayType::ArraySizeModifier ASM,
2115                                            unsigned elementTypeQuals) const {
2116  llvm::FoldingSetNodeID ID;
2117  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2118
2119  void *insertPos = 0;
2120  if (IncompleteArrayType *iat =
2121       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2122    return QualType(iat, 0);
2123
2124  // If the element type isn't canonical, this won't be a canonical type
2125  // either, so fill in the canonical type field.  We also have to pull
2126  // qualifiers off the element type.
2127  QualType canon;
2128
2129  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2130    SplitQualType canonSplit = getCanonicalType(elementType).split();
2131    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2132                                   ASM, elementTypeQuals);
2133    canon = getQualifiedType(canon, canonSplit.Quals);
2134
2135    // Get the new insert position for the node we care about.
2136    IncompleteArrayType *existing =
2137      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2138    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2139  }
2140
2141  IncompleteArrayType *newType = new (*this, TypeAlignment)
2142    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2143
2144  IncompleteArrayTypes.InsertNode(newType, insertPos);
2145  Types.push_back(newType);
2146  return QualType(newType, 0);
2147}
2148
2149/// getVectorType - Return the unique reference to a vector type of
2150/// the specified element type and size. VectorType must be a built-in type.
2151QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2152                                   VectorType::VectorKind VecKind) const {
2153  assert(vecType->isBuiltinType());
2154
2155  // Check if we've already instantiated a vector of this type.
2156  llvm::FoldingSetNodeID ID;
2157  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2158
2159  void *InsertPos = 0;
2160  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2161    return QualType(VTP, 0);
2162
2163  // If the element type isn't canonical, this won't be a canonical type either,
2164  // so fill in the canonical type field.
2165  QualType Canonical;
2166  if (!vecType.isCanonical()) {
2167    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2168
2169    // Get the new insert position for the node we care about.
2170    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2171    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2172  }
2173  VectorType *New = new (*this, TypeAlignment)
2174    VectorType(vecType, NumElts, Canonical, VecKind);
2175  VectorTypes.InsertNode(New, InsertPos);
2176  Types.push_back(New);
2177  return QualType(New, 0);
2178}
2179
2180/// getExtVectorType - Return the unique reference to an extended vector type of
2181/// the specified element type and size. VectorType must be a built-in type.
2182QualType
2183ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2184  assert(vecType->isBuiltinType() || vecType->isDependentType());
2185
2186  // Check if we've already instantiated a vector of this type.
2187  llvm::FoldingSetNodeID ID;
2188  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2189                      VectorType::GenericVector);
2190  void *InsertPos = 0;
2191  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2192    return QualType(VTP, 0);
2193
2194  // If the element type isn't canonical, this won't be a canonical type either,
2195  // so fill in the canonical type field.
2196  QualType Canonical;
2197  if (!vecType.isCanonical()) {
2198    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2199
2200    // Get the new insert position for the node we care about.
2201    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2202    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2203  }
2204  ExtVectorType *New = new (*this, TypeAlignment)
2205    ExtVectorType(vecType, NumElts, Canonical);
2206  VectorTypes.InsertNode(New, InsertPos);
2207  Types.push_back(New);
2208  return QualType(New, 0);
2209}
2210
2211QualType
2212ASTContext::getDependentSizedExtVectorType(QualType vecType,
2213                                           Expr *SizeExpr,
2214                                           SourceLocation AttrLoc) const {
2215  llvm::FoldingSetNodeID ID;
2216  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2217                                       SizeExpr);
2218
2219  void *InsertPos = 0;
2220  DependentSizedExtVectorType *Canon
2221    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2222  DependentSizedExtVectorType *New;
2223  if (Canon) {
2224    // We already have a canonical version of this array type; use it as
2225    // the canonical type for a newly-built type.
2226    New = new (*this, TypeAlignment)
2227      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2228                                  SizeExpr, AttrLoc);
2229  } else {
2230    QualType CanonVecTy = getCanonicalType(vecType);
2231    if (CanonVecTy == vecType) {
2232      New = new (*this, TypeAlignment)
2233        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2234                                    AttrLoc);
2235
2236      DependentSizedExtVectorType *CanonCheck
2237        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2238      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2239      (void)CanonCheck;
2240      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2241    } else {
2242      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2243                                                      SourceLocation());
2244      New = new (*this, TypeAlignment)
2245        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2246    }
2247  }
2248
2249  Types.push_back(New);
2250  return QualType(New, 0);
2251}
2252
2253/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2254///
2255QualType
2256ASTContext::getFunctionNoProtoType(QualType ResultTy,
2257                                   const FunctionType::ExtInfo &Info) const {
2258  const CallingConv DefaultCC = Info.getCC();
2259  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2260                               CC_X86StdCall : DefaultCC;
2261  // Unique functions, to guarantee there is only one function of a particular
2262  // structure.
2263  llvm::FoldingSetNodeID ID;
2264  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2265
2266  void *InsertPos = 0;
2267  if (FunctionNoProtoType *FT =
2268        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2269    return QualType(FT, 0);
2270
2271  QualType Canonical;
2272  if (!ResultTy.isCanonical() ||
2273      getCanonicalCallConv(CallConv) != CallConv) {
2274    Canonical =
2275      getFunctionNoProtoType(getCanonicalType(ResultTy),
2276                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2277
2278    // Get the new insert position for the node we care about.
2279    FunctionNoProtoType *NewIP =
2280      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2281    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2282  }
2283
2284  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2285  FunctionNoProtoType *New = new (*this, TypeAlignment)
2286    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2287  Types.push_back(New);
2288  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2289  return QualType(New, 0);
2290}
2291
2292/// getFunctionType - Return a normal function type with a typed argument
2293/// list.  isVariadic indicates whether the argument list includes '...'.
2294QualType
2295ASTContext::getFunctionType(QualType ResultTy,
2296                            const QualType *ArgArray, unsigned NumArgs,
2297                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2298  // Unique functions, to guarantee there is only one function of a particular
2299  // structure.
2300  llvm::FoldingSetNodeID ID;
2301  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2302
2303  void *InsertPos = 0;
2304  if (FunctionProtoType *FTP =
2305        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2306    return QualType(FTP, 0);
2307
2308  // Determine whether the type being created is already canonical or not.
2309  bool isCanonical =
2310    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2311    !EPI.HasTrailingReturn;
2312  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2313    if (!ArgArray[i].isCanonicalAsParam())
2314      isCanonical = false;
2315
2316  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2317  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2318                               CC_X86StdCall : DefaultCC;
2319
2320  // If this type isn't canonical, get the canonical version of it.
2321  // The exception spec is not part of the canonical type.
2322  QualType Canonical;
2323  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2324    SmallVector<QualType, 16> CanonicalArgs;
2325    CanonicalArgs.reserve(NumArgs);
2326    for (unsigned i = 0; i != NumArgs; ++i)
2327      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2328
2329    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2330    CanonicalEPI.HasTrailingReturn = false;
2331    CanonicalEPI.ExceptionSpecType = EST_None;
2332    CanonicalEPI.NumExceptions = 0;
2333    CanonicalEPI.ExtInfo
2334      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2335
2336    Canonical = getFunctionType(getCanonicalType(ResultTy),
2337                                CanonicalArgs.data(), NumArgs,
2338                                CanonicalEPI);
2339
2340    // Get the new insert position for the node we care about.
2341    FunctionProtoType *NewIP =
2342      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2343    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2344  }
2345
2346  // FunctionProtoType objects are allocated with extra bytes after
2347  // them for three variable size arrays at the end:
2348  //  - parameter types
2349  //  - exception types
2350  //  - consumed-arguments flags
2351  // Instead of the exception types, there could be a noexcept
2352  // expression.
2353  size_t Size = sizeof(FunctionProtoType) +
2354                NumArgs * sizeof(QualType);
2355  if (EPI.ExceptionSpecType == EST_Dynamic)
2356    Size += EPI.NumExceptions * sizeof(QualType);
2357  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2358    Size += sizeof(Expr*);
2359  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2360    Size += 2 * sizeof(FunctionDecl*);
2361  }
2362  if (EPI.ConsumedArguments)
2363    Size += NumArgs * sizeof(bool);
2364
2365  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2366  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2367  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2368  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2369  Types.push_back(FTP);
2370  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2371  return QualType(FTP, 0);
2372}
2373
2374#ifndef NDEBUG
2375static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2376  if (!isa<CXXRecordDecl>(D)) return false;
2377  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2378  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2379    return true;
2380  if (RD->getDescribedClassTemplate() &&
2381      !isa<ClassTemplateSpecializationDecl>(RD))
2382    return true;
2383  return false;
2384}
2385#endif
2386
2387/// getInjectedClassNameType - Return the unique reference to the
2388/// injected class name type for the specified templated declaration.
2389QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2390                                              QualType TST) const {
2391  assert(NeedsInjectedClassNameType(Decl));
2392  if (Decl->TypeForDecl) {
2393    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2394  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2395    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2396    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2397    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2398  } else {
2399    Type *newType =
2400      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2401    Decl->TypeForDecl = newType;
2402    Types.push_back(newType);
2403  }
2404  return QualType(Decl->TypeForDecl, 0);
2405}
2406
2407/// getTypeDeclType - Return the unique reference to the type for the
2408/// specified type declaration.
2409QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2410  assert(Decl && "Passed null for Decl param");
2411  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2412
2413  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2414    return getTypedefType(Typedef);
2415
2416  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2417         "Template type parameter types are always available.");
2418
2419  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2420    assert(!Record->getPreviousDecl() &&
2421           "struct/union has previous declaration");
2422    assert(!NeedsInjectedClassNameType(Record));
2423    return getRecordType(Record);
2424  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2425    assert(!Enum->getPreviousDecl() &&
2426           "enum has previous declaration");
2427    return getEnumType(Enum);
2428  } else if (const UnresolvedUsingTypenameDecl *Using =
2429               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2430    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2431    Decl->TypeForDecl = newType;
2432    Types.push_back(newType);
2433  } else
2434    llvm_unreachable("TypeDecl without a type?");
2435
2436  return QualType(Decl->TypeForDecl, 0);
2437}
2438
2439/// getTypedefType - Return the unique reference to the type for the
2440/// specified typedef name decl.
2441QualType
2442ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2443                           QualType Canonical) const {
2444  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2445
2446  if (Canonical.isNull())
2447    Canonical = getCanonicalType(Decl->getUnderlyingType());
2448  TypedefType *newType = new(*this, TypeAlignment)
2449    TypedefType(Type::Typedef, Decl, Canonical);
2450  Decl->TypeForDecl = newType;
2451  Types.push_back(newType);
2452  return QualType(newType, 0);
2453}
2454
2455QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2456  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2457
2458  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2459    if (PrevDecl->TypeForDecl)
2460      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2461
2462  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2463  Decl->TypeForDecl = newType;
2464  Types.push_back(newType);
2465  return QualType(newType, 0);
2466}
2467
2468QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2469  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2470
2471  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2472    if (PrevDecl->TypeForDecl)
2473      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2474
2475  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2476  Decl->TypeForDecl = newType;
2477  Types.push_back(newType);
2478  return QualType(newType, 0);
2479}
2480
2481QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2482                                       QualType modifiedType,
2483                                       QualType equivalentType) {
2484  llvm::FoldingSetNodeID id;
2485  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2486
2487  void *insertPos = 0;
2488  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2489  if (type) return QualType(type, 0);
2490
2491  QualType canon = getCanonicalType(equivalentType);
2492  type = new (*this, TypeAlignment)
2493           AttributedType(canon, attrKind, modifiedType, equivalentType);
2494
2495  Types.push_back(type);
2496  AttributedTypes.InsertNode(type, insertPos);
2497
2498  return QualType(type, 0);
2499}
2500
2501
2502/// \brief Retrieve a substitution-result type.
2503QualType
2504ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2505                                         QualType Replacement) const {
2506  assert(Replacement.isCanonical()
2507         && "replacement types must always be canonical");
2508
2509  llvm::FoldingSetNodeID ID;
2510  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2511  void *InsertPos = 0;
2512  SubstTemplateTypeParmType *SubstParm
2513    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2514
2515  if (!SubstParm) {
2516    SubstParm = new (*this, TypeAlignment)
2517      SubstTemplateTypeParmType(Parm, Replacement);
2518    Types.push_back(SubstParm);
2519    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2520  }
2521
2522  return QualType(SubstParm, 0);
2523}
2524
2525/// \brief Retrieve a
2526QualType ASTContext::getSubstTemplateTypeParmPackType(
2527                                          const TemplateTypeParmType *Parm,
2528                                              const TemplateArgument &ArgPack) {
2529#ifndef NDEBUG
2530  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2531                                    PEnd = ArgPack.pack_end();
2532       P != PEnd; ++P) {
2533    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2534    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2535  }
2536#endif
2537
2538  llvm::FoldingSetNodeID ID;
2539  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2540  void *InsertPos = 0;
2541  if (SubstTemplateTypeParmPackType *SubstParm
2542        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2543    return QualType(SubstParm, 0);
2544
2545  QualType Canon;
2546  if (!Parm->isCanonicalUnqualified()) {
2547    Canon = getCanonicalType(QualType(Parm, 0));
2548    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2549                                             ArgPack);
2550    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2551  }
2552
2553  SubstTemplateTypeParmPackType *SubstParm
2554    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2555                                                               ArgPack);
2556  Types.push_back(SubstParm);
2557  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2558  return QualType(SubstParm, 0);
2559}
2560
2561/// \brief Retrieve the template type parameter type for a template
2562/// parameter or parameter pack with the given depth, index, and (optionally)
2563/// name.
2564QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2565                                             bool ParameterPack,
2566                                             TemplateTypeParmDecl *TTPDecl) const {
2567  llvm::FoldingSetNodeID ID;
2568  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2569  void *InsertPos = 0;
2570  TemplateTypeParmType *TypeParm
2571    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2572
2573  if (TypeParm)
2574    return QualType(TypeParm, 0);
2575
2576  if (TTPDecl) {
2577    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2578    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2579
2580    TemplateTypeParmType *TypeCheck
2581      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2582    assert(!TypeCheck && "Template type parameter canonical type broken");
2583    (void)TypeCheck;
2584  } else
2585    TypeParm = new (*this, TypeAlignment)
2586      TemplateTypeParmType(Depth, Index, ParameterPack);
2587
2588  Types.push_back(TypeParm);
2589  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2590
2591  return QualType(TypeParm, 0);
2592}
2593
2594TypeSourceInfo *
2595ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2596                                              SourceLocation NameLoc,
2597                                        const TemplateArgumentListInfo &Args,
2598                                              QualType Underlying) const {
2599  assert(!Name.getAsDependentTemplateName() &&
2600         "No dependent template names here!");
2601  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2602
2603  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2604  TemplateSpecializationTypeLoc TL
2605    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2606  TL.setTemplateKeywordLoc(SourceLocation());
2607  TL.setTemplateNameLoc(NameLoc);
2608  TL.setLAngleLoc(Args.getLAngleLoc());
2609  TL.setRAngleLoc(Args.getRAngleLoc());
2610  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2611    TL.setArgLocInfo(i, Args[i].getLocInfo());
2612  return DI;
2613}
2614
2615QualType
2616ASTContext::getTemplateSpecializationType(TemplateName Template,
2617                                          const TemplateArgumentListInfo &Args,
2618                                          QualType Underlying) const {
2619  assert(!Template.getAsDependentTemplateName() &&
2620         "No dependent template names here!");
2621
2622  unsigned NumArgs = Args.size();
2623
2624  SmallVector<TemplateArgument, 4> ArgVec;
2625  ArgVec.reserve(NumArgs);
2626  for (unsigned i = 0; i != NumArgs; ++i)
2627    ArgVec.push_back(Args[i].getArgument());
2628
2629  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2630                                       Underlying);
2631}
2632
2633#ifndef NDEBUG
2634static bool hasAnyPackExpansions(const TemplateArgument *Args,
2635                                 unsigned NumArgs) {
2636  for (unsigned I = 0; I != NumArgs; ++I)
2637    if (Args[I].isPackExpansion())
2638      return true;
2639
2640  return true;
2641}
2642#endif
2643
2644QualType
2645ASTContext::getTemplateSpecializationType(TemplateName Template,
2646                                          const TemplateArgument *Args,
2647                                          unsigned NumArgs,
2648                                          QualType Underlying) const {
2649  assert(!Template.getAsDependentTemplateName() &&
2650         "No dependent template names here!");
2651  // Look through qualified template names.
2652  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2653    Template = TemplateName(QTN->getTemplateDecl());
2654
2655  bool IsTypeAlias =
2656    Template.getAsTemplateDecl() &&
2657    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2658  QualType CanonType;
2659  if (!Underlying.isNull())
2660    CanonType = getCanonicalType(Underlying);
2661  else {
2662    // We can get here with an alias template when the specialization contains
2663    // a pack expansion that does not match up with a parameter pack.
2664    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2665           "Caller must compute aliased type");
2666    IsTypeAlias = false;
2667    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2668                                                       NumArgs);
2669  }
2670
2671  // Allocate the (non-canonical) template specialization type, but don't
2672  // try to unique it: these types typically have location information that
2673  // we don't unique and don't want to lose.
2674  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2675                       sizeof(TemplateArgument) * NumArgs +
2676                       (IsTypeAlias? sizeof(QualType) : 0),
2677                       TypeAlignment);
2678  TemplateSpecializationType *Spec
2679    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2680                                         IsTypeAlias ? Underlying : QualType());
2681
2682  Types.push_back(Spec);
2683  return QualType(Spec, 0);
2684}
2685
2686QualType
2687ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2688                                                   const TemplateArgument *Args,
2689                                                   unsigned NumArgs) const {
2690  assert(!Template.getAsDependentTemplateName() &&
2691         "No dependent template names here!");
2692
2693  // Look through qualified template names.
2694  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2695    Template = TemplateName(QTN->getTemplateDecl());
2696
2697  // Build the canonical template specialization type.
2698  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2699  SmallVector<TemplateArgument, 4> CanonArgs;
2700  CanonArgs.reserve(NumArgs);
2701  for (unsigned I = 0; I != NumArgs; ++I)
2702    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2703
2704  // Determine whether this canonical template specialization type already
2705  // exists.
2706  llvm::FoldingSetNodeID ID;
2707  TemplateSpecializationType::Profile(ID, CanonTemplate,
2708                                      CanonArgs.data(), NumArgs, *this);
2709
2710  void *InsertPos = 0;
2711  TemplateSpecializationType *Spec
2712    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2713
2714  if (!Spec) {
2715    // Allocate a new canonical template specialization type.
2716    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2717                          sizeof(TemplateArgument) * NumArgs),
2718                         TypeAlignment);
2719    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2720                                                CanonArgs.data(), NumArgs,
2721                                                QualType(), QualType());
2722    Types.push_back(Spec);
2723    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2724  }
2725
2726  assert(Spec->isDependentType() &&
2727         "Non-dependent template-id type must have a canonical type");
2728  return QualType(Spec, 0);
2729}
2730
2731QualType
2732ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2733                              NestedNameSpecifier *NNS,
2734                              QualType NamedType) const {
2735  llvm::FoldingSetNodeID ID;
2736  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2737
2738  void *InsertPos = 0;
2739  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2740  if (T)
2741    return QualType(T, 0);
2742
2743  QualType Canon = NamedType;
2744  if (!Canon.isCanonical()) {
2745    Canon = getCanonicalType(NamedType);
2746    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2747    assert(!CheckT && "Elaborated canonical type broken");
2748    (void)CheckT;
2749  }
2750
2751  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2752  Types.push_back(T);
2753  ElaboratedTypes.InsertNode(T, InsertPos);
2754  return QualType(T, 0);
2755}
2756
2757QualType
2758ASTContext::getParenType(QualType InnerType) const {
2759  llvm::FoldingSetNodeID ID;
2760  ParenType::Profile(ID, InnerType);
2761
2762  void *InsertPos = 0;
2763  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2764  if (T)
2765    return QualType(T, 0);
2766
2767  QualType Canon = InnerType;
2768  if (!Canon.isCanonical()) {
2769    Canon = getCanonicalType(InnerType);
2770    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2771    assert(!CheckT && "Paren canonical type broken");
2772    (void)CheckT;
2773  }
2774
2775  T = new (*this) ParenType(InnerType, Canon);
2776  Types.push_back(T);
2777  ParenTypes.InsertNode(T, InsertPos);
2778  return QualType(T, 0);
2779}
2780
2781QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2782                                          NestedNameSpecifier *NNS,
2783                                          const IdentifierInfo *Name,
2784                                          QualType Canon) const {
2785  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2786
2787  if (Canon.isNull()) {
2788    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2789    ElaboratedTypeKeyword CanonKeyword = Keyword;
2790    if (Keyword == ETK_None)
2791      CanonKeyword = ETK_Typename;
2792
2793    if (CanonNNS != NNS || CanonKeyword != Keyword)
2794      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2795  }
2796
2797  llvm::FoldingSetNodeID ID;
2798  DependentNameType::Profile(ID, Keyword, NNS, Name);
2799
2800  void *InsertPos = 0;
2801  DependentNameType *T
2802    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2803  if (T)
2804    return QualType(T, 0);
2805
2806  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2807  Types.push_back(T);
2808  DependentNameTypes.InsertNode(T, InsertPos);
2809  return QualType(T, 0);
2810}
2811
2812QualType
2813ASTContext::getDependentTemplateSpecializationType(
2814                                 ElaboratedTypeKeyword Keyword,
2815                                 NestedNameSpecifier *NNS,
2816                                 const IdentifierInfo *Name,
2817                                 const TemplateArgumentListInfo &Args) const {
2818  // TODO: avoid this copy
2819  SmallVector<TemplateArgument, 16> ArgCopy;
2820  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2821    ArgCopy.push_back(Args[I].getArgument());
2822  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2823                                                ArgCopy.size(),
2824                                                ArgCopy.data());
2825}
2826
2827QualType
2828ASTContext::getDependentTemplateSpecializationType(
2829                                 ElaboratedTypeKeyword Keyword,
2830                                 NestedNameSpecifier *NNS,
2831                                 const IdentifierInfo *Name,
2832                                 unsigned NumArgs,
2833                                 const TemplateArgument *Args) const {
2834  assert((!NNS || NNS->isDependent()) &&
2835         "nested-name-specifier must be dependent");
2836
2837  llvm::FoldingSetNodeID ID;
2838  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2839                                               Name, NumArgs, Args);
2840
2841  void *InsertPos = 0;
2842  DependentTemplateSpecializationType *T
2843    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2844  if (T)
2845    return QualType(T, 0);
2846
2847  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2848
2849  ElaboratedTypeKeyword CanonKeyword = Keyword;
2850  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2851
2852  bool AnyNonCanonArgs = false;
2853  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2854  for (unsigned I = 0; I != NumArgs; ++I) {
2855    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2856    if (!CanonArgs[I].structurallyEquals(Args[I]))
2857      AnyNonCanonArgs = true;
2858  }
2859
2860  QualType Canon;
2861  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2862    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2863                                                   Name, NumArgs,
2864                                                   CanonArgs.data());
2865
2866    // Find the insert position again.
2867    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2868  }
2869
2870  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2871                        sizeof(TemplateArgument) * NumArgs),
2872                       TypeAlignment);
2873  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2874                                                    Name, NumArgs, Args, Canon);
2875  Types.push_back(T);
2876  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2877  return QualType(T, 0);
2878}
2879
2880QualType ASTContext::getPackExpansionType(QualType Pattern,
2881                                      llvm::Optional<unsigned> NumExpansions) {
2882  llvm::FoldingSetNodeID ID;
2883  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2884
2885  assert(Pattern->containsUnexpandedParameterPack() &&
2886         "Pack expansions must expand one or more parameter packs");
2887  void *InsertPos = 0;
2888  PackExpansionType *T
2889    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2890  if (T)
2891    return QualType(T, 0);
2892
2893  QualType Canon;
2894  if (!Pattern.isCanonical()) {
2895    Canon = getCanonicalType(Pattern);
2896    // The canonical type might not contain an unexpanded parameter pack, if it
2897    // contains an alias template specialization which ignores one of its
2898    // parameters.
2899    if (Canon->containsUnexpandedParameterPack()) {
2900      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2901
2902      // Find the insert position again, in case we inserted an element into
2903      // PackExpansionTypes and invalidated our insert position.
2904      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2905    }
2906  }
2907
2908  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2909  Types.push_back(T);
2910  PackExpansionTypes.InsertNode(T, InsertPos);
2911  return QualType(T, 0);
2912}
2913
2914/// CmpProtocolNames - Comparison predicate for sorting protocols
2915/// alphabetically.
2916static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2917                            const ObjCProtocolDecl *RHS) {
2918  return LHS->getDeclName() < RHS->getDeclName();
2919}
2920
2921static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2922                                unsigned NumProtocols) {
2923  if (NumProtocols == 0) return true;
2924
2925  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2926    return false;
2927
2928  for (unsigned i = 1; i != NumProtocols; ++i)
2929    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2930        Protocols[i]->getCanonicalDecl() != Protocols[i])
2931      return false;
2932  return true;
2933}
2934
2935static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2936                                   unsigned &NumProtocols) {
2937  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2938
2939  // Sort protocols, keyed by name.
2940  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2941
2942  // Canonicalize.
2943  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2944    Protocols[I] = Protocols[I]->getCanonicalDecl();
2945
2946  // Remove duplicates.
2947  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2948  NumProtocols = ProtocolsEnd-Protocols;
2949}
2950
2951QualType ASTContext::getObjCObjectType(QualType BaseType,
2952                                       ObjCProtocolDecl * const *Protocols,
2953                                       unsigned NumProtocols) const {
2954  // If the base type is an interface and there aren't any protocols
2955  // to add, then the interface type will do just fine.
2956  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2957    return BaseType;
2958
2959  // Look in the folding set for an existing type.
2960  llvm::FoldingSetNodeID ID;
2961  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2962  void *InsertPos = 0;
2963  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2964    return QualType(QT, 0);
2965
2966  // Build the canonical type, which has the canonical base type and
2967  // a sorted-and-uniqued list of protocols.
2968  QualType Canonical;
2969  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2970  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2971    if (!ProtocolsSorted) {
2972      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2973                                                     Protocols + NumProtocols);
2974      unsigned UniqueCount = NumProtocols;
2975
2976      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2977      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2978                                    &Sorted[0], UniqueCount);
2979    } else {
2980      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2981                                    Protocols, NumProtocols);
2982    }
2983
2984    // Regenerate InsertPos.
2985    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2986  }
2987
2988  unsigned Size = sizeof(ObjCObjectTypeImpl);
2989  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2990  void *Mem = Allocate(Size, TypeAlignment);
2991  ObjCObjectTypeImpl *T =
2992    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2993
2994  Types.push_back(T);
2995  ObjCObjectTypes.InsertNode(T, InsertPos);
2996  return QualType(T, 0);
2997}
2998
2999/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3000/// the given object type.
3001QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3002  llvm::FoldingSetNodeID ID;
3003  ObjCObjectPointerType::Profile(ID, ObjectT);
3004
3005  void *InsertPos = 0;
3006  if (ObjCObjectPointerType *QT =
3007              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3008    return QualType(QT, 0);
3009
3010  // Find the canonical object type.
3011  QualType Canonical;
3012  if (!ObjectT.isCanonical()) {
3013    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3014
3015    // Regenerate InsertPos.
3016    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3017  }
3018
3019  // No match.
3020  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3021  ObjCObjectPointerType *QType =
3022    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3023
3024  Types.push_back(QType);
3025  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3026  return QualType(QType, 0);
3027}
3028
3029/// getObjCInterfaceType - Return the unique reference to the type for the
3030/// specified ObjC interface decl. The list of protocols is optional.
3031QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3032                                          ObjCInterfaceDecl *PrevDecl) const {
3033  if (Decl->TypeForDecl)
3034    return QualType(Decl->TypeForDecl, 0);
3035
3036  if (PrevDecl) {
3037    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3038    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3039    return QualType(PrevDecl->TypeForDecl, 0);
3040  }
3041
3042  // Prefer the definition, if there is one.
3043  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3044    Decl = Def;
3045
3046  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3047  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3048  Decl->TypeForDecl = T;
3049  Types.push_back(T);
3050  return QualType(T, 0);
3051}
3052
3053/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3054/// TypeOfExprType AST's (since expression's are never shared). For example,
3055/// multiple declarations that refer to "typeof(x)" all contain different
3056/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3057/// on canonical type's (which are always unique).
3058QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3059  TypeOfExprType *toe;
3060  if (tofExpr->isTypeDependent()) {
3061    llvm::FoldingSetNodeID ID;
3062    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3063
3064    void *InsertPos = 0;
3065    DependentTypeOfExprType *Canon
3066      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3067    if (Canon) {
3068      // We already have a "canonical" version of an identical, dependent
3069      // typeof(expr) type. Use that as our canonical type.
3070      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3071                                          QualType((TypeOfExprType*)Canon, 0));
3072    } else {
3073      // Build a new, canonical typeof(expr) type.
3074      Canon
3075        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3076      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3077      toe = Canon;
3078    }
3079  } else {
3080    QualType Canonical = getCanonicalType(tofExpr->getType());
3081    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3082  }
3083  Types.push_back(toe);
3084  return QualType(toe, 0);
3085}
3086
3087/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3088/// TypeOfType AST's. The only motivation to unique these nodes would be
3089/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3090/// an issue. This doesn't effect the type checker, since it operates
3091/// on canonical type's (which are always unique).
3092QualType ASTContext::getTypeOfType(QualType tofType) const {
3093  QualType Canonical = getCanonicalType(tofType);
3094  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3095  Types.push_back(tot);
3096  return QualType(tot, 0);
3097}
3098
3099
3100/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3101/// DecltypeType AST's. The only motivation to unique these nodes would be
3102/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3103/// an issue. This doesn't effect the type checker, since it operates
3104/// on canonical types (which are always unique).
3105QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3106  DecltypeType *dt;
3107
3108  // C++0x [temp.type]p2:
3109  //   If an expression e involves a template parameter, decltype(e) denotes a
3110  //   unique dependent type. Two such decltype-specifiers refer to the same
3111  //   type only if their expressions are equivalent (14.5.6.1).
3112  if (e->isInstantiationDependent()) {
3113    llvm::FoldingSetNodeID ID;
3114    DependentDecltypeType::Profile(ID, *this, e);
3115
3116    void *InsertPos = 0;
3117    DependentDecltypeType *Canon
3118      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3119    if (Canon) {
3120      // We already have a "canonical" version of an equivalent, dependent
3121      // decltype type. Use that as our canonical type.
3122      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
3123                                       QualType((DecltypeType*)Canon, 0));
3124    } else {
3125      // Build a new, canonical typeof(expr) type.
3126      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3127      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3128      dt = Canon;
3129    }
3130  } else {
3131    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3132                                      getCanonicalType(UnderlyingType));
3133  }
3134  Types.push_back(dt);
3135  return QualType(dt, 0);
3136}
3137
3138/// getUnaryTransformationType - We don't unique these, since the memory
3139/// savings are minimal and these are rare.
3140QualType ASTContext::getUnaryTransformType(QualType BaseType,
3141                                           QualType UnderlyingType,
3142                                           UnaryTransformType::UTTKind Kind)
3143    const {
3144  UnaryTransformType *Ty =
3145    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3146                                                   Kind,
3147                                 UnderlyingType->isDependentType() ?
3148                                 QualType() : getCanonicalType(UnderlyingType));
3149  Types.push_back(Ty);
3150  return QualType(Ty, 0);
3151}
3152
3153/// getAutoType - We only unique auto types after they've been deduced.
3154QualType ASTContext::getAutoType(QualType DeducedType) const {
3155  void *InsertPos = 0;
3156  if (!DeducedType.isNull()) {
3157    // Look in the folding set for an existing type.
3158    llvm::FoldingSetNodeID ID;
3159    AutoType::Profile(ID, DeducedType);
3160    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3161      return QualType(AT, 0);
3162  }
3163
3164  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3165  Types.push_back(AT);
3166  if (InsertPos)
3167    AutoTypes.InsertNode(AT, InsertPos);
3168  return QualType(AT, 0);
3169}
3170
3171/// getAtomicType - Return the uniqued reference to the atomic type for
3172/// the given value type.
3173QualType ASTContext::getAtomicType(QualType T) const {
3174  // Unique pointers, to guarantee there is only one pointer of a particular
3175  // structure.
3176  llvm::FoldingSetNodeID ID;
3177  AtomicType::Profile(ID, T);
3178
3179  void *InsertPos = 0;
3180  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3181    return QualType(AT, 0);
3182
3183  // If the atomic value type isn't canonical, this won't be a canonical type
3184  // either, so fill in the canonical type field.
3185  QualType Canonical;
3186  if (!T.isCanonical()) {
3187    Canonical = getAtomicType(getCanonicalType(T));
3188
3189    // Get the new insert position for the node we care about.
3190    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3191    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3192  }
3193  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3194  Types.push_back(New);
3195  AtomicTypes.InsertNode(New, InsertPos);
3196  return QualType(New, 0);
3197}
3198
3199/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3200QualType ASTContext::getAutoDeductType() const {
3201  if (AutoDeductTy.isNull())
3202    AutoDeductTy = getAutoType(QualType());
3203  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3204  return AutoDeductTy;
3205}
3206
3207/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3208QualType ASTContext::getAutoRRefDeductType() const {
3209  if (AutoRRefDeductTy.isNull())
3210    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3211  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3212  return AutoRRefDeductTy;
3213}
3214
3215/// getTagDeclType - Return the unique reference to the type for the
3216/// specified TagDecl (struct/union/class/enum) decl.
3217QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3218  assert (Decl);
3219  // FIXME: What is the design on getTagDeclType when it requires casting
3220  // away const?  mutable?
3221  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3222}
3223
3224/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3225/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3226/// needs to agree with the definition in <stddef.h>.
3227CanQualType ASTContext::getSizeType() const {
3228  return getFromTargetType(Target->getSizeType());
3229}
3230
3231/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3232CanQualType ASTContext::getIntMaxType() const {
3233  return getFromTargetType(Target->getIntMaxType());
3234}
3235
3236/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3237CanQualType ASTContext::getUIntMaxType() const {
3238  return getFromTargetType(Target->getUIntMaxType());
3239}
3240
3241/// getSignedWCharType - Return the type of "signed wchar_t".
3242/// Used when in C++, as a GCC extension.
3243QualType ASTContext::getSignedWCharType() const {
3244  // FIXME: derive from "Target" ?
3245  return WCharTy;
3246}
3247
3248/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3249/// Used when in C++, as a GCC extension.
3250QualType ASTContext::getUnsignedWCharType() const {
3251  // FIXME: derive from "Target" ?
3252  return UnsignedIntTy;
3253}
3254
3255/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3256/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3257QualType ASTContext::getPointerDiffType() const {
3258  return getFromTargetType(Target->getPtrDiffType(0));
3259}
3260
3261//===----------------------------------------------------------------------===//
3262//                              Type Operators
3263//===----------------------------------------------------------------------===//
3264
3265CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3266  // Push qualifiers into arrays, and then discard any remaining
3267  // qualifiers.
3268  T = getCanonicalType(T);
3269  T = getVariableArrayDecayedType(T);
3270  const Type *Ty = T.getTypePtr();
3271  QualType Result;
3272  if (isa<ArrayType>(Ty)) {
3273    Result = getArrayDecayedType(QualType(Ty,0));
3274  } else if (isa<FunctionType>(Ty)) {
3275    Result = getPointerType(QualType(Ty, 0));
3276  } else {
3277    Result = QualType(Ty, 0);
3278  }
3279
3280  return CanQualType::CreateUnsafe(Result);
3281}
3282
3283QualType ASTContext::getUnqualifiedArrayType(QualType type,
3284                                             Qualifiers &quals) {
3285  SplitQualType splitType = type.getSplitUnqualifiedType();
3286
3287  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3288  // the unqualified desugared type and then drops it on the floor.
3289  // We then have to strip that sugar back off with
3290  // getUnqualifiedDesugaredType(), which is silly.
3291  const ArrayType *AT =
3292    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3293
3294  // If we don't have an array, just use the results in splitType.
3295  if (!AT) {
3296    quals = splitType.Quals;
3297    return QualType(splitType.Ty, 0);
3298  }
3299
3300  // Otherwise, recurse on the array's element type.
3301  QualType elementType = AT->getElementType();
3302  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3303
3304  // If that didn't change the element type, AT has no qualifiers, so we
3305  // can just use the results in splitType.
3306  if (elementType == unqualElementType) {
3307    assert(quals.empty()); // from the recursive call
3308    quals = splitType.Quals;
3309    return QualType(splitType.Ty, 0);
3310  }
3311
3312  // Otherwise, add in the qualifiers from the outermost type, then
3313  // build the type back up.
3314  quals.addConsistentQualifiers(splitType.Quals);
3315
3316  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3317    return getConstantArrayType(unqualElementType, CAT->getSize(),
3318                                CAT->getSizeModifier(), 0);
3319  }
3320
3321  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3322    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3323  }
3324
3325  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3326    return getVariableArrayType(unqualElementType,
3327                                VAT->getSizeExpr(),
3328                                VAT->getSizeModifier(),
3329                                VAT->getIndexTypeCVRQualifiers(),
3330                                VAT->getBracketsRange());
3331  }
3332
3333  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3334  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3335                                    DSAT->getSizeModifier(), 0,
3336                                    SourceRange());
3337}
3338
3339/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3340/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3341/// they point to and return true. If T1 and T2 aren't pointer types
3342/// or pointer-to-member types, or if they are not similar at this
3343/// level, returns false and leaves T1 and T2 unchanged. Top-level
3344/// qualifiers on T1 and T2 are ignored. This function will typically
3345/// be called in a loop that successively "unwraps" pointer and
3346/// pointer-to-member types to compare them at each level.
3347bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3348  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3349                    *T2PtrType = T2->getAs<PointerType>();
3350  if (T1PtrType && T2PtrType) {
3351    T1 = T1PtrType->getPointeeType();
3352    T2 = T2PtrType->getPointeeType();
3353    return true;
3354  }
3355
3356  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3357                          *T2MPType = T2->getAs<MemberPointerType>();
3358  if (T1MPType && T2MPType &&
3359      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3360                             QualType(T2MPType->getClass(), 0))) {
3361    T1 = T1MPType->getPointeeType();
3362    T2 = T2MPType->getPointeeType();
3363    return true;
3364  }
3365
3366  if (getLangOpts().ObjC1) {
3367    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3368                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3369    if (T1OPType && T2OPType) {
3370      T1 = T1OPType->getPointeeType();
3371      T2 = T2OPType->getPointeeType();
3372      return true;
3373    }
3374  }
3375
3376  // FIXME: Block pointers, too?
3377
3378  return false;
3379}
3380
3381DeclarationNameInfo
3382ASTContext::getNameForTemplate(TemplateName Name,
3383                               SourceLocation NameLoc) const {
3384  switch (Name.getKind()) {
3385  case TemplateName::QualifiedTemplate:
3386  case TemplateName::Template:
3387    // DNInfo work in progress: CHECKME: what about DNLoc?
3388    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3389                               NameLoc);
3390
3391  case TemplateName::OverloadedTemplate: {
3392    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3393    // DNInfo work in progress: CHECKME: what about DNLoc?
3394    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3395  }
3396
3397  case TemplateName::DependentTemplate: {
3398    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3399    DeclarationName DName;
3400    if (DTN->isIdentifier()) {
3401      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3402      return DeclarationNameInfo(DName, NameLoc);
3403    } else {
3404      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3405      // DNInfo work in progress: FIXME: source locations?
3406      DeclarationNameLoc DNLoc;
3407      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3408      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3409      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3410    }
3411  }
3412
3413  case TemplateName::SubstTemplateTemplateParm: {
3414    SubstTemplateTemplateParmStorage *subst
3415      = Name.getAsSubstTemplateTemplateParm();
3416    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3417                               NameLoc);
3418  }
3419
3420  case TemplateName::SubstTemplateTemplateParmPack: {
3421    SubstTemplateTemplateParmPackStorage *subst
3422      = Name.getAsSubstTemplateTemplateParmPack();
3423    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3424                               NameLoc);
3425  }
3426  }
3427
3428  llvm_unreachable("bad template name kind!");
3429}
3430
3431TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3432  switch (Name.getKind()) {
3433  case TemplateName::QualifiedTemplate:
3434  case TemplateName::Template: {
3435    TemplateDecl *Template = Name.getAsTemplateDecl();
3436    if (TemplateTemplateParmDecl *TTP
3437          = dyn_cast<TemplateTemplateParmDecl>(Template))
3438      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3439
3440    // The canonical template name is the canonical template declaration.
3441    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3442  }
3443
3444  case TemplateName::OverloadedTemplate:
3445    llvm_unreachable("cannot canonicalize overloaded template");
3446
3447  case TemplateName::DependentTemplate: {
3448    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3449    assert(DTN && "Non-dependent template names must refer to template decls.");
3450    return DTN->CanonicalTemplateName;
3451  }
3452
3453  case TemplateName::SubstTemplateTemplateParm: {
3454    SubstTemplateTemplateParmStorage *subst
3455      = Name.getAsSubstTemplateTemplateParm();
3456    return getCanonicalTemplateName(subst->getReplacement());
3457  }
3458
3459  case TemplateName::SubstTemplateTemplateParmPack: {
3460    SubstTemplateTemplateParmPackStorage *subst
3461                                  = Name.getAsSubstTemplateTemplateParmPack();
3462    TemplateTemplateParmDecl *canonParameter
3463      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3464    TemplateArgument canonArgPack
3465      = getCanonicalTemplateArgument(subst->getArgumentPack());
3466    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3467  }
3468  }
3469
3470  llvm_unreachable("bad template name!");
3471}
3472
3473bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3474  X = getCanonicalTemplateName(X);
3475  Y = getCanonicalTemplateName(Y);
3476  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3477}
3478
3479TemplateArgument
3480ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3481  switch (Arg.getKind()) {
3482    case TemplateArgument::Null:
3483      return Arg;
3484
3485    case TemplateArgument::Expression:
3486      return Arg;
3487
3488    case TemplateArgument::Declaration: {
3489      if (Decl *D = Arg.getAsDecl())
3490          return TemplateArgument(D->getCanonicalDecl());
3491      return TemplateArgument((Decl*)0);
3492    }
3493
3494    case TemplateArgument::Template:
3495      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3496
3497    case TemplateArgument::TemplateExpansion:
3498      return TemplateArgument(getCanonicalTemplateName(
3499                                         Arg.getAsTemplateOrTemplatePattern()),
3500                              Arg.getNumTemplateExpansions());
3501
3502    case TemplateArgument::Integral:
3503      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3504
3505    case TemplateArgument::Type:
3506      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3507
3508    case TemplateArgument::Pack: {
3509      if (Arg.pack_size() == 0)
3510        return Arg;
3511
3512      TemplateArgument *CanonArgs
3513        = new (*this) TemplateArgument[Arg.pack_size()];
3514      unsigned Idx = 0;
3515      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3516                                        AEnd = Arg.pack_end();
3517           A != AEnd; (void)++A, ++Idx)
3518        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3519
3520      return TemplateArgument(CanonArgs, Arg.pack_size());
3521    }
3522  }
3523
3524  // Silence GCC warning
3525  llvm_unreachable("Unhandled template argument kind");
3526}
3527
3528NestedNameSpecifier *
3529ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3530  if (!NNS)
3531    return 0;
3532
3533  switch (NNS->getKind()) {
3534  case NestedNameSpecifier::Identifier:
3535    // Canonicalize the prefix but keep the identifier the same.
3536    return NestedNameSpecifier::Create(*this,
3537                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3538                                       NNS->getAsIdentifier());
3539
3540  case NestedNameSpecifier::Namespace:
3541    // A namespace is canonical; build a nested-name-specifier with
3542    // this namespace and no prefix.
3543    return NestedNameSpecifier::Create(*this, 0,
3544                                 NNS->getAsNamespace()->getOriginalNamespace());
3545
3546  case NestedNameSpecifier::NamespaceAlias:
3547    // A namespace is canonical; build a nested-name-specifier with
3548    // this namespace and no prefix.
3549    return NestedNameSpecifier::Create(*this, 0,
3550                                    NNS->getAsNamespaceAlias()->getNamespace()
3551                                                      ->getOriginalNamespace());
3552
3553  case NestedNameSpecifier::TypeSpec:
3554  case NestedNameSpecifier::TypeSpecWithTemplate: {
3555    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3556
3557    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3558    // break it apart into its prefix and identifier, then reconsititute those
3559    // as the canonical nested-name-specifier. This is required to canonicalize
3560    // a dependent nested-name-specifier involving typedefs of dependent-name
3561    // types, e.g.,
3562    //   typedef typename T::type T1;
3563    //   typedef typename T1::type T2;
3564    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3565      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3566                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3567
3568    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3569    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3570    // first place?
3571    return NestedNameSpecifier::Create(*this, 0, false,
3572                                       const_cast<Type*>(T.getTypePtr()));
3573  }
3574
3575  case NestedNameSpecifier::Global:
3576    // The global specifier is canonical and unique.
3577    return NNS;
3578  }
3579
3580  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3581}
3582
3583
3584const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3585  // Handle the non-qualified case efficiently.
3586  if (!T.hasLocalQualifiers()) {
3587    // Handle the common positive case fast.
3588    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3589      return AT;
3590  }
3591
3592  // Handle the common negative case fast.
3593  if (!isa<ArrayType>(T.getCanonicalType()))
3594    return 0;
3595
3596  // Apply any qualifiers from the array type to the element type.  This
3597  // implements C99 6.7.3p8: "If the specification of an array type includes
3598  // any type qualifiers, the element type is so qualified, not the array type."
3599
3600  // If we get here, we either have type qualifiers on the type, or we have
3601  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3602  // we must propagate them down into the element type.
3603
3604  SplitQualType split = T.getSplitDesugaredType();
3605  Qualifiers qs = split.Quals;
3606
3607  // If we have a simple case, just return now.
3608  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3609  if (ATy == 0 || qs.empty())
3610    return ATy;
3611
3612  // Otherwise, we have an array and we have qualifiers on it.  Push the
3613  // qualifiers into the array element type and return a new array type.
3614  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3615
3616  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3617    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3618                                                CAT->getSizeModifier(),
3619                                           CAT->getIndexTypeCVRQualifiers()));
3620  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3621    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3622                                                  IAT->getSizeModifier(),
3623                                           IAT->getIndexTypeCVRQualifiers()));
3624
3625  if (const DependentSizedArrayType *DSAT
3626        = dyn_cast<DependentSizedArrayType>(ATy))
3627    return cast<ArrayType>(
3628                     getDependentSizedArrayType(NewEltTy,
3629                                                DSAT->getSizeExpr(),
3630                                                DSAT->getSizeModifier(),
3631                                              DSAT->getIndexTypeCVRQualifiers(),
3632                                                DSAT->getBracketsRange()));
3633
3634  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3635  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3636                                              VAT->getSizeExpr(),
3637                                              VAT->getSizeModifier(),
3638                                              VAT->getIndexTypeCVRQualifiers(),
3639                                              VAT->getBracketsRange()));
3640}
3641
3642QualType ASTContext::getAdjustedParameterType(QualType T) const {
3643  // C99 6.7.5.3p7:
3644  //   A declaration of a parameter as "array of type" shall be
3645  //   adjusted to "qualified pointer to type", where the type
3646  //   qualifiers (if any) are those specified within the [ and ] of
3647  //   the array type derivation.
3648  if (T->isArrayType())
3649    return getArrayDecayedType(T);
3650
3651  // C99 6.7.5.3p8:
3652  //   A declaration of a parameter as "function returning type"
3653  //   shall be adjusted to "pointer to function returning type", as
3654  //   in 6.3.2.1.
3655  if (T->isFunctionType())
3656    return getPointerType(T);
3657
3658  return T;
3659}
3660
3661QualType ASTContext::getSignatureParameterType(QualType T) const {
3662  T = getVariableArrayDecayedType(T);
3663  T = getAdjustedParameterType(T);
3664  return T.getUnqualifiedType();
3665}
3666
3667/// getArrayDecayedType - Return the properly qualified result of decaying the
3668/// specified array type to a pointer.  This operation is non-trivial when
3669/// handling typedefs etc.  The canonical type of "T" must be an array type,
3670/// this returns a pointer to a properly qualified element of the array.
3671///
3672/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3673QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3674  // Get the element type with 'getAsArrayType' so that we don't lose any
3675  // typedefs in the element type of the array.  This also handles propagation
3676  // of type qualifiers from the array type into the element type if present
3677  // (C99 6.7.3p8).
3678  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3679  assert(PrettyArrayType && "Not an array type!");
3680
3681  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3682
3683  // int x[restrict 4] ->  int *restrict
3684  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3685}
3686
3687QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3688  return getBaseElementType(array->getElementType());
3689}
3690
3691QualType ASTContext::getBaseElementType(QualType type) const {
3692  Qualifiers qs;
3693  while (true) {
3694    SplitQualType split = type.getSplitDesugaredType();
3695    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3696    if (!array) break;
3697
3698    type = array->getElementType();
3699    qs.addConsistentQualifiers(split.Quals);
3700  }
3701
3702  return getQualifiedType(type, qs);
3703}
3704
3705/// getConstantArrayElementCount - Returns number of constant array elements.
3706uint64_t
3707ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3708  uint64_t ElementCount = 1;
3709  do {
3710    ElementCount *= CA->getSize().getZExtValue();
3711    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3712  } while (CA);
3713  return ElementCount;
3714}
3715
3716/// getFloatingRank - Return a relative rank for floating point types.
3717/// This routine will assert if passed a built-in type that isn't a float.
3718static FloatingRank getFloatingRank(QualType T) {
3719  if (const ComplexType *CT = T->getAs<ComplexType>())
3720    return getFloatingRank(CT->getElementType());
3721
3722  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3723  switch (T->getAs<BuiltinType>()->getKind()) {
3724  default: llvm_unreachable("getFloatingRank(): not a floating type");
3725  case BuiltinType::Half:       return HalfRank;
3726  case BuiltinType::Float:      return FloatRank;
3727  case BuiltinType::Double:     return DoubleRank;
3728  case BuiltinType::LongDouble: return LongDoubleRank;
3729  }
3730}
3731
3732/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3733/// point or a complex type (based on typeDomain/typeSize).
3734/// 'typeDomain' is a real floating point or complex type.
3735/// 'typeSize' is a real floating point or complex type.
3736QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3737                                                       QualType Domain) const {
3738  FloatingRank EltRank = getFloatingRank(Size);
3739  if (Domain->isComplexType()) {
3740    switch (EltRank) {
3741    case HalfRank: llvm_unreachable("Complex half is not supported");
3742    case FloatRank:      return FloatComplexTy;
3743    case DoubleRank:     return DoubleComplexTy;
3744    case LongDoubleRank: return LongDoubleComplexTy;
3745    }
3746  }
3747
3748  assert(Domain->isRealFloatingType() && "Unknown domain!");
3749  switch (EltRank) {
3750  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3751  case FloatRank:      return FloatTy;
3752  case DoubleRank:     return DoubleTy;
3753  case LongDoubleRank: return LongDoubleTy;
3754  }
3755  llvm_unreachable("getFloatingRank(): illegal value for rank");
3756}
3757
3758/// getFloatingTypeOrder - Compare the rank of the two specified floating
3759/// point types, ignoring the domain of the type (i.e. 'double' ==
3760/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3761/// LHS < RHS, return -1.
3762int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3763  FloatingRank LHSR = getFloatingRank(LHS);
3764  FloatingRank RHSR = getFloatingRank(RHS);
3765
3766  if (LHSR == RHSR)
3767    return 0;
3768  if (LHSR > RHSR)
3769    return 1;
3770  return -1;
3771}
3772
3773/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3774/// routine will assert if passed a built-in type that isn't an integer or enum,
3775/// or if it is not canonicalized.
3776unsigned ASTContext::getIntegerRank(const Type *T) const {
3777  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3778
3779  switch (cast<BuiltinType>(T)->getKind()) {
3780  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3781  case BuiltinType::Bool:
3782    return 1 + (getIntWidth(BoolTy) << 3);
3783  case BuiltinType::Char_S:
3784  case BuiltinType::Char_U:
3785  case BuiltinType::SChar:
3786  case BuiltinType::UChar:
3787    return 2 + (getIntWidth(CharTy) << 3);
3788  case BuiltinType::Short:
3789  case BuiltinType::UShort:
3790    return 3 + (getIntWidth(ShortTy) << 3);
3791  case BuiltinType::Int:
3792  case BuiltinType::UInt:
3793    return 4 + (getIntWidth(IntTy) << 3);
3794  case BuiltinType::Long:
3795  case BuiltinType::ULong:
3796    return 5 + (getIntWidth(LongTy) << 3);
3797  case BuiltinType::LongLong:
3798  case BuiltinType::ULongLong:
3799    return 6 + (getIntWidth(LongLongTy) << 3);
3800  case BuiltinType::Int128:
3801  case BuiltinType::UInt128:
3802    return 7 + (getIntWidth(Int128Ty) << 3);
3803  }
3804}
3805
3806/// \brief Whether this is a promotable bitfield reference according
3807/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3808///
3809/// \returns the type this bit-field will promote to, or NULL if no
3810/// promotion occurs.
3811QualType ASTContext::isPromotableBitField(Expr *E) const {
3812  if (E->isTypeDependent() || E->isValueDependent())
3813    return QualType();
3814
3815  FieldDecl *Field = E->getBitField();
3816  if (!Field)
3817    return QualType();
3818
3819  QualType FT = Field->getType();
3820
3821  uint64_t BitWidth = Field->getBitWidthValue(*this);
3822  uint64_t IntSize = getTypeSize(IntTy);
3823  // GCC extension compatibility: if the bit-field size is less than or equal
3824  // to the size of int, it gets promoted no matter what its type is.
3825  // For instance, unsigned long bf : 4 gets promoted to signed int.
3826  if (BitWidth < IntSize)
3827    return IntTy;
3828
3829  if (BitWidth == IntSize)
3830    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3831
3832  // Types bigger than int are not subject to promotions, and therefore act
3833  // like the base type.
3834  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3835  // is ridiculous.
3836  return QualType();
3837}
3838
3839/// getPromotedIntegerType - Returns the type that Promotable will
3840/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3841/// integer type.
3842QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3843  assert(!Promotable.isNull());
3844  assert(Promotable->isPromotableIntegerType());
3845  if (const EnumType *ET = Promotable->getAs<EnumType>())
3846    return ET->getDecl()->getPromotionType();
3847
3848  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3849    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3850    // (3.9.1) can be converted to a prvalue of the first of the following
3851    // types that can represent all the values of its underlying type:
3852    // int, unsigned int, long int, unsigned long int, long long int, or
3853    // unsigned long long int [...]
3854    // FIXME: Is there some better way to compute this?
3855    if (BT->getKind() == BuiltinType::WChar_S ||
3856        BT->getKind() == BuiltinType::WChar_U ||
3857        BT->getKind() == BuiltinType::Char16 ||
3858        BT->getKind() == BuiltinType::Char32) {
3859      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3860      uint64_t FromSize = getTypeSize(BT);
3861      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3862                                  LongLongTy, UnsignedLongLongTy };
3863      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3864        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3865        if (FromSize < ToSize ||
3866            (FromSize == ToSize &&
3867             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3868          return PromoteTypes[Idx];
3869      }
3870      llvm_unreachable("char type should fit into long long");
3871    }
3872  }
3873
3874  // At this point, we should have a signed or unsigned integer type.
3875  if (Promotable->isSignedIntegerType())
3876    return IntTy;
3877  uint64_t PromotableSize = getTypeSize(Promotable);
3878  uint64_t IntSize = getTypeSize(IntTy);
3879  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3880  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3881}
3882
3883/// \brief Recurses in pointer/array types until it finds an objc retainable
3884/// type and returns its ownership.
3885Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3886  while (!T.isNull()) {
3887    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3888      return T.getObjCLifetime();
3889    if (T->isArrayType())
3890      T = getBaseElementType(T);
3891    else if (const PointerType *PT = T->getAs<PointerType>())
3892      T = PT->getPointeeType();
3893    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3894      T = RT->getPointeeType();
3895    else
3896      break;
3897  }
3898
3899  return Qualifiers::OCL_None;
3900}
3901
3902/// getIntegerTypeOrder - Returns the highest ranked integer type:
3903/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3904/// LHS < RHS, return -1.
3905int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3906  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3907  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3908  if (LHSC == RHSC) return 0;
3909
3910  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3911  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3912
3913  unsigned LHSRank = getIntegerRank(LHSC);
3914  unsigned RHSRank = getIntegerRank(RHSC);
3915
3916  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3917    if (LHSRank == RHSRank) return 0;
3918    return LHSRank > RHSRank ? 1 : -1;
3919  }
3920
3921  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3922  if (LHSUnsigned) {
3923    // If the unsigned [LHS] type is larger, return it.
3924    if (LHSRank >= RHSRank)
3925      return 1;
3926
3927    // If the signed type can represent all values of the unsigned type, it
3928    // wins.  Because we are dealing with 2's complement and types that are
3929    // powers of two larger than each other, this is always safe.
3930    return -1;
3931  }
3932
3933  // If the unsigned [RHS] type is larger, return it.
3934  if (RHSRank >= LHSRank)
3935    return -1;
3936
3937  // If the signed type can represent all values of the unsigned type, it
3938  // wins.  Because we are dealing with 2's complement and types that are
3939  // powers of two larger than each other, this is always safe.
3940  return 1;
3941}
3942
3943static RecordDecl *
3944CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3945                 DeclContext *DC, IdentifierInfo *Id) {
3946  SourceLocation Loc;
3947  if (Ctx.getLangOpts().CPlusPlus)
3948    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3949  else
3950    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3951}
3952
3953// getCFConstantStringType - Return the type used for constant CFStrings.
3954QualType ASTContext::getCFConstantStringType() const {
3955  if (!CFConstantStringTypeDecl) {
3956    CFConstantStringTypeDecl =
3957      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3958                       &Idents.get("NSConstantString"));
3959    CFConstantStringTypeDecl->startDefinition();
3960
3961    QualType FieldTypes[4];
3962
3963    // const int *isa;
3964    FieldTypes[0] = getPointerType(IntTy.withConst());
3965    // int flags;
3966    FieldTypes[1] = IntTy;
3967    // const char *str;
3968    FieldTypes[2] = getPointerType(CharTy.withConst());
3969    // long length;
3970    FieldTypes[3] = LongTy;
3971
3972    // Create fields
3973    for (unsigned i = 0; i < 4; ++i) {
3974      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3975                                           SourceLocation(),
3976                                           SourceLocation(), 0,
3977                                           FieldTypes[i], /*TInfo=*/0,
3978                                           /*BitWidth=*/0,
3979                                           /*Mutable=*/false,
3980                                           ICIS_NoInit);
3981      Field->setAccess(AS_public);
3982      CFConstantStringTypeDecl->addDecl(Field);
3983    }
3984
3985    CFConstantStringTypeDecl->completeDefinition();
3986  }
3987
3988  return getTagDeclType(CFConstantStringTypeDecl);
3989}
3990
3991void ASTContext::setCFConstantStringType(QualType T) {
3992  const RecordType *Rec = T->getAs<RecordType>();
3993  assert(Rec && "Invalid CFConstantStringType");
3994  CFConstantStringTypeDecl = Rec->getDecl();
3995}
3996
3997QualType ASTContext::getBlockDescriptorType() const {
3998  if (BlockDescriptorType)
3999    return getTagDeclType(BlockDescriptorType);
4000
4001  RecordDecl *T;
4002  // FIXME: Needs the FlagAppleBlock bit.
4003  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4004                       &Idents.get("__block_descriptor"));
4005  T->startDefinition();
4006
4007  QualType FieldTypes[] = {
4008    UnsignedLongTy,
4009    UnsignedLongTy,
4010  };
4011
4012  const char *FieldNames[] = {
4013    "reserved",
4014    "Size"
4015  };
4016
4017  for (size_t i = 0; i < 2; ++i) {
4018    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4019                                         SourceLocation(),
4020                                         &Idents.get(FieldNames[i]),
4021                                         FieldTypes[i], /*TInfo=*/0,
4022                                         /*BitWidth=*/0,
4023                                         /*Mutable=*/false,
4024                                         ICIS_NoInit);
4025    Field->setAccess(AS_public);
4026    T->addDecl(Field);
4027  }
4028
4029  T->completeDefinition();
4030
4031  BlockDescriptorType = T;
4032
4033  return getTagDeclType(BlockDescriptorType);
4034}
4035
4036QualType ASTContext::getBlockDescriptorExtendedType() const {
4037  if (BlockDescriptorExtendedType)
4038    return getTagDeclType(BlockDescriptorExtendedType);
4039
4040  RecordDecl *T;
4041  // FIXME: Needs the FlagAppleBlock bit.
4042  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4043                       &Idents.get("__block_descriptor_withcopydispose"));
4044  T->startDefinition();
4045
4046  QualType FieldTypes[] = {
4047    UnsignedLongTy,
4048    UnsignedLongTy,
4049    getPointerType(VoidPtrTy),
4050    getPointerType(VoidPtrTy)
4051  };
4052
4053  const char *FieldNames[] = {
4054    "reserved",
4055    "Size",
4056    "CopyFuncPtr",
4057    "DestroyFuncPtr"
4058  };
4059
4060  for (size_t i = 0; i < 4; ++i) {
4061    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4062                                         SourceLocation(),
4063                                         &Idents.get(FieldNames[i]),
4064                                         FieldTypes[i], /*TInfo=*/0,
4065                                         /*BitWidth=*/0,
4066                                         /*Mutable=*/false,
4067                                         ICIS_NoInit);
4068    Field->setAccess(AS_public);
4069    T->addDecl(Field);
4070  }
4071
4072  T->completeDefinition();
4073
4074  BlockDescriptorExtendedType = T;
4075
4076  return getTagDeclType(BlockDescriptorExtendedType);
4077}
4078
4079bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4080  if (Ty->isObjCRetainableType())
4081    return true;
4082  if (getLangOpts().CPlusPlus) {
4083    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4084      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4085      return RD->hasConstCopyConstructor();
4086
4087    }
4088  }
4089  return false;
4090}
4091
4092QualType
4093ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4094  //  type = struct __Block_byref_1_X {
4095  //    void *__isa;
4096  //    struct __Block_byref_1_X *__forwarding;
4097  //    unsigned int __flags;
4098  //    unsigned int __size;
4099  //    void *__copy_helper;            // as needed
4100  //    void *__destroy_help            // as needed
4101  //    int X;
4102  //  } *
4103
4104  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4105
4106  // FIXME: Move up
4107  SmallString<36> Name;
4108  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4109                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4110  RecordDecl *T;
4111  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4112  T->startDefinition();
4113  QualType Int32Ty = IntTy;
4114  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4115  QualType FieldTypes[] = {
4116    getPointerType(VoidPtrTy),
4117    getPointerType(getTagDeclType(T)),
4118    Int32Ty,
4119    Int32Ty,
4120    getPointerType(VoidPtrTy),
4121    getPointerType(VoidPtrTy),
4122    Ty
4123  };
4124
4125  StringRef FieldNames[] = {
4126    "__isa",
4127    "__forwarding",
4128    "__flags",
4129    "__size",
4130    "__copy_helper",
4131    "__destroy_helper",
4132    DeclName,
4133  };
4134
4135  for (size_t i = 0; i < 7; ++i) {
4136    if (!HasCopyAndDispose && i >=4 && i <= 5)
4137      continue;
4138    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4139                                         SourceLocation(),
4140                                         &Idents.get(FieldNames[i]),
4141                                         FieldTypes[i], /*TInfo=*/0,
4142                                         /*BitWidth=*/0, /*Mutable=*/false,
4143                                         ICIS_NoInit);
4144    Field->setAccess(AS_public);
4145    T->addDecl(Field);
4146  }
4147
4148  T->completeDefinition();
4149
4150  return getPointerType(getTagDeclType(T));
4151}
4152
4153TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4154  if (!ObjCInstanceTypeDecl)
4155    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4156                                               getTranslationUnitDecl(),
4157                                               SourceLocation(),
4158                                               SourceLocation(),
4159                                               &Idents.get("instancetype"),
4160                                     getTrivialTypeSourceInfo(getObjCIdType()));
4161  return ObjCInstanceTypeDecl;
4162}
4163
4164// This returns true if a type has been typedefed to BOOL:
4165// typedef <type> BOOL;
4166static bool isTypeTypedefedAsBOOL(QualType T) {
4167  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4168    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4169      return II->isStr("BOOL");
4170
4171  return false;
4172}
4173
4174/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4175/// purpose.
4176CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4177  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4178    return CharUnits::Zero();
4179
4180  CharUnits sz = getTypeSizeInChars(type);
4181
4182  // Make all integer and enum types at least as large as an int
4183  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4184    sz = std::max(sz, getTypeSizeInChars(IntTy));
4185  // Treat arrays as pointers, since that's how they're passed in.
4186  else if (type->isArrayType())
4187    sz = getTypeSizeInChars(VoidPtrTy);
4188  return sz;
4189}
4190
4191static inline
4192std::string charUnitsToString(const CharUnits &CU) {
4193  return llvm::itostr(CU.getQuantity());
4194}
4195
4196/// getObjCEncodingForBlock - Return the encoded type for this block
4197/// declaration.
4198std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4199  std::string S;
4200
4201  const BlockDecl *Decl = Expr->getBlockDecl();
4202  QualType BlockTy =
4203      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4204  // Encode result type.
4205  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4206  // Compute size of all parameters.
4207  // Start with computing size of a pointer in number of bytes.
4208  // FIXME: There might(should) be a better way of doing this computation!
4209  SourceLocation Loc;
4210  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4211  CharUnits ParmOffset = PtrSize;
4212  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4213       E = Decl->param_end(); PI != E; ++PI) {
4214    QualType PType = (*PI)->getType();
4215    CharUnits sz = getObjCEncodingTypeSize(PType);
4216    if (sz.isZero())
4217      continue;
4218    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4219    ParmOffset += sz;
4220  }
4221  // Size of the argument frame
4222  S += charUnitsToString(ParmOffset);
4223  // Block pointer and offset.
4224  S += "@?0";
4225
4226  // Argument types.
4227  ParmOffset = PtrSize;
4228  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4229       Decl->param_end(); PI != E; ++PI) {
4230    ParmVarDecl *PVDecl = *PI;
4231    QualType PType = PVDecl->getOriginalType();
4232    if (const ArrayType *AT =
4233          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4234      // Use array's original type only if it has known number of
4235      // elements.
4236      if (!isa<ConstantArrayType>(AT))
4237        PType = PVDecl->getType();
4238    } else if (PType->isFunctionType())
4239      PType = PVDecl->getType();
4240    getObjCEncodingForType(PType, S);
4241    S += charUnitsToString(ParmOffset);
4242    ParmOffset += getObjCEncodingTypeSize(PType);
4243  }
4244
4245  return S;
4246}
4247
4248bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4249                                                std::string& S) {
4250  // Encode result type.
4251  getObjCEncodingForType(Decl->getResultType(), S);
4252  CharUnits ParmOffset;
4253  // Compute size of all parameters.
4254  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4255       E = Decl->param_end(); PI != E; ++PI) {
4256    QualType PType = (*PI)->getType();
4257    CharUnits sz = getObjCEncodingTypeSize(PType);
4258    if (sz.isZero())
4259      continue;
4260
4261    assert (sz.isPositive() &&
4262        "getObjCEncodingForFunctionDecl - Incomplete param type");
4263    ParmOffset += sz;
4264  }
4265  S += charUnitsToString(ParmOffset);
4266  ParmOffset = CharUnits::Zero();
4267
4268  // Argument types.
4269  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4270       E = Decl->param_end(); PI != E; ++PI) {
4271    ParmVarDecl *PVDecl = *PI;
4272    QualType PType = PVDecl->getOriginalType();
4273    if (const ArrayType *AT =
4274          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4275      // Use array's original type only if it has known number of
4276      // elements.
4277      if (!isa<ConstantArrayType>(AT))
4278        PType = PVDecl->getType();
4279    } else if (PType->isFunctionType())
4280      PType = PVDecl->getType();
4281    getObjCEncodingForType(PType, S);
4282    S += charUnitsToString(ParmOffset);
4283    ParmOffset += getObjCEncodingTypeSize(PType);
4284  }
4285
4286  return false;
4287}
4288
4289/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4290/// method parameter or return type. If Extended, include class names and
4291/// block object types.
4292void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4293                                                   QualType T, std::string& S,
4294                                                   bool Extended) const {
4295  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4296  getObjCEncodingForTypeQualifier(QT, S);
4297  // Encode parameter type.
4298  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4299                             true     /*OutermostType*/,
4300                             false    /*EncodingProperty*/,
4301                             false    /*StructField*/,
4302                             Extended /*EncodeBlockParameters*/,
4303                             Extended /*EncodeClassNames*/);
4304}
4305
4306/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4307/// declaration.
4308bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4309                                              std::string& S,
4310                                              bool Extended) const {
4311  // FIXME: This is not very efficient.
4312  // Encode return type.
4313  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4314                                    Decl->getResultType(), S, Extended);
4315  // Compute size of all parameters.
4316  // Start with computing size of a pointer in number of bytes.
4317  // FIXME: There might(should) be a better way of doing this computation!
4318  SourceLocation Loc;
4319  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4320  // The first two arguments (self and _cmd) are pointers; account for
4321  // their size.
4322  CharUnits ParmOffset = 2 * PtrSize;
4323  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4324       E = Decl->sel_param_end(); PI != E; ++PI) {
4325    QualType PType = (*PI)->getType();
4326    CharUnits sz = getObjCEncodingTypeSize(PType);
4327    if (sz.isZero())
4328      continue;
4329
4330    assert (sz.isPositive() &&
4331        "getObjCEncodingForMethodDecl - Incomplete param type");
4332    ParmOffset += sz;
4333  }
4334  S += charUnitsToString(ParmOffset);
4335  S += "@0:";
4336  S += charUnitsToString(PtrSize);
4337
4338  // Argument types.
4339  ParmOffset = 2 * PtrSize;
4340  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4341       E = Decl->sel_param_end(); PI != E; ++PI) {
4342    const ParmVarDecl *PVDecl = *PI;
4343    QualType PType = PVDecl->getOriginalType();
4344    if (const ArrayType *AT =
4345          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4346      // Use array's original type only if it has known number of
4347      // elements.
4348      if (!isa<ConstantArrayType>(AT))
4349        PType = PVDecl->getType();
4350    } else if (PType->isFunctionType())
4351      PType = PVDecl->getType();
4352    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4353                                      PType, S, Extended);
4354    S += charUnitsToString(ParmOffset);
4355    ParmOffset += getObjCEncodingTypeSize(PType);
4356  }
4357
4358  return false;
4359}
4360
4361/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4362/// property declaration. If non-NULL, Container must be either an
4363/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4364/// NULL when getting encodings for protocol properties.
4365/// Property attributes are stored as a comma-delimited C string. The simple
4366/// attributes readonly and bycopy are encoded as single characters. The
4367/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4368/// encoded as single characters, followed by an identifier. Property types
4369/// are also encoded as a parametrized attribute. The characters used to encode
4370/// these attributes are defined by the following enumeration:
4371/// @code
4372/// enum PropertyAttributes {
4373/// kPropertyReadOnly = 'R',   // property is read-only.
4374/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4375/// kPropertyByref = '&',  // property is a reference to the value last assigned
4376/// kPropertyDynamic = 'D',    // property is dynamic
4377/// kPropertyGetter = 'G',     // followed by getter selector name
4378/// kPropertySetter = 'S',     // followed by setter selector name
4379/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4380/// kPropertyType = 'T'              // followed by old-style type encoding.
4381/// kPropertyWeak = 'W'              // 'weak' property
4382/// kPropertyStrong = 'P'            // property GC'able
4383/// kPropertyNonAtomic = 'N'         // property non-atomic
4384/// };
4385/// @endcode
4386void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4387                                                const Decl *Container,
4388                                                std::string& S) const {
4389  // Collect information from the property implementation decl(s).
4390  bool Dynamic = false;
4391  ObjCPropertyImplDecl *SynthesizePID = 0;
4392
4393  // FIXME: Duplicated code due to poor abstraction.
4394  if (Container) {
4395    if (const ObjCCategoryImplDecl *CID =
4396        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4397      for (ObjCCategoryImplDecl::propimpl_iterator
4398             i = CID->propimpl_begin(), e = CID->propimpl_end();
4399           i != e; ++i) {
4400        ObjCPropertyImplDecl *PID = *i;
4401        if (PID->getPropertyDecl() == PD) {
4402          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4403            Dynamic = true;
4404          } else {
4405            SynthesizePID = PID;
4406          }
4407        }
4408      }
4409    } else {
4410      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4411      for (ObjCCategoryImplDecl::propimpl_iterator
4412             i = OID->propimpl_begin(), e = OID->propimpl_end();
4413           i != e; ++i) {
4414        ObjCPropertyImplDecl *PID = *i;
4415        if (PID->getPropertyDecl() == PD) {
4416          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4417            Dynamic = true;
4418          } else {
4419            SynthesizePID = PID;
4420          }
4421        }
4422      }
4423    }
4424  }
4425
4426  // FIXME: This is not very efficient.
4427  S = "T";
4428
4429  // Encode result type.
4430  // GCC has some special rules regarding encoding of properties which
4431  // closely resembles encoding of ivars.
4432  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4433                             true /* outermost type */,
4434                             true /* encoding for property */);
4435
4436  if (PD->isReadOnly()) {
4437    S += ",R";
4438  } else {
4439    switch (PD->getSetterKind()) {
4440    case ObjCPropertyDecl::Assign: break;
4441    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4442    case ObjCPropertyDecl::Retain: S += ",&"; break;
4443    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4444    }
4445  }
4446
4447  // It really isn't clear at all what this means, since properties
4448  // are "dynamic by default".
4449  if (Dynamic)
4450    S += ",D";
4451
4452  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4453    S += ",N";
4454
4455  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4456    S += ",G";
4457    S += PD->getGetterName().getAsString();
4458  }
4459
4460  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4461    S += ",S";
4462    S += PD->getSetterName().getAsString();
4463  }
4464
4465  if (SynthesizePID) {
4466    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4467    S += ",V";
4468    S += OID->getNameAsString();
4469  }
4470
4471  // FIXME: OBJCGC: weak & strong
4472}
4473
4474/// getLegacyIntegralTypeEncoding -
4475/// Another legacy compatibility encoding: 32-bit longs are encoded as
4476/// 'l' or 'L' , but not always.  For typedefs, we need to use
4477/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4478///
4479void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4480  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4481    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4482      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4483        PointeeTy = UnsignedIntTy;
4484      else
4485        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4486          PointeeTy = IntTy;
4487    }
4488  }
4489}
4490
4491void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4492                                        const FieldDecl *Field) const {
4493  // We follow the behavior of gcc, expanding structures which are
4494  // directly pointed to, and expanding embedded structures. Note that
4495  // these rules are sufficient to prevent recursive encoding of the
4496  // same type.
4497  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4498                             true /* outermost type */);
4499}
4500
4501static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4502    switch (T->getAs<BuiltinType>()->getKind()) {
4503    default: llvm_unreachable("Unhandled builtin type kind");
4504    case BuiltinType::Void:       return 'v';
4505    case BuiltinType::Bool:       return 'B';
4506    case BuiltinType::Char_U:
4507    case BuiltinType::UChar:      return 'C';
4508    case BuiltinType::UShort:     return 'S';
4509    case BuiltinType::UInt:       return 'I';
4510    case BuiltinType::ULong:
4511        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4512    case BuiltinType::UInt128:    return 'T';
4513    case BuiltinType::ULongLong:  return 'Q';
4514    case BuiltinType::Char_S:
4515    case BuiltinType::SChar:      return 'c';
4516    case BuiltinType::Short:      return 's';
4517    case BuiltinType::WChar_S:
4518    case BuiltinType::WChar_U:
4519    case BuiltinType::Int:        return 'i';
4520    case BuiltinType::Long:
4521      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4522    case BuiltinType::LongLong:   return 'q';
4523    case BuiltinType::Int128:     return 't';
4524    case BuiltinType::Float:      return 'f';
4525    case BuiltinType::Double:     return 'd';
4526    case BuiltinType::LongDouble: return 'D';
4527    }
4528}
4529
4530static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4531  EnumDecl *Enum = ET->getDecl();
4532
4533  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4534  if (!Enum->isFixed())
4535    return 'i';
4536
4537  // The encoding of a fixed enum type matches its fixed underlying type.
4538  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4539}
4540
4541static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4542                           QualType T, const FieldDecl *FD) {
4543  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4544  S += 'b';
4545  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4546  // The GNU runtime requires more information; bitfields are encoded as b,
4547  // then the offset (in bits) of the first element, then the type of the
4548  // bitfield, then the size in bits.  For example, in this structure:
4549  //
4550  // struct
4551  // {
4552  //    int integer;
4553  //    int flags:2;
4554  // };
4555  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4556  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4557  // information is not especially sensible, but we're stuck with it for
4558  // compatibility with GCC, although providing it breaks anything that
4559  // actually uses runtime introspection and wants to work on both runtimes...
4560  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4561    const RecordDecl *RD = FD->getParent();
4562    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4563    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4564    if (const EnumType *ET = T->getAs<EnumType>())
4565      S += ObjCEncodingForEnumType(Ctx, ET);
4566    else
4567      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4568  }
4569  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4570}
4571
4572// FIXME: Use SmallString for accumulating string.
4573void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4574                                            bool ExpandPointedToStructures,
4575                                            bool ExpandStructures,
4576                                            const FieldDecl *FD,
4577                                            bool OutermostType,
4578                                            bool EncodingProperty,
4579                                            bool StructField,
4580                                            bool EncodeBlockParameters,
4581                                            bool EncodeClassNames) const {
4582  if (T->getAs<BuiltinType>()) {
4583    if (FD && FD->isBitField())
4584      return EncodeBitField(this, S, T, FD);
4585    S += ObjCEncodingForPrimitiveKind(this, T);
4586    return;
4587  }
4588
4589  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4590    S += 'j';
4591    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4592                               false);
4593    return;
4594  }
4595
4596  // encoding for pointer or r3eference types.
4597  QualType PointeeTy;
4598  if (const PointerType *PT = T->getAs<PointerType>()) {
4599    if (PT->isObjCSelType()) {
4600      S += ':';
4601      return;
4602    }
4603    PointeeTy = PT->getPointeeType();
4604  }
4605  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4606    PointeeTy = RT->getPointeeType();
4607  if (!PointeeTy.isNull()) {
4608    bool isReadOnly = false;
4609    // For historical/compatibility reasons, the read-only qualifier of the
4610    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4611    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4612    // Also, do not emit the 'r' for anything but the outermost type!
4613    if (isa<TypedefType>(T.getTypePtr())) {
4614      if (OutermostType && T.isConstQualified()) {
4615        isReadOnly = true;
4616        S += 'r';
4617      }
4618    } else if (OutermostType) {
4619      QualType P = PointeeTy;
4620      while (P->getAs<PointerType>())
4621        P = P->getAs<PointerType>()->getPointeeType();
4622      if (P.isConstQualified()) {
4623        isReadOnly = true;
4624        S += 'r';
4625      }
4626    }
4627    if (isReadOnly) {
4628      // Another legacy compatibility encoding. Some ObjC qualifier and type
4629      // combinations need to be rearranged.
4630      // Rewrite "in const" from "nr" to "rn"
4631      if (StringRef(S).endswith("nr"))
4632        S.replace(S.end()-2, S.end(), "rn");
4633    }
4634
4635    if (PointeeTy->isCharType()) {
4636      // char pointer types should be encoded as '*' unless it is a
4637      // type that has been typedef'd to 'BOOL'.
4638      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4639        S += '*';
4640        return;
4641      }
4642    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4643      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4644      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4645        S += '#';
4646        return;
4647      }
4648      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4649      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4650        S += '@';
4651        return;
4652      }
4653      // fall through...
4654    }
4655    S += '^';
4656    getLegacyIntegralTypeEncoding(PointeeTy);
4657
4658    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4659                               NULL);
4660    return;
4661  }
4662
4663  if (const ArrayType *AT =
4664      // Ignore type qualifiers etc.
4665        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4666    if (isa<IncompleteArrayType>(AT) && !StructField) {
4667      // Incomplete arrays are encoded as a pointer to the array element.
4668      S += '^';
4669
4670      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4671                                 false, ExpandStructures, FD);
4672    } else {
4673      S += '[';
4674
4675      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4676        if (getTypeSize(CAT->getElementType()) == 0)
4677          S += '0';
4678        else
4679          S += llvm::utostr(CAT->getSize().getZExtValue());
4680      } else {
4681        //Variable length arrays are encoded as a regular array with 0 elements.
4682        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4683               "Unknown array type!");
4684        S += '0';
4685      }
4686
4687      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4688                                 false, ExpandStructures, FD);
4689      S += ']';
4690    }
4691    return;
4692  }
4693
4694  if (T->getAs<FunctionType>()) {
4695    S += '?';
4696    return;
4697  }
4698
4699  if (const RecordType *RTy = T->getAs<RecordType>()) {
4700    RecordDecl *RDecl = RTy->getDecl();
4701    S += RDecl->isUnion() ? '(' : '{';
4702    // Anonymous structures print as '?'
4703    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4704      S += II->getName();
4705      if (ClassTemplateSpecializationDecl *Spec
4706          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4707        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4708        std::string TemplateArgsStr
4709          = TemplateSpecializationType::PrintTemplateArgumentList(
4710                                            TemplateArgs.data(),
4711                                            TemplateArgs.size(),
4712                                            (*this).getPrintingPolicy());
4713
4714        S += TemplateArgsStr;
4715      }
4716    } else {
4717      S += '?';
4718    }
4719    if (ExpandStructures) {
4720      S += '=';
4721      if (!RDecl->isUnion()) {
4722        getObjCEncodingForStructureImpl(RDecl, S, FD);
4723      } else {
4724        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4725                                     FieldEnd = RDecl->field_end();
4726             Field != FieldEnd; ++Field) {
4727          if (FD) {
4728            S += '"';
4729            S += Field->getNameAsString();
4730            S += '"';
4731          }
4732
4733          // Special case bit-fields.
4734          if (Field->isBitField()) {
4735            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4736                                       *Field);
4737          } else {
4738            QualType qt = Field->getType();
4739            getLegacyIntegralTypeEncoding(qt);
4740            getObjCEncodingForTypeImpl(qt, S, false, true,
4741                                       FD, /*OutermostType*/false,
4742                                       /*EncodingProperty*/false,
4743                                       /*StructField*/true);
4744          }
4745        }
4746      }
4747    }
4748    S += RDecl->isUnion() ? ')' : '}';
4749    return;
4750  }
4751
4752  if (const EnumType *ET = T->getAs<EnumType>()) {
4753    if (FD && FD->isBitField())
4754      EncodeBitField(this, S, T, FD);
4755    else
4756      S += ObjCEncodingForEnumType(this, ET);
4757    return;
4758  }
4759
4760  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4761    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4762    if (EncodeBlockParameters) {
4763      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4764
4765      S += '<';
4766      // Block return type
4767      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4768                                 ExpandPointedToStructures, ExpandStructures,
4769                                 FD,
4770                                 false /* OutermostType */,
4771                                 EncodingProperty,
4772                                 false /* StructField */,
4773                                 EncodeBlockParameters,
4774                                 EncodeClassNames);
4775      // Block self
4776      S += "@?";
4777      // Block parameters
4778      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4779        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4780               E = FPT->arg_type_end(); I && (I != E); ++I) {
4781          getObjCEncodingForTypeImpl(*I, S,
4782                                     ExpandPointedToStructures,
4783                                     ExpandStructures,
4784                                     FD,
4785                                     false /* OutermostType */,
4786                                     EncodingProperty,
4787                                     false /* StructField */,
4788                                     EncodeBlockParameters,
4789                                     EncodeClassNames);
4790        }
4791      }
4792      S += '>';
4793    }
4794    return;
4795  }
4796
4797  // Ignore protocol qualifiers when mangling at this level.
4798  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4799    T = OT->getBaseType();
4800
4801  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4802    // @encode(class_name)
4803    ObjCInterfaceDecl *OI = OIT->getDecl();
4804    S += '{';
4805    const IdentifierInfo *II = OI->getIdentifier();
4806    S += II->getName();
4807    S += '=';
4808    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4809    DeepCollectObjCIvars(OI, true, Ivars);
4810    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4811      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4812      if (Field->isBitField())
4813        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4814      else
4815        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4816    }
4817    S += '}';
4818    return;
4819  }
4820
4821  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4822    if (OPT->isObjCIdType()) {
4823      S += '@';
4824      return;
4825    }
4826
4827    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4828      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4829      // Since this is a binary compatibility issue, need to consult with runtime
4830      // folks. Fortunately, this is a *very* obsure construct.
4831      S += '#';
4832      return;
4833    }
4834
4835    if (OPT->isObjCQualifiedIdType()) {
4836      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4837                                 ExpandPointedToStructures,
4838                                 ExpandStructures, FD);
4839      if (FD || EncodingProperty || EncodeClassNames) {
4840        // Note that we do extended encoding of protocol qualifer list
4841        // Only when doing ivar or property encoding.
4842        S += '"';
4843        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4844             E = OPT->qual_end(); I != E; ++I) {
4845          S += '<';
4846          S += (*I)->getNameAsString();
4847          S += '>';
4848        }
4849        S += '"';
4850      }
4851      return;
4852    }
4853
4854    QualType PointeeTy = OPT->getPointeeType();
4855    if (!EncodingProperty &&
4856        isa<TypedefType>(PointeeTy.getTypePtr())) {
4857      // Another historical/compatibility reason.
4858      // We encode the underlying type which comes out as
4859      // {...};
4860      S += '^';
4861      getObjCEncodingForTypeImpl(PointeeTy, S,
4862                                 false, ExpandPointedToStructures,
4863                                 NULL);
4864      return;
4865    }
4866
4867    S += '@';
4868    if (OPT->getInterfaceDecl() &&
4869        (FD || EncodingProperty || EncodeClassNames)) {
4870      S += '"';
4871      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4872      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4873           E = OPT->qual_end(); I != E; ++I) {
4874        S += '<';
4875        S += (*I)->getNameAsString();
4876        S += '>';
4877      }
4878      S += '"';
4879    }
4880    return;
4881  }
4882
4883  // gcc just blithely ignores member pointers.
4884  // TODO: maybe there should be a mangling for these
4885  if (T->getAs<MemberPointerType>())
4886    return;
4887
4888  if (T->isVectorType()) {
4889    // This matches gcc's encoding, even though technically it is
4890    // insufficient.
4891    // FIXME. We should do a better job than gcc.
4892    return;
4893  }
4894
4895  llvm_unreachable("@encode for type not implemented!");
4896}
4897
4898void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4899                                                 std::string &S,
4900                                                 const FieldDecl *FD,
4901                                                 bool includeVBases) const {
4902  assert(RDecl && "Expected non-null RecordDecl");
4903  assert(!RDecl->isUnion() && "Should not be called for unions");
4904  if (!RDecl->getDefinition())
4905    return;
4906
4907  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4908  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4909  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4910
4911  if (CXXRec) {
4912    for (CXXRecordDecl::base_class_iterator
4913           BI = CXXRec->bases_begin(),
4914           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4915      if (!BI->isVirtual()) {
4916        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4917        if (base->isEmpty())
4918          continue;
4919        uint64_t offs = toBits(layout.getBaseClassOffset(base));
4920        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4921                                  std::make_pair(offs, base));
4922      }
4923    }
4924  }
4925
4926  unsigned i = 0;
4927  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4928                               FieldEnd = RDecl->field_end();
4929       Field != FieldEnd; ++Field, ++i) {
4930    uint64_t offs = layout.getFieldOffset(i);
4931    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4932                              std::make_pair(offs, *Field));
4933  }
4934
4935  if (CXXRec && includeVBases) {
4936    for (CXXRecordDecl::base_class_iterator
4937           BI = CXXRec->vbases_begin(),
4938           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4939      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4940      if (base->isEmpty())
4941        continue;
4942      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
4943      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4944        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4945                                  std::make_pair(offs, base));
4946    }
4947  }
4948
4949  CharUnits size;
4950  if (CXXRec) {
4951    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4952  } else {
4953    size = layout.getSize();
4954  }
4955
4956  uint64_t CurOffs = 0;
4957  std::multimap<uint64_t, NamedDecl *>::iterator
4958    CurLayObj = FieldOrBaseOffsets.begin();
4959
4960  if (CXXRec && CXXRec->isDynamicClass() &&
4961      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
4962    if (FD) {
4963      S += "\"_vptr$";
4964      std::string recname = CXXRec->getNameAsString();
4965      if (recname.empty()) recname = "?";
4966      S += recname;
4967      S += '"';
4968    }
4969    S += "^^?";
4970    CurOffs += getTypeSize(VoidPtrTy);
4971  }
4972
4973  if (!RDecl->hasFlexibleArrayMember()) {
4974    // Mark the end of the structure.
4975    uint64_t offs = toBits(size);
4976    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4977                              std::make_pair(offs, (NamedDecl*)0));
4978  }
4979
4980  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4981    assert(CurOffs <= CurLayObj->first);
4982
4983    if (CurOffs < CurLayObj->first) {
4984      uint64_t padding = CurLayObj->first - CurOffs;
4985      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4986      // packing/alignment of members is different that normal, in which case
4987      // the encoding will be out-of-sync with the real layout.
4988      // If the runtime switches to just consider the size of types without
4989      // taking into account alignment, we could make padding explicit in the
4990      // encoding (e.g. using arrays of chars). The encoding strings would be
4991      // longer then though.
4992      CurOffs += padding;
4993    }
4994
4995    NamedDecl *dcl = CurLayObj->second;
4996    if (dcl == 0)
4997      break; // reached end of structure.
4998
4999    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5000      // We expand the bases without their virtual bases since those are going
5001      // in the initial structure. Note that this differs from gcc which
5002      // expands virtual bases each time one is encountered in the hierarchy,
5003      // making the encoding type bigger than it really is.
5004      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5005      assert(!base->isEmpty());
5006      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5007    } else {
5008      FieldDecl *field = cast<FieldDecl>(dcl);
5009      if (FD) {
5010        S += '"';
5011        S += field->getNameAsString();
5012        S += '"';
5013      }
5014
5015      if (field->isBitField()) {
5016        EncodeBitField(this, S, field->getType(), field);
5017        CurOffs += field->getBitWidthValue(*this);
5018      } else {
5019        QualType qt = field->getType();
5020        getLegacyIntegralTypeEncoding(qt);
5021        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5022                                   /*OutermostType*/false,
5023                                   /*EncodingProperty*/false,
5024                                   /*StructField*/true);
5025        CurOffs += getTypeSize(field->getType());
5026      }
5027    }
5028  }
5029}
5030
5031void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5032                                                 std::string& S) const {
5033  if (QT & Decl::OBJC_TQ_In)
5034    S += 'n';
5035  if (QT & Decl::OBJC_TQ_Inout)
5036    S += 'N';
5037  if (QT & Decl::OBJC_TQ_Out)
5038    S += 'o';
5039  if (QT & Decl::OBJC_TQ_Bycopy)
5040    S += 'O';
5041  if (QT & Decl::OBJC_TQ_Byref)
5042    S += 'R';
5043  if (QT & Decl::OBJC_TQ_Oneway)
5044    S += 'V';
5045}
5046
5047TypedefDecl *ASTContext::getObjCIdDecl() const {
5048  if (!ObjCIdDecl) {
5049    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5050    T = getObjCObjectPointerType(T);
5051    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5052    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5053                                     getTranslationUnitDecl(),
5054                                     SourceLocation(), SourceLocation(),
5055                                     &Idents.get("id"), IdInfo);
5056  }
5057
5058  return ObjCIdDecl;
5059}
5060
5061TypedefDecl *ASTContext::getObjCSelDecl() const {
5062  if (!ObjCSelDecl) {
5063    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5064    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5065    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5066                                      getTranslationUnitDecl(),
5067                                      SourceLocation(), SourceLocation(),
5068                                      &Idents.get("SEL"), SelInfo);
5069  }
5070  return ObjCSelDecl;
5071}
5072
5073TypedefDecl *ASTContext::getObjCClassDecl() const {
5074  if (!ObjCClassDecl) {
5075    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5076    T = getObjCObjectPointerType(T);
5077    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5078    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5079                                        getTranslationUnitDecl(),
5080                                        SourceLocation(), SourceLocation(),
5081                                        &Idents.get("Class"), ClassInfo);
5082  }
5083
5084  return ObjCClassDecl;
5085}
5086
5087ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5088  if (!ObjCProtocolClassDecl) {
5089    ObjCProtocolClassDecl
5090      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5091                                  SourceLocation(),
5092                                  &Idents.get("Protocol"),
5093                                  /*PrevDecl=*/0,
5094                                  SourceLocation(), true);
5095  }
5096
5097  return ObjCProtocolClassDecl;
5098}
5099
5100//===----------------------------------------------------------------------===//
5101// __builtin_va_list Construction Functions
5102//===----------------------------------------------------------------------===//
5103
5104static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5105  // typedef char* __builtin_va_list;
5106  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5107  TypeSourceInfo *TInfo
5108    = Context->getTrivialTypeSourceInfo(CharPtrType);
5109
5110  TypedefDecl *VaListTypeDecl
5111    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5112                          Context->getTranslationUnitDecl(),
5113                          SourceLocation(), SourceLocation(),
5114                          &Context->Idents.get("__builtin_va_list"),
5115                          TInfo);
5116  return VaListTypeDecl;
5117}
5118
5119static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5120  // typedef void* __builtin_va_list;
5121  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5122  TypeSourceInfo *TInfo
5123    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5124
5125  TypedefDecl *VaListTypeDecl
5126    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5127                          Context->getTranslationUnitDecl(),
5128                          SourceLocation(), SourceLocation(),
5129                          &Context->Idents.get("__builtin_va_list"),
5130                          TInfo);
5131  return VaListTypeDecl;
5132}
5133
5134static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5135  // typedef struct __va_list_tag {
5136  RecordDecl *VaListTagDecl;
5137
5138  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5139                                   Context->getTranslationUnitDecl(),
5140                                   &Context->Idents.get("__va_list_tag"));
5141  VaListTagDecl->startDefinition();
5142
5143  const size_t NumFields = 5;
5144  QualType FieldTypes[NumFields];
5145  const char *FieldNames[NumFields];
5146
5147  //   unsigned char gpr;
5148  FieldTypes[0] = Context->UnsignedCharTy;
5149  FieldNames[0] = "gpr";
5150
5151  //   unsigned char fpr;
5152  FieldTypes[1] = Context->UnsignedCharTy;
5153  FieldNames[1] = "fpr";
5154
5155  //   unsigned short reserved;
5156  FieldTypes[2] = Context->UnsignedShortTy;
5157  FieldNames[2] = "reserved";
5158
5159  //   void* overflow_arg_area;
5160  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5161  FieldNames[3] = "overflow_arg_area";
5162
5163  //   void* reg_save_area;
5164  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5165  FieldNames[4] = "reg_save_area";
5166
5167  // Create fields
5168  for (unsigned i = 0; i < NumFields; ++i) {
5169    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5170                                         SourceLocation(),
5171                                         SourceLocation(),
5172                                         &Context->Idents.get(FieldNames[i]),
5173                                         FieldTypes[i], /*TInfo=*/0,
5174                                         /*BitWidth=*/0,
5175                                         /*Mutable=*/false,
5176                                         ICIS_NoInit);
5177    Field->setAccess(AS_public);
5178    VaListTagDecl->addDecl(Field);
5179  }
5180  VaListTagDecl->completeDefinition();
5181  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5182  Context->VaListTagTy = VaListTagType;
5183
5184  // } __va_list_tag;
5185  TypedefDecl *VaListTagTypedefDecl
5186    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5187                          Context->getTranslationUnitDecl(),
5188                          SourceLocation(), SourceLocation(),
5189                          &Context->Idents.get("__va_list_tag"),
5190                          Context->getTrivialTypeSourceInfo(VaListTagType));
5191  QualType VaListTagTypedefType =
5192    Context->getTypedefType(VaListTagTypedefDecl);
5193
5194  // typedef __va_list_tag __builtin_va_list[1];
5195  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5196  QualType VaListTagArrayType
5197    = Context->getConstantArrayType(VaListTagTypedefType,
5198                                    Size, ArrayType::Normal, 0);
5199  TypeSourceInfo *TInfo
5200    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5201  TypedefDecl *VaListTypedefDecl
5202    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5203                          Context->getTranslationUnitDecl(),
5204                          SourceLocation(), SourceLocation(),
5205                          &Context->Idents.get("__builtin_va_list"),
5206                          TInfo);
5207
5208  return VaListTypedefDecl;
5209}
5210
5211static TypedefDecl *
5212CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5213  // typedef struct __va_list_tag {
5214  RecordDecl *VaListTagDecl;
5215  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5216                                   Context->getTranslationUnitDecl(),
5217                                   &Context->Idents.get("__va_list_tag"));
5218  VaListTagDecl->startDefinition();
5219
5220  const size_t NumFields = 4;
5221  QualType FieldTypes[NumFields];
5222  const char *FieldNames[NumFields];
5223
5224  //   unsigned gp_offset;
5225  FieldTypes[0] = Context->UnsignedIntTy;
5226  FieldNames[0] = "gp_offset";
5227
5228  //   unsigned fp_offset;
5229  FieldTypes[1] = Context->UnsignedIntTy;
5230  FieldNames[1] = "fp_offset";
5231
5232  //   void* overflow_arg_area;
5233  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5234  FieldNames[2] = "overflow_arg_area";
5235
5236  //   void* reg_save_area;
5237  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5238  FieldNames[3] = "reg_save_area";
5239
5240  // Create fields
5241  for (unsigned i = 0; i < NumFields; ++i) {
5242    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5243                                         VaListTagDecl,
5244                                         SourceLocation(),
5245                                         SourceLocation(),
5246                                         &Context->Idents.get(FieldNames[i]),
5247                                         FieldTypes[i], /*TInfo=*/0,
5248                                         /*BitWidth=*/0,
5249                                         /*Mutable=*/false,
5250                                         ICIS_NoInit);
5251    Field->setAccess(AS_public);
5252    VaListTagDecl->addDecl(Field);
5253  }
5254  VaListTagDecl->completeDefinition();
5255  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5256  Context->VaListTagTy = VaListTagType;
5257
5258  // } __va_list_tag;
5259  TypedefDecl *VaListTagTypedefDecl
5260    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5261                          Context->getTranslationUnitDecl(),
5262                          SourceLocation(), SourceLocation(),
5263                          &Context->Idents.get("__va_list_tag"),
5264                          Context->getTrivialTypeSourceInfo(VaListTagType));
5265  QualType VaListTagTypedefType =
5266    Context->getTypedefType(VaListTagTypedefDecl);
5267
5268  // typedef __va_list_tag __builtin_va_list[1];
5269  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5270  QualType VaListTagArrayType
5271    = Context->getConstantArrayType(VaListTagTypedefType,
5272                                      Size, ArrayType::Normal,0);
5273  TypeSourceInfo *TInfo
5274    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5275  TypedefDecl *VaListTypedefDecl
5276    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5277                          Context->getTranslationUnitDecl(),
5278                          SourceLocation(), SourceLocation(),
5279                          &Context->Idents.get("__builtin_va_list"),
5280                          TInfo);
5281
5282  return VaListTypedefDecl;
5283}
5284
5285static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5286  // typedef int __builtin_va_list[4];
5287  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5288  QualType IntArrayType
5289    = Context->getConstantArrayType(Context->IntTy,
5290				    Size, ArrayType::Normal, 0);
5291  TypedefDecl *VaListTypedefDecl
5292    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5293                          Context->getTranslationUnitDecl(),
5294                          SourceLocation(), SourceLocation(),
5295                          &Context->Idents.get("__builtin_va_list"),
5296                          Context->getTrivialTypeSourceInfo(IntArrayType));
5297
5298  return VaListTypedefDecl;
5299}
5300
5301static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5302                                     TargetInfo::BuiltinVaListKind Kind) {
5303  switch (Kind) {
5304  case TargetInfo::CharPtrBuiltinVaList:
5305    return CreateCharPtrBuiltinVaListDecl(Context);
5306  case TargetInfo::VoidPtrBuiltinVaList:
5307    return CreateVoidPtrBuiltinVaListDecl(Context);
5308  case TargetInfo::PowerABIBuiltinVaList:
5309    return CreatePowerABIBuiltinVaListDecl(Context);
5310  case TargetInfo::X86_64ABIBuiltinVaList:
5311    return CreateX86_64ABIBuiltinVaListDecl(Context);
5312  case TargetInfo::PNaClABIBuiltinVaList:
5313    return CreatePNaClABIBuiltinVaListDecl(Context);
5314  }
5315
5316  llvm_unreachable("Unhandled __builtin_va_list type kind");
5317}
5318
5319TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5320  if (!BuiltinVaListDecl)
5321    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5322
5323  return BuiltinVaListDecl;
5324}
5325
5326QualType ASTContext::getVaListTagType() const {
5327  // Force the creation of VaListTagTy by building the __builtin_va_list
5328  // declaration.
5329  if (VaListTagTy.isNull())
5330    (void) getBuiltinVaListDecl();
5331
5332  return VaListTagTy;
5333}
5334
5335void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5336  assert(ObjCConstantStringType.isNull() &&
5337         "'NSConstantString' type already set!");
5338
5339  ObjCConstantStringType = getObjCInterfaceType(Decl);
5340}
5341
5342/// \brief Retrieve the template name that corresponds to a non-empty
5343/// lookup.
5344TemplateName
5345ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5346                                      UnresolvedSetIterator End) const {
5347  unsigned size = End - Begin;
5348  assert(size > 1 && "set is not overloaded!");
5349
5350  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5351                          size * sizeof(FunctionTemplateDecl*));
5352  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5353
5354  NamedDecl **Storage = OT->getStorage();
5355  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5356    NamedDecl *D = *I;
5357    assert(isa<FunctionTemplateDecl>(D) ||
5358           (isa<UsingShadowDecl>(D) &&
5359            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5360    *Storage++ = D;
5361  }
5362
5363  return TemplateName(OT);
5364}
5365
5366/// \brief Retrieve the template name that represents a qualified
5367/// template name such as \c std::vector.
5368TemplateName
5369ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5370                                     bool TemplateKeyword,
5371                                     TemplateDecl *Template) const {
5372  assert(NNS && "Missing nested-name-specifier in qualified template name");
5373
5374  // FIXME: Canonicalization?
5375  llvm::FoldingSetNodeID ID;
5376  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5377
5378  void *InsertPos = 0;
5379  QualifiedTemplateName *QTN =
5380    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5381  if (!QTN) {
5382    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
5383    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5384  }
5385
5386  return TemplateName(QTN);
5387}
5388
5389/// \brief Retrieve the template name that represents a dependent
5390/// template name such as \c MetaFun::template apply.
5391TemplateName
5392ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5393                                     const IdentifierInfo *Name) const {
5394  assert((!NNS || NNS->isDependent()) &&
5395         "Nested name specifier must be dependent");
5396
5397  llvm::FoldingSetNodeID ID;
5398  DependentTemplateName::Profile(ID, NNS, Name);
5399
5400  void *InsertPos = 0;
5401  DependentTemplateName *QTN =
5402    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5403
5404  if (QTN)
5405    return TemplateName(QTN);
5406
5407  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5408  if (CanonNNS == NNS) {
5409    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5410  } else {
5411    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5412    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5413    DependentTemplateName *CheckQTN =
5414      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5415    assert(!CheckQTN && "Dependent type name canonicalization broken");
5416    (void)CheckQTN;
5417  }
5418
5419  DependentTemplateNames.InsertNode(QTN, InsertPos);
5420  return TemplateName(QTN);
5421}
5422
5423/// \brief Retrieve the template name that represents a dependent
5424/// template name such as \c MetaFun::template operator+.
5425TemplateName
5426ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5427                                     OverloadedOperatorKind Operator) const {
5428  assert((!NNS || NNS->isDependent()) &&
5429         "Nested name specifier must be dependent");
5430
5431  llvm::FoldingSetNodeID ID;
5432  DependentTemplateName::Profile(ID, NNS, Operator);
5433
5434  void *InsertPos = 0;
5435  DependentTemplateName *QTN
5436    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5437
5438  if (QTN)
5439    return TemplateName(QTN);
5440
5441  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5442  if (CanonNNS == NNS) {
5443    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5444  } else {
5445    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5446    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5447
5448    DependentTemplateName *CheckQTN
5449      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5450    assert(!CheckQTN && "Dependent template name canonicalization broken");
5451    (void)CheckQTN;
5452  }
5453
5454  DependentTemplateNames.InsertNode(QTN, InsertPos);
5455  return TemplateName(QTN);
5456}
5457
5458TemplateName
5459ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5460                                         TemplateName replacement) const {
5461  llvm::FoldingSetNodeID ID;
5462  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5463
5464  void *insertPos = 0;
5465  SubstTemplateTemplateParmStorage *subst
5466    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5467
5468  if (!subst) {
5469    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5470    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5471  }
5472
5473  return TemplateName(subst);
5474}
5475
5476TemplateName
5477ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5478                                       const TemplateArgument &ArgPack) const {
5479  ASTContext &Self = const_cast<ASTContext &>(*this);
5480  llvm::FoldingSetNodeID ID;
5481  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5482
5483  void *InsertPos = 0;
5484  SubstTemplateTemplateParmPackStorage *Subst
5485    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5486
5487  if (!Subst) {
5488    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5489                                                           ArgPack.pack_size(),
5490                                                         ArgPack.pack_begin());
5491    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5492  }
5493
5494  return TemplateName(Subst);
5495}
5496
5497/// getFromTargetType - Given one of the integer types provided by
5498/// TargetInfo, produce the corresponding type. The unsigned @p Type
5499/// is actually a value of type @c TargetInfo::IntType.
5500CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5501  switch (Type) {
5502  case TargetInfo::NoInt: return CanQualType();
5503  case TargetInfo::SignedShort: return ShortTy;
5504  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5505  case TargetInfo::SignedInt: return IntTy;
5506  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5507  case TargetInfo::SignedLong: return LongTy;
5508  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5509  case TargetInfo::SignedLongLong: return LongLongTy;
5510  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5511  }
5512
5513  llvm_unreachable("Unhandled TargetInfo::IntType value");
5514}
5515
5516//===----------------------------------------------------------------------===//
5517//                        Type Predicates.
5518//===----------------------------------------------------------------------===//
5519
5520/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5521/// garbage collection attribute.
5522///
5523Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5524  if (getLangOpts().getGC() == LangOptions::NonGC)
5525    return Qualifiers::GCNone;
5526
5527  assert(getLangOpts().ObjC1);
5528  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5529
5530  // Default behaviour under objective-C's gc is for ObjC pointers
5531  // (or pointers to them) be treated as though they were declared
5532  // as __strong.
5533  if (GCAttrs == Qualifiers::GCNone) {
5534    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5535      return Qualifiers::Strong;
5536    else if (Ty->isPointerType())
5537      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5538  } else {
5539    // It's not valid to set GC attributes on anything that isn't a
5540    // pointer.
5541#ifndef NDEBUG
5542    QualType CT = Ty->getCanonicalTypeInternal();
5543    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5544      CT = AT->getElementType();
5545    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5546#endif
5547  }
5548  return GCAttrs;
5549}
5550
5551//===----------------------------------------------------------------------===//
5552//                        Type Compatibility Testing
5553//===----------------------------------------------------------------------===//
5554
5555/// areCompatVectorTypes - Return true if the two specified vector types are
5556/// compatible.
5557static bool areCompatVectorTypes(const VectorType *LHS,
5558                                 const VectorType *RHS) {
5559  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5560  return LHS->getElementType() == RHS->getElementType() &&
5561         LHS->getNumElements() == RHS->getNumElements();
5562}
5563
5564bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5565                                          QualType SecondVec) {
5566  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5567  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5568
5569  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5570    return true;
5571
5572  // Treat Neon vector types and most AltiVec vector types as if they are the
5573  // equivalent GCC vector types.
5574  const VectorType *First = FirstVec->getAs<VectorType>();
5575  const VectorType *Second = SecondVec->getAs<VectorType>();
5576  if (First->getNumElements() == Second->getNumElements() &&
5577      hasSameType(First->getElementType(), Second->getElementType()) &&
5578      First->getVectorKind() != VectorType::AltiVecPixel &&
5579      First->getVectorKind() != VectorType::AltiVecBool &&
5580      Second->getVectorKind() != VectorType::AltiVecPixel &&
5581      Second->getVectorKind() != VectorType::AltiVecBool)
5582    return true;
5583
5584  return false;
5585}
5586
5587//===----------------------------------------------------------------------===//
5588// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5589//===----------------------------------------------------------------------===//
5590
5591/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5592/// inheritance hierarchy of 'rProto'.
5593bool
5594ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5595                                           ObjCProtocolDecl *rProto) const {
5596  if (declaresSameEntity(lProto, rProto))
5597    return true;
5598  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5599       E = rProto->protocol_end(); PI != E; ++PI)
5600    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5601      return true;
5602  return false;
5603}
5604
5605/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5606/// return true if lhs's protocols conform to rhs's protocol; false
5607/// otherwise.
5608bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5609  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5610    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5611  return false;
5612}
5613
5614/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5615/// Class<p1, ...>.
5616bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5617                                                      QualType rhs) {
5618  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5619  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5620  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5621
5622  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5623       E = lhsQID->qual_end(); I != E; ++I) {
5624    bool match = false;
5625    ObjCProtocolDecl *lhsProto = *I;
5626    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5627         E = rhsOPT->qual_end(); J != E; ++J) {
5628      ObjCProtocolDecl *rhsProto = *J;
5629      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5630        match = true;
5631        break;
5632      }
5633    }
5634    if (!match)
5635      return false;
5636  }
5637  return true;
5638}
5639
5640/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5641/// ObjCQualifiedIDType.
5642bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5643                                                   bool compare) {
5644  // Allow id<P..> and an 'id' or void* type in all cases.
5645  if (lhs->isVoidPointerType() ||
5646      lhs->isObjCIdType() || lhs->isObjCClassType())
5647    return true;
5648  else if (rhs->isVoidPointerType() ||
5649           rhs->isObjCIdType() || rhs->isObjCClassType())
5650    return true;
5651
5652  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5653    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5654
5655    if (!rhsOPT) return false;
5656
5657    if (rhsOPT->qual_empty()) {
5658      // If the RHS is a unqualified interface pointer "NSString*",
5659      // make sure we check the class hierarchy.
5660      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5661        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5662             E = lhsQID->qual_end(); I != E; ++I) {
5663          // when comparing an id<P> on lhs with a static type on rhs,
5664          // see if static class implements all of id's protocols, directly or
5665          // through its super class and categories.
5666          if (!rhsID->ClassImplementsProtocol(*I, true))
5667            return false;
5668        }
5669      }
5670      // If there are no qualifiers and no interface, we have an 'id'.
5671      return true;
5672    }
5673    // Both the right and left sides have qualifiers.
5674    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5675         E = lhsQID->qual_end(); I != E; ++I) {
5676      ObjCProtocolDecl *lhsProto = *I;
5677      bool match = false;
5678
5679      // when comparing an id<P> on lhs with a static type on rhs,
5680      // see if static class implements all of id's protocols, directly or
5681      // through its super class and categories.
5682      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5683           E = rhsOPT->qual_end(); J != E; ++J) {
5684        ObjCProtocolDecl *rhsProto = *J;
5685        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5686            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5687          match = true;
5688          break;
5689        }
5690      }
5691      // If the RHS is a qualified interface pointer "NSString<P>*",
5692      // make sure we check the class hierarchy.
5693      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5694        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5695             E = lhsQID->qual_end(); I != E; ++I) {
5696          // when comparing an id<P> on lhs with a static type on rhs,
5697          // see if static class implements all of id's protocols, directly or
5698          // through its super class and categories.
5699          if (rhsID->ClassImplementsProtocol(*I, true)) {
5700            match = true;
5701            break;
5702          }
5703        }
5704      }
5705      if (!match)
5706        return false;
5707    }
5708
5709    return true;
5710  }
5711
5712  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5713  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5714
5715  if (const ObjCObjectPointerType *lhsOPT =
5716        lhs->getAsObjCInterfacePointerType()) {
5717    // If both the right and left sides have qualifiers.
5718    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5719         E = lhsOPT->qual_end(); I != E; ++I) {
5720      ObjCProtocolDecl *lhsProto = *I;
5721      bool match = false;
5722
5723      // when comparing an id<P> on rhs with a static type on lhs,
5724      // see if static class implements all of id's protocols, directly or
5725      // through its super class and categories.
5726      // First, lhs protocols in the qualifier list must be found, direct
5727      // or indirect in rhs's qualifier list or it is a mismatch.
5728      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5729           E = rhsQID->qual_end(); J != E; ++J) {
5730        ObjCProtocolDecl *rhsProto = *J;
5731        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5732            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5733          match = true;
5734          break;
5735        }
5736      }
5737      if (!match)
5738        return false;
5739    }
5740
5741    // Static class's protocols, or its super class or category protocols
5742    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5743    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5744      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5745      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5746      // This is rather dubious but matches gcc's behavior. If lhs has
5747      // no type qualifier and its class has no static protocol(s)
5748      // assume that it is mismatch.
5749      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5750        return false;
5751      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5752           LHSInheritedProtocols.begin(),
5753           E = LHSInheritedProtocols.end(); I != E; ++I) {
5754        bool match = false;
5755        ObjCProtocolDecl *lhsProto = (*I);
5756        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5757             E = rhsQID->qual_end(); J != E; ++J) {
5758          ObjCProtocolDecl *rhsProto = *J;
5759          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5760              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5761            match = true;
5762            break;
5763          }
5764        }
5765        if (!match)
5766          return false;
5767      }
5768    }
5769    return true;
5770  }
5771  return false;
5772}
5773
5774/// canAssignObjCInterfaces - Return true if the two interface types are
5775/// compatible for assignment from RHS to LHS.  This handles validation of any
5776/// protocol qualifiers on the LHS or RHS.
5777///
5778bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5779                                         const ObjCObjectPointerType *RHSOPT) {
5780  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5781  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5782
5783  // If either type represents the built-in 'id' or 'Class' types, return true.
5784  if (LHS->isObjCUnqualifiedIdOrClass() ||
5785      RHS->isObjCUnqualifiedIdOrClass())
5786    return true;
5787
5788  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5789    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5790                                             QualType(RHSOPT,0),
5791                                             false);
5792
5793  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5794    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5795                                                QualType(RHSOPT,0));
5796
5797  // If we have 2 user-defined types, fall into that path.
5798  if (LHS->getInterface() && RHS->getInterface())
5799    return canAssignObjCInterfaces(LHS, RHS);
5800
5801  return false;
5802}
5803
5804/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5805/// for providing type-safety for objective-c pointers used to pass/return
5806/// arguments in block literals. When passed as arguments, passing 'A*' where
5807/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5808/// not OK. For the return type, the opposite is not OK.
5809bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5810                                         const ObjCObjectPointerType *LHSOPT,
5811                                         const ObjCObjectPointerType *RHSOPT,
5812                                         bool BlockReturnType) {
5813  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5814    return true;
5815
5816  if (LHSOPT->isObjCBuiltinType()) {
5817    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5818  }
5819
5820  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5821    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5822                                             QualType(RHSOPT,0),
5823                                             false);
5824
5825  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5826  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5827  if (LHS && RHS)  { // We have 2 user-defined types.
5828    if (LHS != RHS) {
5829      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5830        return BlockReturnType;
5831      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5832        return !BlockReturnType;
5833    }
5834    else
5835      return true;
5836  }
5837  return false;
5838}
5839
5840/// getIntersectionOfProtocols - This routine finds the intersection of set
5841/// of protocols inherited from two distinct objective-c pointer objects.
5842/// It is used to build composite qualifier list of the composite type of
5843/// the conditional expression involving two objective-c pointer objects.
5844static
5845void getIntersectionOfProtocols(ASTContext &Context,
5846                                const ObjCObjectPointerType *LHSOPT,
5847                                const ObjCObjectPointerType *RHSOPT,
5848      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5849
5850  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5851  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5852  assert(LHS->getInterface() && "LHS must have an interface base");
5853  assert(RHS->getInterface() && "RHS must have an interface base");
5854
5855  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5856  unsigned LHSNumProtocols = LHS->getNumProtocols();
5857  if (LHSNumProtocols > 0)
5858    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5859  else {
5860    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5861    Context.CollectInheritedProtocols(LHS->getInterface(),
5862                                      LHSInheritedProtocols);
5863    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5864                                LHSInheritedProtocols.end());
5865  }
5866
5867  unsigned RHSNumProtocols = RHS->getNumProtocols();
5868  if (RHSNumProtocols > 0) {
5869    ObjCProtocolDecl **RHSProtocols =
5870      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5871    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5872      if (InheritedProtocolSet.count(RHSProtocols[i]))
5873        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5874  } else {
5875    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5876    Context.CollectInheritedProtocols(RHS->getInterface(),
5877                                      RHSInheritedProtocols);
5878    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5879         RHSInheritedProtocols.begin(),
5880         E = RHSInheritedProtocols.end(); I != E; ++I)
5881      if (InheritedProtocolSet.count((*I)))
5882        IntersectionOfProtocols.push_back((*I));
5883  }
5884}
5885
5886/// areCommonBaseCompatible - Returns common base class of the two classes if
5887/// one found. Note that this is O'2 algorithm. But it will be called as the
5888/// last type comparison in a ?-exp of ObjC pointer types before a
5889/// warning is issued. So, its invokation is extremely rare.
5890QualType ASTContext::areCommonBaseCompatible(
5891                                          const ObjCObjectPointerType *Lptr,
5892                                          const ObjCObjectPointerType *Rptr) {
5893  const ObjCObjectType *LHS = Lptr->getObjectType();
5894  const ObjCObjectType *RHS = Rptr->getObjectType();
5895  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5896  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5897  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5898    return QualType();
5899
5900  do {
5901    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5902    if (canAssignObjCInterfaces(LHS, RHS)) {
5903      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5904      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5905
5906      QualType Result = QualType(LHS, 0);
5907      if (!Protocols.empty())
5908        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5909      Result = getObjCObjectPointerType(Result);
5910      return Result;
5911    }
5912  } while ((LDecl = LDecl->getSuperClass()));
5913
5914  return QualType();
5915}
5916
5917bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5918                                         const ObjCObjectType *RHS) {
5919  assert(LHS->getInterface() && "LHS is not an interface type");
5920  assert(RHS->getInterface() && "RHS is not an interface type");
5921
5922  // Verify that the base decls are compatible: the RHS must be a subclass of
5923  // the LHS.
5924  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5925    return false;
5926
5927  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5928  // protocol qualified at all, then we are good.
5929  if (LHS->getNumProtocols() == 0)
5930    return true;
5931
5932  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5933  // more detailed analysis is required.
5934  if (RHS->getNumProtocols() == 0) {
5935    // OK, if LHS is a superclass of RHS *and*
5936    // this superclass is assignment compatible with LHS.
5937    // false otherwise.
5938    bool IsSuperClass =
5939      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5940    if (IsSuperClass) {
5941      // OK if conversion of LHS to SuperClass results in narrowing of types
5942      // ; i.e., SuperClass may implement at least one of the protocols
5943      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5944      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5945      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5946      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5947      // If super class has no protocols, it is not a match.
5948      if (SuperClassInheritedProtocols.empty())
5949        return false;
5950
5951      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5952           LHSPE = LHS->qual_end();
5953           LHSPI != LHSPE; LHSPI++) {
5954        bool SuperImplementsProtocol = false;
5955        ObjCProtocolDecl *LHSProto = (*LHSPI);
5956
5957        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5958             SuperClassInheritedProtocols.begin(),
5959             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5960          ObjCProtocolDecl *SuperClassProto = (*I);
5961          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5962            SuperImplementsProtocol = true;
5963            break;
5964          }
5965        }
5966        if (!SuperImplementsProtocol)
5967          return false;
5968      }
5969      return true;
5970    }
5971    return false;
5972  }
5973
5974  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5975                                     LHSPE = LHS->qual_end();
5976       LHSPI != LHSPE; LHSPI++) {
5977    bool RHSImplementsProtocol = false;
5978
5979    // If the RHS doesn't implement the protocol on the left, the types
5980    // are incompatible.
5981    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5982                                       RHSPE = RHS->qual_end();
5983         RHSPI != RHSPE; RHSPI++) {
5984      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5985        RHSImplementsProtocol = true;
5986        break;
5987      }
5988    }
5989    // FIXME: For better diagnostics, consider passing back the protocol name.
5990    if (!RHSImplementsProtocol)
5991      return false;
5992  }
5993  // The RHS implements all protocols listed on the LHS.
5994  return true;
5995}
5996
5997bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5998  // get the "pointed to" types
5999  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6000  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6001
6002  if (!LHSOPT || !RHSOPT)
6003    return false;
6004
6005  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6006         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6007}
6008
6009bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6010  return canAssignObjCInterfaces(
6011                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6012                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6013}
6014
6015/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6016/// both shall have the identically qualified version of a compatible type.
6017/// C99 6.2.7p1: Two types have compatible types if their types are the
6018/// same. See 6.7.[2,3,5] for additional rules.
6019bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6020                                    bool CompareUnqualified) {
6021  if (getLangOpts().CPlusPlus)
6022    return hasSameType(LHS, RHS);
6023
6024  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6025}
6026
6027bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6028  return typesAreCompatible(LHS, RHS);
6029}
6030
6031bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6032  return !mergeTypes(LHS, RHS, true).isNull();
6033}
6034
6035/// mergeTransparentUnionType - if T is a transparent union type and a member
6036/// of T is compatible with SubType, return the merged type, else return
6037/// QualType()
6038QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6039                                               bool OfBlockPointer,
6040                                               bool Unqualified) {
6041  if (const RecordType *UT = T->getAsUnionType()) {
6042    RecordDecl *UD = UT->getDecl();
6043    if (UD->hasAttr<TransparentUnionAttr>()) {
6044      for (RecordDecl::field_iterator it = UD->field_begin(),
6045           itend = UD->field_end(); it != itend; ++it) {
6046        QualType ET = it->getType().getUnqualifiedType();
6047        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6048        if (!MT.isNull())
6049          return MT;
6050      }
6051    }
6052  }
6053
6054  return QualType();
6055}
6056
6057/// mergeFunctionArgumentTypes - merge two types which appear as function
6058/// argument types
6059QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6060                                                bool OfBlockPointer,
6061                                                bool Unqualified) {
6062  // GNU extension: two types are compatible if they appear as a function
6063  // argument, one of the types is a transparent union type and the other
6064  // type is compatible with a union member
6065  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6066                                              Unqualified);
6067  if (!lmerge.isNull())
6068    return lmerge;
6069
6070  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6071                                              Unqualified);
6072  if (!rmerge.isNull())
6073    return rmerge;
6074
6075  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6076}
6077
6078QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6079                                        bool OfBlockPointer,
6080                                        bool Unqualified) {
6081  const FunctionType *lbase = lhs->getAs<FunctionType>();
6082  const FunctionType *rbase = rhs->getAs<FunctionType>();
6083  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6084  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6085  bool allLTypes = true;
6086  bool allRTypes = true;
6087
6088  // Check return type
6089  QualType retType;
6090  if (OfBlockPointer) {
6091    QualType RHS = rbase->getResultType();
6092    QualType LHS = lbase->getResultType();
6093    bool UnqualifiedResult = Unqualified;
6094    if (!UnqualifiedResult)
6095      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6096    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6097  }
6098  else
6099    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6100                         Unqualified);
6101  if (retType.isNull()) return QualType();
6102
6103  if (Unqualified)
6104    retType = retType.getUnqualifiedType();
6105
6106  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6107  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6108  if (Unqualified) {
6109    LRetType = LRetType.getUnqualifiedType();
6110    RRetType = RRetType.getUnqualifiedType();
6111  }
6112
6113  if (getCanonicalType(retType) != LRetType)
6114    allLTypes = false;
6115  if (getCanonicalType(retType) != RRetType)
6116    allRTypes = false;
6117
6118  // FIXME: double check this
6119  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6120  //                           rbase->getRegParmAttr() != 0 &&
6121  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6122  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6123  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6124
6125  // Compatible functions must have compatible calling conventions
6126  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6127    return QualType();
6128
6129  // Regparm is part of the calling convention.
6130  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6131    return QualType();
6132  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6133    return QualType();
6134
6135  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6136    return QualType();
6137
6138  // functypes which return are preferred over those that do not.
6139  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6140    allLTypes = false;
6141  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6142    allRTypes = false;
6143  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6144  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6145
6146  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6147
6148  if (lproto && rproto) { // two C99 style function prototypes
6149    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6150           "C++ shouldn't be here");
6151    unsigned lproto_nargs = lproto->getNumArgs();
6152    unsigned rproto_nargs = rproto->getNumArgs();
6153
6154    // Compatible functions must have the same number of arguments
6155    if (lproto_nargs != rproto_nargs)
6156      return QualType();
6157
6158    // Variadic and non-variadic functions aren't compatible
6159    if (lproto->isVariadic() != rproto->isVariadic())
6160      return QualType();
6161
6162    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6163      return QualType();
6164
6165    if (LangOpts.ObjCAutoRefCount &&
6166        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6167      return QualType();
6168
6169    // Check argument compatibility
6170    SmallVector<QualType, 10> types;
6171    for (unsigned i = 0; i < lproto_nargs; i++) {
6172      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6173      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6174      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6175                                                    OfBlockPointer,
6176                                                    Unqualified);
6177      if (argtype.isNull()) return QualType();
6178
6179      if (Unqualified)
6180        argtype = argtype.getUnqualifiedType();
6181
6182      types.push_back(argtype);
6183      if (Unqualified) {
6184        largtype = largtype.getUnqualifiedType();
6185        rargtype = rargtype.getUnqualifiedType();
6186      }
6187
6188      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6189        allLTypes = false;
6190      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6191        allRTypes = false;
6192    }
6193
6194    if (allLTypes) return lhs;
6195    if (allRTypes) return rhs;
6196
6197    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6198    EPI.ExtInfo = einfo;
6199    return getFunctionType(retType, types.begin(), types.size(), EPI);
6200  }
6201
6202  if (lproto) allRTypes = false;
6203  if (rproto) allLTypes = false;
6204
6205  const FunctionProtoType *proto = lproto ? lproto : rproto;
6206  if (proto) {
6207    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6208    if (proto->isVariadic()) return QualType();
6209    // Check that the types are compatible with the types that
6210    // would result from default argument promotions (C99 6.7.5.3p15).
6211    // The only types actually affected are promotable integer
6212    // types and floats, which would be passed as a different
6213    // type depending on whether the prototype is visible.
6214    unsigned proto_nargs = proto->getNumArgs();
6215    for (unsigned i = 0; i < proto_nargs; ++i) {
6216      QualType argTy = proto->getArgType(i);
6217
6218      // Look at the promotion type of enum types, since that is the type used
6219      // to pass enum values.
6220      if (const EnumType *Enum = argTy->getAs<EnumType>())
6221        argTy = Enum->getDecl()->getPromotionType();
6222
6223      if (argTy->isPromotableIntegerType() ||
6224          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6225        return QualType();
6226    }
6227
6228    if (allLTypes) return lhs;
6229    if (allRTypes) return rhs;
6230
6231    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6232    EPI.ExtInfo = einfo;
6233    return getFunctionType(retType, proto->arg_type_begin(),
6234                           proto->getNumArgs(), EPI);
6235  }
6236
6237  if (allLTypes) return lhs;
6238  if (allRTypes) return rhs;
6239  return getFunctionNoProtoType(retType, einfo);
6240}
6241
6242QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6243                                bool OfBlockPointer,
6244                                bool Unqualified, bool BlockReturnType) {
6245  // C++ [expr]: If an expression initially has the type "reference to T", the
6246  // type is adjusted to "T" prior to any further analysis, the expression
6247  // designates the object or function denoted by the reference, and the
6248  // expression is an lvalue unless the reference is an rvalue reference and
6249  // the expression is a function call (possibly inside parentheses).
6250  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6251  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6252
6253  if (Unqualified) {
6254    LHS = LHS.getUnqualifiedType();
6255    RHS = RHS.getUnqualifiedType();
6256  }
6257
6258  QualType LHSCan = getCanonicalType(LHS),
6259           RHSCan = getCanonicalType(RHS);
6260
6261  // If two types are identical, they are compatible.
6262  if (LHSCan == RHSCan)
6263    return LHS;
6264
6265  // If the qualifiers are different, the types aren't compatible... mostly.
6266  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6267  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6268  if (LQuals != RQuals) {
6269    // If any of these qualifiers are different, we have a type
6270    // mismatch.
6271    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6272        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6273        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6274      return QualType();
6275
6276    // Exactly one GC qualifier difference is allowed: __strong is
6277    // okay if the other type has no GC qualifier but is an Objective
6278    // C object pointer (i.e. implicitly strong by default).  We fix
6279    // this by pretending that the unqualified type was actually
6280    // qualified __strong.
6281    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6282    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6283    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6284
6285    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6286      return QualType();
6287
6288    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6289      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6290    }
6291    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6292      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6293    }
6294    return QualType();
6295  }
6296
6297  // Okay, qualifiers are equal.
6298
6299  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6300  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6301
6302  // We want to consider the two function types to be the same for these
6303  // comparisons, just force one to the other.
6304  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6305  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6306
6307  // Same as above for arrays
6308  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6309    LHSClass = Type::ConstantArray;
6310  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6311    RHSClass = Type::ConstantArray;
6312
6313  // ObjCInterfaces are just specialized ObjCObjects.
6314  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6315  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6316
6317  // Canonicalize ExtVector -> Vector.
6318  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6319  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6320
6321  // If the canonical type classes don't match.
6322  if (LHSClass != RHSClass) {
6323    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6324    // a signed integer type, or an unsigned integer type.
6325    // Compatibility is based on the underlying type, not the promotion
6326    // type.
6327    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6328      QualType TINT = ETy->getDecl()->getIntegerType();
6329      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6330        return RHS;
6331    }
6332    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6333      QualType TINT = ETy->getDecl()->getIntegerType();
6334      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6335        return LHS;
6336    }
6337    // allow block pointer type to match an 'id' type.
6338    if (OfBlockPointer && !BlockReturnType) {
6339       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6340         return LHS;
6341      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6342        return RHS;
6343    }
6344
6345    return QualType();
6346  }
6347
6348  // The canonical type classes match.
6349  switch (LHSClass) {
6350#define TYPE(Class, Base)
6351#define ABSTRACT_TYPE(Class, Base)
6352#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6353#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6354#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6355#include "clang/AST/TypeNodes.def"
6356    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6357
6358  case Type::LValueReference:
6359  case Type::RValueReference:
6360  case Type::MemberPointer:
6361    llvm_unreachable("C++ should never be in mergeTypes");
6362
6363  case Type::ObjCInterface:
6364  case Type::IncompleteArray:
6365  case Type::VariableArray:
6366  case Type::FunctionProto:
6367  case Type::ExtVector:
6368    llvm_unreachable("Types are eliminated above");
6369
6370  case Type::Pointer:
6371  {
6372    // Merge two pointer types, while trying to preserve typedef info
6373    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6374    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6375    if (Unqualified) {
6376      LHSPointee = LHSPointee.getUnqualifiedType();
6377      RHSPointee = RHSPointee.getUnqualifiedType();
6378    }
6379    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6380                                     Unqualified);
6381    if (ResultType.isNull()) return QualType();
6382    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6383      return LHS;
6384    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6385      return RHS;
6386    return getPointerType(ResultType);
6387  }
6388  case Type::BlockPointer:
6389  {
6390    // Merge two block pointer types, while trying to preserve typedef info
6391    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6392    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6393    if (Unqualified) {
6394      LHSPointee = LHSPointee.getUnqualifiedType();
6395      RHSPointee = RHSPointee.getUnqualifiedType();
6396    }
6397    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6398                                     Unqualified);
6399    if (ResultType.isNull()) return QualType();
6400    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6401      return LHS;
6402    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6403      return RHS;
6404    return getBlockPointerType(ResultType);
6405  }
6406  case Type::Atomic:
6407  {
6408    // Merge two pointer types, while trying to preserve typedef info
6409    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6410    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6411    if (Unqualified) {
6412      LHSValue = LHSValue.getUnqualifiedType();
6413      RHSValue = RHSValue.getUnqualifiedType();
6414    }
6415    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6416                                     Unqualified);
6417    if (ResultType.isNull()) return QualType();
6418    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6419      return LHS;
6420    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6421      return RHS;
6422    return getAtomicType(ResultType);
6423  }
6424  case Type::ConstantArray:
6425  {
6426    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6427    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6428    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6429      return QualType();
6430
6431    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6432    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6433    if (Unqualified) {
6434      LHSElem = LHSElem.getUnqualifiedType();
6435      RHSElem = RHSElem.getUnqualifiedType();
6436    }
6437
6438    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6439    if (ResultType.isNull()) return QualType();
6440    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6441      return LHS;
6442    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6443      return RHS;
6444    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6445                                          ArrayType::ArraySizeModifier(), 0);
6446    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6447                                          ArrayType::ArraySizeModifier(), 0);
6448    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6449    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6450    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6451      return LHS;
6452    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6453      return RHS;
6454    if (LVAT) {
6455      // FIXME: This isn't correct! But tricky to implement because
6456      // the array's size has to be the size of LHS, but the type
6457      // has to be different.
6458      return LHS;
6459    }
6460    if (RVAT) {
6461      // FIXME: This isn't correct! But tricky to implement because
6462      // the array's size has to be the size of RHS, but the type
6463      // has to be different.
6464      return RHS;
6465    }
6466    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6467    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6468    return getIncompleteArrayType(ResultType,
6469                                  ArrayType::ArraySizeModifier(), 0);
6470  }
6471  case Type::FunctionNoProto:
6472    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6473  case Type::Record:
6474  case Type::Enum:
6475    return QualType();
6476  case Type::Builtin:
6477    // Only exactly equal builtin types are compatible, which is tested above.
6478    return QualType();
6479  case Type::Complex:
6480    // Distinct complex types are incompatible.
6481    return QualType();
6482  case Type::Vector:
6483    // FIXME: The merged type should be an ExtVector!
6484    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6485                             RHSCan->getAs<VectorType>()))
6486      return LHS;
6487    return QualType();
6488  case Type::ObjCObject: {
6489    // Check if the types are assignment compatible.
6490    // FIXME: This should be type compatibility, e.g. whether
6491    // "LHS x; RHS x;" at global scope is legal.
6492    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6493    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6494    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6495      return LHS;
6496
6497    return QualType();
6498  }
6499  case Type::ObjCObjectPointer: {
6500    if (OfBlockPointer) {
6501      if (canAssignObjCInterfacesInBlockPointer(
6502                                          LHS->getAs<ObjCObjectPointerType>(),
6503                                          RHS->getAs<ObjCObjectPointerType>(),
6504                                          BlockReturnType))
6505        return LHS;
6506      return QualType();
6507    }
6508    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6509                                RHS->getAs<ObjCObjectPointerType>()))
6510      return LHS;
6511
6512    return QualType();
6513  }
6514  }
6515
6516  llvm_unreachable("Invalid Type::Class!");
6517}
6518
6519bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6520                   const FunctionProtoType *FromFunctionType,
6521                   const FunctionProtoType *ToFunctionType) {
6522  if (FromFunctionType->hasAnyConsumedArgs() !=
6523      ToFunctionType->hasAnyConsumedArgs())
6524    return false;
6525  FunctionProtoType::ExtProtoInfo FromEPI =
6526    FromFunctionType->getExtProtoInfo();
6527  FunctionProtoType::ExtProtoInfo ToEPI =
6528    ToFunctionType->getExtProtoInfo();
6529  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6530    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6531         ArgIdx != NumArgs; ++ArgIdx)  {
6532      if (FromEPI.ConsumedArguments[ArgIdx] !=
6533          ToEPI.ConsumedArguments[ArgIdx])
6534        return false;
6535    }
6536  return true;
6537}
6538
6539/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6540/// 'RHS' attributes and returns the merged version; including for function
6541/// return types.
6542QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6543  QualType LHSCan = getCanonicalType(LHS),
6544  RHSCan = getCanonicalType(RHS);
6545  // If two types are identical, they are compatible.
6546  if (LHSCan == RHSCan)
6547    return LHS;
6548  if (RHSCan->isFunctionType()) {
6549    if (!LHSCan->isFunctionType())
6550      return QualType();
6551    QualType OldReturnType =
6552      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6553    QualType NewReturnType =
6554      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6555    QualType ResReturnType =
6556      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6557    if (ResReturnType.isNull())
6558      return QualType();
6559    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6560      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6561      // In either case, use OldReturnType to build the new function type.
6562      const FunctionType *F = LHS->getAs<FunctionType>();
6563      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6564        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6565        EPI.ExtInfo = getFunctionExtInfo(LHS);
6566        QualType ResultType
6567          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6568                            FPT->getNumArgs(), EPI);
6569        return ResultType;
6570      }
6571    }
6572    return QualType();
6573  }
6574
6575  // If the qualifiers are different, the types can still be merged.
6576  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6577  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6578  if (LQuals != RQuals) {
6579    // If any of these qualifiers are different, we have a type mismatch.
6580    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6581        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6582      return QualType();
6583
6584    // Exactly one GC qualifier difference is allowed: __strong is
6585    // okay if the other type has no GC qualifier but is an Objective
6586    // C object pointer (i.e. implicitly strong by default).  We fix
6587    // this by pretending that the unqualified type was actually
6588    // qualified __strong.
6589    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6590    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6591    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6592
6593    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6594      return QualType();
6595
6596    if (GC_L == Qualifiers::Strong)
6597      return LHS;
6598    if (GC_R == Qualifiers::Strong)
6599      return RHS;
6600    return QualType();
6601  }
6602
6603  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6604    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6605    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6606    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6607    if (ResQT == LHSBaseQT)
6608      return LHS;
6609    if (ResQT == RHSBaseQT)
6610      return RHS;
6611  }
6612  return QualType();
6613}
6614
6615//===----------------------------------------------------------------------===//
6616//                         Integer Predicates
6617//===----------------------------------------------------------------------===//
6618
6619unsigned ASTContext::getIntWidth(QualType T) const {
6620  if (const EnumType *ET = dyn_cast<EnumType>(T))
6621    T = ET->getDecl()->getIntegerType();
6622  if (T->isBooleanType())
6623    return 1;
6624  // For builtin types, just use the standard type sizing method
6625  return (unsigned)getTypeSize(T);
6626}
6627
6628QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6629  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6630
6631  // Turn <4 x signed int> -> <4 x unsigned int>
6632  if (const VectorType *VTy = T->getAs<VectorType>())
6633    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6634                         VTy->getNumElements(), VTy->getVectorKind());
6635
6636  // For enums, we return the unsigned version of the base type.
6637  if (const EnumType *ETy = T->getAs<EnumType>())
6638    T = ETy->getDecl()->getIntegerType();
6639
6640  const BuiltinType *BTy = T->getAs<BuiltinType>();
6641  assert(BTy && "Unexpected signed integer type");
6642  switch (BTy->getKind()) {
6643  case BuiltinType::Char_S:
6644  case BuiltinType::SChar:
6645    return UnsignedCharTy;
6646  case BuiltinType::Short:
6647    return UnsignedShortTy;
6648  case BuiltinType::Int:
6649    return UnsignedIntTy;
6650  case BuiltinType::Long:
6651    return UnsignedLongTy;
6652  case BuiltinType::LongLong:
6653    return UnsignedLongLongTy;
6654  case BuiltinType::Int128:
6655    return UnsignedInt128Ty;
6656  default:
6657    llvm_unreachable("Unexpected signed integer type");
6658  }
6659}
6660
6661ASTMutationListener::~ASTMutationListener() { }
6662
6663
6664//===----------------------------------------------------------------------===//
6665//                          Builtin Type Computation
6666//===----------------------------------------------------------------------===//
6667
6668/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6669/// pointer over the consumed characters.  This returns the resultant type.  If
6670/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6671/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6672/// a vector of "i*".
6673///
6674/// RequiresICE is filled in on return to indicate whether the value is required
6675/// to be an Integer Constant Expression.
6676static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6677                                  ASTContext::GetBuiltinTypeError &Error,
6678                                  bool &RequiresICE,
6679                                  bool AllowTypeModifiers) {
6680  // Modifiers.
6681  int HowLong = 0;
6682  bool Signed = false, Unsigned = false;
6683  RequiresICE = false;
6684
6685  // Read the prefixed modifiers first.
6686  bool Done = false;
6687  while (!Done) {
6688    switch (*Str++) {
6689    default: Done = true; --Str; break;
6690    case 'I':
6691      RequiresICE = true;
6692      break;
6693    case 'S':
6694      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6695      assert(!Signed && "Can't use 'S' modifier multiple times!");
6696      Signed = true;
6697      break;
6698    case 'U':
6699      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6700      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6701      Unsigned = true;
6702      break;
6703    case 'L':
6704      assert(HowLong <= 2 && "Can't have LLLL modifier");
6705      ++HowLong;
6706      break;
6707    }
6708  }
6709
6710  QualType Type;
6711
6712  // Read the base type.
6713  switch (*Str++) {
6714  default: llvm_unreachable("Unknown builtin type letter!");
6715  case 'v':
6716    assert(HowLong == 0 && !Signed && !Unsigned &&
6717           "Bad modifiers used with 'v'!");
6718    Type = Context.VoidTy;
6719    break;
6720  case 'f':
6721    assert(HowLong == 0 && !Signed && !Unsigned &&
6722           "Bad modifiers used with 'f'!");
6723    Type = Context.FloatTy;
6724    break;
6725  case 'd':
6726    assert(HowLong < 2 && !Signed && !Unsigned &&
6727           "Bad modifiers used with 'd'!");
6728    if (HowLong)
6729      Type = Context.LongDoubleTy;
6730    else
6731      Type = Context.DoubleTy;
6732    break;
6733  case 's':
6734    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6735    if (Unsigned)
6736      Type = Context.UnsignedShortTy;
6737    else
6738      Type = Context.ShortTy;
6739    break;
6740  case 'i':
6741    if (HowLong == 3)
6742      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6743    else if (HowLong == 2)
6744      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6745    else if (HowLong == 1)
6746      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6747    else
6748      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6749    break;
6750  case 'c':
6751    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6752    if (Signed)
6753      Type = Context.SignedCharTy;
6754    else if (Unsigned)
6755      Type = Context.UnsignedCharTy;
6756    else
6757      Type = Context.CharTy;
6758    break;
6759  case 'b': // boolean
6760    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6761    Type = Context.BoolTy;
6762    break;
6763  case 'z':  // size_t.
6764    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6765    Type = Context.getSizeType();
6766    break;
6767  case 'F':
6768    Type = Context.getCFConstantStringType();
6769    break;
6770  case 'G':
6771    Type = Context.getObjCIdType();
6772    break;
6773  case 'H':
6774    Type = Context.getObjCSelType();
6775    break;
6776  case 'a':
6777    Type = Context.getBuiltinVaListType();
6778    assert(!Type.isNull() && "builtin va list type not initialized!");
6779    break;
6780  case 'A':
6781    // This is a "reference" to a va_list; however, what exactly
6782    // this means depends on how va_list is defined. There are two
6783    // different kinds of va_list: ones passed by value, and ones
6784    // passed by reference.  An example of a by-value va_list is
6785    // x86, where va_list is a char*. An example of by-ref va_list
6786    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6787    // we want this argument to be a char*&; for x86-64, we want
6788    // it to be a __va_list_tag*.
6789    Type = Context.getBuiltinVaListType();
6790    assert(!Type.isNull() && "builtin va list type not initialized!");
6791    if (Type->isArrayType())
6792      Type = Context.getArrayDecayedType(Type);
6793    else
6794      Type = Context.getLValueReferenceType(Type);
6795    break;
6796  case 'V': {
6797    char *End;
6798    unsigned NumElements = strtoul(Str, &End, 10);
6799    assert(End != Str && "Missing vector size");
6800    Str = End;
6801
6802    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6803                                             RequiresICE, false);
6804    assert(!RequiresICE && "Can't require vector ICE");
6805
6806    // TODO: No way to make AltiVec vectors in builtins yet.
6807    Type = Context.getVectorType(ElementType, NumElements,
6808                                 VectorType::GenericVector);
6809    break;
6810  }
6811  case 'E': {
6812    char *End;
6813
6814    unsigned NumElements = strtoul(Str, &End, 10);
6815    assert(End != Str && "Missing vector size");
6816
6817    Str = End;
6818
6819    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6820                                             false);
6821    Type = Context.getExtVectorType(ElementType, NumElements);
6822    break;
6823  }
6824  case 'X': {
6825    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6826                                             false);
6827    assert(!RequiresICE && "Can't require complex ICE");
6828    Type = Context.getComplexType(ElementType);
6829    break;
6830  }
6831  case 'Y' : {
6832    Type = Context.getPointerDiffType();
6833    break;
6834  }
6835  case 'P':
6836    Type = Context.getFILEType();
6837    if (Type.isNull()) {
6838      Error = ASTContext::GE_Missing_stdio;
6839      return QualType();
6840    }
6841    break;
6842  case 'J':
6843    if (Signed)
6844      Type = Context.getsigjmp_bufType();
6845    else
6846      Type = Context.getjmp_bufType();
6847
6848    if (Type.isNull()) {
6849      Error = ASTContext::GE_Missing_setjmp;
6850      return QualType();
6851    }
6852    break;
6853  case 'K':
6854    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6855    Type = Context.getucontext_tType();
6856
6857    if (Type.isNull()) {
6858      Error = ASTContext::GE_Missing_ucontext;
6859      return QualType();
6860    }
6861    break;
6862  }
6863
6864  // If there are modifiers and if we're allowed to parse them, go for it.
6865  Done = !AllowTypeModifiers;
6866  while (!Done) {
6867    switch (char c = *Str++) {
6868    default: Done = true; --Str; break;
6869    case '*':
6870    case '&': {
6871      // Both pointers and references can have their pointee types
6872      // qualified with an address space.
6873      char *End;
6874      unsigned AddrSpace = strtoul(Str, &End, 10);
6875      if (End != Str && AddrSpace != 0) {
6876        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6877        Str = End;
6878      }
6879      if (c == '*')
6880        Type = Context.getPointerType(Type);
6881      else
6882        Type = Context.getLValueReferenceType(Type);
6883      break;
6884    }
6885    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6886    case 'C':
6887      Type = Type.withConst();
6888      break;
6889    case 'D':
6890      Type = Context.getVolatileType(Type);
6891      break;
6892    case 'R':
6893      Type = Type.withRestrict();
6894      break;
6895    }
6896  }
6897
6898  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6899         "Integer constant 'I' type must be an integer");
6900
6901  return Type;
6902}
6903
6904/// GetBuiltinType - Return the type for the specified builtin.
6905QualType ASTContext::GetBuiltinType(unsigned Id,
6906                                    GetBuiltinTypeError &Error,
6907                                    unsigned *IntegerConstantArgs) const {
6908  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6909
6910  SmallVector<QualType, 8> ArgTypes;
6911
6912  bool RequiresICE = false;
6913  Error = GE_None;
6914  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6915                                       RequiresICE, true);
6916  if (Error != GE_None)
6917    return QualType();
6918
6919  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6920
6921  while (TypeStr[0] && TypeStr[0] != '.') {
6922    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6923    if (Error != GE_None)
6924      return QualType();
6925
6926    // If this argument is required to be an IntegerConstantExpression and the
6927    // caller cares, fill in the bitmask we return.
6928    if (RequiresICE && IntegerConstantArgs)
6929      *IntegerConstantArgs |= 1 << ArgTypes.size();
6930
6931    // Do array -> pointer decay.  The builtin should use the decayed type.
6932    if (Ty->isArrayType())
6933      Ty = getArrayDecayedType(Ty);
6934
6935    ArgTypes.push_back(Ty);
6936  }
6937
6938  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6939         "'.' should only occur at end of builtin type list!");
6940
6941  FunctionType::ExtInfo EI;
6942  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6943
6944  bool Variadic = (TypeStr[0] == '.');
6945
6946  // We really shouldn't be making a no-proto type here, especially in C++.
6947  if (ArgTypes.empty() && Variadic)
6948    return getFunctionNoProtoType(ResType, EI);
6949
6950  FunctionProtoType::ExtProtoInfo EPI;
6951  EPI.ExtInfo = EI;
6952  EPI.Variadic = Variadic;
6953
6954  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6955}
6956
6957GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6958  GVALinkage External = GVA_StrongExternal;
6959
6960  Linkage L = FD->getLinkage();
6961  switch (L) {
6962  case NoLinkage:
6963  case InternalLinkage:
6964  case UniqueExternalLinkage:
6965    return GVA_Internal;
6966
6967  case ExternalLinkage:
6968    switch (FD->getTemplateSpecializationKind()) {
6969    case TSK_Undeclared:
6970    case TSK_ExplicitSpecialization:
6971      External = GVA_StrongExternal;
6972      break;
6973
6974    case TSK_ExplicitInstantiationDefinition:
6975      return GVA_ExplicitTemplateInstantiation;
6976
6977    case TSK_ExplicitInstantiationDeclaration:
6978    case TSK_ImplicitInstantiation:
6979      External = GVA_TemplateInstantiation;
6980      break;
6981    }
6982  }
6983
6984  if (!FD->isInlined())
6985    return External;
6986
6987  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6988    // GNU or C99 inline semantics. Determine whether this symbol should be
6989    // externally visible.
6990    if (FD->isInlineDefinitionExternallyVisible())
6991      return External;
6992
6993    // C99 inline semantics, where the symbol is not externally visible.
6994    return GVA_C99Inline;
6995  }
6996
6997  // C++0x [temp.explicit]p9:
6998  //   [ Note: The intent is that an inline function that is the subject of
6999  //   an explicit instantiation declaration will still be implicitly
7000  //   instantiated when used so that the body can be considered for
7001  //   inlining, but that no out-of-line copy of the inline function would be
7002  //   generated in the translation unit. -- end note ]
7003  if (FD->getTemplateSpecializationKind()
7004                                       == TSK_ExplicitInstantiationDeclaration)
7005    return GVA_C99Inline;
7006
7007  return GVA_CXXInline;
7008}
7009
7010GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7011  // If this is a static data member, compute the kind of template
7012  // specialization. Otherwise, this variable is not part of a
7013  // template.
7014  TemplateSpecializationKind TSK = TSK_Undeclared;
7015  if (VD->isStaticDataMember())
7016    TSK = VD->getTemplateSpecializationKind();
7017
7018  Linkage L = VD->getLinkage();
7019  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7020      VD->getType()->getLinkage() == UniqueExternalLinkage)
7021    L = UniqueExternalLinkage;
7022
7023  switch (L) {
7024  case NoLinkage:
7025  case InternalLinkage:
7026  case UniqueExternalLinkage:
7027    return GVA_Internal;
7028
7029  case ExternalLinkage:
7030    switch (TSK) {
7031    case TSK_Undeclared:
7032    case TSK_ExplicitSpecialization:
7033      return GVA_StrongExternal;
7034
7035    case TSK_ExplicitInstantiationDeclaration:
7036      llvm_unreachable("Variable should not be instantiated");
7037      // Fall through to treat this like any other instantiation.
7038
7039    case TSK_ExplicitInstantiationDefinition:
7040      return GVA_ExplicitTemplateInstantiation;
7041
7042    case TSK_ImplicitInstantiation:
7043      return GVA_TemplateInstantiation;
7044    }
7045  }
7046
7047  llvm_unreachable("Invalid Linkage!");
7048}
7049
7050bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7051  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7052    if (!VD->isFileVarDecl())
7053      return false;
7054  } else if (!isa<FunctionDecl>(D))
7055    return false;
7056
7057  // Weak references don't produce any output by themselves.
7058  if (D->hasAttr<WeakRefAttr>())
7059    return false;
7060
7061  // Aliases and used decls are required.
7062  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7063    return true;
7064
7065  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7066    // Forward declarations aren't required.
7067    if (!FD->doesThisDeclarationHaveABody())
7068      return FD->doesDeclarationForceExternallyVisibleDefinition();
7069
7070    // Constructors and destructors are required.
7071    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7072      return true;
7073
7074    // The key function for a class is required.
7075    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7076      const CXXRecordDecl *RD = MD->getParent();
7077      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7078        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7079        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7080          return true;
7081      }
7082    }
7083
7084    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7085
7086    // static, static inline, always_inline, and extern inline functions can
7087    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7088    // Implicit template instantiations can also be deferred in C++.
7089    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7090        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7091      return false;
7092    return true;
7093  }
7094
7095  const VarDecl *VD = cast<VarDecl>(D);
7096  assert(VD->isFileVarDecl() && "Expected file scoped var");
7097
7098  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7099    return false;
7100
7101  // Structs that have non-trivial constructors or destructors are required.
7102
7103  // FIXME: Handle references.
7104  // FIXME: Be more selective about which constructors we care about.
7105  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7106    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7107      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7108                                   RD->hasTrivialCopyConstructor() &&
7109                                   RD->hasTrivialMoveConstructor() &&
7110                                   RD->hasTrivialDestructor()))
7111        return true;
7112    }
7113  }
7114
7115  GVALinkage L = GetGVALinkageForVariable(VD);
7116  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7117    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7118      return false;
7119  }
7120
7121  return true;
7122}
7123
7124CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7125  // Pass through to the C++ ABI object
7126  return ABI->getDefaultMethodCallConv(isVariadic);
7127}
7128
7129CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7130  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7131    return CC_Default;
7132  return CC;
7133}
7134
7135bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7136  // Pass through to the C++ ABI object
7137  return ABI->isNearlyEmpty(RD);
7138}
7139
7140MangleContext *ASTContext::createMangleContext() {
7141  switch (Target->getCXXABI()) {
7142  case CXXABI_ARM:
7143  case CXXABI_Itanium:
7144    return createItaniumMangleContext(*this, getDiagnostics());
7145  case CXXABI_Microsoft:
7146    return createMicrosoftMangleContext(*this, getDiagnostics());
7147  }
7148  llvm_unreachable("Unsupported ABI");
7149}
7150
7151CXXABI::~CXXABI() {}
7152
7153size_t ASTContext::getSideTableAllocatedMemory() const {
7154  return ASTRecordLayouts.getMemorySize()
7155    + llvm::capacity_in_bytes(ObjCLayouts)
7156    + llvm::capacity_in_bytes(KeyFunctions)
7157    + llvm::capacity_in_bytes(ObjCImpls)
7158    + llvm::capacity_in_bytes(BlockVarCopyInits)
7159    + llvm::capacity_in_bytes(DeclAttrs)
7160    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7161    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7162    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7163    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7164    + llvm::capacity_in_bytes(OverriddenMethods)
7165    + llvm::capacity_in_bytes(Types)
7166    + llvm::capacity_in_bytes(VariableArrayTypes)
7167    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7168}
7169
7170unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7171  CXXRecordDecl *Lambda = CallOperator->getParent();
7172  return LambdaMangleContexts[Lambda->getDeclContext()]
7173           .getManglingNumber(CallOperator);
7174}
7175
7176
7177void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7178  ParamIndices[D] = index;
7179}
7180
7181unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7182  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7183  assert(I != ParamIndices.end() &&
7184         "ParmIndices lacks entry set by ParmVarDecl");
7185  return I->second;
7186}
7187