ASTContext.cpp revision eec51cf1ba5f0e62c9cdb81b5c63babdd6e649ab
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts),
47  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  if (FreeMemory) {
60    // Deallocate all the types.
61    while (!Types.empty()) {
62      Types.back()->Destroy(*this);
63      Types.pop_back();
64    }
65
66    for (llvm::FoldingSet<ExtQuals>::iterator
67         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
68      // Increment in loop to prevent using deallocated memory.
69      Deallocate(&*I++);
70    }
71  }
72
73  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
74       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
75    // Increment in loop to prevent using deallocated memory.
76    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
77    delete R;
78  }
79
80  for (llvm::DenseMap<const ObjCContainerDecl*,
81                      const ASTRecordLayout*>::iterator
82       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
83    // Increment in loop to prevent using deallocated memory.
84    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
85    delete R;
86  }
87
88  // Destroy nested-name-specifiers.
89  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
90         NNS = NestedNameSpecifiers.begin(),
91         NNSEnd = NestedNameSpecifiers.end();
92       NNS != NNSEnd; ) {
93    // Increment in loop to prevent using deallocated memory.
94    (*NNS++).Destroy(*this);
95  }
96
97  if (GlobalNestedNameSpecifier)
98    GlobalNestedNameSpecifier->Destroy(*this);
99
100  TUDecl->Destroy(*this);
101}
102
103void
104ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
105  ExternalSource.reset(Source.take());
106}
107
108void ASTContext::PrintStats() const {
109  fprintf(stderr, "*** AST Context Stats:\n");
110  fprintf(stderr, "  %d types total.\n", (int)Types.size());
111
112  unsigned counts[] = {
113#define TYPE(Name, Parent) 0,
114#define ABSTRACT_TYPE(Name, Parent)
115#include "clang/AST/TypeNodes.def"
116    0 // Extra
117  };
118
119  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
120    Type *T = Types[i];
121    counts[(unsigned)T->getTypeClass()]++;
122  }
123
124  unsigned Idx = 0;
125  unsigned TotalBytes = 0;
126#define TYPE(Name, Parent)                                              \
127  if (counts[Idx])                                                      \
128    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
129  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
130  ++Idx;
131#define ABSTRACT_TYPE(Name, Parent)
132#include "clang/AST/TypeNodes.def"
133
134  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
135
136  if (ExternalSource.get()) {
137    fprintf(stderr, "\n");
138    ExternalSource->PrintStats();
139  }
140}
141
142
143void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
144  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
145  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
146  Types.push_back(Ty);
147}
148
149void ASTContext::InitBuiltinTypes() {
150  assert(VoidTy.isNull() && "Context reinitialized?");
151
152  // C99 6.2.5p19.
153  InitBuiltinType(VoidTy,              BuiltinType::Void);
154
155  // C99 6.2.5p2.
156  InitBuiltinType(BoolTy,              BuiltinType::Bool);
157  // C99 6.2.5p3.
158  if (LangOpts.CharIsSigned)
159    InitBuiltinType(CharTy,            BuiltinType::Char_S);
160  else
161    InitBuiltinType(CharTy,            BuiltinType::Char_U);
162  // C99 6.2.5p4.
163  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
164  InitBuiltinType(ShortTy,             BuiltinType::Short);
165  InitBuiltinType(IntTy,               BuiltinType::Int);
166  InitBuiltinType(LongTy,              BuiltinType::Long);
167  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
168
169  // C99 6.2.5p6.
170  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
171  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
172  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
173  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
174  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
175
176  // C99 6.2.5p10.
177  InitBuiltinType(FloatTy,             BuiltinType::Float);
178  InitBuiltinType(DoubleTy,            BuiltinType::Double);
179  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
180
181  // GNU extension, 128-bit integers.
182  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
183  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
184
185  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
186    InitBuiltinType(WCharTy,           BuiltinType::WChar);
187  else // C99
188    WCharTy = getFromTargetType(Target.getWCharType());
189
190  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
191    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
192  else // C99
193    Char16Ty = getFromTargetType(Target.getChar16Type());
194
195  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
196    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
197  else // C99
198    Char32Ty = getFromTargetType(Target.getChar32Type());
199
200  // Placeholder type for functions.
201  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
202
203  // Placeholder type for type-dependent expressions whose type is
204  // completely unknown. No code should ever check a type against
205  // DependentTy and users should never see it; however, it is here to
206  // help diagnose failures to properly check for type-dependent
207  // expressions.
208  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
209
210  // Placeholder type for C++0x auto declarations whose real type has
211  // not yet been deduced.
212  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
213
214  // C99 6.2.5p11.
215  FloatComplexTy      = getComplexType(FloatTy);
216  DoubleComplexTy     = getComplexType(DoubleTy);
217  LongDoubleComplexTy = getComplexType(LongDoubleTy);
218
219  BuiltinVaListType = QualType();
220
221  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
222  ObjCIdTypedefType = QualType();
223  ObjCClassTypedefType = QualType();
224  ObjCSelTypedefType = QualType();
225
226  // Builtin types for 'id', 'Class', and 'SEL'.
227  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
228  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
229  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
230
231  ObjCConstantStringType = QualType();
232
233  // void * type
234  VoidPtrTy = getPointerType(VoidTy);
235
236  // nullptr type (C++0x 2.14.7)
237  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
238}
239
240MemberSpecializationInfo *
241ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
242  assert(Var->isStaticDataMember() && "Not a static data member");
243  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
244    = InstantiatedFromStaticDataMember.find(Var);
245  if (Pos == InstantiatedFromStaticDataMember.end())
246    return 0;
247
248  return Pos->second;
249}
250
251void
252ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
253                                                TemplateSpecializationKind TSK) {
254  assert(Inst->isStaticDataMember() && "Not a static data member");
255  assert(Tmpl->isStaticDataMember() && "Not a static data member");
256  assert(!InstantiatedFromStaticDataMember[Inst] &&
257         "Already noted what static data member was instantiated from");
258  InstantiatedFromStaticDataMember[Inst]
259    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
260}
261
262NamedDecl *
263ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
264  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
265    = InstantiatedFromUsingDecl.find(UUD);
266  if (Pos == InstantiatedFromUsingDecl.end())
267    return 0;
268
269  return Pos->second;
270}
271
272void
273ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
274  assert((isa<UsingDecl>(Pattern) ||
275          isa<UnresolvedUsingValueDecl>(Pattern) ||
276          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
277         "pattern decl is not a using decl");
278  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
279  InstantiatedFromUsingDecl[Inst] = Pattern;
280}
281
282UsingShadowDecl *
283ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
284  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
285    = InstantiatedFromUsingShadowDecl.find(Inst);
286  if (Pos == InstantiatedFromUsingShadowDecl.end())
287    return 0;
288
289  return Pos->second;
290}
291
292void
293ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
294                                               UsingShadowDecl *Pattern) {
295  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
296  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
297}
298
299FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
300  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
301    = InstantiatedFromUnnamedFieldDecl.find(Field);
302  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
303    return 0;
304
305  return Pos->second;
306}
307
308void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
309                                                     FieldDecl *Tmpl) {
310  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
311  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
312  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
313         "Already noted what unnamed field was instantiated from");
314
315  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
316}
317
318namespace {
319  class BeforeInTranslationUnit
320    : std::binary_function<SourceRange, SourceRange, bool> {
321    SourceManager *SourceMgr;
322
323  public:
324    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
325
326    bool operator()(SourceRange X, SourceRange Y) {
327      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
328    }
329  };
330}
331
332/// \brief Determine whether the given comment is a Doxygen-style comment.
333///
334/// \param Start the start of the comment text.
335///
336/// \param End the end of the comment text.
337///
338/// \param Member whether we want to check whether this is a member comment
339/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
340/// we only return true when we find a non-member comment.
341static bool
342isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
343                 bool Member = false) {
344  const char *BufferStart
345    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
346  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
347  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
348
349  if (End - Start < 4)
350    return false;
351
352  assert(Start[0] == '/' && "Not a comment?");
353  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
354    return false;
355  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
356    return false;
357
358  return (Start[3] == '<') == Member;
359}
360
361/// \brief Retrieve the comment associated with the given declaration, if
362/// it has one.
363const char *ASTContext::getCommentForDecl(const Decl *D) {
364  if (!D)
365    return 0;
366
367  // Check whether we have cached a comment string for this declaration
368  // already.
369  llvm::DenseMap<const Decl *, std::string>::iterator Pos
370    = DeclComments.find(D);
371  if (Pos != DeclComments.end())
372    return Pos->second.c_str();
373
374  // If we have an external AST source and have not yet loaded comments from
375  // that source, do so now.
376  if (ExternalSource && !LoadedExternalComments) {
377    std::vector<SourceRange> LoadedComments;
378    ExternalSource->ReadComments(LoadedComments);
379
380    if (!LoadedComments.empty())
381      Comments.insert(Comments.begin(), LoadedComments.begin(),
382                      LoadedComments.end());
383
384    LoadedExternalComments = true;
385  }
386
387  // If there are no comments anywhere, we won't find anything.
388  if (Comments.empty())
389    return 0;
390
391  // If the declaration doesn't map directly to a location in a file, we
392  // can't find the comment.
393  SourceLocation DeclStartLoc = D->getLocStart();
394  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
395    return 0;
396
397  // Find the comment that occurs just before this declaration.
398  std::vector<SourceRange>::iterator LastComment
399    = std::lower_bound(Comments.begin(), Comments.end(),
400                       SourceRange(DeclStartLoc),
401                       BeforeInTranslationUnit(&SourceMgr));
402
403  // Decompose the location for the start of the declaration and find the
404  // beginning of the file buffer.
405  std::pair<FileID, unsigned> DeclStartDecomp
406    = SourceMgr.getDecomposedLoc(DeclStartLoc);
407  const char *FileBufferStart
408    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
409
410  // First check whether we have a comment for a member.
411  if (LastComment != Comments.end() &&
412      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
413      isDoxygenComment(SourceMgr, *LastComment, true)) {
414    std::pair<FileID, unsigned> LastCommentEndDecomp
415      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
416    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
417        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
418          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
419                                     LastCommentEndDecomp.second)) {
420      // The Doxygen member comment comes after the declaration starts and
421      // is on the same line and in the same file as the declaration. This
422      // is the comment we want.
423      std::string &Result = DeclComments[D];
424      Result.append(FileBufferStart +
425                      SourceMgr.getFileOffset(LastComment->getBegin()),
426                    FileBufferStart + LastCommentEndDecomp.second + 1);
427      return Result.c_str();
428    }
429  }
430
431  if (LastComment == Comments.begin())
432    return 0;
433  --LastComment;
434
435  // Decompose the end of the comment.
436  std::pair<FileID, unsigned> LastCommentEndDecomp
437    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
438
439  // If the comment and the declaration aren't in the same file, then they
440  // aren't related.
441  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
442    return 0;
443
444  // Check that we actually have a Doxygen comment.
445  if (!isDoxygenComment(SourceMgr, *LastComment))
446    return 0;
447
448  // Compute the starting line for the declaration and for the end of the
449  // comment (this is expensive).
450  unsigned DeclStartLine
451    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
452  unsigned CommentEndLine
453    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
454                              LastCommentEndDecomp.second);
455
456  // If the comment does not end on the line prior to the declaration, then
457  // the comment is not associated with the declaration at all.
458  if (CommentEndLine + 1 != DeclStartLine)
459    return 0;
460
461  // We have a comment, but there may be more comments on the previous lines.
462  // Keep looking so long as the comments are still Doxygen comments and are
463  // still adjacent.
464  unsigned ExpectedLine
465    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
466  std::vector<SourceRange>::iterator FirstComment = LastComment;
467  while (FirstComment != Comments.begin()) {
468    // Look at the previous comment
469    --FirstComment;
470    std::pair<FileID, unsigned> Decomp
471      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
472
473    // If this previous comment is in a different file, we're done.
474    if (Decomp.first != DeclStartDecomp.first) {
475      ++FirstComment;
476      break;
477    }
478
479    // If this comment is not a Doxygen comment, we're done.
480    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
481      ++FirstComment;
482      break;
483    }
484
485    // If the line number is not what we expected, we're done.
486    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
487    if (Line != ExpectedLine) {
488      ++FirstComment;
489      break;
490    }
491
492    // Set the next expected line number.
493    ExpectedLine
494      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
495  }
496
497  // The iterator range [FirstComment, LastComment] contains all of the
498  // BCPL comments that, together, are associated with this declaration.
499  // Form a single comment block string for this declaration that concatenates
500  // all of these comments.
501  std::string &Result = DeclComments[D];
502  while (FirstComment != LastComment) {
503    std::pair<FileID, unsigned> DecompStart
504      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
505    std::pair<FileID, unsigned> DecompEnd
506      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
507    Result.append(FileBufferStart + DecompStart.second,
508                  FileBufferStart + DecompEnd.second + 1);
509    ++FirstComment;
510  }
511
512  // Append the last comment line.
513  Result.append(FileBufferStart +
514                  SourceMgr.getFileOffset(LastComment->getBegin()),
515                FileBufferStart + LastCommentEndDecomp.second + 1);
516  return Result.c_str();
517}
518
519//===----------------------------------------------------------------------===//
520//                         Type Sizing and Analysis
521//===----------------------------------------------------------------------===//
522
523/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
524/// scalar floating point type.
525const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
526  const BuiltinType *BT = T->getAs<BuiltinType>();
527  assert(BT && "Not a floating point type!");
528  switch (BT->getKind()) {
529  default: assert(0 && "Not a floating point type!");
530  case BuiltinType::Float:      return Target.getFloatFormat();
531  case BuiltinType::Double:     return Target.getDoubleFormat();
532  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
533  }
534}
535
536/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
537/// specified decl.  Note that bitfields do not have a valid alignment, so
538/// this method will assert on them.
539/// If @p RefAsPointee, references are treated like their underlying type
540/// (for alignof), else they're treated like pointers (for CodeGen).
541unsigned ASTContext::getDeclAlignInBytes(const Decl *D, bool RefAsPointee) {
542  unsigned Align = Target.getCharWidth();
543
544  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
545    Align = std::max(Align, AA->getMaxAlignment());
546
547  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
548    QualType T = VD->getType();
549    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
550      if (RefAsPointee)
551        T = RT->getPointeeType();
552      else
553        T = getPointerType(RT->getPointeeType());
554    }
555    if (!T->isIncompleteType() && !T->isFunctionType()) {
556      // Incomplete or function types default to 1.
557      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
558        T = cast<ArrayType>(T)->getElementType();
559
560      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
561    }
562  }
563
564  return Align / Target.getCharWidth();
565}
566
567/// getTypeSize - Return the size of the specified type, in bits.  This method
568/// does not work on incomplete types.
569///
570/// FIXME: Pointers into different addr spaces could have different sizes and
571/// alignment requirements: getPointerInfo should take an AddrSpace, this
572/// should take a QualType, &c.
573std::pair<uint64_t, unsigned>
574ASTContext::getTypeInfo(const Type *T) {
575  uint64_t Width=0;
576  unsigned Align=8;
577  switch (T->getTypeClass()) {
578#define TYPE(Class, Base)
579#define ABSTRACT_TYPE(Class, Base)
580#define NON_CANONICAL_TYPE(Class, Base)
581#define DEPENDENT_TYPE(Class, Base) case Type::Class:
582#include "clang/AST/TypeNodes.def"
583    assert(false && "Should not see dependent types");
584    break;
585
586  case Type::FunctionNoProto:
587  case Type::FunctionProto:
588    // GCC extension: alignof(function) = 32 bits
589    Width = 0;
590    Align = 32;
591    break;
592
593  case Type::IncompleteArray:
594  case Type::VariableArray:
595    Width = 0;
596    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
597    break;
598
599  case Type::ConstantArray: {
600    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
601
602    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
603    Width = EltInfo.first*CAT->getSize().getZExtValue();
604    Align = EltInfo.second;
605    break;
606  }
607  case Type::ExtVector:
608  case Type::Vector: {
609    const VectorType *VT = cast<VectorType>(T);
610    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
611    Width = EltInfo.first*VT->getNumElements();
612    Align = Width;
613    // If the alignment is not a power of 2, round up to the next power of 2.
614    // This happens for non-power-of-2 length vectors.
615    if (VT->getNumElements() & (VT->getNumElements()-1)) {
616      Align = llvm::NextPowerOf2(Align);
617      Width = llvm::RoundUpToAlignment(Width, Align);
618    }
619    break;
620  }
621
622  case Type::Builtin:
623    switch (cast<BuiltinType>(T)->getKind()) {
624    default: assert(0 && "Unknown builtin type!");
625    case BuiltinType::Void:
626      // GCC extension: alignof(void) = 8 bits.
627      Width = 0;
628      Align = 8;
629      break;
630
631    case BuiltinType::Bool:
632      Width = Target.getBoolWidth();
633      Align = Target.getBoolAlign();
634      break;
635    case BuiltinType::Char_S:
636    case BuiltinType::Char_U:
637    case BuiltinType::UChar:
638    case BuiltinType::SChar:
639      Width = Target.getCharWidth();
640      Align = Target.getCharAlign();
641      break;
642    case BuiltinType::WChar:
643      Width = Target.getWCharWidth();
644      Align = Target.getWCharAlign();
645      break;
646    case BuiltinType::Char16:
647      Width = Target.getChar16Width();
648      Align = Target.getChar16Align();
649      break;
650    case BuiltinType::Char32:
651      Width = Target.getChar32Width();
652      Align = Target.getChar32Align();
653      break;
654    case BuiltinType::UShort:
655    case BuiltinType::Short:
656      Width = Target.getShortWidth();
657      Align = Target.getShortAlign();
658      break;
659    case BuiltinType::UInt:
660    case BuiltinType::Int:
661      Width = Target.getIntWidth();
662      Align = Target.getIntAlign();
663      break;
664    case BuiltinType::ULong:
665    case BuiltinType::Long:
666      Width = Target.getLongWidth();
667      Align = Target.getLongAlign();
668      break;
669    case BuiltinType::ULongLong:
670    case BuiltinType::LongLong:
671      Width = Target.getLongLongWidth();
672      Align = Target.getLongLongAlign();
673      break;
674    case BuiltinType::Int128:
675    case BuiltinType::UInt128:
676      Width = 128;
677      Align = 128; // int128_t is 128-bit aligned on all targets.
678      break;
679    case BuiltinType::Float:
680      Width = Target.getFloatWidth();
681      Align = Target.getFloatAlign();
682      break;
683    case BuiltinType::Double:
684      Width = Target.getDoubleWidth();
685      Align = Target.getDoubleAlign();
686      break;
687    case BuiltinType::LongDouble:
688      Width = Target.getLongDoubleWidth();
689      Align = Target.getLongDoubleAlign();
690      break;
691    case BuiltinType::NullPtr:
692      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
693      Align = Target.getPointerAlign(0); //   == sizeof(void*)
694      break;
695    }
696    break;
697  case Type::ObjCObjectPointer:
698    Width = Target.getPointerWidth(0);
699    Align = Target.getPointerAlign(0);
700    break;
701  case Type::BlockPointer: {
702    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
703    Width = Target.getPointerWidth(AS);
704    Align = Target.getPointerAlign(AS);
705    break;
706  }
707  case Type::LValueReference:
708  case Type::RValueReference: {
709    // alignof and sizeof should never enter this code path here, so we go
710    // the pointer route.
711    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
712    Width = Target.getPointerWidth(AS);
713    Align = Target.getPointerAlign(AS);
714    break;
715  }
716  case Type::Pointer: {
717    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
718    Width = Target.getPointerWidth(AS);
719    Align = Target.getPointerAlign(AS);
720    break;
721  }
722  case Type::MemberPointer: {
723    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
724    std::pair<uint64_t, unsigned> PtrDiffInfo =
725      getTypeInfo(getPointerDiffType());
726    Width = PtrDiffInfo.first;
727    if (Pointee->isFunctionType())
728      Width *= 2;
729    Align = PtrDiffInfo.second;
730    break;
731  }
732  case Type::Complex: {
733    // Complex types have the same alignment as their elements, but twice the
734    // size.
735    std::pair<uint64_t, unsigned> EltInfo =
736      getTypeInfo(cast<ComplexType>(T)->getElementType());
737    Width = EltInfo.first*2;
738    Align = EltInfo.second;
739    break;
740  }
741  case Type::ObjCInterface: {
742    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
743    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
744    Width = Layout.getSize();
745    Align = Layout.getAlignment();
746    break;
747  }
748  case Type::Record:
749  case Type::Enum: {
750    const TagType *TT = cast<TagType>(T);
751
752    if (TT->getDecl()->isInvalidDecl()) {
753      Width = 1;
754      Align = 1;
755      break;
756    }
757
758    if (const EnumType *ET = dyn_cast<EnumType>(TT))
759      return getTypeInfo(ET->getDecl()->getIntegerType());
760
761    const RecordType *RT = cast<RecordType>(TT);
762    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
763    Width = Layout.getSize();
764    Align = Layout.getAlignment();
765    break;
766  }
767
768  case Type::SubstTemplateTypeParm:
769    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
770                       getReplacementType().getTypePtr());
771
772  case Type::Elaborated:
773    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
774                         .getTypePtr());
775
776  case Type::Typedef: {
777    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
778    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
779      Align = std::max(Aligned->getMaxAlignment(),
780                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
781      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
782    } else
783      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
784    break;
785  }
786
787  case Type::TypeOfExpr:
788    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
789                         .getTypePtr());
790
791  case Type::TypeOf:
792    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
793
794  case Type::Decltype:
795    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
796                        .getTypePtr());
797
798  case Type::QualifiedName:
799    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
800
801  case Type::TemplateSpecialization:
802    assert(getCanonicalType(T) != T &&
803           "Cannot request the size of a dependent type");
804    // FIXME: this is likely to be wrong once we support template
805    // aliases, since a template alias could refer to a typedef that
806    // has an __aligned__ attribute on it.
807    return getTypeInfo(getCanonicalType(T));
808  }
809
810  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
811  return std::make_pair(Width, Align);
812}
813
814/// getTypeSizeInChars - Return the size of the specified type, in characters.
815/// This method does not work on incomplete types.
816CharUnits ASTContext::getTypeSizeInChars(QualType T) {
817  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
818}
819CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
820  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
821}
822
823/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
824/// type for the current target in bits.  This can be different than the ABI
825/// alignment in cases where it is beneficial for performance to overalign
826/// a data type.
827unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
828  unsigned ABIAlign = getTypeAlign(T);
829
830  // Double and long long should be naturally aligned if possible.
831  if (const ComplexType* CT = T->getAs<ComplexType>())
832    T = CT->getElementType().getTypePtr();
833  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
834      T->isSpecificBuiltinType(BuiltinType::LongLong))
835    return std::max(ABIAlign, (unsigned)getTypeSize(T));
836
837  return ABIAlign;
838}
839
840static void CollectLocalObjCIvars(ASTContext *Ctx,
841                                  const ObjCInterfaceDecl *OI,
842                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
843  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
844       E = OI->ivar_end(); I != E; ++I) {
845    ObjCIvarDecl *IVDecl = *I;
846    if (!IVDecl->isInvalidDecl())
847      Fields.push_back(cast<FieldDecl>(IVDecl));
848  }
849}
850
851void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
852                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
853  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
854    CollectObjCIvars(SuperClass, Fields);
855  CollectLocalObjCIvars(this, OI, Fields);
856}
857
858/// ShallowCollectObjCIvars -
859/// Collect all ivars, including those synthesized, in the current class.
860///
861void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
862                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
863                                 bool CollectSynthesized) {
864  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
865         E = OI->ivar_end(); I != E; ++I) {
866     Ivars.push_back(*I);
867  }
868  if (CollectSynthesized)
869    CollectSynthesizedIvars(OI, Ivars);
870}
871
872void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
873                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
874  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
875       E = PD->prop_end(); I != E; ++I)
876    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
877      Ivars.push_back(Ivar);
878
879  // Also look into nested protocols.
880  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
881       E = PD->protocol_end(); P != E; ++P)
882    CollectProtocolSynthesizedIvars(*P, Ivars);
883}
884
885/// CollectSynthesizedIvars -
886/// This routine collect synthesized ivars for the designated class.
887///
888void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
889                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
890  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
891       E = OI->prop_end(); I != E; ++I) {
892    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
893      Ivars.push_back(Ivar);
894  }
895  // Also look into interface's protocol list for properties declared
896  // in the protocol and whose ivars are synthesized.
897  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
898       PE = OI->protocol_end(); P != PE; ++P) {
899    ObjCProtocolDecl *PD = (*P);
900    CollectProtocolSynthesizedIvars(PD, Ivars);
901  }
902}
903
904/// CollectInheritedProtocols - Collect all protocols in current class and
905/// those inherited by it.
906void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
907                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
908  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
909    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
910         PE = OI->protocol_end(); P != PE; ++P) {
911      ObjCProtocolDecl *Proto = (*P);
912      Protocols.push_back(Proto);
913      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
914           PE = Proto->protocol_end(); P != PE; ++P)
915        CollectInheritedProtocols(*P, Protocols);
916      }
917
918    // Categories of this Interface.
919    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
920         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
921      CollectInheritedProtocols(CDeclChain, Protocols);
922    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
923      while (SD) {
924        CollectInheritedProtocols(SD, Protocols);
925        SD = SD->getSuperClass();
926      }
927    return;
928  }
929  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
930    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
931         PE = OC->protocol_end(); P != PE; ++P) {
932      ObjCProtocolDecl *Proto = (*P);
933      Protocols.push_back(Proto);
934      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
935           PE = Proto->protocol_end(); P != PE; ++P)
936        CollectInheritedProtocols(*P, Protocols);
937    }
938    return;
939  }
940  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
941    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
942         PE = OP->protocol_end(); P != PE; ++P) {
943      ObjCProtocolDecl *Proto = (*P);
944      Protocols.push_back(Proto);
945      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
946           PE = Proto->protocol_end(); P != PE; ++P)
947        CollectInheritedProtocols(*P, Protocols);
948    }
949    return;
950  }
951}
952
953unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
954  unsigned count = 0;
955  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
956       E = PD->prop_end(); I != E; ++I)
957    if ((*I)->getPropertyIvarDecl())
958      ++count;
959
960  // Also look into nested protocols.
961  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
962       E = PD->protocol_end(); P != E; ++P)
963    count += CountProtocolSynthesizedIvars(*P);
964  return count;
965}
966
967unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
968  unsigned count = 0;
969  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
970       E = OI->prop_end(); I != E; ++I) {
971    if ((*I)->getPropertyIvarDecl())
972      ++count;
973  }
974  // Also look into interface's protocol list for properties declared
975  // in the protocol and whose ivars are synthesized.
976  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
977       PE = OI->protocol_end(); P != PE; ++P) {
978    ObjCProtocolDecl *PD = (*P);
979    count += CountProtocolSynthesizedIvars(PD);
980  }
981  return count;
982}
983
984/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
985ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
986  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
987    I = ObjCImpls.find(D);
988  if (I != ObjCImpls.end())
989    return cast<ObjCImplementationDecl>(I->second);
990  return 0;
991}
992/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
993ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
994  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
995    I = ObjCImpls.find(D);
996  if (I != ObjCImpls.end())
997    return cast<ObjCCategoryImplDecl>(I->second);
998  return 0;
999}
1000
1001/// \brief Set the implementation of ObjCInterfaceDecl.
1002void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1003                           ObjCImplementationDecl *ImplD) {
1004  assert(IFaceD && ImplD && "Passed null params");
1005  ObjCImpls[IFaceD] = ImplD;
1006}
1007/// \brief Set the implementation of ObjCCategoryDecl.
1008void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1009                           ObjCCategoryImplDecl *ImplD) {
1010  assert(CatD && ImplD && "Passed null params");
1011  ObjCImpls[CatD] = ImplD;
1012}
1013
1014/// \brief Allocate an uninitialized TypeSourceInfo.
1015///
1016/// The caller should initialize the memory held by TypeSourceInfo using
1017/// the TypeLoc wrappers.
1018///
1019/// \param T the type that will be the basis for type source info. This type
1020/// should refer to how the declarator was written in source code, not to
1021/// what type semantic analysis resolved the declarator to.
1022TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1023                                                 unsigned DataSize) {
1024  if (!DataSize)
1025    DataSize = TypeLoc::getFullDataSizeForType(T);
1026  else
1027    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1028           "incorrect data size provided to CreateTypeSourceInfo!");
1029
1030  TypeSourceInfo *TInfo =
1031    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1032  new (TInfo) TypeSourceInfo(T);
1033  return TInfo;
1034}
1035
1036TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1037                                                     SourceLocation L) {
1038  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1039  DI->getTypeLoc().initialize(L);
1040  return DI;
1041}
1042
1043/// getInterfaceLayoutImpl - Get or compute information about the
1044/// layout of the given interface.
1045///
1046/// \param Impl - If given, also include the layout of the interface's
1047/// implementation. This may differ by including synthesized ivars.
1048const ASTRecordLayout &
1049ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1050                          const ObjCImplementationDecl *Impl) {
1051  assert(!D->isForwardDecl() && "Invalid interface decl!");
1052
1053  // Look up this layout, if already laid out, return what we have.
1054  ObjCContainerDecl *Key =
1055    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1056  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1057    return *Entry;
1058
1059  // Add in synthesized ivar count if laying out an implementation.
1060  if (Impl) {
1061    unsigned SynthCount = CountSynthesizedIvars(D);
1062    // If there aren't any sythesized ivars then reuse the interface
1063    // entry. Note we can't cache this because we simply free all
1064    // entries later; however we shouldn't look up implementations
1065    // frequently.
1066    if (SynthCount == 0)
1067      return getObjCLayout(D, 0);
1068  }
1069
1070  const ASTRecordLayout *NewEntry =
1071    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1072  ObjCLayouts[Key] = NewEntry;
1073
1074  return *NewEntry;
1075}
1076
1077const ASTRecordLayout &
1078ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1079  return getObjCLayout(D, 0);
1080}
1081
1082const ASTRecordLayout &
1083ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1084  return getObjCLayout(D->getClassInterface(), D);
1085}
1086
1087/// getASTRecordLayout - Get or compute information about the layout of the
1088/// specified record (struct/union/class), which indicates its size and field
1089/// position information.
1090const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1091  D = D->getDefinition(*this);
1092  assert(D && "Cannot get layout of forward declarations!");
1093
1094  // Look up this layout, if already laid out, return what we have.
1095  // Note that we can't save a reference to the entry because this function
1096  // is recursive.
1097  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1098  if (Entry) return *Entry;
1099
1100  const ASTRecordLayout *NewEntry =
1101    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1102  ASTRecordLayouts[D] = NewEntry;
1103
1104  return *NewEntry;
1105}
1106
1107const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1108  RD = cast<CXXRecordDecl>(RD->getDefinition(*this));
1109  assert(RD && "Cannot get key function for forward declarations!");
1110
1111  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1112  if (!Entry)
1113    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1114  else
1115    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1116           "Key function changed!");
1117
1118  return Entry;
1119}
1120
1121//===----------------------------------------------------------------------===//
1122//                   Type creation/memoization methods
1123//===----------------------------------------------------------------------===//
1124
1125QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1126  unsigned Fast = Quals.getFastQualifiers();
1127  Quals.removeFastQualifiers();
1128
1129  // Check if we've already instantiated this type.
1130  llvm::FoldingSetNodeID ID;
1131  ExtQuals::Profile(ID, TypeNode, Quals);
1132  void *InsertPos = 0;
1133  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1134    assert(EQ->getQualifiers() == Quals);
1135    QualType T = QualType(EQ, Fast);
1136    return T;
1137  }
1138
1139  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1140  ExtQualNodes.InsertNode(New, InsertPos);
1141  QualType T = QualType(New, Fast);
1142  return T;
1143}
1144
1145QualType ASTContext::getVolatileType(QualType T) {
1146  QualType CanT = getCanonicalType(T);
1147  if (CanT.isVolatileQualified()) return T;
1148
1149  QualifierCollector Quals;
1150  const Type *TypeNode = Quals.strip(T);
1151  Quals.addVolatile();
1152
1153  return getExtQualType(TypeNode, Quals);
1154}
1155
1156QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1157  QualType CanT = getCanonicalType(T);
1158  if (CanT.getAddressSpace() == AddressSpace)
1159    return T;
1160
1161  // If we are composing extended qualifiers together, merge together
1162  // into one ExtQuals node.
1163  QualifierCollector Quals;
1164  const Type *TypeNode = Quals.strip(T);
1165
1166  // If this type already has an address space specified, it cannot get
1167  // another one.
1168  assert(!Quals.hasAddressSpace() &&
1169         "Type cannot be in multiple addr spaces!");
1170  Quals.addAddressSpace(AddressSpace);
1171
1172  return getExtQualType(TypeNode, Quals);
1173}
1174
1175QualType ASTContext::getObjCGCQualType(QualType T,
1176                                       Qualifiers::GC GCAttr) {
1177  QualType CanT = getCanonicalType(T);
1178  if (CanT.getObjCGCAttr() == GCAttr)
1179    return T;
1180
1181  if (T->isPointerType()) {
1182    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1183    if (Pointee->isAnyPointerType()) {
1184      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1185      return getPointerType(ResultType);
1186    }
1187  }
1188
1189  // If we are composing extended qualifiers together, merge together
1190  // into one ExtQuals node.
1191  QualifierCollector Quals;
1192  const Type *TypeNode = Quals.strip(T);
1193
1194  // If this type already has an ObjCGC specified, it cannot get
1195  // another one.
1196  assert(!Quals.hasObjCGCAttr() &&
1197         "Type cannot have multiple ObjCGCs!");
1198  Quals.addObjCGCAttr(GCAttr);
1199
1200  return getExtQualType(TypeNode, Quals);
1201}
1202
1203static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1204                                        bool AddNoReturn,
1205                                        CallingConv CallConv) {
1206  QualType ResultType;
1207  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1208    QualType Pointee = Pointer->getPointeeType();
1209    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1210                                         CallConv);
1211    if (ResultType == Pointee)
1212      return T;
1213
1214    ResultType = Context.getPointerType(ResultType);
1215  } else if (const BlockPointerType *BlockPointer
1216                                              = T->getAs<BlockPointerType>()) {
1217    QualType Pointee = BlockPointer->getPointeeType();
1218    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1219                                         CallConv);
1220    if (ResultType == Pointee)
1221      return T;
1222
1223    ResultType = Context.getBlockPointerType(ResultType);
1224   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1225    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1226      return T;
1227
1228    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1229      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1230                                                  AddNoReturn, CallConv);
1231    } else {
1232      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1233      ResultType
1234        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1235                                  FPT->getNumArgs(), FPT->isVariadic(),
1236                                  FPT->getTypeQuals(),
1237                                  FPT->hasExceptionSpec(),
1238                                  FPT->hasAnyExceptionSpec(),
1239                                  FPT->getNumExceptions(),
1240                                  FPT->exception_begin(),
1241                                  AddNoReturn, CallConv);
1242    }
1243  } else
1244    return T;
1245
1246  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1247}
1248
1249QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1250  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1251}
1252
1253QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1254  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1255}
1256
1257/// getComplexType - Return the uniqued reference to the type for a complex
1258/// number with the specified element type.
1259QualType ASTContext::getComplexType(QualType T) {
1260  // Unique pointers, to guarantee there is only one pointer of a particular
1261  // structure.
1262  llvm::FoldingSetNodeID ID;
1263  ComplexType::Profile(ID, T);
1264
1265  void *InsertPos = 0;
1266  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1267    return QualType(CT, 0);
1268
1269  // If the pointee type isn't canonical, this won't be a canonical type either,
1270  // so fill in the canonical type field.
1271  QualType Canonical;
1272  if (!T.isCanonical()) {
1273    Canonical = getComplexType(getCanonicalType(T));
1274
1275    // Get the new insert position for the node we care about.
1276    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1277    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1278  }
1279  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1280  Types.push_back(New);
1281  ComplexTypes.InsertNode(New, InsertPos);
1282  return QualType(New, 0);
1283}
1284
1285/// getPointerType - Return the uniqued reference to the type for a pointer to
1286/// the specified type.
1287QualType ASTContext::getPointerType(QualType T) {
1288  // Unique pointers, to guarantee there is only one pointer of a particular
1289  // structure.
1290  llvm::FoldingSetNodeID ID;
1291  PointerType::Profile(ID, T);
1292
1293  void *InsertPos = 0;
1294  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1295    return QualType(PT, 0);
1296
1297  // If the pointee type isn't canonical, this won't be a canonical type either,
1298  // so fill in the canonical type field.
1299  QualType Canonical;
1300  if (!T.isCanonical()) {
1301    Canonical = getPointerType(getCanonicalType(T));
1302
1303    // Get the new insert position for the node we care about.
1304    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1305    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1306  }
1307  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1308  Types.push_back(New);
1309  PointerTypes.InsertNode(New, InsertPos);
1310  return QualType(New, 0);
1311}
1312
1313/// getBlockPointerType - Return the uniqued reference to the type for
1314/// a pointer to the specified block.
1315QualType ASTContext::getBlockPointerType(QualType T) {
1316  assert(T->isFunctionType() && "block of function types only");
1317  // Unique pointers, to guarantee there is only one block of a particular
1318  // structure.
1319  llvm::FoldingSetNodeID ID;
1320  BlockPointerType::Profile(ID, T);
1321
1322  void *InsertPos = 0;
1323  if (BlockPointerType *PT =
1324        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1325    return QualType(PT, 0);
1326
1327  // If the block pointee type isn't canonical, this won't be a canonical
1328  // type either so fill in the canonical type field.
1329  QualType Canonical;
1330  if (!T.isCanonical()) {
1331    Canonical = getBlockPointerType(getCanonicalType(T));
1332
1333    // Get the new insert position for the node we care about.
1334    BlockPointerType *NewIP =
1335      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1336    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1337  }
1338  BlockPointerType *New
1339    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1340  Types.push_back(New);
1341  BlockPointerTypes.InsertNode(New, InsertPos);
1342  return QualType(New, 0);
1343}
1344
1345/// getLValueReferenceType - Return the uniqued reference to the type for an
1346/// lvalue reference to the specified type.
1347QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1348  // Unique pointers, to guarantee there is only one pointer of a particular
1349  // structure.
1350  llvm::FoldingSetNodeID ID;
1351  ReferenceType::Profile(ID, T, SpelledAsLValue);
1352
1353  void *InsertPos = 0;
1354  if (LValueReferenceType *RT =
1355        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1356    return QualType(RT, 0);
1357
1358  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1359
1360  // If the referencee type isn't canonical, this won't be a canonical type
1361  // either, so fill in the canonical type field.
1362  QualType Canonical;
1363  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1364    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1365    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1366
1367    // Get the new insert position for the node we care about.
1368    LValueReferenceType *NewIP =
1369      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1370    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1371  }
1372
1373  LValueReferenceType *New
1374    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1375                                                     SpelledAsLValue);
1376  Types.push_back(New);
1377  LValueReferenceTypes.InsertNode(New, InsertPos);
1378
1379  return QualType(New, 0);
1380}
1381
1382/// getRValueReferenceType - Return the uniqued reference to the type for an
1383/// rvalue reference to the specified type.
1384QualType ASTContext::getRValueReferenceType(QualType T) {
1385  // Unique pointers, to guarantee there is only one pointer of a particular
1386  // structure.
1387  llvm::FoldingSetNodeID ID;
1388  ReferenceType::Profile(ID, T, false);
1389
1390  void *InsertPos = 0;
1391  if (RValueReferenceType *RT =
1392        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1393    return QualType(RT, 0);
1394
1395  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1396
1397  // If the referencee type isn't canonical, this won't be a canonical type
1398  // either, so fill in the canonical type field.
1399  QualType Canonical;
1400  if (InnerRef || !T.isCanonical()) {
1401    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1402    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1403
1404    // Get the new insert position for the node we care about.
1405    RValueReferenceType *NewIP =
1406      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1407    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1408  }
1409
1410  RValueReferenceType *New
1411    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1412  Types.push_back(New);
1413  RValueReferenceTypes.InsertNode(New, InsertPos);
1414  return QualType(New, 0);
1415}
1416
1417/// getMemberPointerType - Return the uniqued reference to the type for a
1418/// member pointer to the specified type, in the specified class.
1419QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1420  // Unique pointers, to guarantee there is only one pointer of a particular
1421  // structure.
1422  llvm::FoldingSetNodeID ID;
1423  MemberPointerType::Profile(ID, T, Cls);
1424
1425  void *InsertPos = 0;
1426  if (MemberPointerType *PT =
1427      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1428    return QualType(PT, 0);
1429
1430  // If the pointee or class type isn't canonical, this won't be a canonical
1431  // type either, so fill in the canonical type field.
1432  QualType Canonical;
1433  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1434    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1435
1436    // Get the new insert position for the node we care about.
1437    MemberPointerType *NewIP =
1438      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1439    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1440  }
1441  MemberPointerType *New
1442    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1443  Types.push_back(New);
1444  MemberPointerTypes.InsertNode(New, InsertPos);
1445  return QualType(New, 0);
1446}
1447
1448/// getConstantArrayType - Return the unique reference to the type for an
1449/// array of the specified element type.
1450QualType ASTContext::getConstantArrayType(QualType EltTy,
1451                                          const llvm::APInt &ArySizeIn,
1452                                          ArrayType::ArraySizeModifier ASM,
1453                                          unsigned EltTypeQuals) {
1454  assert((EltTy->isDependentType() ||
1455          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1456         "Constant array of VLAs is illegal!");
1457
1458  // Convert the array size into a canonical width matching the pointer size for
1459  // the target.
1460  llvm::APInt ArySize(ArySizeIn);
1461  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1462
1463  llvm::FoldingSetNodeID ID;
1464  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1465
1466  void *InsertPos = 0;
1467  if (ConstantArrayType *ATP =
1468      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1469    return QualType(ATP, 0);
1470
1471  // If the element type isn't canonical, this won't be a canonical type either,
1472  // so fill in the canonical type field.
1473  QualType Canonical;
1474  if (!EltTy.isCanonical()) {
1475    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1476                                     ASM, EltTypeQuals);
1477    // Get the new insert position for the node we care about.
1478    ConstantArrayType *NewIP =
1479      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1480    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1481  }
1482
1483  ConstantArrayType *New = new(*this,TypeAlignment)
1484    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1485  ConstantArrayTypes.InsertNode(New, InsertPos);
1486  Types.push_back(New);
1487  return QualType(New, 0);
1488}
1489
1490/// getVariableArrayType - Returns a non-unique reference to the type for a
1491/// variable array of the specified element type.
1492QualType ASTContext::getVariableArrayType(QualType EltTy,
1493                                          Expr *NumElts,
1494                                          ArrayType::ArraySizeModifier ASM,
1495                                          unsigned EltTypeQuals,
1496                                          SourceRange Brackets) {
1497  // Since we don't unique expressions, it isn't possible to unique VLA's
1498  // that have an expression provided for their size.
1499
1500  VariableArrayType *New = new(*this, TypeAlignment)
1501    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1502
1503  VariableArrayTypes.push_back(New);
1504  Types.push_back(New);
1505  return QualType(New, 0);
1506}
1507
1508/// getDependentSizedArrayType - Returns a non-unique reference to
1509/// the type for a dependently-sized array of the specified element
1510/// type.
1511QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1512                                                Expr *NumElts,
1513                                                ArrayType::ArraySizeModifier ASM,
1514                                                unsigned EltTypeQuals,
1515                                                SourceRange Brackets) {
1516  assert((!NumElts || NumElts->isTypeDependent() ||
1517          NumElts->isValueDependent()) &&
1518         "Size must be type- or value-dependent!");
1519
1520  void *InsertPos = 0;
1521  DependentSizedArrayType *Canon = 0;
1522
1523  if (NumElts) {
1524    // Dependently-sized array types that do not have a specified
1525    // number of elements will have their sizes deduced from an
1526    // initializer.
1527    llvm::FoldingSetNodeID ID;
1528    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1529                                     EltTypeQuals, NumElts);
1530
1531    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1532  }
1533
1534  DependentSizedArrayType *New;
1535  if (Canon) {
1536    // We already have a canonical version of this array type; use it as
1537    // the canonical type for a newly-built type.
1538    New = new (*this, TypeAlignment)
1539      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1540                              NumElts, ASM, EltTypeQuals, Brackets);
1541  } else {
1542    QualType CanonEltTy = getCanonicalType(EltTy);
1543    if (CanonEltTy == EltTy) {
1544      New = new (*this, TypeAlignment)
1545        DependentSizedArrayType(*this, EltTy, QualType(),
1546                                NumElts, ASM, EltTypeQuals, Brackets);
1547
1548      if (NumElts)
1549        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1550    } else {
1551      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1552                                                  ASM, EltTypeQuals,
1553                                                  SourceRange());
1554      New = new (*this, TypeAlignment)
1555        DependentSizedArrayType(*this, EltTy, Canon,
1556                                NumElts, ASM, EltTypeQuals, Brackets);
1557    }
1558  }
1559
1560  Types.push_back(New);
1561  return QualType(New, 0);
1562}
1563
1564QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1565                                            ArrayType::ArraySizeModifier ASM,
1566                                            unsigned EltTypeQuals) {
1567  llvm::FoldingSetNodeID ID;
1568  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1569
1570  void *InsertPos = 0;
1571  if (IncompleteArrayType *ATP =
1572       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1573    return QualType(ATP, 0);
1574
1575  // If the element type isn't canonical, this won't be a canonical type
1576  // either, so fill in the canonical type field.
1577  QualType Canonical;
1578
1579  if (!EltTy.isCanonical()) {
1580    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1581                                       ASM, EltTypeQuals);
1582
1583    // Get the new insert position for the node we care about.
1584    IncompleteArrayType *NewIP =
1585      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1586    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1587  }
1588
1589  IncompleteArrayType *New = new (*this, TypeAlignment)
1590    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1591
1592  IncompleteArrayTypes.InsertNode(New, InsertPos);
1593  Types.push_back(New);
1594  return QualType(New, 0);
1595}
1596
1597/// getVectorType - Return the unique reference to a vector type of
1598/// the specified element type and size. VectorType must be a built-in type.
1599QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1600  BuiltinType *baseType;
1601
1602  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1603  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1604
1605  // Check if we've already instantiated a vector of this type.
1606  llvm::FoldingSetNodeID ID;
1607  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1608  void *InsertPos = 0;
1609  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1610    return QualType(VTP, 0);
1611
1612  // If the element type isn't canonical, this won't be a canonical type either,
1613  // so fill in the canonical type field.
1614  QualType Canonical;
1615  if (!vecType.isCanonical()) {
1616    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1617
1618    // Get the new insert position for the node we care about.
1619    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1620    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1621  }
1622  VectorType *New = new (*this, TypeAlignment)
1623    VectorType(vecType, NumElts, Canonical);
1624  VectorTypes.InsertNode(New, InsertPos);
1625  Types.push_back(New);
1626  return QualType(New, 0);
1627}
1628
1629/// getExtVectorType - Return the unique reference to an extended vector type of
1630/// the specified element type and size. VectorType must be a built-in type.
1631QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1632  BuiltinType *baseType;
1633
1634  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1635  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1636
1637  // Check if we've already instantiated a vector of this type.
1638  llvm::FoldingSetNodeID ID;
1639  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1640  void *InsertPos = 0;
1641  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1642    return QualType(VTP, 0);
1643
1644  // If the element type isn't canonical, this won't be a canonical type either,
1645  // so fill in the canonical type field.
1646  QualType Canonical;
1647  if (!vecType.isCanonical()) {
1648    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1649
1650    // Get the new insert position for the node we care about.
1651    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1652    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1653  }
1654  ExtVectorType *New = new (*this, TypeAlignment)
1655    ExtVectorType(vecType, NumElts, Canonical);
1656  VectorTypes.InsertNode(New, InsertPos);
1657  Types.push_back(New);
1658  return QualType(New, 0);
1659}
1660
1661QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1662                                                    Expr *SizeExpr,
1663                                                    SourceLocation AttrLoc) {
1664  llvm::FoldingSetNodeID ID;
1665  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1666                                       SizeExpr);
1667
1668  void *InsertPos = 0;
1669  DependentSizedExtVectorType *Canon
1670    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1671  DependentSizedExtVectorType *New;
1672  if (Canon) {
1673    // We already have a canonical version of this array type; use it as
1674    // the canonical type for a newly-built type.
1675    New = new (*this, TypeAlignment)
1676      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1677                                  SizeExpr, AttrLoc);
1678  } else {
1679    QualType CanonVecTy = getCanonicalType(vecType);
1680    if (CanonVecTy == vecType) {
1681      New = new (*this, TypeAlignment)
1682        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1683                                    AttrLoc);
1684      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1685    } else {
1686      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1687                                                      SourceLocation());
1688      New = new (*this, TypeAlignment)
1689        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1690    }
1691  }
1692
1693  Types.push_back(New);
1694  return QualType(New, 0);
1695}
1696
1697static CallingConv getCanonicalCallingConv(CallingConv CC) {
1698  if (CC == CC_C)
1699    return CC_Default;
1700  return CC;
1701}
1702
1703/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1704///
1705QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1706                                            CallingConv CallConv) {
1707  // Unique functions, to guarantee there is only one function of a particular
1708  // structure.
1709  llvm::FoldingSetNodeID ID;
1710  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1711
1712  void *InsertPos = 0;
1713  if (FunctionNoProtoType *FT =
1714        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1715    return QualType(FT, 0);
1716
1717  QualType Canonical;
1718  if (!ResultTy.isCanonical() ||
1719      getCanonicalCallingConv(CallConv) != CallConv) {
1720    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1721                                       getCanonicalCallingConv(CallConv));
1722
1723    // Get the new insert position for the node we care about.
1724    FunctionNoProtoType *NewIP =
1725      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1726    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1727  }
1728
1729  FunctionNoProtoType *New = new (*this, TypeAlignment)
1730    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1731  Types.push_back(New);
1732  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1733  return QualType(New, 0);
1734}
1735
1736/// getFunctionType - Return a normal function type with a typed argument
1737/// list.  isVariadic indicates whether the argument list includes '...'.
1738QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1739                                     unsigned NumArgs, bool isVariadic,
1740                                     unsigned TypeQuals, bool hasExceptionSpec,
1741                                     bool hasAnyExceptionSpec, unsigned NumExs,
1742                                     const QualType *ExArray, bool NoReturn,
1743                                     CallingConv CallConv) {
1744  // Unique functions, to guarantee there is only one function of a particular
1745  // structure.
1746  llvm::FoldingSetNodeID ID;
1747  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1748                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1749                             NumExs, ExArray, NoReturn);
1750
1751  void *InsertPos = 0;
1752  if (FunctionProtoType *FTP =
1753        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1754    return QualType(FTP, 0);
1755
1756  // Determine whether the type being created is already canonical or not.
1757  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1758  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1759    if (!ArgArray[i].isCanonicalAsParam())
1760      isCanonical = false;
1761
1762  // If this type isn't canonical, get the canonical version of it.
1763  // The exception spec is not part of the canonical type.
1764  QualType Canonical;
1765  if (!isCanonical || getCanonicalCallingConv(CallConv) != CallConv) {
1766    llvm::SmallVector<QualType, 16> CanonicalArgs;
1767    CanonicalArgs.reserve(NumArgs);
1768    for (unsigned i = 0; i != NumArgs; ++i)
1769      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1770
1771    Canonical = getFunctionType(getCanonicalType(ResultTy),
1772                                CanonicalArgs.data(), NumArgs,
1773                                isVariadic, TypeQuals, false,
1774                                false, 0, 0, NoReturn,
1775                                getCanonicalCallingConv(CallConv));
1776
1777    // Get the new insert position for the node we care about.
1778    FunctionProtoType *NewIP =
1779      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1780    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1781  }
1782
1783  // FunctionProtoType objects are allocated with extra bytes after them
1784  // for two variable size arrays (for parameter and exception types) at the
1785  // end of them.
1786  FunctionProtoType *FTP =
1787    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1788                                 NumArgs*sizeof(QualType) +
1789                                 NumExs*sizeof(QualType), TypeAlignment);
1790  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1791                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1792                              ExArray, NumExs, Canonical, NoReturn, CallConv);
1793  Types.push_back(FTP);
1794  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1795  return QualType(FTP, 0);
1796}
1797
1798/// getTypeDeclType - Return the unique reference to the type for the
1799/// specified type declaration.
1800QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1801  assert(Decl && "Passed null for Decl param");
1802  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1803
1804  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1805    return getTypedefType(Typedef);
1806  else if (isa<TemplateTypeParmDecl>(Decl)) {
1807    assert(false && "Template type parameter types are always available.");
1808  } else if (ObjCInterfaceDecl *ObjCInterface
1809               = dyn_cast<ObjCInterfaceDecl>(Decl))
1810    return getObjCInterfaceType(ObjCInterface);
1811
1812  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1813    if (PrevDecl)
1814      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1815    else
1816      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1817  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1818    if (PrevDecl)
1819      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1820    else
1821      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1822  } else if (UnresolvedUsingTypenameDecl *Using =
1823               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1824    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1825  } else
1826    assert(false && "TypeDecl without a type?");
1827
1828  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1829  return QualType(Decl->TypeForDecl, 0);
1830}
1831
1832/// getTypedefType - Return the unique reference to the type for the
1833/// specified typename decl.
1834QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1835  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1836
1837  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1838  Decl->TypeForDecl = new(*this, TypeAlignment)
1839    TypedefType(Type::Typedef, Decl, Canonical);
1840  Types.push_back(Decl->TypeForDecl);
1841  return QualType(Decl->TypeForDecl, 0);
1842}
1843
1844/// \brief Retrieve a substitution-result type.
1845QualType
1846ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1847                                         QualType Replacement) {
1848  assert(Replacement.isCanonical()
1849         && "replacement types must always be canonical");
1850
1851  llvm::FoldingSetNodeID ID;
1852  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1853  void *InsertPos = 0;
1854  SubstTemplateTypeParmType *SubstParm
1855    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1856
1857  if (!SubstParm) {
1858    SubstParm = new (*this, TypeAlignment)
1859      SubstTemplateTypeParmType(Parm, Replacement);
1860    Types.push_back(SubstParm);
1861    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1862  }
1863
1864  return QualType(SubstParm, 0);
1865}
1866
1867/// \brief Retrieve the template type parameter type for a template
1868/// parameter or parameter pack with the given depth, index, and (optionally)
1869/// name.
1870QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1871                                             bool ParameterPack,
1872                                             IdentifierInfo *Name) {
1873  llvm::FoldingSetNodeID ID;
1874  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1875  void *InsertPos = 0;
1876  TemplateTypeParmType *TypeParm
1877    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1878
1879  if (TypeParm)
1880    return QualType(TypeParm, 0);
1881
1882  if (Name) {
1883    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1884    TypeParm = new (*this, TypeAlignment)
1885      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1886  } else
1887    TypeParm = new (*this, TypeAlignment)
1888      TemplateTypeParmType(Depth, Index, ParameterPack);
1889
1890  Types.push_back(TypeParm);
1891  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1892
1893  return QualType(TypeParm, 0);
1894}
1895
1896QualType
1897ASTContext::getTemplateSpecializationType(TemplateName Template,
1898                                          const TemplateArgumentListInfo &Args,
1899                                          QualType Canon) {
1900  unsigned NumArgs = Args.size();
1901
1902  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1903  ArgVec.reserve(NumArgs);
1904  for (unsigned i = 0; i != NumArgs; ++i)
1905    ArgVec.push_back(Args[i].getArgument());
1906
1907  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1908}
1909
1910QualType
1911ASTContext::getTemplateSpecializationType(TemplateName Template,
1912                                          const TemplateArgument *Args,
1913                                          unsigned NumArgs,
1914                                          QualType Canon) {
1915  if (!Canon.isNull())
1916    Canon = getCanonicalType(Canon);
1917  else {
1918    // Build the canonical template specialization type.
1919    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1920    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1921    CanonArgs.reserve(NumArgs);
1922    for (unsigned I = 0; I != NumArgs; ++I)
1923      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1924
1925    // Determine whether this canonical template specialization type already
1926    // exists.
1927    llvm::FoldingSetNodeID ID;
1928    TemplateSpecializationType::Profile(ID, CanonTemplate,
1929                                        CanonArgs.data(), NumArgs, *this);
1930
1931    void *InsertPos = 0;
1932    TemplateSpecializationType *Spec
1933      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1934
1935    if (!Spec) {
1936      // Allocate a new canonical template specialization type.
1937      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1938                            sizeof(TemplateArgument) * NumArgs),
1939                           TypeAlignment);
1940      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1941                                                  CanonArgs.data(), NumArgs,
1942                                                  Canon);
1943      Types.push_back(Spec);
1944      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1945    }
1946
1947    if (Canon.isNull())
1948      Canon = QualType(Spec, 0);
1949    assert(Canon->isDependentType() &&
1950           "Non-dependent template-id type must have a canonical type");
1951  }
1952
1953  // Allocate the (non-canonical) template specialization type, but don't
1954  // try to unique it: these types typically have location information that
1955  // we don't unique and don't want to lose.
1956  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1957                        sizeof(TemplateArgument) * NumArgs),
1958                       TypeAlignment);
1959  TemplateSpecializationType *Spec
1960    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1961                                           Canon);
1962
1963  Types.push_back(Spec);
1964  return QualType(Spec, 0);
1965}
1966
1967QualType
1968ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1969                                 QualType NamedType) {
1970  llvm::FoldingSetNodeID ID;
1971  QualifiedNameType::Profile(ID, NNS, NamedType);
1972
1973  void *InsertPos = 0;
1974  QualifiedNameType *T
1975    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1976  if (T)
1977    return QualType(T, 0);
1978
1979  T = new (*this) QualifiedNameType(NNS, NamedType,
1980                                    getCanonicalType(NamedType));
1981  Types.push_back(T);
1982  QualifiedNameTypes.InsertNode(T, InsertPos);
1983  return QualType(T, 0);
1984}
1985
1986QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1987                                     const IdentifierInfo *Name,
1988                                     QualType Canon) {
1989  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1990
1991  if (Canon.isNull()) {
1992    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1993    if (CanonNNS != NNS)
1994      Canon = getTypenameType(CanonNNS, Name);
1995  }
1996
1997  llvm::FoldingSetNodeID ID;
1998  TypenameType::Profile(ID, NNS, Name);
1999
2000  void *InsertPos = 0;
2001  TypenameType *T
2002    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2003  if (T)
2004    return QualType(T, 0);
2005
2006  T = new (*this) TypenameType(NNS, Name, Canon);
2007  Types.push_back(T);
2008  TypenameTypes.InsertNode(T, InsertPos);
2009  return QualType(T, 0);
2010}
2011
2012QualType
2013ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2014                            const TemplateSpecializationType *TemplateId,
2015                            QualType Canon) {
2016  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2017
2018  if (Canon.isNull()) {
2019    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2020    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2021    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2022      const TemplateSpecializationType *CanonTemplateId
2023        = CanonType->getAs<TemplateSpecializationType>();
2024      assert(CanonTemplateId &&
2025             "Canonical type must also be a template specialization type");
2026      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2027    }
2028  }
2029
2030  llvm::FoldingSetNodeID ID;
2031  TypenameType::Profile(ID, NNS, TemplateId);
2032
2033  void *InsertPos = 0;
2034  TypenameType *T
2035    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2036  if (T)
2037    return QualType(T, 0);
2038
2039  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2040  Types.push_back(T);
2041  TypenameTypes.InsertNode(T, InsertPos);
2042  return QualType(T, 0);
2043}
2044
2045QualType
2046ASTContext::getElaboratedType(QualType UnderlyingType,
2047                              ElaboratedType::TagKind Tag) {
2048  llvm::FoldingSetNodeID ID;
2049  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2050
2051  void *InsertPos = 0;
2052  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2053  if (T)
2054    return QualType(T, 0);
2055
2056  QualType Canon = getCanonicalType(UnderlyingType);
2057
2058  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2059  Types.push_back(T);
2060  ElaboratedTypes.InsertNode(T, InsertPos);
2061  return QualType(T, 0);
2062}
2063
2064/// CmpProtocolNames - Comparison predicate for sorting protocols
2065/// alphabetically.
2066static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2067                            const ObjCProtocolDecl *RHS) {
2068  return LHS->getDeclName() < RHS->getDeclName();
2069}
2070
2071static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2072                                unsigned NumProtocols) {
2073  if (NumProtocols == 0) return true;
2074
2075  for (unsigned i = 1; i != NumProtocols; ++i)
2076    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2077      return false;
2078  return true;
2079}
2080
2081static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2082                                   unsigned &NumProtocols) {
2083  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2084
2085  // Sort protocols, keyed by name.
2086  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2087
2088  // Remove duplicates.
2089  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2090  NumProtocols = ProtocolsEnd-Protocols;
2091}
2092
2093/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2094/// the given interface decl and the conforming protocol list.
2095QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2096                                              ObjCProtocolDecl **Protocols,
2097                                              unsigned NumProtocols) {
2098  llvm::FoldingSetNodeID ID;
2099  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2100
2101  void *InsertPos = 0;
2102  if (ObjCObjectPointerType *QT =
2103              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2104    return QualType(QT, 0);
2105
2106  // Sort the protocol list alphabetically to canonicalize it.
2107  QualType Canonical;
2108  if (!InterfaceT.isCanonical() ||
2109      !areSortedAndUniqued(Protocols, NumProtocols)) {
2110    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2111      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2112      unsigned UniqueCount = NumProtocols;
2113
2114      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2115      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2116
2117      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2118                                           &Sorted[0], UniqueCount);
2119    } else {
2120      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2121                                           Protocols, NumProtocols);
2122    }
2123
2124    // Regenerate InsertPos.
2125    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2126  }
2127
2128  // No Match;
2129  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2130    ObjCObjectPointerType(Canonical, InterfaceT, Protocols, NumProtocols);
2131
2132  Types.push_back(QType);
2133  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2134  return QualType(QType, 0);
2135}
2136
2137/// getObjCInterfaceType - Return the unique reference to the type for the
2138/// specified ObjC interface decl. The list of protocols is optional.
2139QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2140                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2141  llvm::FoldingSetNodeID ID;
2142  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2143
2144  void *InsertPos = 0;
2145  if (ObjCInterfaceType *QT =
2146      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2147    return QualType(QT, 0);
2148
2149  // Sort the protocol list alphabetically to canonicalize it.
2150  QualType Canonical;
2151  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2152    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2153    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2154
2155    unsigned UniqueCount = NumProtocols;
2156    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2157
2158    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2159
2160    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2161  }
2162
2163  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2164    ObjCInterfaceType(Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2165                      Protocols, NumProtocols);
2166
2167  Types.push_back(QType);
2168  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2169  return QualType(QType, 0);
2170}
2171
2172/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2173/// TypeOfExprType AST's (since expression's are never shared). For example,
2174/// multiple declarations that refer to "typeof(x)" all contain different
2175/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2176/// on canonical type's (which are always unique).
2177QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2178  TypeOfExprType *toe;
2179  if (tofExpr->isTypeDependent()) {
2180    llvm::FoldingSetNodeID ID;
2181    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2182
2183    void *InsertPos = 0;
2184    DependentTypeOfExprType *Canon
2185      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2186    if (Canon) {
2187      // We already have a "canonical" version of an identical, dependent
2188      // typeof(expr) type. Use that as our canonical type.
2189      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2190                                          QualType((TypeOfExprType*)Canon, 0));
2191    }
2192    else {
2193      // Build a new, canonical typeof(expr) type.
2194      Canon
2195        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2196      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2197      toe = Canon;
2198    }
2199  } else {
2200    QualType Canonical = getCanonicalType(tofExpr->getType());
2201    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2202  }
2203  Types.push_back(toe);
2204  return QualType(toe, 0);
2205}
2206
2207/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2208/// TypeOfType AST's. The only motivation to unique these nodes would be
2209/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2210/// an issue. This doesn't effect the type checker, since it operates
2211/// on canonical type's (which are always unique).
2212QualType ASTContext::getTypeOfType(QualType tofType) {
2213  QualType Canonical = getCanonicalType(tofType);
2214  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2215  Types.push_back(tot);
2216  return QualType(tot, 0);
2217}
2218
2219/// getDecltypeForExpr - Given an expr, will return the decltype for that
2220/// expression, according to the rules in C++0x [dcl.type.simple]p4
2221static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2222  if (e->isTypeDependent())
2223    return Context.DependentTy;
2224
2225  // If e is an id expression or a class member access, decltype(e) is defined
2226  // as the type of the entity named by e.
2227  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2228    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2229      return VD->getType();
2230  }
2231  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2232    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2233      return FD->getType();
2234  }
2235  // If e is a function call or an invocation of an overloaded operator,
2236  // (parentheses around e are ignored), decltype(e) is defined as the
2237  // return type of that function.
2238  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2239    return CE->getCallReturnType();
2240
2241  QualType T = e->getType();
2242
2243  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2244  // defined as T&, otherwise decltype(e) is defined as T.
2245  if (e->isLvalue(Context) == Expr::LV_Valid)
2246    T = Context.getLValueReferenceType(T);
2247
2248  return T;
2249}
2250
2251/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2252/// DecltypeType AST's. The only motivation to unique these nodes would be
2253/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2254/// an issue. This doesn't effect the type checker, since it operates
2255/// on canonical type's (which are always unique).
2256QualType ASTContext::getDecltypeType(Expr *e) {
2257  DecltypeType *dt;
2258  if (e->isTypeDependent()) {
2259    llvm::FoldingSetNodeID ID;
2260    DependentDecltypeType::Profile(ID, *this, e);
2261
2262    void *InsertPos = 0;
2263    DependentDecltypeType *Canon
2264      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2265    if (Canon) {
2266      // We already have a "canonical" version of an equivalent, dependent
2267      // decltype type. Use that as our canonical type.
2268      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2269                                       QualType((DecltypeType*)Canon, 0));
2270    }
2271    else {
2272      // Build a new, canonical typeof(expr) type.
2273      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2274      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2275      dt = Canon;
2276    }
2277  } else {
2278    QualType T = getDecltypeForExpr(e, *this);
2279    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2280  }
2281  Types.push_back(dt);
2282  return QualType(dt, 0);
2283}
2284
2285/// getTagDeclType - Return the unique reference to the type for the
2286/// specified TagDecl (struct/union/class/enum) decl.
2287QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2288  assert (Decl);
2289  // FIXME: What is the design on getTagDeclType when it requires casting
2290  // away const?  mutable?
2291  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2292}
2293
2294/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2295/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2296/// needs to agree with the definition in <stddef.h>.
2297CanQualType ASTContext::getSizeType() const {
2298  return getFromTargetType(Target.getSizeType());
2299}
2300
2301/// getSignedWCharType - Return the type of "signed wchar_t".
2302/// Used when in C++, as a GCC extension.
2303QualType ASTContext::getSignedWCharType() const {
2304  // FIXME: derive from "Target" ?
2305  return WCharTy;
2306}
2307
2308/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2309/// Used when in C++, as a GCC extension.
2310QualType ASTContext::getUnsignedWCharType() const {
2311  // FIXME: derive from "Target" ?
2312  return UnsignedIntTy;
2313}
2314
2315/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2316/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2317QualType ASTContext::getPointerDiffType() const {
2318  return getFromTargetType(Target.getPtrDiffType(0));
2319}
2320
2321//===----------------------------------------------------------------------===//
2322//                              Type Operators
2323//===----------------------------------------------------------------------===//
2324
2325CanQualType ASTContext::getCanonicalParamType(QualType T) {
2326  // Push qualifiers into arrays, and then discard any remaining
2327  // qualifiers.
2328  T = getCanonicalType(T);
2329  const Type *Ty = T.getTypePtr();
2330
2331  QualType Result;
2332  if (isa<ArrayType>(Ty)) {
2333    Result = getArrayDecayedType(QualType(Ty,0));
2334  } else if (isa<FunctionType>(Ty)) {
2335    Result = getPointerType(QualType(Ty, 0));
2336  } else {
2337    Result = QualType(Ty, 0);
2338  }
2339
2340  return CanQualType::CreateUnsafe(Result);
2341}
2342
2343/// getCanonicalType - Return the canonical (structural) type corresponding to
2344/// the specified potentially non-canonical type.  The non-canonical version
2345/// of a type may have many "decorated" versions of types.  Decorators can
2346/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2347/// to be free of any of these, allowing two canonical types to be compared
2348/// for exact equality with a simple pointer comparison.
2349CanQualType ASTContext::getCanonicalType(QualType T) {
2350  QualifierCollector Quals;
2351  const Type *Ptr = Quals.strip(T);
2352  QualType CanType = Ptr->getCanonicalTypeInternal();
2353
2354  // The canonical internal type will be the canonical type *except*
2355  // that we push type qualifiers down through array types.
2356
2357  // If there are no new qualifiers to push down, stop here.
2358  if (!Quals.hasQualifiers())
2359    return CanQualType::CreateUnsafe(CanType);
2360
2361  // If the type qualifiers are on an array type, get the canonical
2362  // type of the array with the qualifiers applied to the element
2363  // type.
2364  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2365  if (!AT)
2366    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2367
2368  // Get the canonical version of the element with the extra qualifiers on it.
2369  // This can recursively sink qualifiers through multiple levels of arrays.
2370  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2371  NewEltTy = getCanonicalType(NewEltTy);
2372
2373  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2374    return CanQualType::CreateUnsafe(
2375             getConstantArrayType(NewEltTy, CAT->getSize(),
2376                                  CAT->getSizeModifier(),
2377                                  CAT->getIndexTypeCVRQualifiers()));
2378  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2379    return CanQualType::CreateUnsafe(
2380             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2381                                    IAT->getIndexTypeCVRQualifiers()));
2382
2383  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2384    return CanQualType::CreateUnsafe(
2385             getDependentSizedArrayType(NewEltTy,
2386                                        DSAT->getSizeExpr() ?
2387                                          DSAT->getSizeExpr()->Retain() : 0,
2388                                        DSAT->getSizeModifier(),
2389                                        DSAT->getIndexTypeCVRQualifiers(),
2390                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2391
2392  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2393  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2394                                                        VAT->getSizeExpr() ?
2395                                              VAT->getSizeExpr()->Retain() : 0,
2396                                                        VAT->getSizeModifier(),
2397                                              VAT->getIndexTypeCVRQualifiers(),
2398                                                     VAT->getBracketsRange()));
2399}
2400
2401QualType ASTContext::getUnqualifiedArrayType(QualType T,
2402                                             Qualifiers &Quals) {
2403  Quals = T.getQualifiers();
2404  if (!isa<ArrayType>(T)) {
2405    return T.getUnqualifiedType();
2406  }
2407
2408  const ArrayType *AT = cast<ArrayType>(T);
2409  QualType Elt = AT->getElementType();
2410  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2411  if (Elt == UnqualElt)
2412    return T;
2413
2414  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2415    return getConstantArrayType(UnqualElt, CAT->getSize(),
2416                                CAT->getSizeModifier(), 0);
2417  }
2418
2419  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2420    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2421  }
2422
2423  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2424  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2425                                    DSAT->getSizeModifier(), 0,
2426                                    SourceRange());
2427}
2428
2429DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2430  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2431    return TD->getDeclName();
2432
2433  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2434    if (DTN->isIdentifier()) {
2435      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2436    } else {
2437      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2438    }
2439  }
2440
2441  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2442  assert(Storage);
2443  return (*Storage->begin())->getDeclName();
2444}
2445
2446TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2447  // If this template name refers to a template, the canonical
2448  // template name merely stores the template itself.
2449  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2450    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2451
2452  assert(!Name.getAsOverloadedTemplate());
2453
2454  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2455  assert(DTN && "Non-dependent template names must refer to template decls.");
2456  return DTN->CanonicalTemplateName;
2457}
2458
2459bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2460  X = getCanonicalTemplateName(X);
2461  Y = getCanonicalTemplateName(Y);
2462  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2463}
2464
2465TemplateArgument
2466ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2467  switch (Arg.getKind()) {
2468    case TemplateArgument::Null:
2469      return Arg;
2470
2471    case TemplateArgument::Expression:
2472      return Arg;
2473
2474    case TemplateArgument::Declaration:
2475      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2476
2477    case TemplateArgument::Template:
2478      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2479
2480    case TemplateArgument::Integral:
2481      return TemplateArgument(*Arg.getAsIntegral(),
2482                              getCanonicalType(Arg.getIntegralType()));
2483
2484    case TemplateArgument::Type:
2485      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2486
2487    case TemplateArgument::Pack: {
2488      // FIXME: Allocate in ASTContext
2489      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2490      unsigned Idx = 0;
2491      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2492                                        AEnd = Arg.pack_end();
2493           A != AEnd; (void)++A, ++Idx)
2494        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2495
2496      TemplateArgument Result;
2497      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2498      return Result;
2499    }
2500  }
2501
2502  // Silence GCC warning
2503  assert(false && "Unhandled template argument kind");
2504  return TemplateArgument();
2505}
2506
2507NestedNameSpecifier *
2508ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2509  if (!NNS)
2510    return 0;
2511
2512  switch (NNS->getKind()) {
2513  case NestedNameSpecifier::Identifier:
2514    // Canonicalize the prefix but keep the identifier the same.
2515    return NestedNameSpecifier::Create(*this,
2516                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2517                                       NNS->getAsIdentifier());
2518
2519  case NestedNameSpecifier::Namespace:
2520    // A namespace is canonical; build a nested-name-specifier with
2521    // this namespace and no prefix.
2522    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2523
2524  case NestedNameSpecifier::TypeSpec:
2525  case NestedNameSpecifier::TypeSpecWithTemplate: {
2526    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2527    return NestedNameSpecifier::Create(*this, 0,
2528                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2529                                       T.getTypePtr());
2530  }
2531
2532  case NestedNameSpecifier::Global:
2533    // The global specifier is canonical and unique.
2534    return NNS;
2535  }
2536
2537  // Required to silence a GCC warning
2538  return 0;
2539}
2540
2541
2542const ArrayType *ASTContext::getAsArrayType(QualType T) {
2543  // Handle the non-qualified case efficiently.
2544  if (!T.hasLocalQualifiers()) {
2545    // Handle the common positive case fast.
2546    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2547      return AT;
2548  }
2549
2550  // Handle the common negative case fast.
2551  QualType CType = T->getCanonicalTypeInternal();
2552  if (!isa<ArrayType>(CType))
2553    return 0;
2554
2555  // Apply any qualifiers from the array type to the element type.  This
2556  // implements C99 6.7.3p8: "If the specification of an array type includes
2557  // any type qualifiers, the element type is so qualified, not the array type."
2558
2559  // If we get here, we either have type qualifiers on the type, or we have
2560  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2561  // we must propagate them down into the element type.
2562
2563  QualifierCollector Qs;
2564  const Type *Ty = Qs.strip(T.getDesugaredType());
2565
2566  // If we have a simple case, just return now.
2567  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2568  if (ATy == 0 || Qs.empty())
2569    return ATy;
2570
2571  // Otherwise, we have an array and we have qualifiers on it.  Push the
2572  // qualifiers into the array element type and return a new array type.
2573  // Get the canonical version of the element with the extra qualifiers on it.
2574  // This can recursively sink qualifiers through multiple levels of arrays.
2575  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2576
2577  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2578    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2579                                                CAT->getSizeModifier(),
2580                                           CAT->getIndexTypeCVRQualifiers()));
2581  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2582    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2583                                                  IAT->getSizeModifier(),
2584                                           IAT->getIndexTypeCVRQualifiers()));
2585
2586  if (const DependentSizedArrayType *DSAT
2587        = dyn_cast<DependentSizedArrayType>(ATy))
2588    return cast<ArrayType>(
2589                     getDependentSizedArrayType(NewEltTy,
2590                                                DSAT->getSizeExpr() ?
2591                                              DSAT->getSizeExpr()->Retain() : 0,
2592                                                DSAT->getSizeModifier(),
2593                                              DSAT->getIndexTypeCVRQualifiers(),
2594                                                DSAT->getBracketsRange()));
2595
2596  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2597  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2598                                              VAT->getSizeExpr() ?
2599                                              VAT->getSizeExpr()->Retain() : 0,
2600                                              VAT->getSizeModifier(),
2601                                              VAT->getIndexTypeCVRQualifiers(),
2602                                              VAT->getBracketsRange()));
2603}
2604
2605
2606/// getArrayDecayedType - Return the properly qualified result of decaying the
2607/// specified array type to a pointer.  This operation is non-trivial when
2608/// handling typedefs etc.  The canonical type of "T" must be an array type,
2609/// this returns a pointer to a properly qualified element of the array.
2610///
2611/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2612QualType ASTContext::getArrayDecayedType(QualType Ty) {
2613  // Get the element type with 'getAsArrayType' so that we don't lose any
2614  // typedefs in the element type of the array.  This also handles propagation
2615  // of type qualifiers from the array type into the element type if present
2616  // (C99 6.7.3p8).
2617  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2618  assert(PrettyArrayType && "Not an array type!");
2619
2620  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2621
2622  // int x[restrict 4] ->  int *restrict
2623  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2624}
2625
2626QualType ASTContext::getBaseElementType(QualType QT) {
2627  QualifierCollector Qs;
2628  while (true) {
2629    const Type *UT = Qs.strip(QT);
2630    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2631      QT = AT->getElementType();
2632    } else {
2633      return Qs.apply(QT);
2634    }
2635  }
2636}
2637
2638QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2639  QualType ElemTy = AT->getElementType();
2640
2641  if (const ArrayType *AT = getAsArrayType(ElemTy))
2642    return getBaseElementType(AT);
2643
2644  return ElemTy;
2645}
2646
2647/// getConstantArrayElementCount - Returns number of constant array elements.
2648uint64_t
2649ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2650  uint64_t ElementCount = 1;
2651  do {
2652    ElementCount *= CA->getSize().getZExtValue();
2653    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2654  } while (CA);
2655  return ElementCount;
2656}
2657
2658/// getFloatingRank - Return a relative rank for floating point types.
2659/// This routine will assert if passed a built-in type that isn't a float.
2660static FloatingRank getFloatingRank(QualType T) {
2661  if (const ComplexType *CT = T->getAs<ComplexType>())
2662    return getFloatingRank(CT->getElementType());
2663
2664  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2665  switch (T->getAs<BuiltinType>()->getKind()) {
2666  default: assert(0 && "getFloatingRank(): not a floating type");
2667  case BuiltinType::Float:      return FloatRank;
2668  case BuiltinType::Double:     return DoubleRank;
2669  case BuiltinType::LongDouble: return LongDoubleRank;
2670  }
2671}
2672
2673/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2674/// point or a complex type (based on typeDomain/typeSize).
2675/// 'typeDomain' is a real floating point or complex type.
2676/// 'typeSize' is a real floating point or complex type.
2677QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2678                                                       QualType Domain) const {
2679  FloatingRank EltRank = getFloatingRank(Size);
2680  if (Domain->isComplexType()) {
2681    switch (EltRank) {
2682    default: assert(0 && "getFloatingRank(): illegal value for rank");
2683    case FloatRank:      return FloatComplexTy;
2684    case DoubleRank:     return DoubleComplexTy;
2685    case LongDoubleRank: return LongDoubleComplexTy;
2686    }
2687  }
2688
2689  assert(Domain->isRealFloatingType() && "Unknown domain!");
2690  switch (EltRank) {
2691  default: assert(0 && "getFloatingRank(): illegal value for rank");
2692  case FloatRank:      return FloatTy;
2693  case DoubleRank:     return DoubleTy;
2694  case LongDoubleRank: return LongDoubleTy;
2695  }
2696}
2697
2698/// getFloatingTypeOrder - Compare the rank of the two specified floating
2699/// point types, ignoring the domain of the type (i.e. 'double' ==
2700/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2701/// LHS < RHS, return -1.
2702int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2703  FloatingRank LHSR = getFloatingRank(LHS);
2704  FloatingRank RHSR = getFloatingRank(RHS);
2705
2706  if (LHSR == RHSR)
2707    return 0;
2708  if (LHSR > RHSR)
2709    return 1;
2710  return -1;
2711}
2712
2713/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2714/// routine will assert if passed a built-in type that isn't an integer or enum,
2715/// or if it is not canonicalized.
2716unsigned ASTContext::getIntegerRank(Type *T) {
2717  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2718  if (EnumType* ET = dyn_cast<EnumType>(T))
2719    T = ET->getDecl()->getPromotionType().getTypePtr();
2720
2721  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2722    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2723
2724  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2725    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2726
2727  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2728    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2729
2730  switch (cast<BuiltinType>(T)->getKind()) {
2731  default: assert(0 && "getIntegerRank(): not a built-in integer");
2732  case BuiltinType::Bool:
2733    return 1 + (getIntWidth(BoolTy) << 3);
2734  case BuiltinType::Char_S:
2735  case BuiltinType::Char_U:
2736  case BuiltinType::SChar:
2737  case BuiltinType::UChar:
2738    return 2 + (getIntWidth(CharTy) << 3);
2739  case BuiltinType::Short:
2740  case BuiltinType::UShort:
2741    return 3 + (getIntWidth(ShortTy) << 3);
2742  case BuiltinType::Int:
2743  case BuiltinType::UInt:
2744    return 4 + (getIntWidth(IntTy) << 3);
2745  case BuiltinType::Long:
2746  case BuiltinType::ULong:
2747    return 5 + (getIntWidth(LongTy) << 3);
2748  case BuiltinType::LongLong:
2749  case BuiltinType::ULongLong:
2750    return 6 + (getIntWidth(LongLongTy) << 3);
2751  case BuiltinType::Int128:
2752  case BuiltinType::UInt128:
2753    return 7 + (getIntWidth(Int128Ty) << 3);
2754  }
2755}
2756
2757/// \brief Whether this is a promotable bitfield reference according
2758/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2759///
2760/// \returns the type this bit-field will promote to, or NULL if no
2761/// promotion occurs.
2762QualType ASTContext::isPromotableBitField(Expr *E) {
2763  FieldDecl *Field = E->getBitField();
2764  if (!Field)
2765    return QualType();
2766
2767  QualType FT = Field->getType();
2768
2769  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2770  uint64_t BitWidth = BitWidthAP.getZExtValue();
2771  uint64_t IntSize = getTypeSize(IntTy);
2772  // GCC extension compatibility: if the bit-field size is less than or equal
2773  // to the size of int, it gets promoted no matter what its type is.
2774  // For instance, unsigned long bf : 4 gets promoted to signed int.
2775  if (BitWidth < IntSize)
2776    return IntTy;
2777
2778  if (BitWidth == IntSize)
2779    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2780
2781  // Types bigger than int are not subject to promotions, and therefore act
2782  // like the base type.
2783  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2784  // is ridiculous.
2785  return QualType();
2786}
2787
2788/// getPromotedIntegerType - Returns the type that Promotable will
2789/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2790/// integer type.
2791QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2792  assert(!Promotable.isNull());
2793  assert(Promotable->isPromotableIntegerType());
2794  if (const EnumType *ET = Promotable->getAs<EnumType>())
2795    return ET->getDecl()->getPromotionType();
2796  if (Promotable->isSignedIntegerType())
2797    return IntTy;
2798  uint64_t PromotableSize = getTypeSize(Promotable);
2799  uint64_t IntSize = getTypeSize(IntTy);
2800  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2801  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2802}
2803
2804/// getIntegerTypeOrder - Returns the highest ranked integer type:
2805/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2806/// LHS < RHS, return -1.
2807int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2808  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2809  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2810  if (LHSC == RHSC) return 0;
2811
2812  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2813  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2814
2815  unsigned LHSRank = getIntegerRank(LHSC);
2816  unsigned RHSRank = getIntegerRank(RHSC);
2817
2818  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2819    if (LHSRank == RHSRank) return 0;
2820    return LHSRank > RHSRank ? 1 : -1;
2821  }
2822
2823  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2824  if (LHSUnsigned) {
2825    // If the unsigned [LHS] type is larger, return it.
2826    if (LHSRank >= RHSRank)
2827      return 1;
2828
2829    // If the signed type can represent all values of the unsigned type, it
2830    // wins.  Because we are dealing with 2's complement and types that are
2831    // powers of two larger than each other, this is always safe.
2832    return -1;
2833  }
2834
2835  // If the unsigned [RHS] type is larger, return it.
2836  if (RHSRank >= LHSRank)
2837    return -1;
2838
2839  // If the signed type can represent all values of the unsigned type, it
2840  // wins.  Because we are dealing with 2's complement and types that are
2841  // powers of two larger than each other, this is always safe.
2842  return 1;
2843}
2844
2845static RecordDecl *
2846CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2847                 SourceLocation L, IdentifierInfo *Id) {
2848  if (Ctx.getLangOptions().CPlusPlus)
2849    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2850  else
2851    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2852}
2853
2854// getCFConstantStringType - Return the type used for constant CFStrings.
2855QualType ASTContext::getCFConstantStringType() {
2856  if (!CFConstantStringTypeDecl) {
2857    CFConstantStringTypeDecl =
2858      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2859                       &Idents.get("NSConstantString"));
2860
2861    QualType FieldTypes[4];
2862
2863    // const int *isa;
2864    FieldTypes[0] = getPointerType(IntTy.withConst());
2865    // int flags;
2866    FieldTypes[1] = IntTy;
2867    // const char *str;
2868    FieldTypes[2] = getPointerType(CharTy.withConst());
2869    // long length;
2870    FieldTypes[3] = LongTy;
2871
2872    // Create fields
2873    for (unsigned i = 0; i < 4; ++i) {
2874      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2875                                           SourceLocation(), 0,
2876                                           FieldTypes[i], /*TInfo=*/0,
2877                                           /*BitWidth=*/0,
2878                                           /*Mutable=*/false);
2879      CFConstantStringTypeDecl->addDecl(Field);
2880    }
2881
2882    CFConstantStringTypeDecl->completeDefinition(*this);
2883  }
2884
2885  return getTagDeclType(CFConstantStringTypeDecl);
2886}
2887
2888void ASTContext::setCFConstantStringType(QualType T) {
2889  const RecordType *Rec = T->getAs<RecordType>();
2890  assert(Rec && "Invalid CFConstantStringType");
2891  CFConstantStringTypeDecl = Rec->getDecl();
2892}
2893
2894QualType ASTContext::getObjCFastEnumerationStateType() {
2895  if (!ObjCFastEnumerationStateTypeDecl) {
2896    ObjCFastEnumerationStateTypeDecl =
2897      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2898                       &Idents.get("__objcFastEnumerationState"));
2899
2900    QualType FieldTypes[] = {
2901      UnsignedLongTy,
2902      getPointerType(ObjCIdTypedefType),
2903      getPointerType(UnsignedLongTy),
2904      getConstantArrayType(UnsignedLongTy,
2905                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2906    };
2907
2908    for (size_t i = 0; i < 4; ++i) {
2909      FieldDecl *Field = FieldDecl::Create(*this,
2910                                           ObjCFastEnumerationStateTypeDecl,
2911                                           SourceLocation(), 0,
2912                                           FieldTypes[i], /*TInfo=*/0,
2913                                           /*BitWidth=*/0,
2914                                           /*Mutable=*/false);
2915      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2916    }
2917
2918    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2919  }
2920
2921  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2922}
2923
2924QualType ASTContext::getBlockDescriptorType() {
2925  if (BlockDescriptorType)
2926    return getTagDeclType(BlockDescriptorType);
2927
2928  RecordDecl *T;
2929  // FIXME: Needs the FlagAppleBlock bit.
2930  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2931                       &Idents.get("__block_descriptor"));
2932
2933  QualType FieldTypes[] = {
2934    UnsignedLongTy,
2935    UnsignedLongTy,
2936  };
2937
2938  const char *FieldNames[] = {
2939    "reserved",
2940    "Size"
2941  };
2942
2943  for (size_t i = 0; i < 2; ++i) {
2944    FieldDecl *Field = FieldDecl::Create(*this,
2945                                         T,
2946                                         SourceLocation(),
2947                                         &Idents.get(FieldNames[i]),
2948                                         FieldTypes[i], /*TInfo=*/0,
2949                                         /*BitWidth=*/0,
2950                                         /*Mutable=*/false);
2951    T->addDecl(Field);
2952  }
2953
2954  T->completeDefinition(*this);
2955
2956  BlockDescriptorType = T;
2957
2958  return getTagDeclType(BlockDescriptorType);
2959}
2960
2961void ASTContext::setBlockDescriptorType(QualType T) {
2962  const RecordType *Rec = T->getAs<RecordType>();
2963  assert(Rec && "Invalid BlockDescriptorType");
2964  BlockDescriptorType = Rec->getDecl();
2965}
2966
2967QualType ASTContext::getBlockDescriptorExtendedType() {
2968  if (BlockDescriptorExtendedType)
2969    return getTagDeclType(BlockDescriptorExtendedType);
2970
2971  RecordDecl *T;
2972  // FIXME: Needs the FlagAppleBlock bit.
2973  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2974                       &Idents.get("__block_descriptor_withcopydispose"));
2975
2976  QualType FieldTypes[] = {
2977    UnsignedLongTy,
2978    UnsignedLongTy,
2979    getPointerType(VoidPtrTy),
2980    getPointerType(VoidPtrTy)
2981  };
2982
2983  const char *FieldNames[] = {
2984    "reserved",
2985    "Size",
2986    "CopyFuncPtr",
2987    "DestroyFuncPtr"
2988  };
2989
2990  for (size_t i = 0; i < 4; ++i) {
2991    FieldDecl *Field = FieldDecl::Create(*this,
2992                                         T,
2993                                         SourceLocation(),
2994                                         &Idents.get(FieldNames[i]),
2995                                         FieldTypes[i], /*TInfo=*/0,
2996                                         /*BitWidth=*/0,
2997                                         /*Mutable=*/false);
2998    T->addDecl(Field);
2999  }
3000
3001  T->completeDefinition(*this);
3002
3003  BlockDescriptorExtendedType = T;
3004
3005  return getTagDeclType(BlockDescriptorExtendedType);
3006}
3007
3008void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3009  const RecordType *Rec = T->getAs<RecordType>();
3010  assert(Rec && "Invalid BlockDescriptorType");
3011  BlockDescriptorExtendedType = Rec->getDecl();
3012}
3013
3014bool ASTContext::BlockRequiresCopying(QualType Ty) {
3015  if (Ty->isBlockPointerType())
3016    return true;
3017  if (isObjCNSObjectType(Ty))
3018    return true;
3019  if (Ty->isObjCObjectPointerType())
3020    return true;
3021  return false;
3022}
3023
3024QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3025  //  type = struct __Block_byref_1_X {
3026  //    void *__isa;
3027  //    struct __Block_byref_1_X *__forwarding;
3028  //    unsigned int __flags;
3029  //    unsigned int __size;
3030  //    void *__copy_helper;		// as needed
3031  //    void *__destroy_help		// as needed
3032  //    int X;
3033  //  } *
3034
3035  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3036
3037  // FIXME: Move up
3038  static unsigned int UniqueBlockByRefTypeID = 0;
3039  llvm::SmallString<36> Name;
3040  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3041                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3042  RecordDecl *T;
3043  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3044                       &Idents.get(Name.str()));
3045  T->startDefinition();
3046  QualType Int32Ty = IntTy;
3047  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3048  QualType FieldTypes[] = {
3049    getPointerType(VoidPtrTy),
3050    getPointerType(getTagDeclType(T)),
3051    Int32Ty,
3052    Int32Ty,
3053    getPointerType(VoidPtrTy),
3054    getPointerType(VoidPtrTy),
3055    Ty
3056  };
3057
3058  const char *FieldNames[] = {
3059    "__isa",
3060    "__forwarding",
3061    "__flags",
3062    "__size",
3063    "__copy_helper",
3064    "__destroy_helper",
3065    DeclName,
3066  };
3067
3068  for (size_t i = 0; i < 7; ++i) {
3069    if (!HasCopyAndDispose && i >=4 && i <= 5)
3070      continue;
3071    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3072                                         &Idents.get(FieldNames[i]),
3073                                         FieldTypes[i], /*TInfo=*/0,
3074                                         /*BitWidth=*/0, /*Mutable=*/false);
3075    T->addDecl(Field);
3076  }
3077
3078  T->completeDefinition(*this);
3079
3080  return getPointerType(getTagDeclType(T));
3081}
3082
3083
3084QualType ASTContext::getBlockParmType(
3085  bool BlockHasCopyDispose,
3086  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3087  // FIXME: Move up
3088  static unsigned int UniqueBlockParmTypeID = 0;
3089  llvm::SmallString<36> Name;
3090  llvm::raw_svector_ostream(Name) << "__block_literal_"
3091                                  << ++UniqueBlockParmTypeID;
3092  RecordDecl *T;
3093  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3094                       &Idents.get(Name.str()));
3095  QualType FieldTypes[] = {
3096    getPointerType(VoidPtrTy),
3097    IntTy,
3098    IntTy,
3099    getPointerType(VoidPtrTy),
3100    (BlockHasCopyDispose ?
3101     getPointerType(getBlockDescriptorExtendedType()) :
3102     getPointerType(getBlockDescriptorType()))
3103  };
3104
3105  const char *FieldNames[] = {
3106    "__isa",
3107    "__flags",
3108    "__reserved",
3109    "__FuncPtr",
3110    "__descriptor"
3111  };
3112
3113  for (size_t i = 0; i < 5; ++i) {
3114    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3115                                         &Idents.get(FieldNames[i]),
3116                                         FieldTypes[i], /*TInfo=*/0,
3117                                         /*BitWidth=*/0, /*Mutable=*/false);
3118    T->addDecl(Field);
3119  }
3120
3121  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3122    const Expr *E = BlockDeclRefDecls[i];
3123    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3124    clang::IdentifierInfo *Name = 0;
3125    if (BDRE) {
3126      const ValueDecl *D = BDRE->getDecl();
3127      Name = &Idents.get(D->getName());
3128    }
3129    QualType FieldType = E->getType();
3130
3131    if (BDRE && BDRE->isByRef())
3132      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3133                                 FieldType);
3134
3135    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3136                                         Name, FieldType, /*TInfo=*/0,
3137                                         /*BitWidth=*/0, /*Mutable=*/false);
3138    T->addDecl(Field);
3139  }
3140
3141  T->completeDefinition(*this);
3142
3143  return getPointerType(getTagDeclType(T));
3144}
3145
3146void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3147  const RecordType *Rec = T->getAs<RecordType>();
3148  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3149  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3150}
3151
3152// This returns true if a type has been typedefed to BOOL:
3153// typedef <type> BOOL;
3154static bool isTypeTypedefedAsBOOL(QualType T) {
3155  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3156    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3157      return II->isStr("BOOL");
3158
3159  return false;
3160}
3161
3162/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3163/// purpose.
3164CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3165  CharUnits sz = getTypeSizeInChars(type);
3166
3167  // Make all integer and enum types at least as large as an int
3168  if (sz.isPositive() && type->isIntegralType())
3169    sz = std::max(sz, getTypeSizeInChars(IntTy));
3170  // Treat arrays as pointers, since that's how they're passed in.
3171  else if (type->isArrayType())
3172    sz = getTypeSizeInChars(VoidPtrTy);
3173  return sz;
3174}
3175
3176static inline
3177std::string charUnitsToString(const CharUnits &CU) {
3178  return llvm::itostr(CU.getQuantity());
3179}
3180
3181/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3182/// declaration.
3183void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3184                                             std::string& S) {
3185  const BlockDecl *Decl = Expr->getBlockDecl();
3186  QualType BlockTy =
3187      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3188  // Encode result type.
3189  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3190  // Compute size of all parameters.
3191  // Start with computing size of a pointer in number of bytes.
3192  // FIXME: There might(should) be a better way of doing this computation!
3193  SourceLocation Loc;
3194  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3195  CharUnits ParmOffset = PtrSize;
3196  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3197       E = Decl->param_end(); PI != E; ++PI) {
3198    QualType PType = (*PI)->getType();
3199    CharUnits sz = getObjCEncodingTypeSize(PType);
3200    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3201    ParmOffset += sz;
3202  }
3203  // Size of the argument frame
3204  S += charUnitsToString(ParmOffset);
3205  // Block pointer and offset.
3206  S += "@?0";
3207  ParmOffset = PtrSize;
3208
3209  // Argument types.
3210  ParmOffset = PtrSize;
3211  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3212       Decl->param_end(); PI != E; ++PI) {
3213    ParmVarDecl *PVDecl = *PI;
3214    QualType PType = PVDecl->getOriginalType();
3215    if (const ArrayType *AT =
3216          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3217      // Use array's original type only if it has known number of
3218      // elements.
3219      if (!isa<ConstantArrayType>(AT))
3220        PType = PVDecl->getType();
3221    } else if (PType->isFunctionType())
3222      PType = PVDecl->getType();
3223    getObjCEncodingForType(PType, S);
3224    S += charUnitsToString(ParmOffset);
3225    ParmOffset += getObjCEncodingTypeSize(PType);
3226  }
3227}
3228
3229/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3230/// declaration.
3231void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3232                                              std::string& S) {
3233  // FIXME: This is not very efficient.
3234  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3235  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3236  // Encode result type.
3237  getObjCEncodingForType(Decl->getResultType(), S);
3238  // Compute size of all parameters.
3239  // Start with computing size of a pointer in number of bytes.
3240  // FIXME: There might(should) be a better way of doing this computation!
3241  SourceLocation Loc;
3242  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3243  // The first two arguments (self and _cmd) are pointers; account for
3244  // their size.
3245  CharUnits ParmOffset = 2 * PtrSize;
3246  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3247       E = Decl->param_end(); PI != E; ++PI) {
3248    QualType PType = (*PI)->getType();
3249    CharUnits sz = getObjCEncodingTypeSize(PType);
3250    assert (sz.isPositive() &&
3251        "getObjCEncodingForMethodDecl - Incomplete param type");
3252    ParmOffset += sz;
3253  }
3254  S += charUnitsToString(ParmOffset);
3255  S += "@0:";
3256  S += charUnitsToString(PtrSize);
3257
3258  // Argument types.
3259  ParmOffset = 2 * PtrSize;
3260  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3261       E = Decl->param_end(); PI != E; ++PI) {
3262    ParmVarDecl *PVDecl = *PI;
3263    QualType PType = PVDecl->getOriginalType();
3264    if (const ArrayType *AT =
3265          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3266      // Use array's original type only if it has known number of
3267      // elements.
3268      if (!isa<ConstantArrayType>(AT))
3269        PType = PVDecl->getType();
3270    } else if (PType->isFunctionType())
3271      PType = PVDecl->getType();
3272    // Process argument qualifiers for user supplied arguments; such as,
3273    // 'in', 'inout', etc.
3274    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3275    getObjCEncodingForType(PType, S);
3276    S += charUnitsToString(ParmOffset);
3277    ParmOffset += getObjCEncodingTypeSize(PType);
3278  }
3279}
3280
3281/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3282/// property declaration. If non-NULL, Container must be either an
3283/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3284/// NULL when getting encodings for protocol properties.
3285/// Property attributes are stored as a comma-delimited C string. The simple
3286/// attributes readonly and bycopy are encoded as single characters. The
3287/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3288/// encoded as single characters, followed by an identifier. Property types
3289/// are also encoded as a parametrized attribute. The characters used to encode
3290/// these attributes are defined by the following enumeration:
3291/// @code
3292/// enum PropertyAttributes {
3293/// kPropertyReadOnly = 'R',   // property is read-only.
3294/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3295/// kPropertyByref = '&',  // property is a reference to the value last assigned
3296/// kPropertyDynamic = 'D',    // property is dynamic
3297/// kPropertyGetter = 'G',     // followed by getter selector name
3298/// kPropertySetter = 'S',     // followed by setter selector name
3299/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3300/// kPropertyType = 't'              // followed by old-style type encoding.
3301/// kPropertyWeak = 'W'              // 'weak' property
3302/// kPropertyStrong = 'P'            // property GC'able
3303/// kPropertyNonAtomic = 'N'         // property non-atomic
3304/// };
3305/// @endcode
3306void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3307                                                const Decl *Container,
3308                                                std::string& S) {
3309  // Collect information from the property implementation decl(s).
3310  bool Dynamic = false;
3311  ObjCPropertyImplDecl *SynthesizePID = 0;
3312
3313  // FIXME: Duplicated code due to poor abstraction.
3314  if (Container) {
3315    if (const ObjCCategoryImplDecl *CID =
3316        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3317      for (ObjCCategoryImplDecl::propimpl_iterator
3318             i = CID->propimpl_begin(), e = CID->propimpl_end();
3319           i != e; ++i) {
3320        ObjCPropertyImplDecl *PID = *i;
3321        if (PID->getPropertyDecl() == PD) {
3322          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3323            Dynamic = true;
3324          } else {
3325            SynthesizePID = PID;
3326          }
3327        }
3328      }
3329    } else {
3330      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3331      for (ObjCCategoryImplDecl::propimpl_iterator
3332             i = OID->propimpl_begin(), e = OID->propimpl_end();
3333           i != e; ++i) {
3334        ObjCPropertyImplDecl *PID = *i;
3335        if (PID->getPropertyDecl() == PD) {
3336          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3337            Dynamic = true;
3338          } else {
3339            SynthesizePID = PID;
3340          }
3341        }
3342      }
3343    }
3344  }
3345
3346  // FIXME: This is not very efficient.
3347  S = "T";
3348
3349  // Encode result type.
3350  // GCC has some special rules regarding encoding of properties which
3351  // closely resembles encoding of ivars.
3352  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3353                             true /* outermost type */,
3354                             true /* encoding for property */);
3355
3356  if (PD->isReadOnly()) {
3357    S += ",R";
3358  } else {
3359    switch (PD->getSetterKind()) {
3360    case ObjCPropertyDecl::Assign: break;
3361    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3362    case ObjCPropertyDecl::Retain: S += ",&"; break;
3363    }
3364  }
3365
3366  // It really isn't clear at all what this means, since properties
3367  // are "dynamic by default".
3368  if (Dynamic)
3369    S += ",D";
3370
3371  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3372    S += ",N";
3373
3374  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3375    S += ",G";
3376    S += PD->getGetterName().getAsString();
3377  }
3378
3379  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3380    S += ",S";
3381    S += PD->getSetterName().getAsString();
3382  }
3383
3384  if (SynthesizePID) {
3385    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3386    S += ",V";
3387    S += OID->getNameAsString();
3388  }
3389
3390  // FIXME: OBJCGC: weak & strong
3391}
3392
3393/// getLegacyIntegralTypeEncoding -
3394/// Another legacy compatibility encoding: 32-bit longs are encoded as
3395/// 'l' or 'L' , but not always.  For typedefs, we need to use
3396/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3397///
3398void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3399  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3400    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3401      if (BT->getKind() == BuiltinType::ULong &&
3402          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3403        PointeeTy = UnsignedIntTy;
3404      else
3405        if (BT->getKind() == BuiltinType::Long &&
3406            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3407          PointeeTy = IntTy;
3408    }
3409  }
3410}
3411
3412void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3413                                        const FieldDecl *Field) {
3414  // We follow the behavior of gcc, expanding structures which are
3415  // directly pointed to, and expanding embedded structures. Note that
3416  // these rules are sufficient to prevent recursive encoding of the
3417  // same type.
3418  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3419                             true /* outermost type */);
3420}
3421
3422static void EncodeBitField(const ASTContext *Context, std::string& S,
3423                           const FieldDecl *FD) {
3424  const Expr *E = FD->getBitWidth();
3425  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3426  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3427  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3428  S += 'b';
3429  S += llvm::utostr(N);
3430}
3431
3432// FIXME: Use SmallString for accumulating string.
3433void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3434                                            bool ExpandPointedToStructures,
3435                                            bool ExpandStructures,
3436                                            const FieldDecl *FD,
3437                                            bool OutermostType,
3438                                            bool EncodingProperty) {
3439  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3440    if (FD && FD->isBitField())
3441      return EncodeBitField(this, S, FD);
3442    char encoding;
3443    switch (BT->getKind()) {
3444    default: assert(0 && "Unhandled builtin type kind");
3445    case BuiltinType::Void:       encoding = 'v'; break;
3446    case BuiltinType::Bool:       encoding = 'B'; break;
3447    case BuiltinType::Char_U:
3448    case BuiltinType::UChar:      encoding = 'C'; break;
3449    case BuiltinType::UShort:     encoding = 'S'; break;
3450    case BuiltinType::UInt:       encoding = 'I'; break;
3451    case BuiltinType::ULong:
3452        encoding =
3453          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3454        break;
3455    case BuiltinType::UInt128:    encoding = 'T'; break;
3456    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3457    case BuiltinType::Char_S:
3458    case BuiltinType::SChar:      encoding = 'c'; break;
3459    case BuiltinType::Short:      encoding = 's'; break;
3460    case BuiltinType::Int:        encoding = 'i'; break;
3461    case BuiltinType::Long:
3462      encoding =
3463        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3464      break;
3465    case BuiltinType::LongLong:   encoding = 'q'; break;
3466    case BuiltinType::Int128:     encoding = 't'; break;
3467    case BuiltinType::Float:      encoding = 'f'; break;
3468    case BuiltinType::Double:     encoding = 'd'; break;
3469    case BuiltinType::LongDouble: encoding = 'd'; break;
3470    }
3471
3472    S += encoding;
3473    return;
3474  }
3475
3476  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3477    S += 'j';
3478    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3479                               false);
3480    return;
3481  }
3482
3483  if (const PointerType *PT = T->getAs<PointerType>()) {
3484    if (PT->isObjCSelType()) {
3485      S += ':';
3486      return;
3487    }
3488    QualType PointeeTy = PT->getPointeeType();
3489
3490    bool isReadOnly = false;
3491    // For historical/compatibility reasons, the read-only qualifier of the
3492    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3493    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3494    // Also, do not emit the 'r' for anything but the outermost type!
3495    if (isa<TypedefType>(T.getTypePtr())) {
3496      if (OutermostType && T.isConstQualified()) {
3497        isReadOnly = true;
3498        S += 'r';
3499      }
3500    } else if (OutermostType) {
3501      QualType P = PointeeTy;
3502      while (P->getAs<PointerType>())
3503        P = P->getAs<PointerType>()->getPointeeType();
3504      if (P.isConstQualified()) {
3505        isReadOnly = true;
3506        S += 'r';
3507      }
3508    }
3509    if (isReadOnly) {
3510      // Another legacy compatibility encoding. Some ObjC qualifier and type
3511      // combinations need to be rearranged.
3512      // Rewrite "in const" from "nr" to "rn"
3513      const char * s = S.c_str();
3514      int len = S.length();
3515      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3516        std::string replace = "rn";
3517        S.replace(S.end()-2, S.end(), replace);
3518      }
3519    }
3520
3521    if (PointeeTy->isCharType()) {
3522      // char pointer types should be encoded as '*' unless it is a
3523      // type that has been typedef'd to 'BOOL'.
3524      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3525        S += '*';
3526        return;
3527      }
3528    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3529      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3530      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3531        S += '#';
3532        return;
3533      }
3534      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3535      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3536        S += '@';
3537        return;
3538      }
3539      // fall through...
3540    }
3541    S += '^';
3542    getLegacyIntegralTypeEncoding(PointeeTy);
3543
3544    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3545                               NULL);
3546    return;
3547  }
3548
3549  if (const ArrayType *AT =
3550      // Ignore type qualifiers etc.
3551        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3552    if (isa<IncompleteArrayType>(AT)) {
3553      // Incomplete arrays are encoded as a pointer to the array element.
3554      S += '^';
3555
3556      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3557                                 false, ExpandStructures, FD);
3558    } else {
3559      S += '[';
3560
3561      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3562        S += llvm::utostr(CAT->getSize().getZExtValue());
3563      else {
3564        //Variable length arrays are encoded as a regular array with 0 elements.
3565        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3566        S += '0';
3567      }
3568
3569      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3570                                 false, ExpandStructures, FD);
3571      S += ']';
3572    }
3573    return;
3574  }
3575
3576  if (T->getAs<FunctionType>()) {
3577    S += '?';
3578    return;
3579  }
3580
3581  if (const RecordType *RTy = T->getAs<RecordType>()) {
3582    RecordDecl *RDecl = RTy->getDecl();
3583    S += RDecl->isUnion() ? '(' : '{';
3584    // Anonymous structures print as '?'
3585    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3586      S += II->getName();
3587    } else {
3588      S += '?';
3589    }
3590    if (ExpandStructures) {
3591      S += '=';
3592      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3593                                   FieldEnd = RDecl->field_end();
3594           Field != FieldEnd; ++Field) {
3595        if (FD) {
3596          S += '"';
3597          S += Field->getNameAsString();
3598          S += '"';
3599        }
3600
3601        // Special case bit-fields.
3602        if (Field->isBitField()) {
3603          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3604                                     (*Field));
3605        } else {
3606          QualType qt = Field->getType();
3607          getLegacyIntegralTypeEncoding(qt);
3608          getObjCEncodingForTypeImpl(qt, S, false, true,
3609                                     FD);
3610        }
3611      }
3612    }
3613    S += RDecl->isUnion() ? ')' : '}';
3614    return;
3615  }
3616
3617  if (T->isEnumeralType()) {
3618    if (FD && FD->isBitField())
3619      EncodeBitField(this, S, FD);
3620    else
3621      S += 'i';
3622    return;
3623  }
3624
3625  if (T->isBlockPointerType()) {
3626    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3627    return;
3628  }
3629
3630  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3631    // @encode(class_name)
3632    ObjCInterfaceDecl *OI = OIT->getDecl();
3633    S += '{';
3634    const IdentifierInfo *II = OI->getIdentifier();
3635    S += II->getName();
3636    S += '=';
3637    llvm::SmallVector<FieldDecl*, 32> RecFields;
3638    CollectObjCIvars(OI, RecFields);
3639    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3640      if (RecFields[i]->isBitField())
3641        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3642                                   RecFields[i]);
3643      else
3644        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3645                                   FD);
3646    }
3647    S += '}';
3648    return;
3649  }
3650
3651  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3652    if (OPT->isObjCIdType()) {
3653      S += '@';
3654      return;
3655    }
3656
3657    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3658      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3659      // Since this is a binary compatibility issue, need to consult with runtime
3660      // folks. Fortunately, this is a *very* obsure construct.
3661      S += '#';
3662      return;
3663    }
3664
3665    if (OPT->isObjCQualifiedIdType()) {
3666      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3667                                 ExpandPointedToStructures,
3668                                 ExpandStructures, FD);
3669      if (FD || EncodingProperty) {
3670        // Note that we do extended encoding of protocol qualifer list
3671        // Only when doing ivar or property encoding.
3672        S += '"';
3673        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3674             E = OPT->qual_end(); I != E; ++I) {
3675          S += '<';
3676          S += (*I)->getNameAsString();
3677          S += '>';
3678        }
3679        S += '"';
3680      }
3681      return;
3682    }
3683
3684    QualType PointeeTy = OPT->getPointeeType();
3685    if (!EncodingProperty &&
3686        isa<TypedefType>(PointeeTy.getTypePtr())) {
3687      // Another historical/compatibility reason.
3688      // We encode the underlying type which comes out as
3689      // {...};
3690      S += '^';
3691      getObjCEncodingForTypeImpl(PointeeTy, S,
3692                                 false, ExpandPointedToStructures,
3693                                 NULL);
3694      return;
3695    }
3696
3697    S += '@';
3698    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3699      S += '"';
3700      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3701      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3702           E = OPT->qual_end(); I != E; ++I) {
3703        S += '<';
3704        S += (*I)->getNameAsString();
3705        S += '>';
3706      }
3707      S += '"';
3708    }
3709    return;
3710  }
3711
3712  assert(0 && "@encode for type not implemented!");
3713}
3714
3715void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3716                                                 std::string& S) const {
3717  if (QT & Decl::OBJC_TQ_In)
3718    S += 'n';
3719  if (QT & Decl::OBJC_TQ_Inout)
3720    S += 'N';
3721  if (QT & Decl::OBJC_TQ_Out)
3722    S += 'o';
3723  if (QT & Decl::OBJC_TQ_Bycopy)
3724    S += 'O';
3725  if (QT & Decl::OBJC_TQ_Byref)
3726    S += 'R';
3727  if (QT & Decl::OBJC_TQ_Oneway)
3728    S += 'V';
3729}
3730
3731void ASTContext::setBuiltinVaListType(QualType T) {
3732  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3733
3734  BuiltinVaListType = T;
3735}
3736
3737void ASTContext::setObjCIdType(QualType T) {
3738  ObjCIdTypedefType = T;
3739}
3740
3741void ASTContext::setObjCSelType(QualType T) {
3742  ObjCSelTypedefType = T;
3743}
3744
3745void ASTContext::setObjCProtoType(QualType QT) {
3746  ObjCProtoType = QT;
3747}
3748
3749void ASTContext::setObjCClassType(QualType T) {
3750  ObjCClassTypedefType = T;
3751}
3752
3753void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3754  assert(ObjCConstantStringType.isNull() &&
3755         "'NSConstantString' type already set!");
3756
3757  ObjCConstantStringType = getObjCInterfaceType(Decl);
3758}
3759
3760/// \brief Retrieve the template name that corresponds to a non-empty
3761/// lookup.
3762TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3763                                                   UnresolvedSetIterator End) {
3764  unsigned size = End - Begin;
3765  assert(size > 1 && "set is not overloaded!");
3766
3767  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3768                          size * sizeof(FunctionTemplateDecl*));
3769  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3770
3771  NamedDecl **Storage = OT->getStorage();
3772  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3773    NamedDecl *D = *I;
3774    assert(isa<FunctionTemplateDecl>(D) ||
3775           (isa<UsingShadowDecl>(D) &&
3776            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3777    *Storage++ = D;
3778  }
3779
3780  return TemplateName(OT);
3781}
3782
3783/// \brief Retrieve the template name that represents a qualified
3784/// template name such as \c std::vector.
3785TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3786                                                  bool TemplateKeyword,
3787                                                  TemplateDecl *Template) {
3788  llvm::FoldingSetNodeID ID;
3789  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3790
3791  void *InsertPos = 0;
3792  QualifiedTemplateName *QTN =
3793    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3794  if (!QTN) {
3795    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3796    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3797  }
3798
3799  return TemplateName(QTN);
3800}
3801
3802/// \brief Retrieve the template name that represents a dependent
3803/// template name such as \c MetaFun::template apply.
3804TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3805                                                  const IdentifierInfo *Name) {
3806  assert((!NNS || NNS->isDependent()) &&
3807         "Nested name specifier must be dependent");
3808
3809  llvm::FoldingSetNodeID ID;
3810  DependentTemplateName::Profile(ID, NNS, Name);
3811
3812  void *InsertPos = 0;
3813  DependentTemplateName *QTN =
3814    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3815
3816  if (QTN)
3817    return TemplateName(QTN);
3818
3819  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3820  if (CanonNNS == NNS) {
3821    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3822  } else {
3823    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3824    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3825  }
3826
3827  DependentTemplateNames.InsertNode(QTN, InsertPos);
3828  return TemplateName(QTN);
3829}
3830
3831/// \brief Retrieve the template name that represents a dependent
3832/// template name such as \c MetaFun::template operator+.
3833TemplateName
3834ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3835                                     OverloadedOperatorKind Operator) {
3836  assert((!NNS || NNS->isDependent()) &&
3837         "Nested name specifier must be dependent");
3838
3839  llvm::FoldingSetNodeID ID;
3840  DependentTemplateName::Profile(ID, NNS, Operator);
3841
3842  void *InsertPos = 0;
3843  DependentTemplateName *QTN =
3844  DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3845
3846  if (QTN)
3847    return TemplateName(QTN);
3848
3849  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3850  if (CanonNNS == NNS) {
3851    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3852  } else {
3853    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3854    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3855  }
3856
3857  DependentTemplateNames.InsertNode(QTN, InsertPos);
3858  return TemplateName(QTN);
3859}
3860
3861/// getFromTargetType - Given one of the integer types provided by
3862/// TargetInfo, produce the corresponding type. The unsigned @p Type
3863/// is actually a value of type @c TargetInfo::IntType.
3864CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3865  switch (Type) {
3866  case TargetInfo::NoInt: return CanQualType();
3867  case TargetInfo::SignedShort: return ShortTy;
3868  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3869  case TargetInfo::SignedInt: return IntTy;
3870  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3871  case TargetInfo::SignedLong: return LongTy;
3872  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3873  case TargetInfo::SignedLongLong: return LongLongTy;
3874  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3875  }
3876
3877  assert(false && "Unhandled TargetInfo::IntType value");
3878  return CanQualType();
3879}
3880
3881//===----------------------------------------------------------------------===//
3882//                        Type Predicates.
3883//===----------------------------------------------------------------------===//
3884
3885/// isObjCNSObjectType - Return true if this is an NSObject object using
3886/// NSObject attribute on a c-style pointer type.
3887/// FIXME - Make it work directly on types.
3888/// FIXME: Move to Type.
3889///
3890bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3891  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3892    if (TypedefDecl *TD = TDT->getDecl())
3893      if (TD->getAttr<ObjCNSObjectAttr>())
3894        return true;
3895  }
3896  return false;
3897}
3898
3899/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3900/// garbage collection attribute.
3901///
3902Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3903  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3904  if (getLangOptions().ObjC1 &&
3905      getLangOptions().getGCMode() != LangOptions::NonGC) {
3906    GCAttrs = Ty.getObjCGCAttr();
3907    // Default behavious under objective-c's gc is for objective-c pointers
3908    // (or pointers to them) be treated as though they were declared
3909    // as __strong.
3910    if (GCAttrs == Qualifiers::GCNone) {
3911      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3912        GCAttrs = Qualifiers::Strong;
3913      else if (Ty->isPointerType())
3914        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3915    }
3916    // Non-pointers have none gc'able attribute regardless of the attribute
3917    // set on them.
3918    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3919      return Qualifiers::GCNone;
3920  }
3921  return GCAttrs;
3922}
3923
3924//===----------------------------------------------------------------------===//
3925//                        Type Compatibility Testing
3926//===----------------------------------------------------------------------===//
3927
3928/// areCompatVectorTypes - Return true if the two specified vector types are
3929/// compatible.
3930static bool areCompatVectorTypes(const VectorType *LHS,
3931                                 const VectorType *RHS) {
3932  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3933  return LHS->getElementType() == RHS->getElementType() &&
3934         LHS->getNumElements() == RHS->getNumElements();
3935}
3936
3937//===----------------------------------------------------------------------===//
3938// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3939//===----------------------------------------------------------------------===//
3940
3941/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3942/// inheritance hierarchy of 'rProto'.
3943bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3944                                                ObjCProtocolDecl *rProto) {
3945  if (lProto == rProto)
3946    return true;
3947  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3948       E = rProto->protocol_end(); PI != E; ++PI)
3949    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3950      return true;
3951  return false;
3952}
3953
3954/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3955/// return true if lhs's protocols conform to rhs's protocol; false
3956/// otherwise.
3957bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3958  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3959    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3960  return false;
3961}
3962
3963/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3964/// ObjCQualifiedIDType.
3965bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3966                                                   bool compare) {
3967  // Allow id<P..> and an 'id' or void* type in all cases.
3968  if (lhs->isVoidPointerType() ||
3969      lhs->isObjCIdType() || lhs->isObjCClassType())
3970    return true;
3971  else if (rhs->isVoidPointerType() ||
3972           rhs->isObjCIdType() || rhs->isObjCClassType())
3973    return true;
3974
3975  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3976    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3977
3978    if (!rhsOPT) return false;
3979
3980    if (rhsOPT->qual_empty()) {
3981      // If the RHS is a unqualified interface pointer "NSString*",
3982      // make sure we check the class hierarchy.
3983      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3984        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3985             E = lhsQID->qual_end(); I != E; ++I) {
3986          // when comparing an id<P> on lhs with a static type on rhs,
3987          // see if static class implements all of id's protocols, directly or
3988          // through its super class and categories.
3989          if (!rhsID->ClassImplementsProtocol(*I, true))
3990            return false;
3991        }
3992      }
3993      // If there are no qualifiers and no interface, we have an 'id'.
3994      return true;
3995    }
3996    // Both the right and left sides have qualifiers.
3997    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3998         E = lhsQID->qual_end(); I != E; ++I) {
3999      ObjCProtocolDecl *lhsProto = *I;
4000      bool match = false;
4001
4002      // when comparing an id<P> on lhs with a static type on rhs,
4003      // see if static class implements all of id's protocols, directly or
4004      // through its super class and categories.
4005      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4006           E = rhsOPT->qual_end(); J != E; ++J) {
4007        ObjCProtocolDecl *rhsProto = *J;
4008        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4009            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4010          match = true;
4011          break;
4012        }
4013      }
4014      // If the RHS is a qualified interface pointer "NSString<P>*",
4015      // make sure we check the class hierarchy.
4016      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4017        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4018             E = lhsQID->qual_end(); I != E; ++I) {
4019          // when comparing an id<P> on lhs with a static type on rhs,
4020          // see if static class implements all of id's protocols, directly or
4021          // through its super class and categories.
4022          if (rhsID->ClassImplementsProtocol(*I, true)) {
4023            match = true;
4024            break;
4025          }
4026        }
4027      }
4028      if (!match)
4029        return false;
4030    }
4031
4032    return true;
4033  }
4034
4035  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4036  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4037
4038  if (const ObjCObjectPointerType *lhsOPT =
4039        lhs->getAsObjCInterfacePointerType()) {
4040    if (lhsOPT->qual_empty()) {
4041      bool match = false;
4042      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4043        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4044             E = rhsQID->qual_end(); I != E; ++I) {
4045          // when comparing an id<P> on lhs with a static type on rhs,
4046          // see if static class implements all of id's protocols, directly or
4047          // through its super class and categories.
4048          if (lhsID->ClassImplementsProtocol(*I, true)) {
4049            match = true;
4050            break;
4051          }
4052        }
4053        if (!match)
4054          return false;
4055      }
4056      return true;
4057    }
4058    // Both the right and left sides have qualifiers.
4059    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4060         E = lhsOPT->qual_end(); I != E; ++I) {
4061      ObjCProtocolDecl *lhsProto = *I;
4062      bool match = false;
4063
4064      // when comparing an id<P> on lhs with a static type on rhs,
4065      // see if static class implements all of id's protocols, directly or
4066      // through its super class and categories.
4067      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4068           E = rhsQID->qual_end(); J != E; ++J) {
4069        ObjCProtocolDecl *rhsProto = *J;
4070        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4071            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4072          match = true;
4073          break;
4074        }
4075      }
4076      if (!match)
4077        return false;
4078    }
4079    return true;
4080  }
4081  return false;
4082}
4083
4084/// canAssignObjCInterfaces - Return true if the two interface types are
4085/// compatible for assignment from RHS to LHS.  This handles validation of any
4086/// protocol qualifiers on the LHS or RHS.
4087///
4088bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4089                                         const ObjCObjectPointerType *RHSOPT) {
4090  // If either type represents the built-in 'id' or 'Class' types, return true.
4091  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4092    return true;
4093
4094  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4095    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4096                                             QualType(RHSOPT,0),
4097                                             false);
4098
4099  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4100  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4101  if (LHS && RHS) // We have 2 user-defined types.
4102    return canAssignObjCInterfaces(LHS, RHS);
4103
4104  return false;
4105}
4106
4107/// getIntersectionOfProtocols - This routine finds the intersection of set
4108/// of protocols inherited from two distinct objective-c pointer objects.
4109/// It is used to build composite qualifier list of the composite type of
4110/// the conditional expression involving two objective-c pointer objects.
4111static
4112void getIntersectionOfProtocols(ASTContext &Context,
4113                                const ObjCObjectPointerType *LHSOPT,
4114                                const ObjCObjectPointerType *RHSOPT,
4115      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4116
4117  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4118  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4119
4120  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4121  unsigned LHSNumProtocols = LHS->getNumProtocols();
4122  if (LHSNumProtocols > 0)
4123    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4124  else {
4125    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4126     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4127    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4128                                LHSInheritedProtocols.end());
4129  }
4130
4131  unsigned RHSNumProtocols = RHS->getNumProtocols();
4132  if (RHSNumProtocols > 0) {
4133    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4134    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4135      if (InheritedProtocolSet.count(RHSProtocols[i]))
4136        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4137  }
4138  else {
4139    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4140    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4141    // FIXME. This may cause duplication of protocols in the list, but should
4142    // be harmless.
4143    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4144      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4145        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4146  }
4147}
4148
4149/// areCommonBaseCompatible - Returns common base class of the two classes if
4150/// one found. Note that this is O'2 algorithm. But it will be called as the
4151/// last type comparison in a ?-exp of ObjC pointer types before a
4152/// warning is issued. So, its invokation is extremely rare.
4153QualType ASTContext::areCommonBaseCompatible(
4154                                          const ObjCObjectPointerType *LHSOPT,
4155                                          const ObjCObjectPointerType *RHSOPT) {
4156  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4157  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4158  if (!LHS || !RHS)
4159    return QualType();
4160
4161  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4162    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4163    LHS = LHSTy->getAs<ObjCInterfaceType>();
4164    if (canAssignObjCInterfaces(LHS, RHS)) {
4165      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4166      getIntersectionOfProtocols(*this,
4167                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4168      if (IntersectionOfProtocols.empty())
4169        LHSTy = getObjCObjectPointerType(LHSTy);
4170      else
4171        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4172                                                IntersectionOfProtocols.size());
4173      return LHSTy;
4174    }
4175  }
4176
4177  return QualType();
4178}
4179
4180bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4181                                         const ObjCInterfaceType *RHS) {
4182  // Verify that the base decls are compatible: the RHS must be a subclass of
4183  // the LHS.
4184  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4185    return false;
4186
4187  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4188  // protocol qualified at all, then we are good.
4189  if (LHS->getNumProtocols() == 0)
4190    return true;
4191
4192  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4193  // isn't a superset.
4194  if (RHS->getNumProtocols() == 0)
4195    return true;  // FIXME: should return false!
4196
4197  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4198                                        LHSPE = LHS->qual_end();
4199       LHSPI != LHSPE; LHSPI++) {
4200    bool RHSImplementsProtocol = false;
4201
4202    // If the RHS doesn't implement the protocol on the left, the types
4203    // are incompatible.
4204    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4205                                          RHSPE = RHS->qual_end();
4206         RHSPI != RHSPE; RHSPI++) {
4207      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4208        RHSImplementsProtocol = true;
4209        break;
4210      }
4211    }
4212    // FIXME: For better diagnostics, consider passing back the protocol name.
4213    if (!RHSImplementsProtocol)
4214      return false;
4215  }
4216  // The RHS implements all protocols listed on the LHS.
4217  return true;
4218}
4219
4220bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4221  // get the "pointed to" types
4222  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4223  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4224
4225  if (!LHSOPT || !RHSOPT)
4226    return false;
4227
4228  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4229         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4230}
4231
4232/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4233/// both shall have the identically qualified version of a compatible type.
4234/// C99 6.2.7p1: Two types have compatible types if their types are the
4235/// same. See 6.7.[2,3,5] for additional rules.
4236bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4237  return !mergeTypes(LHS, RHS).isNull();
4238}
4239
4240static bool isSameCallingConvention(CallingConv lcc, CallingConv rcc) {
4241  return (getCanonicalCallingConv(lcc) == getCanonicalCallingConv(rcc));
4242}
4243
4244QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4245  const FunctionType *lbase = lhs->getAs<FunctionType>();
4246  const FunctionType *rbase = rhs->getAs<FunctionType>();
4247  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4248  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4249  bool allLTypes = true;
4250  bool allRTypes = true;
4251
4252  // Check return type
4253  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4254  if (retType.isNull()) return QualType();
4255  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4256    allLTypes = false;
4257  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4258    allRTypes = false;
4259  // FIXME: double check this
4260  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4261  if (NoReturn != lbase->getNoReturnAttr())
4262    allLTypes = false;
4263  if (NoReturn != rbase->getNoReturnAttr())
4264    allRTypes = false;
4265  CallingConv lcc = lbase->getCallConv();
4266  CallingConv rcc = rbase->getCallConv();
4267  // Compatible functions must have compatible calling conventions
4268  if (!isSameCallingConvention(lcc, rcc))
4269    return QualType();
4270
4271  if (lproto && rproto) { // two C99 style function prototypes
4272    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4273           "C++ shouldn't be here");
4274    unsigned lproto_nargs = lproto->getNumArgs();
4275    unsigned rproto_nargs = rproto->getNumArgs();
4276
4277    // Compatible functions must have the same number of arguments
4278    if (lproto_nargs != rproto_nargs)
4279      return QualType();
4280
4281    // Variadic and non-variadic functions aren't compatible
4282    if (lproto->isVariadic() != rproto->isVariadic())
4283      return QualType();
4284
4285    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4286      return QualType();
4287
4288    // Check argument compatibility
4289    llvm::SmallVector<QualType, 10> types;
4290    for (unsigned i = 0; i < lproto_nargs; i++) {
4291      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4292      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4293      QualType argtype = mergeTypes(largtype, rargtype);
4294      if (argtype.isNull()) return QualType();
4295      types.push_back(argtype);
4296      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4297        allLTypes = false;
4298      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4299        allRTypes = false;
4300    }
4301    if (allLTypes) return lhs;
4302    if (allRTypes) return rhs;
4303    return getFunctionType(retType, types.begin(), types.size(),
4304                           lproto->isVariadic(), lproto->getTypeQuals(),
4305                           NoReturn, lcc);
4306  }
4307
4308  if (lproto) allRTypes = false;
4309  if (rproto) allLTypes = false;
4310
4311  const FunctionProtoType *proto = lproto ? lproto : rproto;
4312  if (proto) {
4313    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4314    if (proto->isVariadic()) return QualType();
4315    // Check that the types are compatible with the types that
4316    // would result from default argument promotions (C99 6.7.5.3p15).
4317    // The only types actually affected are promotable integer
4318    // types and floats, which would be passed as a different
4319    // type depending on whether the prototype is visible.
4320    unsigned proto_nargs = proto->getNumArgs();
4321    for (unsigned i = 0; i < proto_nargs; ++i) {
4322      QualType argTy = proto->getArgType(i);
4323      if (argTy->isPromotableIntegerType() ||
4324          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4325        return QualType();
4326    }
4327
4328    if (allLTypes) return lhs;
4329    if (allRTypes) return rhs;
4330    return getFunctionType(retType, proto->arg_type_begin(),
4331                           proto->getNumArgs(), proto->isVariadic(),
4332                           proto->getTypeQuals(), NoReturn, lcc);
4333  }
4334
4335  if (allLTypes) return lhs;
4336  if (allRTypes) return rhs;
4337  return getFunctionNoProtoType(retType, NoReturn, lcc);
4338}
4339
4340QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4341  // C++ [expr]: If an expression initially has the type "reference to T", the
4342  // type is adjusted to "T" prior to any further analysis, the expression
4343  // designates the object or function denoted by the reference, and the
4344  // expression is an lvalue unless the reference is an rvalue reference and
4345  // the expression is a function call (possibly inside parentheses).
4346  // FIXME: C++ shouldn't be going through here!  The rules are different
4347  // enough that they should be handled separately.
4348  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4349  // shouldn't be going through here!
4350  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4351    LHS = RT->getPointeeType();
4352  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4353    RHS = RT->getPointeeType();
4354
4355  QualType LHSCan = getCanonicalType(LHS),
4356           RHSCan = getCanonicalType(RHS);
4357
4358  // If two types are identical, they are compatible.
4359  if (LHSCan == RHSCan)
4360    return LHS;
4361
4362  // If the qualifiers are different, the types aren't compatible... mostly.
4363  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4364  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4365  if (LQuals != RQuals) {
4366    // If any of these qualifiers are different, we have a type
4367    // mismatch.
4368    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4369        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4370      return QualType();
4371
4372    // Exactly one GC qualifier difference is allowed: __strong is
4373    // okay if the other type has no GC qualifier but is an Objective
4374    // C object pointer (i.e. implicitly strong by default).  We fix
4375    // this by pretending that the unqualified type was actually
4376    // qualified __strong.
4377    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4378    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4379    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4380
4381    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4382      return QualType();
4383
4384    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4385      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4386    }
4387    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4388      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4389    }
4390    return QualType();
4391  }
4392
4393  // Okay, qualifiers are equal.
4394
4395  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4396  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4397
4398  // We want to consider the two function types to be the same for these
4399  // comparisons, just force one to the other.
4400  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4401  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4402
4403  // Same as above for arrays
4404  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4405    LHSClass = Type::ConstantArray;
4406  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4407    RHSClass = Type::ConstantArray;
4408
4409  // Canonicalize ExtVector -> Vector.
4410  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4411  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4412
4413  // If the canonical type classes don't match.
4414  if (LHSClass != RHSClass) {
4415    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4416    // a signed integer type, or an unsigned integer type.
4417    // Compatibility is based on the underlying type, not the promotion
4418    // type.
4419    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4420      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4421        return RHS;
4422    }
4423    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4424      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4425        return LHS;
4426    }
4427
4428    return QualType();
4429  }
4430
4431  // The canonical type classes match.
4432  switch (LHSClass) {
4433#define TYPE(Class, Base)
4434#define ABSTRACT_TYPE(Class, Base)
4435#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4436#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4437#include "clang/AST/TypeNodes.def"
4438    assert(false && "Non-canonical and dependent types shouldn't get here");
4439    return QualType();
4440
4441  case Type::LValueReference:
4442  case Type::RValueReference:
4443  case Type::MemberPointer:
4444    assert(false && "C++ should never be in mergeTypes");
4445    return QualType();
4446
4447  case Type::IncompleteArray:
4448  case Type::VariableArray:
4449  case Type::FunctionProto:
4450  case Type::ExtVector:
4451    assert(false && "Types are eliminated above");
4452    return QualType();
4453
4454  case Type::Pointer:
4455  {
4456    // Merge two pointer types, while trying to preserve typedef info
4457    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4458    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4459    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4460    if (ResultType.isNull()) return QualType();
4461    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4462      return LHS;
4463    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4464      return RHS;
4465    return getPointerType(ResultType);
4466  }
4467  case Type::BlockPointer:
4468  {
4469    // Merge two block pointer types, while trying to preserve typedef info
4470    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4471    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4472    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4473    if (ResultType.isNull()) return QualType();
4474    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4475      return LHS;
4476    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4477      return RHS;
4478    return getBlockPointerType(ResultType);
4479  }
4480  case Type::ConstantArray:
4481  {
4482    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4483    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4484    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4485      return QualType();
4486
4487    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4488    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4489    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4490    if (ResultType.isNull()) return QualType();
4491    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4492      return LHS;
4493    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4494      return RHS;
4495    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4496                                          ArrayType::ArraySizeModifier(), 0);
4497    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4498                                          ArrayType::ArraySizeModifier(), 0);
4499    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4500    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4501    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4502      return LHS;
4503    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4504      return RHS;
4505    if (LVAT) {
4506      // FIXME: This isn't correct! But tricky to implement because
4507      // the array's size has to be the size of LHS, but the type
4508      // has to be different.
4509      return LHS;
4510    }
4511    if (RVAT) {
4512      // FIXME: This isn't correct! But tricky to implement because
4513      // the array's size has to be the size of RHS, but the type
4514      // has to be different.
4515      return RHS;
4516    }
4517    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4518    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4519    return getIncompleteArrayType(ResultType,
4520                                  ArrayType::ArraySizeModifier(), 0);
4521  }
4522  case Type::FunctionNoProto:
4523    return mergeFunctionTypes(LHS, RHS);
4524  case Type::Record:
4525  case Type::Enum:
4526    return QualType();
4527  case Type::Builtin:
4528    // Only exactly equal builtin types are compatible, which is tested above.
4529    return QualType();
4530  case Type::Complex:
4531    // Distinct complex types are incompatible.
4532    return QualType();
4533  case Type::Vector:
4534    // FIXME: The merged type should be an ExtVector!
4535    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4536      return LHS;
4537    return QualType();
4538  case Type::ObjCInterface: {
4539    // Check if the interfaces are assignment compatible.
4540    // FIXME: This should be type compatibility, e.g. whether
4541    // "LHS x; RHS x;" at global scope is legal.
4542    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4543    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4544    if (LHSIface && RHSIface &&
4545        canAssignObjCInterfaces(LHSIface, RHSIface))
4546      return LHS;
4547
4548    return QualType();
4549  }
4550  case Type::ObjCObjectPointer: {
4551    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4552                                RHS->getAs<ObjCObjectPointerType>()))
4553      return LHS;
4554
4555    return QualType();
4556  }
4557  case Type::TemplateSpecialization:
4558    assert(false && "Dependent types have no size");
4559    break;
4560  }
4561
4562  return QualType();
4563}
4564
4565//===----------------------------------------------------------------------===//
4566//                         Integer Predicates
4567//===----------------------------------------------------------------------===//
4568
4569unsigned ASTContext::getIntWidth(QualType T) {
4570  if (T->isBooleanType())
4571    return 1;
4572  if (EnumType *ET = dyn_cast<EnumType>(T))
4573    T = ET->getDecl()->getIntegerType();
4574  // For builtin types, just use the standard type sizing method
4575  return (unsigned)getTypeSize(T);
4576}
4577
4578QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4579  assert(T->isSignedIntegerType() && "Unexpected type");
4580
4581  // Turn <4 x signed int> -> <4 x unsigned int>
4582  if (const VectorType *VTy = T->getAs<VectorType>())
4583    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4584                         VTy->getNumElements());
4585
4586  // For enums, we return the unsigned version of the base type.
4587  if (const EnumType *ETy = T->getAs<EnumType>())
4588    T = ETy->getDecl()->getIntegerType();
4589
4590  const BuiltinType *BTy = T->getAs<BuiltinType>();
4591  assert(BTy && "Unexpected signed integer type");
4592  switch (BTy->getKind()) {
4593  case BuiltinType::Char_S:
4594  case BuiltinType::SChar:
4595    return UnsignedCharTy;
4596  case BuiltinType::Short:
4597    return UnsignedShortTy;
4598  case BuiltinType::Int:
4599    return UnsignedIntTy;
4600  case BuiltinType::Long:
4601    return UnsignedLongTy;
4602  case BuiltinType::LongLong:
4603    return UnsignedLongLongTy;
4604  case BuiltinType::Int128:
4605    return UnsignedInt128Ty;
4606  default:
4607    assert(0 && "Unexpected signed integer type");
4608    return QualType();
4609  }
4610}
4611
4612ExternalASTSource::~ExternalASTSource() { }
4613
4614void ExternalASTSource::PrintStats() { }
4615
4616
4617//===----------------------------------------------------------------------===//
4618//                          Builtin Type Computation
4619//===----------------------------------------------------------------------===//
4620
4621/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4622/// pointer over the consumed characters.  This returns the resultant type.
4623static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4624                                  ASTContext::GetBuiltinTypeError &Error,
4625                                  bool AllowTypeModifiers = true) {
4626  // Modifiers.
4627  int HowLong = 0;
4628  bool Signed = false, Unsigned = false;
4629
4630  // Read the modifiers first.
4631  bool Done = false;
4632  while (!Done) {
4633    switch (*Str++) {
4634    default: Done = true; --Str; break;
4635    case 'S':
4636      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4637      assert(!Signed && "Can't use 'S' modifier multiple times!");
4638      Signed = true;
4639      break;
4640    case 'U':
4641      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4642      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4643      Unsigned = true;
4644      break;
4645    case 'L':
4646      assert(HowLong <= 2 && "Can't have LLLL modifier");
4647      ++HowLong;
4648      break;
4649    }
4650  }
4651
4652  QualType Type;
4653
4654  // Read the base type.
4655  switch (*Str++) {
4656  default: assert(0 && "Unknown builtin type letter!");
4657  case 'v':
4658    assert(HowLong == 0 && !Signed && !Unsigned &&
4659           "Bad modifiers used with 'v'!");
4660    Type = Context.VoidTy;
4661    break;
4662  case 'f':
4663    assert(HowLong == 0 && !Signed && !Unsigned &&
4664           "Bad modifiers used with 'f'!");
4665    Type = Context.FloatTy;
4666    break;
4667  case 'd':
4668    assert(HowLong < 2 && !Signed && !Unsigned &&
4669           "Bad modifiers used with 'd'!");
4670    if (HowLong)
4671      Type = Context.LongDoubleTy;
4672    else
4673      Type = Context.DoubleTy;
4674    break;
4675  case 's':
4676    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4677    if (Unsigned)
4678      Type = Context.UnsignedShortTy;
4679    else
4680      Type = Context.ShortTy;
4681    break;
4682  case 'i':
4683    if (HowLong == 3)
4684      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4685    else if (HowLong == 2)
4686      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4687    else if (HowLong == 1)
4688      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4689    else
4690      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4691    break;
4692  case 'c':
4693    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4694    if (Signed)
4695      Type = Context.SignedCharTy;
4696    else if (Unsigned)
4697      Type = Context.UnsignedCharTy;
4698    else
4699      Type = Context.CharTy;
4700    break;
4701  case 'b': // boolean
4702    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4703    Type = Context.BoolTy;
4704    break;
4705  case 'z':  // size_t.
4706    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4707    Type = Context.getSizeType();
4708    break;
4709  case 'F':
4710    Type = Context.getCFConstantStringType();
4711    break;
4712  case 'a':
4713    Type = Context.getBuiltinVaListType();
4714    assert(!Type.isNull() && "builtin va list type not initialized!");
4715    break;
4716  case 'A':
4717    // This is a "reference" to a va_list; however, what exactly
4718    // this means depends on how va_list is defined. There are two
4719    // different kinds of va_list: ones passed by value, and ones
4720    // passed by reference.  An example of a by-value va_list is
4721    // x86, where va_list is a char*. An example of by-ref va_list
4722    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4723    // we want this argument to be a char*&; for x86-64, we want
4724    // it to be a __va_list_tag*.
4725    Type = Context.getBuiltinVaListType();
4726    assert(!Type.isNull() && "builtin va list type not initialized!");
4727    if (Type->isArrayType()) {
4728      Type = Context.getArrayDecayedType(Type);
4729    } else {
4730      Type = Context.getLValueReferenceType(Type);
4731    }
4732    break;
4733  case 'V': {
4734    char *End;
4735    unsigned NumElements = strtoul(Str, &End, 10);
4736    assert(End != Str && "Missing vector size");
4737
4738    Str = End;
4739
4740    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4741    Type = Context.getVectorType(ElementType, NumElements);
4742    break;
4743  }
4744  case 'X': {
4745    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4746    Type = Context.getComplexType(ElementType);
4747    break;
4748  }
4749  case 'P':
4750    Type = Context.getFILEType();
4751    if (Type.isNull()) {
4752      Error = ASTContext::GE_Missing_stdio;
4753      return QualType();
4754    }
4755    break;
4756  case 'J':
4757    if (Signed)
4758      Type = Context.getsigjmp_bufType();
4759    else
4760      Type = Context.getjmp_bufType();
4761
4762    if (Type.isNull()) {
4763      Error = ASTContext::GE_Missing_setjmp;
4764      return QualType();
4765    }
4766    break;
4767  }
4768
4769  if (!AllowTypeModifiers)
4770    return Type;
4771
4772  Done = false;
4773  while (!Done) {
4774    switch (*Str++) {
4775      default: Done = true; --Str; break;
4776      case '*':
4777        Type = Context.getPointerType(Type);
4778        break;
4779      case '&':
4780        Type = Context.getLValueReferenceType(Type);
4781        break;
4782      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4783      case 'C':
4784        Type = Type.withConst();
4785        break;
4786    }
4787  }
4788
4789  return Type;
4790}
4791
4792/// GetBuiltinType - Return the type for the specified builtin.
4793QualType ASTContext::GetBuiltinType(unsigned id,
4794                                    GetBuiltinTypeError &Error) {
4795  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4796
4797  llvm::SmallVector<QualType, 8> ArgTypes;
4798
4799  Error = GE_None;
4800  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4801  if (Error != GE_None)
4802    return QualType();
4803  while (TypeStr[0] && TypeStr[0] != '.') {
4804    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4805    if (Error != GE_None)
4806      return QualType();
4807
4808    // Do array -> pointer decay.  The builtin should use the decayed type.
4809    if (Ty->isArrayType())
4810      Ty = getArrayDecayedType(Ty);
4811
4812    ArgTypes.push_back(Ty);
4813  }
4814
4815  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4816         "'.' should only occur at end of builtin type list!");
4817
4818  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4819  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4820    return getFunctionNoProtoType(ResType);
4821  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4822                         TypeStr[0] == '.', 0);
4823}
4824
4825QualType
4826ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4827  // Perform the usual unary conversions. We do this early so that
4828  // integral promotions to "int" can allow us to exit early, in the
4829  // lhs == rhs check. Also, for conversion purposes, we ignore any
4830  // qualifiers.  For example, "const float" and "float" are
4831  // equivalent.
4832  if (lhs->isPromotableIntegerType())
4833    lhs = getPromotedIntegerType(lhs);
4834  else
4835    lhs = lhs.getUnqualifiedType();
4836  if (rhs->isPromotableIntegerType())
4837    rhs = getPromotedIntegerType(rhs);
4838  else
4839    rhs = rhs.getUnqualifiedType();
4840
4841  // If both types are identical, no conversion is needed.
4842  if (lhs == rhs)
4843    return lhs;
4844
4845  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4846  // The caller can deal with this (e.g. pointer + int).
4847  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4848    return lhs;
4849
4850  // At this point, we have two different arithmetic types.
4851
4852  // Handle complex types first (C99 6.3.1.8p1).
4853  if (lhs->isComplexType() || rhs->isComplexType()) {
4854    // if we have an integer operand, the result is the complex type.
4855    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4856      // convert the rhs to the lhs complex type.
4857      return lhs;
4858    }
4859    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4860      // convert the lhs to the rhs complex type.
4861      return rhs;
4862    }
4863    // This handles complex/complex, complex/float, or float/complex.
4864    // When both operands are complex, the shorter operand is converted to the
4865    // type of the longer, and that is the type of the result. This corresponds
4866    // to what is done when combining two real floating-point operands.
4867    // The fun begins when size promotion occur across type domains.
4868    // From H&S 6.3.4: When one operand is complex and the other is a real
4869    // floating-point type, the less precise type is converted, within it's
4870    // real or complex domain, to the precision of the other type. For example,
4871    // when combining a "long double" with a "double _Complex", the
4872    // "double _Complex" is promoted to "long double _Complex".
4873    int result = getFloatingTypeOrder(lhs, rhs);
4874
4875    if (result > 0) { // The left side is bigger, convert rhs.
4876      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4877    } else if (result < 0) { // The right side is bigger, convert lhs.
4878      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4879    }
4880    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4881    // domains match. This is a requirement for our implementation, C99
4882    // does not require this promotion.
4883    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4884      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4885        return rhs;
4886      } else { // handle "_Complex double, double".
4887        return lhs;
4888      }
4889    }
4890    return lhs; // The domain/size match exactly.
4891  }
4892  // Now handle "real" floating types (i.e. float, double, long double).
4893  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4894    // if we have an integer operand, the result is the real floating type.
4895    if (rhs->isIntegerType()) {
4896      // convert rhs to the lhs floating point type.
4897      return lhs;
4898    }
4899    if (rhs->isComplexIntegerType()) {
4900      // convert rhs to the complex floating point type.
4901      return getComplexType(lhs);
4902    }
4903    if (lhs->isIntegerType()) {
4904      // convert lhs to the rhs floating point type.
4905      return rhs;
4906    }
4907    if (lhs->isComplexIntegerType()) {
4908      // convert lhs to the complex floating point type.
4909      return getComplexType(rhs);
4910    }
4911    // We have two real floating types, float/complex combos were handled above.
4912    // Convert the smaller operand to the bigger result.
4913    int result = getFloatingTypeOrder(lhs, rhs);
4914    if (result > 0) // convert the rhs
4915      return lhs;
4916    assert(result < 0 && "illegal float comparison");
4917    return rhs;   // convert the lhs
4918  }
4919  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4920    // Handle GCC complex int extension.
4921    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4922    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4923
4924    if (lhsComplexInt && rhsComplexInt) {
4925      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4926                              rhsComplexInt->getElementType()) >= 0)
4927        return lhs; // convert the rhs
4928      return rhs;
4929    } else if (lhsComplexInt && rhs->isIntegerType()) {
4930      // convert the rhs to the lhs complex type.
4931      return lhs;
4932    } else if (rhsComplexInt && lhs->isIntegerType()) {
4933      // convert the lhs to the rhs complex type.
4934      return rhs;
4935    }
4936  }
4937  // Finally, we have two differing integer types.
4938  // The rules for this case are in C99 6.3.1.8
4939  int compare = getIntegerTypeOrder(lhs, rhs);
4940  bool lhsSigned = lhs->isSignedIntegerType(),
4941       rhsSigned = rhs->isSignedIntegerType();
4942  QualType destType;
4943  if (lhsSigned == rhsSigned) {
4944    // Same signedness; use the higher-ranked type
4945    destType = compare >= 0 ? lhs : rhs;
4946  } else if (compare != (lhsSigned ? 1 : -1)) {
4947    // The unsigned type has greater than or equal rank to the
4948    // signed type, so use the unsigned type
4949    destType = lhsSigned ? rhs : lhs;
4950  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4951    // The two types are different widths; if we are here, that
4952    // means the signed type is larger than the unsigned type, so
4953    // use the signed type.
4954    destType = lhsSigned ? lhs : rhs;
4955  } else {
4956    // The signed type is higher-ranked than the unsigned type,
4957    // but isn't actually any bigger (like unsigned int and long
4958    // on most 32-bit systems).  Use the unsigned type corresponding
4959    // to the signed type.
4960    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4961  }
4962  return destType;
4963}
4964