ASTContext.cpp revision e4330a302ac20b41b9800267ebd4b5b01f8553f8
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentCommandTraits.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/Mangle.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Support/Capacity.h"
35#include "CXXABI.h"
36#include <map>
37
38using namespace clang;
39
40unsigned ASTContext::NumImplicitDefaultConstructors;
41unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
42unsigned ASTContext::NumImplicitCopyConstructors;
43unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
44unsigned ASTContext::NumImplicitMoveConstructors;
45unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
46unsigned ASTContext::NumImplicitCopyAssignmentOperators;
47unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitMoveAssignmentOperators;
49unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitDestructors;
51unsigned ASTContext::NumImplicitDestructorsDeclared;
52
53enum FloatingRank {
54  HalfRank, FloatRank, DoubleRank, LongDoubleRank
55};
56
57RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
58  if (!CommentsLoaded && ExternalSource) {
59    ExternalSource->ReadComments();
60    CommentsLoaded = true;
61  }
62
63  assert(D);
64
65  // User can not attach documentation to implicit declarations.
66  if (D->isImplicit())
67    return NULL;
68
69  // User can not attach documentation to implicit instantiations.
70  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
71    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
72      return NULL;
73  }
74
75  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
76    if (VD->isStaticDataMember() &&
77        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
78      return NULL;
79  }
80
81  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
82    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
83      return NULL;
84  }
85
86  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
87    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
88      return NULL;
89  }
90
91  // TODO: handle comments for function parameters properly.
92  if (isa<ParmVarDecl>(D))
93    return NULL;
94
95  // TODO: we could look up template parameter documentation in the template
96  // documentation.
97  if (isa<TemplateTypeParmDecl>(D) ||
98      isa<NonTypeTemplateParmDecl>(D) ||
99      isa<TemplateTemplateParmDecl>(D))
100    return NULL;
101
102  ArrayRef<RawComment *> RawComments = Comments.getComments();
103
104  // If there are no comments anywhere, we won't find anything.
105  if (RawComments.empty())
106    return NULL;
107
108  // Find declaration location.
109  // For Objective-C declarations we generally don't expect to have multiple
110  // declarators, thus use declaration starting location as the "declaration
111  // location".
112  // For all other declarations multiple declarators are used quite frequently,
113  // so we use the location of the identifier as the "declaration location".
114  SourceLocation DeclLoc;
115  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
116      isa<ObjCPropertyDecl>(D) ||
117      isa<RedeclarableTemplateDecl>(D) ||
118      isa<ClassTemplateSpecializationDecl>(D))
119    DeclLoc = D->getLocStart();
120  else
121    DeclLoc = D->getLocation();
122
123  // If the declaration doesn't map directly to a location in a file, we
124  // can't find the comment.
125  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
126    return NULL;
127
128  // Find the comment that occurs just after this declaration.
129  ArrayRef<RawComment *>::iterator Comment;
130  {
131    // When searching for comments during parsing, the comment we are looking
132    // for is usually among the last two comments we parsed -- check them
133    // first.
134    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
135    BeforeThanCompare<RawComment> Compare(SourceMgr);
136    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
137    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
138    if (!Found && RawComments.size() >= 2) {
139      MaybeBeforeDecl--;
140      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
141    }
142
143    if (Found) {
144      Comment = MaybeBeforeDecl + 1;
145      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
146                                         &CommentAtDeclLoc, Compare));
147    } else {
148      // Slow path.
149      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
150                                 &CommentAtDeclLoc, Compare);
151    }
152  }
153
154  // Decompose the location for the declaration and find the beginning of the
155  // file buffer.
156  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
157
158  // First check whether we have a trailing comment.
159  if (Comment != RawComments.end() &&
160      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
161      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
162    std::pair<FileID, unsigned> CommentBeginDecomp
163      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
164    // Check that Doxygen trailing comment comes after the declaration, starts
165    // on the same line and in the same file as the declaration.
166    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
167        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
168          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
169                                     CommentBeginDecomp.second)) {
170      return *Comment;
171    }
172  }
173
174  // The comment just after the declaration was not a trailing comment.
175  // Let's look at the previous comment.
176  if (Comment == RawComments.begin())
177    return NULL;
178  --Comment;
179
180  // Check that we actually have a non-member Doxygen comment.
181  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
182    return NULL;
183
184  // Decompose the end of the comment.
185  std::pair<FileID, unsigned> CommentEndDecomp
186    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
187
188  // If the comment and the declaration aren't in the same file, then they
189  // aren't related.
190  if (DeclLocDecomp.first != CommentEndDecomp.first)
191    return NULL;
192
193  // Get the corresponding buffer.
194  bool Invalid = false;
195  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
196                                               &Invalid).data();
197  if (Invalid)
198    return NULL;
199
200  // Extract text between the comment and declaration.
201  StringRef Text(Buffer + CommentEndDecomp.second,
202                 DeclLocDecomp.second - CommentEndDecomp.second);
203
204  // There should be no other declarations or preprocessor directives between
205  // comment and declaration.
206  if (Text.find_first_of(",;{}#@") != StringRef::npos)
207    return NULL;
208
209  return *Comment;
210}
211
212namespace {
213/// If we have a 'templated' declaration for a template, adjust 'D' to
214/// refer to the actual template.
215/// If we have an implicit instantiation, adjust 'D' to refer to template.
216const Decl *adjustDeclToTemplate(const Decl *D) {
217  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
218    // Is this function declaration part of a function template?
219    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
220      return FTD;
221
222    // Nothing to do if function is not an implicit instantiation.
223    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
224      return D;
225
226    // Function is an implicit instantiation of a function template?
227    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
228      return FTD;
229
230    // Function is instantiated from a member definition of a class template?
231    if (const FunctionDecl *MemberDecl =
232            FD->getInstantiatedFromMemberFunction())
233      return MemberDecl;
234
235    return D;
236  }
237  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
238    // Static data member is instantiated from a member definition of a class
239    // template?
240    if (VD->isStaticDataMember())
241      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
242        return MemberDecl;
243
244    return D;
245  }
246  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
247    // Is this class declaration part of a class template?
248    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
249      return CTD;
250
251    // Class is an implicit instantiation of a class template or partial
252    // specialization?
253    if (const ClassTemplateSpecializationDecl *CTSD =
254            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
255      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
256        return D;
257      llvm::PointerUnion<ClassTemplateDecl *,
258                         ClassTemplatePartialSpecializationDecl *>
259          PU = CTSD->getSpecializedTemplateOrPartial();
260      return PU.is<ClassTemplateDecl*>() ?
261          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
262          static_cast<const Decl*>(
263              PU.get<ClassTemplatePartialSpecializationDecl *>());
264    }
265
266    // Class is instantiated from a member definition of a class template?
267    if (const MemberSpecializationInfo *Info =
268                   CRD->getMemberSpecializationInfo())
269      return Info->getInstantiatedFrom();
270
271    return D;
272  }
273  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
274    // Enum is instantiated from a member definition of a class template?
275    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
276      return MemberDecl;
277
278    return D;
279  }
280  // FIXME: Adjust alias templates?
281  return D;
282}
283} // unnamed namespace
284
285const RawComment *ASTContext::getRawCommentForAnyRedecl(
286                                                const Decl *D,
287                                                const Decl **OriginalDecl) const {
288  D = adjustDeclToTemplate(D);
289
290  // Check whether we have cached a comment for this declaration already.
291  {
292    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
293        RedeclComments.find(D);
294    if (Pos != RedeclComments.end()) {
295      const RawCommentAndCacheFlags &Raw = Pos->second;
296      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
297        if (OriginalDecl)
298          *OriginalDecl = Raw.getOriginalDecl();
299        return Raw.getRaw();
300      }
301    }
302  }
303
304  // Search for comments attached to declarations in the redeclaration chain.
305  const RawComment *RC = NULL;
306  const Decl *OriginalDeclForRC = NULL;
307  for (Decl::redecl_iterator I = D->redecls_begin(),
308                             E = D->redecls_end();
309       I != E; ++I) {
310    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
311        RedeclComments.find(*I);
312    if (Pos != RedeclComments.end()) {
313      const RawCommentAndCacheFlags &Raw = Pos->second;
314      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
315        RC = Raw.getRaw();
316        OriginalDeclForRC = Raw.getOriginalDecl();
317        break;
318      }
319    } else {
320      RC = getRawCommentForDeclNoCache(*I);
321      OriginalDeclForRC = *I;
322      RawCommentAndCacheFlags Raw;
323      if (RC) {
324        Raw.setRaw(RC);
325        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
326      } else
327        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
328      Raw.setOriginalDecl(*I);
329      RedeclComments[*I] = Raw;
330      if (RC)
331        break;
332    }
333  }
334
335  // If we found a comment, it should be a documentation comment.
336  assert(!RC || RC->isDocumentation());
337
338  if (OriginalDecl)
339    *OriginalDecl = OriginalDeclForRC;
340
341  // Update cache for every declaration in the redeclaration chain.
342  RawCommentAndCacheFlags Raw;
343  Raw.setRaw(RC);
344  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
345  Raw.setOriginalDecl(OriginalDeclForRC);
346
347  for (Decl::redecl_iterator I = D->redecls_begin(),
348                             E = D->redecls_end();
349       I != E; ++I) {
350    RawCommentAndCacheFlags &R = RedeclComments[*I];
351    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
352      R = Raw;
353  }
354
355  return RC;
356}
357
358comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
359  D = adjustDeclToTemplate(D);
360  const Decl *Canonical = D->getCanonicalDecl();
361  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
362      ParsedComments.find(Canonical);
363  if (Pos != ParsedComments.end())
364    return Pos->second;
365
366  const Decl *OriginalDecl;
367  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
368  if (!RC)
369    return NULL;
370
371  // If the RawComment was attached to other redeclaration of this Decl, we
372  // should parse the comment in context of that other Decl.  This is important
373  // because comments can contain references to parameter names which can be
374  // different across redeclarations.
375  if (D != OriginalDecl)
376    return getCommentForDecl(OriginalDecl);
377
378  comments::FullComment *FC = RC->parse(*this, D);
379  ParsedComments[Canonical] = FC;
380  return FC;
381}
382
383void
384ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
385                                               TemplateTemplateParmDecl *Parm) {
386  ID.AddInteger(Parm->getDepth());
387  ID.AddInteger(Parm->getPosition());
388  ID.AddBoolean(Parm->isParameterPack());
389
390  TemplateParameterList *Params = Parm->getTemplateParameters();
391  ID.AddInteger(Params->size());
392  for (TemplateParameterList::const_iterator P = Params->begin(),
393                                          PEnd = Params->end();
394       P != PEnd; ++P) {
395    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
396      ID.AddInteger(0);
397      ID.AddBoolean(TTP->isParameterPack());
398      continue;
399    }
400
401    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
402      ID.AddInteger(1);
403      ID.AddBoolean(NTTP->isParameterPack());
404      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
405      if (NTTP->isExpandedParameterPack()) {
406        ID.AddBoolean(true);
407        ID.AddInteger(NTTP->getNumExpansionTypes());
408        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
409          QualType T = NTTP->getExpansionType(I);
410          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
411        }
412      } else
413        ID.AddBoolean(false);
414      continue;
415    }
416
417    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
418    ID.AddInteger(2);
419    Profile(ID, TTP);
420  }
421}
422
423TemplateTemplateParmDecl *
424ASTContext::getCanonicalTemplateTemplateParmDecl(
425                                          TemplateTemplateParmDecl *TTP) const {
426  // Check if we already have a canonical template template parameter.
427  llvm::FoldingSetNodeID ID;
428  CanonicalTemplateTemplateParm::Profile(ID, TTP);
429  void *InsertPos = 0;
430  CanonicalTemplateTemplateParm *Canonical
431    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
432  if (Canonical)
433    return Canonical->getParam();
434
435  // Build a canonical template parameter list.
436  TemplateParameterList *Params = TTP->getTemplateParameters();
437  SmallVector<NamedDecl *, 4> CanonParams;
438  CanonParams.reserve(Params->size());
439  for (TemplateParameterList::const_iterator P = Params->begin(),
440                                          PEnd = Params->end();
441       P != PEnd; ++P) {
442    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
443      CanonParams.push_back(
444                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
445                                               SourceLocation(),
446                                               SourceLocation(),
447                                               TTP->getDepth(),
448                                               TTP->getIndex(), 0, false,
449                                               TTP->isParameterPack()));
450    else if (NonTypeTemplateParmDecl *NTTP
451             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
452      QualType T = getCanonicalType(NTTP->getType());
453      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
454      NonTypeTemplateParmDecl *Param;
455      if (NTTP->isExpandedParameterPack()) {
456        SmallVector<QualType, 2> ExpandedTypes;
457        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
458        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
459          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
460          ExpandedTInfos.push_back(
461                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
462        }
463
464        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
465                                                SourceLocation(),
466                                                SourceLocation(),
467                                                NTTP->getDepth(),
468                                                NTTP->getPosition(), 0,
469                                                T,
470                                                TInfo,
471                                                ExpandedTypes.data(),
472                                                ExpandedTypes.size(),
473                                                ExpandedTInfos.data());
474      } else {
475        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
476                                                SourceLocation(),
477                                                SourceLocation(),
478                                                NTTP->getDepth(),
479                                                NTTP->getPosition(), 0,
480                                                T,
481                                                NTTP->isParameterPack(),
482                                                TInfo);
483      }
484      CanonParams.push_back(Param);
485
486    } else
487      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
488                                           cast<TemplateTemplateParmDecl>(*P)));
489  }
490
491  TemplateTemplateParmDecl *CanonTTP
492    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
493                                       SourceLocation(), TTP->getDepth(),
494                                       TTP->getPosition(),
495                                       TTP->isParameterPack(),
496                                       0,
497                         TemplateParameterList::Create(*this, SourceLocation(),
498                                                       SourceLocation(),
499                                                       CanonParams.data(),
500                                                       CanonParams.size(),
501                                                       SourceLocation()));
502
503  // Get the new insert position for the node we care about.
504  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
505  assert(Canonical == 0 && "Shouldn't be in the map!");
506  (void)Canonical;
507
508  // Create the canonical template template parameter entry.
509  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
510  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
511  return CanonTTP;
512}
513
514CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
515  if (!LangOpts.CPlusPlus) return 0;
516
517  switch (T.getCXXABI()) {
518  case CXXABI_ARM:
519    return CreateARMCXXABI(*this);
520  case CXXABI_Itanium:
521    return CreateItaniumCXXABI(*this);
522  case CXXABI_Microsoft:
523    return CreateMicrosoftCXXABI(*this);
524  }
525  llvm_unreachable("Invalid CXXABI type!");
526}
527
528static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
529                                             const LangOptions &LOpts) {
530  if (LOpts.FakeAddressSpaceMap) {
531    // The fake address space map must have a distinct entry for each
532    // language-specific address space.
533    static const unsigned FakeAddrSpaceMap[] = {
534      1, // opencl_global
535      2, // opencl_local
536      3, // opencl_constant
537      4, // cuda_device
538      5, // cuda_constant
539      6  // cuda_shared
540    };
541    return &FakeAddrSpaceMap;
542  } else {
543    return &T.getAddressSpaceMap();
544  }
545}
546
547ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
548                       const TargetInfo *t,
549                       IdentifierTable &idents, SelectorTable &sels,
550                       Builtin::Context &builtins,
551                       unsigned size_reserve,
552                       bool DelayInitialization)
553  : FunctionProtoTypes(this_()),
554    TemplateSpecializationTypes(this_()),
555    DependentTemplateSpecializationTypes(this_()),
556    SubstTemplateTemplateParmPacks(this_()),
557    GlobalNestedNameSpecifier(0),
558    Int128Decl(0), UInt128Decl(0),
559    BuiltinVaListDecl(0),
560    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
561    BOOLDecl(0),
562    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
563    FILEDecl(0),
564    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
565    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
566    cudaConfigureCallDecl(0),
567    NullTypeSourceInfo(QualType()),
568    FirstLocalImport(), LastLocalImport(),
569    SourceMgr(SM), LangOpts(LOpts),
570    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
571    Idents(idents), Selectors(sels),
572    BuiltinInfo(builtins),
573    DeclarationNames(*this),
574    ExternalSource(0), Listener(0),
575    Comments(SM), CommentsLoaded(false),
576    CommentCommandTraits(BumpAlloc),
577    LastSDM(0, 0),
578    UniqueBlockByRefTypeID(0)
579{
580  if (size_reserve > 0) Types.reserve(size_reserve);
581  TUDecl = TranslationUnitDecl::Create(*this);
582
583  if (!DelayInitialization) {
584    assert(t && "No target supplied for ASTContext initialization");
585    InitBuiltinTypes(*t);
586  }
587}
588
589ASTContext::~ASTContext() {
590  // Release the DenseMaps associated with DeclContext objects.
591  // FIXME: Is this the ideal solution?
592  ReleaseDeclContextMaps();
593
594  // Call all of the deallocation functions.
595  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
596    Deallocations[I].first(Deallocations[I].second);
597
598  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
599  // because they can contain DenseMaps.
600  for (llvm::DenseMap<const ObjCContainerDecl*,
601       const ASTRecordLayout*>::iterator
602       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
603    // Increment in loop to prevent using deallocated memory.
604    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
605      R->Destroy(*this);
606
607  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
608       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
609    // Increment in loop to prevent using deallocated memory.
610    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
611      R->Destroy(*this);
612  }
613
614  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
615                                                    AEnd = DeclAttrs.end();
616       A != AEnd; ++A)
617    A->second->~AttrVec();
618}
619
620void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
621  Deallocations.push_back(std::make_pair(Callback, Data));
622}
623
624void
625ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
626  ExternalSource.reset(Source.take());
627}
628
629void ASTContext::PrintStats() const {
630  llvm::errs() << "\n*** AST Context Stats:\n";
631  llvm::errs() << "  " << Types.size() << " types total.\n";
632
633  unsigned counts[] = {
634#define TYPE(Name, Parent) 0,
635#define ABSTRACT_TYPE(Name, Parent)
636#include "clang/AST/TypeNodes.def"
637    0 // Extra
638  };
639
640  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
641    Type *T = Types[i];
642    counts[(unsigned)T->getTypeClass()]++;
643  }
644
645  unsigned Idx = 0;
646  unsigned TotalBytes = 0;
647#define TYPE(Name, Parent)                                              \
648  if (counts[Idx])                                                      \
649    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
650                 << " types\n";                                         \
651  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
652  ++Idx;
653#define ABSTRACT_TYPE(Name, Parent)
654#include "clang/AST/TypeNodes.def"
655
656  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
657
658  // Implicit special member functions.
659  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
660               << NumImplicitDefaultConstructors
661               << " implicit default constructors created\n";
662  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
663               << NumImplicitCopyConstructors
664               << " implicit copy constructors created\n";
665  if (getLangOpts().CPlusPlus)
666    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
667                 << NumImplicitMoveConstructors
668                 << " implicit move constructors created\n";
669  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
670               << NumImplicitCopyAssignmentOperators
671               << " implicit copy assignment operators created\n";
672  if (getLangOpts().CPlusPlus)
673    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
674                 << NumImplicitMoveAssignmentOperators
675                 << " implicit move assignment operators created\n";
676  llvm::errs() << NumImplicitDestructorsDeclared << "/"
677               << NumImplicitDestructors
678               << " implicit destructors created\n";
679
680  if (ExternalSource.get()) {
681    llvm::errs() << "\n";
682    ExternalSource->PrintStats();
683  }
684
685  BumpAlloc.PrintStats();
686}
687
688TypedefDecl *ASTContext::getInt128Decl() const {
689  if (!Int128Decl) {
690    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
691    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
692                                     getTranslationUnitDecl(),
693                                     SourceLocation(),
694                                     SourceLocation(),
695                                     &Idents.get("__int128_t"),
696                                     TInfo);
697  }
698
699  return Int128Decl;
700}
701
702TypedefDecl *ASTContext::getUInt128Decl() const {
703  if (!UInt128Decl) {
704    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
705    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
706                                     getTranslationUnitDecl(),
707                                     SourceLocation(),
708                                     SourceLocation(),
709                                     &Idents.get("__uint128_t"),
710                                     TInfo);
711  }
712
713  return UInt128Decl;
714}
715
716void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
717  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
718  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
719  Types.push_back(Ty);
720}
721
722void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
723  assert((!this->Target || this->Target == &Target) &&
724         "Incorrect target reinitialization");
725  assert(VoidTy.isNull() && "Context reinitialized?");
726
727  this->Target = &Target;
728
729  ABI.reset(createCXXABI(Target));
730  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
731
732  // C99 6.2.5p19.
733  InitBuiltinType(VoidTy,              BuiltinType::Void);
734
735  // C99 6.2.5p2.
736  InitBuiltinType(BoolTy,              BuiltinType::Bool);
737  // C99 6.2.5p3.
738  if (LangOpts.CharIsSigned)
739    InitBuiltinType(CharTy,            BuiltinType::Char_S);
740  else
741    InitBuiltinType(CharTy,            BuiltinType::Char_U);
742  // C99 6.2.5p4.
743  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
744  InitBuiltinType(ShortTy,             BuiltinType::Short);
745  InitBuiltinType(IntTy,               BuiltinType::Int);
746  InitBuiltinType(LongTy,              BuiltinType::Long);
747  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
748
749  // C99 6.2.5p6.
750  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
751  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
752  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
753  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
754  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
755
756  // C99 6.2.5p10.
757  InitBuiltinType(FloatTy,             BuiltinType::Float);
758  InitBuiltinType(DoubleTy,            BuiltinType::Double);
759  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
760
761  // GNU extension, 128-bit integers.
762  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
763  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
764
765  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
766    if (TargetInfo::isTypeSigned(Target.getWCharType()))
767      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
768    else  // -fshort-wchar makes wchar_t be unsigned.
769      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
770  } else // C99 (or C++ using -fno-wchar)
771    WCharTy = getFromTargetType(Target.getWCharType());
772
773  WIntTy = getFromTargetType(Target.getWIntType());
774
775  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
776    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
777  else // C99
778    Char16Ty = getFromTargetType(Target.getChar16Type());
779
780  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
781    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
782  else // C99
783    Char32Ty = getFromTargetType(Target.getChar32Type());
784
785  // Placeholder type for type-dependent expressions whose type is
786  // completely unknown. No code should ever check a type against
787  // DependentTy and users should never see it; however, it is here to
788  // help diagnose failures to properly check for type-dependent
789  // expressions.
790  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
791
792  // Placeholder type for functions.
793  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
794
795  // Placeholder type for bound members.
796  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
797
798  // Placeholder type for pseudo-objects.
799  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
800
801  // "any" type; useful for debugger-like clients.
802  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
803
804  // Placeholder type for unbridged ARC casts.
805  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
806
807  // Placeholder type for builtin functions.
808  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
809
810  // C99 6.2.5p11.
811  FloatComplexTy      = getComplexType(FloatTy);
812  DoubleComplexTy     = getComplexType(DoubleTy);
813  LongDoubleComplexTy = getComplexType(LongDoubleTy);
814
815  // Builtin types for 'id', 'Class', and 'SEL'.
816  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
817  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
818  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
819
820  // Builtin type for __objc_yes and __objc_no
821  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
822                       SignedCharTy : BoolTy);
823
824  ObjCConstantStringType = QualType();
825
826  // void * type
827  VoidPtrTy = getPointerType(VoidTy);
828
829  // nullptr type (C++0x 2.14.7)
830  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
831
832  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
833  InitBuiltinType(HalfTy, BuiltinType::Half);
834
835  // Builtin type used to help define __builtin_va_list.
836  VaListTagTy = QualType();
837}
838
839DiagnosticsEngine &ASTContext::getDiagnostics() const {
840  return SourceMgr.getDiagnostics();
841}
842
843AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
844  AttrVec *&Result = DeclAttrs[D];
845  if (!Result) {
846    void *Mem = Allocate(sizeof(AttrVec));
847    Result = new (Mem) AttrVec;
848  }
849
850  return *Result;
851}
852
853/// \brief Erase the attributes corresponding to the given declaration.
854void ASTContext::eraseDeclAttrs(const Decl *D) {
855  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
856  if (Pos != DeclAttrs.end()) {
857    Pos->second->~AttrVec();
858    DeclAttrs.erase(Pos);
859  }
860}
861
862MemberSpecializationInfo *
863ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
864  assert(Var->isStaticDataMember() && "Not a static data member");
865  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
866    = InstantiatedFromStaticDataMember.find(Var);
867  if (Pos == InstantiatedFromStaticDataMember.end())
868    return 0;
869
870  return Pos->second;
871}
872
873void
874ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
875                                                TemplateSpecializationKind TSK,
876                                          SourceLocation PointOfInstantiation) {
877  assert(Inst->isStaticDataMember() && "Not a static data member");
878  assert(Tmpl->isStaticDataMember() && "Not a static data member");
879  assert(!InstantiatedFromStaticDataMember[Inst] &&
880         "Already noted what static data member was instantiated from");
881  InstantiatedFromStaticDataMember[Inst]
882    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
883}
884
885FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
886                                                     const FunctionDecl *FD){
887  assert(FD && "Specialization is 0");
888  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
889    = ClassScopeSpecializationPattern.find(FD);
890  if (Pos == ClassScopeSpecializationPattern.end())
891    return 0;
892
893  return Pos->second;
894}
895
896void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
897                                        FunctionDecl *Pattern) {
898  assert(FD && "Specialization is 0");
899  assert(Pattern && "Class scope specialization pattern is 0");
900  ClassScopeSpecializationPattern[FD] = Pattern;
901}
902
903NamedDecl *
904ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
905  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
906    = InstantiatedFromUsingDecl.find(UUD);
907  if (Pos == InstantiatedFromUsingDecl.end())
908    return 0;
909
910  return Pos->second;
911}
912
913void
914ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
915  assert((isa<UsingDecl>(Pattern) ||
916          isa<UnresolvedUsingValueDecl>(Pattern) ||
917          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
918         "pattern decl is not a using decl");
919  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
920  InstantiatedFromUsingDecl[Inst] = Pattern;
921}
922
923UsingShadowDecl *
924ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
925  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
926    = InstantiatedFromUsingShadowDecl.find(Inst);
927  if (Pos == InstantiatedFromUsingShadowDecl.end())
928    return 0;
929
930  return Pos->second;
931}
932
933void
934ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
935                                               UsingShadowDecl *Pattern) {
936  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
937  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
938}
939
940FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
941  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
942    = InstantiatedFromUnnamedFieldDecl.find(Field);
943  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
944    return 0;
945
946  return Pos->second;
947}
948
949void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
950                                                     FieldDecl *Tmpl) {
951  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
952  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
953  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
954         "Already noted what unnamed field was instantiated from");
955
956  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
957}
958
959bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
960                                    const FieldDecl *LastFD) const {
961  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
962          FD->getBitWidthValue(*this) == 0);
963}
964
965bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
966                                             const FieldDecl *LastFD) const {
967  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
968          FD->getBitWidthValue(*this) == 0 &&
969          LastFD->getBitWidthValue(*this) != 0);
970}
971
972bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
973                                         const FieldDecl *LastFD) const {
974  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
975          FD->getBitWidthValue(*this) &&
976          LastFD->getBitWidthValue(*this));
977}
978
979bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
980                                         const FieldDecl *LastFD) const {
981  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
982          LastFD->getBitWidthValue(*this));
983}
984
985bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
986                                             const FieldDecl *LastFD) const {
987  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
988          FD->getBitWidthValue(*this));
989}
990
991ASTContext::overridden_cxx_method_iterator
992ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
993  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
994    = OverriddenMethods.find(Method);
995  if (Pos == OverriddenMethods.end())
996    return 0;
997
998  return Pos->second.begin();
999}
1000
1001ASTContext::overridden_cxx_method_iterator
1002ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1003  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1004    = OverriddenMethods.find(Method);
1005  if (Pos == OverriddenMethods.end())
1006    return 0;
1007
1008  return Pos->second.end();
1009}
1010
1011unsigned
1012ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1013  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1014    = OverriddenMethods.find(Method);
1015  if (Pos == OverriddenMethods.end())
1016    return 0;
1017
1018  return Pos->second.size();
1019}
1020
1021void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1022                                     const CXXMethodDecl *Overridden) {
1023  OverriddenMethods[Method].push_back(Overridden);
1024}
1025
1026void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1027  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1028  assert(!Import->isFromASTFile() && "Non-local import declaration");
1029  if (!FirstLocalImport) {
1030    FirstLocalImport = Import;
1031    LastLocalImport = Import;
1032    return;
1033  }
1034
1035  LastLocalImport->NextLocalImport = Import;
1036  LastLocalImport = Import;
1037}
1038
1039//===----------------------------------------------------------------------===//
1040//                         Type Sizing and Analysis
1041//===----------------------------------------------------------------------===//
1042
1043/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1044/// scalar floating point type.
1045const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1046  const BuiltinType *BT = T->getAs<BuiltinType>();
1047  assert(BT && "Not a floating point type!");
1048  switch (BT->getKind()) {
1049  default: llvm_unreachable("Not a floating point type!");
1050  case BuiltinType::Half:       return Target->getHalfFormat();
1051  case BuiltinType::Float:      return Target->getFloatFormat();
1052  case BuiltinType::Double:     return Target->getDoubleFormat();
1053  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1054  }
1055}
1056
1057/// getDeclAlign - Return a conservative estimate of the alignment of the
1058/// specified decl.  Note that bitfields do not have a valid alignment, so
1059/// this method will assert on them.
1060/// If @p RefAsPointee, references are treated like their underlying type
1061/// (for alignof), else they're treated like pointers (for CodeGen).
1062CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1063  unsigned Align = Target->getCharWidth();
1064
1065  bool UseAlignAttrOnly = false;
1066  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1067    Align = AlignFromAttr;
1068
1069    // __attribute__((aligned)) can increase or decrease alignment
1070    // *except* on a struct or struct member, where it only increases
1071    // alignment unless 'packed' is also specified.
1072    //
1073    // It is an error for alignas to decrease alignment, so we can
1074    // ignore that possibility;  Sema should diagnose it.
1075    if (isa<FieldDecl>(D)) {
1076      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1077        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1078    } else {
1079      UseAlignAttrOnly = true;
1080    }
1081  }
1082  else if (isa<FieldDecl>(D))
1083      UseAlignAttrOnly =
1084        D->hasAttr<PackedAttr>() ||
1085        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1086
1087  // If we're using the align attribute only, just ignore everything
1088  // else about the declaration and its type.
1089  if (UseAlignAttrOnly) {
1090    // do nothing
1091
1092  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1093    QualType T = VD->getType();
1094    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1095      if (RefAsPointee)
1096        T = RT->getPointeeType();
1097      else
1098        T = getPointerType(RT->getPointeeType());
1099    }
1100    if (!T->isIncompleteType() && !T->isFunctionType()) {
1101      // Adjust alignments of declarations with array type by the
1102      // large-array alignment on the target.
1103      unsigned MinWidth = Target->getLargeArrayMinWidth();
1104      const ArrayType *arrayType;
1105      if (MinWidth && (arrayType = getAsArrayType(T))) {
1106        if (isa<VariableArrayType>(arrayType))
1107          Align = std::max(Align, Target->getLargeArrayAlign());
1108        else if (isa<ConstantArrayType>(arrayType) &&
1109                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1110          Align = std::max(Align, Target->getLargeArrayAlign());
1111
1112        // Walk through any array types while we're at it.
1113        T = getBaseElementType(arrayType);
1114      }
1115      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1116    }
1117
1118    // Fields can be subject to extra alignment constraints, like if
1119    // the field is packed, the struct is packed, or the struct has a
1120    // a max-field-alignment constraint (#pragma pack).  So calculate
1121    // the actual alignment of the field within the struct, and then
1122    // (as we're expected to) constrain that by the alignment of the type.
1123    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1124      // So calculate the alignment of the field.
1125      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1126
1127      // Start with the record's overall alignment.
1128      unsigned fieldAlign = toBits(layout.getAlignment());
1129
1130      // Use the GCD of that and the offset within the record.
1131      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1132      if (offset > 0) {
1133        // Alignment is always a power of 2, so the GCD will be a power of 2,
1134        // which means we get to do this crazy thing instead of Euclid's.
1135        uint64_t lowBitOfOffset = offset & (~offset + 1);
1136        if (lowBitOfOffset < fieldAlign)
1137          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1138      }
1139
1140      Align = std::min(Align, fieldAlign);
1141    }
1142  }
1143
1144  return toCharUnitsFromBits(Align);
1145}
1146
1147// getTypeInfoDataSizeInChars - Return the size of a type, in
1148// chars. If the type is a record, its data size is returned.  This is
1149// the size of the memcpy that's performed when assigning this type
1150// using a trivial copy/move assignment operator.
1151std::pair<CharUnits, CharUnits>
1152ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1153  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1154
1155  // In C++, objects can sometimes be allocated into the tail padding
1156  // of a base-class subobject.  We decide whether that's possible
1157  // during class layout, so here we can just trust the layout results.
1158  if (getLangOpts().CPlusPlus) {
1159    if (const RecordType *RT = T->getAs<RecordType>()) {
1160      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1161      sizeAndAlign.first = layout.getDataSize();
1162    }
1163  }
1164
1165  return sizeAndAlign;
1166}
1167
1168std::pair<CharUnits, CharUnits>
1169ASTContext::getTypeInfoInChars(const Type *T) const {
1170  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1171  return std::make_pair(toCharUnitsFromBits(Info.first),
1172                        toCharUnitsFromBits(Info.second));
1173}
1174
1175std::pair<CharUnits, CharUnits>
1176ASTContext::getTypeInfoInChars(QualType T) const {
1177  return getTypeInfoInChars(T.getTypePtr());
1178}
1179
1180std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1181  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1182  if (it != MemoizedTypeInfo.end())
1183    return it->second;
1184
1185  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1186  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1187  return Info;
1188}
1189
1190/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1191/// method does not work on incomplete types.
1192///
1193/// FIXME: Pointers into different addr spaces could have different sizes and
1194/// alignment requirements: getPointerInfo should take an AddrSpace, this
1195/// should take a QualType, &c.
1196std::pair<uint64_t, unsigned>
1197ASTContext::getTypeInfoImpl(const Type *T) const {
1198  uint64_t Width=0;
1199  unsigned Align=8;
1200  switch (T->getTypeClass()) {
1201#define TYPE(Class, Base)
1202#define ABSTRACT_TYPE(Class, Base)
1203#define NON_CANONICAL_TYPE(Class, Base)
1204#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1205#include "clang/AST/TypeNodes.def"
1206    llvm_unreachable("Should not see dependent types");
1207
1208  case Type::FunctionNoProto:
1209  case Type::FunctionProto:
1210    // GCC extension: alignof(function) = 32 bits
1211    Width = 0;
1212    Align = 32;
1213    break;
1214
1215  case Type::IncompleteArray:
1216  case Type::VariableArray:
1217    Width = 0;
1218    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1219    break;
1220
1221  case Type::ConstantArray: {
1222    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1223
1224    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1225    uint64_t Size = CAT->getSize().getZExtValue();
1226    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1227           "Overflow in array type bit size evaluation");
1228    Width = EltInfo.first*Size;
1229    Align = EltInfo.second;
1230    Width = llvm::RoundUpToAlignment(Width, Align);
1231    break;
1232  }
1233  case Type::ExtVector:
1234  case Type::Vector: {
1235    const VectorType *VT = cast<VectorType>(T);
1236    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1237    Width = EltInfo.first*VT->getNumElements();
1238    Align = Width;
1239    // If the alignment is not a power of 2, round up to the next power of 2.
1240    // This happens for non-power-of-2 length vectors.
1241    if (Align & (Align-1)) {
1242      Align = llvm::NextPowerOf2(Align);
1243      Width = llvm::RoundUpToAlignment(Width, Align);
1244    }
1245    // Adjust the alignment based on the target max.
1246    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1247    if (TargetVectorAlign && TargetVectorAlign < Align)
1248      Align = TargetVectorAlign;
1249    break;
1250  }
1251
1252  case Type::Builtin:
1253    switch (cast<BuiltinType>(T)->getKind()) {
1254    default: llvm_unreachable("Unknown builtin type!");
1255    case BuiltinType::Void:
1256      // GCC extension: alignof(void) = 8 bits.
1257      Width = 0;
1258      Align = 8;
1259      break;
1260
1261    case BuiltinType::Bool:
1262      Width = Target->getBoolWidth();
1263      Align = Target->getBoolAlign();
1264      break;
1265    case BuiltinType::Char_S:
1266    case BuiltinType::Char_U:
1267    case BuiltinType::UChar:
1268    case BuiltinType::SChar:
1269      Width = Target->getCharWidth();
1270      Align = Target->getCharAlign();
1271      break;
1272    case BuiltinType::WChar_S:
1273    case BuiltinType::WChar_U:
1274      Width = Target->getWCharWidth();
1275      Align = Target->getWCharAlign();
1276      break;
1277    case BuiltinType::Char16:
1278      Width = Target->getChar16Width();
1279      Align = Target->getChar16Align();
1280      break;
1281    case BuiltinType::Char32:
1282      Width = Target->getChar32Width();
1283      Align = Target->getChar32Align();
1284      break;
1285    case BuiltinType::UShort:
1286    case BuiltinType::Short:
1287      Width = Target->getShortWidth();
1288      Align = Target->getShortAlign();
1289      break;
1290    case BuiltinType::UInt:
1291    case BuiltinType::Int:
1292      Width = Target->getIntWidth();
1293      Align = Target->getIntAlign();
1294      break;
1295    case BuiltinType::ULong:
1296    case BuiltinType::Long:
1297      Width = Target->getLongWidth();
1298      Align = Target->getLongAlign();
1299      break;
1300    case BuiltinType::ULongLong:
1301    case BuiltinType::LongLong:
1302      Width = Target->getLongLongWidth();
1303      Align = Target->getLongLongAlign();
1304      break;
1305    case BuiltinType::Int128:
1306    case BuiltinType::UInt128:
1307      Width = 128;
1308      Align = 128; // int128_t is 128-bit aligned on all targets.
1309      break;
1310    case BuiltinType::Half:
1311      Width = Target->getHalfWidth();
1312      Align = Target->getHalfAlign();
1313      break;
1314    case BuiltinType::Float:
1315      Width = Target->getFloatWidth();
1316      Align = Target->getFloatAlign();
1317      break;
1318    case BuiltinType::Double:
1319      Width = Target->getDoubleWidth();
1320      Align = Target->getDoubleAlign();
1321      break;
1322    case BuiltinType::LongDouble:
1323      Width = Target->getLongDoubleWidth();
1324      Align = Target->getLongDoubleAlign();
1325      break;
1326    case BuiltinType::NullPtr:
1327      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1328      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1329      break;
1330    case BuiltinType::ObjCId:
1331    case BuiltinType::ObjCClass:
1332    case BuiltinType::ObjCSel:
1333      Width = Target->getPointerWidth(0);
1334      Align = Target->getPointerAlign(0);
1335      break;
1336    }
1337    break;
1338  case Type::ObjCObjectPointer:
1339    Width = Target->getPointerWidth(0);
1340    Align = Target->getPointerAlign(0);
1341    break;
1342  case Type::BlockPointer: {
1343    unsigned AS = getTargetAddressSpace(
1344        cast<BlockPointerType>(T)->getPointeeType());
1345    Width = Target->getPointerWidth(AS);
1346    Align = Target->getPointerAlign(AS);
1347    break;
1348  }
1349  case Type::LValueReference:
1350  case Type::RValueReference: {
1351    // alignof and sizeof should never enter this code path here, so we go
1352    // the pointer route.
1353    unsigned AS = getTargetAddressSpace(
1354        cast<ReferenceType>(T)->getPointeeType());
1355    Width = Target->getPointerWidth(AS);
1356    Align = Target->getPointerAlign(AS);
1357    break;
1358  }
1359  case Type::Pointer: {
1360    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1361    Width = Target->getPointerWidth(AS);
1362    Align = Target->getPointerAlign(AS);
1363    break;
1364  }
1365  case Type::MemberPointer: {
1366    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1367    std::pair<uint64_t, unsigned> PtrDiffInfo =
1368      getTypeInfo(getPointerDiffType());
1369    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1370    Align = PtrDiffInfo.second;
1371    break;
1372  }
1373  case Type::Complex: {
1374    // Complex types have the same alignment as their elements, but twice the
1375    // size.
1376    std::pair<uint64_t, unsigned> EltInfo =
1377      getTypeInfo(cast<ComplexType>(T)->getElementType());
1378    Width = EltInfo.first*2;
1379    Align = EltInfo.second;
1380    break;
1381  }
1382  case Type::ObjCObject:
1383    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1384  case Type::ObjCInterface: {
1385    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1386    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1387    Width = toBits(Layout.getSize());
1388    Align = toBits(Layout.getAlignment());
1389    break;
1390  }
1391  case Type::Record:
1392  case Type::Enum: {
1393    const TagType *TT = cast<TagType>(T);
1394
1395    if (TT->getDecl()->isInvalidDecl()) {
1396      Width = 8;
1397      Align = 8;
1398      break;
1399    }
1400
1401    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1402      return getTypeInfo(ET->getDecl()->getIntegerType());
1403
1404    const RecordType *RT = cast<RecordType>(TT);
1405    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1406    Width = toBits(Layout.getSize());
1407    Align = toBits(Layout.getAlignment());
1408    break;
1409  }
1410
1411  case Type::SubstTemplateTypeParm:
1412    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1413                       getReplacementType().getTypePtr());
1414
1415  case Type::Auto: {
1416    const AutoType *A = cast<AutoType>(T);
1417    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1418    return getTypeInfo(A->getDeducedType().getTypePtr());
1419  }
1420
1421  case Type::Paren:
1422    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1423
1424  case Type::Typedef: {
1425    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1426    std::pair<uint64_t, unsigned> Info
1427      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1428    // If the typedef has an aligned attribute on it, it overrides any computed
1429    // alignment we have.  This violates the GCC documentation (which says that
1430    // attribute(aligned) can only round up) but matches its implementation.
1431    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1432      Align = AttrAlign;
1433    else
1434      Align = Info.second;
1435    Width = Info.first;
1436    break;
1437  }
1438
1439  case Type::TypeOfExpr:
1440    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1441                         .getTypePtr());
1442
1443  case Type::TypeOf:
1444    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1445
1446  case Type::Decltype:
1447    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1448                        .getTypePtr());
1449
1450  case Type::UnaryTransform:
1451    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1452
1453  case Type::Elaborated:
1454    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1455
1456  case Type::Attributed:
1457    return getTypeInfo(
1458                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1459
1460  case Type::TemplateSpecialization: {
1461    assert(getCanonicalType(T) != T &&
1462           "Cannot request the size of a dependent type");
1463    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1464    // A type alias template specialization may refer to a typedef with the
1465    // aligned attribute on it.
1466    if (TST->isTypeAlias())
1467      return getTypeInfo(TST->getAliasedType().getTypePtr());
1468    else
1469      return getTypeInfo(getCanonicalType(T));
1470  }
1471
1472  case Type::Atomic: {
1473    std::pair<uint64_t, unsigned> Info
1474      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1475    Width = Info.first;
1476    Align = Info.second;
1477    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1478        llvm::isPowerOf2_64(Width)) {
1479      // We can potentially perform lock-free atomic operations for this
1480      // type; promote the alignment appropriately.
1481      // FIXME: We could potentially promote the width here as well...
1482      // is that worthwhile?  (Non-struct atomic types generally have
1483      // power-of-two size anyway, but structs might not.  Requires a bit
1484      // of implementation work to make sure we zero out the extra bits.)
1485      Align = static_cast<unsigned>(Width);
1486    }
1487  }
1488
1489  }
1490
1491  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1492  return std::make_pair(Width, Align);
1493}
1494
1495/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1496CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1497  return CharUnits::fromQuantity(BitSize / getCharWidth());
1498}
1499
1500/// toBits - Convert a size in characters to a size in characters.
1501int64_t ASTContext::toBits(CharUnits CharSize) const {
1502  return CharSize.getQuantity() * getCharWidth();
1503}
1504
1505/// getTypeSizeInChars - Return the size of the specified type, in characters.
1506/// This method does not work on incomplete types.
1507CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1508  return toCharUnitsFromBits(getTypeSize(T));
1509}
1510CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1511  return toCharUnitsFromBits(getTypeSize(T));
1512}
1513
1514/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1515/// characters. This method does not work on incomplete types.
1516CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1517  return toCharUnitsFromBits(getTypeAlign(T));
1518}
1519CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1520  return toCharUnitsFromBits(getTypeAlign(T));
1521}
1522
1523/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1524/// type for the current target in bits.  This can be different than the ABI
1525/// alignment in cases where it is beneficial for performance to overalign
1526/// a data type.
1527unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1528  unsigned ABIAlign = getTypeAlign(T);
1529
1530  // Double and long long should be naturally aligned if possible.
1531  if (const ComplexType* CT = T->getAs<ComplexType>())
1532    T = CT->getElementType().getTypePtr();
1533  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1534      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1535      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1536    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1537
1538  return ABIAlign;
1539}
1540
1541/// DeepCollectObjCIvars -
1542/// This routine first collects all declared, but not synthesized, ivars in
1543/// super class and then collects all ivars, including those synthesized for
1544/// current class. This routine is used for implementation of current class
1545/// when all ivars, declared and synthesized are known.
1546///
1547void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1548                                      bool leafClass,
1549                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1550  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1551    DeepCollectObjCIvars(SuperClass, false, Ivars);
1552  if (!leafClass) {
1553    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1554         E = OI->ivar_end(); I != E; ++I)
1555      Ivars.push_back(*I);
1556  } else {
1557    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1558    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1559         Iv= Iv->getNextIvar())
1560      Ivars.push_back(Iv);
1561  }
1562}
1563
1564/// CollectInheritedProtocols - Collect all protocols in current class and
1565/// those inherited by it.
1566void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1567                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1568  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1569    // We can use protocol_iterator here instead of
1570    // all_referenced_protocol_iterator since we are walking all categories.
1571    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1572         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1573      ObjCProtocolDecl *Proto = (*P);
1574      Protocols.insert(Proto->getCanonicalDecl());
1575      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1576           PE = Proto->protocol_end(); P != PE; ++P) {
1577        Protocols.insert((*P)->getCanonicalDecl());
1578        CollectInheritedProtocols(*P, Protocols);
1579      }
1580    }
1581
1582    // Categories of this Interface.
1583    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1584         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1585      CollectInheritedProtocols(CDeclChain, Protocols);
1586    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1587      while (SD) {
1588        CollectInheritedProtocols(SD, Protocols);
1589        SD = SD->getSuperClass();
1590      }
1591  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1592    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1593         PE = OC->protocol_end(); P != PE; ++P) {
1594      ObjCProtocolDecl *Proto = (*P);
1595      Protocols.insert(Proto->getCanonicalDecl());
1596      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1597           PE = Proto->protocol_end(); P != PE; ++P)
1598        CollectInheritedProtocols(*P, Protocols);
1599    }
1600  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1601    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1602         PE = OP->protocol_end(); P != PE; ++P) {
1603      ObjCProtocolDecl *Proto = (*P);
1604      Protocols.insert(Proto->getCanonicalDecl());
1605      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1606           PE = Proto->protocol_end(); P != PE; ++P)
1607        CollectInheritedProtocols(*P, Protocols);
1608    }
1609  }
1610}
1611
1612unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1613  unsigned count = 0;
1614  // Count ivars declared in class extension.
1615  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1616       CDecl = CDecl->getNextClassExtension())
1617    count += CDecl->ivar_size();
1618
1619  // Count ivar defined in this class's implementation.  This
1620  // includes synthesized ivars.
1621  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1622    count += ImplDecl->ivar_size();
1623
1624  return count;
1625}
1626
1627bool ASTContext::isSentinelNullExpr(const Expr *E) {
1628  if (!E)
1629    return false;
1630
1631  // nullptr_t is always treated as null.
1632  if (E->getType()->isNullPtrType()) return true;
1633
1634  if (E->getType()->isAnyPointerType() &&
1635      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1636                                                Expr::NPC_ValueDependentIsNull))
1637    return true;
1638
1639  // Unfortunately, __null has type 'int'.
1640  if (isa<GNUNullExpr>(E)) return true;
1641
1642  return false;
1643}
1644
1645/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1646ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1647  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1648    I = ObjCImpls.find(D);
1649  if (I != ObjCImpls.end())
1650    return cast<ObjCImplementationDecl>(I->second);
1651  return 0;
1652}
1653/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1654ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1655  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1656    I = ObjCImpls.find(D);
1657  if (I != ObjCImpls.end())
1658    return cast<ObjCCategoryImplDecl>(I->second);
1659  return 0;
1660}
1661
1662/// \brief Set the implementation of ObjCInterfaceDecl.
1663void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1664                           ObjCImplementationDecl *ImplD) {
1665  assert(IFaceD && ImplD && "Passed null params");
1666  ObjCImpls[IFaceD] = ImplD;
1667}
1668/// \brief Set the implementation of ObjCCategoryDecl.
1669void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1670                           ObjCCategoryImplDecl *ImplD) {
1671  assert(CatD && ImplD && "Passed null params");
1672  ObjCImpls[CatD] = ImplD;
1673}
1674
1675ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1676  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1677    return ID;
1678  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1679    return CD->getClassInterface();
1680  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1681    return IMD->getClassInterface();
1682
1683  return 0;
1684}
1685
1686/// \brief Get the copy initialization expression of VarDecl,or NULL if
1687/// none exists.
1688Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1689  assert(VD && "Passed null params");
1690  assert(VD->hasAttr<BlocksAttr>() &&
1691         "getBlockVarCopyInits - not __block var");
1692  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1693    I = BlockVarCopyInits.find(VD);
1694  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1695}
1696
1697/// \brief Set the copy inialization expression of a block var decl.
1698void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1699  assert(VD && Init && "Passed null params");
1700  assert(VD->hasAttr<BlocksAttr>() &&
1701         "setBlockVarCopyInits - not __block var");
1702  BlockVarCopyInits[VD] = Init;
1703}
1704
1705TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1706                                                 unsigned DataSize) const {
1707  if (!DataSize)
1708    DataSize = TypeLoc::getFullDataSizeForType(T);
1709  else
1710    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1711           "incorrect data size provided to CreateTypeSourceInfo!");
1712
1713  TypeSourceInfo *TInfo =
1714    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1715  new (TInfo) TypeSourceInfo(T);
1716  return TInfo;
1717}
1718
1719TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1720                                                     SourceLocation L) const {
1721  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1722  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1723  return DI;
1724}
1725
1726const ASTRecordLayout &
1727ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1728  return getObjCLayout(D, 0);
1729}
1730
1731const ASTRecordLayout &
1732ASTContext::getASTObjCImplementationLayout(
1733                                        const ObjCImplementationDecl *D) const {
1734  return getObjCLayout(D->getClassInterface(), D);
1735}
1736
1737//===----------------------------------------------------------------------===//
1738//                   Type creation/memoization methods
1739//===----------------------------------------------------------------------===//
1740
1741QualType
1742ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1743  unsigned fastQuals = quals.getFastQualifiers();
1744  quals.removeFastQualifiers();
1745
1746  // Check if we've already instantiated this type.
1747  llvm::FoldingSetNodeID ID;
1748  ExtQuals::Profile(ID, baseType, quals);
1749  void *insertPos = 0;
1750  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1751    assert(eq->getQualifiers() == quals);
1752    return QualType(eq, fastQuals);
1753  }
1754
1755  // If the base type is not canonical, make the appropriate canonical type.
1756  QualType canon;
1757  if (!baseType->isCanonicalUnqualified()) {
1758    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1759    canonSplit.Quals.addConsistentQualifiers(quals);
1760    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1761
1762    // Re-find the insert position.
1763    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1764  }
1765
1766  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1767  ExtQualNodes.InsertNode(eq, insertPos);
1768  return QualType(eq, fastQuals);
1769}
1770
1771QualType
1772ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1773  QualType CanT = getCanonicalType(T);
1774  if (CanT.getAddressSpace() == AddressSpace)
1775    return T;
1776
1777  // If we are composing extended qualifiers together, merge together
1778  // into one ExtQuals node.
1779  QualifierCollector Quals;
1780  const Type *TypeNode = Quals.strip(T);
1781
1782  // If this type already has an address space specified, it cannot get
1783  // another one.
1784  assert(!Quals.hasAddressSpace() &&
1785         "Type cannot be in multiple addr spaces!");
1786  Quals.addAddressSpace(AddressSpace);
1787
1788  return getExtQualType(TypeNode, Quals);
1789}
1790
1791QualType ASTContext::getObjCGCQualType(QualType T,
1792                                       Qualifiers::GC GCAttr) const {
1793  QualType CanT = getCanonicalType(T);
1794  if (CanT.getObjCGCAttr() == GCAttr)
1795    return T;
1796
1797  if (const PointerType *ptr = T->getAs<PointerType>()) {
1798    QualType Pointee = ptr->getPointeeType();
1799    if (Pointee->isAnyPointerType()) {
1800      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1801      return getPointerType(ResultType);
1802    }
1803  }
1804
1805  // If we are composing extended qualifiers together, merge together
1806  // into one ExtQuals node.
1807  QualifierCollector Quals;
1808  const Type *TypeNode = Quals.strip(T);
1809
1810  // If this type already has an ObjCGC specified, it cannot get
1811  // another one.
1812  assert(!Quals.hasObjCGCAttr() &&
1813         "Type cannot have multiple ObjCGCs!");
1814  Quals.addObjCGCAttr(GCAttr);
1815
1816  return getExtQualType(TypeNode, Quals);
1817}
1818
1819const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1820                                                   FunctionType::ExtInfo Info) {
1821  if (T->getExtInfo() == Info)
1822    return T;
1823
1824  QualType Result;
1825  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1826    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1827  } else {
1828    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1829    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1830    EPI.ExtInfo = Info;
1831    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1832                             FPT->getNumArgs(), EPI);
1833  }
1834
1835  return cast<FunctionType>(Result.getTypePtr());
1836}
1837
1838/// getComplexType - Return the uniqued reference to the type for a complex
1839/// number with the specified element type.
1840QualType ASTContext::getComplexType(QualType T) const {
1841  // Unique pointers, to guarantee there is only one pointer of a particular
1842  // structure.
1843  llvm::FoldingSetNodeID ID;
1844  ComplexType::Profile(ID, T);
1845
1846  void *InsertPos = 0;
1847  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1848    return QualType(CT, 0);
1849
1850  // If the pointee type isn't canonical, this won't be a canonical type either,
1851  // so fill in the canonical type field.
1852  QualType Canonical;
1853  if (!T.isCanonical()) {
1854    Canonical = getComplexType(getCanonicalType(T));
1855
1856    // Get the new insert position for the node we care about.
1857    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1858    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1859  }
1860  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1861  Types.push_back(New);
1862  ComplexTypes.InsertNode(New, InsertPos);
1863  return QualType(New, 0);
1864}
1865
1866/// getPointerType - Return the uniqued reference to the type for a pointer to
1867/// the specified type.
1868QualType ASTContext::getPointerType(QualType T) const {
1869  // Unique pointers, to guarantee there is only one pointer of a particular
1870  // structure.
1871  llvm::FoldingSetNodeID ID;
1872  PointerType::Profile(ID, T);
1873
1874  void *InsertPos = 0;
1875  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1876    return QualType(PT, 0);
1877
1878  // If the pointee type isn't canonical, this won't be a canonical type either,
1879  // so fill in the canonical type field.
1880  QualType Canonical;
1881  if (!T.isCanonical()) {
1882    Canonical = getPointerType(getCanonicalType(T));
1883
1884    // Get the new insert position for the node we care about.
1885    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1886    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1887  }
1888  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1889  Types.push_back(New);
1890  PointerTypes.InsertNode(New, InsertPos);
1891  return QualType(New, 0);
1892}
1893
1894/// getBlockPointerType - Return the uniqued reference to the type for
1895/// a pointer to the specified block.
1896QualType ASTContext::getBlockPointerType(QualType T) const {
1897  assert(T->isFunctionType() && "block of function types only");
1898  // Unique pointers, to guarantee there is only one block of a particular
1899  // structure.
1900  llvm::FoldingSetNodeID ID;
1901  BlockPointerType::Profile(ID, T);
1902
1903  void *InsertPos = 0;
1904  if (BlockPointerType *PT =
1905        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1906    return QualType(PT, 0);
1907
1908  // If the block pointee type isn't canonical, this won't be a canonical
1909  // type either so fill in the canonical type field.
1910  QualType Canonical;
1911  if (!T.isCanonical()) {
1912    Canonical = getBlockPointerType(getCanonicalType(T));
1913
1914    // Get the new insert position for the node we care about.
1915    BlockPointerType *NewIP =
1916      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1917    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1918  }
1919  BlockPointerType *New
1920    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1921  Types.push_back(New);
1922  BlockPointerTypes.InsertNode(New, InsertPos);
1923  return QualType(New, 0);
1924}
1925
1926/// getLValueReferenceType - Return the uniqued reference to the type for an
1927/// lvalue reference to the specified type.
1928QualType
1929ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1930  assert(getCanonicalType(T) != OverloadTy &&
1931         "Unresolved overloaded function type");
1932
1933  // Unique pointers, to guarantee there is only one pointer of a particular
1934  // structure.
1935  llvm::FoldingSetNodeID ID;
1936  ReferenceType::Profile(ID, T, SpelledAsLValue);
1937
1938  void *InsertPos = 0;
1939  if (LValueReferenceType *RT =
1940        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1941    return QualType(RT, 0);
1942
1943  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1944
1945  // If the referencee type isn't canonical, this won't be a canonical type
1946  // either, so fill in the canonical type field.
1947  QualType Canonical;
1948  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1949    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1950    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1951
1952    // Get the new insert position for the node we care about.
1953    LValueReferenceType *NewIP =
1954      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1955    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1956  }
1957
1958  LValueReferenceType *New
1959    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1960                                                     SpelledAsLValue);
1961  Types.push_back(New);
1962  LValueReferenceTypes.InsertNode(New, InsertPos);
1963
1964  return QualType(New, 0);
1965}
1966
1967/// getRValueReferenceType - Return the uniqued reference to the type for an
1968/// rvalue reference to the specified type.
1969QualType ASTContext::getRValueReferenceType(QualType T) const {
1970  // Unique pointers, to guarantee there is only one pointer of a particular
1971  // structure.
1972  llvm::FoldingSetNodeID ID;
1973  ReferenceType::Profile(ID, T, false);
1974
1975  void *InsertPos = 0;
1976  if (RValueReferenceType *RT =
1977        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1978    return QualType(RT, 0);
1979
1980  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1981
1982  // If the referencee type isn't canonical, this won't be a canonical type
1983  // either, so fill in the canonical type field.
1984  QualType Canonical;
1985  if (InnerRef || !T.isCanonical()) {
1986    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1987    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1988
1989    // Get the new insert position for the node we care about.
1990    RValueReferenceType *NewIP =
1991      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1992    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1993  }
1994
1995  RValueReferenceType *New
1996    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1997  Types.push_back(New);
1998  RValueReferenceTypes.InsertNode(New, InsertPos);
1999  return QualType(New, 0);
2000}
2001
2002/// getMemberPointerType - Return the uniqued reference to the type for a
2003/// member pointer to the specified type, in the specified class.
2004QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2005  // Unique pointers, to guarantee there is only one pointer of a particular
2006  // structure.
2007  llvm::FoldingSetNodeID ID;
2008  MemberPointerType::Profile(ID, T, Cls);
2009
2010  void *InsertPos = 0;
2011  if (MemberPointerType *PT =
2012      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2013    return QualType(PT, 0);
2014
2015  // If the pointee or class type isn't canonical, this won't be a canonical
2016  // type either, so fill in the canonical type field.
2017  QualType Canonical;
2018  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2019    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2020
2021    // Get the new insert position for the node we care about.
2022    MemberPointerType *NewIP =
2023      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2024    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2025  }
2026  MemberPointerType *New
2027    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2028  Types.push_back(New);
2029  MemberPointerTypes.InsertNode(New, InsertPos);
2030  return QualType(New, 0);
2031}
2032
2033/// getConstantArrayType - Return the unique reference to the type for an
2034/// array of the specified element type.
2035QualType ASTContext::getConstantArrayType(QualType EltTy,
2036                                          const llvm::APInt &ArySizeIn,
2037                                          ArrayType::ArraySizeModifier ASM,
2038                                          unsigned IndexTypeQuals) const {
2039  assert((EltTy->isDependentType() ||
2040          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2041         "Constant array of VLAs is illegal!");
2042
2043  // Convert the array size into a canonical width matching the pointer size for
2044  // the target.
2045  llvm::APInt ArySize(ArySizeIn);
2046  ArySize =
2047    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2048
2049  llvm::FoldingSetNodeID ID;
2050  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2051
2052  void *InsertPos = 0;
2053  if (ConstantArrayType *ATP =
2054      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2055    return QualType(ATP, 0);
2056
2057  // If the element type isn't canonical or has qualifiers, this won't
2058  // be a canonical type either, so fill in the canonical type field.
2059  QualType Canon;
2060  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2061    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2062    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2063                                 ASM, IndexTypeQuals);
2064    Canon = getQualifiedType(Canon, canonSplit.Quals);
2065
2066    // Get the new insert position for the node we care about.
2067    ConstantArrayType *NewIP =
2068      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2069    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2070  }
2071
2072  ConstantArrayType *New = new(*this,TypeAlignment)
2073    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2074  ConstantArrayTypes.InsertNode(New, InsertPos);
2075  Types.push_back(New);
2076  return QualType(New, 0);
2077}
2078
2079/// getVariableArrayDecayedType - Turns the given type, which may be
2080/// variably-modified, into the corresponding type with all the known
2081/// sizes replaced with [*].
2082QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2083  // Vastly most common case.
2084  if (!type->isVariablyModifiedType()) return type;
2085
2086  QualType result;
2087
2088  SplitQualType split = type.getSplitDesugaredType();
2089  const Type *ty = split.Ty;
2090  switch (ty->getTypeClass()) {
2091#define TYPE(Class, Base)
2092#define ABSTRACT_TYPE(Class, Base)
2093#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2094#include "clang/AST/TypeNodes.def"
2095    llvm_unreachable("didn't desugar past all non-canonical types?");
2096
2097  // These types should never be variably-modified.
2098  case Type::Builtin:
2099  case Type::Complex:
2100  case Type::Vector:
2101  case Type::ExtVector:
2102  case Type::DependentSizedExtVector:
2103  case Type::ObjCObject:
2104  case Type::ObjCInterface:
2105  case Type::ObjCObjectPointer:
2106  case Type::Record:
2107  case Type::Enum:
2108  case Type::UnresolvedUsing:
2109  case Type::TypeOfExpr:
2110  case Type::TypeOf:
2111  case Type::Decltype:
2112  case Type::UnaryTransform:
2113  case Type::DependentName:
2114  case Type::InjectedClassName:
2115  case Type::TemplateSpecialization:
2116  case Type::DependentTemplateSpecialization:
2117  case Type::TemplateTypeParm:
2118  case Type::SubstTemplateTypeParmPack:
2119  case Type::Auto:
2120  case Type::PackExpansion:
2121    llvm_unreachable("type should never be variably-modified");
2122
2123  // These types can be variably-modified but should never need to
2124  // further decay.
2125  case Type::FunctionNoProto:
2126  case Type::FunctionProto:
2127  case Type::BlockPointer:
2128  case Type::MemberPointer:
2129    return type;
2130
2131  // These types can be variably-modified.  All these modifications
2132  // preserve structure except as noted by comments.
2133  // TODO: if we ever care about optimizing VLAs, there are no-op
2134  // optimizations available here.
2135  case Type::Pointer:
2136    result = getPointerType(getVariableArrayDecayedType(
2137                              cast<PointerType>(ty)->getPointeeType()));
2138    break;
2139
2140  case Type::LValueReference: {
2141    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2142    result = getLValueReferenceType(
2143                 getVariableArrayDecayedType(lv->getPointeeType()),
2144                                    lv->isSpelledAsLValue());
2145    break;
2146  }
2147
2148  case Type::RValueReference: {
2149    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2150    result = getRValueReferenceType(
2151                 getVariableArrayDecayedType(lv->getPointeeType()));
2152    break;
2153  }
2154
2155  case Type::Atomic: {
2156    const AtomicType *at = cast<AtomicType>(ty);
2157    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2158    break;
2159  }
2160
2161  case Type::ConstantArray: {
2162    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2163    result = getConstantArrayType(
2164                 getVariableArrayDecayedType(cat->getElementType()),
2165                                  cat->getSize(),
2166                                  cat->getSizeModifier(),
2167                                  cat->getIndexTypeCVRQualifiers());
2168    break;
2169  }
2170
2171  case Type::DependentSizedArray: {
2172    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2173    result = getDependentSizedArrayType(
2174                 getVariableArrayDecayedType(dat->getElementType()),
2175                                        dat->getSizeExpr(),
2176                                        dat->getSizeModifier(),
2177                                        dat->getIndexTypeCVRQualifiers(),
2178                                        dat->getBracketsRange());
2179    break;
2180  }
2181
2182  // Turn incomplete types into [*] types.
2183  case Type::IncompleteArray: {
2184    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2185    result = getVariableArrayType(
2186                 getVariableArrayDecayedType(iat->getElementType()),
2187                                  /*size*/ 0,
2188                                  ArrayType::Normal,
2189                                  iat->getIndexTypeCVRQualifiers(),
2190                                  SourceRange());
2191    break;
2192  }
2193
2194  // Turn VLA types into [*] types.
2195  case Type::VariableArray: {
2196    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2197    result = getVariableArrayType(
2198                 getVariableArrayDecayedType(vat->getElementType()),
2199                                  /*size*/ 0,
2200                                  ArrayType::Star,
2201                                  vat->getIndexTypeCVRQualifiers(),
2202                                  vat->getBracketsRange());
2203    break;
2204  }
2205  }
2206
2207  // Apply the top-level qualifiers from the original.
2208  return getQualifiedType(result, split.Quals);
2209}
2210
2211/// getVariableArrayType - Returns a non-unique reference to the type for a
2212/// variable array of the specified element type.
2213QualType ASTContext::getVariableArrayType(QualType EltTy,
2214                                          Expr *NumElts,
2215                                          ArrayType::ArraySizeModifier ASM,
2216                                          unsigned IndexTypeQuals,
2217                                          SourceRange Brackets) const {
2218  // Since we don't unique expressions, it isn't possible to unique VLA's
2219  // that have an expression provided for their size.
2220  QualType Canon;
2221
2222  // Be sure to pull qualifiers off the element type.
2223  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2224    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2225    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2226                                 IndexTypeQuals, Brackets);
2227    Canon = getQualifiedType(Canon, canonSplit.Quals);
2228  }
2229
2230  VariableArrayType *New = new(*this, TypeAlignment)
2231    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2232
2233  VariableArrayTypes.push_back(New);
2234  Types.push_back(New);
2235  return QualType(New, 0);
2236}
2237
2238/// getDependentSizedArrayType - Returns a non-unique reference to
2239/// the type for a dependently-sized array of the specified element
2240/// type.
2241QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2242                                                Expr *numElements,
2243                                                ArrayType::ArraySizeModifier ASM,
2244                                                unsigned elementTypeQuals,
2245                                                SourceRange brackets) const {
2246  assert((!numElements || numElements->isTypeDependent() ||
2247          numElements->isValueDependent()) &&
2248         "Size must be type- or value-dependent!");
2249
2250  // Dependently-sized array types that do not have a specified number
2251  // of elements will have their sizes deduced from a dependent
2252  // initializer.  We do no canonicalization here at all, which is okay
2253  // because they can't be used in most locations.
2254  if (!numElements) {
2255    DependentSizedArrayType *newType
2256      = new (*this, TypeAlignment)
2257          DependentSizedArrayType(*this, elementType, QualType(),
2258                                  numElements, ASM, elementTypeQuals,
2259                                  brackets);
2260    Types.push_back(newType);
2261    return QualType(newType, 0);
2262  }
2263
2264  // Otherwise, we actually build a new type every time, but we
2265  // also build a canonical type.
2266
2267  SplitQualType canonElementType = getCanonicalType(elementType).split();
2268
2269  void *insertPos = 0;
2270  llvm::FoldingSetNodeID ID;
2271  DependentSizedArrayType::Profile(ID, *this,
2272                                   QualType(canonElementType.Ty, 0),
2273                                   ASM, elementTypeQuals, numElements);
2274
2275  // Look for an existing type with these properties.
2276  DependentSizedArrayType *canonTy =
2277    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2278
2279  // If we don't have one, build one.
2280  if (!canonTy) {
2281    canonTy = new (*this, TypeAlignment)
2282      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2283                              QualType(), numElements, ASM, elementTypeQuals,
2284                              brackets);
2285    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2286    Types.push_back(canonTy);
2287  }
2288
2289  // Apply qualifiers from the element type to the array.
2290  QualType canon = getQualifiedType(QualType(canonTy,0),
2291                                    canonElementType.Quals);
2292
2293  // If we didn't need extra canonicalization for the element type,
2294  // then just use that as our result.
2295  if (QualType(canonElementType.Ty, 0) == elementType)
2296    return canon;
2297
2298  // Otherwise, we need to build a type which follows the spelling
2299  // of the element type.
2300  DependentSizedArrayType *sugaredType
2301    = new (*this, TypeAlignment)
2302        DependentSizedArrayType(*this, elementType, canon, numElements,
2303                                ASM, elementTypeQuals, brackets);
2304  Types.push_back(sugaredType);
2305  return QualType(sugaredType, 0);
2306}
2307
2308QualType ASTContext::getIncompleteArrayType(QualType elementType,
2309                                            ArrayType::ArraySizeModifier ASM,
2310                                            unsigned elementTypeQuals) const {
2311  llvm::FoldingSetNodeID ID;
2312  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2313
2314  void *insertPos = 0;
2315  if (IncompleteArrayType *iat =
2316       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2317    return QualType(iat, 0);
2318
2319  // If the element type isn't canonical, this won't be a canonical type
2320  // either, so fill in the canonical type field.  We also have to pull
2321  // qualifiers off the element type.
2322  QualType canon;
2323
2324  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2325    SplitQualType canonSplit = getCanonicalType(elementType).split();
2326    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2327                                   ASM, elementTypeQuals);
2328    canon = getQualifiedType(canon, canonSplit.Quals);
2329
2330    // Get the new insert position for the node we care about.
2331    IncompleteArrayType *existing =
2332      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2333    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2334  }
2335
2336  IncompleteArrayType *newType = new (*this, TypeAlignment)
2337    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2338
2339  IncompleteArrayTypes.InsertNode(newType, insertPos);
2340  Types.push_back(newType);
2341  return QualType(newType, 0);
2342}
2343
2344/// getVectorType - Return the unique reference to a vector type of
2345/// the specified element type and size. VectorType must be a built-in type.
2346QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2347                                   VectorType::VectorKind VecKind) const {
2348  assert(vecType->isBuiltinType());
2349
2350  // Check if we've already instantiated a vector of this type.
2351  llvm::FoldingSetNodeID ID;
2352  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2353
2354  void *InsertPos = 0;
2355  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2356    return QualType(VTP, 0);
2357
2358  // If the element type isn't canonical, this won't be a canonical type either,
2359  // so fill in the canonical type field.
2360  QualType Canonical;
2361  if (!vecType.isCanonical()) {
2362    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2363
2364    // Get the new insert position for the node we care about.
2365    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2366    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2367  }
2368  VectorType *New = new (*this, TypeAlignment)
2369    VectorType(vecType, NumElts, Canonical, VecKind);
2370  VectorTypes.InsertNode(New, InsertPos);
2371  Types.push_back(New);
2372  return QualType(New, 0);
2373}
2374
2375/// getExtVectorType - Return the unique reference to an extended vector type of
2376/// the specified element type and size. VectorType must be a built-in type.
2377QualType
2378ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2379  assert(vecType->isBuiltinType() || vecType->isDependentType());
2380
2381  // Check if we've already instantiated a vector of this type.
2382  llvm::FoldingSetNodeID ID;
2383  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2384                      VectorType::GenericVector);
2385  void *InsertPos = 0;
2386  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2387    return QualType(VTP, 0);
2388
2389  // If the element type isn't canonical, this won't be a canonical type either,
2390  // so fill in the canonical type field.
2391  QualType Canonical;
2392  if (!vecType.isCanonical()) {
2393    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2394
2395    // Get the new insert position for the node we care about.
2396    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2397    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2398  }
2399  ExtVectorType *New = new (*this, TypeAlignment)
2400    ExtVectorType(vecType, NumElts, Canonical);
2401  VectorTypes.InsertNode(New, InsertPos);
2402  Types.push_back(New);
2403  return QualType(New, 0);
2404}
2405
2406QualType
2407ASTContext::getDependentSizedExtVectorType(QualType vecType,
2408                                           Expr *SizeExpr,
2409                                           SourceLocation AttrLoc) const {
2410  llvm::FoldingSetNodeID ID;
2411  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2412                                       SizeExpr);
2413
2414  void *InsertPos = 0;
2415  DependentSizedExtVectorType *Canon
2416    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2417  DependentSizedExtVectorType *New;
2418  if (Canon) {
2419    // We already have a canonical version of this array type; use it as
2420    // the canonical type for a newly-built type.
2421    New = new (*this, TypeAlignment)
2422      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2423                                  SizeExpr, AttrLoc);
2424  } else {
2425    QualType CanonVecTy = getCanonicalType(vecType);
2426    if (CanonVecTy == vecType) {
2427      New = new (*this, TypeAlignment)
2428        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2429                                    AttrLoc);
2430
2431      DependentSizedExtVectorType *CanonCheck
2432        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2433      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2434      (void)CanonCheck;
2435      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2436    } else {
2437      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2438                                                      SourceLocation());
2439      New = new (*this, TypeAlignment)
2440        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2441    }
2442  }
2443
2444  Types.push_back(New);
2445  return QualType(New, 0);
2446}
2447
2448/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2449///
2450QualType
2451ASTContext::getFunctionNoProtoType(QualType ResultTy,
2452                                   const FunctionType::ExtInfo &Info) const {
2453  const CallingConv DefaultCC = Info.getCC();
2454  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2455                               CC_X86StdCall : DefaultCC;
2456  // Unique functions, to guarantee there is only one function of a particular
2457  // structure.
2458  llvm::FoldingSetNodeID ID;
2459  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2460
2461  void *InsertPos = 0;
2462  if (FunctionNoProtoType *FT =
2463        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2464    return QualType(FT, 0);
2465
2466  QualType Canonical;
2467  if (!ResultTy.isCanonical() ||
2468      getCanonicalCallConv(CallConv) != CallConv) {
2469    Canonical =
2470      getFunctionNoProtoType(getCanonicalType(ResultTy),
2471                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2472
2473    // Get the new insert position for the node we care about.
2474    FunctionNoProtoType *NewIP =
2475      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2476    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2477  }
2478
2479  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2480  FunctionNoProtoType *New = new (*this, TypeAlignment)
2481    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2482  Types.push_back(New);
2483  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2484  return QualType(New, 0);
2485}
2486
2487/// getFunctionType - Return a normal function type with a typed argument
2488/// list.  isVariadic indicates whether the argument list includes '...'.
2489QualType
2490ASTContext::getFunctionType(QualType ResultTy,
2491                            const QualType *ArgArray, unsigned NumArgs,
2492                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2493  // Unique functions, to guarantee there is only one function of a particular
2494  // structure.
2495  llvm::FoldingSetNodeID ID;
2496  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2497
2498  void *InsertPos = 0;
2499  if (FunctionProtoType *FTP =
2500        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2501    return QualType(FTP, 0);
2502
2503  // Determine whether the type being created is already canonical or not.
2504  bool isCanonical =
2505    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2506    !EPI.HasTrailingReturn;
2507  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2508    if (!ArgArray[i].isCanonicalAsParam())
2509      isCanonical = false;
2510
2511  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2512  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2513                               CC_X86StdCall : DefaultCC;
2514
2515  // If this type isn't canonical, get the canonical version of it.
2516  // The exception spec is not part of the canonical type.
2517  QualType Canonical;
2518  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2519    SmallVector<QualType, 16> CanonicalArgs;
2520    CanonicalArgs.reserve(NumArgs);
2521    for (unsigned i = 0; i != NumArgs; ++i)
2522      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2523
2524    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2525    CanonicalEPI.HasTrailingReturn = false;
2526    CanonicalEPI.ExceptionSpecType = EST_None;
2527    CanonicalEPI.NumExceptions = 0;
2528    CanonicalEPI.ExtInfo
2529      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2530
2531    Canonical = getFunctionType(getCanonicalType(ResultTy),
2532                                CanonicalArgs.data(), NumArgs,
2533                                CanonicalEPI);
2534
2535    // Get the new insert position for the node we care about.
2536    FunctionProtoType *NewIP =
2537      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2538    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2539  }
2540
2541  // FunctionProtoType objects are allocated with extra bytes after
2542  // them for three variable size arrays at the end:
2543  //  - parameter types
2544  //  - exception types
2545  //  - consumed-arguments flags
2546  // Instead of the exception types, there could be a noexcept
2547  // expression, or information used to resolve the exception
2548  // specification.
2549  size_t Size = sizeof(FunctionProtoType) +
2550                NumArgs * sizeof(QualType);
2551  if (EPI.ExceptionSpecType == EST_Dynamic) {
2552    Size += EPI.NumExceptions * sizeof(QualType);
2553  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2554    Size += sizeof(Expr*);
2555  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2556    Size += 2 * sizeof(FunctionDecl*);
2557  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2558    Size += sizeof(FunctionDecl*);
2559  }
2560  if (EPI.ConsumedArguments)
2561    Size += NumArgs * sizeof(bool);
2562
2563  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2564  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2565  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2566  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2567  Types.push_back(FTP);
2568  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2569  return QualType(FTP, 0);
2570}
2571
2572#ifndef NDEBUG
2573static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2574  if (!isa<CXXRecordDecl>(D)) return false;
2575  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2576  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2577    return true;
2578  if (RD->getDescribedClassTemplate() &&
2579      !isa<ClassTemplateSpecializationDecl>(RD))
2580    return true;
2581  return false;
2582}
2583#endif
2584
2585/// getInjectedClassNameType - Return the unique reference to the
2586/// injected class name type for the specified templated declaration.
2587QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2588                                              QualType TST) const {
2589  assert(NeedsInjectedClassNameType(Decl));
2590  if (Decl->TypeForDecl) {
2591    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2592  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2593    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2594    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2595    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2596  } else {
2597    Type *newType =
2598      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2599    Decl->TypeForDecl = newType;
2600    Types.push_back(newType);
2601  }
2602  return QualType(Decl->TypeForDecl, 0);
2603}
2604
2605/// getTypeDeclType - Return the unique reference to the type for the
2606/// specified type declaration.
2607QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2608  assert(Decl && "Passed null for Decl param");
2609  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2610
2611  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2612    return getTypedefType(Typedef);
2613
2614  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2615         "Template type parameter types are always available.");
2616
2617  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2618    assert(!Record->getPreviousDecl() &&
2619           "struct/union has previous declaration");
2620    assert(!NeedsInjectedClassNameType(Record));
2621    return getRecordType(Record);
2622  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2623    assert(!Enum->getPreviousDecl() &&
2624           "enum has previous declaration");
2625    return getEnumType(Enum);
2626  } else if (const UnresolvedUsingTypenameDecl *Using =
2627               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2628    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2629    Decl->TypeForDecl = newType;
2630    Types.push_back(newType);
2631  } else
2632    llvm_unreachable("TypeDecl without a type?");
2633
2634  return QualType(Decl->TypeForDecl, 0);
2635}
2636
2637/// getTypedefType - Return the unique reference to the type for the
2638/// specified typedef name decl.
2639QualType
2640ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2641                           QualType Canonical) const {
2642  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2643
2644  if (Canonical.isNull())
2645    Canonical = getCanonicalType(Decl->getUnderlyingType());
2646  TypedefType *newType = new(*this, TypeAlignment)
2647    TypedefType(Type::Typedef, Decl, Canonical);
2648  Decl->TypeForDecl = newType;
2649  Types.push_back(newType);
2650  return QualType(newType, 0);
2651}
2652
2653QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2654  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2655
2656  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2657    if (PrevDecl->TypeForDecl)
2658      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2659
2660  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2661  Decl->TypeForDecl = newType;
2662  Types.push_back(newType);
2663  return QualType(newType, 0);
2664}
2665
2666QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2667  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2668
2669  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2670    if (PrevDecl->TypeForDecl)
2671      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2672
2673  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2674  Decl->TypeForDecl = newType;
2675  Types.push_back(newType);
2676  return QualType(newType, 0);
2677}
2678
2679QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2680                                       QualType modifiedType,
2681                                       QualType equivalentType) {
2682  llvm::FoldingSetNodeID id;
2683  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2684
2685  void *insertPos = 0;
2686  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2687  if (type) return QualType(type, 0);
2688
2689  QualType canon = getCanonicalType(equivalentType);
2690  type = new (*this, TypeAlignment)
2691           AttributedType(canon, attrKind, modifiedType, equivalentType);
2692
2693  Types.push_back(type);
2694  AttributedTypes.InsertNode(type, insertPos);
2695
2696  return QualType(type, 0);
2697}
2698
2699
2700/// \brief Retrieve a substitution-result type.
2701QualType
2702ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2703                                         QualType Replacement) const {
2704  assert(Replacement.isCanonical()
2705         && "replacement types must always be canonical");
2706
2707  llvm::FoldingSetNodeID ID;
2708  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2709  void *InsertPos = 0;
2710  SubstTemplateTypeParmType *SubstParm
2711    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2712
2713  if (!SubstParm) {
2714    SubstParm = new (*this, TypeAlignment)
2715      SubstTemplateTypeParmType(Parm, Replacement);
2716    Types.push_back(SubstParm);
2717    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2718  }
2719
2720  return QualType(SubstParm, 0);
2721}
2722
2723/// \brief Retrieve a
2724QualType ASTContext::getSubstTemplateTypeParmPackType(
2725                                          const TemplateTypeParmType *Parm,
2726                                              const TemplateArgument &ArgPack) {
2727#ifndef NDEBUG
2728  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2729                                    PEnd = ArgPack.pack_end();
2730       P != PEnd; ++P) {
2731    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2732    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2733  }
2734#endif
2735
2736  llvm::FoldingSetNodeID ID;
2737  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2738  void *InsertPos = 0;
2739  if (SubstTemplateTypeParmPackType *SubstParm
2740        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2741    return QualType(SubstParm, 0);
2742
2743  QualType Canon;
2744  if (!Parm->isCanonicalUnqualified()) {
2745    Canon = getCanonicalType(QualType(Parm, 0));
2746    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2747                                             ArgPack);
2748    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2749  }
2750
2751  SubstTemplateTypeParmPackType *SubstParm
2752    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2753                                                               ArgPack);
2754  Types.push_back(SubstParm);
2755  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2756  return QualType(SubstParm, 0);
2757}
2758
2759/// \brief Retrieve the template type parameter type for a template
2760/// parameter or parameter pack with the given depth, index, and (optionally)
2761/// name.
2762QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2763                                             bool ParameterPack,
2764                                             TemplateTypeParmDecl *TTPDecl) const {
2765  llvm::FoldingSetNodeID ID;
2766  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2767  void *InsertPos = 0;
2768  TemplateTypeParmType *TypeParm
2769    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2770
2771  if (TypeParm)
2772    return QualType(TypeParm, 0);
2773
2774  if (TTPDecl) {
2775    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2776    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2777
2778    TemplateTypeParmType *TypeCheck
2779      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2780    assert(!TypeCheck && "Template type parameter canonical type broken");
2781    (void)TypeCheck;
2782  } else
2783    TypeParm = new (*this, TypeAlignment)
2784      TemplateTypeParmType(Depth, Index, ParameterPack);
2785
2786  Types.push_back(TypeParm);
2787  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2788
2789  return QualType(TypeParm, 0);
2790}
2791
2792TypeSourceInfo *
2793ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2794                                              SourceLocation NameLoc,
2795                                        const TemplateArgumentListInfo &Args,
2796                                              QualType Underlying) const {
2797  assert(!Name.getAsDependentTemplateName() &&
2798         "No dependent template names here!");
2799  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2800
2801  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2802  TemplateSpecializationTypeLoc TL
2803    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2804  TL.setTemplateKeywordLoc(SourceLocation());
2805  TL.setTemplateNameLoc(NameLoc);
2806  TL.setLAngleLoc(Args.getLAngleLoc());
2807  TL.setRAngleLoc(Args.getRAngleLoc());
2808  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2809    TL.setArgLocInfo(i, Args[i].getLocInfo());
2810  return DI;
2811}
2812
2813QualType
2814ASTContext::getTemplateSpecializationType(TemplateName Template,
2815                                          const TemplateArgumentListInfo &Args,
2816                                          QualType Underlying) const {
2817  assert(!Template.getAsDependentTemplateName() &&
2818         "No dependent template names here!");
2819
2820  unsigned NumArgs = Args.size();
2821
2822  SmallVector<TemplateArgument, 4> ArgVec;
2823  ArgVec.reserve(NumArgs);
2824  for (unsigned i = 0; i != NumArgs; ++i)
2825    ArgVec.push_back(Args[i].getArgument());
2826
2827  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2828                                       Underlying);
2829}
2830
2831#ifndef NDEBUG
2832static bool hasAnyPackExpansions(const TemplateArgument *Args,
2833                                 unsigned NumArgs) {
2834  for (unsigned I = 0; I != NumArgs; ++I)
2835    if (Args[I].isPackExpansion())
2836      return true;
2837
2838  return true;
2839}
2840#endif
2841
2842QualType
2843ASTContext::getTemplateSpecializationType(TemplateName Template,
2844                                          const TemplateArgument *Args,
2845                                          unsigned NumArgs,
2846                                          QualType Underlying) const {
2847  assert(!Template.getAsDependentTemplateName() &&
2848         "No dependent template names here!");
2849  // Look through qualified template names.
2850  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2851    Template = TemplateName(QTN->getTemplateDecl());
2852
2853  bool IsTypeAlias =
2854    Template.getAsTemplateDecl() &&
2855    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2856  QualType CanonType;
2857  if (!Underlying.isNull())
2858    CanonType = getCanonicalType(Underlying);
2859  else {
2860    // We can get here with an alias template when the specialization contains
2861    // a pack expansion that does not match up with a parameter pack.
2862    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2863           "Caller must compute aliased type");
2864    IsTypeAlias = false;
2865    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2866                                                       NumArgs);
2867  }
2868
2869  // Allocate the (non-canonical) template specialization type, but don't
2870  // try to unique it: these types typically have location information that
2871  // we don't unique and don't want to lose.
2872  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2873                       sizeof(TemplateArgument) * NumArgs +
2874                       (IsTypeAlias? sizeof(QualType) : 0),
2875                       TypeAlignment);
2876  TemplateSpecializationType *Spec
2877    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2878                                         IsTypeAlias ? Underlying : QualType());
2879
2880  Types.push_back(Spec);
2881  return QualType(Spec, 0);
2882}
2883
2884QualType
2885ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2886                                                   const TemplateArgument *Args,
2887                                                   unsigned NumArgs) const {
2888  assert(!Template.getAsDependentTemplateName() &&
2889         "No dependent template names here!");
2890
2891  // Look through qualified template names.
2892  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2893    Template = TemplateName(QTN->getTemplateDecl());
2894
2895  // Build the canonical template specialization type.
2896  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2897  SmallVector<TemplateArgument, 4> CanonArgs;
2898  CanonArgs.reserve(NumArgs);
2899  for (unsigned I = 0; I != NumArgs; ++I)
2900    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2901
2902  // Determine whether this canonical template specialization type already
2903  // exists.
2904  llvm::FoldingSetNodeID ID;
2905  TemplateSpecializationType::Profile(ID, CanonTemplate,
2906                                      CanonArgs.data(), NumArgs, *this);
2907
2908  void *InsertPos = 0;
2909  TemplateSpecializationType *Spec
2910    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2911
2912  if (!Spec) {
2913    // Allocate a new canonical template specialization type.
2914    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2915                          sizeof(TemplateArgument) * NumArgs),
2916                         TypeAlignment);
2917    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2918                                                CanonArgs.data(), NumArgs,
2919                                                QualType(), QualType());
2920    Types.push_back(Spec);
2921    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2922  }
2923
2924  assert(Spec->isDependentType() &&
2925         "Non-dependent template-id type must have a canonical type");
2926  return QualType(Spec, 0);
2927}
2928
2929QualType
2930ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2931                              NestedNameSpecifier *NNS,
2932                              QualType NamedType) const {
2933  llvm::FoldingSetNodeID ID;
2934  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2935
2936  void *InsertPos = 0;
2937  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2938  if (T)
2939    return QualType(T, 0);
2940
2941  QualType Canon = NamedType;
2942  if (!Canon.isCanonical()) {
2943    Canon = getCanonicalType(NamedType);
2944    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2945    assert(!CheckT && "Elaborated canonical type broken");
2946    (void)CheckT;
2947  }
2948
2949  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2950  Types.push_back(T);
2951  ElaboratedTypes.InsertNode(T, InsertPos);
2952  return QualType(T, 0);
2953}
2954
2955QualType
2956ASTContext::getParenType(QualType InnerType) const {
2957  llvm::FoldingSetNodeID ID;
2958  ParenType::Profile(ID, InnerType);
2959
2960  void *InsertPos = 0;
2961  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2962  if (T)
2963    return QualType(T, 0);
2964
2965  QualType Canon = InnerType;
2966  if (!Canon.isCanonical()) {
2967    Canon = getCanonicalType(InnerType);
2968    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2969    assert(!CheckT && "Paren canonical type broken");
2970    (void)CheckT;
2971  }
2972
2973  T = new (*this) ParenType(InnerType, Canon);
2974  Types.push_back(T);
2975  ParenTypes.InsertNode(T, InsertPos);
2976  return QualType(T, 0);
2977}
2978
2979QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2980                                          NestedNameSpecifier *NNS,
2981                                          const IdentifierInfo *Name,
2982                                          QualType Canon) const {
2983  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2984
2985  if (Canon.isNull()) {
2986    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2987    ElaboratedTypeKeyword CanonKeyword = Keyword;
2988    if (Keyword == ETK_None)
2989      CanonKeyword = ETK_Typename;
2990
2991    if (CanonNNS != NNS || CanonKeyword != Keyword)
2992      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2993  }
2994
2995  llvm::FoldingSetNodeID ID;
2996  DependentNameType::Profile(ID, Keyword, NNS, Name);
2997
2998  void *InsertPos = 0;
2999  DependentNameType *T
3000    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3001  if (T)
3002    return QualType(T, 0);
3003
3004  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3005  Types.push_back(T);
3006  DependentNameTypes.InsertNode(T, InsertPos);
3007  return QualType(T, 0);
3008}
3009
3010QualType
3011ASTContext::getDependentTemplateSpecializationType(
3012                                 ElaboratedTypeKeyword Keyword,
3013                                 NestedNameSpecifier *NNS,
3014                                 const IdentifierInfo *Name,
3015                                 const TemplateArgumentListInfo &Args) const {
3016  // TODO: avoid this copy
3017  SmallVector<TemplateArgument, 16> ArgCopy;
3018  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3019    ArgCopy.push_back(Args[I].getArgument());
3020  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3021                                                ArgCopy.size(),
3022                                                ArgCopy.data());
3023}
3024
3025QualType
3026ASTContext::getDependentTemplateSpecializationType(
3027                                 ElaboratedTypeKeyword Keyword,
3028                                 NestedNameSpecifier *NNS,
3029                                 const IdentifierInfo *Name,
3030                                 unsigned NumArgs,
3031                                 const TemplateArgument *Args) const {
3032  assert((!NNS || NNS->isDependent()) &&
3033         "nested-name-specifier must be dependent");
3034
3035  llvm::FoldingSetNodeID ID;
3036  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3037                                               Name, NumArgs, Args);
3038
3039  void *InsertPos = 0;
3040  DependentTemplateSpecializationType *T
3041    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3042  if (T)
3043    return QualType(T, 0);
3044
3045  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3046
3047  ElaboratedTypeKeyword CanonKeyword = Keyword;
3048  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3049
3050  bool AnyNonCanonArgs = false;
3051  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3052  for (unsigned I = 0; I != NumArgs; ++I) {
3053    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3054    if (!CanonArgs[I].structurallyEquals(Args[I]))
3055      AnyNonCanonArgs = true;
3056  }
3057
3058  QualType Canon;
3059  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3060    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3061                                                   Name, NumArgs,
3062                                                   CanonArgs.data());
3063
3064    // Find the insert position again.
3065    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3066  }
3067
3068  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3069                        sizeof(TemplateArgument) * NumArgs),
3070                       TypeAlignment);
3071  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3072                                                    Name, NumArgs, Args, Canon);
3073  Types.push_back(T);
3074  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3075  return QualType(T, 0);
3076}
3077
3078QualType ASTContext::getPackExpansionType(QualType Pattern,
3079                                      llvm::Optional<unsigned> NumExpansions) {
3080  llvm::FoldingSetNodeID ID;
3081  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3082
3083  assert(Pattern->containsUnexpandedParameterPack() &&
3084         "Pack expansions must expand one or more parameter packs");
3085  void *InsertPos = 0;
3086  PackExpansionType *T
3087    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3088  if (T)
3089    return QualType(T, 0);
3090
3091  QualType Canon;
3092  if (!Pattern.isCanonical()) {
3093    Canon = getCanonicalType(Pattern);
3094    // The canonical type might not contain an unexpanded parameter pack, if it
3095    // contains an alias template specialization which ignores one of its
3096    // parameters.
3097    if (Canon->containsUnexpandedParameterPack()) {
3098      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3099
3100      // Find the insert position again, in case we inserted an element into
3101      // PackExpansionTypes and invalidated our insert position.
3102      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3103    }
3104  }
3105
3106  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3107  Types.push_back(T);
3108  PackExpansionTypes.InsertNode(T, InsertPos);
3109  return QualType(T, 0);
3110}
3111
3112/// CmpProtocolNames - Comparison predicate for sorting protocols
3113/// alphabetically.
3114static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3115                            const ObjCProtocolDecl *RHS) {
3116  return LHS->getDeclName() < RHS->getDeclName();
3117}
3118
3119static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3120                                unsigned NumProtocols) {
3121  if (NumProtocols == 0) return true;
3122
3123  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3124    return false;
3125
3126  for (unsigned i = 1; i != NumProtocols; ++i)
3127    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3128        Protocols[i]->getCanonicalDecl() != Protocols[i])
3129      return false;
3130  return true;
3131}
3132
3133static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3134                                   unsigned &NumProtocols) {
3135  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3136
3137  // Sort protocols, keyed by name.
3138  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3139
3140  // Canonicalize.
3141  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3142    Protocols[I] = Protocols[I]->getCanonicalDecl();
3143
3144  // Remove duplicates.
3145  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3146  NumProtocols = ProtocolsEnd-Protocols;
3147}
3148
3149QualType ASTContext::getObjCObjectType(QualType BaseType,
3150                                       ObjCProtocolDecl * const *Protocols,
3151                                       unsigned NumProtocols) const {
3152  // If the base type is an interface and there aren't any protocols
3153  // to add, then the interface type will do just fine.
3154  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3155    return BaseType;
3156
3157  // Look in the folding set for an existing type.
3158  llvm::FoldingSetNodeID ID;
3159  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3160  void *InsertPos = 0;
3161  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3162    return QualType(QT, 0);
3163
3164  // Build the canonical type, which has the canonical base type and
3165  // a sorted-and-uniqued list of protocols.
3166  QualType Canonical;
3167  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3168  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3169    if (!ProtocolsSorted) {
3170      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3171                                                     Protocols + NumProtocols);
3172      unsigned UniqueCount = NumProtocols;
3173
3174      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3175      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3176                                    &Sorted[0], UniqueCount);
3177    } else {
3178      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3179                                    Protocols, NumProtocols);
3180    }
3181
3182    // Regenerate InsertPos.
3183    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3184  }
3185
3186  unsigned Size = sizeof(ObjCObjectTypeImpl);
3187  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3188  void *Mem = Allocate(Size, TypeAlignment);
3189  ObjCObjectTypeImpl *T =
3190    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3191
3192  Types.push_back(T);
3193  ObjCObjectTypes.InsertNode(T, InsertPos);
3194  return QualType(T, 0);
3195}
3196
3197/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3198/// the given object type.
3199QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3200  llvm::FoldingSetNodeID ID;
3201  ObjCObjectPointerType::Profile(ID, ObjectT);
3202
3203  void *InsertPos = 0;
3204  if (ObjCObjectPointerType *QT =
3205              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3206    return QualType(QT, 0);
3207
3208  // Find the canonical object type.
3209  QualType Canonical;
3210  if (!ObjectT.isCanonical()) {
3211    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3212
3213    // Regenerate InsertPos.
3214    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3215  }
3216
3217  // No match.
3218  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3219  ObjCObjectPointerType *QType =
3220    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3221
3222  Types.push_back(QType);
3223  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3224  return QualType(QType, 0);
3225}
3226
3227/// getObjCInterfaceType - Return the unique reference to the type for the
3228/// specified ObjC interface decl. The list of protocols is optional.
3229QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3230                                          ObjCInterfaceDecl *PrevDecl) const {
3231  if (Decl->TypeForDecl)
3232    return QualType(Decl->TypeForDecl, 0);
3233
3234  if (PrevDecl) {
3235    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3236    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3237    return QualType(PrevDecl->TypeForDecl, 0);
3238  }
3239
3240  // Prefer the definition, if there is one.
3241  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3242    Decl = Def;
3243
3244  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3245  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3246  Decl->TypeForDecl = T;
3247  Types.push_back(T);
3248  return QualType(T, 0);
3249}
3250
3251/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3252/// TypeOfExprType AST's (since expression's are never shared). For example,
3253/// multiple declarations that refer to "typeof(x)" all contain different
3254/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3255/// on canonical type's (which are always unique).
3256QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3257  TypeOfExprType *toe;
3258  if (tofExpr->isTypeDependent()) {
3259    llvm::FoldingSetNodeID ID;
3260    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3261
3262    void *InsertPos = 0;
3263    DependentTypeOfExprType *Canon
3264      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3265    if (Canon) {
3266      // We already have a "canonical" version of an identical, dependent
3267      // typeof(expr) type. Use that as our canonical type.
3268      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3269                                          QualType((TypeOfExprType*)Canon, 0));
3270    } else {
3271      // Build a new, canonical typeof(expr) type.
3272      Canon
3273        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3274      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3275      toe = Canon;
3276    }
3277  } else {
3278    QualType Canonical = getCanonicalType(tofExpr->getType());
3279    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3280  }
3281  Types.push_back(toe);
3282  return QualType(toe, 0);
3283}
3284
3285/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3286/// TypeOfType AST's. The only motivation to unique these nodes would be
3287/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3288/// an issue. This doesn't effect the type checker, since it operates
3289/// on canonical type's (which are always unique).
3290QualType ASTContext::getTypeOfType(QualType tofType) const {
3291  QualType Canonical = getCanonicalType(tofType);
3292  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3293  Types.push_back(tot);
3294  return QualType(tot, 0);
3295}
3296
3297
3298/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3299/// DecltypeType AST's. The only motivation to unique these nodes would be
3300/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3301/// an issue. This doesn't effect the type checker, since it operates
3302/// on canonical types (which are always unique).
3303QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3304  DecltypeType *dt;
3305
3306  // C++0x [temp.type]p2:
3307  //   If an expression e involves a template parameter, decltype(e) denotes a
3308  //   unique dependent type. Two such decltype-specifiers refer to the same
3309  //   type only if their expressions are equivalent (14.5.6.1).
3310  if (e->isInstantiationDependent()) {
3311    llvm::FoldingSetNodeID ID;
3312    DependentDecltypeType::Profile(ID, *this, e);
3313
3314    void *InsertPos = 0;
3315    DependentDecltypeType *Canon
3316      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3317    if (Canon) {
3318      // We already have a "canonical" version of an equivalent, dependent
3319      // decltype type. Use that as our canonical type.
3320      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3321                                       QualType((DecltypeType*)Canon, 0));
3322    } else {
3323      // Build a new, canonical typeof(expr) type.
3324      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3325      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3326      dt = Canon;
3327    }
3328  } else {
3329    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3330                                      getCanonicalType(UnderlyingType));
3331  }
3332  Types.push_back(dt);
3333  return QualType(dt, 0);
3334}
3335
3336/// getUnaryTransformationType - We don't unique these, since the memory
3337/// savings are minimal and these are rare.
3338QualType ASTContext::getUnaryTransformType(QualType BaseType,
3339                                           QualType UnderlyingType,
3340                                           UnaryTransformType::UTTKind Kind)
3341    const {
3342  UnaryTransformType *Ty =
3343    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3344                                                   Kind,
3345                                 UnderlyingType->isDependentType() ?
3346                                 QualType() : getCanonicalType(UnderlyingType));
3347  Types.push_back(Ty);
3348  return QualType(Ty, 0);
3349}
3350
3351/// getAutoType - We only unique auto types after they've been deduced.
3352QualType ASTContext::getAutoType(QualType DeducedType) const {
3353  void *InsertPos = 0;
3354  if (!DeducedType.isNull()) {
3355    // Look in the folding set for an existing type.
3356    llvm::FoldingSetNodeID ID;
3357    AutoType::Profile(ID, DeducedType);
3358    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3359      return QualType(AT, 0);
3360  }
3361
3362  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3363  Types.push_back(AT);
3364  if (InsertPos)
3365    AutoTypes.InsertNode(AT, InsertPos);
3366  return QualType(AT, 0);
3367}
3368
3369/// getAtomicType - Return the uniqued reference to the atomic type for
3370/// the given value type.
3371QualType ASTContext::getAtomicType(QualType T) const {
3372  // Unique pointers, to guarantee there is only one pointer of a particular
3373  // structure.
3374  llvm::FoldingSetNodeID ID;
3375  AtomicType::Profile(ID, T);
3376
3377  void *InsertPos = 0;
3378  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3379    return QualType(AT, 0);
3380
3381  // If the atomic value type isn't canonical, this won't be a canonical type
3382  // either, so fill in the canonical type field.
3383  QualType Canonical;
3384  if (!T.isCanonical()) {
3385    Canonical = getAtomicType(getCanonicalType(T));
3386
3387    // Get the new insert position for the node we care about.
3388    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3389    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3390  }
3391  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3392  Types.push_back(New);
3393  AtomicTypes.InsertNode(New, InsertPos);
3394  return QualType(New, 0);
3395}
3396
3397/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3398QualType ASTContext::getAutoDeductType() const {
3399  if (AutoDeductTy.isNull())
3400    AutoDeductTy = getAutoType(QualType());
3401  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3402  return AutoDeductTy;
3403}
3404
3405/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3406QualType ASTContext::getAutoRRefDeductType() const {
3407  if (AutoRRefDeductTy.isNull())
3408    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3409  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3410  return AutoRRefDeductTy;
3411}
3412
3413/// getTagDeclType - Return the unique reference to the type for the
3414/// specified TagDecl (struct/union/class/enum) decl.
3415QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3416  assert (Decl);
3417  // FIXME: What is the design on getTagDeclType when it requires casting
3418  // away const?  mutable?
3419  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3420}
3421
3422/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3423/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3424/// needs to agree with the definition in <stddef.h>.
3425CanQualType ASTContext::getSizeType() const {
3426  return getFromTargetType(Target->getSizeType());
3427}
3428
3429/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3430CanQualType ASTContext::getIntMaxType() const {
3431  return getFromTargetType(Target->getIntMaxType());
3432}
3433
3434/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3435CanQualType ASTContext::getUIntMaxType() const {
3436  return getFromTargetType(Target->getUIntMaxType());
3437}
3438
3439/// getSignedWCharType - Return the type of "signed wchar_t".
3440/// Used when in C++, as a GCC extension.
3441QualType ASTContext::getSignedWCharType() const {
3442  // FIXME: derive from "Target" ?
3443  return WCharTy;
3444}
3445
3446/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3447/// Used when in C++, as a GCC extension.
3448QualType ASTContext::getUnsignedWCharType() const {
3449  // FIXME: derive from "Target" ?
3450  return UnsignedIntTy;
3451}
3452
3453/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3454/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3455QualType ASTContext::getPointerDiffType() const {
3456  return getFromTargetType(Target->getPtrDiffType(0));
3457}
3458
3459//===----------------------------------------------------------------------===//
3460//                              Type Operators
3461//===----------------------------------------------------------------------===//
3462
3463CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3464  // Push qualifiers into arrays, and then discard any remaining
3465  // qualifiers.
3466  T = getCanonicalType(T);
3467  T = getVariableArrayDecayedType(T);
3468  const Type *Ty = T.getTypePtr();
3469  QualType Result;
3470  if (isa<ArrayType>(Ty)) {
3471    Result = getArrayDecayedType(QualType(Ty,0));
3472  } else if (isa<FunctionType>(Ty)) {
3473    Result = getPointerType(QualType(Ty, 0));
3474  } else {
3475    Result = QualType(Ty, 0);
3476  }
3477
3478  return CanQualType::CreateUnsafe(Result);
3479}
3480
3481QualType ASTContext::getUnqualifiedArrayType(QualType type,
3482                                             Qualifiers &quals) {
3483  SplitQualType splitType = type.getSplitUnqualifiedType();
3484
3485  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3486  // the unqualified desugared type and then drops it on the floor.
3487  // We then have to strip that sugar back off with
3488  // getUnqualifiedDesugaredType(), which is silly.
3489  const ArrayType *AT =
3490    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3491
3492  // If we don't have an array, just use the results in splitType.
3493  if (!AT) {
3494    quals = splitType.Quals;
3495    return QualType(splitType.Ty, 0);
3496  }
3497
3498  // Otherwise, recurse on the array's element type.
3499  QualType elementType = AT->getElementType();
3500  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3501
3502  // If that didn't change the element type, AT has no qualifiers, so we
3503  // can just use the results in splitType.
3504  if (elementType == unqualElementType) {
3505    assert(quals.empty()); // from the recursive call
3506    quals = splitType.Quals;
3507    return QualType(splitType.Ty, 0);
3508  }
3509
3510  // Otherwise, add in the qualifiers from the outermost type, then
3511  // build the type back up.
3512  quals.addConsistentQualifiers(splitType.Quals);
3513
3514  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3515    return getConstantArrayType(unqualElementType, CAT->getSize(),
3516                                CAT->getSizeModifier(), 0);
3517  }
3518
3519  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3520    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3521  }
3522
3523  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3524    return getVariableArrayType(unqualElementType,
3525                                VAT->getSizeExpr(),
3526                                VAT->getSizeModifier(),
3527                                VAT->getIndexTypeCVRQualifiers(),
3528                                VAT->getBracketsRange());
3529  }
3530
3531  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3532  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3533                                    DSAT->getSizeModifier(), 0,
3534                                    SourceRange());
3535}
3536
3537/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3538/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3539/// they point to and return true. If T1 and T2 aren't pointer types
3540/// or pointer-to-member types, or if they are not similar at this
3541/// level, returns false and leaves T1 and T2 unchanged. Top-level
3542/// qualifiers on T1 and T2 are ignored. This function will typically
3543/// be called in a loop that successively "unwraps" pointer and
3544/// pointer-to-member types to compare them at each level.
3545bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3546  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3547                    *T2PtrType = T2->getAs<PointerType>();
3548  if (T1PtrType && T2PtrType) {
3549    T1 = T1PtrType->getPointeeType();
3550    T2 = T2PtrType->getPointeeType();
3551    return true;
3552  }
3553
3554  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3555                          *T2MPType = T2->getAs<MemberPointerType>();
3556  if (T1MPType && T2MPType &&
3557      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3558                             QualType(T2MPType->getClass(), 0))) {
3559    T1 = T1MPType->getPointeeType();
3560    T2 = T2MPType->getPointeeType();
3561    return true;
3562  }
3563
3564  if (getLangOpts().ObjC1) {
3565    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3566                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3567    if (T1OPType && T2OPType) {
3568      T1 = T1OPType->getPointeeType();
3569      T2 = T2OPType->getPointeeType();
3570      return true;
3571    }
3572  }
3573
3574  // FIXME: Block pointers, too?
3575
3576  return false;
3577}
3578
3579DeclarationNameInfo
3580ASTContext::getNameForTemplate(TemplateName Name,
3581                               SourceLocation NameLoc) const {
3582  switch (Name.getKind()) {
3583  case TemplateName::QualifiedTemplate:
3584  case TemplateName::Template:
3585    // DNInfo work in progress: CHECKME: what about DNLoc?
3586    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3587                               NameLoc);
3588
3589  case TemplateName::OverloadedTemplate: {
3590    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3591    // DNInfo work in progress: CHECKME: what about DNLoc?
3592    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3593  }
3594
3595  case TemplateName::DependentTemplate: {
3596    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3597    DeclarationName DName;
3598    if (DTN->isIdentifier()) {
3599      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3600      return DeclarationNameInfo(DName, NameLoc);
3601    } else {
3602      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3603      // DNInfo work in progress: FIXME: source locations?
3604      DeclarationNameLoc DNLoc;
3605      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3606      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3607      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3608    }
3609  }
3610
3611  case TemplateName::SubstTemplateTemplateParm: {
3612    SubstTemplateTemplateParmStorage *subst
3613      = Name.getAsSubstTemplateTemplateParm();
3614    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3615                               NameLoc);
3616  }
3617
3618  case TemplateName::SubstTemplateTemplateParmPack: {
3619    SubstTemplateTemplateParmPackStorage *subst
3620      = Name.getAsSubstTemplateTemplateParmPack();
3621    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3622                               NameLoc);
3623  }
3624  }
3625
3626  llvm_unreachable("bad template name kind!");
3627}
3628
3629TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3630  switch (Name.getKind()) {
3631  case TemplateName::QualifiedTemplate:
3632  case TemplateName::Template: {
3633    TemplateDecl *Template = Name.getAsTemplateDecl();
3634    if (TemplateTemplateParmDecl *TTP
3635          = dyn_cast<TemplateTemplateParmDecl>(Template))
3636      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3637
3638    // The canonical template name is the canonical template declaration.
3639    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3640  }
3641
3642  case TemplateName::OverloadedTemplate:
3643    llvm_unreachable("cannot canonicalize overloaded template");
3644
3645  case TemplateName::DependentTemplate: {
3646    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3647    assert(DTN && "Non-dependent template names must refer to template decls.");
3648    return DTN->CanonicalTemplateName;
3649  }
3650
3651  case TemplateName::SubstTemplateTemplateParm: {
3652    SubstTemplateTemplateParmStorage *subst
3653      = Name.getAsSubstTemplateTemplateParm();
3654    return getCanonicalTemplateName(subst->getReplacement());
3655  }
3656
3657  case TemplateName::SubstTemplateTemplateParmPack: {
3658    SubstTemplateTemplateParmPackStorage *subst
3659                                  = Name.getAsSubstTemplateTemplateParmPack();
3660    TemplateTemplateParmDecl *canonParameter
3661      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3662    TemplateArgument canonArgPack
3663      = getCanonicalTemplateArgument(subst->getArgumentPack());
3664    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3665  }
3666  }
3667
3668  llvm_unreachable("bad template name!");
3669}
3670
3671bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3672  X = getCanonicalTemplateName(X);
3673  Y = getCanonicalTemplateName(Y);
3674  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3675}
3676
3677TemplateArgument
3678ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3679  switch (Arg.getKind()) {
3680    case TemplateArgument::Null:
3681      return Arg;
3682
3683    case TemplateArgument::Expression:
3684      return Arg;
3685
3686    case TemplateArgument::Declaration: {
3687      if (Decl *D = Arg.getAsDecl())
3688          return TemplateArgument(D->getCanonicalDecl());
3689      return TemplateArgument((Decl*)0);
3690    }
3691
3692    case TemplateArgument::Template:
3693      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3694
3695    case TemplateArgument::TemplateExpansion:
3696      return TemplateArgument(getCanonicalTemplateName(
3697                                         Arg.getAsTemplateOrTemplatePattern()),
3698                              Arg.getNumTemplateExpansions());
3699
3700    case TemplateArgument::Integral:
3701      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3702
3703    case TemplateArgument::Type:
3704      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3705
3706    case TemplateArgument::Pack: {
3707      if (Arg.pack_size() == 0)
3708        return Arg;
3709
3710      TemplateArgument *CanonArgs
3711        = new (*this) TemplateArgument[Arg.pack_size()];
3712      unsigned Idx = 0;
3713      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3714                                        AEnd = Arg.pack_end();
3715           A != AEnd; (void)++A, ++Idx)
3716        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3717
3718      return TemplateArgument(CanonArgs, Arg.pack_size());
3719    }
3720  }
3721
3722  // Silence GCC warning
3723  llvm_unreachable("Unhandled template argument kind");
3724}
3725
3726NestedNameSpecifier *
3727ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3728  if (!NNS)
3729    return 0;
3730
3731  switch (NNS->getKind()) {
3732  case NestedNameSpecifier::Identifier:
3733    // Canonicalize the prefix but keep the identifier the same.
3734    return NestedNameSpecifier::Create(*this,
3735                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3736                                       NNS->getAsIdentifier());
3737
3738  case NestedNameSpecifier::Namespace:
3739    // A namespace is canonical; build a nested-name-specifier with
3740    // this namespace and no prefix.
3741    return NestedNameSpecifier::Create(*this, 0,
3742                                 NNS->getAsNamespace()->getOriginalNamespace());
3743
3744  case NestedNameSpecifier::NamespaceAlias:
3745    // A namespace is canonical; build a nested-name-specifier with
3746    // this namespace and no prefix.
3747    return NestedNameSpecifier::Create(*this, 0,
3748                                    NNS->getAsNamespaceAlias()->getNamespace()
3749                                                      ->getOriginalNamespace());
3750
3751  case NestedNameSpecifier::TypeSpec:
3752  case NestedNameSpecifier::TypeSpecWithTemplate: {
3753    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3754
3755    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3756    // break it apart into its prefix and identifier, then reconsititute those
3757    // as the canonical nested-name-specifier. This is required to canonicalize
3758    // a dependent nested-name-specifier involving typedefs of dependent-name
3759    // types, e.g.,
3760    //   typedef typename T::type T1;
3761    //   typedef typename T1::type T2;
3762    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3763      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3764                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3765
3766    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3767    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3768    // first place?
3769    return NestedNameSpecifier::Create(*this, 0, false,
3770                                       const_cast<Type*>(T.getTypePtr()));
3771  }
3772
3773  case NestedNameSpecifier::Global:
3774    // The global specifier is canonical and unique.
3775    return NNS;
3776  }
3777
3778  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3779}
3780
3781
3782const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3783  // Handle the non-qualified case efficiently.
3784  if (!T.hasLocalQualifiers()) {
3785    // Handle the common positive case fast.
3786    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3787      return AT;
3788  }
3789
3790  // Handle the common negative case fast.
3791  if (!isa<ArrayType>(T.getCanonicalType()))
3792    return 0;
3793
3794  // Apply any qualifiers from the array type to the element type.  This
3795  // implements C99 6.7.3p8: "If the specification of an array type includes
3796  // any type qualifiers, the element type is so qualified, not the array type."
3797
3798  // If we get here, we either have type qualifiers on the type, or we have
3799  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3800  // we must propagate them down into the element type.
3801
3802  SplitQualType split = T.getSplitDesugaredType();
3803  Qualifiers qs = split.Quals;
3804
3805  // If we have a simple case, just return now.
3806  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3807  if (ATy == 0 || qs.empty())
3808    return ATy;
3809
3810  // Otherwise, we have an array and we have qualifiers on it.  Push the
3811  // qualifiers into the array element type and return a new array type.
3812  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3813
3814  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3815    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3816                                                CAT->getSizeModifier(),
3817                                           CAT->getIndexTypeCVRQualifiers()));
3818  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3819    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3820                                                  IAT->getSizeModifier(),
3821                                           IAT->getIndexTypeCVRQualifiers()));
3822
3823  if (const DependentSizedArrayType *DSAT
3824        = dyn_cast<DependentSizedArrayType>(ATy))
3825    return cast<ArrayType>(
3826                     getDependentSizedArrayType(NewEltTy,
3827                                                DSAT->getSizeExpr(),
3828                                                DSAT->getSizeModifier(),
3829                                              DSAT->getIndexTypeCVRQualifiers(),
3830                                                DSAT->getBracketsRange()));
3831
3832  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3833  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3834                                              VAT->getSizeExpr(),
3835                                              VAT->getSizeModifier(),
3836                                              VAT->getIndexTypeCVRQualifiers(),
3837                                              VAT->getBracketsRange()));
3838}
3839
3840QualType ASTContext::getAdjustedParameterType(QualType T) const {
3841  // C99 6.7.5.3p7:
3842  //   A declaration of a parameter as "array of type" shall be
3843  //   adjusted to "qualified pointer to type", where the type
3844  //   qualifiers (if any) are those specified within the [ and ] of
3845  //   the array type derivation.
3846  if (T->isArrayType())
3847    return getArrayDecayedType(T);
3848
3849  // C99 6.7.5.3p8:
3850  //   A declaration of a parameter as "function returning type"
3851  //   shall be adjusted to "pointer to function returning type", as
3852  //   in 6.3.2.1.
3853  if (T->isFunctionType())
3854    return getPointerType(T);
3855
3856  return T;
3857}
3858
3859QualType ASTContext::getSignatureParameterType(QualType T) const {
3860  T = getVariableArrayDecayedType(T);
3861  T = getAdjustedParameterType(T);
3862  return T.getUnqualifiedType();
3863}
3864
3865/// getArrayDecayedType - Return the properly qualified result of decaying the
3866/// specified array type to a pointer.  This operation is non-trivial when
3867/// handling typedefs etc.  The canonical type of "T" must be an array type,
3868/// this returns a pointer to a properly qualified element of the array.
3869///
3870/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3871QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3872  // Get the element type with 'getAsArrayType' so that we don't lose any
3873  // typedefs in the element type of the array.  This also handles propagation
3874  // of type qualifiers from the array type into the element type if present
3875  // (C99 6.7.3p8).
3876  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3877  assert(PrettyArrayType && "Not an array type!");
3878
3879  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3880
3881  // int x[restrict 4] ->  int *restrict
3882  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3883}
3884
3885QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3886  return getBaseElementType(array->getElementType());
3887}
3888
3889QualType ASTContext::getBaseElementType(QualType type) const {
3890  Qualifiers qs;
3891  while (true) {
3892    SplitQualType split = type.getSplitDesugaredType();
3893    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3894    if (!array) break;
3895
3896    type = array->getElementType();
3897    qs.addConsistentQualifiers(split.Quals);
3898  }
3899
3900  return getQualifiedType(type, qs);
3901}
3902
3903/// getConstantArrayElementCount - Returns number of constant array elements.
3904uint64_t
3905ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3906  uint64_t ElementCount = 1;
3907  do {
3908    ElementCount *= CA->getSize().getZExtValue();
3909    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3910  } while (CA);
3911  return ElementCount;
3912}
3913
3914/// getFloatingRank - Return a relative rank for floating point types.
3915/// This routine will assert if passed a built-in type that isn't a float.
3916static FloatingRank getFloatingRank(QualType T) {
3917  if (const ComplexType *CT = T->getAs<ComplexType>())
3918    return getFloatingRank(CT->getElementType());
3919
3920  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3921  switch (T->getAs<BuiltinType>()->getKind()) {
3922  default: llvm_unreachable("getFloatingRank(): not a floating type");
3923  case BuiltinType::Half:       return HalfRank;
3924  case BuiltinType::Float:      return FloatRank;
3925  case BuiltinType::Double:     return DoubleRank;
3926  case BuiltinType::LongDouble: return LongDoubleRank;
3927  }
3928}
3929
3930/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3931/// point or a complex type (based on typeDomain/typeSize).
3932/// 'typeDomain' is a real floating point or complex type.
3933/// 'typeSize' is a real floating point or complex type.
3934QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3935                                                       QualType Domain) const {
3936  FloatingRank EltRank = getFloatingRank(Size);
3937  if (Domain->isComplexType()) {
3938    switch (EltRank) {
3939    case HalfRank: llvm_unreachable("Complex half is not supported");
3940    case FloatRank:      return FloatComplexTy;
3941    case DoubleRank:     return DoubleComplexTy;
3942    case LongDoubleRank: return LongDoubleComplexTy;
3943    }
3944  }
3945
3946  assert(Domain->isRealFloatingType() && "Unknown domain!");
3947  switch (EltRank) {
3948  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3949  case FloatRank:      return FloatTy;
3950  case DoubleRank:     return DoubleTy;
3951  case LongDoubleRank: return LongDoubleTy;
3952  }
3953  llvm_unreachable("getFloatingRank(): illegal value for rank");
3954}
3955
3956/// getFloatingTypeOrder - Compare the rank of the two specified floating
3957/// point types, ignoring the domain of the type (i.e. 'double' ==
3958/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3959/// LHS < RHS, return -1.
3960int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3961  FloatingRank LHSR = getFloatingRank(LHS);
3962  FloatingRank RHSR = getFloatingRank(RHS);
3963
3964  if (LHSR == RHSR)
3965    return 0;
3966  if (LHSR > RHSR)
3967    return 1;
3968  return -1;
3969}
3970
3971/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3972/// routine will assert if passed a built-in type that isn't an integer or enum,
3973/// or if it is not canonicalized.
3974unsigned ASTContext::getIntegerRank(const Type *T) const {
3975  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3976
3977  switch (cast<BuiltinType>(T)->getKind()) {
3978  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3979  case BuiltinType::Bool:
3980    return 1 + (getIntWidth(BoolTy) << 3);
3981  case BuiltinType::Char_S:
3982  case BuiltinType::Char_U:
3983  case BuiltinType::SChar:
3984  case BuiltinType::UChar:
3985    return 2 + (getIntWidth(CharTy) << 3);
3986  case BuiltinType::Short:
3987  case BuiltinType::UShort:
3988    return 3 + (getIntWidth(ShortTy) << 3);
3989  case BuiltinType::Int:
3990  case BuiltinType::UInt:
3991    return 4 + (getIntWidth(IntTy) << 3);
3992  case BuiltinType::Long:
3993  case BuiltinType::ULong:
3994    return 5 + (getIntWidth(LongTy) << 3);
3995  case BuiltinType::LongLong:
3996  case BuiltinType::ULongLong:
3997    return 6 + (getIntWidth(LongLongTy) << 3);
3998  case BuiltinType::Int128:
3999  case BuiltinType::UInt128:
4000    return 7 + (getIntWidth(Int128Ty) << 3);
4001  }
4002}
4003
4004/// \brief Whether this is a promotable bitfield reference according
4005/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4006///
4007/// \returns the type this bit-field will promote to, or NULL if no
4008/// promotion occurs.
4009QualType ASTContext::isPromotableBitField(Expr *E) const {
4010  if (E->isTypeDependent() || E->isValueDependent())
4011    return QualType();
4012
4013  FieldDecl *Field = E->getBitField();
4014  if (!Field)
4015    return QualType();
4016
4017  QualType FT = Field->getType();
4018
4019  uint64_t BitWidth = Field->getBitWidthValue(*this);
4020  uint64_t IntSize = getTypeSize(IntTy);
4021  // GCC extension compatibility: if the bit-field size is less than or equal
4022  // to the size of int, it gets promoted no matter what its type is.
4023  // For instance, unsigned long bf : 4 gets promoted to signed int.
4024  if (BitWidth < IntSize)
4025    return IntTy;
4026
4027  if (BitWidth == IntSize)
4028    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4029
4030  // Types bigger than int are not subject to promotions, and therefore act
4031  // like the base type.
4032  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4033  // is ridiculous.
4034  return QualType();
4035}
4036
4037/// getPromotedIntegerType - Returns the type that Promotable will
4038/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4039/// integer type.
4040QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4041  assert(!Promotable.isNull());
4042  assert(Promotable->isPromotableIntegerType());
4043  if (const EnumType *ET = Promotable->getAs<EnumType>())
4044    return ET->getDecl()->getPromotionType();
4045
4046  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4047    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4048    // (3.9.1) can be converted to a prvalue of the first of the following
4049    // types that can represent all the values of its underlying type:
4050    // int, unsigned int, long int, unsigned long int, long long int, or
4051    // unsigned long long int [...]
4052    // FIXME: Is there some better way to compute this?
4053    if (BT->getKind() == BuiltinType::WChar_S ||
4054        BT->getKind() == BuiltinType::WChar_U ||
4055        BT->getKind() == BuiltinType::Char16 ||
4056        BT->getKind() == BuiltinType::Char32) {
4057      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4058      uint64_t FromSize = getTypeSize(BT);
4059      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4060                                  LongLongTy, UnsignedLongLongTy };
4061      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4062        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4063        if (FromSize < ToSize ||
4064            (FromSize == ToSize &&
4065             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4066          return PromoteTypes[Idx];
4067      }
4068      llvm_unreachable("char type should fit into long long");
4069    }
4070  }
4071
4072  // At this point, we should have a signed or unsigned integer type.
4073  if (Promotable->isSignedIntegerType())
4074    return IntTy;
4075  uint64_t PromotableSize = getTypeSize(Promotable);
4076  uint64_t IntSize = getTypeSize(IntTy);
4077  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4078  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4079}
4080
4081/// \brief Recurses in pointer/array types until it finds an objc retainable
4082/// type and returns its ownership.
4083Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4084  while (!T.isNull()) {
4085    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4086      return T.getObjCLifetime();
4087    if (T->isArrayType())
4088      T = getBaseElementType(T);
4089    else if (const PointerType *PT = T->getAs<PointerType>())
4090      T = PT->getPointeeType();
4091    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4092      T = RT->getPointeeType();
4093    else
4094      break;
4095  }
4096
4097  return Qualifiers::OCL_None;
4098}
4099
4100/// getIntegerTypeOrder - Returns the highest ranked integer type:
4101/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4102/// LHS < RHS, return -1.
4103int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4104  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4105  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4106  if (LHSC == RHSC) return 0;
4107
4108  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4109  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4110
4111  unsigned LHSRank = getIntegerRank(LHSC);
4112  unsigned RHSRank = getIntegerRank(RHSC);
4113
4114  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4115    if (LHSRank == RHSRank) return 0;
4116    return LHSRank > RHSRank ? 1 : -1;
4117  }
4118
4119  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4120  if (LHSUnsigned) {
4121    // If the unsigned [LHS] type is larger, return it.
4122    if (LHSRank >= RHSRank)
4123      return 1;
4124
4125    // If the signed type can represent all values of the unsigned type, it
4126    // wins.  Because we are dealing with 2's complement and types that are
4127    // powers of two larger than each other, this is always safe.
4128    return -1;
4129  }
4130
4131  // If the unsigned [RHS] type is larger, return it.
4132  if (RHSRank >= LHSRank)
4133    return -1;
4134
4135  // If the signed type can represent all values of the unsigned type, it
4136  // wins.  Because we are dealing with 2's complement and types that are
4137  // powers of two larger than each other, this is always safe.
4138  return 1;
4139}
4140
4141static RecordDecl *
4142CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4143                 DeclContext *DC, IdentifierInfo *Id) {
4144  SourceLocation Loc;
4145  if (Ctx.getLangOpts().CPlusPlus)
4146    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4147  else
4148    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4149}
4150
4151// getCFConstantStringType - Return the type used for constant CFStrings.
4152QualType ASTContext::getCFConstantStringType() const {
4153  if (!CFConstantStringTypeDecl) {
4154    CFConstantStringTypeDecl =
4155      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4156                       &Idents.get("NSConstantString"));
4157    CFConstantStringTypeDecl->startDefinition();
4158
4159    QualType FieldTypes[4];
4160
4161    // const int *isa;
4162    FieldTypes[0] = getPointerType(IntTy.withConst());
4163    // int flags;
4164    FieldTypes[1] = IntTy;
4165    // const char *str;
4166    FieldTypes[2] = getPointerType(CharTy.withConst());
4167    // long length;
4168    FieldTypes[3] = LongTy;
4169
4170    // Create fields
4171    for (unsigned i = 0; i < 4; ++i) {
4172      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4173                                           SourceLocation(),
4174                                           SourceLocation(), 0,
4175                                           FieldTypes[i], /*TInfo=*/0,
4176                                           /*BitWidth=*/0,
4177                                           /*Mutable=*/false,
4178                                           ICIS_NoInit);
4179      Field->setAccess(AS_public);
4180      CFConstantStringTypeDecl->addDecl(Field);
4181    }
4182
4183    CFConstantStringTypeDecl->completeDefinition();
4184  }
4185
4186  return getTagDeclType(CFConstantStringTypeDecl);
4187}
4188
4189void ASTContext::setCFConstantStringType(QualType T) {
4190  const RecordType *Rec = T->getAs<RecordType>();
4191  assert(Rec && "Invalid CFConstantStringType");
4192  CFConstantStringTypeDecl = Rec->getDecl();
4193}
4194
4195QualType ASTContext::getBlockDescriptorType() const {
4196  if (BlockDescriptorType)
4197    return getTagDeclType(BlockDescriptorType);
4198
4199  RecordDecl *T;
4200  // FIXME: Needs the FlagAppleBlock bit.
4201  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4202                       &Idents.get("__block_descriptor"));
4203  T->startDefinition();
4204
4205  QualType FieldTypes[] = {
4206    UnsignedLongTy,
4207    UnsignedLongTy,
4208  };
4209
4210  const char *FieldNames[] = {
4211    "reserved",
4212    "Size"
4213  };
4214
4215  for (size_t i = 0; i < 2; ++i) {
4216    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4217                                         SourceLocation(),
4218                                         &Idents.get(FieldNames[i]),
4219                                         FieldTypes[i], /*TInfo=*/0,
4220                                         /*BitWidth=*/0,
4221                                         /*Mutable=*/false,
4222                                         ICIS_NoInit);
4223    Field->setAccess(AS_public);
4224    T->addDecl(Field);
4225  }
4226
4227  T->completeDefinition();
4228
4229  BlockDescriptorType = T;
4230
4231  return getTagDeclType(BlockDescriptorType);
4232}
4233
4234QualType ASTContext::getBlockDescriptorExtendedType() const {
4235  if (BlockDescriptorExtendedType)
4236    return getTagDeclType(BlockDescriptorExtendedType);
4237
4238  RecordDecl *T;
4239  // FIXME: Needs the FlagAppleBlock bit.
4240  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4241                       &Idents.get("__block_descriptor_withcopydispose"));
4242  T->startDefinition();
4243
4244  QualType FieldTypes[] = {
4245    UnsignedLongTy,
4246    UnsignedLongTy,
4247    getPointerType(VoidPtrTy),
4248    getPointerType(VoidPtrTy)
4249  };
4250
4251  const char *FieldNames[] = {
4252    "reserved",
4253    "Size",
4254    "CopyFuncPtr",
4255    "DestroyFuncPtr"
4256  };
4257
4258  for (size_t i = 0; i < 4; ++i) {
4259    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4260                                         SourceLocation(),
4261                                         &Idents.get(FieldNames[i]),
4262                                         FieldTypes[i], /*TInfo=*/0,
4263                                         /*BitWidth=*/0,
4264                                         /*Mutable=*/false,
4265                                         ICIS_NoInit);
4266    Field->setAccess(AS_public);
4267    T->addDecl(Field);
4268  }
4269
4270  T->completeDefinition();
4271
4272  BlockDescriptorExtendedType = T;
4273
4274  return getTagDeclType(BlockDescriptorExtendedType);
4275}
4276
4277bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4278  if (Ty->isObjCRetainableType())
4279    return true;
4280  if (getLangOpts().CPlusPlus) {
4281    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4282      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4283      return RD->hasConstCopyConstructor();
4284
4285    }
4286  }
4287  return false;
4288}
4289
4290QualType
4291ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4292  //  type = struct __Block_byref_1_X {
4293  //    void *__isa;
4294  //    struct __Block_byref_1_X *__forwarding;
4295  //    unsigned int __flags;
4296  //    unsigned int __size;
4297  //    void *__copy_helper;            // as needed
4298  //    void *__destroy_help            // as needed
4299  //    int X;
4300  //  } *
4301
4302  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4303
4304  // FIXME: Move up
4305  SmallString<36> Name;
4306  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4307                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4308  RecordDecl *T;
4309  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4310  T->startDefinition();
4311  QualType Int32Ty = IntTy;
4312  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4313  QualType FieldTypes[] = {
4314    getPointerType(VoidPtrTy),
4315    getPointerType(getTagDeclType(T)),
4316    Int32Ty,
4317    Int32Ty,
4318    getPointerType(VoidPtrTy),
4319    getPointerType(VoidPtrTy),
4320    Ty
4321  };
4322
4323  StringRef FieldNames[] = {
4324    "__isa",
4325    "__forwarding",
4326    "__flags",
4327    "__size",
4328    "__copy_helper",
4329    "__destroy_helper",
4330    DeclName,
4331  };
4332
4333  for (size_t i = 0; i < 7; ++i) {
4334    if (!HasCopyAndDispose && i >=4 && i <= 5)
4335      continue;
4336    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4337                                         SourceLocation(),
4338                                         &Idents.get(FieldNames[i]),
4339                                         FieldTypes[i], /*TInfo=*/0,
4340                                         /*BitWidth=*/0, /*Mutable=*/false,
4341                                         ICIS_NoInit);
4342    Field->setAccess(AS_public);
4343    T->addDecl(Field);
4344  }
4345
4346  T->completeDefinition();
4347
4348  return getPointerType(getTagDeclType(T));
4349}
4350
4351TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4352  if (!ObjCInstanceTypeDecl)
4353    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4354                                               getTranslationUnitDecl(),
4355                                               SourceLocation(),
4356                                               SourceLocation(),
4357                                               &Idents.get("instancetype"),
4358                                     getTrivialTypeSourceInfo(getObjCIdType()));
4359  return ObjCInstanceTypeDecl;
4360}
4361
4362// This returns true if a type has been typedefed to BOOL:
4363// typedef <type> BOOL;
4364static bool isTypeTypedefedAsBOOL(QualType T) {
4365  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4366    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4367      return II->isStr("BOOL");
4368
4369  return false;
4370}
4371
4372/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4373/// purpose.
4374CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4375  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4376    return CharUnits::Zero();
4377
4378  CharUnits sz = getTypeSizeInChars(type);
4379
4380  // Make all integer and enum types at least as large as an int
4381  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4382    sz = std::max(sz, getTypeSizeInChars(IntTy));
4383  // Treat arrays as pointers, since that's how they're passed in.
4384  else if (type->isArrayType())
4385    sz = getTypeSizeInChars(VoidPtrTy);
4386  return sz;
4387}
4388
4389static inline
4390std::string charUnitsToString(const CharUnits &CU) {
4391  return llvm::itostr(CU.getQuantity());
4392}
4393
4394/// getObjCEncodingForBlock - Return the encoded type for this block
4395/// declaration.
4396std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4397  std::string S;
4398
4399  const BlockDecl *Decl = Expr->getBlockDecl();
4400  QualType BlockTy =
4401      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4402  // Encode result type.
4403  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4404  // Compute size of all parameters.
4405  // Start with computing size of a pointer in number of bytes.
4406  // FIXME: There might(should) be a better way of doing this computation!
4407  SourceLocation Loc;
4408  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4409  CharUnits ParmOffset = PtrSize;
4410  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4411       E = Decl->param_end(); PI != E; ++PI) {
4412    QualType PType = (*PI)->getType();
4413    CharUnits sz = getObjCEncodingTypeSize(PType);
4414    if (sz.isZero())
4415      continue;
4416    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4417    ParmOffset += sz;
4418  }
4419  // Size of the argument frame
4420  S += charUnitsToString(ParmOffset);
4421  // Block pointer and offset.
4422  S += "@?0";
4423
4424  // Argument types.
4425  ParmOffset = PtrSize;
4426  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4427       Decl->param_end(); PI != E; ++PI) {
4428    ParmVarDecl *PVDecl = *PI;
4429    QualType PType = PVDecl->getOriginalType();
4430    if (const ArrayType *AT =
4431          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4432      // Use array's original type only if it has known number of
4433      // elements.
4434      if (!isa<ConstantArrayType>(AT))
4435        PType = PVDecl->getType();
4436    } else if (PType->isFunctionType())
4437      PType = PVDecl->getType();
4438    getObjCEncodingForType(PType, S);
4439    S += charUnitsToString(ParmOffset);
4440    ParmOffset += getObjCEncodingTypeSize(PType);
4441  }
4442
4443  return S;
4444}
4445
4446bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4447                                                std::string& S) {
4448  // Encode result type.
4449  getObjCEncodingForType(Decl->getResultType(), S);
4450  CharUnits ParmOffset;
4451  // Compute size of all parameters.
4452  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4453       E = Decl->param_end(); PI != E; ++PI) {
4454    QualType PType = (*PI)->getType();
4455    CharUnits sz = getObjCEncodingTypeSize(PType);
4456    if (sz.isZero())
4457      continue;
4458
4459    assert (sz.isPositive() &&
4460        "getObjCEncodingForFunctionDecl - Incomplete param type");
4461    ParmOffset += sz;
4462  }
4463  S += charUnitsToString(ParmOffset);
4464  ParmOffset = CharUnits::Zero();
4465
4466  // Argument types.
4467  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4468       E = Decl->param_end(); PI != E; ++PI) {
4469    ParmVarDecl *PVDecl = *PI;
4470    QualType PType = PVDecl->getOriginalType();
4471    if (const ArrayType *AT =
4472          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4473      // Use array's original type only if it has known number of
4474      // elements.
4475      if (!isa<ConstantArrayType>(AT))
4476        PType = PVDecl->getType();
4477    } else if (PType->isFunctionType())
4478      PType = PVDecl->getType();
4479    getObjCEncodingForType(PType, S);
4480    S += charUnitsToString(ParmOffset);
4481    ParmOffset += getObjCEncodingTypeSize(PType);
4482  }
4483
4484  return false;
4485}
4486
4487/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4488/// method parameter or return type. If Extended, include class names and
4489/// block object types.
4490void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4491                                                   QualType T, std::string& S,
4492                                                   bool Extended) const {
4493  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4494  getObjCEncodingForTypeQualifier(QT, S);
4495  // Encode parameter type.
4496  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4497                             true     /*OutermostType*/,
4498                             false    /*EncodingProperty*/,
4499                             false    /*StructField*/,
4500                             Extended /*EncodeBlockParameters*/,
4501                             Extended /*EncodeClassNames*/);
4502}
4503
4504/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4505/// declaration.
4506bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4507                                              std::string& S,
4508                                              bool Extended) const {
4509  // FIXME: This is not very efficient.
4510  // Encode return type.
4511  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4512                                    Decl->getResultType(), S, Extended);
4513  // Compute size of all parameters.
4514  // Start with computing size of a pointer in number of bytes.
4515  // FIXME: There might(should) be a better way of doing this computation!
4516  SourceLocation Loc;
4517  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4518  // The first two arguments (self and _cmd) are pointers; account for
4519  // their size.
4520  CharUnits ParmOffset = 2 * PtrSize;
4521  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4522       E = Decl->sel_param_end(); PI != E; ++PI) {
4523    QualType PType = (*PI)->getType();
4524    CharUnits sz = getObjCEncodingTypeSize(PType);
4525    if (sz.isZero())
4526      continue;
4527
4528    assert (sz.isPositive() &&
4529        "getObjCEncodingForMethodDecl - Incomplete param type");
4530    ParmOffset += sz;
4531  }
4532  S += charUnitsToString(ParmOffset);
4533  S += "@0:";
4534  S += charUnitsToString(PtrSize);
4535
4536  // Argument types.
4537  ParmOffset = 2 * PtrSize;
4538  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4539       E = Decl->sel_param_end(); PI != E; ++PI) {
4540    const ParmVarDecl *PVDecl = *PI;
4541    QualType PType = PVDecl->getOriginalType();
4542    if (const ArrayType *AT =
4543          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4544      // Use array's original type only if it has known number of
4545      // elements.
4546      if (!isa<ConstantArrayType>(AT))
4547        PType = PVDecl->getType();
4548    } else if (PType->isFunctionType())
4549      PType = PVDecl->getType();
4550    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4551                                      PType, S, Extended);
4552    S += charUnitsToString(ParmOffset);
4553    ParmOffset += getObjCEncodingTypeSize(PType);
4554  }
4555
4556  return false;
4557}
4558
4559/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4560/// property declaration. If non-NULL, Container must be either an
4561/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4562/// NULL when getting encodings for protocol properties.
4563/// Property attributes are stored as a comma-delimited C string. The simple
4564/// attributes readonly and bycopy are encoded as single characters. The
4565/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4566/// encoded as single characters, followed by an identifier. Property types
4567/// are also encoded as a parametrized attribute. The characters used to encode
4568/// these attributes are defined by the following enumeration:
4569/// @code
4570/// enum PropertyAttributes {
4571/// kPropertyReadOnly = 'R',   // property is read-only.
4572/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4573/// kPropertyByref = '&',  // property is a reference to the value last assigned
4574/// kPropertyDynamic = 'D',    // property is dynamic
4575/// kPropertyGetter = 'G',     // followed by getter selector name
4576/// kPropertySetter = 'S',     // followed by setter selector name
4577/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4578/// kPropertyType = 'T'              // followed by old-style type encoding.
4579/// kPropertyWeak = 'W'              // 'weak' property
4580/// kPropertyStrong = 'P'            // property GC'able
4581/// kPropertyNonAtomic = 'N'         // property non-atomic
4582/// };
4583/// @endcode
4584void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4585                                                const Decl *Container,
4586                                                std::string& S) const {
4587  // Collect information from the property implementation decl(s).
4588  bool Dynamic = false;
4589  ObjCPropertyImplDecl *SynthesizePID = 0;
4590
4591  // FIXME: Duplicated code due to poor abstraction.
4592  if (Container) {
4593    if (const ObjCCategoryImplDecl *CID =
4594        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4595      for (ObjCCategoryImplDecl::propimpl_iterator
4596             i = CID->propimpl_begin(), e = CID->propimpl_end();
4597           i != e; ++i) {
4598        ObjCPropertyImplDecl *PID = *i;
4599        if (PID->getPropertyDecl() == PD) {
4600          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4601            Dynamic = true;
4602          } else {
4603            SynthesizePID = PID;
4604          }
4605        }
4606      }
4607    } else {
4608      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4609      for (ObjCCategoryImplDecl::propimpl_iterator
4610             i = OID->propimpl_begin(), e = OID->propimpl_end();
4611           i != e; ++i) {
4612        ObjCPropertyImplDecl *PID = *i;
4613        if (PID->getPropertyDecl() == PD) {
4614          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4615            Dynamic = true;
4616          } else {
4617            SynthesizePID = PID;
4618          }
4619        }
4620      }
4621    }
4622  }
4623
4624  // FIXME: This is not very efficient.
4625  S = "T";
4626
4627  // Encode result type.
4628  // GCC has some special rules regarding encoding of properties which
4629  // closely resembles encoding of ivars.
4630  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4631                             true /* outermost type */,
4632                             true /* encoding for property */);
4633
4634  if (PD->isReadOnly()) {
4635    S += ",R";
4636  } else {
4637    switch (PD->getSetterKind()) {
4638    case ObjCPropertyDecl::Assign: break;
4639    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4640    case ObjCPropertyDecl::Retain: S += ",&"; break;
4641    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4642    }
4643  }
4644
4645  // It really isn't clear at all what this means, since properties
4646  // are "dynamic by default".
4647  if (Dynamic)
4648    S += ",D";
4649
4650  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4651    S += ",N";
4652
4653  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4654    S += ",G";
4655    S += PD->getGetterName().getAsString();
4656  }
4657
4658  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4659    S += ",S";
4660    S += PD->getSetterName().getAsString();
4661  }
4662
4663  if (SynthesizePID) {
4664    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4665    S += ",V";
4666    S += OID->getNameAsString();
4667  }
4668
4669  // FIXME: OBJCGC: weak & strong
4670}
4671
4672/// getLegacyIntegralTypeEncoding -
4673/// Another legacy compatibility encoding: 32-bit longs are encoded as
4674/// 'l' or 'L' , but not always.  For typedefs, we need to use
4675/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4676///
4677void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4678  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4679    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4680      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4681        PointeeTy = UnsignedIntTy;
4682      else
4683        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4684          PointeeTy = IntTy;
4685    }
4686  }
4687}
4688
4689void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4690                                        const FieldDecl *Field) const {
4691  // We follow the behavior of gcc, expanding structures which are
4692  // directly pointed to, and expanding embedded structures. Note that
4693  // these rules are sufficient to prevent recursive encoding of the
4694  // same type.
4695  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4696                             true /* outermost type */);
4697}
4698
4699static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4700    switch (T->getAs<BuiltinType>()->getKind()) {
4701    default: llvm_unreachable("Unhandled builtin type kind");
4702    case BuiltinType::Void:       return 'v';
4703    case BuiltinType::Bool:       return 'B';
4704    case BuiltinType::Char_U:
4705    case BuiltinType::UChar:      return 'C';
4706    case BuiltinType::UShort:     return 'S';
4707    case BuiltinType::UInt:       return 'I';
4708    case BuiltinType::ULong:
4709        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4710    case BuiltinType::UInt128:    return 'T';
4711    case BuiltinType::ULongLong:  return 'Q';
4712    case BuiltinType::Char_S:
4713    case BuiltinType::SChar:      return 'c';
4714    case BuiltinType::Short:      return 's';
4715    case BuiltinType::WChar_S:
4716    case BuiltinType::WChar_U:
4717    case BuiltinType::Int:        return 'i';
4718    case BuiltinType::Long:
4719      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4720    case BuiltinType::LongLong:   return 'q';
4721    case BuiltinType::Int128:     return 't';
4722    case BuiltinType::Float:      return 'f';
4723    case BuiltinType::Double:     return 'd';
4724    case BuiltinType::LongDouble: return 'D';
4725    }
4726}
4727
4728static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4729  EnumDecl *Enum = ET->getDecl();
4730
4731  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4732  if (!Enum->isFixed())
4733    return 'i';
4734
4735  // The encoding of a fixed enum type matches its fixed underlying type.
4736  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4737}
4738
4739static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4740                           QualType T, const FieldDecl *FD) {
4741  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4742  S += 'b';
4743  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4744  // The GNU runtime requires more information; bitfields are encoded as b,
4745  // then the offset (in bits) of the first element, then the type of the
4746  // bitfield, then the size in bits.  For example, in this structure:
4747  //
4748  // struct
4749  // {
4750  //    int integer;
4751  //    int flags:2;
4752  // };
4753  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4754  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4755  // information is not especially sensible, but we're stuck with it for
4756  // compatibility with GCC, although providing it breaks anything that
4757  // actually uses runtime introspection and wants to work on both runtimes...
4758  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4759    const RecordDecl *RD = FD->getParent();
4760    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4761    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4762    if (const EnumType *ET = T->getAs<EnumType>())
4763      S += ObjCEncodingForEnumType(Ctx, ET);
4764    else
4765      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4766  }
4767  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4768}
4769
4770// FIXME: Use SmallString for accumulating string.
4771void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4772                                            bool ExpandPointedToStructures,
4773                                            bool ExpandStructures,
4774                                            const FieldDecl *FD,
4775                                            bool OutermostType,
4776                                            bool EncodingProperty,
4777                                            bool StructField,
4778                                            bool EncodeBlockParameters,
4779                                            bool EncodeClassNames) const {
4780  if (T->getAs<BuiltinType>()) {
4781    if (FD && FD->isBitField())
4782      return EncodeBitField(this, S, T, FD);
4783    S += ObjCEncodingForPrimitiveKind(this, T);
4784    return;
4785  }
4786
4787  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4788    S += 'j';
4789    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4790                               false);
4791    return;
4792  }
4793
4794  // encoding for pointer or r3eference types.
4795  QualType PointeeTy;
4796  if (const PointerType *PT = T->getAs<PointerType>()) {
4797    if (PT->isObjCSelType()) {
4798      S += ':';
4799      return;
4800    }
4801    PointeeTy = PT->getPointeeType();
4802  }
4803  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4804    PointeeTy = RT->getPointeeType();
4805  if (!PointeeTy.isNull()) {
4806    bool isReadOnly = false;
4807    // For historical/compatibility reasons, the read-only qualifier of the
4808    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4809    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4810    // Also, do not emit the 'r' for anything but the outermost type!
4811    if (isa<TypedefType>(T.getTypePtr())) {
4812      if (OutermostType && T.isConstQualified()) {
4813        isReadOnly = true;
4814        S += 'r';
4815      }
4816    } else if (OutermostType) {
4817      QualType P = PointeeTy;
4818      while (P->getAs<PointerType>())
4819        P = P->getAs<PointerType>()->getPointeeType();
4820      if (P.isConstQualified()) {
4821        isReadOnly = true;
4822        S += 'r';
4823      }
4824    }
4825    if (isReadOnly) {
4826      // Another legacy compatibility encoding. Some ObjC qualifier and type
4827      // combinations need to be rearranged.
4828      // Rewrite "in const" from "nr" to "rn"
4829      if (StringRef(S).endswith("nr"))
4830        S.replace(S.end()-2, S.end(), "rn");
4831    }
4832
4833    if (PointeeTy->isCharType()) {
4834      // char pointer types should be encoded as '*' unless it is a
4835      // type that has been typedef'd to 'BOOL'.
4836      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4837        S += '*';
4838        return;
4839      }
4840    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4841      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4842      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4843        S += '#';
4844        return;
4845      }
4846      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4847      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4848        S += '@';
4849        return;
4850      }
4851      // fall through...
4852    }
4853    S += '^';
4854    getLegacyIntegralTypeEncoding(PointeeTy);
4855
4856    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4857                               NULL);
4858    return;
4859  }
4860
4861  if (const ArrayType *AT =
4862      // Ignore type qualifiers etc.
4863        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4864    if (isa<IncompleteArrayType>(AT) && !StructField) {
4865      // Incomplete arrays are encoded as a pointer to the array element.
4866      S += '^';
4867
4868      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4869                                 false, ExpandStructures, FD);
4870    } else {
4871      S += '[';
4872
4873      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4874        if (getTypeSize(CAT->getElementType()) == 0)
4875          S += '0';
4876        else
4877          S += llvm::utostr(CAT->getSize().getZExtValue());
4878      } else {
4879        //Variable length arrays are encoded as a regular array with 0 elements.
4880        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4881               "Unknown array type!");
4882        S += '0';
4883      }
4884
4885      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4886                                 false, ExpandStructures, FD);
4887      S += ']';
4888    }
4889    return;
4890  }
4891
4892  if (T->getAs<FunctionType>()) {
4893    S += '?';
4894    return;
4895  }
4896
4897  if (const RecordType *RTy = T->getAs<RecordType>()) {
4898    RecordDecl *RDecl = RTy->getDecl();
4899    S += RDecl->isUnion() ? '(' : '{';
4900    // Anonymous structures print as '?'
4901    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4902      S += II->getName();
4903      if (ClassTemplateSpecializationDecl *Spec
4904          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4905        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4906        std::string TemplateArgsStr
4907          = TemplateSpecializationType::PrintTemplateArgumentList(
4908                                            TemplateArgs.data(),
4909                                            TemplateArgs.size(),
4910                                            (*this).getPrintingPolicy());
4911
4912        S += TemplateArgsStr;
4913      }
4914    } else {
4915      S += '?';
4916    }
4917    if (ExpandStructures) {
4918      S += '=';
4919      if (!RDecl->isUnion()) {
4920        getObjCEncodingForStructureImpl(RDecl, S, FD);
4921      } else {
4922        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4923                                     FieldEnd = RDecl->field_end();
4924             Field != FieldEnd; ++Field) {
4925          if (FD) {
4926            S += '"';
4927            S += Field->getNameAsString();
4928            S += '"';
4929          }
4930
4931          // Special case bit-fields.
4932          if (Field->isBitField()) {
4933            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4934                                       *Field);
4935          } else {
4936            QualType qt = Field->getType();
4937            getLegacyIntegralTypeEncoding(qt);
4938            getObjCEncodingForTypeImpl(qt, S, false, true,
4939                                       FD, /*OutermostType*/false,
4940                                       /*EncodingProperty*/false,
4941                                       /*StructField*/true);
4942          }
4943        }
4944      }
4945    }
4946    S += RDecl->isUnion() ? ')' : '}';
4947    return;
4948  }
4949
4950  if (const EnumType *ET = T->getAs<EnumType>()) {
4951    if (FD && FD->isBitField())
4952      EncodeBitField(this, S, T, FD);
4953    else
4954      S += ObjCEncodingForEnumType(this, ET);
4955    return;
4956  }
4957
4958  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4959    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4960    if (EncodeBlockParameters) {
4961      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4962
4963      S += '<';
4964      // Block return type
4965      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4966                                 ExpandPointedToStructures, ExpandStructures,
4967                                 FD,
4968                                 false /* OutermostType */,
4969                                 EncodingProperty,
4970                                 false /* StructField */,
4971                                 EncodeBlockParameters,
4972                                 EncodeClassNames);
4973      // Block self
4974      S += "@?";
4975      // Block parameters
4976      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4977        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4978               E = FPT->arg_type_end(); I && (I != E); ++I) {
4979          getObjCEncodingForTypeImpl(*I, S,
4980                                     ExpandPointedToStructures,
4981                                     ExpandStructures,
4982                                     FD,
4983                                     false /* OutermostType */,
4984                                     EncodingProperty,
4985                                     false /* StructField */,
4986                                     EncodeBlockParameters,
4987                                     EncodeClassNames);
4988        }
4989      }
4990      S += '>';
4991    }
4992    return;
4993  }
4994
4995  // Ignore protocol qualifiers when mangling at this level.
4996  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4997    T = OT->getBaseType();
4998
4999  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
5000    // @encode(class_name)
5001    ObjCInterfaceDecl *OI = OIT->getDecl();
5002    S += '{';
5003    const IdentifierInfo *II = OI->getIdentifier();
5004    S += II->getName();
5005    S += '=';
5006    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5007    DeepCollectObjCIvars(OI, true, Ivars);
5008    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5009      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5010      if (Field->isBitField())
5011        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5012      else
5013        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5014    }
5015    S += '}';
5016    return;
5017  }
5018
5019  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
5020    if (OPT->isObjCIdType()) {
5021      S += '@';
5022      return;
5023    }
5024
5025    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5026      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5027      // Since this is a binary compatibility issue, need to consult with runtime
5028      // folks. Fortunately, this is a *very* obsure construct.
5029      S += '#';
5030      return;
5031    }
5032
5033    if (OPT->isObjCQualifiedIdType()) {
5034      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5035                                 ExpandPointedToStructures,
5036                                 ExpandStructures, FD);
5037      if (FD || EncodingProperty || EncodeClassNames) {
5038        // Note that we do extended encoding of protocol qualifer list
5039        // Only when doing ivar or property encoding.
5040        S += '"';
5041        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5042             E = OPT->qual_end(); I != E; ++I) {
5043          S += '<';
5044          S += (*I)->getNameAsString();
5045          S += '>';
5046        }
5047        S += '"';
5048      }
5049      return;
5050    }
5051
5052    QualType PointeeTy = OPT->getPointeeType();
5053    if (!EncodingProperty &&
5054        isa<TypedefType>(PointeeTy.getTypePtr())) {
5055      // Another historical/compatibility reason.
5056      // We encode the underlying type which comes out as
5057      // {...};
5058      S += '^';
5059      getObjCEncodingForTypeImpl(PointeeTy, S,
5060                                 false, ExpandPointedToStructures,
5061                                 NULL);
5062      return;
5063    }
5064
5065    S += '@';
5066    if (OPT->getInterfaceDecl() &&
5067        (FD || EncodingProperty || EncodeClassNames)) {
5068      S += '"';
5069      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5070      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5071           E = OPT->qual_end(); I != E; ++I) {
5072        S += '<';
5073        S += (*I)->getNameAsString();
5074        S += '>';
5075      }
5076      S += '"';
5077    }
5078    return;
5079  }
5080
5081  // gcc just blithely ignores member pointers.
5082  // TODO: maybe there should be a mangling for these
5083  if (T->getAs<MemberPointerType>())
5084    return;
5085
5086  if (T->isVectorType()) {
5087    // This matches gcc's encoding, even though technically it is
5088    // insufficient.
5089    // FIXME. We should do a better job than gcc.
5090    return;
5091  }
5092
5093  llvm_unreachable("@encode for type not implemented!");
5094}
5095
5096void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5097                                                 std::string &S,
5098                                                 const FieldDecl *FD,
5099                                                 bool includeVBases) const {
5100  assert(RDecl && "Expected non-null RecordDecl");
5101  assert(!RDecl->isUnion() && "Should not be called for unions");
5102  if (!RDecl->getDefinition())
5103    return;
5104
5105  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5106  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5107  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5108
5109  if (CXXRec) {
5110    for (CXXRecordDecl::base_class_iterator
5111           BI = CXXRec->bases_begin(),
5112           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5113      if (!BI->isVirtual()) {
5114        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5115        if (base->isEmpty())
5116          continue;
5117        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5118        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5119                                  std::make_pair(offs, base));
5120      }
5121    }
5122  }
5123
5124  unsigned i = 0;
5125  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5126                               FieldEnd = RDecl->field_end();
5127       Field != FieldEnd; ++Field, ++i) {
5128    uint64_t offs = layout.getFieldOffset(i);
5129    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5130                              std::make_pair(offs, *Field));
5131  }
5132
5133  if (CXXRec && includeVBases) {
5134    for (CXXRecordDecl::base_class_iterator
5135           BI = CXXRec->vbases_begin(),
5136           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5137      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5138      if (base->isEmpty())
5139        continue;
5140      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5141      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5142        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5143                                  std::make_pair(offs, base));
5144    }
5145  }
5146
5147  CharUnits size;
5148  if (CXXRec) {
5149    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5150  } else {
5151    size = layout.getSize();
5152  }
5153
5154  uint64_t CurOffs = 0;
5155  std::multimap<uint64_t, NamedDecl *>::iterator
5156    CurLayObj = FieldOrBaseOffsets.begin();
5157
5158  if (CXXRec && CXXRec->isDynamicClass() &&
5159      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5160    if (FD) {
5161      S += "\"_vptr$";
5162      std::string recname = CXXRec->getNameAsString();
5163      if (recname.empty()) recname = "?";
5164      S += recname;
5165      S += '"';
5166    }
5167    S += "^^?";
5168    CurOffs += getTypeSize(VoidPtrTy);
5169  }
5170
5171  if (!RDecl->hasFlexibleArrayMember()) {
5172    // Mark the end of the structure.
5173    uint64_t offs = toBits(size);
5174    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5175                              std::make_pair(offs, (NamedDecl*)0));
5176  }
5177
5178  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5179    assert(CurOffs <= CurLayObj->first);
5180
5181    if (CurOffs < CurLayObj->first) {
5182      uint64_t padding = CurLayObj->first - CurOffs;
5183      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5184      // packing/alignment of members is different that normal, in which case
5185      // the encoding will be out-of-sync with the real layout.
5186      // If the runtime switches to just consider the size of types without
5187      // taking into account alignment, we could make padding explicit in the
5188      // encoding (e.g. using arrays of chars). The encoding strings would be
5189      // longer then though.
5190      CurOffs += padding;
5191    }
5192
5193    NamedDecl *dcl = CurLayObj->second;
5194    if (dcl == 0)
5195      break; // reached end of structure.
5196
5197    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5198      // We expand the bases without their virtual bases since those are going
5199      // in the initial structure. Note that this differs from gcc which
5200      // expands virtual bases each time one is encountered in the hierarchy,
5201      // making the encoding type bigger than it really is.
5202      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5203      assert(!base->isEmpty());
5204      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5205    } else {
5206      FieldDecl *field = cast<FieldDecl>(dcl);
5207      if (FD) {
5208        S += '"';
5209        S += field->getNameAsString();
5210        S += '"';
5211      }
5212
5213      if (field->isBitField()) {
5214        EncodeBitField(this, S, field->getType(), field);
5215        CurOffs += field->getBitWidthValue(*this);
5216      } else {
5217        QualType qt = field->getType();
5218        getLegacyIntegralTypeEncoding(qt);
5219        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5220                                   /*OutermostType*/false,
5221                                   /*EncodingProperty*/false,
5222                                   /*StructField*/true);
5223        CurOffs += getTypeSize(field->getType());
5224      }
5225    }
5226  }
5227}
5228
5229void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5230                                                 std::string& S) const {
5231  if (QT & Decl::OBJC_TQ_In)
5232    S += 'n';
5233  if (QT & Decl::OBJC_TQ_Inout)
5234    S += 'N';
5235  if (QT & Decl::OBJC_TQ_Out)
5236    S += 'o';
5237  if (QT & Decl::OBJC_TQ_Bycopy)
5238    S += 'O';
5239  if (QT & Decl::OBJC_TQ_Byref)
5240    S += 'R';
5241  if (QT & Decl::OBJC_TQ_Oneway)
5242    S += 'V';
5243}
5244
5245TypedefDecl *ASTContext::getObjCIdDecl() const {
5246  if (!ObjCIdDecl) {
5247    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5248    T = getObjCObjectPointerType(T);
5249    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5250    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5251                                     getTranslationUnitDecl(),
5252                                     SourceLocation(), SourceLocation(),
5253                                     &Idents.get("id"), IdInfo);
5254  }
5255
5256  return ObjCIdDecl;
5257}
5258
5259TypedefDecl *ASTContext::getObjCSelDecl() const {
5260  if (!ObjCSelDecl) {
5261    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5262    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5263    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5264                                      getTranslationUnitDecl(),
5265                                      SourceLocation(), SourceLocation(),
5266                                      &Idents.get("SEL"), SelInfo);
5267  }
5268  return ObjCSelDecl;
5269}
5270
5271TypedefDecl *ASTContext::getObjCClassDecl() const {
5272  if (!ObjCClassDecl) {
5273    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5274    T = getObjCObjectPointerType(T);
5275    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5276    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5277                                        getTranslationUnitDecl(),
5278                                        SourceLocation(), SourceLocation(),
5279                                        &Idents.get("Class"), ClassInfo);
5280  }
5281
5282  return ObjCClassDecl;
5283}
5284
5285ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5286  if (!ObjCProtocolClassDecl) {
5287    ObjCProtocolClassDecl
5288      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5289                                  SourceLocation(),
5290                                  &Idents.get("Protocol"),
5291                                  /*PrevDecl=*/0,
5292                                  SourceLocation(), true);
5293  }
5294
5295  return ObjCProtocolClassDecl;
5296}
5297
5298//===----------------------------------------------------------------------===//
5299// __builtin_va_list Construction Functions
5300//===----------------------------------------------------------------------===//
5301
5302static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5303  // typedef char* __builtin_va_list;
5304  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5305  TypeSourceInfo *TInfo
5306    = Context->getTrivialTypeSourceInfo(CharPtrType);
5307
5308  TypedefDecl *VaListTypeDecl
5309    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5310                          Context->getTranslationUnitDecl(),
5311                          SourceLocation(), SourceLocation(),
5312                          &Context->Idents.get("__builtin_va_list"),
5313                          TInfo);
5314  return VaListTypeDecl;
5315}
5316
5317static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5318  // typedef void* __builtin_va_list;
5319  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5320  TypeSourceInfo *TInfo
5321    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5322
5323  TypedefDecl *VaListTypeDecl
5324    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5325                          Context->getTranslationUnitDecl(),
5326                          SourceLocation(), SourceLocation(),
5327                          &Context->Idents.get("__builtin_va_list"),
5328                          TInfo);
5329  return VaListTypeDecl;
5330}
5331
5332static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5333  // typedef struct __va_list_tag {
5334  RecordDecl *VaListTagDecl;
5335
5336  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5337                                   Context->getTranslationUnitDecl(),
5338                                   &Context->Idents.get("__va_list_tag"));
5339  VaListTagDecl->startDefinition();
5340
5341  const size_t NumFields = 5;
5342  QualType FieldTypes[NumFields];
5343  const char *FieldNames[NumFields];
5344
5345  //   unsigned char gpr;
5346  FieldTypes[0] = Context->UnsignedCharTy;
5347  FieldNames[0] = "gpr";
5348
5349  //   unsigned char fpr;
5350  FieldTypes[1] = Context->UnsignedCharTy;
5351  FieldNames[1] = "fpr";
5352
5353  //   unsigned short reserved;
5354  FieldTypes[2] = Context->UnsignedShortTy;
5355  FieldNames[2] = "reserved";
5356
5357  //   void* overflow_arg_area;
5358  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5359  FieldNames[3] = "overflow_arg_area";
5360
5361  //   void* reg_save_area;
5362  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5363  FieldNames[4] = "reg_save_area";
5364
5365  // Create fields
5366  for (unsigned i = 0; i < NumFields; ++i) {
5367    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5368                                         SourceLocation(),
5369                                         SourceLocation(),
5370                                         &Context->Idents.get(FieldNames[i]),
5371                                         FieldTypes[i], /*TInfo=*/0,
5372                                         /*BitWidth=*/0,
5373                                         /*Mutable=*/false,
5374                                         ICIS_NoInit);
5375    Field->setAccess(AS_public);
5376    VaListTagDecl->addDecl(Field);
5377  }
5378  VaListTagDecl->completeDefinition();
5379  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5380  Context->VaListTagTy = VaListTagType;
5381
5382  // } __va_list_tag;
5383  TypedefDecl *VaListTagTypedefDecl
5384    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5385                          Context->getTranslationUnitDecl(),
5386                          SourceLocation(), SourceLocation(),
5387                          &Context->Idents.get("__va_list_tag"),
5388                          Context->getTrivialTypeSourceInfo(VaListTagType));
5389  QualType VaListTagTypedefType =
5390    Context->getTypedefType(VaListTagTypedefDecl);
5391
5392  // typedef __va_list_tag __builtin_va_list[1];
5393  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5394  QualType VaListTagArrayType
5395    = Context->getConstantArrayType(VaListTagTypedefType,
5396                                    Size, ArrayType::Normal, 0);
5397  TypeSourceInfo *TInfo
5398    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5399  TypedefDecl *VaListTypedefDecl
5400    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5401                          Context->getTranslationUnitDecl(),
5402                          SourceLocation(), SourceLocation(),
5403                          &Context->Idents.get("__builtin_va_list"),
5404                          TInfo);
5405
5406  return VaListTypedefDecl;
5407}
5408
5409static TypedefDecl *
5410CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5411  // typedef struct __va_list_tag {
5412  RecordDecl *VaListTagDecl;
5413  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5414                                   Context->getTranslationUnitDecl(),
5415                                   &Context->Idents.get("__va_list_tag"));
5416  VaListTagDecl->startDefinition();
5417
5418  const size_t NumFields = 4;
5419  QualType FieldTypes[NumFields];
5420  const char *FieldNames[NumFields];
5421
5422  //   unsigned gp_offset;
5423  FieldTypes[0] = Context->UnsignedIntTy;
5424  FieldNames[0] = "gp_offset";
5425
5426  //   unsigned fp_offset;
5427  FieldTypes[1] = Context->UnsignedIntTy;
5428  FieldNames[1] = "fp_offset";
5429
5430  //   void* overflow_arg_area;
5431  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5432  FieldNames[2] = "overflow_arg_area";
5433
5434  //   void* reg_save_area;
5435  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5436  FieldNames[3] = "reg_save_area";
5437
5438  // Create fields
5439  for (unsigned i = 0; i < NumFields; ++i) {
5440    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5441                                         VaListTagDecl,
5442                                         SourceLocation(),
5443                                         SourceLocation(),
5444                                         &Context->Idents.get(FieldNames[i]),
5445                                         FieldTypes[i], /*TInfo=*/0,
5446                                         /*BitWidth=*/0,
5447                                         /*Mutable=*/false,
5448                                         ICIS_NoInit);
5449    Field->setAccess(AS_public);
5450    VaListTagDecl->addDecl(Field);
5451  }
5452  VaListTagDecl->completeDefinition();
5453  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5454  Context->VaListTagTy = VaListTagType;
5455
5456  // } __va_list_tag;
5457  TypedefDecl *VaListTagTypedefDecl
5458    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5459                          Context->getTranslationUnitDecl(),
5460                          SourceLocation(), SourceLocation(),
5461                          &Context->Idents.get("__va_list_tag"),
5462                          Context->getTrivialTypeSourceInfo(VaListTagType));
5463  QualType VaListTagTypedefType =
5464    Context->getTypedefType(VaListTagTypedefDecl);
5465
5466  // typedef __va_list_tag __builtin_va_list[1];
5467  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5468  QualType VaListTagArrayType
5469    = Context->getConstantArrayType(VaListTagTypedefType,
5470                                      Size, ArrayType::Normal,0);
5471  TypeSourceInfo *TInfo
5472    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5473  TypedefDecl *VaListTypedefDecl
5474    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5475                          Context->getTranslationUnitDecl(),
5476                          SourceLocation(), SourceLocation(),
5477                          &Context->Idents.get("__builtin_va_list"),
5478                          TInfo);
5479
5480  return VaListTypedefDecl;
5481}
5482
5483static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5484  // typedef int __builtin_va_list[4];
5485  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5486  QualType IntArrayType
5487    = Context->getConstantArrayType(Context->IntTy,
5488				    Size, ArrayType::Normal, 0);
5489  TypedefDecl *VaListTypedefDecl
5490    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5491                          Context->getTranslationUnitDecl(),
5492                          SourceLocation(), SourceLocation(),
5493                          &Context->Idents.get("__builtin_va_list"),
5494                          Context->getTrivialTypeSourceInfo(IntArrayType));
5495
5496  return VaListTypedefDecl;
5497}
5498
5499static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5500                                     TargetInfo::BuiltinVaListKind Kind) {
5501  switch (Kind) {
5502  case TargetInfo::CharPtrBuiltinVaList:
5503    return CreateCharPtrBuiltinVaListDecl(Context);
5504  case TargetInfo::VoidPtrBuiltinVaList:
5505    return CreateVoidPtrBuiltinVaListDecl(Context);
5506  case TargetInfo::PowerABIBuiltinVaList:
5507    return CreatePowerABIBuiltinVaListDecl(Context);
5508  case TargetInfo::X86_64ABIBuiltinVaList:
5509    return CreateX86_64ABIBuiltinVaListDecl(Context);
5510  case TargetInfo::PNaClABIBuiltinVaList:
5511    return CreatePNaClABIBuiltinVaListDecl(Context);
5512  }
5513
5514  llvm_unreachable("Unhandled __builtin_va_list type kind");
5515}
5516
5517TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5518  if (!BuiltinVaListDecl)
5519    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5520
5521  return BuiltinVaListDecl;
5522}
5523
5524QualType ASTContext::getVaListTagType() const {
5525  // Force the creation of VaListTagTy by building the __builtin_va_list
5526  // declaration.
5527  if (VaListTagTy.isNull())
5528    (void) getBuiltinVaListDecl();
5529
5530  return VaListTagTy;
5531}
5532
5533void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5534  assert(ObjCConstantStringType.isNull() &&
5535         "'NSConstantString' type already set!");
5536
5537  ObjCConstantStringType = getObjCInterfaceType(Decl);
5538}
5539
5540/// \brief Retrieve the template name that corresponds to a non-empty
5541/// lookup.
5542TemplateName
5543ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5544                                      UnresolvedSetIterator End) const {
5545  unsigned size = End - Begin;
5546  assert(size > 1 && "set is not overloaded!");
5547
5548  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5549                          size * sizeof(FunctionTemplateDecl*));
5550  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5551
5552  NamedDecl **Storage = OT->getStorage();
5553  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5554    NamedDecl *D = *I;
5555    assert(isa<FunctionTemplateDecl>(D) ||
5556           (isa<UsingShadowDecl>(D) &&
5557            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5558    *Storage++ = D;
5559  }
5560
5561  return TemplateName(OT);
5562}
5563
5564/// \brief Retrieve the template name that represents a qualified
5565/// template name such as \c std::vector.
5566TemplateName
5567ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5568                                     bool TemplateKeyword,
5569                                     TemplateDecl *Template) const {
5570  assert(NNS && "Missing nested-name-specifier in qualified template name");
5571
5572  // FIXME: Canonicalization?
5573  llvm::FoldingSetNodeID ID;
5574  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5575
5576  void *InsertPos = 0;
5577  QualifiedTemplateName *QTN =
5578    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5579  if (!QTN) {
5580    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5581        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5582    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5583  }
5584
5585  return TemplateName(QTN);
5586}
5587
5588/// \brief Retrieve the template name that represents a dependent
5589/// template name such as \c MetaFun::template apply.
5590TemplateName
5591ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5592                                     const IdentifierInfo *Name) const {
5593  assert((!NNS || NNS->isDependent()) &&
5594         "Nested name specifier must be dependent");
5595
5596  llvm::FoldingSetNodeID ID;
5597  DependentTemplateName::Profile(ID, NNS, Name);
5598
5599  void *InsertPos = 0;
5600  DependentTemplateName *QTN =
5601    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5602
5603  if (QTN)
5604    return TemplateName(QTN);
5605
5606  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5607  if (CanonNNS == NNS) {
5608    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5609        DependentTemplateName(NNS, Name);
5610  } else {
5611    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5612    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5613        DependentTemplateName(NNS, Name, Canon);
5614    DependentTemplateName *CheckQTN =
5615      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5616    assert(!CheckQTN && "Dependent type name canonicalization broken");
5617    (void)CheckQTN;
5618  }
5619
5620  DependentTemplateNames.InsertNode(QTN, InsertPos);
5621  return TemplateName(QTN);
5622}
5623
5624/// \brief Retrieve the template name that represents a dependent
5625/// template name such as \c MetaFun::template operator+.
5626TemplateName
5627ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5628                                     OverloadedOperatorKind Operator) const {
5629  assert((!NNS || NNS->isDependent()) &&
5630         "Nested name specifier must be dependent");
5631
5632  llvm::FoldingSetNodeID ID;
5633  DependentTemplateName::Profile(ID, NNS, Operator);
5634
5635  void *InsertPos = 0;
5636  DependentTemplateName *QTN
5637    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5638
5639  if (QTN)
5640    return TemplateName(QTN);
5641
5642  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5643  if (CanonNNS == NNS) {
5644    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5645        DependentTemplateName(NNS, Operator);
5646  } else {
5647    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5648    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5649        DependentTemplateName(NNS, Operator, Canon);
5650
5651    DependentTemplateName *CheckQTN
5652      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5653    assert(!CheckQTN && "Dependent template name canonicalization broken");
5654    (void)CheckQTN;
5655  }
5656
5657  DependentTemplateNames.InsertNode(QTN, InsertPos);
5658  return TemplateName(QTN);
5659}
5660
5661TemplateName
5662ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5663                                         TemplateName replacement) const {
5664  llvm::FoldingSetNodeID ID;
5665  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5666
5667  void *insertPos = 0;
5668  SubstTemplateTemplateParmStorage *subst
5669    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5670
5671  if (!subst) {
5672    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5673    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5674  }
5675
5676  return TemplateName(subst);
5677}
5678
5679TemplateName
5680ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5681                                       const TemplateArgument &ArgPack) const {
5682  ASTContext &Self = const_cast<ASTContext &>(*this);
5683  llvm::FoldingSetNodeID ID;
5684  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5685
5686  void *InsertPos = 0;
5687  SubstTemplateTemplateParmPackStorage *Subst
5688    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5689
5690  if (!Subst) {
5691    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5692                                                           ArgPack.pack_size(),
5693                                                         ArgPack.pack_begin());
5694    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5695  }
5696
5697  return TemplateName(Subst);
5698}
5699
5700/// getFromTargetType - Given one of the integer types provided by
5701/// TargetInfo, produce the corresponding type. The unsigned @p Type
5702/// is actually a value of type @c TargetInfo::IntType.
5703CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5704  switch (Type) {
5705  case TargetInfo::NoInt: return CanQualType();
5706  case TargetInfo::SignedShort: return ShortTy;
5707  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5708  case TargetInfo::SignedInt: return IntTy;
5709  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5710  case TargetInfo::SignedLong: return LongTy;
5711  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5712  case TargetInfo::SignedLongLong: return LongLongTy;
5713  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5714  }
5715
5716  llvm_unreachable("Unhandled TargetInfo::IntType value");
5717}
5718
5719//===----------------------------------------------------------------------===//
5720//                        Type Predicates.
5721//===----------------------------------------------------------------------===//
5722
5723/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5724/// garbage collection attribute.
5725///
5726Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5727  if (getLangOpts().getGC() == LangOptions::NonGC)
5728    return Qualifiers::GCNone;
5729
5730  assert(getLangOpts().ObjC1);
5731  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5732
5733  // Default behaviour under objective-C's gc is for ObjC pointers
5734  // (or pointers to them) be treated as though they were declared
5735  // as __strong.
5736  if (GCAttrs == Qualifiers::GCNone) {
5737    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5738      return Qualifiers::Strong;
5739    else if (Ty->isPointerType())
5740      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5741  } else {
5742    // It's not valid to set GC attributes on anything that isn't a
5743    // pointer.
5744#ifndef NDEBUG
5745    QualType CT = Ty->getCanonicalTypeInternal();
5746    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5747      CT = AT->getElementType();
5748    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5749#endif
5750  }
5751  return GCAttrs;
5752}
5753
5754//===----------------------------------------------------------------------===//
5755//                        Type Compatibility Testing
5756//===----------------------------------------------------------------------===//
5757
5758/// areCompatVectorTypes - Return true if the two specified vector types are
5759/// compatible.
5760static bool areCompatVectorTypes(const VectorType *LHS,
5761                                 const VectorType *RHS) {
5762  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5763  return LHS->getElementType() == RHS->getElementType() &&
5764         LHS->getNumElements() == RHS->getNumElements();
5765}
5766
5767bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5768                                          QualType SecondVec) {
5769  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5770  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5771
5772  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5773    return true;
5774
5775  // Treat Neon vector types and most AltiVec vector types as if they are the
5776  // equivalent GCC vector types.
5777  const VectorType *First = FirstVec->getAs<VectorType>();
5778  const VectorType *Second = SecondVec->getAs<VectorType>();
5779  if (First->getNumElements() == Second->getNumElements() &&
5780      hasSameType(First->getElementType(), Second->getElementType()) &&
5781      First->getVectorKind() != VectorType::AltiVecPixel &&
5782      First->getVectorKind() != VectorType::AltiVecBool &&
5783      Second->getVectorKind() != VectorType::AltiVecPixel &&
5784      Second->getVectorKind() != VectorType::AltiVecBool)
5785    return true;
5786
5787  return false;
5788}
5789
5790//===----------------------------------------------------------------------===//
5791// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5792//===----------------------------------------------------------------------===//
5793
5794/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5795/// inheritance hierarchy of 'rProto'.
5796bool
5797ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5798                                           ObjCProtocolDecl *rProto) const {
5799  if (declaresSameEntity(lProto, rProto))
5800    return true;
5801  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5802       E = rProto->protocol_end(); PI != E; ++PI)
5803    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5804      return true;
5805  return false;
5806}
5807
5808/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
5809/// return true if lhs's protocols conform to rhs's protocol; false
5810/// otherwise.
5811bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5812  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5813    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5814  return false;
5815}
5816
5817/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
5818/// Class<pr1, ...>.
5819bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5820                                                      QualType rhs) {
5821  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5822  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5823  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5824
5825  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5826       E = lhsQID->qual_end(); I != E; ++I) {
5827    bool match = false;
5828    ObjCProtocolDecl *lhsProto = *I;
5829    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5830         E = rhsOPT->qual_end(); J != E; ++J) {
5831      ObjCProtocolDecl *rhsProto = *J;
5832      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5833        match = true;
5834        break;
5835      }
5836    }
5837    if (!match)
5838      return false;
5839  }
5840  return true;
5841}
5842
5843/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5844/// ObjCQualifiedIDType.
5845bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5846                                                   bool compare) {
5847  // Allow id<P..> and an 'id' or void* type in all cases.
5848  if (lhs->isVoidPointerType() ||
5849      lhs->isObjCIdType() || lhs->isObjCClassType())
5850    return true;
5851  else if (rhs->isVoidPointerType() ||
5852           rhs->isObjCIdType() || rhs->isObjCClassType())
5853    return true;
5854
5855  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5856    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5857
5858    if (!rhsOPT) return false;
5859
5860    if (rhsOPT->qual_empty()) {
5861      // If the RHS is a unqualified interface pointer "NSString*",
5862      // make sure we check the class hierarchy.
5863      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5864        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5865             E = lhsQID->qual_end(); I != E; ++I) {
5866          // when comparing an id<P> on lhs with a static type on rhs,
5867          // see if static class implements all of id's protocols, directly or
5868          // through its super class and categories.
5869          if (!rhsID->ClassImplementsProtocol(*I, true))
5870            return false;
5871        }
5872      }
5873      // If there are no qualifiers and no interface, we have an 'id'.
5874      return true;
5875    }
5876    // Both the right and left sides have qualifiers.
5877    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5878         E = lhsQID->qual_end(); I != E; ++I) {
5879      ObjCProtocolDecl *lhsProto = *I;
5880      bool match = false;
5881
5882      // when comparing an id<P> on lhs with a static type on rhs,
5883      // see if static class implements all of id's protocols, directly or
5884      // through its super class and categories.
5885      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5886           E = rhsOPT->qual_end(); J != E; ++J) {
5887        ObjCProtocolDecl *rhsProto = *J;
5888        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5889            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5890          match = true;
5891          break;
5892        }
5893      }
5894      // If the RHS is a qualified interface pointer "NSString<P>*",
5895      // make sure we check the class hierarchy.
5896      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5897        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5898             E = lhsQID->qual_end(); I != E; ++I) {
5899          // when comparing an id<P> on lhs with a static type on rhs,
5900          // see if static class implements all of id's protocols, directly or
5901          // through its super class and categories.
5902          if (rhsID->ClassImplementsProtocol(*I, true)) {
5903            match = true;
5904            break;
5905          }
5906        }
5907      }
5908      if (!match)
5909        return false;
5910    }
5911
5912    return true;
5913  }
5914
5915  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5916  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5917
5918  if (const ObjCObjectPointerType *lhsOPT =
5919        lhs->getAsObjCInterfacePointerType()) {
5920    // If both the right and left sides have qualifiers.
5921    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5922         E = lhsOPT->qual_end(); I != E; ++I) {
5923      ObjCProtocolDecl *lhsProto = *I;
5924      bool match = false;
5925
5926      // when comparing an id<P> on rhs with a static type on lhs,
5927      // see if static class implements all of id's protocols, directly or
5928      // through its super class and categories.
5929      // First, lhs protocols in the qualifier list must be found, direct
5930      // or indirect in rhs's qualifier list or it is a mismatch.
5931      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5932           E = rhsQID->qual_end(); J != E; ++J) {
5933        ObjCProtocolDecl *rhsProto = *J;
5934        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5935            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5936          match = true;
5937          break;
5938        }
5939      }
5940      if (!match)
5941        return false;
5942    }
5943
5944    // Static class's protocols, or its super class or category protocols
5945    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5946    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5947      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5948      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5949      // This is rather dubious but matches gcc's behavior. If lhs has
5950      // no type qualifier and its class has no static protocol(s)
5951      // assume that it is mismatch.
5952      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5953        return false;
5954      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5955           LHSInheritedProtocols.begin(),
5956           E = LHSInheritedProtocols.end(); I != E; ++I) {
5957        bool match = false;
5958        ObjCProtocolDecl *lhsProto = (*I);
5959        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5960             E = rhsQID->qual_end(); J != E; ++J) {
5961          ObjCProtocolDecl *rhsProto = *J;
5962          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5963              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5964            match = true;
5965            break;
5966          }
5967        }
5968        if (!match)
5969          return false;
5970      }
5971    }
5972    return true;
5973  }
5974  return false;
5975}
5976
5977/// canAssignObjCInterfaces - Return true if the two interface types are
5978/// compatible for assignment from RHS to LHS.  This handles validation of any
5979/// protocol qualifiers on the LHS or RHS.
5980///
5981bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5982                                         const ObjCObjectPointerType *RHSOPT) {
5983  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5984  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5985
5986  // If either type represents the built-in 'id' or 'Class' types, return true.
5987  if (LHS->isObjCUnqualifiedIdOrClass() ||
5988      RHS->isObjCUnqualifiedIdOrClass())
5989    return true;
5990
5991  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5992    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5993                                             QualType(RHSOPT,0),
5994                                             false);
5995
5996  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5997    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5998                                                QualType(RHSOPT,0));
5999
6000  // If we have 2 user-defined types, fall into that path.
6001  if (LHS->getInterface() && RHS->getInterface())
6002    return canAssignObjCInterfaces(LHS, RHS);
6003
6004  return false;
6005}
6006
6007/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6008/// for providing type-safety for objective-c pointers used to pass/return
6009/// arguments in block literals. When passed as arguments, passing 'A*' where
6010/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6011/// not OK. For the return type, the opposite is not OK.
6012bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6013                                         const ObjCObjectPointerType *LHSOPT,
6014                                         const ObjCObjectPointerType *RHSOPT,
6015                                         bool BlockReturnType) {
6016  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6017    return true;
6018
6019  if (LHSOPT->isObjCBuiltinType()) {
6020    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6021  }
6022
6023  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6024    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6025                                             QualType(RHSOPT,0),
6026                                             false);
6027
6028  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6029  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6030  if (LHS && RHS)  { // We have 2 user-defined types.
6031    if (LHS != RHS) {
6032      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6033        return BlockReturnType;
6034      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6035        return !BlockReturnType;
6036    }
6037    else
6038      return true;
6039  }
6040  return false;
6041}
6042
6043/// getIntersectionOfProtocols - This routine finds the intersection of set
6044/// of protocols inherited from two distinct objective-c pointer objects.
6045/// It is used to build composite qualifier list of the composite type of
6046/// the conditional expression involving two objective-c pointer objects.
6047static
6048void getIntersectionOfProtocols(ASTContext &Context,
6049                                const ObjCObjectPointerType *LHSOPT,
6050                                const ObjCObjectPointerType *RHSOPT,
6051      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6052
6053  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6054  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6055  assert(LHS->getInterface() && "LHS must have an interface base");
6056  assert(RHS->getInterface() && "RHS must have an interface base");
6057
6058  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6059  unsigned LHSNumProtocols = LHS->getNumProtocols();
6060  if (LHSNumProtocols > 0)
6061    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6062  else {
6063    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6064    Context.CollectInheritedProtocols(LHS->getInterface(),
6065                                      LHSInheritedProtocols);
6066    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6067                                LHSInheritedProtocols.end());
6068  }
6069
6070  unsigned RHSNumProtocols = RHS->getNumProtocols();
6071  if (RHSNumProtocols > 0) {
6072    ObjCProtocolDecl **RHSProtocols =
6073      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6074    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6075      if (InheritedProtocolSet.count(RHSProtocols[i]))
6076        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6077  } else {
6078    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6079    Context.CollectInheritedProtocols(RHS->getInterface(),
6080                                      RHSInheritedProtocols);
6081    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6082         RHSInheritedProtocols.begin(),
6083         E = RHSInheritedProtocols.end(); I != E; ++I)
6084      if (InheritedProtocolSet.count((*I)))
6085        IntersectionOfProtocols.push_back((*I));
6086  }
6087}
6088
6089/// areCommonBaseCompatible - Returns common base class of the two classes if
6090/// one found. Note that this is O'2 algorithm. But it will be called as the
6091/// last type comparison in a ?-exp of ObjC pointer types before a
6092/// warning is issued. So, its invokation is extremely rare.
6093QualType ASTContext::areCommonBaseCompatible(
6094                                          const ObjCObjectPointerType *Lptr,
6095                                          const ObjCObjectPointerType *Rptr) {
6096  const ObjCObjectType *LHS = Lptr->getObjectType();
6097  const ObjCObjectType *RHS = Rptr->getObjectType();
6098  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6099  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6100  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6101    return QualType();
6102
6103  do {
6104    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6105    if (canAssignObjCInterfaces(LHS, RHS)) {
6106      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6107      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6108
6109      QualType Result = QualType(LHS, 0);
6110      if (!Protocols.empty())
6111        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6112      Result = getObjCObjectPointerType(Result);
6113      return Result;
6114    }
6115  } while ((LDecl = LDecl->getSuperClass()));
6116
6117  return QualType();
6118}
6119
6120bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6121                                         const ObjCObjectType *RHS) {
6122  assert(LHS->getInterface() && "LHS is not an interface type");
6123  assert(RHS->getInterface() && "RHS is not an interface type");
6124
6125  // Verify that the base decls are compatible: the RHS must be a subclass of
6126  // the LHS.
6127  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6128    return false;
6129
6130  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6131  // protocol qualified at all, then we are good.
6132  if (LHS->getNumProtocols() == 0)
6133    return true;
6134
6135  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6136  // more detailed analysis is required.
6137  if (RHS->getNumProtocols() == 0) {
6138    // OK, if LHS is a superclass of RHS *and*
6139    // this superclass is assignment compatible with LHS.
6140    // false otherwise.
6141    bool IsSuperClass =
6142      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6143    if (IsSuperClass) {
6144      // OK if conversion of LHS to SuperClass results in narrowing of types
6145      // ; i.e., SuperClass may implement at least one of the protocols
6146      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6147      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6148      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6149      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6150      // If super class has no protocols, it is not a match.
6151      if (SuperClassInheritedProtocols.empty())
6152        return false;
6153
6154      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6155           LHSPE = LHS->qual_end();
6156           LHSPI != LHSPE; LHSPI++) {
6157        bool SuperImplementsProtocol = false;
6158        ObjCProtocolDecl *LHSProto = (*LHSPI);
6159
6160        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6161             SuperClassInheritedProtocols.begin(),
6162             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6163          ObjCProtocolDecl *SuperClassProto = (*I);
6164          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6165            SuperImplementsProtocol = true;
6166            break;
6167          }
6168        }
6169        if (!SuperImplementsProtocol)
6170          return false;
6171      }
6172      return true;
6173    }
6174    return false;
6175  }
6176
6177  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6178                                     LHSPE = LHS->qual_end();
6179       LHSPI != LHSPE; LHSPI++) {
6180    bool RHSImplementsProtocol = false;
6181
6182    // If the RHS doesn't implement the protocol on the left, the types
6183    // are incompatible.
6184    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6185                                       RHSPE = RHS->qual_end();
6186         RHSPI != RHSPE; RHSPI++) {
6187      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6188        RHSImplementsProtocol = true;
6189        break;
6190      }
6191    }
6192    // FIXME: For better diagnostics, consider passing back the protocol name.
6193    if (!RHSImplementsProtocol)
6194      return false;
6195  }
6196  // The RHS implements all protocols listed on the LHS.
6197  return true;
6198}
6199
6200bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6201  // get the "pointed to" types
6202  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6203  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6204
6205  if (!LHSOPT || !RHSOPT)
6206    return false;
6207
6208  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6209         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6210}
6211
6212bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6213  return canAssignObjCInterfaces(
6214                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6215                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6216}
6217
6218/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6219/// both shall have the identically qualified version of a compatible type.
6220/// C99 6.2.7p1: Two types have compatible types if their types are the
6221/// same. See 6.7.[2,3,5] for additional rules.
6222bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6223                                    bool CompareUnqualified) {
6224  if (getLangOpts().CPlusPlus)
6225    return hasSameType(LHS, RHS);
6226
6227  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6228}
6229
6230bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6231  return typesAreCompatible(LHS, RHS);
6232}
6233
6234bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6235  return !mergeTypes(LHS, RHS, true).isNull();
6236}
6237
6238/// mergeTransparentUnionType - if T is a transparent union type and a member
6239/// of T is compatible with SubType, return the merged type, else return
6240/// QualType()
6241QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6242                                               bool OfBlockPointer,
6243                                               bool Unqualified) {
6244  if (const RecordType *UT = T->getAsUnionType()) {
6245    RecordDecl *UD = UT->getDecl();
6246    if (UD->hasAttr<TransparentUnionAttr>()) {
6247      for (RecordDecl::field_iterator it = UD->field_begin(),
6248           itend = UD->field_end(); it != itend; ++it) {
6249        QualType ET = it->getType().getUnqualifiedType();
6250        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6251        if (!MT.isNull())
6252          return MT;
6253      }
6254    }
6255  }
6256
6257  return QualType();
6258}
6259
6260/// mergeFunctionArgumentTypes - merge two types which appear as function
6261/// argument types
6262QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6263                                                bool OfBlockPointer,
6264                                                bool Unqualified) {
6265  // GNU extension: two types are compatible if they appear as a function
6266  // argument, one of the types is a transparent union type and the other
6267  // type is compatible with a union member
6268  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6269                                              Unqualified);
6270  if (!lmerge.isNull())
6271    return lmerge;
6272
6273  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6274                                              Unqualified);
6275  if (!rmerge.isNull())
6276    return rmerge;
6277
6278  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6279}
6280
6281QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6282                                        bool OfBlockPointer,
6283                                        bool Unqualified) {
6284  const FunctionType *lbase = lhs->getAs<FunctionType>();
6285  const FunctionType *rbase = rhs->getAs<FunctionType>();
6286  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6287  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6288  bool allLTypes = true;
6289  bool allRTypes = true;
6290
6291  // Check return type
6292  QualType retType;
6293  if (OfBlockPointer) {
6294    QualType RHS = rbase->getResultType();
6295    QualType LHS = lbase->getResultType();
6296    bool UnqualifiedResult = Unqualified;
6297    if (!UnqualifiedResult)
6298      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6299    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6300  }
6301  else
6302    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6303                         Unqualified);
6304  if (retType.isNull()) return QualType();
6305
6306  if (Unqualified)
6307    retType = retType.getUnqualifiedType();
6308
6309  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6310  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6311  if (Unqualified) {
6312    LRetType = LRetType.getUnqualifiedType();
6313    RRetType = RRetType.getUnqualifiedType();
6314  }
6315
6316  if (getCanonicalType(retType) != LRetType)
6317    allLTypes = false;
6318  if (getCanonicalType(retType) != RRetType)
6319    allRTypes = false;
6320
6321  // FIXME: double check this
6322  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6323  //                           rbase->getRegParmAttr() != 0 &&
6324  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6325  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6326  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6327
6328  // Compatible functions must have compatible calling conventions
6329  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6330    return QualType();
6331
6332  // Regparm is part of the calling convention.
6333  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6334    return QualType();
6335  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6336    return QualType();
6337
6338  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6339    return QualType();
6340
6341  // functypes which return are preferred over those that do not.
6342  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6343    allLTypes = false;
6344  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6345    allRTypes = false;
6346  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6347  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6348
6349  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6350
6351  if (lproto && rproto) { // two C99 style function prototypes
6352    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6353           "C++ shouldn't be here");
6354    unsigned lproto_nargs = lproto->getNumArgs();
6355    unsigned rproto_nargs = rproto->getNumArgs();
6356
6357    // Compatible functions must have the same number of arguments
6358    if (lproto_nargs != rproto_nargs)
6359      return QualType();
6360
6361    // Variadic and non-variadic functions aren't compatible
6362    if (lproto->isVariadic() != rproto->isVariadic())
6363      return QualType();
6364
6365    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6366      return QualType();
6367
6368    if (LangOpts.ObjCAutoRefCount &&
6369        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6370      return QualType();
6371
6372    // Check argument compatibility
6373    SmallVector<QualType, 10> types;
6374    for (unsigned i = 0; i < lproto_nargs; i++) {
6375      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6376      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6377      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6378                                                    OfBlockPointer,
6379                                                    Unqualified);
6380      if (argtype.isNull()) return QualType();
6381
6382      if (Unqualified)
6383        argtype = argtype.getUnqualifiedType();
6384
6385      types.push_back(argtype);
6386      if (Unqualified) {
6387        largtype = largtype.getUnqualifiedType();
6388        rargtype = rargtype.getUnqualifiedType();
6389      }
6390
6391      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6392        allLTypes = false;
6393      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6394        allRTypes = false;
6395    }
6396
6397    if (allLTypes) return lhs;
6398    if (allRTypes) return rhs;
6399
6400    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6401    EPI.ExtInfo = einfo;
6402    return getFunctionType(retType, types.begin(), types.size(), EPI);
6403  }
6404
6405  if (lproto) allRTypes = false;
6406  if (rproto) allLTypes = false;
6407
6408  const FunctionProtoType *proto = lproto ? lproto : rproto;
6409  if (proto) {
6410    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6411    if (proto->isVariadic()) return QualType();
6412    // Check that the types are compatible with the types that
6413    // would result from default argument promotions (C99 6.7.5.3p15).
6414    // The only types actually affected are promotable integer
6415    // types and floats, which would be passed as a different
6416    // type depending on whether the prototype is visible.
6417    unsigned proto_nargs = proto->getNumArgs();
6418    for (unsigned i = 0; i < proto_nargs; ++i) {
6419      QualType argTy = proto->getArgType(i);
6420
6421      // Look at the converted type of enum types, since that is the type used
6422      // to pass enum values.
6423      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6424        argTy = Enum->getDecl()->getIntegerType();
6425        if (argTy.isNull())
6426          return QualType();
6427      }
6428
6429      if (argTy->isPromotableIntegerType() ||
6430          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6431        return QualType();
6432    }
6433
6434    if (allLTypes) return lhs;
6435    if (allRTypes) return rhs;
6436
6437    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6438    EPI.ExtInfo = einfo;
6439    return getFunctionType(retType, proto->arg_type_begin(),
6440                           proto->getNumArgs(), EPI);
6441  }
6442
6443  if (allLTypes) return lhs;
6444  if (allRTypes) return rhs;
6445  return getFunctionNoProtoType(retType, einfo);
6446}
6447
6448QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6449                                bool OfBlockPointer,
6450                                bool Unqualified, bool BlockReturnType) {
6451  // C++ [expr]: If an expression initially has the type "reference to T", the
6452  // type is adjusted to "T" prior to any further analysis, the expression
6453  // designates the object or function denoted by the reference, and the
6454  // expression is an lvalue unless the reference is an rvalue reference and
6455  // the expression is a function call (possibly inside parentheses).
6456  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6457  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6458
6459  if (Unqualified) {
6460    LHS = LHS.getUnqualifiedType();
6461    RHS = RHS.getUnqualifiedType();
6462  }
6463
6464  QualType LHSCan = getCanonicalType(LHS),
6465           RHSCan = getCanonicalType(RHS);
6466
6467  // If two types are identical, they are compatible.
6468  if (LHSCan == RHSCan)
6469    return LHS;
6470
6471  // If the qualifiers are different, the types aren't compatible... mostly.
6472  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6473  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6474  if (LQuals != RQuals) {
6475    // If any of these qualifiers are different, we have a type
6476    // mismatch.
6477    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6478        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6479        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6480      return QualType();
6481
6482    // Exactly one GC qualifier difference is allowed: __strong is
6483    // okay if the other type has no GC qualifier but is an Objective
6484    // C object pointer (i.e. implicitly strong by default).  We fix
6485    // this by pretending that the unqualified type was actually
6486    // qualified __strong.
6487    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6488    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6489    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6490
6491    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6492      return QualType();
6493
6494    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6495      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6496    }
6497    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6498      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6499    }
6500    return QualType();
6501  }
6502
6503  // Okay, qualifiers are equal.
6504
6505  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6506  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6507
6508  // We want to consider the two function types to be the same for these
6509  // comparisons, just force one to the other.
6510  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6511  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6512
6513  // Same as above for arrays
6514  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6515    LHSClass = Type::ConstantArray;
6516  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6517    RHSClass = Type::ConstantArray;
6518
6519  // ObjCInterfaces are just specialized ObjCObjects.
6520  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6521  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6522
6523  // Canonicalize ExtVector -> Vector.
6524  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6525  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6526
6527  // If the canonical type classes don't match.
6528  if (LHSClass != RHSClass) {
6529    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6530    // a signed integer type, or an unsigned integer type.
6531    // Compatibility is based on the underlying type, not the promotion
6532    // type.
6533    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6534      QualType TINT = ETy->getDecl()->getIntegerType();
6535      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6536        return RHS;
6537    }
6538    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6539      QualType TINT = ETy->getDecl()->getIntegerType();
6540      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6541        return LHS;
6542    }
6543    // allow block pointer type to match an 'id' type.
6544    if (OfBlockPointer && !BlockReturnType) {
6545       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6546         return LHS;
6547      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6548        return RHS;
6549    }
6550
6551    return QualType();
6552  }
6553
6554  // The canonical type classes match.
6555  switch (LHSClass) {
6556#define TYPE(Class, Base)
6557#define ABSTRACT_TYPE(Class, Base)
6558#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6559#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6560#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6561#include "clang/AST/TypeNodes.def"
6562    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6563
6564  case Type::LValueReference:
6565  case Type::RValueReference:
6566  case Type::MemberPointer:
6567    llvm_unreachable("C++ should never be in mergeTypes");
6568
6569  case Type::ObjCInterface:
6570  case Type::IncompleteArray:
6571  case Type::VariableArray:
6572  case Type::FunctionProto:
6573  case Type::ExtVector:
6574    llvm_unreachable("Types are eliminated above");
6575
6576  case Type::Pointer:
6577  {
6578    // Merge two pointer types, while trying to preserve typedef info
6579    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6580    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6581    if (Unqualified) {
6582      LHSPointee = LHSPointee.getUnqualifiedType();
6583      RHSPointee = RHSPointee.getUnqualifiedType();
6584    }
6585    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6586                                     Unqualified);
6587    if (ResultType.isNull()) return QualType();
6588    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6589      return LHS;
6590    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6591      return RHS;
6592    return getPointerType(ResultType);
6593  }
6594  case Type::BlockPointer:
6595  {
6596    // Merge two block pointer types, while trying to preserve typedef info
6597    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6598    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6599    if (Unqualified) {
6600      LHSPointee = LHSPointee.getUnqualifiedType();
6601      RHSPointee = RHSPointee.getUnqualifiedType();
6602    }
6603    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6604                                     Unqualified);
6605    if (ResultType.isNull()) return QualType();
6606    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6607      return LHS;
6608    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6609      return RHS;
6610    return getBlockPointerType(ResultType);
6611  }
6612  case Type::Atomic:
6613  {
6614    // Merge two pointer types, while trying to preserve typedef info
6615    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6616    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6617    if (Unqualified) {
6618      LHSValue = LHSValue.getUnqualifiedType();
6619      RHSValue = RHSValue.getUnqualifiedType();
6620    }
6621    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6622                                     Unqualified);
6623    if (ResultType.isNull()) return QualType();
6624    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6625      return LHS;
6626    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6627      return RHS;
6628    return getAtomicType(ResultType);
6629  }
6630  case Type::ConstantArray:
6631  {
6632    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6633    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6634    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6635      return QualType();
6636
6637    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6638    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6639    if (Unqualified) {
6640      LHSElem = LHSElem.getUnqualifiedType();
6641      RHSElem = RHSElem.getUnqualifiedType();
6642    }
6643
6644    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6645    if (ResultType.isNull()) return QualType();
6646    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6647      return LHS;
6648    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6649      return RHS;
6650    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6651                                          ArrayType::ArraySizeModifier(), 0);
6652    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6653                                          ArrayType::ArraySizeModifier(), 0);
6654    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6655    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6656    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6657      return LHS;
6658    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6659      return RHS;
6660    if (LVAT) {
6661      // FIXME: This isn't correct! But tricky to implement because
6662      // the array's size has to be the size of LHS, but the type
6663      // has to be different.
6664      return LHS;
6665    }
6666    if (RVAT) {
6667      // FIXME: This isn't correct! But tricky to implement because
6668      // the array's size has to be the size of RHS, but the type
6669      // has to be different.
6670      return RHS;
6671    }
6672    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6673    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6674    return getIncompleteArrayType(ResultType,
6675                                  ArrayType::ArraySizeModifier(), 0);
6676  }
6677  case Type::FunctionNoProto:
6678    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6679  case Type::Record:
6680  case Type::Enum:
6681    return QualType();
6682  case Type::Builtin:
6683    // Only exactly equal builtin types are compatible, which is tested above.
6684    return QualType();
6685  case Type::Complex:
6686    // Distinct complex types are incompatible.
6687    return QualType();
6688  case Type::Vector:
6689    // FIXME: The merged type should be an ExtVector!
6690    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6691                             RHSCan->getAs<VectorType>()))
6692      return LHS;
6693    return QualType();
6694  case Type::ObjCObject: {
6695    // Check if the types are assignment compatible.
6696    // FIXME: This should be type compatibility, e.g. whether
6697    // "LHS x; RHS x;" at global scope is legal.
6698    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6699    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6700    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6701      return LHS;
6702
6703    return QualType();
6704  }
6705  case Type::ObjCObjectPointer: {
6706    if (OfBlockPointer) {
6707      if (canAssignObjCInterfacesInBlockPointer(
6708                                          LHS->getAs<ObjCObjectPointerType>(),
6709                                          RHS->getAs<ObjCObjectPointerType>(),
6710                                          BlockReturnType))
6711        return LHS;
6712      return QualType();
6713    }
6714    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6715                                RHS->getAs<ObjCObjectPointerType>()))
6716      return LHS;
6717
6718    return QualType();
6719  }
6720  }
6721
6722  llvm_unreachable("Invalid Type::Class!");
6723}
6724
6725bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6726                   const FunctionProtoType *FromFunctionType,
6727                   const FunctionProtoType *ToFunctionType) {
6728  if (FromFunctionType->hasAnyConsumedArgs() !=
6729      ToFunctionType->hasAnyConsumedArgs())
6730    return false;
6731  FunctionProtoType::ExtProtoInfo FromEPI =
6732    FromFunctionType->getExtProtoInfo();
6733  FunctionProtoType::ExtProtoInfo ToEPI =
6734    ToFunctionType->getExtProtoInfo();
6735  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6736    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6737         ArgIdx != NumArgs; ++ArgIdx)  {
6738      if (FromEPI.ConsumedArguments[ArgIdx] !=
6739          ToEPI.ConsumedArguments[ArgIdx])
6740        return false;
6741    }
6742  return true;
6743}
6744
6745/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6746/// 'RHS' attributes and returns the merged version; including for function
6747/// return types.
6748QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6749  QualType LHSCan = getCanonicalType(LHS),
6750  RHSCan = getCanonicalType(RHS);
6751  // If two types are identical, they are compatible.
6752  if (LHSCan == RHSCan)
6753    return LHS;
6754  if (RHSCan->isFunctionType()) {
6755    if (!LHSCan->isFunctionType())
6756      return QualType();
6757    QualType OldReturnType =
6758      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6759    QualType NewReturnType =
6760      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6761    QualType ResReturnType =
6762      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6763    if (ResReturnType.isNull())
6764      return QualType();
6765    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6766      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6767      // In either case, use OldReturnType to build the new function type.
6768      const FunctionType *F = LHS->getAs<FunctionType>();
6769      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6770        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6771        EPI.ExtInfo = getFunctionExtInfo(LHS);
6772        QualType ResultType
6773          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6774                            FPT->getNumArgs(), EPI);
6775        return ResultType;
6776      }
6777    }
6778    return QualType();
6779  }
6780
6781  // If the qualifiers are different, the types can still be merged.
6782  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6783  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6784  if (LQuals != RQuals) {
6785    // If any of these qualifiers are different, we have a type mismatch.
6786    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6787        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6788      return QualType();
6789
6790    // Exactly one GC qualifier difference is allowed: __strong is
6791    // okay if the other type has no GC qualifier but is an Objective
6792    // C object pointer (i.e. implicitly strong by default).  We fix
6793    // this by pretending that the unqualified type was actually
6794    // qualified __strong.
6795    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6796    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6797    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6798
6799    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6800      return QualType();
6801
6802    if (GC_L == Qualifiers::Strong)
6803      return LHS;
6804    if (GC_R == Qualifiers::Strong)
6805      return RHS;
6806    return QualType();
6807  }
6808
6809  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6810    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6811    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6812    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6813    if (ResQT == LHSBaseQT)
6814      return LHS;
6815    if (ResQT == RHSBaseQT)
6816      return RHS;
6817  }
6818  return QualType();
6819}
6820
6821//===----------------------------------------------------------------------===//
6822//                         Integer Predicates
6823//===----------------------------------------------------------------------===//
6824
6825unsigned ASTContext::getIntWidth(QualType T) const {
6826  if (const EnumType *ET = dyn_cast<EnumType>(T))
6827    T = ET->getDecl()->getIntegerType();
6828  if (T->isBooleanType())
6829    return 1;
6830  // For builtin types, just use the standard type sizing method
6831  return (unsigned)getTypeSize(T);
6832}
6833
6834QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
6835  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6836
6837  // Turn <4 x signed int> -> <4 x unsigned int>
6838  if (const VectorType *VTy = T->getAs<VectorType>())
6839    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6840                         VTy->getNumElements(), VTy->getVectorKind());
6841
6842  // For enums, we return the unsigned version of the base type.
6843  if (const EnumType *ETy = T->getAs<EnumType>())
6844    T = ETy->getDecl()->getIntegerType();
6845
6846  const BuiltinType *BTy = T->getAs<BuiltinType>();
6847  assert(BTy && "Unexpected signed integer type");
6848  switch (BTy->getKind()) {
6849  case BuiltinType::Char_S:
6850  case BuiltinType::SChar:
6851    return UnsignedCharTy;
6852  case BuiltinType::Short:
6853    return UnsignedShortTy;
6854  case BuiltinType::Int:
6855    return UnsignedIntTy;
6856  case BuiltinType::Long:
6857    return UnsignedLongTy;
6858  case BuiltinType::LongLong:
6859    return UnsignedLongLongTy;
6860  case BuiltinType::Int128:
6861    return UnsignedInt128Ty;
6862  default:
6863    llvm_unreachable("Unexpected signed integer type");
6864  }
6865}
6866
6867ASTMutationListener::~ASTMutationListener() { }
6868
6869
6870//===----------------------------------------------------------------------===//
6871//                          Builtin Type Computation
6872//===----------------------------------------------------------------------===//
6873
6874/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6875/// pointer over the consumed characters.  This returns the resultant type.  If
6876/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6877/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6878/// a vector of "i*".
6879///
6880/// RequiresICE is filled in on return to indicate whether the value is required
6881/// to be an Integer Constant Expression.
6882static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6883                                  ASTContext::GetBuiltinTypeError &Error,
6884                                  bool &RequiresICE,
6885                                  bool AllowTypeModifiers) {
6886  // Modifiers.
6887  int HowLong = 0;
6888  bool Signed = false, Unsigned = false;
6889  RequiresICE = false;
6890
6891  // Read the prefixed modifiers first.
6892  bool Done = false;
6893  while (!Done) {
6894    switch (*Str++) {
6895    default: Done = true; --Str; break;
6896    case 'I':
6897      RequiresICE = true;
6898      break;
6899    case 'S':
6900      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6901      assert(!Signed && "Can't use 'S' modifier multiple times!");
6902      Signed = true;
6903      break;
6904    case 'U':
6905      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6906      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6907      Unsigned = true;
6908      break;
6909    case 'L':
6910      assert(HowLong <= 2 && "Can't have LLLL modifier");
6911      ++HowLong;
6912      break;
6913    }
6914  }
6915
6916  QualType Type;
6917
6918  // Read the base type.
6919  switch (*Str++) {
6920  default: llvm_unreachable("Unknown builtin type letter!");
6921  case 'v':
6922    assert(HowLong == 0 && !Signed && !Unsigned &&
6923           "Bad modifiers used with 'v'!");
6924    Type = Context.VoidTy;
6925    break;
6926  case 'f':
6927    assert(HowLong == 0 && !Signed && !Unsigned &&
6928           "Bad modifiers used with 'f'!");
6929    Type = Context.FloatTy;
6930    break;
6931  case 'd':
6932    assert(HowLong < 2 && !Signed && !Unsigned &&
6933           "Bad modifiers used with 'd'!");
6934    if (HowLong)
6935      Type = Context.LongDoubleTy;
6936    else
6937      Type = Context.DoubleTy;
6938    break;
6939  case 's':
6940    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6941    if (Unsigned)
6942      Type = Context.UnsignedShortTy;
6943    else
6944      Type = Context.ShortTy;
6945    break;
6946  case 'i':
6947    if (HowLong == 3)
6948      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6949    else if (HowLong == 2)
6950      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6951    else if (HowLong == 1)
6952      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6953    else
6954      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6955    break;
6956  case 'c':
6957    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6958    if (Signed)
6959      Type = Context.SignedCharTy;
6960    else if (Unsigned)
6961      Type = Context.UnsignedCharTy;
6962    else
6963      Type = Context.CharTy;
6964    break;
6965  case 'b': // boolean
6966    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6967    Type = Context.BoolTy;
6968    break;
6969  case 'z':  // size_t.
6970    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6971    Type = Context.getSizeType();
6972    break;
6973  case 'F':
6974    Type = Context.getCFConstantStringType();
6975    break;
6976  case 'G':
6977    Type = Context.getObjCIdType();
6978    break;
6979  case 'H':
6980    Type = Context.getObjCSelType();
6981    break;
6982  case 'a':
6983    Type = Context.getBuiltinVaListType();
6984    assert(!Type.isNull() && "builtin va list type not initialized!");
6985    break;
6986  case 'A':
6987    // This is a "reference" to a va_list; however, what exactly
6988    // this means depends on how va_list is defined. There are two
6989    // different kinds of va_list: ones passed by value, and ones
6990    // passed by reference.  An example of a by-value va_list is
6991    // x86, where va_list is a char*. An example of by-ref va_list
6992    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6993    // we want this argument to be a char*&; for x86-64, we want
6994    // it to be a __va_list_tag*.
6995    Type = Context.getBuiltinVaListType();
6996    assert(!Type.isNull() && "builtin va list type not initialized!");
6997    if (Type->isArrayType())
6998      Type = Context.getArrayDecayedType(Type);
6999    else
7000      Type = Context.getLValueReferenceType(Type);
7001    break;
7002  case 'V': {
7003    char *End;
7004    unsigned NumElements = strtoul(Str, &End, 10);
7005    assert(End != Str && "Missing vector size");
7006    Str = End;
7007
7008    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7009                                             RequiresICE, false);
7010    assert(!RequiresICE && "Can't require vector ICE");
7011
7012    // TODO: No way to make AltiVec vectors in builtins yet.
7013    Type = Context.getVectorType(ElementType, NumElements,
7014                                 VectorType::GenericVector);
7015    break;
7016  }
7017  case 'E': {
7018    char *End;
7019
7020    unsigned NumElements = strtoul(Str, &End, 10);
7021    assert(End != Str && "Missing vector size");
7022
7023    Str = End;
7024
7025    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7026                                             false);
7027    Type = Context.getExtVectorType(ElementType, NumElements);
7028    break;
7029  }
7030  case 'X': {
7031    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7032                                             false);
7033    assert(!RequiresICE && "Can't require complex ICE");
7034    Type = Context.getComplexType(ElementType);
7035    break;
7036  }
7037  case 'Y' : {
7038    Type = Context.getPointerDiffType();
7039    break;
7040  }
7041  case 'P':
7042    Type = Context.getFILEType();
7043    if (Type.isNull()) {
7044      Error = ASTContext::GE_Missing_stdio;
7045      return QualType();
7046    }
7047    break;
7048  case 'J':
7049    if (Signed)
7050      Type = Context.getsigjmp_bufType();
7051    else
7052      Type = Context.getjmp_bufType();
7053
7054    if (Type.isNull()) {
7055      Error = ASTContext::GE_Missing_setjmp;
7056      return QualType();
7057    }
7058    break;
7059  case 'K':
7060    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7061    Type = Context.getucontext_tType();
7062
7063    if (Type.isNull()) {
7064      Error = ASTContext::GE_Missing_ucontext;
7065      return QualType();
7066    }
7067    break;
7068  }
7069
7070  // If there are modifiers and if we're allowed to parse them, go for it.
7071  Done = !AllowTypeModifiers;
7072  while (!Done) {
7073    switch (char c = *Str++) {
7074    default: Done = true; --Str; break;
7075    case '*':
7076    case '&': {
7077      // Both pointers and references can have their pointee types
7078      // qualified with an address space.
7079      char *End;
7080      unsigned AddrSpace = strtoul(Str, &End, 10);
7081      if (End != Str && AddrSpace != 0) {
7082        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7083        Str = End;
7084      }
7085      if (c == '*')
7086        Type = Context.getPointerType(Type);
7087      else
7088        Type = Context.getLValueReferenceType(Type);
7089      break;
7090    }
7091    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7092    case 'C':
7093      Type = Type.withConst();
7094      break;
7095    case 'D':
7096      Type = Context.getVolatileType(Type);
7097      break;
7098    case 'R':
7099      Type = Type.withRestrict();
7100      break;
7101    }
7102  }
7103
7104  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7105         "Integer constant 'I' type must be an integer");
7106
7107  return Type;
7108}
7109
7110/// GetBuiltinType - Return the type for the specified builtin.
7111QualType ASTContext::GetBuiltinType(unsigned Id,
7112                                    GetBuiltinTypeError &Error,
7113                                    unsigned *IntegerConstantArgs) const {
7114  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7115
7116  SmallVector<QualType, 8> ArgTypes;
7117
7118  bool RequiresICE = false;
7119  Error = GE_None;
7120  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7121                                       RequiresICE, true);
7122  if (Error != GE_None)
7123    return QualType();
7124
7125  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7126
7127  while (TypeStr[0] && TypeStr[0] != '.') {
7128    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7129    if (Error != GE_None)
7130      return QualType();
7131
7132    // If this argument is required to be an IntegerConstantExpression and the
7133    // caller cares, fill in the bitmask we return.
7134    if (RequiresICE && IntegerConstantArgs)
7135      *IntegerConstantArgs |= 1 << ArgTypes.size();
7136
7137    // Do array -> pointer decay.  The builtin should use the decayed type.
7138    if (Ty->isArrayType())
7139      Ty = getArrayDecayedType(Ty);
7140
7141    ArgTypes.push_back(Ty);
7142  }
7143
7144  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7145         "'.' should only occur at end of builtin type list!");
7146
7147  FunctionType::ExtInfo EI;
7148  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7149
7150  bool Variadic = (TypeStr[0] == '.');
7151
7152  // We really shouldn't be making a no-proto type here, especially in C++.
7153  if (ArgTypes.empty() && Variadic)
7154    return getFunctionNoProtoType(ResType, EI);
7155
7156  FunctionProtoType::ExtProtoInfo EPI;
7157  EPI.ExtInfo = EI;
7158  EPI.Variadic = Variadic;
7159
7160  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7161}
7162
7163GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7164  GVALinkage External = GVA_StrongExternal;
7165
7166  Linkage L = FD->getLinkage();
7167  switch (L) {
7168  case NoLinkage:
7169  case InternalLinkage:
7170  case UniqueExternalLinkage:
7171    return GVA_Internal;
7172
7173  case ExternalLinkage:
7174    switch (FD->getTemplateSpecializationKind()) {
7175    case TSK_Undeclared:
7176    case TSK_ExplicitSpecialization:
7177      External = GVA_StrongExternal;
7178      break;
7179
7180    case TSK_ExplicitInstantiationDefinition:
7181      return GVA_ExplicitTemplateInstantiation;
7182
7183    case TSK_ExplicitInstantiationDeclaration:
7184    case TSK_ImplicitInstantiation:
7185      External = GVA_TemplateInstantiation;
7186      break;
7187    }
7188  }
7189
7190  if (!FD->isInlined())
7191    return External;
7192
7193  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7194    // GNU or C99 inline semantics. Determine whether this symbol should be
7195    // externally visible.
7196    if (FD->isInlineDefinitionExternallyVisible())
7197      return External;
7198
7199    // C99 inline semantics, where the symbol is not externally visible.
7200    return GVA_C99Inline;
7201  }
7202
7203  // C++0x [temp.explicit]p9:
7204  //   [ Note: The intent is that an inline function that is the subject of
7205  //   an explicit instantiation declaration will still be implicitly
7206  //   instantiated when used so that the body can be considered for
7207  //   inlining, but that no out-of-line copy of the inline function would be
7208  //   generated in the translation unit. -- end note ]
7209  if (FD->getTemplateSpecializationKind()
7210                                       == TSK_ExplicitInstantiationDeclaration)
7211    return GVA_C99Inline;
7212
7213  return GVA_CXXInline;
7214}
7215
7216GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7217  // If this is a static data member, compute the kind of template
7218  // specialization. Otherwise, this variable is not part of a
7219  // template.
7220  TemplateSpecializationKind TSK = TSK_Undeclared;
7221  if (VD->isStaticDataMember())
7222    TSK = VD->getTemplateSpecializationKind();
7223
7224  Linkage L = VD->getLinkage();
7225  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7226      VD->getType()->getLinkage() == UniqueExternalLinkage)
7227    L = UniqueExternalLinkage;
7228
7229  switch (L) {
7230  case NoLinkage:
7231  case InternalLinkage:
7232  case UniqueExternalLinkage:
7233    return GVA_Internal;
7234
7235  case ExternalLinkage:
7236    switch (TSK) {
7237    case TSK_Undeclared:
7238    case TSK_ExplicitSpecialization:
7239      return GVA_StrongExternal;
7240
7241    case TSK_ExplicitInstantiationDeclaration:
7242      llvm_unreachable("Variable should not be instantiated");
7243      // Fall through to treat this like any other instantiation.
7244
7245    case TSK_ExplicitInstantiationDefinition:
7246      return GVA_ExplicitTemplateInstantiation;
7247
7248    case TSK_ImplicitInstantiation:
7249      return GVA_TemplateInstantiation;
7250    }
7251  }
7252
7253  llvm_unreachable("Invalid Linkage!");
7254}
7255
7256bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7257  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7258    if (!VD->isFileVarDecl())
7259      return false;
7260  } else if (!isa<FunctionDecl>(D))
7261    return false;
7262
7263  // Weak references don't produce any output by themselves.
7264  if (D->hasAttr<WeakRefAttr>())
7265    return false;
7266
7267  // Aliases and used decls are required.
7268  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7269    return true;
7270
7271  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7272    // Forward declarations aren't required.
7273    if (!FD->doesThisDeclarationHaveABody())
7274      return FD->doesDeclarationForceExternallyVisibleDefinition();
7275
7276    // Constructors and destructors are required.
7277    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7278      return true;
7279
7280    // The key function for a class is required.
7281    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7282      const CXXRecordDecl *RD = MD->getParent();
7283      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7284        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7285        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7286          return true;
7287      }
7288    }
7289
7290    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7291
7292    // static, static inline, always_inline, and extern inline functions can
7293    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7294    // Implicit template instantiations can also be deferred in C++.
7295    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7296        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7297      return false;
7298    return true;
7299  }
7300
7301  const VarDecl *VD = cast<VarDecl>(D);
7302  assert(VD->isFileVarDecl() && "Expected file scoped var");
7303
7304  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7305    return false;
7306
7307  // Structs that have non-trivial constructors or destructors are required.
7308
7309  // FIXME: Handle references.
7310  // FIXME: Be more selective about which constructors we care about.
7311  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7312    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7313      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7314                                   RD->hasTrivialCopyConstructor() &&
7315                                   RD->hasTrivialMoveConstructor() &&
7316                                   RD->hasTrivialDestructor()))
7317        return true;
7318    }
7319  }
7320
7321  GVALinkage L = GetGVALinkageForVariable(VD);
7322  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7323    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7324      return false;
7325  }
7326
7327  return true;
7328}
7329
7330CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7331  // Pass through to the C++ ABI object
7332  return ABI->getDefaultMethodCallConv(isVariadic);
7333}
7334
7335CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7336  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7337    return CC_Default;
7338  return CC;
7339}
7340
7341bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7342  // Pass through to the C++ ABI object
7343  return ABI->isNearlyEmpty(RD);
7344}
7345
7346MangleContext *ASTContext::createMangleContext() {
7347  switch (Target->getCXXABI()) {
7348  case CXXABI_ARM:
7349  case CXXABI_Itanium:
7350    return createItaniumMangleContext(*this, getDiagnostics());
7351  case CXXABI_Microsoft:
7352    return createMicrosoftMangleContext(*this, getDiagnostics());
7353  }
7354  llvm_unreachable("Unsupported ABI");
7355}
7356
7357CXXABI::~CXXABI() {}
7358
7359size_t ASTContext::getSideTableAllocatedMemory() const {
7360  return ASTRecordLayouts.getMemorySize()
7361    + llvm::capacity_in_bytes(ObjCLayouts)
7362    + llvm::capacity_in_bytes(KeyFunctions)
7363    + llvm::capacity_in_bytes(ObjCImpls)
7364    + llvm::capacity_in_bytes(BlockVarCopyInits)
7365    + llvm::capacity_in_bytes(DeclAttrs)
7366    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7367    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7368    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7369    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7370    + llvm::capacity_in_bytes(OverriddenMethods)
7371    + llvm::capacity_in_bytes(Types)
7372    + llvm::capacity_in_bytes(VariableArrayTypes)
7373    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7374}
7375
7376unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7377  CXXRecordDecl *Lambda = CallOperator->getParent();
7378  return LambdaMangleContexts[Lambda->getDeclContext()]
7379           .getManglingNumber(CallOperator);
7380}
7381
7382
7383void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7384  ParamIndices[D] = index;
7385}
7386
7387unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7388  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7389  assert(I != ParamIndices.end() &&
7390         "ParmIndices lacks entry set by ParmVarDecl");
7391  return I->second;
7392}
7393