ASTContext.cpp revision eae5a820bced67465c8517793a1602dfaeed8a06
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentCommandTraits.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/Mangle.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Support/Capacity.h"
35#include "CXXABI.h"
36#include <map>
37
38using namespace clang;
39
40unsigned ASTContext::NumImplicitDefaultConstructors;
41unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
42unsigned ASTContext::NumImplicitCopyConstructors;
43unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
44unsigned ASTContext::NumImplicitMoveConstructors;
45unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
46unsigned ASTContext::NumImplicitCopyAssignmentOperators;
47unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitMoveAssignmentOperators;
49unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitDestructors;
51unsigned ASTContext::NumImplicitDestructorsDeclared;
52
53enum FloatingRank {
54  HalfRank, FloatRank, DoubleRank, LongDoubleRank
55};
56
57RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
58  if (!CommentsLoaded && ExternalSource) {
59    ExternalSource->ReadComments();
60    CommentsLoaded = true;
61  }
62
63  assert(D);
64
65  // User can not attach documentation to implicit declarations.
66  if (D->isImplicit())
67    return NULL;
68
69  // User can not attach documentation to implicit instantiations.
70  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
71    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
72      return NULL;
73  }
74
75  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
76    if (VD->isStaticDataMember() &&
77        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
78      return NULL;
79  }
80
81  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
82    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
83      return NULL;
84  }
85
86  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
87    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
88      return NULL;
89  }
90
91  // TODO: handle comments for function parameters properly.
92  if (isa<ParmVarDecl>(D))
93    return NULL;
94
95  // TODO: we could look up template parameter documentation in the template
96  // documentation.
97  if (isa<TemplateTypeParmDecl>(D) ||
98      isa<NonTypeTemplateParmDecl>(D) ||
99      isa<TemplateTemplateParmDecl>(D))
100    return NULL;
101
102  ArrayRef<RawComment *> RawComments = Comments.getComments();
103
104  // If there are no comments anywhere, we won't find anything.
105  if (RawComments.empty())
106    return NULL;
107
108  // Find declaration location.
109  // For Objective-C declarations we generally don't expect to have multiple
110  // declarators, thus use declaration starting location as the "declaration
111  // location".
112  // For all other declarations multiple declarators are used quite frequently,
113  // so we use the location of the identifier as the "declaration location".
114  SourceLocation DeclLoc;
115  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
116      isa<ObjCPropertyDecl>(D) ||
117      isa<RedeclarableTemplateDecl>(D) ||
118      isa<ClassTemplateSpecializationDecl>(D))
119    DeclLoc = D->getLocStart();
120  else
121    DeclLoc = D->getLocation();
122
123  // If the declaration doesn't map directly to a location in a file, we
124  // can't find the comment.
125  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
126    return NULL;
127
128  // Find the comment that occurs just after this declaration.
129  ArrayRef<RawComment *>::iterator Comment;
130  {
131    // When searching for comments during parsing, the comment we are looking
132    // for is usually among the last two comments we parsed -- check them
133    // first.
134    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
135    BeforeThanCompare<RawComment> Compare(SourceMgr);
136    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
137    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
138    if (!Found && RawComments.size() >= 2) {
139      MaybeBeforeDecl--;
140      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
141    }
142
143    if (Found) {
144      Comment = MaybeBeforeDecl + 1;
145      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
146                                         &CommentAtDeclLoc, Compare));
147    } else {
148      // Slow path.
149      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
150                                 &CommentAtDeclLoc, Compare);
151    }
152  }
153
154  // Decompose the location for the declaration and find the beginning of the
155  // file buffer.
156  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
157
158  // First check whether we have a trailing comment.
159  if (Comment != RawComments.end() &&
160      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
161      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
162    std::pair<FileID, unsigned> CommentBeginDecomp
163      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
164    // Check that Doxygen trailing comment comes after the declaration, starts
165    // on the same line and in the same file as the declaration.
166    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
167        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
168          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
169                                     CommentBeginDecomp.second)) {
170      return *Comment;
171    }
172  }
173
174  // The comment just after the declaration was not a trailing comment.
175  // Let's look at the previous comment.
176  if (Comment == RawComments.begin())
177    return NULL;
178  --Comment;
179
180  // Check that we actually have a non-member Doxygen comment.
181  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
182    return NULL;
183
184  // Decompose the end of the comment.
185  std::pair<FileID, unsigned> CommentEndDecomp
186    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
187
188  // If the comment and the declaration aren't in the same file, then they
189  // aren't related.
190  if (DeclLocDecomp.first != CommentEndDecomp.first)
191    return NULL;
192
193  // Get the corresponding buffer.
194  bool Invalid = false;
195  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
196                                               &Invalid).data();
197  if (Invalid)
198    return NULL;
199
200  // Extract text between the comment and declaration.
201  StringRef Text(Buffer + CommentEndDecomp.second,
202                 DeclLocDecomp.second - CommentEndDecomp.second);
203
204  // There should be no other declarations or preprocessor directives between
205  // comment and declaration.
206  if (Text.find_first_of(",;{}#@") != StringRef::npos)
207    return NULL;
208
209  return *Comment;
210}
211
212namespace {
213/// If we have a 'templated' declaration for a template, adjust 'D' to
214/// refer to the actual template.
215/// If we have an implicit instantiation, adjust 'D' to refer to template.
216const Decl *adjustDeclToTemplate(const Decl *D) {
217  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
218    // Is this function declaration part of a function template?
219    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
220      return FTD;
221
222    // Nothing to do if function is not an implicit instantiation.
223    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
224      return D;
225
226    // Function is an implicit instantiation of a function template?
227    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
228      return FTD;
229
230    // Function is instantiated from a member definition of a class template?
231    if (const FunctionDecl *MemberDecl =
232            FD->getInstantiatedFromMemberFunction())
233      return MemberDecl;
234
235    return D;
236  }
237  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
238    // Static data member is instantiated from a member definition of a class
239    // template?
240    if (VD->isStaticDataMember())
241      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
242        return MemberDecl;
243
244    return D;
245  }
246  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
247    // Is this class declaration part of a class template?
248    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
249      return CTD;
250
251    // Class is an implicit instantiation of a class template or partial
252    // specialization?
253    if (const ClassTemplateSpecializationDecl *CTSD =
254            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
255      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
256        return D;
257      llvm::PointerUnion<ClassTemplateDecl *,
258                         ClassTemplatePartialSpecializationDecl *>
259          PU = CTSD->getSpecializedTemplateOrPartial();
260      return PU.is<ClassTemplateDecl*>() ?
261          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
262          static_cast<const Decl*>(
263              PU.get<ClassTemplatePartialSpecializationDecl *>());
264    }
265
266    // Class is instantiated from a member definition of a class template?
267    if (const MemberSpecializationInfo *Info =
268                   CRD->getMemberSpecializationInfo())
269      return Info->getInstantiatedFrom();
270
271    return D;
272  }
273  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
274    // Enum is instantiated from a member definition of a class template?
275    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
276      return MemberDecl;
277
278    return D;
279  }
280  // FIXME: Adjust alias templates?
281  return D;
282}
283} // unnamed namespace
284
285const RawComment *ASTContext::getRawCommentForAnyRedecl(
286                                                const Decl *D,
287                                                const Decl **OriginalDecl) const {
288  D = adjustDeclToTemplate(D);
289
290  // Check whether we have cached a comment for this declaration already.
291  {
292    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
293        RedeclComments.find(D);
294    if (Pos != RedeclComments.end()) {
295      const RawCommentAndCacheFlags &Raw = Pos->second;
296      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
297        if (OriginalDecl)
298          *OriginalDecl = Raw.getOriginalDecl();
299        return Raw.getRaw();
300      }
301    }
302  }
303
304  // Search for comments attached to declarations in the redeclaration chain.
305  const RawComment *RC = NULL;
306  const Decl *OriginalDeclForRC = NULL;
307  for (Decl::redecl_iterator I = D->redecls_begin(),
308                             E = D->redecls_end();
309       I != E; ++I) {
310    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
311        RedeclComments.find(*I);
312    if (Pos != RedeclComments.end()) {
313      const RawCommentAndCacheFlags &Raw = Pos->second;
314      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
315        RC = Raw.getRaw();
316        OriginalDeclForRC = Raw.getOriginalDecl();
317        break;
318      }
319    } else {
320      RC = getRawCommentForDeclNoCache(*I);
321      OriginalDeclForRC = *I;
322      RawCommentAndCacheFlags Raw;
323      if (RC) {
324        Raw.setRaw(RC);
325        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
326      } else
327        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
328      Raw.setOriginalDecl(*I);
329      RedeclComments[*I] = Raw;
330      if (RC)
331        break;
332    }
333  }
334
335  // If we found a comment, it should be a documentation comment.
336  assert(!RC || RC->isDocumentation());
337
338  if (OriginalDecl)
339    *OriginalDecl = OriginalDeclForRC;
340
341  // Update cache for every declaration in the redeclaration chain.
342  RawCommentAndCacheFlags Raw;
343  Raw.setRaw(RC);
344  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
345  Raw.setOriginalDecl(OriginalDeclForRC);
346
347  for (Decl::redecl_iterator I = D->redecls_begin(),
348                             E = D->redecls_end();
349       I != E; ++I) {
350    RawCommentAndCacheFlags &R = RedeclComments[*I];
351    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
352      R = Raw;
353  }
354
355  return RC;
356}
357
358comments::FullComment *ASTContext::getCommentForDecl(
359                                              const Decl *D,
360                                              const Preprocessor *PP) const {
361  D = adjustDeclToTemplate(D);
362  const Decl *Canonical = D->getCanonicalDecl();
363  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
364      ParsedComments.find(Canonical);
365  if (Pos != ParsedComments.end())
366    return Pos->second;
367
368  const Decl *OriginalDecl;
369  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
370  if (!RC)
371    return NULL;
372
373  // If the RawComment was attached to other redeclaration of this Decl, we
374  // should parse the comment in context of that other Decl.  This is important
375  // because comments can contain references to parameter names which can be
376  // different across redeclarations.
377  if (D != OriginalDecl)
378    return getCommentForDecl(OriginalDecl, PP);
379
380  comments::FullComment *FC = RC->parse(*this, PP, D);
381  ParsedComments[Canonical] = FC;
382  return FC;
383}
384
385void
386ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
387                                               TemplateTemplateParmDecl *Parm) {
388  ID.AddInteger(Parm->getDepth());
389  ID.AddInteger(Parm->getPosition());
390  ID.AddBoolean(Parm->isParameterPack());
391
392  TemplateParameterList *Params = Parm->getTemplateParameters();
393  ID.AddInteger(Params->size());
394  for (TemplateParameterList::const_iterator P = Params->begin(),
395                                          PEnd = Params->end();
396       P != PEnd; ++P) {
397    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
398      ID.AddInteger(0);
399      ID.AddBoolean(TTP->isParameterPack());
400      continue;
401    }
402
403    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
404      ID.AddInteger(1);
405      ID.AddBoolean(NTTP->isParameterPack());
406      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
407      if (NTTP->isExpandedParameterPack()) {
408        ID.AddBoolean(true);
409        ID.AddInteger(NTTP->getNumExpansionTypes());
410        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
411          QualType T = NTTP->getExpansionType(I);
412          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
413        }
414      } else
415        ID.AddBoolean(false);
416      continue;
417    }
418
419    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
420    ID.AddInteger(2);
421    Profile(ID, TTP);
422  }
423}
424
425TemplateTemplateParmDecl *
426ASTContext::getCanonicalTemplateTemplateParmDecl(
427                                          TemplateTemplateParmDecl *TTP) const {
428  // Check if we already have a canonical template template parameter.
429  llvm::FoldingSetNodeID ID;
430  CanonicalTemplateTemplateParm::Profile(ID, TTP);
431  void *InsertPos = 0;
432  CanonicalTemplateTemplateParm *Canonical
433    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
434  if (Canonical)
435    return Canonical->getParam();
436
437  // Build a canonical template parameter list.
438  TemplateParameterList *Params = TTP->getTemplateParameters();
439  SmallVector<NamedDecl *, 4> CanonParams;
440  CanonParams.reserve(Params->size());
441  for (TemplateParameterList::const_iterator P = Params->begin(),
442                                          PEnd = Params->end();
443       P != PEnd; ++P) {
444    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
445      CanonParams.push_back(
446                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
447                                               SourceLocation(),
448                                               SourceLocation(),
449                                               TTP->getDepth(),
450                                               TTP->getIndex(), 0, false,
451                                               TTP->isParameterPack()));
452    else if (NonTypeTemplateParmDecl *NTTP
453             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
454      QualType T = getCanonicalType(NTTP->getType());
455      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
456      NonTypeTemplateParmDecl *Param;
457      if (NTTP->isExpandedParameterPack()) {
458        SmallVector<QualType, 2> ExpandedTypes;
459        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
460        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
461          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
462          ExpandedTInfos.push_back(
463                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
464        }
465
466        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
467                                                SourceLocation(),
468                                                SourceLocation(),
469                                                NTTP->getDepth(),
470                                                NTTP->getPosition(), 0,
471                                                T,
472                                                TInfo,
473                                                ExpandedTypes.data(),
474                                                ExpandedTypes.size(),
475                                                ExpandedTInfos.data());
476      } else {
477        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
478                                                SourceLocation(),
479                                                SourceLocation(),
480                                                NTTP->getDepth(),
481                                                NTTP->getPosition(), 0,
482                                                T,
483                                                NTTP->isParameterPack(),
484                                                TInfo);
485      }
486      CanonParams.push_back(Param);
487
488    } else
489      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
490                                           cast<TemplateTemplateParmDecl>(*P)));
491  }
492
493  TemplateTemplateParmDecl *CanonTTP
494    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
495                                       SourceLocation(), TTP->getDepth(),
496                                       TTP->getPosition(),
497                                       TTP->isParameterPack(),
498                                       0,
499                         TemplateParameterList::Create(*this, SourceLocation(),
500                                                       SourceLocation(),
501                                                       CanonParams.data(),
502                                                       CanonParams.size(),
503                                                       SourceLocation()));
504
505  // Get the new insert position for the node we care about.
506  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
507  assert(Canonical == 0 && "Shouldn't be in the map!");
508  (void)Canonical;
509
510  // Create the canonical template template parameter entry.
511  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
512  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
513  return CanonTTP;
514}
515
516CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
517  if (!LangOpts.CPlusPlus) return 0;
518
519  switch (T.getCXXABI()) {
520  case CXXABI_ARM:
521    return CreateARMCXXABI(*this);
522  case CXXABI_Itanium:
523    return CreateItaniumCXXABI(*this);
524  case CXXABI_Microsoft:
525    return CreateMicrosoftCXXABI(*this);
526  }
527  llvm_unreachable("Invalid CXXABI type!");
528}
529
530static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
531                                             const LangOptions &LOpts) {
532  if (LOpts.FakeAddressSpaceMap) {
533    // The fake address space map must have a distinct entry for each
534    // language-specific address space.
535    static const unsigned FakeAddrSpaceMap[] = {
536      1, // opencl_global
537      2, // opencl_local
538      3, // opencl_constant
539      4, // cuda_device
540      5, // cuda_constant
541      6  // cuda_shared
542    };
543    return &FakeAddrSpaceMap;
544  } else {
545    return &T.getAddressSpaceMap();
546  }
547}
548
549ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
550                       const TargetInfo *t,
551                       IdentifierTable &idents, SelectorTable &sels,
552                       Builtin::Context &builtins,
553                       unsigned size_reserve,
554                       bool DelayInitialization)
555  : FunctionProtoTypes(this_()),
556    TemplateSpecializationTypes(this_()),
557    DependentTemplateSpecializationTypes(this_()),
558    SubstTemplateTemplateParmPacks(this_()),
559    GlobalNestedNameSpecifier(0),
560    Int128Decl(0), UInt128Decl(0),
561    BuiltinVaListDecl(0),
562    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
563    BOOLDecl(0),
564    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
565    FILEDecl(0),
566    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
567    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
568    cudaConfigureCallDecl(0),
569    NullTypeSourceInfo(QualType()),
570    FirstLocalImport(), LastLocalImport(),
571    SourceMgr(SM), LangOpts(LOpts),
572    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
573    Idents(idents), Selectors(sels),
574    BuiltinInfo(builtins),
575    DeclarationNames(*this),
576    ExternalSource(0), Listener(0),
577    Comments(SM), CommentsLoaded(false),
578    CommentCommandTraits(BumpAlloc),
579    LastSDM(0, 0),
580    UniqueBlockByRefTypeID(0)
581{
582  if (size_reserve > 0) Types.reserve(size_reserve);
583  TUDecl = TranslationUnitDecl::Create(*this);
584
585  if (!DelayInitialization) {
586    assert(t && "No target supplied for ASTContext initialization");
587    InitBuiltinTypes(*t);
588  }
589}
590
591ASTContext::~ASTContext() {
592  // Release the DenseMaps associated with DeclContext objects.
593  // FIXME: Is this the ideal solution?
594  ReleaseDeclContextMaps();
595
596  // Call all of the deallocation functions.
597  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
598    Deallocations[I].first(Deallocations[I].second);
599
600  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
601  // because they can contain DenseMaps.
602  for (llvm::DenseMap<const ObjCContainerDecl*,
603       const ASTRecordLayout*>::iterator
604       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
605    // Increment in loop to prevent using deallocated memory.
606    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
607      R->Destroy(*this);
608
609  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
610       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
611    // Increment in loop to prevent using deallocated memory.
612    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
613      R->Destroy(*this);
614  }
615
616  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
617                                                    AEnd = DeclAttrs.end();
618       A != AEnd; ++A)
619    A->second->~AttrVec();
620}
621
622void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
623  Deallocations.push_back(std::make_pair(Callback, Data));
624}
625
626void
627ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
628  ExternalSource.reset(Source.take());
629}
630
631void ASTContext::PrintStats() const {
632  llvm::errs() << "\n*** AST Context Stats:\n";
633  llvm::errs() << "  " << Types.size() << " types total.\n";
634
635  unsigned counts[] = {
636#define TYPE(Name, Parent) 0,
637#define ABSTRACT_TYPE(Name, Parent)
638#include "clang/AST/TypeNodes.def"
639    0 // Extra
640  };
641
642  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
643    Type *T = Types[i];
644    counts[(unsigned)T->getTypeClass()]++;
645  }
646
647  unsigned Idx = 0;
648  unsigned TotalBytes = 0;
649#define TYPE(Name, Parent)                                              \
650  if (counts[Idx])                                                      \
651    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
652                 << " types\n";                                         \
653  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
654  ++Idx;
655#define ABSTRACT_TYPE(Name, Parent)
656#include "clang/AST/TypeNodes.def"
657
658  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
659
660  // Implicit special member functions.
661  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
662               << NumImplicitDefaultConstructors
663               << " implicit default constructors created\n";
664  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
665               << NumImplicitCopyConstructors
666               << " implicit copy constructors created\n";
667  if (getLangOpts().CPlusPlus)
668    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
669                 << NumImplicitMoveConstructors
670                 << " implicit move constructors created\n";
671  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
672               << NumImplicitCopyAssignmentOperators
673               << " implicit copy assignment operators created\n";
674  if (getLangOpts().CPlusPlus)
675    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
676                 << NumImplicitMoveAssignmentOperators
677                 << " implicit move assignment operators created\n";
678  llvm::errs() << NumImplicitDestructorsDeclared << "/"
679               << NumImplicitDestructors
680               << " implicit destructors created\n";
681
682  if (ExternalSource.get()) {
683    llvm::errs() << "\n";
684    ExternalSource->PrintStats();
685  }
686
687  BumpAlloc.PrintStats();
688}
689
690TypedefDecl *ASTContext::getInt128Decl() const {
691  if (!Int128Decl) {
692    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
693    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
694                                     getTranslationUnitDecl(),
695                                     SourceLocation(),
696                                     SourceLocation(),
697                                     &Idents.get("__int128_t"),
698                                     TInfo);
699  }
700
701  return Int128Decl;
702}
703
704TypedefDecl *ASTContext::getUInt128Decl() const {
705  if (!UInt128Decl) {
706    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
707    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
708                                     getTranslationUnitDecl(),
709                                     SourceLocation(),
710                                     SourceLocation(),
711                                     &Idents.get("__uint128_t"),
712                                     TInfo);
713  }
714
715  return UInt128Decl;
716}
717
718void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
719  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
720  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
721  Types.push_back(Ty);
722}
723
724void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
725  assert((!this->Target || this->Target == &Target) &&
726         "Incorrect target reinitialization");
727  assert(VoidTy.isNull() && "Context reinitialized?");
728
729  this->Target = &Target;
730
731  ABI.reset(createCXXABI(Target));
732  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
733
734  // C99 6.2.5p19.
735  InitBuiltinType(VoidTy,              BuiltinType::Void);
736
737  // C99 6.2.5p2.
738  InitBuiltinType(BoolTy,              BuiltinType::Bool);
739  // C99 6.2.5p3.
740  if (LangOpts.CharIsSigned)
741    InitBuiltinType(CharTy,            BuiltinType::Char_S);
742  else
743    InitBuiltinType(CharTy,            BuiltinType::Char_U);
744  // C99 6.2.5p4.
745  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
746  InitBuiltinType(ShortTy,             BuiltinType::Short);
747  InitBuiltinType(IntTy,               BuiltinType::Int);
748  InitBuiltinType(LongTy,              BuiltinType::Long);
749  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
750
751  // C99 6.2.5p6.
752  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
753  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
754  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
755  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
756  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
757
758  // C99 6.2.5p10.
759  InitBuiltinType(FloatTy,             BuiltinType::Float);
760  InitBuiltinType(DoubleTy,            BuiltinType::Double);
761  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
762
763  // GNU extension, 128-bit integers.
764  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
765  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
766
767  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
768    if (TargetInfo::isTypeSigned(Target.getWCharType()))
769      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
770    else  // -fshort-wchar makes wchar_t be unsigned.
771      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
772  } else // C99 (or C++ using -fno-wchar)
773    WCharTy = getFromTargetType(Target.getWCharType());
774
775  WIntTy = getFromTargetType(Target.getWIntType());
776
777  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
778    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
779  else // C99
780    Char16Ty = getFromTargetType(Target.getChar16Type());
781
782  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
783    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
784  else // C99
785    Char32Ty = getFromTargetType(Target.getChar32Type());
786
787  // Placeholder type for type-dependent expressions whose type is
788  // completely unknown. No code should ever check a type against
789  // DependentTy and users should never see it; however, it is here to
790  // help diagnose failures to properly check for type-dependent
791  // expressions.
792  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
793
794  // Placeholder type for functions.
795  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
796
797  // Placeholder type for bound members.
798  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
799
800  // Placeholder type for pseudo-objects.
801  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
802
803  // "any" type; useful for debugger-like clients.
804  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
805
806  // Placeholder type for unbridged ARC casts.
807  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
808
809  // Placeholder type for builtin functions.
810  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
811
812  // C99 6.2.5p11.
813  FloatComplexTy      = getComplexType(FloatTy);
814  DoubleComplexTy     = getComplexType(DoubleTy);
815  LongDoubleComplexTy = getComplexType(LongDoubleTy);
816
817  // Builtin types for 'id', 'Class', and 'SEL'.
818  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
819  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
820  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
821
822  // Builtin type for __objc_yes and __objc_no
823  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
824                       SignedCharTy : BoolTy);
825
826  ObjCConstantStringType = QualType();
827
828  // void * type
829  VoidPtrTy = getPointerType(VoidTy);
830
831  // nullptr type (C++0x 2.14.7)
832  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
833
834  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
835  InitBuiltinType(HalfTy, BuiltinType::Half);
836
837  // Builtin type used to help define __builtin_va_list.
838  VaListTagTy = QualType();
839}
840
841DiagnosticsEngine &ASTContext::getDiagnostics() const {
842  return SourceMgr.getDiagnostics();
843}
844
845AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
846  AttrVec *&Result = DeclAttrs[D];
847  if (!Result) {
848    void *Mem = Allocate(sizeof(AttrVec));
849    Result = new (Mem) AttrVec;
850  }
851
852  return *Result;
853}
854
855/// \brief Erase the attributes corresponding to the given declaration.
856void ASTContext::eraseDeclAttrs(const Decl *D) {
857  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
858  if (Pos != DeclAttrs.end()) {
859    Pos->second->~AttrVec();
860    DeclAttrs.erase(Pos);
861  }
862}
863
864MemberSpecializationInfo *
865ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
866  assert(Var->isStaticDataMember() && "Not a static data member");
867  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
868    = InstantiatedFromStaticDataMember.find(Var);
869  if (Pos == InstantiatedFromStaticDataMember.end())
870    return 0;
871
872  return Pos->second;
873}
874
875void
876ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
877                                                TemplateSpecializationKind TSK,
878                                          SourceLocation PointOfInstantiation) {
879  assert(Inst->isStaticDataMember() && "Not a static data member");
880  assert(Tmpl->isStaticDataMember() && "Not a static data member");
881  assert(!InstantiatedFromStaticDataMember[Inst] &&
882         "Already noted what static data member was instantiated from");
883  InstantiatedFromStaticDataMember[Inst]
884    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
885}
886
887FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
888                                                     const FunctionDecl *FD){
889  assert(FD && "Specialization is 0");
890  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
891    = ClassScopeSpecializationPattern.find(FD);
892  if (Pos == ClassScopeSpecializationPattern.end())
893    return 0;
894
895  return Pos->second;
896}
897
898void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
899                                        FunctionDecl *Pattern) {
900  assert(FD && "Specialization is 0");
901  assert(Pattern && "Class scope specialization pattern is 0");
902  ClassScopeSpecializationPattern[FD] = Pattern;
903}
904
905NamedDecl *
906ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
907  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
908    = InstantiatedFromUsingDecl.find(UUD);
909  if (Pos == InstantiatedFromUsingDecl.end())
910    return 0;
911
912  return Pos->second;
913}
914
915void
916ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
917  assert((isa<UsingDecl>(Pattern) ||
918          isa<UnresolvedUsingValueDecl>(Pattern) ||
919          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
920         "pattern decl is not a using decl");
921  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
922  InstantiatedFromUsingDecl[Inst] = Pattern;
923}
924
925UsingShadowDecl *
926ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
927  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
928    = InstantiatedFromUsingShadowDecl.find(Inst);
929  if (Pos == InstantiatedFromUsingShadowDecl.end())
930    return 0;
931
932  return Pos->second;
933}
934
935void
936ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
937                                               UsingShadowDecl *Pattern) {
938  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
939  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
940}
941
942FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
943  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
944    = InstantiatedFromUnnamedFieldDecl.find(Field);
945  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
946    return 0;
947
948  return Pos->second;
949}
950
951void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
952                                                     FieldDecl *Tmpl) {
953  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
954  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
955  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
956         "Already noted what unnamed field was instantiated from");
957
958  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
959}
960
961bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
962                                    const FieldDecl *LastFD) const {
963  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
964          FD->getBitWidthValue(*this) == 0);
965}
966
967bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
968                                             const FieldDecl *LastFD) const {
969  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
970          FD->getBitWidthValue(*this) == 0 &&
971          LastFD->getBitWidthValue(*this) != 0);
972}
973
974bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
975                                         const FieldDecl *LastFD) const {
976  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
977          FD->getBitWidthValue(*this) &&
978          LastFD->getBitWidthValue(*this));
979}
980
981bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
982                                         const FieldDecl *LastFD) const {
983  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
984          LastFD->getBitWidthValue(*this));
985}
986
987bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
988                                             const FieldDecl *LastFD) const {
989  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
990          FD->getBitWidthValue(*this));
991}
992
993ASTContext::overridden_cxx_method_iterator
994ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
995  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
996    = OverriddenMethods.find(Method->getCanonicalDecl());
997  if (Pos == OverriddenMethods.end())
998    return 0;
999
1000  return Pos->second.begin();
1001}
1002
1003ASTContext::overridden_cxx_method_iterator
1004ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1005  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1006    = OverriddenMethods.find(Method->getCanonicalDecl());
1007  if (Pos == OverriddenMethods.end())
1008    return 0;
1009
1010  return Pos->second.end();
1011}
1012
1013unsigned
1014ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1015  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1016    = OverriddenMethods.find(Method->getCanonicalDecl());
1017  if (Pos == OverriddenMethods.end())
1018    return 0;
1019
1020  return Pos->second.size();
1021}
1022
1023void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1024                                     const CXXMethodDecl *Overridden) {
1025  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1026  OverriddenMethods[Method].push_back(Overridden);
1027}
1028
1029void ASTContext::getOverriddenMethods(const NamedDecl *D,
1030                               SmallVectorImpl<const NamedDecl *> &Overridden) {
1031  assert(D);
1032
1033  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1034    Overridden.append(CXXMethod->begin_overridden_methods(),
1035                      CXXMethod->end_overridden_methods());
1036    return;
1037  }
1038
1039  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1040  if (!Method)
1041    return;
1042
1043  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1044  Method->getOverriddenMethods(OverDecls);
1045  Overridden.append(OverDecls.begin(), OverDecls.end());
1046}
1047
1048void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1049  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1050  assert(!Import->isFromASTFile() && "Non-local import declaration");
1051  if (!FirstLocalImport) {
1052    FirstLocalImport = Import;
1053    LastLocalImport = Import;
1054    return;
1055  }
1056
1057  LastLocalImport->NextLocalImport = Import;
1058  LastLocalImport = Import;
1059}
1060
1061//===----------------------------------------------------------------------===//
1062//                         Type Sizing and Analysis
1063//===----------------------------------------------------------------------===//
1064
1065/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1066/// scalar floating point type.
1067const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1068  const BuiltinType *BT = T->getAs<BuiltinType>();
1069  assert(BT && "Not a floating point type!");
1070  switch (BT->getKind()) {
1071  default: llvm_unreachable("Not a floating point type!");
1072  case BuiltinType::Half:       return Target->getHalfFormat();
1073  case BuiltinType::Float:      return Target->getFloatFormat();
1074  case BuiltinType::Double:     return Target->getDoubleFormat();
1075  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1076  }
1077}
1078
1079/// getDeclAlign - Return a conservative estimate of the alignment of the
1080/// specified decl.  Note that bitfields do not have a valid alignment, so
1081/// this method will assert on them.
1082/// If @p RefAsPointee, references are treated like their underlying type
1083/// (for alignof), else they're treated like pointers (for CodeGen).
1084CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1085  unsigned Align = Target->getCharWidth();
1086
1087  bool UseAlignAttrOnly = false;
1088  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1089    Align = AlignFromAttr;
1090
1091    // __attribute__((aligned)) can increase or decrease alignment
1092    // *except* on a struct or struct member, where it only increases
1093    // alignment unless 'packed' is also specified.
1094    //
1095    // It is an error for alignas to decrease alignment, so we can
1096    // ignore that possibility;  Sema should diagnose it.
1097    if (isa<FieldDecl>(D)) {
1098      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1099        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1100    } else {
1101      UseAlignAttrOnly = true;
1102    }
1103  }
1104  else if (isa<FieldDecl>(D))
1105      UseAlignAttrOnly =
1106        D->hasAttr<PackedAttr>() ||
1107        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1108
1109  // If we're using the align attribute only, just ignore everything
1110  // else about the declaration and its type.
1111  if (UseAlignAttrOnly) {
1112    // do nothing
1113
1114  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1115    QualType T = VD->getType();
1116    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1117      if (RefAsPointee)
1118        T = RT->getPointeeType();
1119      else
1120        T = getPointerType(RT->getPointeeType());
1121    }
1122    if (!T->isIncompleteType() && !T->isFunctionType()) {
1123      // Adjust alignments of declarations with array type by the
1124      // large-array alignment on the target.
1125      unsigned MinWidth = Target->getLargeArrayMinWidth();
1126      const ArrayType *arrayType;
1127      if (MinWidth && (arrayType = getAsArrayType(T))) {
1128        if (isa<VariableArrayType>(arrayType))
1129          Align = std::max(Align, Target->getLargeArrayAlign());
1130        else if (isa<ConstantArrayType>(arrayType) &&
1131                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1132          Align = std::max(Align, Target->getLargeArrayAlign());
1133
1134        // Walk through any array types while we're at it.
1135        T = getBaseElementType(arrayType);
1136      }
1137      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1138    }
1139
1140    // Fields can be subject to extra alignment constraints, like if
1141    // the field is packed, the struct is packed, or the struct has a
1142    // a max-field-alignment constraint (#pragma pack).  So calculate
1143    // the actual alignment of the field within the struct, and then
1144    // (as we're expected to) constrain that by the alignment of the type.
1145    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1146      // So calculate the alignment of the field.
1147      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1148
1149      // Start with the record's overall alignment.
1150      unsigned fieldAlign = toBits(layout.getAlignment());
1151
1152      // Use the GCD of that and the offset within the record.
1153      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1154      if (offset > 0) {
1155        // Alignment is always a power of 2, so the GCD will be a power of 2,
1156        // which means we get to do this crazy thing instead of Euclid's.
1157        uint64_t lowBitOfOffset = offset & (~offset + 1);
1158        if (lowBitOfOffset < fieldAlign)
1159          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1160      }
1161
1162      Align = std::min(Align, fieldAlign);
1163    }
1164  }
1165
1166  return toCharUnitsFromBits(Align);
1167}
1168
1169// getTypeInfoDataSizeInChars - Return the size of a type, in
1170// chars. If the type is a record, its data size is returned.  This is
1171// the size of the memcpy that's performed when assigning this type
1172// using a trivial copy/move assignment operator.
1173std::pair<CharUnits, CharUnits>
1174ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1175  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1176
1177  // In C++, objects can sometimes be allocated into the tail padding
1178  // of a base-class subobject.  We decide whether that's possible
1179  // during class layout, so here we can just trust the layout results.
1180  if (getLangOpts().CPlusPlus) {
1181    if (const RecordType *RT = T->getAs<RecordType>()) {
1182      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1183      sizeAndAlign.first = layout.getDataSize();
1184    }
1185  }
1186
1187  return sizeAndAlign;
1188}
1189
1190std::pair<CharUnits, CharUnits>
1191ASTContext::getTypeInfoInChars(const Type *T) const {
1192  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1193  return std::make_pair(toCharUnitsFromBits(Info.first),
1194                        toCharUnitsFromBits(Info.second));
1195}
1196
1197std::pair<CharUnits, CharUnits>
1198ASTContext::getTypeInfoInChars(QualType T) const {
1199  return getTypeInfoInChars(T.getTypePtr());
1200}
1201
1202std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1203  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1204  if (it != MemoizedTypeInfo.end())
1205    return it->second;
1206
1207  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1208  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1209  return Info;
1210}
1211
1212/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1213/// method does not work on incomplete types.
1214///
1215/// FIXME: Pointers into different addr spaces could have different sizes and
1216/// alignment requirements: getPointerInfo should take an AddrSpace, this
1217/// should take a QualType, &c.
1218std::pair<uint64_t, unsigned>
1219ASTContext::getTypeInfoImpl(const Type *T) const {
1220  uint64_t Width=0;
1221  unsigned Align=8;
1222  switch (T->getTypeClass()) {
1223#define TYPE(Class, Base)
1224#define ABSTRACT_TYPE(Class, Base)
1225#define NON_CANONICAL_TYPE(Class, Base)
1226#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1227#include "clang/AST/TypeNodes.def"
1228    llvm_unreachable("Should not see dependent types");
1229
1230  case Type::FunctionNoProto:
1231  case Type::FunctionProto:
1232    // GCC extension: alignof(function) = 32 bits
1233    Width = 0;
1234    Align = 32;
1235    break;
1236
1237  case Type::IncompleteArray:
1238  case Type::VariableArray:
1239    Width = 0;
1240    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1241    break;
1242
1243  case Type::ConstantArray: {
1244    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1245
1246    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1247    uint64_t Size = CAT->getSize().getZExtValue();
1248    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1249           "Overflow in array type bit size evaluation");
1250    Width = EltInfo.first*Size;
1251    Align = EltInfo.second;
1252    Width = llvm::RoundUpToAlignment(Width, Align);
1253    break;
1254  }
1255  case Type::ExtVector:
1256  case Type::Vector: {
1257    const VectorType *VT = cast<VectorType>(T);
1258    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1259    Width = EltInfo.first*VT->getNumElements();
1260    Align = Width;
1261    // If the alignment is not a power of 2, round up to the next power of 2.
1262    // This happens for non-power-of-2 length vectors.
1263    if (Align & (Align-1)) {
1264      Align = llvm::NextPowerOf2(Align);
1265      Width = llvm::RoundUpToAlignment(Width, Align);
1266    }
1267    // Adjust the alignment based on the target max.
1268    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1269    if (TargetVectorAlign && TargetVectorAlign < Align)
1270      Align = TargetVectorAlign;
1271    break;
1272  }
1273
1274  case Type::Builtin:
1275    switch (cast<BuiltinType>(T)->getKind()) {
1276    default: llvm_unreachable("Unknown builtin type!");
1277    case BuiltinType::Void:
1278      // GCC extension: alignof(void) = 8 bits.
1279      Width = 0;
1280      Align = 8;
1281      break;
1282
1283    case BuiltinType::Bool:
1284      Width = Target->getBoolWidth();
1285      Align = Target->getBoolAlign();
1286      break;
1287    case BuiltinType::Char_S:
1288    case BuiltinType::Char_U:
1289    case BuiltinType::UChar:
1290    case BuiltinType::SChar:
1291      Width = Target->getCharWidth();
1292      Align = Target->getCharAlign();
1293      break;
1294    case BuiltinType::WChar_S:
1295    case BuiltinType::WChar_U:
1296      Width = Target->getWCharWidth();
1297      Align = Target->getWCharAlign();
1298      break;
1299    case BuiltinType::Char16:
1300      Width = Target->getChar16Width();
1301      Align = Target->getChar16Align();
1302      break;
1303    case BuiltinType::Char32:
1304      Width = Target->getChar32Width();
1305      Align = Target->getChar32Align();
1306      break;
1307    case BuiltinType::UShort:
1308    case BuiltinType::Short:
1309      Width = Target->getShortWidth();
1310      Align = Target->getShortAlign();
1311      break;
1312    case BuiltinType::UInt:
1313    case BuiltinType::Int:
1314      Width = Target->getIntWidth();
1315      Align = Target->getIntAlign();
1316      break;
1317    case BuiltinType::ULong:
1318    case BuiltinType::Long:
1319      Width = Target->getLongWidth();
1320      Align = Target->getLongAlign();
1321      break;
1322    case BuiltinType::ULongLong:
1323    case BuiltinType::LongLong:
1324      Width = Target->getLongLongWidth();
1325      Align = Target->getLongLongAlign();
1326      break;
1327    case BuiltinType::Int128:
1328    case BuiltinType::UInt128:
1329      Width = 128;
1330      Align = 128; // int128_t is 128-bit aligned on all targets.
1331      break;
1332    case BuiltinType::Half:
1333      Width = Target->getHalfWidth();
1334      Align = Target->getHalfAlign();
1335      break;
1336    case BuiltinType::Float:
1337      Width = Target->getFloatWidth();
1338      Align = Target->getFloatAlign();
1339      break;
1340    case BuiltinType::Double:
1341      Width = Target->getDoubleWidth();
1342      Align = Target->getDoubleAlign();
1343      break;
1344    case BuiltinType::LongDouble:
1345      Width = Target->getLongDoubleWidth();
1346      Align = Target->getLongDoubleAlign();
1347      break;
1348    case BuiltinType::NullPtr:
1349      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1350      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1351      break;
1352    case BuiltinType::ObjCId:
1353    case BuiltinType::ObjCClass:
1354    case BuiltinType::ObjCSel:
1355      Width = Target->getPointerWidth(0);
1356      Align = Target->getPointerAlign(0);
1357      break;
1358    }
1359    break;
1360  case Type::ObjCObjectPointer:
1361    Width = Target->getPointerWidth(0);
1362    Align = Target->getPointerAlign(0);
1363    break;
1364  case Type::BlockPointer: {
1365    unsigned AS = getTargetAddressSpace(
1366        cast<BlockPointerType>(T)->getPointeeType());
1367    Width = Target->getPointerWidth(AS);
1368    Align = Target->getPointerAlign(AS);
1369    break;
1370  }
1371  case Type::LValueReference:
1372  case Type::RValueReference: {
1373    // alignof and sizeof should never enter this code path here, so we go
1374    // the pointer route.
1375    unsigned AS = getTargetAddressSpace(
1376        cast<ReferenceType>(T)->getPointeeType());
1377    Width = Target->getPointerWidth(AS);
1378    Align = Target->getPointerAlign(AS);
1379    break;
1380  }
1381  case Type::Pointer: {
1382    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1383    Width = Target->getPointerWidth(AS);
1384    Align = Target->getPointerAlign(AS);
1385    break;
1386  }
1387  case Type::MemberPointer: {
1388    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1389    std::pair<uint64_t, unsigned> PtrDiffInfo =
1390      getTypeInfo(getPointerDiffType());
1391    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1392    Align = PtrDiffInfo.second;
1393    break;
1394  }
1395  case Type::Complex: {
1396    // Complex types have the same alignment as their elements, but twice the
1397    // size.
1398    std::pair<uint64_t, unsigned> EltInfo =
1399      getTypeInfo(cast<ComplexType>(T)->getElementType());
1400    Width = EltInfo.first*2;
1401    Align = EltInfo.second;
1402    break;
1403  }
1404  case Type::ObjCObject:
1405    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1406  case Type::ObjCInterface: {
1407    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1408    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1409    Width = toBits(Layout.getSize());
1410    Align = toBits(Layout.getAlignment());
1411    break;
1412  }
1413  case Type::Record:
1414  case Type::Enum: {
1415    const TagType *TT = cast<TagType>(T);
1416
1417    if (TT->getDecl()->isInvalidDecl()) {
1418      Width = 8;
1419      Align = 8;
1420      break;
1421    }
1422
1423    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1424      return getTypeInfo(ET->getDecl()->getIntegerType());
1425
1426    const RecordType *RT = cast<RecordType>(TT);
1427    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1428    Width = toBits(Layout.getSize());
1429    Align = toBits(Layout.getAlignment());
1430    break;
1431  }
1432
1433  case Type::SubstTemplateTypeParm:
1434    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1435                       getReplacementType().getTypePtr());
1436
1437  case Type::Auto: {
1438    const AutoType *A = cast<AutoType>(T);
1439    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1440    return getTypeInfo(A->getDeducedType().getTypePtr());
1441  }
1442
1443  case Type::Paren:
1444    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1445
1446  case Type::Typedef: {
1447    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1448    std::pair<uint64_t, unsigned> Info
1449      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1450    // If the typedef has an aligned attribute on it, it overrides any computed
1451    // alignment we have.  This violates the GCC documentation (which says that
1452    // attribute(aligned) can only round up) but matches its implementation.
1453    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1454      Align = AttrAlign;
1455    else
1456      Align = Info.second;
1457    Width = Info.first;
1458    break;
1459  }
1460
1461  case Type::TypeOfExpr:
1462    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1463                         .getTypePtr());
1464
1465  case Type::TypeOf:
1466    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1467
1468  case Type::Decltype:
1469    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1470                        .getTypePtr());
1471
1472  case Type::UnaryTransform:
1473    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1474
1475  case Type::Elaborated:
1476    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1477
1478  case Type::Attributed:
1479    return getTypeInfo(
1480                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1481
1482  case Type::TemplateSpecialization: {
1483    assert(getCanonicalType(T) != T &&
1484           "Cannot request the size of a dependent type");
1485    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1486    // A type alias template specialization may refer to a typedef with the
1487    // aligned attribute on it.
1488    if (TST->isTypeAlias())
1489      return getTypeInfo(TST->getAliasedType().getTypePtr());
1490    else
1491      return getTypeInfo(getCanonicalType(T));
1492  }
1493
1494  case Type::Atomic: {
1495    std::pair<uint64_t, unsigned> Info
1496      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1497    Width = Info.first;
1498    Align = Info.second;
1499    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1500        llvm::isPowerOf2_64(Width)) {
1501      // We can potentially perform lock-free atomic operations for this
1502      // type; promote the alignment appropriately.
1503      // FIXME: We could potentially promote the width here as well...
1504      // is that worthwhile?  (Non-struct atomic types generally have
1505      // power-of-two size anyway, but structs might not.  Requires a bit
1506      // of implementation work to make sure we zero out the extra bits.)
1507      Align = static_cast<unsigned>(Width);
1508    }
1509  }
1510
1511  }
1512
1513  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1514  return std::make_pair(Width, Align);
1515}
1516
1517/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1518CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1519  return CharUnits::fromQuantity(BitSize / getCharWidth());
1520}
1521
1522/// toBits - Convert a size in characters to a size in characters.
1523int64_t ASTContext::toBits(CharUnits CharSize) const {
1524  return CharSize.getQuantity() * getCharWidth();
1525}
1526
1527/// getTypeSizeInChars - Return the size of the specified type, in characters.
1528/// This method does not work on incomplete types.
1529CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1530  return toCharUnitsFromBits(getTypeSize(T));
1531}
1532CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1533  return toCharUnitsFromBits(getTypeSize(T));
1534}
1535
1536/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1537/// characters. This method does not work on incomplete types.
1538CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1539  return toCharUnitsFromBits(getTypeAlign(T));
1540}
1541CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1542  return toCharUnitsFromBits(getTypeAlign(T));
1543}
1544
1545/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1546/// type for the current target in bits.  This can be different than the ABI
1547/// alignment in cases where it is beneficial for performance to overalign
1548/// a data type.
1549unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1550  unsigned ABIAlign = getTypeAlign(T);
1551
1552  // Double and long long should be naturally aligned if possible.
1553  if (const ComplexType* CT = T->getAs<ComplexType>())
1554    T = CT->getElementType().getTypePtr();
1555  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1556      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1557      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1558    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1559
1560  return ABIAlign;
1561}
1562
1563/// DeepCollectObjCIvars -
1564/// This routine first collects all declared, but not synthesized, ivars in
1565/// super class and then collects all ivars, including those synthesized for
1566/// current class. This routine is used for implementation of current class
1567/// when all ivars, declared and synthesized are known.
1568///
1569void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1570                                      bool leafClass,
1571                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1572  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1573    DeepCollectObjCIvars(SuperClass, false, Ivars);
1574  if (!leafClass) {
1575    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1576         E = OI->ivar_end(); I != E; ++I)
1577      Ivars.push_back(*I);
1578  } else {
1579    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1580    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1581         Iv= Iv->getNextIvar())
1582      Ivars.push_back(Iv);
1583  }
1584}
1585
1586/// CollectInheritedProtocols - Collect all protocols in current class and
1587/// those inherited by it.
1588void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1589                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1590  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1591    // We can use protocol_iterator here instead of
1592    // all_referenced_protocol_iterator since we are walking all categories.
1593    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1594         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1595      ObjCProtocolDecl *Proto = (*P);
1596      Protocols.insert(Proto->getCanonicalDecl());
1597      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1598           PE = Proto->protocol_end(); P != PE; ++P) {
1599        Protocols.insert((*P)->getCanonicalDecl());
1600        CollectInheritedProtocols(*P, Protocols);
1601      }
1602    }
1603
1604    // Categories of this Interface.
1605    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1606         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1607      CollectInheritedProtocols(CDeclChain, Protocols);
1608    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1609      while (SD) {
1610        CollectInheritedProtocols(SD, Protocols);
1611        SD = SD->getSuperClass();
1612      }
1613  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1614    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1615         PE = OC->protocol_end(); P != PE; ++P) {
1616      ObjCProtocolDecl *Proto = (*P);
1617      Protocols.insert(Proto->getCanonicalDecl());
1618      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1619           PE = Proto->protocol_end(); P != PE; ++P)
1620        CollectInheritedProtocols(*P, Protocols);
1621    }
1622  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1623    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1624         PE = OP->protocol_end(); P != PE; ++P) {
1625      ObjCProtocolDecl *Proto = (*P);
1626      Protocols.insert(Proto->getCanonicalDecl());
1627      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1628           PE = Proto->protocol_end(); P != PE; ++P)
1629        CollectInheritedProtocols(*P, Protocols);
1630    }
1631  }
1632}
1633
1634unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1635  unsigned count = 0;
1636  // Count ivars declared in class extension.
1637  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1638       CDecl = CDecl->getNextClassExtension())
1639    count += CDecl->ivar_size();
1640
1641  // Count ivar defined in this class's implementation.  This
1642  // includes synthesized ivars.
1643  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1644    count += ImplDecl->ivar_size();
1645
1646  return count;
1647}
1648
1649bool ASTContext::isSentinelNullExpr(const Expr *E) {
1650  if (!E)
1651    return false;
1652
1653  // nullptr_t is always treated as null.
1654  if (E->getType()->isNullPtrType()) return true;
1655
1656  if (E->getType()->isAnyPointerType() &&
1657      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1658                                                Expr::NPC_ValueDependentIsNull))
1659    return true;
1660
1661  // Unfortunately, __null has type 'int'.
1662  if (isa<GNUNullExpr>(E)) return true;
1663
1664  return false;
1665}
1666
1667/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1668ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1669  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1670    I = ObjCImpls.find(D);
1671  if (I != ObjCImpls.end())
1672    return cast<ObjCImplementationDecl>(I->second);
1673  return 0;
1674}
1675/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1676ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1677  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1678    I = ObjCImpls.find(D);
1679  if (I != ObjCImpls.end())
1680    return cast<ObjCCategoryImplDecl>(I->second);
1681  return 0;
1682}
1683
1684/// \brief Set the implementation of ObjCInterfaceDecl.
1685void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1686                           ObjCImplementationDecl *ImplD) {
1687  assert(IFaceD && ImplD && "Passed null params");
1688  ObjCImpls[IFaceD] = ImplD;
1689}
1690/// \brief Set the implementation of ObjCCategoryDecl.
1691void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1692                           ObjCCategoryImplDecl *ImplD) {
1693  assert(CatD && ImplD && "Passed null params");
1694  ObjCImpls[CatD] = ImplD;
1695}
1696
1697ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1698  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1699    return ID;
1700  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1701    return CD->getClassInterface();
1702  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1703    return IMD->getClassInterface();
1704
1705  return 0;
1706}
1707
1708/// \brief Get the copy initialization expression of VarDecl,or NULL if
1709/// none exists.
1710Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1711  assert(VD && "Passed null params");
1712  assert(VD->hasAttr<BlocksAttr>() &&
1713         "getBlockVarCopyInits - not __block var");
1714  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1715    I = BlockVarCopyInits.find(VD);
1716  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1717}
1718
1719/// \brief Set the copy inialization expression of a block var decl.
1720void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1721  assert(VD && Init && "Passed null params");
1722  assert(VD->hasAttr<BlocksAttr>() &&
1723         "setBlockVarCopyInits - not __block var");
1724  BlockVarCopyInits[VD] = Init;
1725}
1726
1727TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1728                                                 unsigned DataSize) const {
1729  if (!DataSize)
1730    DataSize = TypeLoc::getFullDataSizeForType(T);
1731  else
1732    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1733           "incorrect data size provided to CreateTypeSourceInfo!");
1734
1735  TypeSourceInfo *TInfo =
1736    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1737  new (TInfo) TypeSourceInfo(T);
1738  return TInfo;
1739}
1740
1741TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1742                                                     SourceLocation L) const {
1743  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1744  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1745  return DI;
1746}
1747
1748const ASTRecordLayout &
1749ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1750  return getObjCLayout(D, 0);
1751}
1752
1753const ASTRecordLayout &
1754ASTContext::getASTObjCImplementationLayout(
1755                                        const ObjCImplementationDecl *D) const {
1756  return getObjCLayout(D->getClassInterface(), D);
1757}
1758
1759//===----------------------------------------------------------------------===//
1760//                   Type creation/memoization methods
1761//===----------------------------------------------------------------------===//
1762
1763QualType
1764ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1765  unsigned fastQuals = quals.getFastQualifiers();
1766  quals.removeFastQualifiers();
1767
1768  // Check if we've already instantiated this type.
1769  llvm::FoldingSetNodeID ID;
1770  ExtQuals::Profile(ID, baseType, quals);
1771  void *insertPos = 0;
1772  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1773    assert(eq->getQualifiers() == quals);
1774    return QualType(eq, fastQuals);
1775  }
1776
1777  // If the base type is not canonical, make the appropriate canonical type.
1778  QualType canon;
1779  if (!baseType->isCanonicalUnqualified()) {
1780    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1781    canonSplit.Quals.addConsistentQualifiers(quals);
1782    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1783
1784    // Re-find the insert position.
1785    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1786  }
1787
1788  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1789  ExtQualNodes.InsertNode(eq, insertPos);
1790  return QualType(eq, fastQuals);
1791}
1792
1793QualType
1794ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1795  QualType CanT = getCanonicalType(T);
1796  if (CanT.getAddressSpace() == AddressSpace)
1797    return T;
1798
1799  // If we are composing extended qualifiers together, merge together
1800  // into one ExtQuals node.
1801  QualifierCollector Quals;
1802  const Type *TypeNode = Quals.strip(T);
1803
1804  // If this type already has an address space specified, it cannot get
1805  // another one.
1806  assert(!Quals.hasAddressSpace() &&
1807         "Type cannot be in multiple addr spaces!");
1808  Quals.addAddressSpace(AddressSpace);
1809
1810  return getExtQualType(TypeNode, Quals);
1811}
1812
1813QualType ASTContext::getObjCGCQualType(QualType T,
1814                                       Qualifiers::GC GCAttr) const {
1815  QualType CanT = getCanonicalType(T);
1816  if (CanT.getObjCGCAttr() == GCAttr)
1817    return T;
1818
1819  if (const PointerType *ptr = T->getAs<PointerType>()) {
1820    QualType Pointee = ptr->getPointeeType();
1821    if (Pointee->isAnyPointerType()) {
1822      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1823      return getPointerType(ResultType);
1824    }
1825  }
1826
1827  // If we are composing extended qualifiers together, merge together
1828  // into one ExtQuals node.
1829  QualifierCollector Quals;
1830  const Type *TypeNode = Quals.strip(T);
1831
1832  // If this type already has an ObjCGC specified, it cannot get
1833  // another one.
1834  assert(!Quals.hasObjCGCAttr() &&
1835         "Type cannot have multiple ObjCGCs!");
1836  Quals.addObjCGCAttr(GCAttr);
1837
1838  return getExtQualType(TypeNode, Quals);
1839}
1840
1841const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1842                                                   FunctionType::ExtInfo Info) {
1843  if (T->getExtInfo() == Info)
1844    return T;
1845
1846  QualType Result;
1847  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1848    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1849  } else {
1850    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1851    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1852    EPI.ExtInfo = Info;
1853    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1854                             FPT->getNumArgs(), EPI);
1855  }
1856
1857  return cast<FunctionType>(Result.getTypePtr());
1858}
1859
1860/// getComplexType - Return the uniqued reference to the type for a complex
1861/// number with the specified element type.
1862QualType ASTContext::getComplexType(QualType T) const {
1863  // Unique pointers, to guarantee there is only one pointer of a particular
1864  // structure.
1865  llvm::FoldingSetNodeID ID;
1866  ComplexType::Profile(ID, T);
1867
1868  void *InsertPos = 0;
1869  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1870    return QualType(CT, 0);
1871
1872  // If the pointee type isn't canonical, this won't be a canonical type either,
1873  // so fill in the canonical type field.
1874  QualType Canonical;
1875  if (!T.isCanonical()) {
1876    Canonical = getComplexType(getCanonicalType(T));
1877
1878    // Get the new insert position for the node we care about.
1879    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1880    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1881  }
1882  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1883  Types.push_back(New);
1884  ComplexTypes.InsertNode(New, InsertPos);
1885  return QualType(New, 0);
1886}
1887
1888/// getPointerType - Return the uniqued reference to the type for a pointer to
1889/// the specified type.
1890QualType ASTContext::getPointerType(QualType T) const {
1891  // Unique pointers, to guarantee there is only one pointer of a particular
1892  // structure.
1893  llvm::FoldingSetNodeID ID;
1894  PointerType::Profile(ID, T);
1895
1896  void *InsertPos = 0;
1897  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1898    return QualType(PT, 0);
1899
1900  // If the pointee type isn't canonical, this won't be a canonical type either,
1901  // so fill in the canonical type field.
1902  QualType Canonical;
1903  if (!T.isCanonical()) {
1904    Canonical = getPointerType(getCanonicalType(T));
1905
1906    // Get the new insert position for the node we care about.
1907    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1908    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1909  }
1910  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1911  Types.push_back(New);
1912  PointerTypes.InsertNode(New, InsertPos);
1913  return QualType(New, 0);
1914}
1915
1916/// getBlockPointerType - Return the uniqued reference to the type for
1917/// a pointer to the specified block.
1918QualType ASTContext::getBlockPointerType(QualType T) const {
1919  assert(T->isFunctionType() && "block of function types only");
1920  // Unique pointers, to guarantee there is only one block of a particular
1921  // structure.
1922  llvm::FoldingSetNodeID ID;
1923  BlockPointerType::Profile(ID, T);
1924
1925  void *InsertPos = 0;
1926  if (BlockPointerType *PT =
1927        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1928    return QualType(PT, 0);
1929
1930  // If the block pointee type isn't canonical, this won't be a canonical
1931  // type either so fill in the canonical type field.
1932  QualType Canonical;
1933  if (!T.isCanonical()) {
1934    Canonical = getBlockPointerType(getCanonicalType(T));
1935
1936    // Get the new insert position for the node we care about.
1937    BlockPointerType *NewIP =
1938      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1939    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1940  }
1941  BlockPointerType *New
1942    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1943  Types.push_back(New);
1944  BlockPointerTypes.InsertNode(New, InsertPos);
1945  return QualType(New, 0);
1946}
1947
1948/// getLValueReferenceType - Return the uniqued reference to the type for an
1949/// lvalue reference to the specified type.
1950QualType
1951ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1952  assert(getCanonicalType(T) != OverloadTy &&
1953         "Unresolved overloaded function type");
1954
1955  // Unique pointers, to guarantee there is only one pointer of a particular
1956  // structure.
1957  llvm::FoldingSetNodeID ID;
1958  ReferenceType::Profile(ID, T, SpelledAsLValue);
1959
1960  void *InsertPos = 0;
1961  if (LValueReferenceType *RT =
1962        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1963    return QualType(RT, 0);
1964
1965  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1966
1967  // If the referencee type isn't canonical, this won't be a canonical type
1968  // either, so fill in the canonical type field.
1969  QualType Canonical;
1970  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1971    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1972    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1973
1974    // Get the new insert position for the node we care about.
1975    LValueReferenceType *NewIP =
1976      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1977    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1978  }
1979
1980  LValueReferenceType *New
1981    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1982                                                     SpelledAsLValue);
1983  Types.push_back(New);
1984  LValueReferenceTypes.InsertNode(New, InsertPos);
1985
1986  return QualType(New, 0);
1987}
1988
1989/// getRValueReferenceType - Return the uniqued reference to the type for an
1990/// rvalue reference to the specified type.
1991QualType ASTContext::getRValueReferenceType(QualType T) const {
1992  // Unique pointers, to guarantee there is only one pointer of a particular
1993  // structure.
1994  llvm::FoldingSetNodeID ID;
1995  ReferenceType::Profile(ID, T, false);
1996
1997  void *InsertPos = 0;
1998  if (RValueReferenceType *RT =
1999        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2000    return QualType(RT, 0);
2001
2002  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2003
2004  // If the referencee type isn't canonical, this won't be a canonical type
2005  // either, so fill in the canonical type field.
2006  QualType Canonical;
2007  if (InnerRef || !T.isCanonical()) {
2008    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2009    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2010
2011    // Get the new insert position for the node we care about.
2012    RValueReferenceType *NewIP =
2013      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2014    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2015  }
2016
2017  RValueReferenceType *New
2018    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2019  Types.push_back(New);
2020  RValueReferenceTypes.InsertNode(New, InsertPos);
2021  return QualType(New, 0);
2022}
2023
2024/// getMemberPointerType - Return the uniqued reference to the type for a
2025/// member pointer to the specified type, in the specified class.
2026QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2027  // Unique pointers, to guarantee there is only one pointer of a particular
2028  // structure.
2029  llvm::FoldingSetNodeID ID;
2030  MemberPointerType::Profile(ID, T, Cls);
2031
2032  void *InsertPos = 0;
2033  if (MemberPointerType *PT =
2034      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2035    return QualType(PT, 0);
2036
2037  // If the pointee or class type isn't canonical, this won't be a canonical
2038  // type either, so fill in the canonical type field.
2039  QualType Canonical;
2040  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2041    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2042
2043    // Get the new insert position for the node we care about.
2044    MemberPointerType *NewIP =
2045      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2046    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2047  }
2048  MemberPointerType *New
2049    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2050  Types.push_back(New);
2051  MemberPointerTypes.InsertNode(New, InsertPos);
2052  return QualType(New, 0);
2053}
2054
2055/// getConstantArrayType - Return the unique reference to the type for an
2056/// array of the specified element type.
2057QualType ASTContext::getConstantArrayType(QualType EltTy,
2058                                          const llvm::APInt &ArySizeIn,
2059                                          ArrayType::ArraySizeModifier ASM,
2060                                          unsigned IndexTypeQuals) const {
2061  assert((EltTy->isDependentType() ||
2062          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2063         "Constant array of VLAs is illegal!");
2064
2065  // Convert the array size into a canonical width matching the pointer size for
2066  // the target.
2067  llvm::APInt ArySize(ArySizeIn);
2068  ArySize =
2069    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2070
2071  llvm::FoldingSetNodeID ID;
2072  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2073
2074  void *InsertPos = 0;
2075  if (ConstantArrayType *ATP =
2076      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2077    return QualType(ATP, 0);
2078
2079  // If the element type isn't canonical or has qualifiers, this won't
2080  // be a canonical type either, so fill in the canonical type field.
2081  QualType Canon;
2082  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2083    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2084    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2085                                 ASM, IndexTypeQuals);
2086    Canon = getQualifiedType(Canon, canonSplit.Quals);
2087
2088    // Get the new insert position for the node we care about.
2089    ConstantArrayType *NewIP =
2090      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2091    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2092  }
2093
2094  ConstantArrayType *New = new(*this,TypeAlignment)
2095    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2096  ConstantArrayTypes.InsertNode(New, InsertPos);
2097  Types.push_back(New);
2098  return QualType(New, 0);
2099}
2100
2101/// getVariableArrayDecayedType - Turns the given type, which may be
2102/// variably-modified, into the corresponding type with all the known
2103/// sizes replaced with [*].
2104QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2105  // Vastly most common case.
2106  if (!type->isVariablyModifiedType()) return type;
2107
2108  QualType result;
2109
2110  SplitQualType split = type.getSplitDesugaredType();
2111  const Type *ty = split.Ty;
2112  switch (ty->getTypeClass()) {
2113#define TYPE(Class, Base)
2114#define ABSTRACT_TYPE(Class, Base)
2115#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2116#include "clang/AST/TypeNodes.def"
2117    llvm_unreachable("didn't desugar past all non-canonical types?");
2118
2119  // These types should never be variably-modified.
2120  case Type::Builtin:
2121  case Type::Complex:
2122  case Type::Vector:
2123  case Type::ExtVector:
2124  case Type::DependentSizedExtVector:
2125  case Type::ObjCObject:
2126  case Type::ObjCInterface:
2127  case Type::ObjCObjectPointer:
2128  case Type::Record:
2129  case Type::Enum:
2130  case Type::UnresolvedUsing:
2131  case Type::TypeOfExpr:
2132  case Type::TypeOf:
2133  case Type::Decltype:
2134  case Type::UnaryTransform:
2135  case Type::DependentName:
2136  case Type::InjectedClassName:
2137  case Type::TemplateSpecialization:
2138  case Type::DependentTemplateSpecialization:
2139  case Type::TemplateTypeParm:
2140  case Type::SubstTemplateTypeParmPack:
2141  case Type::Auto:
2142  case Type::PackExpansion:
2143    llvm_unreachable("type should never be variably-modified");
2144
2145  // These types can be variably-modified but should never need to
2146  // further decay.
2147  case Type::FunctionNoProto:
2148  case Type::FunctionProto:
2149  case Type::BlockPointer:
2150  case Type::MemberPointer:
2151    return type;
2152
2153  // These types can be variably-modified.  All these modifications
2154  // preserve structure except as noted by comments.
2155  // TODO: if we ever care about optimizing VLAs, there are no-op
2156  // optimizations available here.
2157  case Type::Pointer:
2158    result = getPointerType(getVariableArrayDecayedType(
2159                              cast<PointerType>(ty)->getPointeeType()));
2160    break;
2161
2162  case Type::LValueReference: {
2163    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2164    result = getLValueReferenceType(
2165                 getVariableArrayDecayedType(lv->getPointeeType()),
2166                                    lv->isSpelledAsLValue());
2167    break;
2168  }
2169
2170  case Type::RValueReference: {
2171    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2172    result = getRValueReferenceType(
2173                 getVariableArrayDecayedType(lv->getPointeeType()));
2174    break;
2175  }
2176
2177  case Type::Atomic: {
2178    const AtomicType *at = cast<AtomicType>(ty);
2179    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2180    break;
2181  }
2182
2183  case Type::ConstantArray: {
2184    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2185    result = getConstantArrayType(
2186                 getVariableArrayDecayedType(cat->getElementType()),
2187                                  cat->getSize(),
2188                                  cat->getSizeModifier(),
2189                                  cat->getIndexTypeCVRQualifiers());
2190    break;
2191  }
2192
2193  case Type::DependentSizedArray: {
2194    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2195    result = getDependentSizedArrayType(
2196                 getVariableArrayDecayedType(dat->getElementType()),
2197                                        dat->getSizeExpr(),
2198                                        dat->getSizeModifier(),
2199                                        dat->getIndexTypeCVRQualifiers(),
2200                                        dat->getBracketsRange());
2201    break;
2202  }
2203
2204  // Turn incomplete types into [*] types.
2205  case Type::IncompleteArray: {
2206    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2207    result = getVariableArrayType(
2208                 getVariableArrayDecayedType(iat->getElementType()),
2209                                  /*size*/ 0,
2210                                  ArrayType::Normal,
2211                                  iat->getIndexTypeCVRQualifiers(),
2212                                  SourceRange());
2213    break;
2214  }
2215
2216  // Turn VLA types into [*] types.
2217  case Type::VariableArray: {
2218    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2219    result = getVariableArrayType(
2220                 getVariableArrayDecayedType(vat->getElementType()),
2221                                  /*size*/ 0,
2222                                  ArrayType::Star,
2223                                  vat->getIndexTypeCVRQualifiers(),
2224                                  vat->getBracketsRange());
2225    break;
2226  }
2227  }
2228
2229  // Apply the top-level qualifiers from the original.
2230  return getQualifiedType(result, split.Quals);
2231}
2232
2233/// getVariableArrayType - Returns a non-unique reference to the type for a
2234/// variable array of the specified element type.
2235QualType ASTContext::getVariableArrayType(QualType EltTy,
2236                                          Expr *NumElts,
2237                                          ArrayType::ArraySizeModifier ASM,
2238                                          unsigned IndexTypeQuals,
2239                                          SourceRange Brackets) const {
2240  // Since we don't unique expressions, it isn't possible to unique VLA's
2241  // that have an expression provided for their size.
2242  QualType Canon;
2243
2244  // Be sure to pull qualifiers off the element type.
2245  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2246    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2247    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2248                                 IndexTypeQuals, Brackets);
2249    Canon = getQualifiedType(Canon, canonSplit.Quals);
2250  }
2251
2252  VariableArrayType *New = new(*this, TypeAlignment)
2253    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2254
2255  VariableArrayTypes.push_back(New);
2256  Types.push_back(New);
2257  return QualType(New, 0);
2258}
2259
2260/// getDependentSizedArrayType - Returns a non-unique reference to
2261/// the type for a dependently-sized array of the specified element
2262/// type.
2263QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2264                                                Expr *numElements,
2265                                                ArrayType::ArraySizeModifier ASM,
2266                                                unsigned elementTypeQuals,
2267                                                SourceRange brackets) const {
2268  assert((!numElements || numElements->isTypeDependent() ||
2269          numElements->isValueDependent()) &&
2270         "Size must be type- or value-dependent!");
2271
2272  // Dependently-sized array types that do not have a specified number
2273  // of elements will have their sizes deduced from a dependent
2274  // initializer.  We do no canonicalization here at all, which is okay
2275  // because they can't be used in most locations.
2276  if (!numElements) {
2277    DependentSizedArrayType *newType
2278      = new (*this, TypeAlignment)
2279          DependentSizedArrayType(*this, elementType, QualType(),
2280                                  numElements, ASM, elementTypeQuals,
2281                                  brackets);
2282    Types.push_back(newType);
2283    return QualType(newType, 0);
2284  }
2285
2286  // Otherwise, we actually build a new type every time, but we
2287  // also build a canonical type.
2288
2289  SplitQualType canonElementType = getCanonicalType(elementType).split();
2290
2291  void *insertPos = 0;
2292  llvm::FoldingSetNodeID ID;
2293  DependentSizedArrayType::Profile(ID, *this,
2294                                   QualType(canonElementType.Ty, 0),
2295                                   ASM, elementTypeQuals, numElements);
2296
2297  // Look for an existing type with these properties.
2298  DependentSizedArrayType *canonTy =
2299    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2300
2301  // If we don't have one, build one.
2302  if (!canonTy) {
2303    canonTy = new (*this, TypeAlignment)
2304      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2305                              QualType(), numElements, ASM, elementTypeQuals,
2306                              brackets);
2307    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2308    Types.push_back(canonTy);
2309  }
2310
2311  // Apply qualifiers from the element type to the array.
2312  QualType canon = getQualifiedType(QualType(canonTy,0),
2313                                    canonElementType.Quals);
2314
2315  // If we didn't need extra canonicalization for the element type,
2316  // then just use that as our result.
2317  if (QualType(canonElementType.Ty, 0) == elementType)
2318    return canon;
2319
2320  // Otherwise, we need to build a type which follows the spelling
2321  // of the element type.
2322  DependentSizedArrayType *sugaredType
2323    = new (*this, TypeAlignment)
2324        DependentSizedArrayType(*this, elementType, canon, numElements,
2325                                ASM, elementTypeQuals, brackets);
2326  Types.push_back(sugaredType);
2327  return QualType(sugaredType, 0);
2328}
2329
2330QualType ASTContext::getIncompleteArrayType(QualType elementType,
2331                                            ArrayType::ArraySizeModifier ASM,
2332                                            unsigned elementTypeQuals) const {
2333  llvm::FoldingSetNodeID ID;
2334  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2335
2336  void *insertPos = 0;
2337  if (IncompleteArrayType *iat =
2338       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2339    return QualType(iat, 0);
2340
2341  // If the element type isn't canonical, this won't be a canonical type
2342  // either, so fill in the canonical type field.  We also have to pull
2343  // qualifiers off the element type.
2344  QualType canon;
2345
2346  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2347    SplitQualType canonSplit = getCanonicalType(elementType).split();
2348    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2349                                   ASM, elementTypeQuals);
2350    canon = getQualifiedType(canon, canonSplit.Quals);
2351
2352    // Get the new insert position for the node we care about.
2353    IncompleteArrayType *existing =
2354      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2355    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2356  }
2357
2358  IncompleteArrayType *newType = new (*this, TypeAlignment)
2359    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2360
2361  IncompleteArrayTypes.InsertNode(newType, insertPos);
2362  Types.push_back(newType);
2363  return QualType(newType, 0);
2364}
2365
2366/// getVectorType - Return the unique reference to a vector type of
2367/// the specified element type and size. VectorType must be a built-in type.
2368QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2369                                   VectorType::VectorKind VecKind) const {
2370  assert(vecType->isBuiltinType());
2371
2372  // Check if we've already instantiated a vector of this type.
2373  llvm::FoldingSetNodeID ID;
2374  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2375
2376  void *InsertPos = 0;
2377  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2378    return QualType(VTP, 0);
2379
2380  // If the element type isn't canonical, this won't be a canonical type either,
2381  // so fill in the canonical type field.
2382  QualType Canonical;
2383  if (!vecType.isCanonical()) {
2384    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2385
2386    // Get the new insert position for the node we care about.
2387    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2388    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2389  }
2390  VectorType *New = new (*this, TypeAlignment)
2391    VectorType(vecType, NumElts, Canonical, VecKind);
2392  VectorTypes.InsertNode(New, InsertPos);
2393  Types.push_back(New);
2394  return QualType(New, 0);
2395}
2396
2397/// getExtVectorType - Return the unique reference to an extended vector type of
2398/// the specified element type and size. VectorType must be a built-in type.
2399QualType
2400ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2401  assert(vecType->isBuiltinType() || vecType->isDependentType());
2402
2403  // Check if we've already instantiated a vector of this type.
2404  llvm::FoldingSetNodeID ID;
2405  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2406                      VectorType::GenericVector);
2407  void *InsertPos = 0;
2408  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2409    return QualType(VTP, 0);
2410
2411  // If the element type isn't canonical, this won't be a canonical type either,
2412  // so fill in the canonical type field.
2413  QualType Canonical;
2414  if (!vecType.isCanonical()) {
2415    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2416
2417    // Get the new insert position for the node we care about.
2418    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2419    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2420  }
2421  ExtVectorType *New = new (*this, TypeAlignment)
2422    ExtVectorType(vecType, NumElts, Canonical);
2423  VectorTypes.InsertNode(New, InsertPos);
2424  Types.push_back(New);
2425  return QualType(New, 0);
2426}
2427
2428QualType
2429ASTContext::getDependentSizedExtVectorType(QualType vecType,
2430                                           Expr *SizeExpr,
2431                                           SourceLocation AttrLoc) const {
2432  llvm::FoldingSetNodeID ID;
2433  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2434                                       SizeExpr);
2435
2436  void *InsertPos = 0;
2437  DependentSizedExtVectorType *Canon
2438    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2439  DependentSizedExtVectorType *New;
2440  if (Canon) {
2441    // We already have a canonical version of this array type; use it as
2442    // the canonical type for a newly-built type.
2443    New = new (*this, TypeAlignment)
2444      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2445                                  SizeExpr, AttrLoc);
2446  } else {
2447    QualType CanonVecTy = getCanonicalType(vecType);
2448    if (CanonVecTy == vecType) {
2449      New = new (*this, TypeAlignment)
2450        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2451                                    AttrLoc);
2452
2453      DependentSizedExtVectorType *CanonCheck
2454        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2455      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2456      (void)CanonCheck;
2457      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2458    } else {
2459      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2460                                                      SourceLocation());
2461      New = new (*this, TypeAlignment)
2462        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2463    }
2464  }
2465
2466  Types.push_back(New);
2467  return QualType(New, 0);
2468}
2469
2470/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2471///
2472QualType
2473ASTContext::getFunctionNoProtoType(QualType ResultTy,
2474                                   const FunctionType::ExtInfo &Info) const {
2475  const CallingConv DefaultCC = Info.getCC();
2476  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2477                               CC_X86StdCall : DefaultCC;
2478  // Unique functions, to guarantee there is only one function of a particular
2479  // structure.
2480  llvm::FoldingSetNodeID ID;
2481  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2482
2483  void *InsertPos = 0;
2484  if (FunctionNoProtoType *FT =
2485        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2486    return QualType(FT, 0);
2487
2488  QualType Canonical;
2489  if (!ResultTy.isCanonical() ||
2490      getCanonicalCallConv(CallConv) != CallConv) {
2491    Canonical =
2492      getFunctionNoProtoType(getCanonicalType(ResultTy),
2493                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2494
2495    // Get the new insert position for the node we care about.
2496    FunctionNoProtoType *NewIP =
2497      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2498    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2499  }
2500
2501  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2502  FunctionNoProtoType *New = new (*this, TypeAlignment)
2503    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2504  Types.push_back(New);
2505  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2506  return QualType(New, 0);
2507}
2508
2509/// getFunctionType - Return a normal function type with a typed argument
2510/// list.  isVariadic indicates whether the argument list includes '...'.
2511QualType
2512ASTContext::getFunctionType(QualType ResultTy,
2513                            const QualType *ArgArray, unsigned NumArgs,
2514                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2515  // Unique functions, to guarantee there is only one function of a particular
2516  // structure.
2517  llvm::FoldingSetNodeID ID;
2518  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2519
2520  void *InsertPos = 0;
2521  if (FunctionProtoType *FTP =
2522        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2523    return QualType(FTP, 0);
2524
2525  // Determine whether the type being created is already canonical or not.
2526  bool isCanonical =
2527    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2528    !EPI.HasTrailingReturn;
2529  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2530    if (!ArgArray[i].isCanonicalAsParam())
2531      isCanonical = false;
2532
2533  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2534  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2535                               CC_X86StdCall : DefaultCC;
2536
2537  // If this type isn't canonical, get the canonical version of it.
2538  // The exception spec is not part of the canonical type.
2539  QualType Canonical;
2540  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2541    SmallVector<QualType, 16> CanonicalArgs;
2542    CanonicalArgs.reserve(NumArgs);
2543    for (unsigned i = 0; i != NumArgs; ++i)
2544      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2545
2546    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2547    CanonicalEPI.HasTrailingReturn = false;
2548    CanonicalEPI.ExceptionSpecType = EST_None;
2549    CanonicalEPI.NumExceptions = 0;
2550    CanonicalEPI.ExtInfo
2551      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2552
2553    Canonical = getFunctionType(getCanonicalType(ResultTy),
2554                                CanonicalArgs.data(), NumArgs,
2555                                CanonicalEPI);
2556
2557    // Get the new insert position for the node we care about.
2558    FunctionProtoType *NewIP =
2559      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2560    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2561  }
2562
2563  // FunctionProtoType objects are allocated with extra bytes after
2564  // them for three variable size arrays at the end:
2565  //  - parameter types
2566  //  - exception types
2567  //  - consumed-arguments flags
2568  // Instead of the exception types, there could be a noexcept
2569  // expression, or information used to resolve the exception
2570  // specification.
2571  size_t Size = sizeof(FunctionProtoType) +
2572                NumArgs * sizeof(QualType);
2573  if (EPI.ExceptionSpecType == EST_Dynamic) {
2574    Size += EPI.NumExceptions * sizeof(QualType);
2575  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2576    Size += sizeof(Expr*);
2577  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2578    Size += 2 * sizeof(FunctionDecl*);
2579  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2580    Size += sizeof(FunctionDecl*);
2581  }
2582  if (EPI.ConsumedArguments)
2583    Size += NumArgs * sizeof(bool);
2584
2585  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2586  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2587  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2588  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2589  Types.push_back(FTP);
2590  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2591  return QualType(FTP, 0);
2592}
2593
2594#ifndef NDEBUG
2595static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2596  if (!isa<CXXRecordDecl>(D)) return false;
2597  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2598  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2599    return true;
2600  if (RD->getDescribedClassTemplate() &&
2601      !isa<ClassTemplateSpecializationDecl>(RD))
2602    return true;
2603  return false;
2604}
2605#endif
2606
2607/// getInjectedClassNameType - Return the unique reference to the
2608/// injected class name type for the specified templated declaration.
2609QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2610                                              QualType TST) const {
2611  assert(NeedsInjectedClassNameType(Decl));
2612  if (Decl->TypeForDecl) {
2613    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2614  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2615    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2616    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2617    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2618  } else {
2619    Type *newType =
2620      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2621    Decl->TypeForDecl = newType;
2622    Types.push_back(newType);
2623  }
2624  return QualType(Decl->TypeForDecl, 0);
2625}
2626
2627/// getTypeDeclType - Return the unique reference to the type for the
2628/// specified type declaration.
2629QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2630  assert(Decl && "Passed null for Decl param");
2631  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2632
2633  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2634    return getTypedefType(Typedef);
2635
2636  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2637         "Template type parameter types are always available.");
2638
2639  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2640    assert(!Record->getPreviousDecl() &&
2641           "struct/union has previous declaration");
2642    assert(!NeedsInjectedClassNameType(Record));
2643    return getRecordType(Record);
2644  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2645    assert(!Enum->getPreviousDecl() &&
2646           "enum has previous declaration");
2647    return getEnumType(Enum);
2648  } else if (const UnresolvedUsingTypenameDecl *Using =
2649               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2650    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2651    Decl->TypeForDecl = newType;
2652    Types.push_back(newType);
2653  } else
2654    llvm_unreachable("TypeDecl without a type?");
2655
2656  return QualType(Decl->TypeForDecl, 0);
2657}
2658
2659/// getTypedefType - Return the unique reference to the type for the
2660/// specified typedef name decl.
2661QualType
2662ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2663                           QualType Canonical) const {
2664  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2665
2666  if (Canonical.isNull())
2667    Canonical = getCanonicalType(Decl->getUnderlyingType());
2668  TypedefType *newType = new(*this, TypeAlignment)
2669    TypedefType(Type::Typedef, Decl, Canonical);
2670  Decl->TypeForDecl = newType;
2671  Types.push_back(newType);
2672  return QualType(newType, 0);
2673}
2674
2675QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2676  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2677
2678  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2679    if (PrevDecl->TypeForDecl)
2680      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2681
2682  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2683  Decl->TypeForDecl = newType;
2684  Types.push_back(newType);
2685  return QualType(newType, 0);
2686}
2687
2688QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2689  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2690
2691  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2692    if (PrevDecl->TypeForDecl)
2693      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2694
2695  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2696  Decl->TypeForDecl = newType;
2697  Types.push_back(newType);
2698  return QualType(newType, 0);
2699}
2700
2701QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2702                                       QualType modifiedType,
2703                                       QualType equivalentType) {
2704  llvm::FoldingSetNodeID id;
2705  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2706
2707  void *insertPos = 0;
2708  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2709  if (type) return QualType(type, 0);
2710
2711  QualType canon = getCanonicalType(equivalentType);
2712  type = new (*this, TypeAlignment)
2713           AttributedType(canon, attrKind, modifiedType, equivalentType);
2714
2715  Types.push_back(type);
2716  AttributedTypes.InsertNode(type, insertPos);
2717
2718  return QualType(type, 0);
2719}
2720
2721
2722/// \brief Retrieve a substitution-result type.
2723QualType
2724ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2725                                         QualType Replacement) const {
2726  assert(Replacement.isCanonical()
2727         && "replacement types must always be canonical");
2728
2729  llvm::FoldingSetNodeID ID;
2730  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2731  void *InsertPos = 0;
2732  SubstTemplateTypeParmType *SubstParm
2733    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2734
2735  if (!SubstParm) {
2736    SubstParm = new (*this, TypeAlignment)
2737      SubstTemplateTypeParmType(Parm, Replacement);
2738    Types.push_back(SubstParm);
2739    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2740  }
2741
2742  return QualType(SubstParm, 0);
2743}
2744
2745/// \brief Retrieve a
2746QualType ASTContext::getSubstTemplateTypeParmPackType(
2747                                          const TemplateTypeParmType *Parm,
2748                                              const TemplateArgument &ArgPack) {
2749#ifndef NDEBUG
2750  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2751                                    PEnd = ArgPack.pack_end();
2752       P != PEnd; ++P) {
2753    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2754    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2755  }
2756#endif
2757
2758  llvm::FoldingSetNodeID ID;
2759  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2760  void *InsertPos = 0;
2761  if (SubstTemplateTypeParmPackType *SubstParm
2762        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2763    return QualType(SubstParm, 0);
2764
2765  QualType Canon;
2766  if (!Parm->isCanonicalUnqualified()) {
2767    Canon = getCanonicalType(QualType(Parm, 0));
2768    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2769                                             ArgPack);
2770    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2771  }
2772
2773  SubstTemplateTypeParmPackType *SubstParm
2774    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2775                                                               ArgPack);
2776  Types.push_back(SubstParm);
2777  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2778  return QualType(SubstParm, 0);
2779}
2780
2781/// \brief Retrieve the template type parameter type for a template
2782/// parameter or parameter pack with the given depth, index, and (optionally)
2783/// name.
2784QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2785                                             bool ParameterPack,
2786                                             TemplateTypeParmDecl *TTPDecl) const {
2787  llvm::FoldingSetNodeID ID;
2788  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2789  void *InsertPos = 0;
2790  TemplateTypeParmType *TypeParm
2791    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2792
2793  if (TypeParm)
2794    return QualType(TypeParm, 0);
2795
2796  if (TTPDecl) {
2797    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2798    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2799
2800    TemplateTypeParmType *TypeCheck
2801      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2802    assert(!TypeCheck && "Template type parameter canonical type broken");
2803    (void)TypeCheck;
2804  } else
2805    TypeParm = new (*this, TypeAlignment)
2806      TemplateTypeParmType(Depth, Index, ParameterPack);
2807
2808  Types.push_back(TypeParm);
2809  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2810
2811  return QualType(TypeParm, 0);
2812}
2813
2814TypeSourceInfo *
2815ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2816                                              SourceLocation NameLoc,
2817                                        const TemplateArgumentListInfo &Args,
2818                                              QualType Underlying) const {
2819  assert(!Name.getAsDependentTemplateName() &&
2820         "No dependent template names here!");
2821  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2822
2823  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2824  TemplateSpecializationTypeLoc TL
2825    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2826  TL.setTemplateKeywordLoc(SourceLocation());
2827  TL.setTemplateNameLoc(NameLoc);
2828  TL.setLAngleLoc(Args.getLAngleLoc());
2829  TL.setRAngleLoc(Args.getRAngleLoc());
2830  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2831    TL.setArgLocInfo(i, Args[i].getLocInfo());
2832  return DI;
2833}
2834
2835QualType
2836ASTContext::getTemplateSpecializationType(TemplateName Template,
2837                                          const TemplateArgumentListInfo &Args,
2838                                          QualType Underlying) const {
2839  assert(!Template.getAsDependentTemplateName() &&
2840         "No dependent template names here!");
2841
2842  unsigned NumArgs = Args.size();
2843
2844  SmallVector<TemplateArgument, 4> ArgVec;
2845  ArgVec.reserve(NumArgs);
2846  for (unsigned i = 0; i != NumArgs; ++i)
2847    ArgVec.push_back(Args[i].getArgument());
2848
2849  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2850                                       Underlying);
2851}
2852
2853#ifndef NDEBUG
2854static bool hasAnyPackExpansions(const TemplateArgument *Args,
2855                                 unsigned NumArgs) {
2856  for (unsigned I = 0; I != NumArgs; ++I)
2857    if (Args[I].isPackExpansion())
2858      return true;
2859
2860  return true;
2861}
2862#endif
2863
2864QualType
2865ASTContext::getTemplateSpecializationType(TemplateName Template,
2866                                          const TemplateArgument *Args,
2867                                          unsigned NumArgs,
2868                                          QualType Underlying) const {
2869  assert(!Template.getAsDependentTemplateName() &&
2870         "No dependent template names here!");
2871  // Look through qualified template names.
2872  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2873    Template = TemplateName(QTN->getTemplateDecl());
2874
2875  bool IsTypeAlias =
2876    Template.getAsTemplateDecl() &&
2877    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2878  QualType CanonType;
2879  if (!Underlying.isNull())
2880    CanonType = getCanonicalType(Underlying);
2881  else {
2882    // We can get here with an alias template when the specialization contains
2883    // a pack expansion that does not match up with a parameter pack.
2884    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2885           "Caller must compute aliased type");
2886    IsTypeAlias = false;
2887    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2888                                                       NumArgs);
2889  }
2890
2891  // Allocate the (non-canonical) template specialization type, but don't
2892  // try to unique it: these types typically have location information that
2893  // we don't unique and don't want to lose.
2894  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2895                       sizeof(TemplateArgument) * NumArgs +
2896                       (IsTypeAlias? sizeof(QualType) : 0),
2897                       TypeAlignment);
2898  TemplateSpecializationType *Spec
2899    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2900                                         IsTypeAlias ? Underlying : QualType());
2901
2902  Types.push_back(Spec);
2903  return QualType(Spec, 0);
2904}
2905
2906QualType
2907ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2908                                                   const TemplateArgument *Args,
2909                                                   unsigned NumArgs) const {
2910  assert(!Template.getAsDependentTemplateName() &&
2911         "No dependent template names here!");
2912
2913  // Look through qualified template names.
2914  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2915    Template = TemplateName(QTN->getTemplateDecl());
2916
2917  // Build the canonical template specialization type.
2918  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2919  SmallVector<TemplateArgument, 4> CanonArgs;
2920  CanonArgs.reserve(NumArgs);
2921  for (unsigned I = 0; I != NumArgs; ++I)
2922    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2923
2924  // Determine whether this canonical template specialization type already
2925  // exists.
2926  llvm::FoldingSetNodeID ID;
2927  TemplateSpecializationType::Profile(ID, CanonTemplate,
2928                                      CanonArgs.data(), NumArgs, *this);
2929
2930  void *InsertPos = 0;
2931  TemplateSpecializationType *Spec
2932    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2933
2934  if (!Spec) {
2935    // Allocate a new canonical template specialization type.
2936    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2937                          sizeof(TemplateArgument) * NumArgs),
2938                         TypeAlignment);
2939    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2940                                                CanonArgs.data(), NumArgs,
2941                                                QualType(), QualType());
2942    Types.push_back(Spec);
2943    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2944  }
2945
2946  assert(Spec->isDependentType() &&
2947         "Non-dependent template-id type must have a canonical type");
2948  return QualType(Spec, 0);
2949}
2950
2951QualType
2952ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2953                              NestedNameSpecifier *NNS,
2954                              QualType NamedType) const {
2955  llvm::FoldingSetNodeID ID;
2956  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2957
2958  void *InsertPos = 0;
2959  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2960  if (T)
2961    return QualType(T, 0);
2962
2963  QualType Canon = NamedType;
2964  if (!Canon.isCanonical()) {
2965    Canon = getCanonicalType(NamedType);
2966    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2967    assert(!CheckT && "Elaborated canonical type broken");
2968    (void)CheckT;
2969  }
2970
2971  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2972  Types.push_back(T);
2973  ElaboratedTypes.InsertNode(T, InsertPos);
2974  return QualType(T, 0);
2975}
2976
2977QualType
2978ASTContext::getParenType(QualType InnerType) const {
2979  llvm::FoldingSetNodeID ID;
2980  ParenType::Profile(ID, InnerType);
2981
2982  void *InsertPos = 0;
2983  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2984  if (T)
2985    return QualType(T, 0);
2986
2987  QualType Canon = InnerType;
2988  if (!Canon.isCanonical()) {
2989    Canon = getCanonicalType(InnerType);
2990    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2991    assert(!CheckT && "Paren canonical type broken");
2992    (void)CheckT;
2993  }
2994
2995  T = new (*this) ParenType(InnerType, Canon);
2996  Types.push_back(T);
2997  ParenTypes.InsertNode(T, InsertPos);
2998  return QualType(T, 0);
2999}
3000
3001QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3002                                          NestedNameSpecifier *NNS,
3003                                          const IdentifierInfo *Name,
3004                                          QualType Canon) const {
3005  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3006
3007  if (Canon.isNull()) {
3008    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3009    ElaboratedTypeKeyword CanonKeyword = Keyword;
3010    if (Keyword == ETK_None)
3011      CanonKeyword = ETK_Typename;
3012
3013    if (CanonNNS != NNS || CanonKeyword != Keyword)
3014      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3015  }
3016
3017  llvm::FoldingSetNodeID ID;
3018  DependentNameType::Profile(ID, Keyword, NNS, Name);
3019
3020  void *InsertPos = 0;
3021  DependentNameType *T
3022    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3023  if (T)
3024    return QualType(T, 0);
3025
3026  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3027  Types.push_back(T);
3028  DependentNameTypes.InsertNode(T, InsertPos);
3029  return QualType(T, 0);
3030}
3031
3032QualType
3033ASTContext::getDependentTemplateSpecializationType(
3034                                 ElaboratedTypeKeyword Keyword,
3035                                 NestedNameSpecifier *NNS,
3036                                 const IdentifierInfo *Name,
3037                                 const TemplateArgumentListInfo &Args) const {
3038  // TODO: avoid this copy
3039  SmallVector<TemplateArgument, 16> ArgCopy;
3040  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3041    ArgCopy.push_back(Args[I].getArgument());
3042  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3043                                                ArgCopy.size(),
3044                                                ArgCopy.data());
3045}
3046
3047QualType
3048ASTContext::getDependentTemplateSpecializationType(
3049                                 ElaboratedTypeKeyword Keyword,
3050                                 NestedNameSpecifier *NNS,
3051                                 const IdentifierInfo *Name,
3052                                 unsigned NumArgs,
3053                                 const TemplateArgument *Args) const {
3054  assert((!NNS || NNS->isDependent()) &&
3055         "nested-name-specifier must be dependent");
3056
3057  llvm::FoldingSetNodeID ID;
3058  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3059                                               Name, NumArgs, Args);
3060
3061  void *InsertPos = 0;
3062  DependentTemplateSpecializationType *T
3063    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3064  if (T)
3065    return QualType(T, 0);
3066
3067  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3068
3069  ElaboratedTypeKeyword CanonKeyword = Keyword;
3070  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3071
3072  bool AnyNonCanonArgs = false;
3073  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3074  for (unsigned I = 0; I != NumArgs; ++I) {
3075    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3076    if (!CanonArgs[I].structurallyEquals(Args[I]))
3077      AnyNonCanonArgs = true;
3078  }
3079
3080  QualType Canon;
3081  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3082    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3083                                                   Name, NumArgs,
3084                                                   CanonArgs.data());
3085
3086    // Find the insert position again.
3087    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3088  }
3089
3090  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3091                        sizeof(TemplateArgument) * NumArgs),
3092                       TypeAlignment);
3093  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3094                                                    Name, NumArgs, Args, Canon);
3095  Types.push_back(T);
3096  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3097  return QualType(T, 0);
3098}
3099
3100QualType ASTContext::getPackExpansionType(QualType Pattern,
3101                                      llvm::Optional<unsigned> NumExpansions) {
3102  llvm::FoldingSetNodeID ID;
3103  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3104
3105  assert(Pattern->containsUnexpandedParameterPack() &&
3106         "Pack expansions must expand one or more parameter packs");
3107  void *InsertPos = 0;
3108  PackExpansionType *T
3109    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3110  if (T)
3111    return QualType(T, 0);
3112
3113  QualType Canon;
3114  if (!Pattern.isCanonical()) {
3115    Canon = getCanonicalType(Pattern);
3116    // The canonical type might not contain an unexpanded parameter pack, if it
3117    // contains an alias template specialization which ignores one of its
3118    // parameters.
3119    if (Canon->containsUnexpandedParameterPack()) {
3120      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3121
3122      // Find the insert position again, in case we inserted an element into
3123      // PackExpansionTypes and invalidated our insert position.
3124      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3125    }
3126  }
3127
3128  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3129  Types.push_back(T);
3130  PackExpansionTypes.InsertNode(T, InsertPos);
3131  return QualType(T, 0);
3132}
3133
3134/// CmpProtocolNames - Comparison predicate for sorting protocols
3135/// alphabetically.
3136static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3137                            const ObjCProtocolDecl *RHS) {
3138  return LHS->getDeclName() < RHS->getDeclName();
3139}
3140
3141static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3142                                unsigned NumProtocols) {
3143  if (NumProtocols == 0) return true;
3144
3145  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3146    return false;
3147
3148  for (unsigned i = 1; i != NumProtocols; ++i)
3149    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3150        Protocols[i]->getCanonicalDecl() != Protocols[i])
3151      return false;
3152  return true;
3153}
3154
3155static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3156                                   unsigned &NumProtocols) {
3157  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3158
3159  // Sort protocols, keyed by name.
3160  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3161
3162  // Canonicalize.
3163  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3164    Protocols[I] = Protocols[I]->getCanonicalDecl();
3165
3166  // Remove duplicates.
3167  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3168  NumProtocols = ProtocolsEnd-Protocols;
3169}
3170
3171QualType ASTContext::getObjCObjectType(QualType BaseType,
3172                                       ObjCProtocolDecl * const *Protocols,
3173                                       unsigned NumProtocols) const {
3174  // If the base type is an interface and there aren't any protocols
3175  // to add, then the interface type will do just fine.
3176  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3177    return BaseType;
3178
3179  // Look in the folding set for an existing type.
3180  llvm::FoldingSetNodeID ID;
3181  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3182  void *InsertPos = 0;
3183  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3184    return QualType(QT, 0);
3185
3186  // Build the canonical type, which has the canonical base type and
3187  // a sorted-and-uniqued list of protocols.
3188  QualType Canonical;
3189  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3190  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3191    if (!ProtocolsSorted) {
3192      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3193                                                     Protocols + NumProtocols);
3194      unsigned UniqueCount = NumProtocols;
3195
3196      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3197      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3198                                    &Sorted[0], UniqueCount);
3199    } else {
3200      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3201                                    Protocols, NumProtocols);
3202    }
3203
3204    // Regenerate InsertPos.
3205    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3206  }
3207
3208  unsigned Size = sizeof(ObjCObjectTypeImpl);
3209  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3210  void *Mem = Allocate(Size, TypeAlignment);
3211  ObjCObjectTypeImpl *T =
3212    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3213
3214  Types.push_back(T);
3215  ObjCObjectTypes.InsertNode(T, InsertPos);
3216  return QualType(T, 0);
3217}
3218
3219/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3220/// the given object type.
3221QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3222  llvm::FoldingSetNodeID ID;
3223  ObjCObjectPointerType::Profile(ID, ObjectT);
3224
3225  void *InsertPos = 0;
3226  if (ObjCObjectPointerType *QT =
3227              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3228    return QualType(QT, 0);
3229
3230  // Find the canonical object type.
3231  QualType Canonical;
3232  if (!ObjectT.isCanonical()) {
3233    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3234
3235    // Regenerate InsertPos.
3236    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3237  }
3238
3239  // No match.
3240  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3241  ObjCObjectPointerType *QType =
3242    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3243
3244  Types.push_back(QType);
3245  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3246  return QualType(QType, 0);
3247}
3248
3249/// getObjCInterfaceType - Return the unique reference to the type for the
3250/// specified ObjC interface decl. The list of protocols is optional.
3251QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3252                                          ObjCInterfaceDecl *PrevDecl) const {
3253  if (Decl->TypeForDecl)
3254    return QualType(Decl->TypeForDecl, 0);
3255
3256  if (PrevDecl) {
3257    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3258    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3259    return QualType(PrevDecl->TypeForDecl, 0);
3260  }
3261
3262  // Prefer the definition, if there is one.
3263  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3264    Decl = Def;
3265
3266  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3267  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3268  Decl->TypeForDecl = T;
3269  Types.push_back(T);
3270  return QualType(T, 0);
3271}
3272
3273/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3274/// TypeOfExprType AST's (since expression's are never shared). For example,
3275/// multiple declarations that refer to "typeof(x)" all contain different
3276/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3277/// on canonical type's (which are always unique).
3278QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3279  TypeOfExprType *toe;
3280  if (tofExpr->isTypeDependent()) {
3281    llvm::FoldingSetNodeID ID;
3282    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3283
3284    void *InsertPos = 0;
3285    DependentTypeOfExprType *Canon
3286      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3287    if (Canon) {
3288      // We already have a "canonical" version of an identical, dependent
3289      // typeof(expr) type. Use that as our canonical type.
3290      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3291                                          QualType((TypeOfExprType*)Canon, 0));
3292    } else {
3293      // Build a new, canonical typeof(expr) type.
3294      Canon
3295        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3296      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3297      toe = Canon;
3298    }
3299  } else {
3300    QualType Canonical = getCanonicalType(tofExpr->getType());
3301    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3302  }
3303  Types.push_back(toe);
3304  return QualType(toe, 0);
3305}
3306
3307/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3308/// TypeOfType AST's. The only motivation to unique these nodes would be
3309/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3310/// an issue. This doesn't effect the type checker, since it operates
3311/// on canonical type's (which are always unique).
3312QualType ASTContext::getTypeOfType(QualType tofType) const {
3313  QualType Canonical = getCanonicalType(tofType);
3314  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3315  Types.push_back(tot);
3316  return QualType(tot, 0);
3317}
3318
3319
3320/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3321/// DecltypeType AST's. The only motivation to unique these nodes would be
3322/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3323/// an issue. This doesn't effect the type checker, since it operates
3324/// on canonical types (which are always unique).
3325QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3326  DecltypeType *dt;
3327
3328  // C++0x [temp.type]p2:
3329  //   If an expression e involves a template parameter, decltype(e) denotes a
3330  //   unique dependent type. Two such decltype-specifiers refer to the same
3331  //   type only if their expressions are equivalent (14.5.6.1).
3332  if (e->isInstantiationDependent()) {
3333    llvm::FoldingSetNodeID ID;
3334    DependentDecltypeType::Profile(ID, *this, e);
3335
3336    void *InsertPos = 0;
3337    DependentDecltypeType *Canon
3338      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3339    if (Canon) {
3340      // We already have a "canonical" version of an equivalent, dependent
3341      // decltype type. Use that as our canonical type.
3342      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3343                                       QualType((DecltypeType*)Canon, 0));
3344    } else {
3345      // Build a new, canonical typeof(expr) type.
3346      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3347      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3348      dt = Canon;
3349    }
3350  } else {
3351    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3352                                      getCanonicalType(UnderlyingType));
3353  }
3354  Types.push_back(dt);
3355  return QualType(dt, 0);
3356}
3357
3358/// getUnaryTransformationType - We don't unique these, since the memory
3359/// savings are minimal and these are rare.
3360QualType ASTContext::getUnaryTransformType(QualType BaseType,
3361                                           QualType UnderlyingType,
3362                                           UnaryTransformType::UTTKind Kind)
3363    const {
3364  UnaryTransformType *Ty =
3365    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3366                                                   Kind,
3367                                 UnderlyingType->isDependentType() ?
3368                                 QualType() : getCanonicalType(UnderlyingType));
3369  Types.push_back(Ty);
3370  return QualType(Ty, 0);
3371}
3372
3373/// getAutoType - We only unique auto types after they've been deduced.
3374QualType ASTContext::getAutoType(QualType DeducedType) const {
3375  void *InsertPos = 0;
3376  if (!DeducedType.isNull()) {
3377    // Look in the folding set for an existing type.
3378    llvm::FoldingSetNodeID ID;
3379    AutoType::Profile(ID, DeducedType);
3380    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3381      return QualType(AT, 0);
3382  }
3383
3384  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3385  Types.push_back(AT);
3386  if (InsertPos)
3387    AutoTypes.InsertNode(AT, InsertPos);
3388  return QualType(AT, 0);
3389}
3390
3391/// getAtomicType - Return the uniqued reference to the atomic type for
3392/// the given value type.
3393QualType ASTContext::getAtomicType(QualType T) const {
3394  // Unique pointers, to guarantee there is only one pointer of a particular
3395  // structure.
3396  llvm::FoldingSetNodeID ID;
3397  AtomicType::Profile(ID, T);
3398
3399  void *InsertPos = 0;
3400  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3401    return QualType(AT, 0);
3402
3403  // If the atomic value type isn't canonical, this won't be a canonical type
3404  // either, so fill in the canonical type field.
3405  QualType Canonical;
3406  if (!T.isCanonical()) {
3407    Canonical = getAtomicType(getCanonicalType(T));
3408
3409    // Get the new insert position for the node we care about.
3410    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3411    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3412  }
3413  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3414  Types.push_back(New);
3415  AtomicTypes.InsertNode(New, InsertPos);
3416  return QualType(New, 0);
3417}
3418
3419/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3420QualType ASTContext::getAutoDeductType() const {
3421  if (AutoDeductTy.isNull())
3422    AutoDeductTy = getAutoType(QualType());
3423  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3424  return AutoDeductTy;
3425}
3426
3427/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3428QualType ASTContext::getAutoRRefDeductType() const {
3429  if (AutoRRefDeductTy.isNull())
3430    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3431  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3432  return AutoRRefDeductTy;
3433}
3434
3435/// getTagDeclType - Return the unique reference to the type for the
3436/// specified TagDecl (struct/union/class/enum) decl.
3437QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3438  assert (Decl);
3439  // FIXME: What is the design on getTagDeclType when it requires casting
3440  // away const?  mutable?
3441  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3442}
3443
3444/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3445/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3446/// needs to agree with the definition in <stddef.h>.
3447CanQualType ASTContext::getSizeType() const {
3448  return getFromTargetType(Target->getSizeType());
3449}
3450
3451/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3452CanQualType ASTContext::getIntMaxType() const {
3453  return getFromTargetType(Target->getIntMaxType());
3454}
3455
3456/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3457CanQualType ASTContext::getUIntMaxType() const {
3458  return getFromTargetType(Target->getUIntMaxType());
3459}
3460
3461/// getSignedWCharType - Return the type of "signed wchar_t".
3462/// Used when in C++, as a GCC extension.
3463QualType ASTContext::getSignedWCharType() const {
3464  // FIXME: derive from "Target" ?
3465  return WCharTy;
3466}
3467
3468/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3469/// Used when in C++, as a GCC extension.
3470QualType ASTContext::getUnsignedWCharType() const {
3471  // FIXME: derive from "Target" ?
3472  return UnsignedIntTy;
3473}
3474
3475/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3476/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3477QualType ASTContext::getPointerDiffType() const {
3478  return getFromTargetType(Target->getPtrDiffType(0));
3479}
3480
3481//===----------------------------------------------------------------------===//
3482//                              Type Operators
3483//===----------------------------------------------------------------------===//
3484
3485CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3486  // Push qualifiers into arrays, and then discard any remaining
3487  // qualifiers.
3488  T = getCanonicalType(T);
3489  T = getVariableArrayDecayedType(T);
3490  const Type *Ty = T.getTypePtr();
3491  QualType Result;
3492  if (isa<ArrayType>(Ty)) {
3493    Result = getArrayDecayedType(QualType(Ty,0));
3494  } else if (isa<FunctionType>(Ty)) {
3495    Result = getPointerType(QualType(Ty, 0));
3496  } else {
3497    Result = QualType(Ty, 0);
3498  }
3499
3500  return CanQualType::CreateUnsafe(Result);
3501}
3502
3503QualType ASTContext::getUnqualifiedArrayType(QualType type,
3504                                             Qualifiers &quals) {
3505  SplitQualType splitType = type.getSplitUnqualifiedType();
3506
3507  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3508  // the unqualified desugared type and then drops it on the floor.
3509  // We then have to strip that sugar back off with
3510  // getUnqualifiedDesugaredType(), which is silly.
3511  const ArrayType *AT =
3512    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3513
3514  // If we don't have an array, just use the results in splitType.
3515  if (!AT) {
3516    quals = splitType.Quals;
3517    return QualType(splitType.Ty, 0);
3518  }
3519
3520  // Otherwise, recurse on the array's element type.
3521  QualType elementType = AT->getElementType();
3522  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3523
3524  // If that didn't change the element type, AT has no qualifiers, so we
3525  // can just use the results in splitType.
3526  if (elementType == unqualElementType) {
3527    assert(quals.empty()); // from the recursive call
3528    quals = splitType.Quals;
3529    return QualType(splitType.Ty, 0);
3530  }
3531
3532  // Otherwise, add in the qualifiers from the outermost type, then
3533  // build the type back up.
3534  quals.addConsistentQualifiers(splitType.Quals);
3535
3536  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3537    return getConstantArrayType(unqualElementType, CAT->getSize(),
3538                                CAT->getSizeModifier(), 0);
3539  }
3540
3541  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3542    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3543  }
3544
3545  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3546    return getVariableArrayType(unqualElementType,
3547                                VAT->getSizeExpr(),
3548                                VAT->getSizeModifier(),
3549                                VAT->getIndexTypeCVRQualifiers(),
3550                                VAT->getBracketsRange());
3551  }
3552
3553  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3554  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3555                                    DSAT->getSizeModifier(), 0,
3556                                    SourceRange());
3557}
3558
3559/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3560/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3561/// they point to and return true. If T1 and T2 aren't pointer types
3562/// or pointer-to-member types, or if they are not similar at this
3563/// level, returns false and leaves T1 and T2 unchanged. Top-level
3564/// qualifiers on T1 and T2 are ignored. This function will typically
3565/// be called in a loop that successively "unwraps" pointer and
3566/// pointer-to-member types to compare them at each level.
3567bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3568  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3569                    *T2PtrType = T2->getAs<PointerType>();
3570  if (T1PtrType && T2PtrType) {
3571    T1 = T1PtrType->getPointeeType();
3572    T2 = T2PtrType->getPointeeType();
3573    return true;
3574  }
3575
3576  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3577                          *T2MPType = T2->getAs<MemberPointerType>();
3578  if (T1MPType && T2MPType &&
3579      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3580                             QualType(T2MPType->getClass(), 0))) {
3581    T1 = T1MPType->getPointeeType();
3582    T2 = T2MPType->getPointeeType();
3583    return true;
3584  }
3585
3586  if (getLangOpts().ObjC1) {
3587    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3588                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3589    if (T1OPType && T2OPType) {
3590      T1 = T1OPType->getPointeeType();
3591      T2 = T2OPType->getPointeeType();
3592      return true;
3593    }
3594  }
3595
3596  // FIXME: Block pointers, too?
3597
3598  return false;
3599}
3600
3601DeclarationNameInfo
3602ASTContext::getNameForTemplate(TemplateName Name,
3603                               SourceLocation NameLoc) const {
3604  switch (Name.getKind()) {
3605  case TemplateName::QualifiedTemplate:
3606  case TemplateName::Template:
3607    // DNInfo work in progress: CHECKME: what about DNLoc?
3608    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3609                               NameLoc);
3610
3611  case TemplateName::OverloadedTemplate: {
3612    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3613    // DNInfo work in progress: CHECKME: what about DNLoc?
3614    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3615  }
3616
3617  case TemplateName::DependentTemplate: {
3618    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3619    DeclarationName DName;
3620    if (DTN->isIdentifier()) {
3621      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3622      return DeclarationNameInfo(DName, NameLoc);
3623    } else {
3624      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3625      // DNInfo work in progress: FIXME: source locations?
3626      DeclarationNameLoc DNLoc;
3627      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3628      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3629      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3630    }
3631  }
3632
3633  case TemplateName::SubstTemplateTemplateParm: {
3634    SubstTemplateTemplateParmStorage *subst
3635      = Name.getAsSubstTemplateTemplateParm();
3636    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3637                               NameLoc);
3638  }
3639
3640  case TemplateName::SubstTemplateTemplateParmPack: {
3641    SubstTemplateTemplateParmPackStorage *subst
3642      = Name.getAsSubstTemplateTemplateParmPack();
3643    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3644                               NameLoc);
3645  }
3646  }
3647
3648  llvm_unreachable("bad template name kind!");
3649}
3650
3651TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3652  switch (Name.getKind()) {
3653  case TemplateName::QualifiedTemplate:
3654  case TemplateName::Template: {
3655    TemplateDecl *Template = Name.getAsTemplateDecl();
3656    if (TemplateTemplateParmDecl *TTP
3657          = dyn_cast<TemplateTemplateParmDecl>(Template))
3658      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3659
3660    // The canonical template name is the canonical template declaration.
3661    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3662  }
3663
3664  case TemplateName::OverloadedTemplate:
3665    llvm_unreachable("cannot canonicalize overloaded template");
3666
3667  case TemplateName::DependentTemplate: {
3668    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3669    assert(DTN && "Non-dependent template names must refer to template decls.");
3670    return DTN->CanonicalTemplateName;
3671  }
3672
3673  case TemplateName::SubstTemplateTemplateParm: {
3674    SubstTemplateTemplateParmStorage *subst
3675      = Name.getAsSubstTemplateTemplateParm();
3676    return getCanonicalTemplateName(subst->getReplacement());
3677  }
3678
3679  case TemplateName::SubstTemplateTemplateParmPack: {
3680    SubstTemplateTemplateParmPackStorage *subst
3681                                  = Name.getAsSubstTemplateTemplateParmPack();
3682    TemplateTemplateParmDecl *canonParameter
3683      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3684    TemplateArgument canonArgPack
3685      = getCanonicalTemplateArgument(subst->getArgumentPack());
3686    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3687  }
3688  }
3689
3690  llvm_unreachable("bad template name!");
3691}
3692
3693bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3694  X = getCanonicalTemplateName(X);
3695  Y = getCanonicalTemplateName(Y);
3696  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3697}
3698
3699TemplateArgument
3700ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3701  switch (Arg.getKind()) {
3702    case TemplateArgument::Null:
3703      return Arg;
3704
3705    case TemplateArgument::Expression:
3706      return Arg;
3707
3708    case TemplateArgument::Declaration: {
3709      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3710      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3711    }
3712
3713    case TemplateArgument::NullPtr:
3714      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3715                              /*isNullPtr*/true);
3716
3717    case TemplateArgument::Template:
3718      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3719
3720    case TemplateArgument::TemplateExpansion:
3721      return TemplateArgument(getCanonicalTemplateName(
3722                                         Arg.getAsTemplateOrTemplatePattern()),
3723                              Arg.getNumTemplateExpansions());
3724
3725    case TemplateArgument::Integral:
3726      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3727
3728    case TemplateArgument::Type:
3729      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3730
3731    case TemplateArgument::Pack: {
3732      if (Arg.pack_size() == 0)
3733        return Arg;
3734
3735      TemplateArgument *CanonArgs
3736        = new (*this) TemplateArgument[Arg.pack_size()];
3737      unsigned Idx = 0;
3738      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3739                                        AEnd = Arg.pack_end();
3740           A != AEnd; (void)++A, ++Idx)
3741        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3742
3743      return TemplateArgument(CanonArgs, Arg.pack_size());
3744    }
3745  }
3746
3747  // Silence GCC warning
3748  llvm_unreachable("Unhandled template argument kind");
3749}
3750
3751NestedNameSpecifier *
3752ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3753  if (!NNS)
3754    return 0;
3755
3756  switch (NNS->getKind()) {
3757  case NestedNameSpecifier::Identifier:
3758    // Canonicalize the prefix but keep the identifier the same.
3759    return NestedNameSpecifier::Create(*this,
3760                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3761                                       NNS->getAsIdentifier());
3762
3763  case NestedNameSpecifier::Namespace:
3764    // A namespace is canonical; build a nested-name-specifier with
3765    // this namespace and no prefix.
3766    return NestedNameSpecifier::Create(*this, 0,
3767                                 NNS->getAsNamespace()->getOriginalNamespace());
3768
3769  case NestedNameSpecifier::NamespaceAlias:
3770    // A namespace is canonical; build a nested-name-specifier with
3771    // this namespace and no prefix.
3772    return NestedNameSpecifier::Create(*this, 0,
3773                                    NNS->getAsNamespaceAlias()->getNamespace()
3774                                                      ->getOriginalNamespace());
3775
3776  case NestedNameSpecifier::TypeSpec:
3777  case NestedNameSpecifier::TypeSpecWithTemplate: {
3778    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3779
3780    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3781    // break it apart into its prefix and identifier, then reconsititute those
3782    // as the canonical nested-name-specifier. This is required to canonicalize
3783    // a dependent nested-name-specifier involving typedefs of dependent-name
3784    // types, e.g.,
3785    //   typedef typename T::type T1;
3786    //   typedef typename T1::type T2;
3787    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3788      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3789                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3790
3791    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3792    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3793    // first place?
3794    return NestedNameSpecifier::Create(*this, 0, false,
3795                                       const_cast<Type*>(T.getTypePtr()));
3796  }
3797
3798  case NestedNameSpecifier::Global:
3799    // The global specifier is canonical and unique.
3800    return NNS;
3801  }
3802
3803  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3804}
3805
3806
3807const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3808  // Handle the non-qualified case efficiently.
3809  if (!T.hasLocalQualifiers()) {
3810    // Handle the common positive case fast.
3811    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3812      return AT;
3813  }
3814
3815  // Handle the common negative case fast.
3816  if (!isa<ArrayType>(T.getCanonicalType()))
3817    return 0;
3818
3819  // Apply any qualifiers from the array type to the element type.  This
3820  // implements C99 6.7.3p8: "If the specification of an array type includes
3821  // any type qualifiers, the element type is so qualified, not the array type."
3822
3823  // If we get here, we either have type qualifiers on the type, or we have
3824  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3825  // we must propagate them down into the element type.
3826
3827  SplitQualType split = T.getSplitDesugaredType();
3828  Qualifiers qs = split.Quals;
3829
3830  // If we have a simple case, just return now.
3831  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3832  if (ATy == 0 || qs.empty())
3833    return ATy;
3834
3835  // Otherwise, we have an array and we have qualifiers on it.  Push the
3836  // qualifiers into the array element type and return a new array type.
3837  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3838
3839  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3840    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3841                                                CAT->getSizeModifier(),
3842                                           CAT->getIndexTypeCVRQualifiers()));
3843  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3844    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3845                                                  IAT->getSizeModifier(),
3846                                           IAT->getIndexTypeCVRQualifiers()));
3847
3848  if (const DependentSizedArrayType *DSAT
3849        = dyn_cast<DependentSizedArrayType>(ATy))
3850    return cast<ArrayType>(
3851                     getDependentSizedArrayType(NewEltTy,
3852                                                DSAT->getSizeExpr(),
3853                                                DSAT->getSizeModifier(),
3854                                              DSAT->getIndexTypeCVRQualifiers(),
3855                                                DSAT->getBracketsRange()));
3856
3857  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3858  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3859                                              VAT->getSizeExpr(),
3860                                              VAT->getSizeModifier(),
3861                                              VAT->getIndexTypeCVRQualifiers(),
3862                                              VAT->getBracketsRange()));
3863}
3864
3865QualType ASTContext::getAdjustedParameterType(QualType T) const {
3866  // C99 6.7.5.3p7:
3867  //   A declaration of a parameter as "array of type" shall be
3868  //   adjusted to "qualified pointer to type", where the type
3869  //   qualifiers (if any) are those specified within the [ and ] of
3870  //   the array type derivation.
3871  if (T->isArrayType())
3872    return getArrayDecayedType(T);
3873
3874  // C99 6.7.5.3p8:
3875  //   A declaration of a parameter as "function returning type"
3876  //   shall be adjusted to "pointer to function returning type", as
3877  //   in 6.3.2.1.
3878  if (T->isFunctionType())
3879    return getPointerType(T);
3880
3881  return T;
3882}
3883
3884QualType ASTContext::getSignatureParameterType(QualType T) const {
3885  T = getVariableArrayDecayedType(T);
3886  T = getAdjustedParameterType(T);
3887  return T.getUnqualifiedType();
3888}
3889
3890/// getArrayDecayedType - Return the properly qualified result of decaying the
3891/// specified array type to a pointer.  This operation is non-trivial when
3892/// handling typedefs etc.  The canonical type of "T" must be an array type,
3893/// this returns a pointer to a properly qualified element of the array.
3894///
3895/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3896QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3897  // Get the element type with 'getAsArrayType' so that we don't lose any
3898  // typedefs in the element type of the array.  This also handles propagation
3899  // of type qualifiers from the array type into the element type if present
3900  // (C99 6.7.3p8).
3901  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3902  assert(PrettyArrayType && "Not an array type!");
3903
3904  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3905
3906  // int x[restrict 4] ->  int *restrict
3907  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3908}
3909
3910QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3911  return getBaseElementType(array->getElementType());
3912}
3913
3914QualType ASTContext::getBaseElementType(QualType type) const {
3915  Qualifiers qs;
3916  while (true) {
3917    SplitQualType split = type.getSplitDesugaredType();
3918    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3919    if (!array) break;
3920
3921    type = array->getElementType();
3922    qs.addConsistentQualifiers(split.Quals);
3923  }
3924
3925  return getQualifiedType(type, qs);
3926}
3927
3928/// getConstantArrayElementCount - Returns number of constant array elements.
3929uint64_t
3930ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3931  uint64_t ElementCount = 1;
3932  do {
3933    ElementCount *= CA->getSize().getZExtValue();
3934    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3935  } while (CA);
3936  return ElementCount;
3937}
3938
3939/// getFloatingRank - Return a relative rank for floating point types.
3940/// This routine will assert if passed a built-in type that isn't a float.
3941static FloatingRank getFloatingRank(QualType T) {
3942  if (const ComplexType *CT = T->getAs<ComplexType>())
3943    return getFloatingRank(CT->getElementType());
3944
3945  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3946  switch (T->getAs<BuiltinType>()->getKind()) {
3947  default: llvm_unreachable("getFloatingRank(): not a floating type");
3948  case BuiltinType::Half:       return HalfRank;
3949  case BuiltinType::Float:      return FloatRank;
3950  case BuiltinType::Double:     return DoubleRank;
3951  case BuiltinType::LongDouble: return LongDoubleRank;
3952  }
3953}
3954
3955/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3956/// point or a complex type (based on typeDomain/typeSize).
3957/// 'typeDomain' is a real floating point or complex type.
3958/// 'typeSize' is a real floating point or complex type.
3959QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3960                                                       QualType Domain) const {
3961  FloatingRank EltRank = getFloatingRank(Size);
3962  if (Domain->isComplexType()) {
3963    switch (EltRank) {
3964    case HalfRank: llvm_unreachable("Complex half is not supported");
3965    case FloatRank:      return FloatComplexTy;
3966    case DoubleRank:     return DoubleComplexTy;
3967    case LongDoubleRank: return LongDoubleComplexTy;
3968    }
3969  }
3970
3971  assert(Domain->isRealFloatingType() && "Unknown domain!");
3972  switch (EltRank) {
3973  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3974  case FloatRank:      return FloatTy;
3975  case DoubleRank:     return DoubleTy;
3976  case LongDoubleRank: return LongDoubleTy;
3977  }
3978  llvm_unreachable("getFloatingRank(): illegal value for rank");
3979}
3980
3981/// getFloatingTypeOrder - Compare the rank of the two specified floating
3982/// point types, ignoring the domain of the type (i.e. 'double' ==
3983/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3984/// LHS < RHS, return -1.
3985int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3986  FloatingRank LHSR = getFloatingRank(LHS);
3987  FloatingRank RHSR = getFloatingRank(RHS);
3988
3989  if (LHSR == RHSR)
3990    return 0;
3991  if (LHSR > RHSR)
3992    return 1;
3993  return -1;
3994}
3995
3996/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3997/// routine will assert if passed a built-in type that isn't an integer or enum,
3998/// or if it is not canonicalized.
3999unsigned ASTContext::getIntegerRank(const Type *T) const {
4000  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4001
4002  switch (cast<BuiltinType>(T)->getKind()) {
4003  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4004  case BuiltinType::Bool:
4005    return 1 + (getIntWidth(BoolTy) << 3);
4006  case BuiltinType::Char_S:
4007  case BuiltinType::Char_U:
4008  case BuiltinType::SChar:
4009  case BuiltinType::UChar:
4010    return 2 + (getIntWidth(CharTy) << 3);
4011  case BuiltinType::Short:
4012  case BuiltinType::UShort:
4013    return 3 + (getIntWidth(ShortTy) << 3);
4014  case BuiltinType::Int:
4015  case BuiltinType::UInt:
4016    return 4 + (getIntWidth(IntTy) << 3);
4017  case BuiltinType::Long:
4018  case BuiltinType::ULong:
4019    return 5 + (getIntWidth(LongTy) << 3);
4020  case BuiltinType::LongLong:
4021  case BuiltinType::ULongLong:
4022    return 6 + (getIntWidth(LongLongTy) << 3);
4023  case BuiltinType::Int128:
4024  case BuiltinType::UInt128:
4025    return 7 + (getIntWidth(Int128Ty) << 3);
4026  }
4027}
4028
4029/// \brief Whether this is a promotable bitfield reference according
4030/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4031///
4032/// \returns the type this bit-field will promote to, or NULL if no
4033/// promotion occurs.
4034QualType ASTContext::isPromotableBitField(Expr *E) const {
4035  if (E->isTypeDependent() || E->isValueDependent())
4036    return QualType();
4037
4038  FieldDecl *Field = E->getBitField();
4039  if (!Field)
4040    return QualType();
4041
4042  QualType FT = Field->getType();
4043
4044  uint64_t BitWidth = Field->getBitWidthValue(*this);
4045  uint64_t IntSize = getTypeSize(IntTy);
4046  // GCC extension compatibility: if the bit-field size is less than or equal
4047  // to the size of int, it gets promoted no matter what its type is.
4048  // For instance, unsigned long bf : 4 gets promoted to signed int.
4049  if (BitWidth < IntSize)
4050    return IntTy;
4051
4052  if (BitWidth == IntSize)
4053    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4054
4055  // Types bigger than int are not subject to promotions, and therefore act
4056  // like the base type.
4057  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4058  // is ridiculous.
4059  return QualType();
4060}
4061
4062/// getPromotedIntegerType - Returns the type that Promotable will
4063/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4064/// integer type.
4065QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4066  assert(!Promotable.isNull());
4067  assert(Promotable->isPromotableIntegerType());
4068  if (const EnumType *ET = Promotable->getAs<EnumType>())
4069    return ET->getDecl()->getPromotionType();
4070
4071  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4072    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4073    // (3.9.1) can be converted to a prvalue of the first of the following
4074    // types that can represent all the values of its underlying type:
4075    // int, unsigned int, long int, unsigned long int, long long int, or
4076    // unsigned long long int [...]
4077    // FIXME: Is there some better way to compute this?
4078    if (BT->getKind() == BuiltinType::WChar_S ||
4079        BT->getKind() == BuiltinType::WChar_U ||
4080        BT->getKind() == BuiltinType::Char16 ||
4081        BT->getKind() == BuiltinType::Char32) {
4082      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4083      uint64_t FromSize = getTypeSize(BT);
4084      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4085                                  LongLongTy, UnsignedLongLongTy };
4086      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4087        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4088        if (FromSize < ToSize ||
4089            (FromSize == ToSize &&
4090             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4091          return PromoteTypes[Idx];
4092      }
4093      llvm_unreachable("char type should fit into long long");
4094    }
4095  }
4096
4097  // At this point, we should have a signed or unsigned integer type.
4098  if (Promotable->isSignedIntegerType())
4099    return IntTy;
4100  uint64_t PromotableSize = getTypeSize(Promotable);
4101  uint64_t IntSize = getTypeSize(IntTy);
4102  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4103  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4104}
4105
4106/// \brief Recurses in pointer/array types until it finds an objc retainable
4107/// type and returns its ownership.
4108Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4109  while (!T.isNull()) {
4110    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4111      return T.getObjCLifetime();
4112    if (T->isArrayType())
4113      T = getBaseElementType(T);
4114    else if (const PointerType *PT = T->getAs<PointerType>())
4115      T = PT->getPointeeType();
4116    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4117      T = RT->getPointeeType();
4118    else
4119      break;
4120  }
4121
4122  return Qualifiers::OCL_None;
4123}
4124
4125/// getIntegerTypeOrder - Returns the highest ranked integer type:
4126/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4127/// LHS < RHS, return -1.
4128int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4129  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4130  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4131  if (LHSC == RHSC) return 0;
4132
4133  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4134  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4135
4136  unsigned LHSRank = getIntegerRank(LHSC);
4137  unsigned RHSRank = getIntegerRank(RHSC);
4138
4139  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4140    if (LHSRank == RHSRank) return 0;
4141    return LHSRank > RHSRank ? 1 : -1;
4142  }
4143
4144  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4145  if (LHSUnsigned) {
4146    // If the unsigned [LHS] type is larger, return it.
4147    if (LHSRank >= RHSRank)
4148      return 1;
4149
4150    // If the signed type can represent all values of the unsigned type, it
4151    // wins.  Because we are dealing with 2's complement and types that are
4152    // powers of two larger than each other, this is always safe.
4153    return -1;
4154  }
4155
4156  // If the unsigned [RHS] type is larger, return it.
4157  if (RHSRank >= LHSRank)
4158    return -1;
4159
4160  // If the signed type can represent all values of the unsigned type, it
4161  // wins.  Because we are dealing with 2's complement and types that are
4162  // powers of two larger than each other, this is always safe.
4163  return 1;
4164}
4165
4166static RecordDecl *
4167CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4168                 DeclContext *DC, IdentifierInfo *Id) {
4169  SourceLocation Loc;
4170  if (Ctx.getLangOpts().CPlusPlus)
4171    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4172  else
4173    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4174}
4175
4176// getCFConstantStringType - Return the type used for constant CFStrings.
4177QualType ASTContext::getCFConstantStringType() const {
4178  if (!CFConstantStringTypeDecl) {
4179    CFConstantStringTypeDecl =
4180      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4181                       &Idents.get("NSConstantString"));
4182    CFConstantStringTypeDecl->startDefinition();
4183
4184    QualType FieldTypes[4];
4185
4186    // const int *isa;
4187    FieldTypes[0] = getPointerType(IntTy.withConst());
4188    // int flags;
4189    FieldTypes[1] = IntTy;
4190    // const char *str;
4191    FieldTypes[2] = getPointerType(CharTy.withConst());
4192    // long length;
4193    FieldTypes[3] = LongTy;
4194
4195    // Create fields
4196    for (unsigned i = 0; i < 4; ++i) {
4197      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4198                                           SourceLocation(),
4199                                           SourceLocation(), 0,
4200                                           FieldTypes[i], /*TInfo=*/0,
4201                                           /*BitWidth=*/0,
4202                                           /*Mutable=*/false,
4203                                           ICIS_NoInit);
4204      Field->setAccess(AS_public);
4205      CFConstantStringTypeDecl->addDecl(Field);
4206    }
4207
4208    CFConstantStringTypeDecl->completeDefinition();
4209  }
4210
4211  return getTagDeclType(CFConstantStringTypeDecl);
4212}
4213
4214void ASTContext::setCFConstantStringType(QualType T) {
4215  const RecordType *Rec = T->getAs<RecordType>();
4216  assert(Rec && "Invalid CFConstantStringType");
4217  CFConstantStringTypeDecl = Rec->getDecl();
4218}
4219
4220QualType ASTContext::getBlockDescriptorType() const {
4221  if (BlockDescriptorType)
4222    return getTagDeclType(BlockDescriptorType);
4223
4224  RecordDecl *T;
4225  // FIXME: Needs the FlagAppleBlock bit.
4226  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4227                       &Idents.get("__block_descriptor"));
4228  T->startDefinition();
4229
4230  QualType FieldTypes[] = {
4231    UnsignedLongTy,
4232    UnsignedLongTy,
4233  };
4234
4235  const char *FieldNames[] = {
4236    "reserved",
4237    "Size"
4238  };
4239
4240  for (size_t i = 0; i < 2; ++i) {
4241    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4242                                         SourceLocation(),
4243                                         &Idents.get(FieldNames[i]),
4244                                         FieldTypes[i], /*TInfo=*/0,
4245                                         /*BitWidth=*/0,
4246                                         /*Mutable=*/false,
4247                                         ICIS_NoInit);
4248    Field->setAccess(AS_public);
4249    T->addDecl(Field);
4250  }
4251
4252  T->completeDefinition();
4253
4254  BlockDescriptorType = T;
4255
4256  return getTagDeclType(BlockDescriptorType);
4257}
4258
4259QualType ASTContext::getBlockDescriptorExtendedType() const {
4260  if (BlockDescriptorExtendedType)
4261    return getTagDeclType(BlockDescriptorExtendedType);
4262
4263  RecordDecl *T;
4264  // FIXME: Needs the FlagAppleBlock bit.
4265  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4266                       &Idents.get("__block_descriptor_withcopydispose"));
4267  T->startDefinition();
4268
4269  QualType FieldTypes[] = {
4270    UnsignedLongTy,
4271    UnsignedLongTy,
4272    getPointerType(VoidPtrTy),
4273    getPointerType(VoidPtrTy)
4274  };
4275
4276  const char *FieldNames[] = {
4277    "reserved",
4278    "Size",
4279    "CopyFuncPtr",
4280    "DestroyFuncPtr"
4281  };
4282
4283  for (size_t i = 0; i < 4; ++i) {
4284    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4285                                         SourceLocation(),
4286                                         &Idents.get(FieldNames[i]),
4287                                         FieldTypes[i], /*TInfo=*/0,
4288                                         /*BitWidth=*/0,
4289                                         /*Mutable=*/false,
4290                                         ICIS_NoInit);
4291    Field->setAccess(AS_public);
4292    T->addDecl(Field);
4293  }
4294
4295  T->completeDefinition();
4296
4297  BlockDescriptorExtendedType = T;
4298
4299  return getTagDeclType(BlockDescriptorExtendedType);
4300}
4301
4302bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4303  if (Ty->isObjCRetainableType())
4304    return true;
4305  if (getLangOpts().CPlusPlus) {
4306    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4307      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4308      return RD->hasConstCopyConstructor();
4309
4310    }
4311  }
4312  return false;
4313}
4314
4315QualType
4316ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4317  //  type = struct __Block_byref_1_X {
4318  //    void *__isa;
4319  //    struct __Block_byref_1_X *__forwarding;
4320  //    unsigned int __flags;
4321  //    unsigned int __size;
4322  //    void *__copy_helper;            // as needed
4323  //    void *__destroy_help            // as needed
4324  //    int X;
4325  //  } *
4326
4327  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4328
4329  // FIXME: Move up
4330  SmallString<36> Name;
4331  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4332                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4333  RecordDecl *T;
4334  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4335  T->startDefinition();
4336  QualType Int32Ty = IntTy;
4337  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4338  QualType FieldTypes[] = {
4339    getPointerType(VoidPtrTy),
4340    getPointerType(getTagDeclType(T)),
4341    Int32Ty,
4342    Int32Ty,
4343    getPointerType(VoidPtrTy),
4344    getPointerType(VoidPtrTy),
4345    Ty
4346  };
4347
4348  StringRef FieldNames[] = {
4349    "__isa",
4350    "__forwarding",
4351    "__flags",
4352    "__size",
4353    "__copy_helper",
4354    "__destroy_helper",
4355    DeclName,
4356  };
4357
4358  for (size_t i = 0; i < 7; ++i) {
4359    if (!HasCopyAndDispose && i >=4 && i <= 5)
4360      continue;
4361    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4362                                         SourceLocation(),
4363                                         &Idents.get(FieldNames[i]),
4364                                         FieldTypes[i], /*TInfo=*/0,
4365                                         /*BitWidth=*/0, /*Mutable=*/false,
4366                                         ICIS_NoInit);
4367    Field->setAccess(AS_public);
4368    T->addDecl(Field);
4369  }
4370
4371  T->completeDefinition();
4372
4373  return getPointerType(getTagDeclType(T));
4374}
4375
4376TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4377  if (!ObjCInstanceTypeDecl)
4378    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4379                                               getTranslationUnitDecl(),
4380                                               SourceLocation(),
4381                                               SourceLocation(),
4382                                               &Idents.get("instancetype"),
4383                                     getTrivialTypeSourceInfo(getObjCIdType()));
4384  return ObjCInstanceTypeDecl;
4385}
4386
4387// This returns true if a type has been typedefed to BOOL:
4388// typedef <type> BOOL;
4389static bool isTypeTypedefedAsBOOL(QualType T) {
4390  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4391    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4392      return II->isStr("BOOL");
4393
4394  return false;
4395}
4396
4397/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4398/// purpose.
4399CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4400  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4401    return CharUnits::Zero();
4402
4403  CharUnits sz = getTypeSizeInChars(type);
4404
4405  // Make all integer and enum types at least as large as an int
4406  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4407    sz = std::max(sz, getTypeSizeInChars(IntTy));
4408  // Treat arrays as pointers, since that's how they're passed in.
4409  else if (type->isArrayType())
4410    sz = getTypeSizeInChars(VoidPtrTy);
4411  return sz;
4412}
4413
4414static inline
4415std::string charUnitsToString(const CharUnits &CU) {
4416  return llvm::itostr(CU.getQuantity());
4417}
4418
4419/// getObjCEncodingForBlock - Return the encoded type for this block
4420/// declaration.
4421std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4422  std::string S;
4423
4424  const BlockDecl *Decl = Expr->getBlockDecl();
4425  QualType BlockTy =
4426      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4427  // Encode result type.
4428  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4429  // Compute size of all parameters.
4430  // Start with computing size of a pointer in number of bytes.
4431  // FIXME: There might(should) be a better way of doing this computation!
4432  SourceLocation Loc;
4433  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4434  CharUnits ParmOffset = PtrSize;
4435  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4436       E = Decl->param_end(); PI != E; ++PI) {
4437    QualType PType = (*PI)->getType();
4438    CharUnits sz = getObjCEncodingTypeSize(PType);
4439    if (sz.isZero())
4440      continue;
4441    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4442    ParmOffset += sz;
4443  }
4444  // Size of the argument frame
4445  S += charUnitsToString(ParmOffset);
4446  // Block pointer and offset.
4447  S += "@?0";
4448
4449  // Argument types.
4450  ParmOffset = PtrSize;
4451  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4452       Decl->param_end(); PI != E; ++PI) {
4453    ParmVarDecl *PVDecl = *PI;
4454    QualType PType = PVDecl->getOriginalType();
4455    if (const ArrayType *AT =
4456          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4457      // Use array's original type only if it has known number of
4458      // elements.
4459      if (!isa<ConstantArrayType>(AT))
4460        PType = PVDecl->getType();
4461    } else if (PType->isFunctionType())
4462      PType = PVDecl->getType();
4463    getObjCEncodingForType(PType, S);
4464    S += charUnitsToString(ParmOffset);
4465    ParmOffset += getObjCEncodingTypeSize(PType);
4466  }
4467
4468  return S;
4469}
4470
4471bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4472                                                std::string& S) {
4473  // Encode result type.
4474  getObjCEncodingForType(Decl->getResultType(), S);
4475  CharUnits ParmOffset;
4476  // Compute size of all parameters.
4477  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4478       E = Decl->param_end(); PI != E; ++PI) {
4479    QualType PType = (*PI)->getType();
4480    CharUnits sz = getObjCEncodingTypeSize(PType);
4481    if (sz.isZero())
4482      continue;
4483
4484    assert (sz.isPositive() &&
4485        "getObjCEncodingForFunctionDecl - Incomplete param type");
4486    ParmOffset += sz;
4487  }
4488  S += charUnitsToString(ParmOffset);
4489  ParmOffset = CharUnits::Zero();
4490
4491  // Argument types.
4492  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4493       E = Decl->param_end(); PI != E; ++PI) {
4494    ParmVarDecl *PVDecl = *PI;
4495    QualType PType = PVDecl->getOriginalType();
4496    if (const ArrayType *AT =
4497          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4498      // Use array's original type only if it has known number of
4499      // elements.
4500      if (!isa<ConstantArrayType>(AT))
4501        PType = PVDecl->getType();
4502    } else if (PType->isFunctionType())
4503      PType = PVDecl->getType();
4504    getObjCEncodingForType(PType, S);
4505    S += charUnitsToString(ParmOffset);
4506    ParmOffset += getObjCEncodingTypeSize(PType);
4507  }
4508
4509  return false;
4510}
4511
4512/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4513/// method parameter or return type. If Extended, include class names and
4514/// block object types.
4515void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4516                                                   QualType T, std::string& S,
4517                                                   bool Extended) const {
4518  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4519  getObjCEncodingForTypeQualifier(QT, S);
4520  // Encode parameter type.
4521  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4522                             true     /*OutermostType*/,
4523                             false    /*EncodingProperty*/,
4524                             false    /*StructField*/,
4525                             Extended /*EncodeBlockParameters*/,
4526                             Extended /*EncodeClassNames*/);
4527}
4528
4529/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4530/// declaration.
4531bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4532                                              std::string& S,
4533                                              bool Extended) const {
4534  // FIXME: This is not very efficient.
4535  // Encode return type.
4536  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4537                                    Decl->getResultType(), S, Extended);
4538  // Compute size of all parameters.
4539  // Start with computing size of a pointer in number of bytes.
4540  // FIXME: There might(should) be a better way of doing this computation!
4541  SourceLocation Loc;
4542  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4543  // The first two arguments (self and _cmd) are pointers; account for
4544  // their size.
4545  CharUnits ParmOffset = 2 * PtrSize;
4546  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4547       E = Decl->sel_param_end(); PI != E; ++PI) {
4548    QualType PType = (*PI)->getType();
4549    CharUnits sz = getObjCEncodingTypeSize(PType);
4550    if (sz.isZero())
4551      continue;
4552
4553    assert (sz.isPositive() &&
4554        "getObjCEncodingForMethodDecl - Incomplete param type");
4555    ParmOffset += sz;
4556  }
4557  S += charUnitsToString(ParmOffset);
4558  S += "@0:";
4559  S += charUnitsToString(PtrSize);
4560
4561  // Argument types.
4562  ParmOffset = 2 * PtrSize;
4563  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4564       E = Decl->sel_param_end(); PI != E; ++PI) {
4565    const ParmVarDecl *PVDecl = *PI;
4566    QualType PType = PVDecl->getOriginalType();
4567    if (const ArrayType *AT =
4568          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4569      // Use array's original type only if it has known number of
4570      // elements.
4571      if (!isa<ConstantArrayType>(AT))
4572        PType = PVDecl->getType();
4573    } else if (PType->isFunctionType())
4574      PType = PVDecl->getType();
4575    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4576                                      PType, S, Extended);
4577    S += charUnitsToString(ParmOffset);
4578    ParmOffset += getObjCEncodingTypeSize(PType);
4579  }
4580
4581  return false;
4582}
4583
4584/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4585/// property declaration. If non-NULL, Container must be either an
4586/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4587/// NULL when getting encodings for protocol properties.
4588/// Property attributes are stored as a comma-delimited C string. The simple
4589/// attributes readonly and bycopy are encoded as single characters. The
4590/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4591/// encoded as single characters, followed by an identifier. Property types
4592/// are also encoded as a parametrized attribute. The characters used to encode
4593/// these attributes are defined by the following enumeration:
4594/// @code
4595/// enum PropertyAttributes {
4596/// kPropertyReadOnly = 'R',   // property is read-only.
4597/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4598/// kPropertyByref = '&',  // property is a reference to the value last assigned
4599/// kPropertyDynamic = 'D',    // property is dynamic
4600/// kPropertyGetter = 'G',     // followed by getter selector name
4601/// kPropertySetter = 'S',     // followed by setter selector name
4602/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4603/// kPropertyType = 'T'              // followed by old-style type encoding.
4604/// kPropertyWeak = 'W'              // 'weak' property
4605/// kPropertyStrong = 'P'            // property GC'able
4606/// kPropertyNonAtomic = 'N'         // property non-atomic
4607/// };
4608/// @endcode
4609void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4610                                                const Decl *Container,
4611                                                std::string& S) const {
4612  // Collect information from the property implementation decl(s).
4613  bool Dynamic = false;
4614  ObjCPropertyImplDecl *SynthesizePID = 0;
4615
4616  // FIXME: Duplicated code due to poor abstraction.
4617  if (Container) {
4618    if (const ObjCCategoryImplDecl *CID =
4619        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4620      for (ObjCCategoryImplDecl::propimpl_iterator
4621             i = CID->propimpl_begin(), e = CID->propimpl_end();
4622           i != e; ++i) {
4623        ObjCPropertyImplDecl *PID = *i;
4624        if (PID->getPropertyDecl() == PD) {
4625          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4626            Dynamic = true;
4627          } else {
4628            SynthesizePID = PID;
4629          }
4630        }
4631      }
4632    } else {
4633      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4634      for (ObjCCategoryImplDecl::propimpl_iterator
4635             i = OID->propimpl_begin(), e = OID->propimpl_end();
4636           i != e; ++i) {
4637        ObjCPropertyImplDecl *PID = *i;
4638        if (PID->getPropertyDecl() == PD) {
4639          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4640            Dynamic = true;
4641          } else {
4642            SynthesizePID = PID;
4643          }
4644        }
4645      }
4646    }
4647  }
4648
4649  // FIXME: This is not very efficient.
4650  S = "T";
4651
4652  // Encode result type.
4653  // GCC has some special rules regarding encoding of properties which
4654  // closely resembles encoding of ivars.
4655  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4656                             true /* outermost type */,
4657                             true /* encoding for property */);
4658
4659  if (PD->isReadOnly()) {
4660    S += ",R";
4661  } else {
4662    switch (PD->getSetterKind()) {
4663    case ObjCPropertyDecl::Assign: break;
4664    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4665    case ObjCPropertyDecl::Retain: S += ",&"; break;
4666    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4667    }
4668  }
4669
4670  // It really isn't clear at all what this means, since properties
4671  // are "dynamic by default".
4672  if (Dynamic)
4673    S += ",D";
4674
4675  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4676    S += ",N";
4677
4678  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4679    S += ",G";
4680    S += PD->getGetterName().getAsString();
4681  }
4682
4683  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4684    S += ",S";
4685    S += PD->getSetterName().getAsString();
4686  }
4687
4688  if (SynthesizePID) {
4689    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4690    S += ",V";
4691    S += OID->getNameAsString();
4692  }
4693
4694  // FIXME: OBJCGC: weak & strong
4695}
4696
4697/// getLegacyIntegralTypeEncoding -
4698/// Another legacy compatibility encoding: 32-bit longs are encoded as
4699/// 'l' or 'L' , but not always.  For typedefs, we need to use
4700/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4701///
4702void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4703  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4704    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4705      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4706        PointeeTy = UnsignedIntTy;
4707      else
4708        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4709          PointeeTy = IntTy;
4710    }
4711  }
4712}
4713
4714void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4715                                        const FieldDecl *Field) const {
4716  // We follow the behavior of gcc, expanding structures which are
4717  // directly pointed to, and expanding embedded structures. Note that
4718  // these rules are sufficient to prevent recursive encoding of the
4719  // same type.
4720  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4721                             true /* outermost type */);
4722}
4723
4724static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4725    switch (T->getAs<BuiltinType>()->getKind()) {
4726    default: llvm_unreachable("Unhandled builtin type kind");
4727    case BuiltinType::Void:       return 'v';
4728    case BuiltinType::Bool:       return 'B';
4729    case BuiltinType::Char_U:
4730    case BuiltinType::UChar:      return 'C';
4731    case BuiltinType::UShort:     return 'S';
4732    case BuiltinType::UInt:       return 'I';
4733    case BuiltinType::ULong:
4734        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4735    case BuiltinType::UInt128:    return 'T';
4736    case BuiltinType::ULongLong:  return 'Q';
4737    case BuiltinType::Char_S:
4738    case BuiltinType::SChar:      return 'c';
4739    case BuiltinType::Short:      return 's';
4740    case BuiltinType::WChar_S:
4741    case BuiltinType::WChar_U:
4742    case BuiltinType::Int:        return 'i';
4743    case BuiltinType::Long:
4744      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4745    case BuiltinType::LongLong:   return 'q';
4746    case BuiltinType::Int128:     return 't';
4747    case BuiltinType::Float:      return 'f';
4748    case BuiltinType::Double:     return 'd';
4749    case BuiltinType::LongDouble: return 'D';
4750    }
4751}
4752
4753static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4754  EnumDecl *Enum = ET->getDecl();
4755
4756  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4757  if (!Enum->isFixed())
4758    return 'i';
4759
4760  // The encoding of a fixed enum type matches its fixed underlying type.
4761  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4762}
4763
4764static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4765                           QualType T, const FieldDecl *FD) {
4766  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4767  S += 'b';
4768  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4769  // The GNU runtime requires more information; bitfields are encoded as b,
4770  // then the offset (in bits) of the first element, then the type of the
4771  // bitfield, then the size in bits.  For example, in this structure:
4772  //
4773  // struct
4774  // {
4775  //    int integer;
4776  //    int flags:2;
4777  // };
4778  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4779  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4780  // information is not especially sensible, but we're stuck with it for
4781  // compatibility with GCC, although providing it breaks anything that
4782  // actually uses runtime introspection and wants to work on both runtimes...
4783  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4784    const RecordDecl *RD = FD->getParent();
4785    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4786    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4787    if (const EnumType *ET = T->getAs<EnumType>())
4788      S += ObjCEncodingForEnumType(Ctx, ET);
4789    else
4790      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4791  }
4792  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4793}
4794
4795// FIXME: Use SmallString for accumulating string.
4796void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4797                                            bool ExpandPointedToStructures,
4798                                            bool ExpandStructures,
4799                                            const FieldDecl *FD,
4800                                            bool OutermostType,
4801                                            bool EncodingProperty,
4802                                            bool StructField,
4803                                            bool EncodeBlockParameters,
4804                                            bool EncodeClassNames) const {
4805  if (T->getAs<BuiltinType>()) {
4806    if (FD && FD->isBitField())
4807      return EncodeBitField(this, S, T, FD);
4808    S += ObjCEncodingForPrimitiveKind(this, T);
4809    return;
4810  }
4811
4812  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4813    S += 'j';
4814    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4815                               false);
4816    return;
4817  }
4818
4819  // encoding for pointer or r3eference types.
4820  QualType PointeeTy;
4821  if (const PointerType *PT = T->getAs<PointerType>()) {
4822    if (PT->isObjCSelType()) {
4823      S += ':';
4824      return;
4825    }
4826    PointeeTy = PT->getPointeeType();
4827  }
4828  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4829    PointeeTy = RT->getPointeeType();
4830  if (!PointeeTy.isNull()) {
4831    bool isReadOnly = false;
4832    // For historical/compatibility reasons, the read-only qualifier of the
4833    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4834    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4835    // Also, do not emit the 'r' for anything but the outermost type!
4836    if (isa<TypedefType>(T.getTypePtr())) {
4837      if (OutermostType && T.isConstQualified()) {
4838        isReadOnly = true;
4839        S += 'r';
4840      }
4841    } else if (OutermostType) {
4842      QualType P = PointeeTy;
4843      while (P->getAs<PointerType>())
4844        P = P->getAs<PointerType>()->getPointeeType();
4845      if (P.isConstQualified()) {
4846        isReadOnly = true;
4847        S += 'r';
4848      }
4849    }
4850    if (isReadOnly) {
4851      // Another legacy compatibility encoding. Some ObjC qualifier and type
4852      // combinations need to be rearranged.
4853      // Rewrite "in const" from "nr" to "rn"
4854      if (StringRef(S).endswith("nr"))
4855        S.replace(S.end()-2, S.end(), "rn");
4856    }
4857
4858    if (PointeeTy->isCharType()) {
4859      // char pointer types should be encoded as '*' unless it is a
4860      // type that has been typedef'd to 'BOOL'.
4861      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4862        S += '*';
4863        return;
4864      }
4865    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4866      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4867      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4868        S += '#';
4869        return;
4870      }
4871      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4872      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4873        S += '@';
4874        return;
4875      }
4876      // fall through...
4877    }
4878    S += '^';
4879    getLegacyIntegralTypeEncoding(PointeeTy);
4880
4881    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4882                               NULL);
4883    return;
4884  }
4885
4886  if (const ArrayType *AT =
4887      // Ignore type qualifiers etc.
4888        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4889    if (isa<IncompleteArrayType>(AT) && !StructField) {
4890      // Incomplete arrays are encoded as a pointer to the array element.
4891      S += '^';
4892
4893      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4894                                 false, ExpandStructures, FD);
4895    } else {
4896      S += '[';
4897
4898      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4899        if (getTypeSize(CAT->getElementType()) == 0)
4900          S += '0';
4901        else
4902          S += llvm::utostr(CAT->getSize().getZExtValue());
4903      } else {
4904        //Variable length arrays are encoded as a regular array with 0 elements.
4905        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4906               "Unknown array type!");
4907        S += '0';
4908      }
4909
4910      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4911                                 false, ExpandStructures, FD);
4912      S += ']';
4913    }
4914    return;
4915  }
4916
4917  if (T->getAs<FunctionType>()) {
4918    S += '?';
4919    return;
4920  }
4921
4922  if (const RecordType *RTy = T->getAs<RecordType>()) {
4923    RecordDecl *RDecl = RTy->getDecl();
4924    S += RDecl->isUnion() ? '(' : '{';
4925    // Anonymous structures print as '?'
4926    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4927      S += II->getName();
4928      if (ClassTemplateSpecializationDecl *Spec
4929          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4930        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4931        std::string TemplateArgsStr
4932          = TemplateSpecializationType::PrintTemplateArgumentList(
4933                                            TemplateArgs.data(),
4934                                            TemplateArgs.size(),
4935                                            (*this).getPrintingPolicy());
4936
4937        S += TemplateArgsStr;
4938      }
4939    } else {
4940      S += '?';
4941    }
4942    if (ExpandStructures) {
4943      S += '=';
4944      if (!RDecl->isUnion()) {
4945        getObjCEncodingForStructureImpl(RDecl, S, FD);
4946      } else {
4947        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4948                                     FieldEnd = RDecl->field_end();
4949             Field != FieldEnd; ++Field) {
4950          if (FD) {
4951            S += '"';
4952            S += Field->getNameAsString();
4953            S += '"';
4954          }
4955
4956          // Special case bit-fields.
4957          if (Field->isBitField()) {
4958            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4959                                       *Field);
4960          } else {
4961            QualType qt = Field->getType();
4962            getLegacyIntegralTypeEncoding(qt);
4963            getObjCEncodingForTypeImpl(qt, S, false, true,
4964                                       FD, /*OutermostType*/false,
4965                                       /*EncodingProperty*/false,
4966                                       /*StructField*/true);
4967          }
4968        }
4969      }
4970    }
4971    S += RDecl->isUnion() ? ')' : '}';
4972    return;
4973  }
4974
4975  if (const EnumType *ET = T->getAs<EnumType>()) {
4976    if (FD && FD->isBitField())
4977      EncodeBitField(this, S, T, FD);
4978    else
4979      S += ObjCEncodingForEnumType(this, ET);
4980    return;
4981  }
4982
4983  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4984    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4985    if (EncodeBlockParameters) {
4986      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4987
4988      S += '<';
4989      // Block return type
4990      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4991                                 ExpandPointedToStructures, ExpandStructures,
4992                                 FD,
4993                                 false /* OutermostType */,
4994                                 EncodingProperty,
4995                                 false /* StructField */,
4996                                 EncodeBlockParameters,
4997                                 EncodeClassNames);
4998      // Block self
4999      S += "@?";
5000      // Block parameters
5001      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5002        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5003               E = FPT->arg_type_end(); I && (I != E); ++I) {
5004          getObjCEncodingForTypeImpl(*I, S,
5005                                     ExpandPointedToStructures,
5006                                     ExpandStructures,
5007                                     FD,
5008                                     false /* OutermostType */,
5009                                     EncodingProperty,
5010                                     false /* StructField */,
5011                                     EncodeBlockParameters,
5012                                     EncodeClassNames);
5013        }
5014      }
5015      S += '>';
5016    }
5017    return;
5018  }
5019
5020  // Ignore protocol qualifiers when mangling at this level.
5021  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
5022    T = OT->getBaseType();
5023
5024  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
5025    // @encode(class_name)
5026    ObjCInterfaceDecl *OI = OIT->getDecl();
5027    S += '{';
5028    const IdentifierInfo *II = OI->getIdentifier();
5029    S += II->getName();
5030    S += '=';
5031    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5032    DeepCollectObjCIvars(OI, true, Ivars);
5033    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5034      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5035      if (Field->isBitField())
5036        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5037      else
5038        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5039    }
5040    S += '}';
5041    return;
5042  }
5043
5044  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
5045    if (OPT->isObjCIdType()) {
5046      S += '@';
5047      return;
5048    }
5049
5050    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5051      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5052      // Since this is a binary compatibility issue, need to consult with runtime
5053      // folks. Fortunately, this is a *very* obsure construct.
5054      S += '#';
5055      return;
5056    }
5057
5058    if (OPT->isObjCQualifiedIdType()) {
5059      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5060                                 ExpandPointedToStructures,
5061                                 ExpandStructures, FD);
5062      if (FD || EncodingProperty || EncodeClassNames) {
5063        // Note that we do extended encoding of protocol qualifer list
5064        // Only when doing ivar or property encoding.
5065        S += '"';
5066        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5067             E = OPT->qual_end(); I != E; ++I) {
5068          S += '<';
5069          S += (*I)->getNameAsString();
5070          S += '>';
5071        }
5072        S += '"';
5073      }
5074      return;
5075    }
5076
5077    QualType PointeeTy = OPT->getPointeeType();
5078    if (!EncodingProperty &&
5079        isa<TypedefType>(PointeeTy.getTypePtr())) {
5080      // Another historical/compatibility reason.
5081      // We encode the underlying type which comes out as
5082      // {...};
5083      S += '^';
5084      getObjCEncodingForTypeImpl(PointeeTy, S,
5085                                 false, ExpandPointedToStructures,
5086                                 NULL);
5087      return;
5088    }
5089
5090    S += '@';
5091    if (OPT->getInterfaceDecl() &&
5092        (FD || EncodingProperty || EncodeClassNames)) {
5093      S += '"';
5094      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5095      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5096           E = OPT->qual_end(); I != E; ++I) {
5097        S += '<';
5098        S += (*I)->getNameAsString();
5099        S += '>';
5100      }
5101      S += '"';
5102    }
5103    return;
5104  }
5105
5106  // gcc just blithely ignores member pointers.
5107  // TODO: maybe there should be a mangling for these
5108  if (T->getAs<MemberPointerType>())
5109    return;
5110
5111  if (T->isVectorType()) {
5112    // This matches gcc's encoding, even though technically it is
5113    // insufficient.
5114    // FIXME. We should do a better job than gcc.
5115    return;
5116  }
5117
5118  llvm_unreachable("@encode for type not implemented!");
5119}
5120
5121void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5122                                                 std::string &S,
5123                                                 const FieldDecl *FD,
5124                                                 bool includeVBases) const {
5125  assert(RDecl && "Expected non-null RecordDecl");
5126  assert(!RDecl->isUnion() && "Should not be called for unions");
5127  if (!RDecl->getDefinition())
5128    return;
5129
5130  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5131  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5132  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5133
5134  if (CXXRec) {
5135    for (CXXRecordDecl::base_class_iterator
5136           BI = CXXRec->bases_begin(),
5137           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5138      if (!BI->isVirtual()) {
5139        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5140        if (base->isEmpty())
5141          continue;
5142        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5143        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5144                                  std::make_pair(offs, base));
5145      }
5146    }
5147  }
5148
5149  unsigned i = 0;
5150  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5151                               FieldEnd = RDecl->field_end();
5152       Field != FieldEnd; ++Field, ++i) {
5153    uint64_t offs = layout.getFieldOffset(i);
5154    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5155                              std::make_pair(offs, *Field));
5156  }
5157
5158  if (CXXRec && includeVBases) {
5159    for (CXXRecordDecl::base_class_iterator
5160           BI = CXXRec->vbases_begin(),
5161           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5162      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5163      if (base->isEmpty())
5164        continue;
5165      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5166      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5167        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5168                                  std::make_pair(offs, base));
5169    }
5170  }
5171
5172  CharUnits size;
5173  if (CXXRec) {
5174    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5175  } else {
5176    size = layout.getSize();
5177  }
5178
5179  uint64_t CurOffs = 0;
5180  std::multimap<uint64_t, NamedDecl *>::iterator
5181    CurLayObj = FieldOrBaseOffsets.begin();
5182
5183  if (CXXRec && CXXRec->isDynamicClass() &&
5184      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5185    if (FD) {
5186      S += "\"_vptr$";
5187      std::string recname = CXXRec->getNameAsString();
5188      if (recname.empty()) recname = "?";
5189      S += recname;
5190      S += '"';
5191    }
5192    S += "^^?";
5193    CurOffs += getTypeSize(VoidPtrTy);
5194  }
5195
5196  if (!RDecl->hasFlexibleArrayMember()) {
5197    // Mark the end of the structure.
5198    uint64_t offs = toBits(size);
5199    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5200                              std::make_pair(offs, (NamedDecl*)0));
5201  }
5202
5203  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5204    assert(CurOffs <= CurLayObj->first);
5205
5206    if (CurOffs < CurLayObj->first) {
5207      uint64_t padding = CurLayObj->first - CurOffs;
5208      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5209      // packing/alignment of members is different that normal, in which case
5210      // the encoding will be out-of-sync with the real layout.
5211      // If the runtime switches to just consider the size of types without
5212      // taking into account alignment, we could make padding explicit in the
5213      // encoding (e.g. using arrays of chars). The encoding strings would be
5214      // longer then though.
5215      CurOffs += padding;
5216    }
5217
5218    NamedDecl *dcl = CurLayObj->second;
5219    if (dcl == 0)
5220      break; // reached end of structure.
5221
5222    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5223      // We expand the bases without their virtual bases since those are going
5224      // in the initial structure. Note that this differs from gcc which
5225      // expands virtual bases each time one is encountered in the hierarchy,
5226      // making the encoding type bigger than it really is.
5227      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5228      assert(!base->isEmpty());
5229      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5230    } else {
5231      FieldDecl *field = cast<FieldDecl>(dcl);
5232      if (FD) {
5233        S += '"';
5234        S += field->getNameAsString();
5235        S += '"';
5236      }
5237
5238      if (field->isBitField()) {
5239        EncodeBitField(this, S, field->getType(), field);
5240        CurOffs += field->getBitWidthValue(*this);
5241      } else {
5242        QualType qt = field->getType();
5243        getLegacyIntegralTypeEncoding(qt);
5244        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5245                                   /*OutermostType*/false,
5246                                   /*EncodingProperty*/false,
5247                                   /*StructField*/true);
5248        CurOffs += getTypeSize(field->getType());
5249      }
5250    }
5251  }
5252}
5253
5254void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5255                                                 std::string& S) const {
5256  if (QT & Decl::OBJC_TQ_In)
5257    S += 'n';
5258  if (QT & Decl::OBJC_TQ_Inout)
5259    S += 'N';
5260  if (QT & Decl::OBJC_TQ_Out)
5261    S += 'o';
5262  if (QT & Decl::OBJC_TQ_Bycopy)
5263    S += 'O';
5264  if (QT & Decl::OBJC_TQ_Byref)
5265    S += 'R';
5266  if (QT & Decl::OBJC_TQ_Oneway)
5267    S += 'V';
5268}
5269
5270TypedefDecl *ASTContext::getObjCIdDecl() const {
5271  if (!ObjCIdDecl) {
5272    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5273    T = getObjCObjectPointerType(T);
5274    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5275    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5276                                     getTranslationUnitDecl(),
5277                                     SourceLocation(), SourceLocation(),
5278                                     &Idents.get("id"), IdInfo);
5279  }
5280
5281  return ObjCIdDecl;
5282}
5283
5284TypedefDecl *ASTContext::getObjCSelDecl() const {
5285  if (!ObjCSelDecl) {
5286    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5287    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5288    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5289                                      getTranslationUnitDecl(),
5290                                      SourceLocation(), SourceLocation(),
5291                                      &Idents.get("SEL"), SelInfo);
5292  }
5293  return ObjCSelDecl;
5294}
5295
5296TypedefDecl *ASTContext::getObjCClassDecl() const {
5297  if (!ObjCClassDecl) {
5298    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5299    T = getObjCObjectPointerType(T);
5300    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5301    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5302                                        getTranslationUnitDecl(),
5303                                        SourceLocation(), SourceLocation(),
5304                                        &Idents.get("Class"), ClassInfo);
5305  }
5306
5307  return ObjCClassDecl;
5308}
5309
5310ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5311  if (!ObjCProtocolClassDecl) {
5312    ObjCProtocolClassDecl
5313      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5314                                  SourceLocation(),
5315                                  &Idents.get("Protocol"),
5316                                  /*PrevDecl=*/0,
5317                                  SourceLocation(), true);
5318  }
5319
5320  return ObjCProtocolClassDecl;
5321}
5322
5323//===----------------------------------------------------------------------===//
5324// __builtin_va_list Construction Functions
5325//===----------------------------------------------------------------------===//
5326
5327static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5328  // typedef char* __builtin_va_list;
5329  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5330  TypeSourceInfo *TInfo
5331    = Context->getTrivialTypeSourceInfo(CharPtrType);
5332
5333  TypedefDecl *VaListTypeDecl
5334    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5335                          Context->getTranslationUnitDecl(),
5336                          SourceLocation(), SourceLocation(),
5337                          &Context->Idents.get("__builtin_va_list"),
5338                          TInfo);
5339  return VaListTypeDecl;
5340}
5341
5342static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5343  // typedef void* __builtin_va_list;
5344  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5345  TypeSourceInfo *TInfo
5346    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5347
5348  TypedefDecl *VaListTypeDecl
5349    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5350                          Context->getTranslationUnitDecl(),
5351                          SourceLocation(), SourceLocation(),
5352                          &Context->Idents.get("__builtin_va_list"),
5353                          TInfo);
5354  return VaListTypeDecl;
5355}
5356
5357static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5358  // typedef struct __va_list_tag {
5359  RecordDecl *VaListTagDecl;
5360
5361  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5362                                   Context->getTranslationUnitDecl(),
5363                                   &Context->Idents.get("__va_list_tag"));
5364  VaListTagDecl->startDefinition();
5365
5366  const size_t NumFields = 5;
5367  QualType FieldTypes[NumFields];
5368  const char *FieldNames[NumFields];
5369
5370  //   unsigned char gpr;
5371  FieldTypes[0] = Context->UnsignedCharTy;
5372  FieldNames[0] = "gpr";
5373
5374  //   unsigned char fpr;
5375  FieldTypes[1] = Context->UnsignedCharTy;
5376  FieldNames[1] = "fpr";
5377
5378  //   unsigned short reserved;
5379  FieldTypes[2] = Context->UnsignedShortTy;
5380  FieldNames[2] = "reserved";
5381
5382  //   void* overflow_arg_area;
5383  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5384  FieldNames[3] = "overflow_arg_area";
5385
5386  //   void* reg_save_area;
5387  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5388  FieldNames[4] = "reg_save_area";
5389
5390  // Create fields
5391  for (unsigned i = 0; i < NumFields; ++i) {
5392    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5393                                         SourceLocation(),
5394                                         SourceLocation(),
5395                                         &Context->Idents.get(FieldNames[i]),
5396                                         FieldTypes[i], /*TInfo=*/0,
5397                                         /*BitWidth=*/0,
5398                                         /*Mutable=*/false,
5399                                         ICIS_NoInit);
5400    Field->setAccess(AS_public);
5401    VaListTagDecl->addDecl(Field);
5402  }
5403  VaListTagDecl->completeDefinition();
5404  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5405  Context->VaListTagTy = VaListTagType;
5406
5407  // } __va_list_tag;
5408  TypedefDecl *VaListTagTypedefDecl
5409    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5410                          Context->getTranslationUnitDecl(),
5411                          SourceLocation(), SourceLocation(),
5412                          &Context->Idents.get("__va_list_tag"),
5413                          Context->getTrivialTypeSourceInfo(VaListTagType));
5414  QualType VaListTagTypedefType =
5415    Context->getTypedefType(VaListTagTypedefDecl);
5416
5417  // typedef __va_list_tag __builtin_va_list[1];
5418  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5419  QualType VaListTagArrayType
5420    = Context->getConstantArrayType(VaListTagTypedefType,
5421                                    Size, ArrayType::Normal, 0);
5422  TypeSourceInfo *TInfo
5423    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5424  TypedefDecl *VaListTypedefDecl
5425    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5426                          Context->getTranslationUnitDecl(),
5427                          SourceLocation(), SourceLocation(),
5428                          &Context->Idents.get("__builtin_va_list"),
5429                          TInfo);
5430
5431  return VaListTypedefDecl;
5432}
5433
5434static TypedefDecl *
5435CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5436  // typedef struct __va_list_tag {
5437  RecordDecl *VaListTagDecl;
5438  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5439                                   Context->getTranslationUnitDecl(),
5440                                   &Context->Idents.get("__va_list_tag"));
5441  VaListTagDecl->startDefinition();
5442
5443  const size_t NumFields = 4;
5444  QualType FieldTypes[NumFields];
5445  const char *FieldNames[NumFields];
5446
5447  //   unsigned gp_offset;
5448  FieldTypes[0] = Context->UnsignedIntTy;
5449  FieldNames[0] = "gp_offset";
5450
5451  //   unsigned fp_offset;
5452  FieldTypes[1] = Context->UnsignedIntTy;
5453  FieldNames[1] = "fp_offset";
5454
5455  //   void* overflow_arg_area;
5456  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5457  FieldNames[2] = "overflow_arg_area";
5458
5459  //   void* reg_save_area;
5460  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5461  FieldNames[3] = "reg_save_area";
5462
5463  // Create fields
5464  for (unsigned i = 0; i < NumFields; ++i) {
5465    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5466                                         VaListTagDecl,
5467                                         SourceLocation(),
5468                                         SourceLocation(),
5469                                         &Context->Idents.get(FieldNames[i]),
5470                                         FieldTypes[i], /*TInfo=*/0,
5471                                         /*BitWidth=*/0,
5472                                         /*Mutable=*/false,
5473                                         ICIS_NoInit);
5474    Field->setAccess(AS_public);
5475    VaListTagDecl->addDecl(Field);
5476  }
5477  VaListTagDecl->completeDefinition();
5478  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5479  Context->VaListTagTy = VaListTagType;
5480
5481  // } __va_list_tag;
5482  TypedefDecl *VaListTagTypedefDecl
5483    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5484                          Context->getTranslationUnitDecl(),
5485                          SourceLocation(), SourceLocation(),
5486                          &Context->Idents.get("__va_list_tag"),
5487                          Context->getTrivialTypeSourceInfo(VaListTagType));
5488  QualType VaListTagTypedefType =
5489    Context->getTypedefType(VaListTagTypedefDecl);
5490
5491  // typedef __va_list_tag __builtin_va_list[1];
5492  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5493  QualType VaListTagArrayType
5494    = Context->getConstantArrayType(VaListTagTypedefType,
5495                                      Size, ArrayType::Normal,0);
5496  TypeSourceInfo *TInfo
5497    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5498  TypedefDecl *VaListTypedefDecl
5499    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5500                          Context->getTranslationUnitDecl(),
5501                          SourceLocation(), SourceLocation(),
5502                          &Context->Idents.get("__builtin_va_list"),
5503                          TInfo);
5504
5505  return VaListTypedefDecl;
5506}
5507
5508static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5509  // typedef int __builtin_va_list[4];
5510  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5511  QualType IntArrayType
5512    = Context->getConstantArrayType(Context->IntTy,
5513				    Size, ArrayType::Normal, 0);
5514  TypedefDecl *VaListTypedefDecl
5515    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5516                          Context->getTranslationUnitDecl(),
5517                          SourceLocation(), SourceLocation(),
5518                          &Context->Idents.get("__builtin_va_list"),
5519                          Context->getTrivialTypeSourceInfo(IntArrayType));
5520
5521  return VaListTypedefDecl;
5522}
5523
5524static TypedefDecl *
5525CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5526  RecordDecl *VaListDecl;
5527  if (Context->getLangOpts().CPlusPlus) {
5528    // namespace std { struct __va_list {
5529    NamespaceDecl *NS;
5530    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5531                               Context->getTranslationUnitDecl(),
5532                               /*Inline*/false, SourceLocation(),
5533                               SourceLocation(), &Context->Idents.get("std"),
5534                               /*PrevDecl*/0);
5535
5536    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5537                                       Context->getTranslationUnitDecl(),
5538                                       SourceLocation(), SourceLocation(),
5539                                       &Context->Idents.get("__va_list"));
5540
5541    VaListDecl->setDeclContext(NS);
5542
5543  } else {
5544    // struct __va_list {
5545    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5546                                  Context->getTranslationUnitDecl(),
5547                                  &Context->Idents.get("__va_list"));
5548  }
5549
5550  VaListDecl->startDefinition();
5551
5552  // void * __ap;
5553  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5554                                       VaListDecl,
5555                                       SourceLocation(),
5556                                       SourceLocation(),
5557                                       &Context->Idents.get("__ap"),
5558                                       Context->getPointerType(Context->VoidTy),
5559                                       /*TInfo=*/0,
5560                                       /*BitWidth=*/0,
5561                                       /*Mutable=*/false,
5562                                       ICIS_NoInit);
5563  Field->setAccess(AS_public);
5564  VaListDecl->addDecl(Field);
5565
5566  // };
5567  VaListDecl->completeDefinition();
5568
5569  // typedef struct __va_list __builtin_va_list;
5570  TypeSourceInfo *TInfo
5571    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5572
5573  TypedefDecl *VaListTypeDecl
5574    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5575                          Context->getTranslationUnitDecl(),
5576                          SourceLocation(), SourceLocation(),
5577                          &Context->Idents.get("__builtin_va_list"),
5578                          TInfo);
5579
5580  return VaListTypeDecl;
5581}
5582
5583static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5584                                     TargetInfo::BuiltinVaListKind Kind) {
5585  switch (Kind) {
5586  case TargetInfo::CharPtrBuiltinVaList:
5587    return CreateCharPtrBuiltinVaListDecl(Context);
5588  case TargetInfo::VoidPtrBuiltinVaList:
5589    return CreateVoidPtrBuiltinVaListDecl(Context);
5590  case TargetInfo::PowerABIBuiltinVaList:
5591    return CreatePowerABIBuiltinVaListDecl(Context);
5592  case TargetInfo::X86_64ABIBuiltinVaList:
5593    return CreateX86_64ABIBuiltinVaListDecl(Context);
5594  case TargetInfo::PNaClABIBuiltinVaList:
5595    return CreatePNaClABIBuiltinVaListDecl(Context);
5596  case TargetInfo::AAPCSABIBuiltinVaList:
5597    return CreateAAPCSABIBuiltinVaListDecl(Context);
5598  }
5599
5600  llvm_unreachable("Unhandled __builtin_va_list type kind");
5601}
5602
5603TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5604  if (!BuiltinVaListDecl)
5605    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5606
5607  return BuiltinVaListDecl;
5608}
5609
5610QualType ASTContext::getVaListTagType() const {
5611  // Force the creation of VaListTagTy by building the __builtin_va_list
5612  // declaration.
5613  if (VaListTagTy.isNull())
5614    (void) getBuiltinVaListDecl();
5615
5616  return VaListTagTy;
5617}
5618
5619void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5620  assert(ObjCConstantStringType.isNull() &&
5621         "'NSConstantString' type already set!");
5622
5623  ObjCConstantStringType = getObjCInterfaceType(Decl);
5624}
5625
5626/// \brief Retrieve the template name that corresponds to a non-empty
5627/// lookup.
5628TemplateName
5629ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5630                                      UnresolvedSetIterator End) const {
5631  unsigned size = End - Begin;
5632  assert(size > 1 && "set is not overloaded!");
5633
5634  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5635                          size * sizeof(FunctionTemplateDecl*));
5636  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5637
5638  NamedDecl **Storage = OT->getStorage();
5639  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5640    NamedDecl *D = *I;
5641    assert(isa<FunctionTemplateDecl>(D) ||
5642           (isa<UsingShadowDecl>(D) &&
5643            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5644    *Storage++ = D;
5645  }
5646
5647  return TemplateName(OT);
5648}
5649
5650/// \brief Retrieve the template name that represents a qualified
5651/// template name such as \c std::vector.
5652TemplateName
5653ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5654                                     bool TemplateKeyword,
5655                                     TemplateDecl *Template) const {
5656  assert(NNS && "Missing nested-name-specifier in qualified template name");
5657
5658  // FIXME: Canonicalization?
5659  llvm::FoldingSetNodeID ID;
5660  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5661
5662  void *InsertPos = 0;
5663  QualifiedTemplateName *QTN =
5664    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5665  if (!QTN) {
5666    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5667        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5668    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5669  }
5670
5671  return TemplateName(QTN);
5672}
5673
5674/// \brief Retrieve the template name that represents a dependent
5675/// template name such as \c MetaFun::template apply.
5676TemplateName
5677ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5678                                     const IdentifierInfo *Name) const {
5679  assert((!NNS || NNS->isDependent()) &&
5680         "Nested name specifier must be dependent");
5681
5682  llvm::FoldingSetNodeID ID;
5683  DependentTemplateName::Profile(ID, NNS, Name);
5684
5685  void *InsertPos = 0;
5686  DependentTemplateName *QTN =
5687    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5688
5689  if (QTN)
5690    return TemplateName(QTN);
5691
5692  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5693  if (CanonNNS == NNS) {
5694    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5695        DependentTemplateName(NNS, Name);
5696  } else {
5697    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5698    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5699        DependentTemplateName(NNS, Name, Canon);
5700    DependentTemplateName *CheckQTN =
5701      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5702    assert(!CheckQTN && "Dependent type name canonicalization broken");
5703    (void)CheckQTN;
5704  }
5705
5706  DependentTemplateNames.InsertNode(QTN, InsertPos);
5707  return TemplateName(QTN);
5708}
5709
5710/// \brief Retrieve the template name that represents a dependent
5711/// template name such as \c MetaFun::template operator+.
5712TemplateName
5713ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5714                                     OverloadedOperatorKind Operator) const {
5715  assert((!NNS || NNS->isDependent()) &&
5716         "Nested name specifier must be dependent");
5717
5718  llvm::FoldingSetNodeID ID;
5719  DependentTemplateName::Profile(ID, NNS, Operator);
5720
5721  void *InsertPos = 0;
5722  DependentTemplateName *QTN
5723    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5724
5725  if (QTN)
5726    return TemplateName(QTN);
5727
5728  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5729  if (CanonNNS == NNS) {
5730    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5731        DependentTemplateName(NNS, Operator);
5732  } else {
5733    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5734    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5735        DependentTemplateName(NNS, Operator, Canon);
5736
5737    DependentTemplateName *CheckQTN
5738      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5739    assert(!CheckQTN && "Dependent template name canonicalization broken");
5740    (void)CheckQTN;
5741  }
5742
5743  DependentTemplateNames.InsertNode(QTN, InsertPos);
5744  return TemplateName(QTN);
5745}
5746
5747TemplateName
5748ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5749                                         TemplateName replacement) const {
5750  llvm::FoldingSetNodeID ID;
5751  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5752
5753  void *insertPos = 0;
5754  SubstTemplateTemplateParmStorage *subst
5755    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5756
5757  if (!subst) {
5758    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5759    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5760  }
5761
5762  return TemplateName(subst);
5763}
5764
5765TemplateName
5766ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5767                                       const TemplateArgument &ArgPack) const {
5768  ASTContext &Self = const_cast<ASTContext &>(*this);
5769  llvm::FoldingSetNodeID ID;
5770  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5771
5772  void *InsertPos = 0;
5773  SubstTemplateTemplateParmPackStorage *Subst
5774    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5775
5776  if (!Subst) {
5777    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5778                                                           ArgPack.pack_size(),
5779                                                         ArgPack.pack_begin());
5780    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5781  }
5782
5783  return TemplateName(Subst);
5784}
5785
5786/// getFromTargetType - Given one of the integer types provided by
5787/// TargetInfo, produce the corresponding type. The unsigned @p Type
5788/// is actually a value of type @c TargetInfo::IntType.
5789CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5790  switch (Type) {
5791  case TargetInfo::NoInt: return CanQualType();
5792  case TargetInfo::SignedShort: return ShortTy;
5793  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5794  case TargetInfo::SignedInt: return IntTy;
5795  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5796  case TargetInfo::SignedLong: return LongTy;
5797  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5798  case TargetInfo::SignedLongLong: return LongLongTy;
5799  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5800  }
5801
5802  llvm_unreachable("Unhandled TargetInfo::IntType value");
5803}
5804
5805//===----------------------------------------------------------------------===//
5806//                        Type Predicates.
5807//===----------------------------------------------------------------------===//
5808
5809/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5810/// garbage collection attribute.
5811///
5812Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5813  if (getLangOpts().getGC() == LangOptions::NonGC)
5814    return Qualifiers::GCNone;
5815
5816  assert(getLangOpts().ObjC1);
5817  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5818
5819  // Default behaviour under objective-C's gc is for ObjC pointers
5820  // (or pointers to them) be treated as though they were declared
5821  // as __strong.
5822  if (GCAttrs == Qualifiers::GCNone) {
5823    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5824      return Qualifiers::Strong;
5825    else if (Ty->isPointerType())
5826      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5827  } else {
5828    // It's not valid to set GC attributes on anything that isn't a
5829    // pointer.
5830#ifndef NDEBUG
5831    QualType CT = Ty->getCanonicalTypeInternal();
5832    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5833      CT = AT->getElementType();
5834    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5835#endif
5836  }
5837  return GCAttrs;
5838}
5839
5840//===----------------------------------------------------------------------===//
5841//                        Type Compatibility Testing
5842//===----------------------------------------------------------------------===//
5843
5844/// areCompatVectorTypes - Return true if the two specified vector types are
5845/// compatible.
5846static bool areCompatVectorTypes(const VectorType *LHS,
5847                                 const VectorType *RHS) {
5848  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5849  return LHS->getElementType() == RHS->getElementType() &&
5850         LHS->getNumElements() == RHS->getNumElements();
5851}
5852
5853bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5854                                          QualType SecondVec) {
5855  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5856  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5857
5858  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5859    return true;
5860
5861  // Treat Neon vector types and most AltiVec vector types as if they are the
5862  // equivalent GCC vector types.
5863  const VectorType *First = FirstVec->getAs<VectorType>();
5864  const VectorType *Second = SecondVec->getAs<VectorType>();
5865  if (First->getNumElements() == Second->getNumElements() &&
5866      hasSameType(First->getElementType(), Second->getElementType()) &&
5867      First->getVectorKind() != VectorType::AltiVecPixel &&
5868      First->getVectorKind() != VectorType::AltiVecBool &&
5869      Second->getVectorKind() != VectorType::AltiVecPixel &&
5870      Second->getVectorKind() != VectorType::AltiVecBool)
5871    return true;
5872
5873  return false;
5874}
5875
5876//===----------------------------------------------------------------------===//
5877// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5878//===----------------------------------------------------------------------===//
5879
5880/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5881/// inheritance hierarchy of 'rProto'.
5882bool
5883ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5884                                           ObjCProtocolDecl *rProto) const {
5885  if (declaresSameEntity(lProto, rProto))
5886    return true;
5887  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5888       E = rProto->protocol_end(); PI != E; ++PI)
5889    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5890      return true;
5891  return false;
5892}
5893
5894/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
5895/// return true if lhs's protocols conform to rhs's protocol; false
5896/// otherwise.
5897bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5898  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5899    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5900  return false;
5901}
5902
5903/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
5904/// Class<pr1, ...>.
5905bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5906                                                      QualType rhs) {
5907  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5908  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5909  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5910
5911  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5912       E = lhsQID->qual_end(); I != E; ++I) {
5913    bool match = false;
5914    ObjCProtocolDecl *lhsProto = *I;
5915    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5916         E = rhsOPT->qual_end(); J != E; ++J) {
5917      ObjCProtocolDecl *rhsProto = *J;
5918      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5919        match = true;
5920        break;
5921      }
5922    }
5923    if (!match)
5924      return false;
5925  }
5926  return true;
5927}
5928
5929/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5930/// ObjCQualifiedIDType.
5931bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5932                                                   bool compare) {
5933  // Allow id<P..> and an 'id' or void* type in all cases.
5934  if (lhs->isVoidPointerType() ||
5935      lhs->isObjCIdType() || lhs->isObjCClassType())
5936    return true;
5937  else if (rhs->isVoidPointerType() ||
5938           rhs->isObjCIdType() || rhs->isObjCClassType())
5939    return true;
5940
5941  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5942    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5943
5944    if (!rhsOPT) return false;
5945
5946    if (rhsOPT->qual_empty()) {
5947      // If the RHS is a unqualified interface pointer "NSString*",
5948      // make sure we check the class hierarchy.
5949      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5950        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5951             E = lhsQID->qual_end(); I != E; ++I) {
5952          // when comparing an id<P> on lhs with a static type on rhs,
5953          // see if static class implements all of id's protocols, directly or
5954          // through its super class and categories.
5955          if (!rhsID->ClassImplementsProtocol(*I, true))
5956            return false;
5957        }
5958      }
5959      // If there are no qualifiers and no interface, we have an 'id'.
5960      return true;
5961    }
5962    // Both the right and left sides have qualifiers.
5963    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5964         E = lhsQID->qual_end(); I != E; ++I) {
5965      ObjCProtocolDecl *lhsProto = *I;
5966      bool match = false;
5967
5968      // when comparing an id<P> on lhs with a static type on rhs,
5969      // see if static class implements all of id's protocols, directly or
5970      // through its super class and categories.
5971      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5972           E = rhsOPT->qual_end(); J != E; ++J) {
5973        ObjCProtocolDecl *rhsProto = *J;
5974        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5975            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5976          match = true;
5977          break;
5978        }
5979      }
5980      // If the RHS is a qualified interface pointer "NSString<P>*",
5981      // make sure we check the class hierarchy.
5982      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5983        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5984             E = lhsQID->qual_end(); I != E; ++I) {
5985          // when comparing an id<P> on lhs with a static type on rhs,
5986          // see if static class implements all of id's protocols, directly or
5987          // through its super class and categories.
5988          if (rhsID->ClassImplementsProtocol(*I, true)) {
5989            match = true;
5990            break;
5991          }
5992        }
5993      }
5994      if (!match)
5995        return false;
5996    }
5997
5998    return true;
5999  }
6000
6001  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6002  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6003
6004  if (const ObjCObjectPointerType *lhsOPT =
6005        lhs->getAsObjCInterfacePointerType()) {
6006    // If both the right and left sides have qualifiers.
6007    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6008         E = lhsOPT->qual_end(); I != E; ++I) {
6009      ObjCProtocolDecl *lhsProto = *I;
6010      bool match = false;
6011
6012      // when comparing an id<P> on rhs with a static type on lhs,
6013      // see if static class implements all of id's protocols, directly or
6014      // through its super class and categories.
6015      // First, lhs protocols in the qualifier list must be found, direct
6016      // or indirect in rhs's qualifier list or it is a mismatch.
6017      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6018           E = rhsQID->qual_end(); J != E; ++J) {
6019        ObjCProtocolDecl *rhsProto = *J;
6020        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6021            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6022          match = true;
6023          break;
6024        }
6025      }
6026      if (!match)
6027        return false;
6028    }
6029
6030    // Static class's protocols, or its super class or category protocols
6031    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6032    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6033      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6034      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6035      // This is rather dubious but matches gcc's behavior. If lhs has
6036      // no type qualifier and its class has no static protocol(s)
6037      // assume that it is mismatch.
6038      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6039        return false;
6040      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6041           LHSInheritedProtocols.begin(),
6042           E = LHSInheritedProtocols.end(); I != E; ++I) {
6043        bool match = false;
6044        ObjCProtocolDecl *lhsProto = (*I);
6045        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6046             E = rhsQID->qual_end(); J != E; ++J) {
6047          ObjCProtocolDecl *rhsProto = *J;
6048          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6049              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6050            match = true;
6051            break;
6052          }
6053        }
6054        if (!match)
6055          return false;
6056      }
6057    }
6058    return true;
6059  }
6060  return false;
6061}
6062
6063/// canAssignObjCInterfaces - Return true if the two interface types are
6064/// compatible for assignment from RHS to LHS.  This handles validation of any
6065/// protocol qualifiers on the LHS or RHS.
6066///
6067bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6068                                         const ObjCObjectPointerType *RHSOPT) {
6069  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6070  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6071
6072  // If either type represents the built-in 'id' or 'Class' types, return true.
6073  if (LHS->isObjCUnqualifiedIdOrClass() ||
6074      RHS->isObjCUnqualifiedIdOrClass())
6075    return true;
6076
6077  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6078    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6079                                             QualType(RHSOPT,0),
6080                                             false);
6081
6082  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6083    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6084                                                QualType(RHSOPT,0));
6085
6086  // If we have 2 user-defined types, fall into that path.
6087  if (LHS->getInterface() && RHS->getInterface())
6088    return canAssignObjCInterfaces(LHS, RHS);
6089
6090  return false;
6091}
6092
6093/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6094/// for providing type-safety for objective-c pointers used to pass/return
6095/// arguments in block literals. When passed as arguments, passing 'A*' where
6096/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6097/// not OK. For the return type, the opposite is not OK.
6098bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6099                                         const ObjCObjectPointerType *LHSOPT,
6100                                         const ObjCObjectPointerType *RHSOPT,
6101                                         bool BlockReturnType) {
6102  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6103    return true;
6104
6105  if (LHSOPT->isObjCBuiltinType()) {
6106    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6107  }
6108
6109  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6110    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6111                                             QualType(RHSOPT,0),
6112                                             false);
6113
6114  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6115  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6116  if (LHS && RHS)  { // We have 2 user-defined types.
6117    if (LHS != RHS) {
6118      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6119        return BlockReturnType;
6120      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6121        return !BlockReturnType;
6122    }
6123    else
6124      return true;
6125  }
6126  return false;
6127}
6128
6129/// getIntersectionOfProtocols - This routine finds the intersection of set
6130/// of protocols inherited from two distinct objective-c pointer objects.
6131/// It is used to build composite qualifier list of the composite type of
6132/// the conditional expression involving two objective-c pointer objects.
6133static
6134void getIntersectionOfProtocols(ASTContext &Context,
6135                                const ObjCObjectPointerType *LHSOPT,
6136                                const ObjCObjectPointerType *RHSOPT,
6137      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6138
6139  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6140  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6141  assert(LHS->getInterface() && "LHS must have an interface base");
6142  assert(RHS->getInterface() && "RHS must have an interface base");
6143
6144  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6145  unsigned LHSNumProtocols = LHS->getNumProtocols();
6146  if (LHSNumProtocols > 0)
6147    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6148  else {
6149    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6150    Context.CollectInheritedProtocols(LHS->getInterface(),
6151                                      LHSInheritedProtocols);
6152    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6153                                LHSInheritedProtocols.end());
6154  }
6155
6156  unsigned RHSNumProtocols = RHS->getNumProtocols();
6157  if (RHSNumProtocols > 0) {
6158    ObjCProtocolDecl **RHSProtocols =
6159      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6160    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6161      if (InheritedProtocolSet.count(RHSProtocols[i]))
6162        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6163  } else {
6164    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6165    Context.CollectInheritedProtocols(RHS->getInterface(),
6166                                      RHSInheritedProtocols);
6167    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6168         RHSInheritedProtocols.begin(),
6169         E = RHSInheritedProtocols.end(); I != E; ++I)
6170      if (InheritedProtocolSet.count((*I)))
6171        IntersectionOfProtocols.push_back((*I));
6172  }
6173}
6174
6175/// areCommonBaseCompatible - Returns common base class of the two classes if
6176/// one found. Note that this is O'2 algorithm. But it will be called as the
6177/// last type comparison in a ?-exp of ObjC pointer types before a
6178/// warning is issued. So, its invokation is extremely rare.
6179QualType ASTContext::areCommonBaseCompatible(
6180                                          const ObjCObjectPointerType *Lptr,
6181                                          const ObjCObjectPointerType *Rptr) {
6182  const ObjCObjectType *LHS = Lptr->getObjectType();
6183  const ObjCObjectType *RHS = Rptr->getObjectType();
6184  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6185  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6186  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6187    return QualType();
6188
6189  do {
6190    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6191    if (canAssignObjCInterfaces(LHS, RHS)) {
6192      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6193      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6194
6195      QualType Result = QualType(LHS, 0);
6196      if (!Protocols.empty())
6197        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6198      Result = getObjCObjectPointerType(Result);
6199      return Result;
6200    }
6201  } while ((LDecl = LDecl->getSuperClass()));
6202
6203  return QualType();
6204}
6205
6206bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6207                                         const ObjCObjectType *RHS) {
6208  assert(LHS->getInterface() && "LHS is not an interface type");
6209  assert(RHS->getInterface() && "RHS is not an interface type");
6210
6211  // Verify that the base decls are compatible: the RHS must be a subclass of
6212  // the LHS.
6213  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6214    return false;
6215
6216  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6217  // protocol qualified at all, then we are good.
6218  if (LHS->getNumProtocols() == 0)
6219    return true;
6220
6221  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6222  // more detailed analysis is required.
6223  if (RHS->getNumProtocols() == 0) {
6224    // OK, if LHS is a superclass of RHS *and*
6225    // this superclass is assignment compatible with LHS.
6226    // false otherwise.
6227    bool IsSuperClass =
6228      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6229    if (IsSuperClass) {
6230      // OK if conversion of LHS to SuperClass results in narrowing of types
6231      // ; i.e., SuperClass may implement at least one of the protocols
6232      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6233      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6234      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6235      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6236      // If super class has no protocols, it is not a match.
6237      if (SuperClassInheritedProtocols.empty())
6238        return false;
6239
6240      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6241           LHSPE = LHS->qual_end();
6242           LHSPI != LHSPE; LHSPI++) {
6243        bool SuperImplementsProtocol = false;
6244        ObjCProtocolDecl *LHSProto = (*LHSPI);
6245
6246        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6247             SuperClassInheritedProtocols.begin(),
6248             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6249          ObjCProtocolDecl *SuperClassProto = (*I);
6250          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6251            SuperImplementsProtocol = true;
6252            break;
6253          }
6254        }
6255        if (!SuperImplementsProtocol)
6256          return false;
6257      }
6258      return true;
6259    }
6260    return false;
6261  }
6262
6263  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6264                                     LHSPE = LHS->qual_end();
6265       LHSPI != LHSPE; LHSPI++) {
6266    bool RHSImplementsProtocol = false;
6267
6268    // If the RHS doesn't implement the protocol on the left, the types
6269    // are incompatible.
6270    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6271                                       RHSPE = RHS->qual_end();
6272         RHSPI != RHSPE; RHSPI++) {
6273      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6274        RHSImplementsProtocol = true;
6275        break;
6276      }
6277    }
6278    // FIXME: For better diagnostics, consider passing back the protocol name.
6279    if (!RHSImplementsProtocol)
6280      return false;
6281  }
6282  // The RHS implements all protocols listed on the LHS.
6283  return true;
6284}
6285
6286bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6287  // get the "pointed to" types
6288  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6289  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6290
6291  if (!LHSOPT || !RHSOPT)
6292    return false;
6293
6294  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6295         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6296}
6297
6298bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6299  return canAssignObjCInterfaces(
6300                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6301                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6302}
6303
6304/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6305/// both shall have the identically qualified version of a compatible type.
6306/// C99 6.2.7p1: Two types have compatible types if their types are the
6307/// same. See 6.7.[2,3,5] for additional rules.
6308bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6309                                    bool CompareUnqualified) {
6310  if (getLangOpts().CPlusPlus)
6311    return hasSameType(LHS, RHS);
6312
6313  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6314}
6315
6316bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6317  return typesAreCompatible(LHS, RHS);
6318}
6319
6320bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6321  return !mergeTypes(LHS, RHS, true).isNull();
6322}
6323
6324/// mergeTransparentUnionType - if T is a transparent union type and a member
6325/// of T is compatible with SubType, return the merged type, else return
6326/// QualType()
6327QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6328                                               bool OfBlockPointer,
6329                                               bool Unqualified) {
6330  if (const RecordType *UT = T->getAsUnionType()) {
6331    RecordDecl *UD = UT->getDecl();
6332    if (UD->hasAttr<TransparentUnionAttr>()) {
6333      for (RecordDecl::field_iterator it = UD->field_begin(),
6334           itend = UD->field_end(); it != itend; ++it) {
6335        QualType ET = it->getType().getUnqualifiedType();
6336        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6337        if (!MT.isNull())
6338          return MT;
6339      }
6340    }
6341  }
6342
6343  return QualType();
6344}
6345
6346/// mergeFunctionArgumentTypes - merge two types which appear as function
6347/// argument types
6348QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6349                                                bool OfBlockPointer,
6350                                                bool Unqualified) {
6351  // GNU extension: two types are compatible if they appear as a function
6352  // argument, one of the types is a transparent union type and the other
6353  // type is compatible with a union member
6354  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6355                                              Unqualified);
6356  if (!lmerge.isNull())
6357    return lmerge;
6358
6359  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6360                                              Unqualified);
6361  if (!rmerge.isNull())
6362    return rmerge;
6363
6364  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6365}
6366
6367QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6368                                        bool OfBlockPointer,
6369                                        bool Unqualified) {
6370  const FunctionType *lbase = lhs->getAs<FunctionType>();
6371  const FunctionType *rbase = rhs->getAs<FunctionType>();
6372  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6373  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6374  bool allLTypes = true;
6375  bool allRTypes = true;
6376
6377  // Check return type
6378  QualType retType;
6379  if (OfBlockPointer) {
6380    QualType RHS = rbase->getResultType();
6381    QualType LHS = lbase->getResultType();
6382    bool UnqualifiedResult = Unqualified;
6383    if (!UnqualifiedResult)
6384      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6385    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6386  }
6387  else
6388    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6389                         Unqualified);
6390  if (retType.isNull()) return QualType();
6391
6392  if (Unqualified)
6393    retType = retType.getUnqualifiedType();
6394
6395  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6396  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6397  if (Unqualified) {
6398    LRetType = LRetType.getUnqualifiedType();
6399    RRetType = RRetType.getUnqualifiedType();
6400  }
6401
6402  if (getCanonicalType(retType) != LRetType)
6403    allLTypes = false;
6404  if (getCanonicalType(retType) != RRetType)
6405    allRTypes = false;
6406
6407  // FIXME: double check this
6408  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6409  //                           rbase->getRegParmAttr() != 0 &&
6410  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6411  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6412  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6413
6414  // Compatible functions must have compatible calling conventions
6415  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6416    return QualType();
6417
6418  // Regparm is part of the calling convention.
6419  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6420    return QualType();
6421  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6422    return QualType();
6423
6424  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6425    return QualType();
6426
6427  // functypes which return are preferred over those that do not.
6428  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6429    allLTypes = false;
6430  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6431    allRTypes = false;
6432  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6433  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6434
6435  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6436
6437  if (lproto && rproto) { // two C99 style function prototypes
6438    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6439           "C++ shouldn't be here");
6440    unsigned lproto_nargs = lproto->getNumArgs();
6441    unsigned rproto_nargs = rproto->getNumArgs();
6442
6443    // Compatible functions must have the same number of arguments
6444    if (lproto_nargs != rproto_nargs)
6445      return QualType();
6446
6447    // Variadic and non-variadic functions aren't compatible
6448    if (lproto->isVariadic() != rproto->isVariadic())
6449      return QualType();
6450
6451    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6452      return QualType();
6453
6454    if (LangOpts.ObjCAutoRefCount &&
6455        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6456      return QualType();
6457
6458    // Check argument compatibility
6459    SmallVector<QualType, 10> types;
6460    for (unsigned i = 0; i < lproto_nargs; i++) {
6461      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6462      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6463      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6464                                                    OfBlockPointer,
6465                                                    Unqualified);
6466      if (argtype.isNull()) return QualType();
6467
6468      if (Unqualified)
6469        argtype = argtype.getUnqualifiedType();
6470
6471      types.push_back(argtype);
6472      if (Unqualified) {
6473        largtype = largtype.getUnqualifiedType();
6474        rargtype = rargtype.getUnqualifiedType();
6475      }
6476
6477      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6478        allLTypes = false;
6479      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6480        allRTypes = false;
6481    }
6482
6483    if (allLTypes) return lhs;
6484    if (allRTypes) return rhs;
6485
6486    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6487    EPI.ExtInfo = einfo;
6488    return getFunctionType(retType, types.begin(), types.size(), EPI);
6489  }
6490
6491  if (lproto) allRTypes = false;
6492  if (rproto) allLTypes = false;
6493
6494  const FunctionProtoType *proto = lproto ? lproto : rproto;
6495  if (proto) {
6496    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6497    if (proto->isVariadic()) return QualType();
6498    // Check that the types are compatible with the types that
6499    // would result from default argument promotions (C99 6.7.5.3p15).
6500    // The only types actually affected are promotable integer
6501    // types and floats, which would be passed as a different
6502    // type depending on whether the prototype is visible.
6503    unsigned proto_nargs = proto->getNumArgs();
6504    for (unsigned i = 0; i < proto_nargs; ++i) {
6505      QualType argTy = proto->getArgType(i);
6506
6507      // Look at the converted type of enum types, since that is the type used
6508      // to pass enum values.
6509      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6510        argTy = Enum->getDecl()->getIntegerType();
6511        if (argTy.isNull())
6512          return QualType();
6513      }
6514
6515      if (argTy->isPromotableIntegerType() ||
6516          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6517        return QualType();
6518    }
6519
6520    if (allLTypes) return lhs;
6521    if (allRTypes) return rhs;
6522
6523    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6524    EPI.ExtInfo = einfo;
6525    return getFunctionType(retType, proto->arg_type_begin(),
6526                           proto->getNumArgs(), EPI);
6527  }
6528
6529  if (allLTypes) return lhs;
6530  if (allRTypes) return rhs;
6531  return getFunctionNoProtoType(retType, einfo);
6532}
6533
6534QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6535                                bool OfBlockPointer,
6536                                bool Unqualified, bool BlockReturnType) {
6537  // C++ [expr]: If an expression initially has the type "reference to T", the
6538  // type is adjusted to "T" prior to any further analysis, the expression
6539  // designates the object or function denoted by the reference, and the
6540  // expression is an lvalue unless the reference is an rvalue reference and
6541  // the expression is a function call (possibly inside parentheses).
6542  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6543  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6544
6545  if (Unqualified) {
6546    LHS = LHS.getUnqualifiedType();
6547    RHS = RHS.getUnqualifiedType();
6548  }
6549
6550  QualType LHSCan = getCanonicalType(LHS),
6551           RHSCan = getCanonicalType(RHS);
6552
6553  // If two types are identical, they are compatible.
6554  if (LHSCan == RHSCan)
6555    return LHS;
6556
6557  // If the qualifiers are different, the types aren't compatible... mostly.
6558  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6559  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6560  if (LQuals != RQuals) {
6561    // If any of these qualifiers are different, we have a type
6562    // mismatch.
6563    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6564        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6565        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6566      return QualType();
6567
6568    // Exactly one GC qualifier difference is allowed: __strong is
6569    // okay if the other type has no GC qualifier but is an Objective
6570    // C object pointer (i.e. implicitly strong by default).  We fix
6571    // this by pretending that the unqualified type was actually
6572    // qualified __strong.
6573    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6574    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6575    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6576
6577    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6578      return QualType();
6579
6580    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6581      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6582    }
6583    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6584      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6585    }
6586    return QualType();
6587  }
6588
6589  // Okay, qualifiers are equal.
6590
6591  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6592  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6593
6594  // We want to consider the two function types to be the same for these
6595  // comparisons, just force one to the other.
6596  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6597  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6598
6599  // Same as above for arrays
6600  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6601    LHSClass = Type::ConstantArray;
6602  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6603    RHSClass = Type::ConstantArray;
6604
6605  // ObjCInterfaces are just specialized ObjCObjects.
6606  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6607  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6608
6609  // Canonicalize ExtVector -> Vector.
6610  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6611  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6612
6613  // If the canonical type classes don't match.
6614  if (LHSClass != RHSClass) {
6615    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6616    // a signed integer type, or an unsigned integer type.
6617    // Compatibility is based on the underlying type, not the promotion
6618    // type.
6619    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6620      QualType TINT = ETy->getDecl()->getIntegerType();
6621      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6622        return RHS;
6623    }
6624    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6625      QualType TINT = ETy->getDecl()->getIntegerType();
6626      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6627        return LHS;
6628    }
6629    // allow block pointer type to match an 'id' type.
6630    if (OfBlockPointer && !BlockReturnType) {
6631       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6632         return LHS;
6633      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6634        return RHS;
6635    }
6636
6637    return QualType();
6638  }
6639
6640  // The canonical type classes match.
6641  switch (LHSClass) {
6642#define TYPE(Class, Base)
6643#define ABSTRACT_TYPE(Class, Base)
6644#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6645#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6646#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6647#include "clang/AST/TypeNodes.def"
6648    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6649
6650  case Type::LValueReference:
6651  case Type::RValueReference:
6652  case Type::MemberPointer:
6653    llvm_unreachable("C++ should never be in mergeTypes");
6654
6655  case Type::ObjCInterface:
6656  case Type::IncompleteArray:
6657  case Type::VariableArray:
6658  case Type::FunctionProto:
6659  case Type::ExtVector:
6660    llvm_unreachable("Types are eliminated above");
6661
6662  case Type::Pointer:
6663  {
6664    // Merge two pointer types, while trying to preserve typedef info
6665    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6666    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6667    if (Unqualified) {
6668      LHSPointee = LHSPointee.getUnqualifiedType();
6669      RHSPointee = RHSPointee.getUnqualifiedType();
6670    }
6671    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6672                                     Unqualified);
6673    if (ResultType.isNull()) return QualType();
6674    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6675      return LHS;
6676    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6677      return RHS;
6678    return getPointerType(ResultType);
6679  }
6680  case Type::BlockPointer:
6681  {
6682    // Merge two block pointer types, while trying to preserve typedef info
6683    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6684    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6685    if (Unqualified) {
6686      LHSPointee = LHSPointee.getUnqualifiedType();
6687      RHSPointee = RHSPointee.getUnqualifiedType();
6688    }
6689    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6690                                     Unqualified);
6691    if (ResultType.isNull()) return QualType();
6692    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6693      return LHS;
6694    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6695      return RHS;
6696    return getBlockPointerType(ResultType);
6697  }
6698  case Type::Atomic:
6699  {
6700    // Merge two pointer types, while trying to preserve typedef info
6701    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6702    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6703    if (Unqualified) {
6704      LHSValue = LHSValue.getUnqualifiedType();
6705      RHSValue = RHSValue.getUnqualifiedType();
6706    }
6707    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6708                                     Unqualified);
6709    if (ResultType.isNull()) return QualType();
6710    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6711      return LHS;
6712    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6713      return RHS;
6714    return getAtomicType(ResultType);
6715  }
6716  case Type::ConstantArray:
6717  {
6718    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6719    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6720    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6721      return QualType();
6722
6723    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6724    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6725    if (Unqualified) {
6726      LHSElem = LHSElem.getUnqualifiedType();
6727      RHSElem = RHSElem.getUnqualifiedType();
6728    }
6729
6730    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6731    if (ResultType.isNull()) return QualType();
6732    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6733      return LHS;
6734    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6735      return RHS;
6736    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6737                                          ArrayType::ArraySizeModifier(), 0);
6738    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6739                                          ArrayType::ArraySizeModifier(), 0);
6740    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6741    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6742    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6743      return LHS;
6744    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6745      return RHS;
6746    if (LVAT) {
6747      // FIXME: This isn't correct! But tricky to implement because
6748      // the array's size has to be the size of LHS, but the type
6749      // has to be different.
6750      return LHS;
6751    }
6752    if (RVAT) {
6753      // FIXME: This isn't correct! But tricky to implement because
6754      // the array's size has to be the size of RHS, but the type
6755      // has to be different.
6756      return RHS;
6757    }
6758    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6759    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6760    return getIncompleteArrayType(ResultType,
6761                                  ArrayType::ArraySizeModifier(), 0);
6762  }
6763  case Type::FunctionNoProto:
6764    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6765  case Type::Record:
6766  case Type::Enum:
6767    return QualType();
6768  case Type::Builtin:
6769    // Only exactly equal builtin types are compatible, which is tested above.
6770    return QualType();
6771  case Type::Complex:
6772    // Distinct complex types are incompatible.
6773    return QualType();
6774  case Type::Vector:
6775    // FIXME: The merged type should be an ExtVector!
6776    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6777                             RHSCan->getAs<VectorType>()))
6778      return LHS;
6779    return QualType();
6780  case Type::ObjCObject: {
6781    // Check if the types are assignment compatible.
6782    // FIXME: This should be type compatibility, e.g. whether
6783    // "LHS x; RHS x;" at global scope is legal.
6784    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6785    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6786    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6787      return LHS;
6788
6789    return QualType();
6790  }
6791  case Type::ObjCObjectPointer: {
6792    if (OfBlockPointer) {
6793      if (canAssignObjCInterfacesInBlockPointer(
6794                                          LHS->getAs<ObjCObjectPointerType>(),
6795                                          RHS->getAs<ObjCObjectPointerType>(),
6796                                          BlockReturnType))
6797        return LHS;
6798      return QualType();
6799    }
6800    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6801                                RHS->getAs<ObjCObjectPointerType>()))
6802      return LHS;
6803
6804    return QualType();
6805  }
6806  }
6807
6808  llvm_unreachable("Invalid Type::Class!");
6809}
6810
6811bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6812                   const FunctionProtoType *FromFunctionType,
6813                   const FunctionProtoType *ToFunctionType) {
6814  if (FromFunctionType->hasAnyConsumedArgs() !=
6815      ToFunctionType->hasAnyConsumedArgs())
6816    return false;
6817  FunctionProtoType::ExtProtoInfo FromEPI =
6818    FromFunctionType->getExtProtoInfo();
6819  FunctionProtoType::ExtProtoInfo ToEPI =
6820    ToFunctionType->getExtProtoInfo();
6821  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6822    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6823         ArgIdx != NumArgs; ++ArgIdx)  {
6824      if (FromEPI.ConsumedArguments[ArgIdx] !=
6825          ToEPI.ConsumedArguments[ArgIdx])
6826        return false;
6827    }
6828  return true;
6829}
6830
6831/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6832/// 'RHS' attributes and returns the merged version; including for function
6833/// return types.
6834QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6835  QualType LHSCan = getCanonicalType(LHS),
6836  RHSCan = getCanonicalType(RHS);
6837  // If two types are identical, they are compatible.
6838  if (LHSCan == RHSCan)
6839    return LHS;
6840  if (RHSCan->isFunctionType()) {
6841    if (!LHSCan->isFunctionType())
6842      return QualType();
6843    QualType OldReturnType =
6844      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6845    QualType NewReturnType =
6846      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6847    QualType ResReturnType =
6848      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6849    if (ResReturnType.isNull())
6850      return QualType();
6851    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6852      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6853      // In either case, use OldReturnType to build the new function type.
6854      const FunctionType *F = LHS->getAs<FunctionType>();
6855      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6856        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6857        EPI.ExtInfo = getFunctionExtInfo(LHS);
6858        QualType ResultType
6859          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6860                            FPT->getNumArgs(), EPI);
6861        return ResultType;
6862      }
6863    }
6864    return QualType();
6865  }
6866
6867  // If the qualifiers are different, the types can still be merged.
6868  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6869  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6870  if (LQuals != RQuals) {
6871    // If any of these qualifiers are different, we have a type mismatch.
6872    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6873        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6874      return QualType();
6875
6876    // Exactly one GC qualifier difference is allowed: __strong is
6877    // okay if the other type has no GC qualifier but is an Objective
6878    // C object pointer (i.e. implicitly strong by default).  We fix
6879    // this by pretending that the unqualified type was actually
6880    // qualified __strong.
6881    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6882    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6883    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6884
6885    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6886      return QualType();
6887
6888    if (GC_L == Qualifiers::Strong)
6889      return LHS;
6890    if (GC_R == Qualifiers::Strong)
6891      return RHS;
6892    return QualType();
6893  }
6894
6895  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6896    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6897    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6898    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6899    if (ResQT == LHSBaseQT)
6900      return LHS;
6901    if (ResQT == RHSBaseQT)
6902      return RHS;
6903  }
6904  return QualType();
6905}
6906
6907//===----------------------------------------------------------------------===//
6908//                         Integer Predicates
6909//===----------------------------------------------------------------------===//
6910
6911unsigned ASTContext::getIntWidth(QualType T) const {
6912  if (const EnumType *ET = dyn_cast<EnumType>(T))
6913    T = ET->getDecl()->getIntegerType();
6914  if (T->isBooleanType())
6915    return 1;
6916  // For builtin types, just use the standard type sizing method
6917  return (unsigned)getTypeSize(T);
6918}
6919
6920QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
6921  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6922
6923  // Turn <4 x signed int> -> <4 x unsigned int>
6924  if (const VectorType *VTy = T->getAs<VectorType>())
6925    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6926                         VTy->getNumElements(), VTy->getVectorKind());
6927
6928  // For enums, we return the unsigned version of the base type.
6929  if (const EnumType *ETy = T->getAs<EnumType>())
6930    T = ETy->getDecl()->getIntegerType();
6931
6932  const BuiltinType *BTy = T->getAs<BuiltinType>();
6933  assert(BTy && "Unexpected signed integer type");
6934  switch (BTy->getKind()) {
6935  case BuiltinType::Char_S:
6936  case BuiltinType::SChar:
6937    return UnsignedCharTy;
6938  case BuiltinType::Short:
6939    return UnsignedShortTy;
6940  case BuiltinType::Int:
6941    return UnsignedIntTy;
6942  case BuiltinType::Long:
6943    return UnsignedLongTy;
6944  case BuiltinType::LongLong:
6945    return UnsignedLongLongTy;
6946  case BuiltinType::Int128:
6947    return UnsignedInt128Ty;
6948  default:
6949    llvm_unreachable("Unexpected signed integer type");
6950  }
6951}
6952
6953ASTMutationListener::~ASTMutationListener() { }
6954
6955
6956//===----------------------------------------------------------------------===//
6957//                          Builtin Type Computation
6958//===----------------------------------------------------------------------===//
6959
6960/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6961/// pointer over the consumed characters.  This returns the resultant type.  If
6962/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6963/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6964/// a vector of "i*".
6965///
6966/// RequiresICE is filled in on return to indicate whether the value is required
6967/// to be an Integer Constant Expression.
6968static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6969                                  ASTContext::GetBuiltinTypeError &Error,
6970                                  bool &RequiresICE,
6971                                  bool AllowTypeModifiers) {
6972  // Modifiers.
6973  int HowLong = 0;
6974  bool Signed = false, Unsigned = false;
6975  RequiresICE = false;
6976
6977  // Read the prefixed modifiers first.
6978  bool Done = false;
6979  while (!Done) {
6980    switch (*Str++) {
6981    default: Done = true; --Str; break;
6982    case 'I':
6983      RequiresICE = true;
6984      break;
6985    case 'S':
6986      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6987      assert(!Signed && "Can't use 'S' modifier multiple times!");
6988      Signed = true;
6989      break;
6990    case 'U':
6991      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6992      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6993      Unsigned = true;
6994      break;
6995    case 'L':
6996      assert(HowLong <= 2 && "Can't have LLLL modifier");
6997      ++HowLong;
6998      break;
6999    }
7000  }
7001
7002  QualType Type;
7003
7004  // Read the base type.
7005  switch (*Str++) {
7006  default: llvm_unreachable("Unknown builtin type letter!");
7007  case 'v':
7008    assert(HowLong == 0 && !Signed && !Unsigned &&
7009           "Bad modifiers used with 'v'!");
7010    Type = Context.VoidTy;
7011    break;
7012  case 'f':
7013    assert(HowLong == 0 && !Signed && !Unsigned &&
7014           "Bad modifiers used with 'f'!");
7015    Type = Context.FloatTy;
7016    break;
7017  case 'd':
7018    assert(HowLong < 2 && !Signed && !Unsigned &&
7019           "Bad modifiers used with 'd'!");
7020    if (HowLong)
7021      Type = Context.LongDoubleTy;
7022    else
7023      Type = Context.DoubleTy;
7024    break;
7025  case 's':
7026    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7027    if (Unsigned)
7028      Type = Context.UnsignedShortTy;
7029    else
7030      Type = Context.ShortTy;
7031    break;
7032  case 'i':
7033    if (HowLong == 3)
7034      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7035    else if (HowLong == 2)
7036      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7037    else if (HowLong == 1)
7038      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7039    else
7040      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7041    break;
7042  case 'c':
7043    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7044    if (Signed)
7045      Type = Context.SignedCharTy;
7046    else if (Unsigned)
7047      Type = Context.UnsignedCharTy;
7048    else
7049      Type = Context.CharTy;
7050    break;
7051  case 'b': // boolean
7052    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7053    Type = Context.BoolTy;
7054    break;
7055  case 'z':  // size_t.
7056    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7057    Type = Context.getSizeType();
7058    break;
7059  case 'F':
7060    Type = Context.getCFConstantStringType();
7061    break;
7062  case 'G':
7063    Type = Context.getObjCIdType();
7064    break;
7065  case 'H':
7066    Type = Context.getObjCSelType();
7067    break;
7068  case 'a':
7069    Type = Context.getBuiltinVaListType();
7070    assert(!Type.isNull() && "builtin va list type not initialized!");
7071    break;
7072  case 'A':
7073    // This is a "reference" to a va_list; however, what exactly
7074    // this means depends on how va_list is defined. There are two
7075    // different kinds of va_list: ones passed by value, and ones
7076    // passed by reference.  An example of a by-value va_list is
7077    // x86, where va_list is a char*. An example of by-ref va_list
7078    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7079    // we want this argument to be a char*&; for x86-64, we want
7080    // it to be a __va_list_tag*.
7081    Type = Context.getBuiltinVaListType();
7082    assert(!Type.isNull() && "builtin va list type not initialized!");
7083    if (Type->isArrayType())
7084      Type = Context.getArrayDecayedType(Type);
7085    else
7086      Type = Context.getLValueReferenceType(Type);
7087    break;
7088  case 'V': {
7089    char *End;
7090    unsigned NumElements = strtoul(Str, &End, 10);
7091    assert(End != Str && "Missing vector size");
7092    Str = End;
7093
7094    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7095                                             RequiresICE, false);
7096    assert(!RequiresICE && "Can't require vector ICE");
7097
7098    // TODO: No way to make AltiVec vectors in builtins yet.
7099    Type = Context.getVectorType(ElementType, NumElements,
7100                                 VectorType::GenericVector);
7101    break;
7102  }
7103  case 'E': {
7104    char *End;
7105
7106    unsigned NumElements = strtoul(Str, &End, 10);
7107    assert(End != Str && "Missing vector size");
7108
7109    Str = End;
7110
7111    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7112                                             false);
7113    Type = Context.getExtVectorType(ElementType, NumElements);
7114    break;
7115  }
7116  case 'X': {
7117    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7118                                             false);
7119    assert(!RequiresICE && "Can't require complex ICE");
7120    Type = Context.getComplexType(ElementType);
7121    break;
7122  }
7123  case 'Y' : {
7124    Type = Context.getPointerDiffType();
7125    break;
7126  }
7127  case 'P':
7128    Type = Context.getFILEType();
7129    if (Type.isNull()) {
7130      Error = ASTContext::GE_Missing_stdio;
7131      return QualType();
7132    }
7133    break;
7134  case 'J':
7135    if (Signed)
7136      Type = Context.getsigjmp_bufType();
7137    else
7138      Type = Context.getjmp_bufType();
7139
7140    if (Type.isNull()) {
7141      Error = ASTContext::GE_Missing_setjmp;
7142      return QualType();
7143    }
7144    break;
7145  case 'K':
7146    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7147    Type = Context.getucontext_tType();
7148
7149    if (Type.isNull()) {
7150      Error = ASTContext::GE_Missing_ucontext;
7151      return QualType();
7152    }
7153    break;
7154  }
7155
7156  // If there are modifiers and if we're allowed to parse them, go for it.
7157  Done = !AllowTypeModifiers;
7158  while (!Done) {
7159    switch (char c = *Str++) {
7160    default: Done = true; --Str; break;
7161    case '*':
7162    case '&': {
7163      // Both pointers and references can have their pointee types
7164      // qualified with an address space.
7165      char *End;
7166      unsigned AddrSpace = strtoul(Str, &End, 10);
7167      if (End != Str && AddrSpace != 0) {
7168        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7169        Str = End;
7170      }
7171      if (c == '*')
7172        Type = Context.getPointerType(Type);
7173      else
7174        Type = Context.getLValueReferenceType(Type);
7175      break;
7176    }
7177    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7178    case 'C':
7179      Type = Type.withConst();
7180      break;
7181    case 'D':
7182      Type = Context.getVolatileType(Type);
7183      break;
7184    case 'R':
7185      Type = Type.withRestrict();
7186      break;
7187    }
7188  }
7189
7190  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7191         "Integer constant 'I' type must be an integer");
7192
7193  return Type;
7194}
7195
7196/// GetBuiltinType - Return the type for the specified builtin.
7197QualType ASTContext::GetBuiltinType(unsigned Id,
7198                                    GetBuiltinTypeError &Error,
7199                                    unsigned *IntegerConstantArgs) const {
7200  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7201
7202  SmallVector<QualType, 8> ArgTypes;
7203
7204  bool RequiresICE = false;
7205  Error = GE_None;
7206  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7207                                       RequiresICE, true);
7208  if (Error != GE_None)
7209    return QualType();
7210
7211  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7212
7213  while (TypeStr[0] && TypeStr[0] != '.') {
7214    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7215    if (Error != GE_None)
7216      return QualType();
7217
7218    // If this argument is required to be an IntegerConstantExpression and the
7219    // caller cares, fill in the bitmask we return.
7220    if (RequiresICE && IntegerConstantArgs)
7221      *IntegerConstantArgs |= 1 << ArgTypes.size();
7222
7223    // Do array -> pointer decay.  The builtin should use the decayed type.
7224    if (Ty->isArrayType())
7225      Ty = getArrayDecayedType(Ty);
7226
7227    ArgTypes.push_back(Ty);
7228  }
7229
7230  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7231         "'.' should only occur at end of builtin type list!");
7232
7233  FunctionType::ExtInfo EI;
7234  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7235
7236  bool Variadic = (TypeStr[0] == '.');
7237
7238  // We really shouldn't be making a no-proto type here, especially in C++.
7239  if (ArgTypes.empty() && Variadic)
7240    return getFunctionNoProtoType(ResType, EI);
7241
7242  FunctionProtoType::ExtProtoInfo EPI;
7243  EPI.ExtInfo = EI;
7244  EPI.Variadic = Variadic;
7245
7246  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7247}
7248
7249GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7250  GVALinkage External = GVA_StrongExternal;
7251
7252  Linkage L = FD->getLinkage();
7253  switch (L) {
7254  case NoLinkage:
7255  case InternalLinkage:
7256  case UniqueExternalLinkage:
7257    return GVA_Internal;
7258
7259  case ExternalLinkage:
7260    switch (FD->getTemplateSpecializationKind()) {
7261    case TSK_Undeclared:
7262    case TSK_ExplicitSpecialization:
7263      External = GVA_StrongExternal;
7264      break;
7265
7266    case TSK_ExplicitInstantiationDefinition:
7267      return GVA_ExplicitTemplateInstantiation;
7268
7269    case TSK_ExplicitInstantiationDeclaration:
7270    case TSK_ImplicitInstantiation:
7271      External = GVA_TemplateInstantiation;
7272      break;
7273    }
7274  }
7275
7276  if (!FD->isInlined())
7277    return External;
7278
7279  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7280    // GNU or C99 inline semantics. Determine whether this symbol should be
7281    // externally visible.
7282    if (FD->isInlineDefinitionExternallyVisible())
7283      return External;
7284
7285    // C99 inline semantics, where the symbol is not externally visible.
7286    return GVA_C99Inline;
7287  }
7288
7289  // C++0x [temp.explicit]p9:
7290  //   [ Note: The intent is that an inline function that is the subject of
7291  //   an explicit instantiation declaration will still be implicitly
7292  //   instantiated when used so that the body can be considered for
7293  //   inlining, but that no out-of-line copy of the inline function would be
7294  //   generated in the translation unit. -- end note ]
7295  if (FD->getTemplateSpecializationKind()
7296                                       == TSK_ExplicitInstantiationDeclaration)
7297    return GVA_C99Inline;
7298
7299  return GVA_CXXInline;
7300}
7301
7302GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7303  // If this is a static data member, compute the kind of template
7304  // specialization. Otherwise, this variable is not part of a
7305  // template.
7306  TemplateSpecializationKind TSK = TSK_Undeclared;
7307  if (VD->isStaticDataMember())
7308    TSK = VD->getTemplateSpecializationKind();
7309
7310  Linkage L = VD->getLinkage();
7311  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7312      VD->getType()->getLinkage() == UniqueExternalLinkage)
7313    L = UniqueExternalLinkage;
7314
7315  switch (L) {
7316  case NoLinkage:
7317  case InternalLinkage:
7318  case UniqueExternalLinkage:
7319    return GVA_Internal;
7320
7321  case ExternalLinkage:
7322    switch (TSK) {
7323    case TSK_Undeclared:
7324    case TSK_ExplicitSpecialization:
7325      return GVA_StrongExternal;
7326
7327    case TSK_ExplicitInstantiationDeclaration:
7328      llvm_unreachable("Variable should not be instantiated");
7329      // Fall through to treat this like any other instantiation.
7330
7331    case TSK_ExplicitInstantiationDefinition:
7332      return GVA_ExplicitTemplateInstantiation;
7333
7334    case TSK_ImplicitInstantiation:
7335      return GVA_TemplateInstantiation;
7336    }
7337  }
7338
7339  llvm_unreachable("Invalid Linkage!");
7340}
7341
7342bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7343  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7344    if (!VD->isFileVarDecl())
7345      return false;
7346  } else if (!isa<FunctionDecl>(D))
7347    return false;
7348
7349  // Weak references don't produce any output by themselves.
7350  if (D->hasAttr<WeakRefAttr>())
7351    return false;
7352
7353  // Aliases and used decls are required.
7354  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7355    return true;
7356
7357  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7358    // Forward declarations aren't required.
7359    if (!FD->doesThisDeclarationHaveABody())
7360      return FD->doesDeclarationForceExternallyVisibleDefinition();
7361
7362    // Constructors and destructors are required.
7363    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7364      return true;
7365
7366    // The key function for a class is required.
7367    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7368      const CXXRecordDecl *RD = MD->getParent();
7369      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7370        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7371        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7372          return true;
7373      }
7374    }
7375
7376    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7377
7378    // static, static inline, always_inline, and extern inline functions can
7379    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7380    // Implicit template instantiations can also be deferred in C++.
7381    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7382        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7383      return false;
7384    return true;
7385  }
7386
7387  const VarDecl *VD = cast<VarDecl>(D);
7388  assert(VD->isFileVarDecl() && "Expected file scoped var");
7389
7390  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7391    return false;
7392
7393  // Structs that have non-trivial constructors or destructors are required.
7394
7395  // FIXME: Handle references.
7396  // FIXME: Be more selective about which constructors we care about.
7397  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7398    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7399      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7400                                   RD->hasTrivialCopyConstructor() &&
7401                                   RD->hasTrivialMoveConstructor() &&
7402                                   RD->hasTrivialDestructor()))
7403        return true;
7404    }
7405  }
7406
7407  GVALinkage L = GetGVALinkageForVariable(VD);
7408  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7409    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7410      return false;
7411  }
7412
7413  return true;
7414}
7415
7416CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7417  // Pass through to the C++ ABI object
7418  return ABI->getDefaultMethodCallConv(isVariadic);
7419}
7420
7421CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7422  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7423    return CC_Default;
7424  return CC;
7425}
7426
7427bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7428  // Pass through to the C++ ABI object
7429  return ABI->isNearlyEmpty(RD);
7430}
7431
7432MangleContext *ASTContext::createMangleContext() {
7433  switch (Target->getCXXABI()) {
7434  case CXXABI_ARM:
7435  case CXXABI_Itanium:
7436    return createItaniumMangleContext(*this, getDiagnostics());
7437  case CXXABI_Microsoft:
7438    return createMicrosoftMangleContext(*this, getDiagnostics());
7439  }
7440  llvm_unreachable("Unsupported ABI");
7441}
7442
7443CXXABI::~CXXABI() {}
7444
7445size_t ASTContext::getSideTableAllocatedMemory() const {
7446  return ASTRecordLayouts.getMemorySize()
7447    + llvm::capacity_in_bytes(ObjCLayouts)
7448    + llvm::capacity_in_bytes(KeyFunctions)
7449    + llvm::capacity_in_bytes(ObjCImpls)
7450    + llvm::capacity_in_bytes(BlockVarCopyInits)
7451    + llvm::capacity_in_bytes(DeclAttrs)
7452    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7453    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7454    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7455    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7456    + llvm::capacity_in_bytes(OverriddenMethods)
7457    + llvm::capacity_in_bytes(Types)
7458    + llvm::capacity_in_bytes(VariableArrayTypes)
7459    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7460}
7461
7462unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7463  CXXRecordDecl *Lambda = CallOperator->getParent();
7464  return LambdaMangleContexts[Lambda->getDeclContext()]
7465           .getManglingNumber(CallOperator);
7466}
7467
7468
7469void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7470  ParamIndices[D] = index;
7471}
7472
7473unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7474  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7475  assert(I != ParamIndices.end() &&
7476         "ParmIndices lacks entry set by ParmVarDecl");
7477  return I->second;
7478}
7479