ASTContext.cpp revision ef3c69406f73b892a3d5023ea42b3d7ed9c99d33
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
89    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
90      return NULL;
91  }
92
93  // TODO: handle comments for function parameters properly.
94  if (isa<ParmVarDecl>(D))
95    return NULL;
96
97  // TODO: we could look up template parameter documentation in the template
98  // documentation.
99  if (isa<TemplateTypeParmDecl>(D) ||
100      isa<NonTypeTemplateParmDecl>(D) ||
101      isa<TemplateTemplateParmDecl>(D))
102    return NULL;
103
104  ArrayRef<RawComment *> RawComments = Comments.getComments();
105
106  // If there are no comments anywhere, we won't find anything.
107  if (RawComments.empty())
108    return NULL;
109
110  // Find declaration location.
111  // For Objective-C declarations we generally don't expect to have multiple
112  // declarators, thus use declaration starting location as the "declaration
113  // location".
114  // For all other declarations multiple declarators are used quite frequently,
115  // so we use the location of the identifier as the "declaration location".
116  SourceLocation DeclLoc;
117  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
118      isa<ObjCPropertyDecl>(D) ||
119      isa<RedeclarableTemplateDecl>(D) ||
120      isa<ClassTemplateSpecializationDecl>(D))
121    DeclLoc = D->getLocStart();
122  else
123    DeclLoc = D->getLocation();
124
125  // If the declaration doesn't map directly to a location in a file, we
126  // can't find the comment.
127  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
128    return NULL;
129
130  // Find the comment that occurs just after this declaration.
131  ArrayRef<RawComment *>::iterator Comment;
132  {
133    // When searching for comments during parsing, the comment we are looking
134    // for is usually among the last two comments we parsed -- check them
135    // first.
136    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
137    BeforeThanCompare<RawComment> Compare(SourceMgr);
138    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
139    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
140    if (!Found && RawComments.size() >= 2) {
141      MaybeBeforeDecl--;
142      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
143    }
144
145    if (Found) {
146      Comment = MaybeBeforeDecl + 1;
147      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
148                                         &CommentAtDeclLoc, Compare));
149    } else {
150      // Slow path.
151      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
152                                 &CommentAtDeclLoc, Compare);
153    }
154  }
155
156  // Decompose the location for the declaration and find the beginning of the
157  // file buffer.
158  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
159
160  // First check whether we have a trailing comment.
161  if (Comment != RawComments.end() &&
162      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
163      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
164    std::pair<FileID, unsigned> CommentBeginDecomp
165      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
166    // Check that Doxygen trailing comment comes after the declaration, starts
167    // on the same line and in the same file as the declaration.
168    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
169        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
170          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
171                                     CommentBeginDecomp.second)) {
172      return *Comment;
173    }
174  }
175
176  // The comment just after the declaration was not a trailing comment.
177  // Let's look at the previous comment.
178  if (Comment == RawComments.begin())
179    return NULL;
180  --Comment;
181
182  // Check that we actually have a non-member Doxygen comment.
183  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
184    return NULL;
185
186  // Decompose the end of the comment.
187  std::pair<FileID, unsigned> CommentEndDecomp
188    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
189
190  // If the comment and the declaration aren't in the same file, then they
191  // aren't related.
192  if (DeclLocDecomp.first != CommentEndDecomp.first)
193    return NULL;
194
195  // Get the corresponding buffer.
196  bool Invalid = false;
197  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
198                                               &Invalid).data();
199  if (Invalid)
200    return NULL;
201
202  // Extract text between the comment and declaration.
203  StringRef Text(Buffer + CommentEndDecomp.second,
204                 DeclLocDecomp.second - CommentEndDecomp.second);
205
206  // There should be no other declarations or preprocessor directives between
207  // comment and declaration.
208  if (Text.find_first_of(",;{}#@") != StringRef::npos)
209    return NULL;
210
211  return *Comment;
212}
213
214namespace {
215/// If we have a 'templated' declaration for a template, adjust 'D' to
216/// refer to the actual template.
217/// If we have an implicit instantiation, adjust 'D' to refer to template.
218const Decl *adjustDeclToTemplate(const Decl *D) {
219  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
220    // Is this function declaration part of a function template?
221    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
222      return FTD;
223
224    // Nothing to do if function is not an implicit instantiation.
225    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
226      return D;
227
228    // Function is an implicit instantiation of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
230      return FTD;
231
232    // Function is instantiated from a member definition of a class template?
233    if (const FunctionDecl *MemberDecl =
234            FD->getInstantiatedFromMemberFunction())
235      return MemberDecl;
236
237    return D;
238  }
239  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
240    // Static data member is instantiated from a member definition of a class
241    // template?
242    if (VD->isStaticDataMember())
243      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
244        return MemberDecl;
245
246    return D;
247  }
248  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
249    // Is this class declaration part of a class template?
250    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
251      return CTD;
252
253    // Class is an implicit instantiation of a class template or partial
254    // specialization?
255    if (const ClassTemplateSpecializationDecl *CTSD =
256            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
257      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
258        return D;
259      llvm::PointerUnion<ClassTemplateDecl *,
260                         ClassTemplatePartialSpecializationDecl *>
261          PU = CTSD->getSpecializedTemplateOrPartial();
262      return PU.is<ClassTemplateDecl*>() ?
263          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
264          static_cast<const Decl*>(
265              PU.get<ClassTemplatePartialSpecializationDecl *>());
266    }
267
268    // Class is instantiated from a member definition of a class template?
269    if (const MemberSpecializationInfo *Info =
270                   CRD->getMemberSpecializationInfo())
271      return Info->getInstantiatedFrom();
272
273    return D;
274  }
275  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
276    // Enum is instantiated from a member definition of a class template?
277    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
278      return MemberDecl;
279
280    return D;
281  }
282  // FIXME: Adjust alias templates?
283  return D;
284}
285} // unnamed namespace
286
287const RawComment *ASTContext::getRawCommentForAnyRedecl(
288                                                const Decl *D,
289                                                const Decl **OriginalDecl) const {
290  D = adjustDeclToTemplate(D);
291
292  // Check whether we have cached a comment for this declaration already.
293  {
294    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
295        RedeclComments.find(D);
296    if (Pos != RedeclComments.end()) {
297      const RawCommentAndCacheFlags &Raw = Pos->second;
298      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
299        if (OriginalDecl)
300          *OriginalDecl = Raw.getOriginalDecl();
301        return Raw.getRaw();
302      }
303    }
304  }
305
306  // Search for comments attached to declarations in the redeclaration chain.
307  const RawComment *RC = NULL;
308  const Decl *OriginalDeclForRC = NULL;
309  for (Decl::redecl_iterator I = D->redecls_begin(),
310                             E = D->redecls_end();
311       I != E; ++I) {
312    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
313        RedeclComments.find(*I);
314    if (Pos != RedeclComments.end()) {
315      const RawCommentAndCacheFlags &Raw = Pos->second;
316      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
317        RC = Raw.getRaw();
318        OriginalDeclForRC = Raw.getOriginalDecl();
319        break;
320      }
321    } else {
322      RC = getRawCommentForDeclNoCache(*I);
323      OriginalDeclForRC = *I;
324      RawCommentAndCacheFlags Raw;
325      if (RC) {
326        Raw.setRaw(RC);
327        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
328      } else
329        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
330      Raw.setOriginalDecl(*I);
331      RedeclComments[*I] = Raw;
332      if (RC)
333        break;
334    }
335  }
336
337  // If we found a comment, it should be a documentation comment.
338  assert(!RC || RC->isDocumentation());
339
340  if (OriginalDecl)
341    *OriginalDecl = OriginalDeclForRC;
342
343  // Update cache for every declaration in the redeclaration chain.
344  RawCommentAndCacheFlags Raw;
345  Raw.setRaw(RC);
346  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
347  Raw.setOriginalDecl(OriginalDeclForRC);
348
349  for (Decl::redecl_iterator I = D->redecls_begin(),
350                             E = D->redecls_end();
351       I != E; ++I) {
352    RawCommentAndCacheFlags &R = RedeclComments[*I];
353    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
354      R = Raw;
355  }
356
357  return RC;
358}
359
360static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
361                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
362  const DeclContext *DC = ObjCMethod->getDeclContext();
363  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
364    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
365    if (!ID)
366      return;
367    // Add redeclared method here.
368    for (const ObjCCategoryDecl *ClsExtDecl = ID->getFirstClassExtension();
369         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
370      if (ObjCMethodDecl *RedeclaredMethod =
371            ClsExtDecl->getMethod(ObjCMethod->getSelector(),
372                                  ObjCMethod->isInstanceMethod()))
373        Redeclared.push_back(RedeclaredMethod);
374    }
375  }
376}
377
378comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
379                                                    const Decl *D) const {
380  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
381  ThisDeclInfo->CommentDecl = D;
382  ThisDeclInfo->IsFilled = false;
383  ThisDeclInfo->fill();
384  ThisDeclInfo->CommentDecl = FC->getDecl();
385  comments::FullComment *CFC =
386    new (*this) comments::FullComment(FC->getBlocks(),
387                                      ThisDeclInfo);
388  return CFC;
389
390}
391
392comments::FullComment *ASTContext::getCommentForDecl(
393                                              const Decl *D,
394                                              const Preprocessor *PP) const {
395  D = adjustDeclToTemplate(D);
396
397  const Decl *Canonical = D->getCanonicalDecl();
398  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
399      ParsedComments.find(Canonical);
400
401  if (Pos != ParsedComments.end()) {
402    if (Canonical != D) {
403      comments::FullComment *FC = Pos->second;
404      comments::FullComment *CFC = cloneFullComment(FC, D);
405      return CFC;
406    }
407    return Pos->second;
408  }
409
410  const Decl *OriginalDecl;
411
412  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
413  if (!RC) {
414    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
415      SmallVector<const NamedDecl*, 8> Overridden;
416      if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D))
417        addRedeclaredMethods(OMD, Overridden);
418      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
419      for (unsigned i = 0, e = Overridden.size(); i < e; i++) {
420        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) {
421          comments::FullComment *CFC = cloneFullComment(FC, D);
422          return CFC;
423        }
424      }
425    }
426    return NULL;
427  }
428
429  // If the RawComment was attached to other redeclaration of this Decl, we
430  // should parse the comment in context of that other Decl.  This is important
431  // because comments can contain references to parameter names which can be
432  // different across redeclarations.
433  if (D != OriginalDecl)
434    return getCommentForDecl(OriginalDecl, PP);
435
436  comments::FullComment *FC = RC->parse(*this, PP, D);
437  ParsedComments[Canonical] = FC;
438  return FC;
439}
440
441void
442ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
443                                               TemplateTemplateParmDecl *Parm) {
444  ID.AddInteger(Parm->getDepth());
445  ID.AddInteger(Parm->getPosition());
446  ID.AddBoolean(Parm->isParameterPack());
447
448  TemplateParameterList *Params = Parm->getTemplateParameters();
449  ID.AddInteger(Params->size());
450  for (TemplateParameterList::const_iterator P = Params->begin(),
451                                          PEnd = Params->end();
452       P != PEnd; ++P) {
453    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
454      ID.AddInteger(0);
455      ID.AddBoolean(TTP->isParameterPack());
456      continue;
457    }
458
459    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
460      ID.AddInteger(1);
461      ID.AddBoolean(NTTP->isParameterPack());
462      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
463      if (NTTP->isExpandedParameterPack()) {
464        ID.AddBoolean(true);
465        ID.AddInteger(NTTP->getNumExpansionTypes());
466        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
467          QualType T = NTTP->getExpansionType(I);
468          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
469        }
470      } else
471        ID.AddBoolean(false);
472      continue;
473    }
474
475    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
476    ID.AddInteger(2);
477    Profile(ID, TTP);
478  }
479}
480
481TemplateTemplateParmDecl *
482ASTContext::getCanonicalTemplateTemplateParmDecl(
483                                          TemplateTemplateParmDecl *TTP) const {
484  // Check if we already have a canonical template template parameter.
485  llvm::FoldingSetNodeID ID;
486  CanonicalTemplateTemplateParm::Profile(ID, TTP);
487  void *InsertPos = 0;
488  CanonicalTemplateTemplateParm *Canonical
489    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
490  if (Canonical)
491    return Canonical->getParam();
492
493  // Build a canonical template parameter list.
494  TemplateParameterList *Params = TTP->getTemplateParameters();
495  SmallVector<NamedDecl *, 4> CanonParams;
496  CanonParams.reserve(Params->size());
497  for (TemplateParameterList::const_iterator P = Params->begin(),
498                                          PEnd = Params->end();
499       P != PEnd; ++P) {
500    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
501      CanonParams.push_back(
502                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
503                                               SourceLocation(),
504                                               SourceLocation(),
505                                               TTP->getDepth(),
506                                               TTP->getIndex(), 0, false,
507                                               TTP->isParameterPack()));
508    else if (NonTypeTemplateParmDecl *NTTP
509             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
510      QualType T = getCanonicalType(NTTP->getType());
511      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
512      NonTypeTemplateParmDecl *Param;
513      if (NTTP->isExpandedParameterPack()) {
514        SmallVector<QualType, 2> ExpandedTypes;
515        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
516        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
517          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
518          ExpandedTInfos.push_back(
519                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
520        }
521
522        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
523                                                SourceLocation(),
524                                                SourceLocation(),
525                                                NTTP->getDepth(),
526                                                NTTP->getPosition(), 0,
527                                                T,
528                                                TInfo,
529                                                ExpandedTypes.data(),
530                                                ExpandedTypes.size(),
531                                                ExpandedTInfos.data());
532      } else {
533        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
534                                                SourceLocation(),
535                                                SourceLocation(),
536                                                NTTP->getDepth(),
537                                                NTTP->getPosition(), 0,
538                                                T,
539                                                NTTP->isParameterPack(),
540                                                TInfo);
541      }
542      CanonParams.push_back(Param);
543
544    } else
545      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
546                                           cast<TemplateTemplateParmDecl>(*P)));
547  }
548
549  TemplateTemplateParmDecl *CanonTTP
550    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
551                                       SourceLocation(), TTP->getDepth(),
552                                       TTP->getPosition(),
553                                       TTP->isParameterPack(),
554                                       0,
555                         TemplateParameterList::Create(*this, SourceLocation(),
556                                                       SourceLocation(),
557                                                       CanonParams.data(),
558                                                       CanonParams.size(),
559                                                       SourceLocation()));
560
561  // Get the new insert position for the node we care about.
562  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
563  assert(Canonical == 0 && "Shouldn't be in the map!");
564  (void)Canonical;
565
566  // Create the canonical template template parameter entry.
567  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
568  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
569  return CanonTTP;
570}
571
572CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
573  if (!LangOpts.CPlusPlus) return 0;
574
575  switch (T.getCXXABI()) {
576  case CXXABI_ARM:
577    return CreateARMCXXABI(*this);
578  case CXXABI_Itanium:
579    return CreateItaniumCXXABI(*this);
580  case CXXABI_Microsoft:
581    return CreateMicrosoftCXXABI(*this);
582  }
583  llvm_unreachable("Invalid CXXABI type!");
584}
585
586static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
587                                             const LangOptions &LOpts) {
588  if (LOpts.FakeAddressSpaceMap) {
589    // The fake address space map must have a distinct entry for each
590    // language-specific address space.
591    static const unsigned FakeAddrSpaceMap[] = {
592      1, // opencl_global
593      2, // opencl_local
594      3, // opencl_constant
595      4, // cuda_device
596      5, // cuda_constant
597      6  // cuda_shared
598    };
599    return &FakeAddrSpaceMap;
600  } else {
601    return &T.getAddressSpaceMap();
602  }
603}
604
605ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
606                       const TargetInfo *t,
607                       IdentifierTable &idents, SelectorTable &sels,
608                       Builtin::Context &builtins,
609                       unsigned size_reserve,
610                       bool DelayInitialization)
611  : FunctionProtoTypes(this_()),
612    TemplateSpecializationTypes(this_()),
613    DependentTemplateSpecializationTypes(this_()),
614    SubstTemplateTemplateParmPacks(this_()),
615    GlobalNestedNameSpecifier(0),
616    Int128Decl(0), UInt128Decl(0),
617    BuiltinVaListDecl(0),
618    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
619    BOOLDecl(0),
620    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
621    FILEDecl(0),
622    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
623    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
624    cudaConfigureCallDecl(0),
625    NullTypeSourceInfo(QualType()),
626    FirstLocalImport(), LastLocalImport(),
627    SourceMgr(SM), LangOpts(LOpts),
628    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
629    Idents(idents), Selectors(sels),
630    BuiltinInfo(builtins),
631    DeclarationNames(*this),
632    ExternalSource(0), Listener(0),
633    Comments(SM), CommentsLoaded(false),
634    CommentCommandTraits(BumpAlloc),
635    LastSDM(0, 0),
636    UniqueBlockByRefTypeID(0)
637{
638  if (size_reserve > 0) Types.reserve(size_reserve);
639  TUDecl = TranslationUnitDecl::Create(*this);
640
641  if (!DelayInitialization) {
642    assert(t && "No target supplied for ASTContext initialization");
643    InitBuiltinTypes(*t);
644  }
645}
646
647ASTContext::~ASTContext() {
648  // Release the DenseMaps associated with DeclContext objects.
649  // FIXME: Is this the ideal solution?
650  ReleaseDeclContextMaps();
651
652  // Call all of the deallocation functions.
653  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
654    Deallocations[I].first(Deallocations[I].second);
655
656  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
657  // because they can contain DenseMaps.
658  for (llvm::DenseMap<const ObjCContainerDecl*,
659       const ASTRecordLayout*>::iterator
660       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
661    // Increment in loop to prevent using deallocated memory.
662    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
663      R->Destroy(*this);
664
665  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
666       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
667    // Increment in loop to prevent using deallocated memory.
668    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
669      R->Destroy(*this);
670  }
671
672  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
673                                                    AEnd = DeclAttrs.end();
674       A != AEnd; ++A)
675    A->second->~AttrVec();
676}
677
678void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
679  Deallocations.push_back(std::make_pair(Callback, Data));
680}
681
682void
683ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
684  ExternalSource.reset(Source.take());
685}
686
687void ASTContext::PrintStats() const {
688  llvm::errs() << "\n*** AST Context Stats:\n";
689  llvm::errs() << "  " << Types.size() << " types total.\n";
690
691  unsigned counts[] = {
692#define TYPE(Name, Parent) 0,
693#define ABSTRACT_TYPE(Name, Parent)
694#include "clang/AST/TypeNodes.def"
695    0 // Extra
696  };
697
698  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
699    Type *T = Types[i];
700    counts[(unsigned)T->getTypeClass()]++;
701  }
702
703  unsigned Idx = 0;
704  unsigned TotalBytes = 0;
705#define TYPE(Name, Parent)                                              \
706  if (counts[Idx])                                                      \
707    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
708                 << " types\n";                                         \
709  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
710  ++Idx;
711#define ABSTRACT_TYPE(Name, Parent)
712#include "clang/AST/TypeNodes.def"
713
714  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
715
716  // Implicit special member functions.
717  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
718               << NumImplicitDefaultConstructors
719               << " implicit default constructors created\n";
720  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
721               << NumImplicitCopyConstructors
722               << " implicit copy constructors created\n";
723  if (getLangOpts().CPlusPlus)
724    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
725                 << NumImplicitMoveConstructors
726                 << " implicit move constructors created\n";
727  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
728               << NumImplicitCopyAssignmentOperators
729               << " implicit copy assignment operators created\n";
730  if (getLangOpts().CPlusPlus)
731    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
732                 << NumImplicitMoveAssignmentOperators
733                 << " implicit move assignment operators created\n";
734  llvm::errs() << NumImplicitDestructorsDeclared << "/"
735               << NumImplicitDestructors
736               << " implicit destructors created\n";
737
738  if (ExternalSource.get()) {
739    llvm::errs() << "\n";
740    ExternalSource->PrintStats();
741  }
742
743  BumpAlloc.PrintStats();
744}
745
746TypedefDecl *ASTContext::getInt128Decl() const {
747  if (!Int128Decl) {
748    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
749    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
750                                     getTranslationUnitDecl(),
751                                     SourceLocation(),
752                                     SourceLocation(),
753                                     &Idents.get("__int128_t"),
754                                     TInfo);
755  }
756
757  return Int128Decl;
758}
759
760TypedefDecl *ASTContext::getUInt128Decl() const {
761  if (!UInt128Decl) {
762    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
763    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
764                                     getTranslationUnitDecl(),
765                                     SourceLocation(),
766                                     SourceLocation(),
767                                     &Idents.get("__uint128_t"),
768                                     TInfo);
769  }
770
771  return UInt128Decl;
772}
773
774void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
775  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
776  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
777  Types.push_back(Ty);
778}
779
780void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
781  assert((!this->Target || this->Target == &Target) &&
782         "Incorrect target reinitialization");
783  assert(VoidTy.isNull() && "Context reinitialized?");
784
785  this->Target = &Target;
786
787  ABI.reset(createCXXABI(Target));
788  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
789
790  // C99 6.2.5p19.
791  InitBuiltinType(VoidTy,              BuiltinType::Void);
792
793  // C99 6.2.5p2.
794  InitBuiltinType(BoolTy,              BuiltinType::Bool);
795  // C99 6.2.5p3.
796  if (LangOpts.CharIsSigned)
797    InitBuiltinType(CharTy,            BuiltinType::Char_S);
798  else
799    InitBuiltinType(CharTy,            BuiltinType::Char_U);
800  // C99 6.2.5p4.
801  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
802  InitBuiltinType(ShortTy,             BuiltinType::Short);
803  InitBuiltinType(IntTy,               BuiltinType::Int);
804  InitBuiltinType(LongTy,              BuiltinType::Long);
805  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
806
807  // C99 6.2.5p6.
808  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
809  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
810  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
811  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
812  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
813
814  // C99 6.2.5p10.
815  InitBuiltinType(FloatTy,             BuiltinType::Float);
816  InitBuiltinType(DoubleTy,            BuiltinType::Double);
817  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
818
819  // GNU extension, 128-bit integers.
820  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
821  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
822
823  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
824    if (TargetInfo::isTypeSigned(Target.getWCharType()))
825      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
826    else  // -fshort-wchar makes wchar_t be unsigned.
827      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
828  } else // C99 (or C++ using -fno-wchar)
829    WCharTy = getFromTargetType(Target.getWCharType());
830
831  WIntTy = getFromTargetType(Target.getWIntType());
832
833  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
834    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
835  else // C99
836    Char16Ty = getFromTargetType(Target.getChar16Type());
837
838  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
839    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
840  else // C99
841    Char32Ty = getFromTargetType(Target.getChar32Type());
842
843  // Placeholder type for type-dependent expressions whose type is
844  // completely unknown. No code should ever check a type against
845  // DependentTy and users should never see it; however, it is here to
846  // help diagnose failures to properly check for type-dependent
847  // expressions.
848  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
849
850  // Placeholder type for functions.
851  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
852
853  // Placeholder type for bound members.
854  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
855
856  // Placeholder type for pseudo-objects.
857  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
858
859  // "any" type; useful for debugger-like clients.
860  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
861
862  // Placeholder type for unbridged ARC casts.
863  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
864
865  // Placeholder type for builtin functions.
866  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
867
868  // C99 6.2.5p11.
869  FloatComplexTy      = getComplexType(FloatTy);
870  DoubleComplexTy     = getComplexType(DoubleTy);
871  LongDoubleComplexTy = getComplexType(LongDoubleTy);
872
873  // Builtin types for 'id', 'Class', and 'SEL'.
874  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
875  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
876  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
877
878  if (LangOpts.OpenCL) {
879    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
880    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
881    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
882    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
883    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
884    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
885  }
886
887  // Builtin type for __objc_yes and __objc_no
888  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
889                       SignedCharTy : BoolTy);
890
891  ObjCConstantStringType = QualType();
892
893  ObjCSuperType = QualType();
894
895  // void * type
896  VoidPtrTy = getPointerType(VoidTy);
897
898  // nullptr type (C++0x 2.14.7)
899  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
900
901  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
902  InitBuiltinType(HalfTy, BuiltinType::Half);
903
904  // Builtin type used to help define __builtin_va_list.
905  VaListTagTy = QualType();
906}
907
908DiagnosticsEngine &ASTContext::getDiagnostics() const {
909  return SourceMgr.getDiagnostics();
910}
911
912AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
913  AttrVec *&Result = DeclAttrs[D];
914  if (!Result) {
915    void *Mem = Allocate(sizeof(AttrVec));
916    Result = new (Mem) AttrVec;
917  }
918
919  return *Result;
920}
921
922/// \brief Erase the attributes corresponding to the given declaration.
923void ASTContext::eraseDeclAttrs(const Decl *D) {
924  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
925  if (Pos != DeclAttrs.end()) {
926    Pos->second->~AttrVec();
927    DeclAttrs.erase(Pos);
928  }
929}
930
931MemberSpecializationInfo *
932ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
933  assert(Var->isStaticDataMember() && "Not a static data member");
934  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
935    = InstantiatedFromStaticDataMember.find(Var);
936  if (Pos == InstantiatedFromStaticDataMember.end())
937    return 0;
938
939  return Pos->second;
940}
941
942void
943ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
944                                                TemplateSpecializationKind TSK,
945                                          SourceLocation PointOfInstantiation) {
946  assert(Inst->isStaticDataMember() && "Not a static data member");
947  assert(Tmpl->isStaticDataMember() && "Not a static data member");
948  assert(!InstantiatedFromStaticDataMember[Inst] &&
949         "Already noted what static data member was instantiated from");
950  InstantiatedFromStaticDataMember[Inst]
951    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
952  Inst->ClearLVCache();
953}
954
955FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
956                                                     const FunctionDecl *FD){
957  assert(FD && "Specialization is 0");
958  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
959    = ClassScopeSpecializationPattern.find(FD);
960  if (Pos == ClassScopeSpecializationPattern.end())
961    return 0;
962
963  return Pos->second;
964}
965
966void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
967                                        FunctionDecl *Pattern) {
968  assert(FD && "Specialization is 0");
969  assert(Pattern && "Class scope specialization pattern is 0");
970  ClassScopeSpecializationPattern[FD] = Pattern;
971}
972
973NamedDecl *
974ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
975  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
976    = InstantiatedFromUsingDecl.find(UUD);
977  if (Pos == InstantiatedFromUsingDecl.end())
978    return 0;
979
980  return Pos->second;
981}
982
983void
984ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
985  assert((isa<UsingDecl>(Pattern) ||
986          isa<UnresolvedUsingValueDecl>(Pattern) ||
987          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
988         "pattern decl is not a using decl");
989  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
990  InstantiatedFromUsingDecl[Inst] = Pattern;
991}
992
993UsingShadowDecl *
994ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
995  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
996    = InstantiatedFromUsingShadowDecl.find(Inst);
997  if (Pos == InstantiatedFromUsingShadowDecl.end())
998    return 0;
999
1000  return Pos->second;
1001}
1002
1003void
1004ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1005                                               UsingShadowDecl *Pattern) {
1006  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1007  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1008}
1009
1010FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1011  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1012    = InstantiatedFromUnnamedFieldDecl.find(Field);
1013  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1014    return 0;
1015
1016  return Pos->second;
1017}
1018
1019void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1020                                                     FieldDecl *Tmpl) {
1021  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1022  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1023  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1024         "Already noted what unnamed field was instantiated from");
1025
1026  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1027}
1028
1029bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1030                                    const FieldDecl *LastFD) const {
1031  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1032          FD->getBitWidthValue(*this) == 0);
1033}
1034
1035bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1036                                             const FieldDecl *LastFD) const {
1037  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1038          FD->getBitWidthValue(*this) == 0 &&
1039          LastFD->getBitWidthValue(*this) != 0);
1040}
1041
1042bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1043                                         const FieldDecl *LastFD) const {
1044  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1045          FD->getBitWidthValue(*this) &&
1046          LastFD->getBitWidthValue(*this));
1047}
1048
1049bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1050                                         const FieldDecl *LastFD) const {
1051  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1052          LastFD->getBitWidthValue(*this));
1053}
1054
1055bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1056                                             const FieldDecl *LastFD) const {
1057  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1058          FD->getBitWidthValue(*this));
1059}
1060
1061ASTContext::overridden_cxx_method_iterator
1062ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1063  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1064    = OverriddenMethods.find(Method->getCanonicalDecl());
1065  if (Pos == OverriddenMethods.end())
1066    return 0;
1067
1068  return Pos->second.begin();
1069}
1070
1071ASTContext::overridden_cxx_method_iterator
1072ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1073  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1074    = OverriddenMethods.find(Method->getCanonicalDecl());
1075  if (Pos == OverriddenMethods.end())
1076    return 0;
1077
1078  return Pos->second.end();
1079}
1080
1081unsigned
1082ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1083  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1084    = OverriddenMethods.find(Method->getCanonicalDecl());
1085  if (Pos == OverriddenMethods.end())
1086    return 0;
1087
1088  return Pos->second.size();
1089}
1090
1091void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1092                                     const CXXMethodDecl *Overridden) {
1093  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1094  OverriddenMethods[Method].push_back(Overridden);
1095}
1096
1097void ASTContext::getOverriddenMethods(
1098                      const NamedDecl *D,
1099                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1100  assert(D);
1101
1102  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1103    Overridden.append(CXXMethod->begin_overridden_methods(),
1104                      CXXMethod->end_overridden_methods());
1105    return;
1106  }
1107
1108  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1109  if (!Method)
1110    return;
1111
1112  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1113  Method->getOverriddenMethods(OverDecls);
1114  Overridden.append(OverDecls.begin(), OverDecls.end());
1115}
1116
1117void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1118  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1119  assert(!Import->isFromASTFile() && "Non-local import declaration");
1120  if (!FirstLocalImport) {
1121    FirstLocalImport = Import;
1122    LastLocalImport = Import;
1123    return;
1124  }
1125
1126  LastLocalImport->NextLocalImport = Import;
1127  LastLocalImport = Import;
1128}
1129
1130//===----------------------------------------------------------------------===//
1131//                         Type Sizing and Analysis
1132//===----------------------------------------------------------------------===//
1133
1134/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1135/// scalar floating point type.
1136const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1137  const BuiltinType *BT = T->getAs<BuiltinType>();
1138  assert(BT && "Not a floating point type!");
1139  switch (BT->getKind()) {
1140  default: llvm_unreachable("Not a floating point type!");
1141  case BuiltinType::Half:       return Target->getHalfFormat();
1142  case BuiltinType::Float:      return Target->getFloatFormat();
1143  case BuiltinType::Double:     return Target->getDoubleFormat();
1144  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1145  }
1146}
1147
1148/// getDeclAlign - Return a conservative estimate of the alignment of the
1149/// specified decl.  Note that bitfields do not have a valid alignment, so
1150/// this method will assert on them.
1151/// If @p RefAsPointee, references are treated like their underlying type
1152/// (for alignof), else they're treated like pointers (for CodeGen).
1153CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1154  unsigned Align = Target->getCharWidth();
1155
1156  bool UseAlignAttrOnly = false;
1157  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1158    Align = AlignFromAttr;
1159
1160    // __attribute__((aligned)) can increase or decrease alignment
1161    // *except* on a struct or struct member, where it only increases
1162    // alignment unless 'packed' is also specified.
1163    //
1164    // It is an error for alignas to decrease alignment, so we can
1165    // ignore that possibility;  Sema should diagnose it.
1166    if (isa<FieldDecl>(D)) {
1167      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1168        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1169    } else {
1170      UseAlignAttrOnly = true;
1171    }
1172  }
1173  else if (isa<FieldDecl>(D))
1174      UseAlignAttrOnly =
1175        D->hasAttr<PackedAttr>() ||
1176        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1177
1178  // If we're using the align attribute only, just ignore everything
1179  // else about the declaration and its type.
1180  if (UseAlignAttrOnly) {
1181    // do nothing
1182
1183  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1184    QualType T = VD->getType();
1185    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1186      if (RefAsPointee)
1187        T = RT->getPointeeType();
1188      else
1189        T = getPointerType(RT->getPointeeType());
1190    }
1191    if (!T->isIncompleteType() && !T->isFunctionType()) {
1192      // Adjust alignments of declarations with array type by the
1193      // large-array alignment on the target.
1194      unsigned MinWidth = Target->getLargeArrayMinWidth();
1195      const ArrayType *arrayType;
1196      if (MinWidth && (arrayType = getAsArrayType(T))) {
1197        if (isa<VariableArrayType>(arrayType))
1198          Align = std::max(Align, Target->getLargeArrayAlign());
1199        else if (isa<ConstantArrayType>(arrayType) &&
1200                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1201          Align = std::max(Align, Target->getLargeArrayAlign());
1202
1203        // Walk through any array types while we're at it.
1204        T = getBaseElementType(arrayType);
1205      }
1206      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1207    }
1208
1209    // Fields can be subject to extra alignment constraints, like if
1210    // the field is packed, the struct is packed, or the struct has a
1211    // a max-field-alignment constraint (#pragma pack).  So calculate
1212    // the actual alignment of the field within the struct, and then
1213    // (as we're expected to) constrain that by the alignment of the type.
1214    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1215      // So calculate the alignment of the field.
1216      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1217
1218      // Start with the record's overall alignment.
1219      unsigned fieldAlign = toBits(layout.getAlignment());
1220
1221      // Use the GCD of that and the offset within the record.
1222      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1223      if (offset > 0) {
1224        // Alignment is always a power of 2, so the GCD will be a power of 2,
1225        // which means we get to do this crazy thing instead of Euclid's.
1226        uint64_t lowBitOfOffset = offset & (~offset + 1);
1227        if (lowBitOfOffset < fieldAlign)
1228          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1229      }
1230
1231      Align = std::min(Align, fieldAlign);
1232    }
1233  }
1234
1235  return toCharUnitsFromBits(Align);
1236}
1237
1238// getTypeInfoDataSizeInChars - Return the size of a type, in
1239// chars. If the type is a record, its data size is returned.  This is
1240// the size of the memcpy that's performed when assigning this type
1241// using a trivial copy/move assignment operator.
1242std::pair<CharUnits, CharUnits>
1243ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1244  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1245
1246  // In C++, objects can sometimes be allocated into the tail padding
1247  // of a base-class subobject.  We decide whether that's possible
1248  // during class layout, so here we can just trust the layout results.
1249  if (getLangOpts().CPlusPlus) {
1250    if (const RecordType *RT = T->getAs<RecordType>()) {
1251      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1252      sizeAndAlign.first = layout.getDataSize();
1253    }
1254  }
1255
1256  return sizeAndAlign;
1257}
1258
1259std::pair<CharUnits, CharUnits>
1260ASTContext::getTypeInfoInChars(const Type *T) const {
1261  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1262  return std::make_pair(toCharUnitsFromBits(Info.first),
1263                        toCharUnitsFromBits(Info.second));
1264}
1265
1266std::pair<CharUnits, CharUnits>
1267ASTContext::getTypeInfoInChars(QualType T) const {
1268  return getTypeInfoInChars(T.getTypePtr());
1269}
1270
1271std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1272  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1273  if (it != MemoizedTypeInfo.end())
1274    return it->second;
1275
1276  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1277  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1278  return Info;
1279}
1280
1281/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1282/// method does not work on incomplete types.
1283///
1284/// FIXME: Pointers into different addr spaces could have different sizes and
1285/// alignment requirements: getPointerInfo should take an AddrSpace, this
1286/// should take a QualType, &c.
1287std::pair<uint64_t, unsigned>
1288ASTContext::getTypeInfoImpl(const Type *T) const {
1289  uint64_t Width=0;
1290  unsigned Align=8;
1291  switch (T->getTypeClass()) {
1292#define TYPE(Class, Base)
1293#define ABSTRACT_TYPE(Class, Base)
1294#define NON_CANONICAL_TYPE(Class, Base)
1295#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1296#include "clang/AST/TypeNodes.def"
1297    llvm_unreachable("Should not see dependent types");
1298
1299  case Type::FunctionNoProto:
1300  case Type::FunctionProto:
1301    // GCC extension: alignof(function) = 32 bits
1302    Width = 0;
1303    Align = 32;
1304    break;
1305
1306  case Type::IncompleteArray:
1307  case Type::VariableArray:
1308    Width = 0;
1309    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1310    break;
1311
1312  case Type::ConstantArray: {
1313    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1314
1315    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1316    uint64_t Size = CAT->getSize().getZExtValue();
1317    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1318           "Overflow in array type bit size evaluation");
1319    Width = EltInfo.first*Size;
1320    Align = EltInfo.second;
1321    Width = llvm::RoundUpToAlignment(Width, Align);
1322    break;
1323  }
1324  case Type::ExtVector:
1325  case Type::Vector: {
1326    const VectorType *VT = cast<VectorType>(T);
1327    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1328    Width = EltInfo.first*VT->getNumElements();
1329    Align = Width;
1330    // If the alignment is not a power of 2, round up to the next power of 2.
1331    // This happens for non-power-of-2 length vectors.
1332    if (Align & (Align-1)) {
1333      Align = llvm::NextPowerOf2(Align);
1334      Width = llvm::RoundUpToAlignment(Width, Align);
1335    }
1336    // Adjust the alignment based on the target max.
1337    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1338    if (TargetVectorAlign && TargetVectorAlign < Align)
1339      Align = TargetVectorAlign;
1340    break;
1341  }
1342
1343  case Type::Builtin:
1344    switch (cast<BuiltinType>(T)->getKind()) {
1345    default: llvm_unreachable("Unknown builtin type!");
1346    case BuiltinType::Void:
1347      // GCC extension: alignof(void) = 8 bits.
1348      Width = 0;
1349      Align = 8;
1350      break;
1351
1352    case BuiltinType::Bool:
1353      Width = Target->getBoolWidth();
1354      Align = Target->getBoolAlign();
1355      break;
1356    case BuiltinType::Char_S:
1357    case BuiltinType::Char_U:
1358    case BuiltinType::UChar:
1359    case BuiltinType::SChar:
1360      Width = Target->getCharWidth();
1361      Align = Target->getCharAlign();
1362      break;
1363    case BuiltinType::WChar_S:
1364    case BuiltinType::WChar_U:
1365      Width = Target->getWCharWidth();
1366      Align = Target->getWCharAlign();
1367      break;
1368    case BuiltinType::Char16:
1369      Width = Target->getChar16Width();
1370      Align = Target->getChar16Align();
1371      break;
1372    case BuiltinType::Char32:
1373      Width = Target->getChar32Width();
1374      Align = Target->getChar32Align();
1375      break;
1376    case BuiltinType::UShort:
1377    case BuiltinType::Short:
1378      Width = Target->getShortWidth();
1379      Align = Target->getShortAlign();
1380      break;
1381    case BuiltinType::UInt:
1382    case BuiltinType::Int:
1383      Width = Target->getIntWidth();
1384      Align = Target->getIntAlign();
1385      break;
1386    case BuiltinType::ULong:
1387    case BuiltinType::Long:
1388      Width = Target->getLongWidth();
1389      Align = Target->getLongAlign();
1390      break;
1391    case BuiltinType::ULongLong:
1392    case BuiltinType::LongLong:
1393      Width = Target->getLongLongWidth();
1394      Align = Target->getLongLongAlign();
1395      break;
1396    case BuiltinType::Int128:
1397    case BuiltinType::UInt128:
1398      Width = 128;
1399      Align = 128; // int128_t is 128-bit aligned on all targets.
1400      break;
1401    case BuiltinType::Half:
1402      Width = Target->getHalfWidth();
1403      Align = Target->getHalfAlign();
1404      break;
1405    case BuiltinType::Float:
1406      Width = Target->getFloatWidth();
1407      Align = Target->getFloatAlign();
1408      break;
1409    case BuiltinType::Double:
1410      Width = Target->getDoubleWidth();
1411      Align = Target->getDoubleAlign();
1412      break;
1413    case BuiltinType::LongDouble:
1414      Width = Target->getLongDoubleWidth();
1415      Align = Target->getLongDoubleAlign();
1416      break;
1417    case BuiltinType::NullPtr:
1418      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1419      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1420      break;
1421    case BuiltinType::ObjCId:
1422    case BuiltinType::ObjCClass:
1423    case BuiltinType::ObjCSel:
1424      Width = Target->getPointerWidth(0);
1425      Align = Target->getPointerAlign(0);
1426      break;
1427    case BuiltinType::OCLImage1d:
1428    case BuiltinType::OCLImage1dArray:
1429    case BuiltinType::OCLImage1dBuffer:
1430    case BuiltinType::OCLImage2d:
1431    case BuiltinType::OCLImage2dArray:
1432    case BuiltinType::OCLImage3d:
1433      // Currently these types are pointers to opaque types.
1434      Width = Target->getPointerWidth(0);
1435      Align = Target->getPointerAlign(0);
1436      break;
1437    }
1438    break;
1439  case Type::ObjCObjectPointer:
1440    Width = Target->getPointerWidth(0);
1441    Align = Target->getPointerAlign(0);
1442    break;
1443  case Type::BlockPointer: {
1444    unsigned AS = getTargetAddressSpace(
1445        cast<BlockPointerType>(T)->getPointeeType());
1446    Width = Target->getPointerWidth(AS);
1447    Align = Target->getPointerAlign(AS);
1448    break;
1449  }
1450  case Type::LValueReference:
1451  case Type::RValueReference: {
1452    // alignof and sizeof should never enter this code path here, so we go
1453    // the pointer route.
1454    unsigned AS = getTargetAddressSpace(
1455        cast<ReferenceType>(T)->getPointeeType());
1456    Width = Target->getPointerWidth(AS);
1457    Align = Target->getPointerAlign(AS);
1458    break;
1459  }
1460  case Type::Pointer: {
1461    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1462    Width = Target->getPointerWidth(AS);
1463    Align = Target->getPointerAlign(AS);
1464    break;
1465  }
1466  case Type::MemberPointer: {
1467    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1468    std::pair<uint64_t, unsigned> PtrDiffInfo =
1469      getTypeInfo(getPointerDiffType());
1470    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1471    Align = PtrDiffInfo.second;
1472    break;
1473  }
1474  case Type::Complex: {
1475    // Complex types have the same alignment as their elements, but twice the
1476    // size.
1477    std::pair<uint64_t, unsigned> EltInfo =
1478      getTypeInfo(cast<ComplexType>(T)->getElementType());
1479    Width = EltInfo.first*2;
1480    Align = EltInfo.second;
1481    break;
1482  }
1483  case Type::ObjCObject:
1484    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1485  case Type::ObjCInterface: {
1486    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1487    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1488    Width = toBits(Layout.getSize());
1489    Align = toBits(Layout.getAlignment());
1490    break;
1491  }
1492  case Type::Record:
1493  case Type::Enum: {
1494    const TagType *TT = cast<TagType>(T);
1495
1496    if (TT->getDecl()->isInvalidDecl()) {
1497      Width = 8;
1498      Align = 8;
1499      break;
1500    }
1501
1502    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1503      return getTypeInfo(ET->getDecl()->getIntegerType());
1504
1505    const RecordType *RT = cast<RecordType>(TT);
1506    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1507    Width = toBits(Layout.getSize());
1508    Align = toBits(Layout.getAlignment());
1509    break;
1510  }
1511
1512  case Type::SubstTemplateTypeParm:
1513    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1514                       getReplacementType().getTypePtr());
1515
1516  case Type::Auto: {
1517    const AutoType *A = cast<AutoType>(T);
1518    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1519    return getTypeInfo(A->getDeducedType().getTypePtr());
1520  }
1521
1522  case Type::Paren:
1523    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1524
1525  case Type::Typedef: {
1526    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1527    std::pair<uint64_t, unsigned> Info
1528      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1529    // If the typedef has an aligned attribute on it, it overrides any computed
1530    // alignment we have.  This violates the GCC documentation (which says that
1531    // attribute(aligned) can only round up) but matches its implementation.
1532    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1533      Align = AttrAlign;
1534    else
1535      Align = Info.second;
1536    Width = Info.first;
1537    break;
1538  }
1539
1540  case Type::TypeOfExpr:
1541    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1542                         .getTypePtr());
1543
1544  case Type::TypeOf:
1545    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1546
1547  case Type::Decltype:
1548    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1549                        .getTypePtr());
1550
1551  case Type::UnaryTransform:
1552    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1553
1554  case Type::Elaborated:
1555    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1556
1557  case Type::Attributed:
1558    return getTypeInfo(
1559                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1560
1561  case Type::TemplateSpecialization: {
1562    assert(getCanonicalType(T) != T &&
1563           "Cannot request the size of a dependent type");
1564    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1565    // A type alias template specialization may refer to a typedef with the
1566    // aligned attribute on it.
1567    if (TST->isTypeAlias())
1568      return getTypeInfo(TST->getAliasedType().getTypePtr());
1569    else
1570      return getTypeInfo(getCanonicalType(T));
1571  }
1572
1573  case Type::Atomic: {
1574    std::pair<uint64_t, unsigned> Info
1575      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1576    Width = Info.first;
1577    Align = Info.second;
1578    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1579        llvm::isPowerOf2_64(Width)) {
1580      // We can potentially perform lock-free atomic operations for this
1581      // type; promote the alignment appropriately.
1582      // FIXME: We could potentially promote the width here as well...
1583      // is that worthwhile?  (Non-struct atomic types generally have
1584      // power-of-two size anyway, but structs might not.  Requires a bit
1585      // of implementation work to make sure we zero out the extra bits.)
1586      Align = static_cast<unsigned>(Width);
1587    }
1588  }
1589
1590  }
1591
1592  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1593  return std::make_pair(Width, Align);
1594}
1595
1596/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1597CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1598  return CharUnits::fromQuantity(BitSize / getCharWidth());
1599}
1600
1601/// toBits - Convert a size in characters to a size in characters.
1602int64_t ASTContext::toBits(CharUnits CharSize) const {
1603  return CharSize.getQuantity() * getCharWidth();
1604}
1605
1606/// getTypeSizeInChars - Return the size of the specified type, in characters.
1607/// This method does not work on incomplete types.
1608CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1609  return toCharUnitsFromBits(getTypeSize(T));
1610}
1611CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1612  return toCharUnitsFromBits(getTypeSize(T));
1613}
1614
1615/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1616/// characters. This method does not work on incomplete types.
1617CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1618  return toCharUnitsFromBits(getTypeAlign(T));
1619}
1620CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1621  return toCharUnitsFromBits(getTypeAlign(T));
1622}
1623
1624/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1625/// type for the current target in bits.  This can be different than the ABI
1626/// alignment in cases where it is beneficial for performance to overalign
1627/// a data type.
1628unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1629  unsigned ABIAlign = getTypeAlign(T);
1630
1631  // Double and long long should be naturally aligned if possible.
1632  if (const ComplexType* CT = T->getAs<ComplexType>())
1633    T = CT->getElementType().getTypePtr();
1634  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1635      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1636      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1637    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1638
1639  return ABIAlign;
1640}
1641
1642/// DeepCollectObjCIvars -
1643/// This routine first collects all declared, but not synthesized, ivars in
1644/// super class and then collects all ivars, including those synthesized for
1645/// current class. This routine is used for implementation of current class
1646/// when all ivars, declared and synthesized are known.
1647///
1648void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1649                                      bool leafClass,
1650                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1651  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1652    DeepCollectObjCIvars(SuperClass, false, Ivars);
1653  if (!leafClass) {
1654    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1655         E = OI->ivar_end(); I != E; ++I)
1656      Ivars.push_back(*I);
1657  } else {
1658    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1659    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1660         Iv= Iv->getNextIvar())
1661      Ivars.push_back(Iv);
1662  }
1663}
1664
1665/// CollectInheritedProtocols - Collect all protocols in current class and
1666/// those inherited by it.
1667void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1668                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1669  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1670    // We can use protocol_iterator here instead of
1671    // all_referenced_protocol_iterator since we are walking all categories.
1672    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1673         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1674      ObjCProtocolDecl *Proto = (*P);
1675      Protocols.insert(Proto->getCanonicalDecl());
1676      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1677           PE = Proto->protocol_end(); P != PE; ++P) {
1678        Protocols.insert((*P)->getCanonicalDecl());
1679        CollectInheritedProtocols(*P, Protocols);
1680      }
1681    }
1682
1683    // Categories of this Interface.
1684    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1685         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1686      CollectInheritedProtocols(CDeclChain, Protocols);
1687    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1688      while (SD) {
1689        CollectInheritedProtocols(SD, Protocols);
1690        SD = SD->getSuperClass();
1691      }
1692  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1693    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1694         PE = OC->protocol_end(); P != PE; ++P) {
1695      ObjCProtocolDecl *Proto = (*P);
1696      Protocols.insert(Proto->getCanonicalDecl());
1697      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1698           PE = Proto->protocol_end(); P != PE; ++P)
1699        CollectInheritedProtocols(*P, Protocols);
1700    }
1701  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1702    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1703         PE = OP->protocol_end(); P != PE; ++P) {
1704      ObjCProtocolDecl *Proto = (*P);
1705      Protocols.insert(Proto->getCanonicalDecl());
1706      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1707           PE = Proto->protocol_end(); P != PE; ++P)
1708        CollectInheritedProtocols(*P, Protocols);
1709    }
1710  }
1711}
1712
1713unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1714  unsigned count = 0;
1715  // Count ivars declared in class extension.
1716  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1717       CDecl = CDecl->getNextClassExtension())
1718    count += CDecl->ivar_size();
1719
1720  // Count ivar defined in this class's implementation.  This
1721  // includes synthesized ivars.
1722  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1723    count += ImplDecl->ivar_size();
1724
1725  return count;
1726}
1727
1728bool ASTContext::isSentinelNullExpr(const Expr *E) {
1729  if (!E)
1730    return false;
1731
1732  // nullptr_t is always treated as null.
1733  if (E->getType()->isNullPtrType()) return true;
1734
1735  if (E->getType()->isAnyPointerType() &&
1736      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1737                                                Expr::NPC_ValueDependentIsNull))
1738    return true;
1739
1740  // Unfortunately, __null has type 'int'.
1741  if (isa<GNUNullExpr>(E)) return true;
1742
1743  return false;
1744}
1745
1746/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1747ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1748  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1749    I = ObjCImpls.find(D);
1750  if (I != ObjCImpls.end())
1751    return cast<ObjCImplementationDecl>(I->second);
1752  return 0;
1753}
1754/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1755ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1756  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1757    I = ObjCImpls.find(D);
1758  if (I != ObjCImpls.end())
1759    return cast<ObjCCategoryImplDecl>(I->second);
1760  return 0;
1761}
1762
1763/// \brief Set the implementation of ObjCInterfaceDecl.
1764void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1765                           ObjCImplementationDecl *ImplD) {
1766  assert(IFaceD && ImplD && "Passed null params");
1767  ObjCImpls[IFaceD] = ImplD;
1768}
1769/// \brief Set the implementation of ObjCCategoryDecl.
1770void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1771                           ObjCCategoryImplDecl *ImplD) {
1772  assert(CatD && ImplD && "Passed null params");
1773  ObjCImpls[CatD] = ImplD;
1774}
1775
1776ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1777  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1778    return ID;
1779  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1780    return CD->getClassInterface();
1781  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1782    return IMD->getClassInterface();
1783
1784  return 0;
1785}
1786
1787/// \brief Get the copy initialization expression of VarDecl,or NULL if
1788/// none exists.
1789Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1790  assert(VD && "Passed null params");
1791  assert(VD->hasAttr<BlocksAttr>() &&
1792         "getBlockVarCopyInits - not __block var");
1793  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1794    I = BlockVarCopyInits.find(VD);
1795  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1796}
1797
1798/// \brief Set the copy inialization expression of a block var decl.
1799void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1800  assert(VD && Init && "Passed null params");
1801  assert(VD->hasAttr<BlocksAttr>() &&
1802         "setBlockVarCopyInits - not __block var");
1803  BlockVarCopyInits[VD] = Init;
1804}
1805
1806TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1807                                                 unsigned DataSize) const {
1808  if (!DataSize)
1809    DataSize = TypeLoc::getFullDataSizeForType(T);
1810  else
1811    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1812           "incorrect data size provided to CreateTypeSourceInfo!");
1813
1814  TypeSourceInfo *TInfo =
1815    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1816  new (TInfo) TypeSourceInfo(T);
1817  return TInfo;
1818}
1819
1820TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1821                                                     SourceLocation L) const {
1822  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1823  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1824  return DI;
1825}
1826
1827const ASTRecordLayout &
1828ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1829  return getObjCLayout(D, 0);
1830}
1831
1832const ASTRecordLayout &
1833ASTContext::getASTObjCImplementationLayout(
1834                                        const ObjCImplementationDecl *D) const {
1835  return getObjCLayout(D->getClassInterface(), D);
1836}
1837
1838//===----------------------------------------------------------------------===//
1839//                   Type creation/memoization methods
1840//===----------------------------------------------------------------------===//
1841
1842QualType
1843ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1844  unsigned fastQuals = quals.getFastQualifiers();
1845  quals.removeFastQualifiers();
1846
1847  // Check if we've already instantiated this type.
1848  llvm::FoldingSetNodeID ID;
1849  ExtQuals::Profile(ID, baseType, quals);
1850  void *insertPos = 0;
1851  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1852    assert(eq->getQualifiers() == quals);
1853    return QualType(eq, fastQuals);
1854  }
1855
1856  // If the base type is not canonical, make the appropriate canonical type.
1857  QualType canon;
1858  if (!baseType->isCanonicalUnqualified()) {
1859    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1860    canonSplit.Quals.addConsistentQualifiers(quals);
1861    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1862
1863    // Re-find the insert position.
1864    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1865  }
1866
1867  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1868  ExtQualNodes.InsertNode(eq, insertPos);
1869  return QualType(eq, fastQuals);
1870}
1871
1872QualType
1873ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1874  QualType CanT = getCanonicalType(T);
1875  if (CanT.getAddressSpace() == AddressSpace)
1876    return T;
1877
1878  // If we are composing extended qualifiers together, merge together
1879  // into one ExtQuals node.
1880  QualifierCollector Quals;
1881  const Type *TypeNode = Quals.strip(T);
1882
1883  // If this type already has an address space specified, it cannot get
1884  // another one.
1885  assert(!Quals.hasAddressSpace() &&
1886         "Type cannot be in multiple addr spaces!");
1887  Quals.addAddressSpace(AddressSpace);
1888
1889  return getExtQualType(TypeNode, Quals);
1890}
1891
1892QualType ASTContext::getObjCGCQualType(QualType T,
1893                                       Qualifiers::GC GCAttr) const {
1894  QualType CanT = getCanonicalType(T);
1895  if (CanT.getObjCGCAttr() == GCAttr)
1896    return T;
1897
1898  if (const PointerType *ptr = T->getAs<PointerType>()) {
1899    QualType Pointee = ptr->getPointeeType();
1900    if (Pointee->isAnyPointerType()) {
1901      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1902      return getPointerType(ResultType);
1903    }
1904  }
1905
1906  // If we are composing extended qualifiers together, merge together
1907  // into one ExtQuals node.
1908  QualifierCollector Quals;
1909  const Type *TypeNode = Quals.strip(T);
1910
1911  // If this type already has an ObjCGC specified, it cannot get
1912  // another one.
1913  assert(!Quals.hasObjCGCAttr() &&
1914         "Type cannot have multiple ObjCGCs!");
1915  Quals.addObjCGCAttr(GCAttr);
1916
1917  return getExtQualType(TypeNode, Quals);
1918}
1919
1920const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1921                                                   FunctionType::ExtInfo Info) {
1922  if (T->getExtInfo() == Info)
1923    return T;
1924
1925  QualType Result;
1926  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1927    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1928  } else {
1929    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1930    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1931    EPI.ExtInfo = Info;
1932    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1933                             FPT->getNumArgs(), EPI);
1934  }
1935
1936  return cast<FunctionType>(Result.getTypePtr());
1937}
1938
1939/// getComplexType - Return the uniqued reference to the type for a complex
1940/// number with the specified element type.
1941QualType ASTContext::getComplexType(QualType T) const {
1942  // Unique pointers, to guarantee there is only one pointer of a particular
1943  // structure.
1944  llvm::FoldingSetNodeID ID;
1945  ComplexType::Profile(ID, T);
1946
1947  void *InsertPos = 0;
1948  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1949    return QualType(CT, 0);
1950
1951  // If the pointee type isn't canonical, this won't be a canonical type either,
1952  // so fill in the canonical type field.
1953  QualType Canonical;
1954  if (!T.isCanonical()) {
1955    Canonical = getComplexType(getCanonicalType(T));
1956
1957    // Get the new insert position for the node we care about.
1958    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1959    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1960  }
1961  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1962  Types.push_back(New);
1963  ComplexTypes.InsertNode(New, InsertPos);
1964  return QualType(New, 0);
1965}
1966
1967/// getPointerType - Return the uniqued reference to the type for a pointer to
1968/// the specified type.
1969QualType ASTContext::getPointerType(QualType T) const {
1970  // Unique pointers, to guarantee there is only one pointer of a particular
1971  // structure.
1972  llvm::FoldingSetNodeID ID;
1973  PointerType::Profile(ID, T);
1974
1975  void *InsertPos = 0;
1976  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1977    return QualType(PT, 0);
1978
1979  // If the pointee type isn't canonical, this won't be a canonical type either,
1980  // so fill in the canonical type field.
1981  QualType Canonical;
1982  if (!T.isCanonical()) {
1983    Canonical = getPointerType(getCanonicalType(T));
1984
1985    // Get the new insert position for the node we care about.
1986    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1987    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1988  }
1989  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1990  Types.push_back(New);
1991  PointerTypes.InsertNode(New, InsertPos);
1992  return QualType(New, 0);
1993}
1994
1995/// getBlockPointerType - Return the uniqued reference to the type for
1996/// a pointer to the specified block.
1997QualType ASTContext::getBlockPointerType(QualType T) const {
1998  assert(T->isFunctionType() && "block of function types only");
1999  // Unique pointers, to guarantee there is only one block of a particular
2000  // structure.
2001  llvm::FoldingSetNodeID ID;
2002  BlockPointerType::Profile(ID, T);
2003
2004  void *InsertPos = 0;
2005  if (BlockPointerType *PT =
2006        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2007    return QualType(PT, 0);
2008
2009  // If the block pointee type isn't canonical, this won't be a canonical
2010  // type either so fill in the canonical type field.
2011  QualType Canonical;
2012  if (!T.isCanonical()) {
2013    Canonical = getBlockPointerType(getCanonicalType(T));
2014
2015    // Get the new insert position for the node we care about.
2016    BlockPointerType *NewIP =
2017      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2018    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2019  }
2020  BlockPointerType *New
2021    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2022  Types.push_back(New);
2023  BlockPointerTypes.InsertNode(New, InsertPos);
2024  return QualType(New, 0);
2025}
2026
2027/// getLValueReferenceType - Return the uniqued reference to the type for an
2028/// lvalue reference to the specified type.
2029QualType
2030ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2031  assert(getCanonicalType(T) != OverloadTy &&
2032         "Unresolved overloaded function type");
2033
2034  // Unique pointers, to guarantee there is only one pointer of a particular
2035  // structure.
2036  llvm::FoldingSetNodeID ID;
2037  ReferenceType::Profile(ID, T, SpelledAsLValue);
2038
2039  void *InsertPos = 0;
2040  if (LValueReferenceType *RT =
2041        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2042    return QualType(RT, 0);
2043
2044  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2045
2046  // If the referencee type isn't canonical, this won't be a canonical type
2047  // either, so fill in the canonical type field.
2048  QualType Canonical;
2049  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2050    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2051    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2052
2053    // Get the new insert position for the node we care about.
2054    LValueReferenceType *NewIP =
2055      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2056    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2057  }
2058
2059  LValueReferenceType *New
2060    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2061                                                     SpelledAsLValue);
2062  Types.push_back(New);
2063  LValueReferenceTypes.InsertNode(New, InsertPos);
2064
2065  return QualType(New, 0);
2066}
2067
2068/// getRValueReferenceType - Return the uniqued reference to the type for an
2069/// rvalue reference to the specified type.
2070QualType ASTContext::getRValueReferenceType(QualType T) const {
2071  // Unique pointers, to guarantee there is only one pointer of a particular
2072  // structure.
2073  llvm::FoldingSetNodeID ID;
2074  ReferenceType::Profile(ID, T, false);
2075
2076  void *InsertPos = 0;
2077  if (RValueReferenceType *RT =
2078        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2079    return QualType(RT, 0);
2080
2081  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2082
2083  // If the referencee type isn't canonical, this won't be a canonical type
2084  // either, so fill in the canonical type field.
2085  QualType Canonical;
2086  if (InnerRef || !T.isCanonical()) {
2087    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2088    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2089
2090    // Get the new insert position for the node we care about.
2091    RValueReferenceType *NewIP =
2092      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2093    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2094  }
2095
2096  RValueReferenceType *New
2097    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2098  Types.push_back(New);
2099  RValueReferenceTypes.InsertNode(New, InsertPos);
2100  return QualType(New, 0);
2101}
2102
2103/// getMemberPointerType - Return the uniqued reference to the type for a
2104/// member pointer to the specified type, in the specified class.
2105QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2106  // Unique pointers, to guarantee there is only one pointer of a particular
2107  // structure.
2108  llvm::FoldingSetNodeID ID;
2109  MemberPointerType::Profile(ID, T, Cls);
2110
2111  void *InsertPos = 0;
2112  if (MemberPointerType *PT =
2113      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2114    return QualType(PT, 0);
2115
2116  // If the pointee or class type isn't canonical, this won't be a canonical
2117  // type either, so fill in the canonical type field.
2118  QualType Canonical;
2119  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2120    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2121
2122    // Get the new insert position for the node we care about.
2123    MemberPointerType *NewIP =
2124      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2125    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2126  }
2127  MemberPointerType *New
2128    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2129  Types.push_back(New);
2130  MemberPointerTypes.InsertNode(New, InsertPos);
2131  return QualType(New, 0);
2132}
2133
2134/// getConstantArrayType - Return the unique reference to the type for an
2135/// array of the specified element type.
2136QualType ASTContext::getConstantArrayType(QualType EltTy,
2137                                          const llvm::APInt &ArySizeIn,
2138                                          ArrayType::ArraySizeModifier ASM,
2139                                          unsigned IndexTypeQuals) const {
2140  assert((EltTy->isDependentType() ||
2141          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2142         "Constant array of VLAs is illegal!");
2143
2144  // Convert the array size into a canonical width matching the pointer size for
2145  // the target.
2146  llvm::APInt ArySize(ArySizeIn);
2147  ArySize =
2148    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2149
2150  llvm::FoldingSetNodeID ID;
2151  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2152
2153  void *InsertPos = 0;
2154  if (ConstantArrayType *ATP =
2155      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2156    return QualType(ATP, 0);
2157
2158  // If the element type isn't canonical or has qualifiers, this won't
2159  // be a canonical type either, so fill in the canonical type field.
2160  QualType Canon;
2161  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2162    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2163    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2164                                 ASM, IndexTypeQuals);
2165    Canon = getQualifiedType(Canon, canonSplit.Quals);
2166
2167    // Get the new insert position for the node we care about.
2168    ConstantArrayType *NewIP =
2169      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2170    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2171  }
2172
2173  ConstantArrayType *New = new(*this,TypeAlignment)
2174    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2175  ConstantArrayTypes.InsertNode(New, InsertPos);
2176  Types.push_back(New);
2177  return QualType(New, 0);
2178}
2179
2180/// getVariableArrayDecayedType - Turns the given type, which may be
2181/// variably-modified, into the corresponding type with all the known
2182/// sizes replaced with [*].
2183QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2184  // Vastly most common case.
2185  if (!type->isVariablyModifiedType()) return type;
2186
2187  QualType result;
2188
2189  SplitQualType split = type.getSplitDesugaredType();
2190  const Type *ty = split.Ty;
2191  switch (ty->getTypeClass()) {
2192#define TYPE(Class, Base)
2193#define ABSTRACT_TYPE(Class, Base)
2194#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2195#include "clang/AST/TypeNodes.def"
2196    llvm_unreachable("didn't desugar past all non-canonical types?");
2197
2198  // These types should never be variably-modified.
2199  case Type::Builtin:
2200  case Type::Complex:
2201  case Type::Vector:
2202  case Type::ExtVector:
2203  case Type::DependentSizedExtVector:
2204  case Type::ObjCObject:
2205  case Type::ObjCInterface:
2206  case Type::ObjCObjectPointer:
2207  case Type::Record:
2208  case Type::Enum:
2209  case Type::UnresolvedUsing:
2210  case Type::TypeOfExpr:
2211  case Type::TypeOf:
2212  case Type::Decltype:
2213  case Type::UnaryTransform:
2214  case Type::DependentName:
2215  case Type::InjectedClassName:
2216  case Type::TemplateSpecialization:
2217  case Type::DependentTemplateSpecialization:
2218  case Type::TemplateTypeParm:
2219  case Type::SubstTemplateTypeParmPack:
2220  case Type::Auto:
2221  case Type::PackExpansion:
2222    llvm_unreachable("type should never be variably-modified");
2223
2224  // These types can be variably-modified but should never need to
2225  // further decay.
2226  case Type::FunctionNoProto:
2227  case Type::FunctionProto:
2228  case Type::BlockPointer:
2229  case Type::MemberPointer:
2230    return type;
2231
2232  // These types can be variably-modified.  All these modifications
2233  // preserve structure except as noted by comments.
2234  // TODO: if we ever care about optimizing VLAs, there are no-op
2235  // optimizations available here.
2236  case Type::Pointer:
2237    result = getPointerType(getVariableArrayDecayedType(
2238                              cast<PointerType>(ty)->getPointeeType()));
2239    break;
2240
2241  case Type::LValueReference: {
2242    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2243    result = getLValueReferenceType(
2244                 getVariableArrayDecayedType(lv->getPointeeType()),
2245                                    lv->isSpelledAsLValue());
2246    break;
2247  }
2248
2249  case Type::RValueReference: {
2250    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2251    result = getRValueReferenceType(
2252                 getVariableArrayDecayedType(lv->getPointeeType()));
2253    break;
2254  }
2255
2256  case Type::Atomic: {
2257    const AtomicType *at = cast<AtomicType>(ty);
2258    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2259    break;
2260  }
2261
2262  case Type::ConstantArray: {
2263    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2264    result = getConstantArrayType(
2265                 getVariableArrayDecayedType(cat->getElementType()),
2266                                  cat->getSize(),
2267                                  cat->getSizeModifier(),
2268                                  cat->getIndexTypeCVRQualifiers());
2269    break;
2270  }
2271
2272  case Type::DependentSizedArray: {
2273    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2274    result = getDependentSizedArrayType(
2275                 getVariableArrayDecayedType(dat->getElementType()),
2276                                        dat->getSizeExpr(),
2277                                        dat->getSizeModifier(),
2278                                        dat->getIndexTypeCVRQualifiers(),
2279                                        dat->getBracketsRange());
2280    break;
2281  }
2282
2283  // Turn incomplete types into [*] types.
2284  case Type::IncompleteArray: {
2285    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2286    result = getVariableArrayType(
2287                 getVariableArrayDecayedType(iat->getElementType()),
2288                                  /*size*/ 0,
2289                                  ArrayType::Normal,
2290                                  iat->getIndexTypeCVRQualifiers(),
2291                                  SourceRange());
2292    break;
2293  }
2294
2295  // Turn VLA types into [*] types.
2296  case Type::VariableArray: {
2297    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2298    result = getVariableArrayType(
2299                 getVariableArrayDecayedType(vat->getElementType()),
2300                                  /*size*/ 0,
2301                                  ArrayType::Star,
2302                                  vat->getIndexTypeCVRQualifiers(),
2303                                  vat->getBracketsRange());
2304    break;
2305  }
2306  }
2307
2308  // Apply the top-level qualifiers from the original.
2309  return getQualifiedType(result, split.Quals);
2310}
2311
2312/// getVariableArrayType - Returns a non-unique reference to the type for a
2313/// variable array of the specified element type.
2314QualType ASTContext::getVariableArrayType(QualType EltTy,
2315                                          Expr *NumElts,
2316                                          ArrayType::ArraySizeModifier ASM,
2317                                          unsigned IndexTypeQuals,
2318                                          SourceRange Brackets) const {
2319  // Since we don't unique expressions, it isn't possible to unique VLA's
2320  // that have an expression provided for their size.
2321  QualType Canon;
2322
2323  // Be sure to pull qualifiers off the element type.
2324  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2325    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2326    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2327                                 IndexTypeQuals, Brackets);
2328    Canon = getQualifiedType(Canon, canonSplit.Quals);
2329  }
2330
2331  VariableArrayType *New = new(*this, TypeAlignment)
2332    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2333
2334  VariableArrayTypes.push_back(New);
2335  Types.push_back(New);
2336  return QualType(New, 0);
2337}
2338
2339/// getDependentSizedArrayType - Returns a non-unique reference to
2340/// the type for a dependently-sized array of the specified element
2341/// type.
2342QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2343                                                Expr *numElements,
2344                                                ArrayType::ArraySizeModifier ASM,
2345                                                unsigned elementTypeQuals,
2346                                                SourceRange brackets) const {
2347  assert((!numElements || numElements->isTypeDependent() ||
2348          numElements->isValueDependent()) &&
2349         "Size must be type- or value-dependent!");
2350
2351  // Dependently-sized array types that do not have a specified number
2352  // of elements will have their sizes deduced from a dependent
2353  // initializer.  We do no canonicalization here at all, which is okay
2354  // because they can't be used in most locations.
2355  if (!numElements) {
2356    DependentSizedArrayType *newType
2357      = new (*this, TypeAlignment)
2358          DependentSizedArrayType(*this, elementType, QualType(),
2359                                  numElements, ASM, elementTypeQuals,
2360                                  brackets);
2361    Types.push_back(newType);
2362    return QualType(newType, 0);
2363  }
2364
2365  // Otherwise, we actually build a new type every time, but we
2366  // also build a canonical type.
2367
2368  SplitQualType canonElementType = getCanonicalType(elementType).split();
2369
2370  void *insertPos = 0;
2371  llvm::FoldingSetNodeID ID;
2372  DependentSizedArrayType::Profile(ID, *this,
2373                                   QualType(canonElementType.Ty, 0),
2374                                   ASM, elementTypeQuals, numElements);
2375
2376  // Look for an existing type with these properties.
2377  DependentSizedArrayType *canonTy =
2378    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2379
2380  // If we don't have one, build one.
2381  if (!canonTy) {
2382    canonTy = new (*this, TypeAlignment)
2383      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2384                              QualType(), numElements, ASM, elementTypeQuals,
2385                              brackets);
2386    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2387    Types.push_back(canonTy);
2388  }
2389
2390  // Apply qualifiers from the element type to the array.
2391  QualType canon = getQualifiedType(QualType(canonTy,0),
2392                                    canonElementType.Quals);
2393
2394  // If we didn't need extra canonicalization for the element type,
2395  // then just use that as our result.
2396  if (QualType(canonElementType.Ty, 0) == elementType)
2397    return canon;
2398
2399  // Otherwise, we need to build a type which follows the spelling
2400  // of the element type.
2401  DependentSizedArrayType *sugaredType
2402    = new (*this, TypeAlignment)
2403        DependentSizedArrayType(*this, elementType, canon, numElements,
2404                                ASM, elementTypeQuals, brackets);
2405  Types.push_back(sugaredType);
2406  return QualType(sugaredType, 0);
2407}
2408
2409QualType ASTContext::getIncompleteArrayType(QualType elementType,
2410                                            ArrayType::ArraySizeModifier ASM,
2411                                            unsigned elementTypeQuals) const {
2412  llvm::FoldingSetNodeID ID;
2413  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2414
2415  void *insertPos = 0;
2416  if (IncompleteArrayType *iat =
2417       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2418    return QualType(iat, 0);
2419
2420  // If the element type isn't canonical, this won't be a canonical type
2421  // either, so fill in the canonical type field.  We also have to pull
2422  // qualifiers off the element type.
2423  QualType canon;
2424
2425  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2426    SplitQualType canonSplit = getCanonicalType(elementType).split();
2427    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2428                                   ASM, elementTypeQuals);
2429    canon = getQualifiedType(canon, canonSplit.Quals);
2430
2431    // Get the new insert position for the node we care about.
2432    IncompleteArrayType *existing =
2433      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2434    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2435  }
2436
2437  IncompleteArrayType *newType = new (*this, TypeAlignment)
2438    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2439
2440  IncompleteArrayTypes.InsertNode(newType, insertPos);
2441  Types.push_back(newType);
2442  return QualType(newType, 0);
2443}
2444
2445/// getVectorType - Return the unique reference to a vector type of
2446/// the specified element type and size. VectorType must be a built-in type.
2447QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2448                                   VectorType::VectorKind VecKind) const {
2449  assert(vecType->isBuiltinType());
2450
2451  // Check if we've already instantiated a vector of this type.
2452  llvm::FoldingSetNodeID ID;
2453  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2454
2455  void *InsertPos = 0;
2456  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2457    return QualType(VTP, 0);
2458
2459  // If the element type isn't canonical, this won't be a canonical type either,
2460  // so fill in the canonical type field.
2461  QualType Canonical;
2462  if (!vecType.isCanonical()) {
2463    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2464
2465    // Get the new insert position for the node we care about.
2466    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2467    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2468  }
2469  VectorType *New = new (*this, TypeAlignment)
2470    VectorType(vecType, NumElts, Canonical, VecKind);
2471  VectorTypes.InsertNode(New, InsertPos);
2472  Types.push_back(New);
2473  return QualType(New, 0);
2474}
2475
2476/// getExtVectorType - Return the unique reference to an extended vector type of
2477/// the specified element type and size. VectorType must be a built-in type.
2478QualType
2479ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2480  assert(vecType->isBuiltinType() || vecType->isDependentType());
2481
2482  // Check if we've already instantiated a vector of this type.
2483  llvm::FoldingSetNodeID ID;
2484  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2485                      VectorType::GenericVector);
2486  void *InsertPos = 0;
2487  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2488    return QualType(VTP, 0);
2489
2490  // If the element type isn't canonical, this won't be a canonical type either,
2491  // so fill in the canonical type field.
2492  QualType Canonical;
2493  if (!vecType.isCanonical()) {
2494    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2495
2496    // Get the new insert position for the node we care about.
2497    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2498    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2499  }
2500  ExtVectorType *New = new (*this, TypeAlignment)
2501    ExtVectorType(vecType, NumElts, Canonical);
2502  VectorTypes.InsertNode(New, InsertPos);
2503  Types.push_back(New);
2504  return QualType(New, 0);
2505}
2506
2507QualType
2508ASTContext::getDependentSizedExtVectorType(QualType vecType,
2509                                           Expr *SizeExpr,
2510                                           SourceLocation AttrLoc) const {
2511  llvm::FoldingSetNodeID ID;
2512  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2513                                       SizeExpr);
2514
2515  void *InsertPos = 0;
2516  DependentSizedExtVectorType *Canon
2517    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2518  DependentSizedExtVectorType *New;
2519  if (Canon) {
2520    // We already have a canonical version of this array type; use it as
2521    // the canonical type for a newly-built type.
2522    New = new (*this, TypeAlignment)
2523      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2524                                  SizeExpr, AttrLoc);
2525  } else {
2526    QualType CanonVecTy = getCanonicalType(vecType);
2527    if (CanonVecTy == vecType) {
2528      New = new (*this, TypeAlignment)
2529        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2530                                    AttrLoc);
2531
2532      DependentSizedExtVectorType *CanonCheck
2533        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2534      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2535      (void)CanonCheck;
2536      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2537    } else {
2538      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2539                                                      SourceLocation());
2540      New = new (*this, TypeAlignment)
2541        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2542    }
2543  }
2544
2545  Types.push_back(New);
2546  return QualType(New, 0);
2547}
2548
2549/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2550///
2551QualType
2552ASTContext::getFunctionNoProtoType(QualType ResultTy,
2553                                   const FunctionType::ExtInfo &Info) const {
2554  const CallingConv DefaultCC = Info.getCC();
2555  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2556                               CC_X86StdCall : DefaultCC;
2557  // Unique functions, to guarantee there is only one function of a particular
2558  // structure.
2559  llvm::FoldingSetNodeID ID;
2560  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2561
2562  void *InsertPos = 0;
2563  if (FunctionNoProtoType *FT =
2564        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2565    return QualType(FT, 0);
2566
2567  QualType Canonical;
2568  if (!ResultTy.isCanonical() ||
2569      getCanonicalCallConv(CallConv) != CallConv) {
2570    Canonical =
2571      getFunctionNoProtoType(getCanonicalType(ResultTy),
2572                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2573
2574    // Get the new insert position for the node we care about.
2575    FunctionNoProtoType *NewIP =
2576      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2577    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2578  }
2579
2580  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2581  FunctionNoProtoType *New = new (*this, TypeAlignment)
2582    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2583  Types.push_back(New);
2584  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2585  return QualType(New, 0);
2586}
2587
2588/// getFunctionType - Return a normal function type with a typed argument
2589/// list.  isVariadic indicates whether the argument list includes '...'.
2590QualType
2591ASTContext::getFunctionType(QualType ResultTy,
2592                            const QualType *ArgArray, unsigned NumArgs,
2593                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2594  // Unique functions, to guarantee there is only one function of a particular
2595  // structure.
2596  llvm::FoldingSetNodeID ID;
2597  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2598
2599  void *InsertPos = 0;
2600  if (FunctionProtoType *FTP =
2601        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2602    return QualType(FTP, 0);
2603
2604  // Determine whether the type being created is already canonical or not.
2605  bool isCanonical =
2606    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2607    !EPI.HasTrailingReturn;
2608  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2609    if (!ArgArray[i].isCanonicalAsParam())
2610      isCanonical = false;
2611
2612  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2613  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2614                               CC_X86StdCall : DefaultCC;
2615
2616  // If this type isn't canonical, get the canonical version of it.
2617  // The exception spec is not part of the canonical type.
2618  QualType Canonical;
2619  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2620    SmallVector<QualType, 16> CanonicalArgs;
2621    CanonicalArgs.reserve(NumArgs);
2622    for (unsigned i = 0; i != NumArgs; ++i)
2623      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2624
2625    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2626    CanonicalEPI.HasTrailingReturn = false;
2627    CanonicalEPI.ExceptionSpecType = EST_None;
2628    CanonicalEPI.NumExceptions = 0;
2629    CanonicalEPI.ExtInfo
2630      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2631
2632    Canonical = getFunctionType(getCanonicalType(ResultTy),
2633                                CanonicalArgs.data(), NumArgs,
2634                                CanonicalEPI);
2635
2636    // Get the new insert position for the node we care about.
2637    FunctionProtoType *NewIP =
2638      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2639    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2640  }
2641
2642  // FunctionProtoType objects are allocated with extra bytes after
2643  // them for three variable size arrays at the end:
2644  //  - parameter types
2645  //  - exception types
2646  //  - consumed-arguments flags
2647  // Instead of the exception types, there could be a noexcept
2648  // expression, or information used to resolve the exception
2649  // specification.
2650  size_t Size = sizeof(FunctionProtoType) +
2651                NumArgs * sizeof(QualType);
2652  if (EPI.ExceptionSpecType == EST_Dynamic) {
2653    Size += EPI.NumExceptions * sizeof(QualType);
2654  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2655    Size += sizeof(Expr*);
2656  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2657    Size += 2 * sizeof(FunctionDecl*);
2658  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2659    Size += sizeof(FunctionDecl*);
2660  }
2661  if (EPI.ConsumedArguments)
2662    Size += NumArgs * sizeof(bool);
2663
2664  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2665  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2666  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2667  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2668  Types.push_back(FTP);
2669  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2670  return QualType(FTP, 0);
2671}
2672
2673#ifndef NDEBUG
2674static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2675  if (!isa<CXXRecordDecl>(D)) return false;
2676  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2677  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2678    return true;
2679  if (RD->getDescribedClassTemplate() &&
2680      !isa<ClassTemplateSpecializationDecl>(RD))
2681    return true;
2682  return false;
2683}
2684#endif
2685
2686/// getInjectedClassNameType - Return the unique reference to the
2687/// injected class name type for the specified templated declaration.
2688QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2689                                              QualType TST) const {
2690  assert(NeedsInjectedClassNameType(Decl));
2691  if (Decl->TypeForDecl) {
2692    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2693  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2694    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2695    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2696    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2697  } else {
2698    Type *newType =
2699      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2700    Decl->TypeForDecl = newType;
2701    Types.push_back(newType);
2702  }
2703  return QualType(Decl->TypeForDecl, 0);
2704}
2705
2706/// getTypeDeclType - Return the unique reference to the type for the
2707/// specified type declaration.
2708QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2709  assert(Decl && "Passed null for Decl param");
2710  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2711
2712  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2713    return getTypedefType(Typedef);
2714
2715  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2716         "Template type parameter types are always available.");
2717
2718  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2719    assert(!Record->getPreviousDecl() &&
2720           "struct/union has previous declaration");
2721    assert(!NeedsInjectedClassNameType(Record));
2722    return getRecordType(Record);
2723  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2724    assert(!Enum->getPreviousDecl() &&
2725           "enum has previous declaration");
2726    return getEnumType(Enum);
2727  } else if (const UnresolvedUsingTypenameDecl *Using =
2728               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2729    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2730    Decl->TypeForDecl = newType;
2731    Types.push_back(newType);
2732  } else
2733    llvm_unreachable("TypeDecl without a type?");
2734
2735  return QualType(Decl->TypeForDecl, 0);
2736}
2737
2738/// getTypedefType - Return the unique reference to the type for the
2739/// specified typedef name decl.
2740QualType
2741ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2742                           QualType Canonical) const {
2743  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2744
2745  if (Canonical.isNull())
2746    Canonical = getCanonicalType(Decl->getUnderlyingType());
2747  TypedefType *newType = new(*this, TypeAlignment)
2748    TypedefType(Type::Typedef, Decl, Canonical);
2749  Decl->TypeForDecl = newType;
2750  Types.push_back(newType);
2751  return QualType(newType, 0);
2752}
2753
2754QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2755  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2756
2757  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2758    if (PrevDecl->TypeForDecl)
2759      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2760
2761  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2762  Decl->TypeForDecl = newType;
2763  Types.push_back(newType);
2764  return QualType(newType, 0);
2765}
2766
2767QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2768  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2769
2770  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2771    if (PrevDecl->TypeForDecl)
2772      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2773
2774  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2775  Decl->TypeForDecl = newType;
2776  Types.push_back(newType);
2777  return QualType(newType, 0);
2778}
2779
2780QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2781                                       QualType modifiedType,
2782                                       QualType equivalentType) {
2783  llvm::FoldingSetNodeID id;
2784  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2785
2786  void *insertPos = 0;
2787  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2788  if (type) return QualType(type, 0);
2789
2790  QualType canon = getCanonicalType(equivalentType);
2791  type = new (*this, TypeAlignment)
2792           AttributedType(canon, attrKind, modifiedType, equivalentType);
2793
2794  Types.push_back(type);
2795  AttributedTypes.InsertNode(type, insertPos);
2796
2797  return QualType(type, 0);
2798}
2799
2800
2801/// \brief Retrieve a substitution-result type.
2802QualType
2803ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2804                                         QualType Replacement) const {
2805  assert(Replacement.isCanonical()
2806         && "replacement types must always be canonical");
2807
2808  llvm::FoldingSetNodeID ID;
2809  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2810  void *InsertPos = 0;
2811  SubstTemplateTypeParmType *SubstParm
2812    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2813
2814  if (!SubstParm) {
2815    SubstParm = new (*this, TypeAlignment)
2816      SubstTemplateTypeParmType(Parm, Replacement);
2817    Types.push_back(SubstParm);
2818    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2819  }
2820
2821  return QualType(SubstParm, 0);
2822}
2823
2824/// \brief Retrieve a
2825QualType ASTContext::getSubstTemplateTypeParmPackType(
2826                                          const TemplateTypeParmType *Parm,
2827                                              const TemplateArgument &ArgPack) {
2828#ifndef NDEBUG
2829  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2830                                    PEnd = ArgPack.pack_end();
2831       P != PEnd; ++P) {
2832    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2833    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2834  }
2835#endif
2836
2837  llvm::FoldingSetNodeID ID;
2838  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2839  void *InsertPos = 0;
2840  if (SubstTemplateTypeParmPackType *SubstParm
2841        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2842    return QualType(SubstParm, 0);
2843
2844  QualType Canon;
2845  if (!Parm->isCanonicalUnqualified()) {
2846    Canon = getCanonicalType(QualType(Parm, 0));
2847    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2848                                             ArgPack);
2849    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2850  }
2851
2852  SubstTemplateTypeParmPackType *SubstParm
2853    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2854                                                               ArgPack);
2855  Types.push_back(SubstParm);
2856  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2857  return QualType(SubstParm, 0);
2858}
2859
2860/// \brief Retrieve the template type parameter type for a template
2861/// parameter or parameter pack with the given depth, index, and (optionally)
2862/// name.
2863QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2864                                             bool ParameterPack,
2865                                             TemplateTypeParmDecl *TTPDecl) const {
2866  llvm::FoldingSetNodeID ID;
2867  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2868  void *InsertPos = 0;
2869  TemplateTypeParmType *TypeParm
2870    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2871
2872  if (TypeParm)
2873    return QualType(TypeParm, 0);
2874
2875  if (TTPDecl) {
2876    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2877    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2878
2879    TemplateTypeParmType *TypeCheck
2880      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2881    assert(!TypeCheck && "Template type parameter canonical type broken");
2882    (void)TypeCheck;
2883  } else
2884    TypeParm = new (*this, TypeAlignment)
2885      TemplateTypeParmType(Depth, Index, ParameterPack);
2886
2887  Types.push_back(TypeParm);
2888  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2889
2890  return QualType(TypeParm, 0);
2891}
2892
2893TypeSourceInfo *
2894ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2895                                              SourceLocation NameLoc,
2896                                        const TemplateArgumentListInfo &Args,
2897                                              QualType Underlying) const {
2898  assert(!Name.getAsDependentTemplateName() &&
2899         "No dependent template names here!");
2900  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2901
2902  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2903  TemplateSpecializationTypeLoc TL
2904    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2905  TL.setTemplateKeywordLoc(SourceLocation());
2906  TL.setTemplateNameLoc(NameLoc);
2907  TL.setLAngleLoc(Args.getLAngleLoc());
2908  TL.setRAngleLoc(Args.getRAngleLoc());
2909  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2910    TL.setArgLocInfo(i, Args[i].getLocInfo());
2911  return DI;
2912}
2913
2914QualType
2915ASTContext::getTemplateSpecializationType(TemplateName Template,
2916                                          const TemplateArgumentListInfo &Args,
2917                                          QualType Underlying) const {
2918  assert(!Template.getAsDependentTemplateName() &&
2919         "No dependent template names here!");
2920
2921  unsigned NumArgs = Args.size();
2922
2923  SmallVector<TemplateArgument, 4> ArgVec;
2924  ArgVec.reserve(NumArgs);
2925  for (unsigned i = 0; i != NumArgs; ++i)
2926    ArgVec.push_back(Args[i].getArgument());
2927
2928  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2929                                       Underlying);
2930}
2931
2932#ifndef NDEBUG
2933static bool hasAnyPackExpansions(const TemplateArgument *Args,
2934                                 unsigned NumArgs) {
2935  for (unsigned I = 0; I != NumArgs; ++I)
2936    if (Args[I].isPackExpansion())
2937      return true;
2938
2939  return true;
2940}
2941#endif
2942
2943QualType
2944ASTContext::getTemplateSpecializationType(TemplateName Template,
2945                                          const TemplateArgument *Args,
2946                                          unsigned NumArgs,
2947                                          QualType Underlying) const {
2948  assert(!Template.getAsDependentTemplateName() &&
2949         "No dependent template names here!");
2950  // Look through qualified template names.
2951  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2952    Template = TemplateName(QTN->getTemplateDecl());
2953
2954  bool IsTypeAlias =
2955    Template.getAsTemplateDecl() &&
2956    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2957  QualType CanonType;
2958  if (!Underlying.isNull())
2959    CanonType = getCanonicalType(Underlying);
2960  else {
2961    // We can get here with an alias template when the specialization contains
2962    // a pack expansion that does not match up with a parameter pack.
2963    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2964           "Caller must compute aliased type");
2965    IsTypeAlias = false;
2966    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2967                                                       NumArgs);
2968  }
2969
2970  // Allocate the (non-canonical) template specialization type, but don't
2971  // try to unique it: these types typically have location information that
2972  // we don't unique and don't want to lose.
2973  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2974                       sizeof(TemplateArgument) * NumArgs +
2975                       (IsTypeAlias? sizeof(QualType) : 0),
2976                       TypeAlignment);
2977  TemplateSpecializationType *Spec
2978    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2979                                         IsTypeAlias ? Underlying : QualType());
2980
2981  Types.push_back(Spec);
2982  return QualType(Spec, 0);
2983}
2984
2985QualType
2986ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2987                                                   const TemplateArgument *Args,
2988                                                   unsigned NumArgs) const {
2989  assert(!Template.getAsDependentTemplateName() &&
2990         "No dependent template names here!");
2991
2992  // Look through qualified template names.
2993  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2994    Template = TemplateName(QTN->getTemplateDecl());
2995
2996  // Build the canonical template specialization type.
2997  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2998  SmallVector<TemplateArgument, 4> CanonArgs;
2999  CanonArgs.reserve(NumArgs);
3000  for (unsigned I = 0; I != NumArgs; ++I)
3001    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3002
3003  // Determine whether this canonical template specialization type already
3004  // exists.
3005  llvm::FoldingSetNodeID ID;
3006  TemplateSpecializationType::Profile(ID, CanonTemplate,
3007                                      CanonArgs.data(), NumArgs, *this);
3008
3009  void *InsertPos = 0;
3010  TemplateSpecializationType *Spec
3011    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3012
3013  if (!Spec) {
3014    // Allocate a new canonical template specialization type.
3015    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3016                          sizeof(TemplateArgument) * NumArgs),
3017                         TypeAlignment);
3018    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3019                                                CanonArgs.data(), NumArgs,
3020                                                QualType(), QualType());
3021    Types.push_back(Spec);
3022    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3023  }
3024
3025  assert(Spec->isDependentType() &&
3026         "Non-dependent template-id type must have a canonical type");
3027  return QualType(Spec, 0);
3028}
3029
3030QualType
3031ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3032                              NestedNameSpecifier *NNS,
3033                              QualType NamedType) const {
3034  llvm::FoldingSetNodeID ID;
3035  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3036
3037  void *InsertPos = 0;
3038  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3039  if (T)
3040    return QualType(T, 0);
3041
3042  QualType Canon = NamedType;
3043  if (!Canon.isCanonical()) {
3044    Canon = getCanonicalType(NamedType);
3045    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3046    assert(!CheckT && "Elaborated canonical type broken");
3047    (void)CheckT;
3048  }
3049
3050  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3051  Types.push_back(T);
3052  ElaboratedTypes.InsertNode(T, InsertPos);
3053  return QualType(T, 0);
3054}
3055
3056QualType
3057ASTContext::getParenType(QualType InnerType) const {
3058  llvm::FoldingSetNodeID ID;
3059  ParenType::Profile(ID, InnerType);
3060
3061  void *InsertPos = 0;
3062  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3063  if (T)
3064    return QualType(T, 0);
3065
3066  QualType Canon = InnerType;
3067  if (!Canon.isCanonical()) {
3068    Canon = getCanonicalType(InnerType);
3069    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3070    assert(!CheckT && "Paren canonical type broken");
3071    (void)CheckT;
3072  }
3073
3074  T = new (*this) ParenType(InnerType, Canon);
3075  Types.push_back(T);
3076  ParenTypes.InsertNode(T, InsertPos);
3077  return QualType(T, 0);
3078}
3079
3080QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3081                                          NestedNameSpecifier *NNS,
3082                                          const IdentifierInfo *Name,
3083                                          QualType Canon) const {
3084  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3085
3086  if (Canon.isNull()) {
3087    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3088    ElaboratedTypeKeyword CanonKeyword = Keyword;
3089    if (Keyword == ETK_None)
3090      CanonKeyword = ETK_Typename;
3091
3092    if (CanonNNS != NNS || CanonKeyword != Keyword)
3093      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3094  }
3095
3096  llvm::FoldingSetNodeID ID;
3097  DependentNameType::Profile(ID, Keyword, NNS, Name);
3098
3099  void *InsertPos = 0;
3100  DependentNameType *T
3101    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3102  if (T)
3103    return QualType(T, 0);
3104
3105  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3106  Types.push_back(T);
3107  DependentNameTypes.InsertNode(T, InsertPos);
3108  return QualType(T, 0);
3109}
3110
3111QualType
3112ASTContext::getDependentTemplateSpecializationType(
3113                                 ElaboratedTypeKeyword Keyword,
3114                                 NestedNameSpecifier *NNS,
3115                                 const IdentifierInfo *Name,
3116                                 const TemplateArgumentListInfo &Args) const {
3117  // TODO: avoid this copy
3118  SmallVector<TemplateArgument, 16> ArgCopy;
3119  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3120    ArgCopy.push_back(Args[I].getArgument());
3121  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3122                                                ArgCopy.size(),
3123                                                ArgCopy.data());
3124}
3125
3126QualType
3127ASTContext::getDependentTemplateSpecializationType(
3128                                 ElaboratedTypeKeyword Keyword,
3129                                 NestedNameSpecifier *NNS,
3130                                 const IdentifierInfo *Name,
3131                                 unsigned NumArgs,
3132                                 const TemplateArgument *Args) const {
3133  assert((!NNS || NNS->isDependent()) &&
3134         "nested-name-specifier must be dependent");
3135
3136  llvm::FoldingSetNodeID ID;
3137  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3138                                               Name, NumArgs, Args);
3139
3140  void *InsertPos = 0;
3141  DependentTemplateSpecializationType *T
3142    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3143  if (T)
3144    return QualType(T, 0);
3145
3146  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3147
3148  ElaboratedTypeKeyword CanonKeyword = Keyword;
3149  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3150
3151  bool AnyNonCanonArgs = false;
3152  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3153  for (unsigned I = 0; I != NumArgs; ++I) {
3154    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3155    if (!CanonArgs[I].structurallyEquals(Args[I]))
3156      AnyNonCanonArgs = true;
3157  }
3158
3159  QualType Canon;
3160  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3161    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3162                                                   Name, NumArgs,
3163                                                   CanonArgs.data());
3164
3165    // Find the insert position again.
3166    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3167  }
3168
3169  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3170                        sizeof(TemplateArgument) * NumArgs),
3171                       TypeAlignment);
3172  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3173                                                    Name, NumArgs, Args, Canon);
3174  Types.push_back(T);
3175  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3176  return QualType(T, 0);
3177}
3178
3179QualType ASTContext::getPackExpansionType(QualType Pattern,
3180                                      llvm::Optional<unsigned> NumExpansions) {
3181  llvm::FoldingSetNodeID ID;
3182  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3183
3184  assert(Pattern->containsUnexpandedParameterPack() &&
3185         "Pack expansions must expand one or more parameter packs");
3186  void *InsertPos = 0;
3187  PackExpansionType *T
3188    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3189  if (T)
3190    return QualType(T, 0);
3191
3192  QualType Canon;
3193  if (!Pattern.isCanonical()) {
3194    Canon = getCanonicalType(Pattern);
3195    // The canonical type might not contain an unexpanded parameter pack, if it
3196    // contains an alias template specialization which ignores one of its
3197    // parameters.
3198    if (Canon->containsUnexpandedParameterPack()) {
3199      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3200
3201      // Find the insert position again, in case we inserted an element into
3202      // PackExpansionTypes and invalidated our insert position.
3203      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3204    }
3205  }
3206
3207  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3208  Types.push_back(T);
3209  PackExpansionTypes.InsertNode(T, InsertPos);
3210  return QualType(T, 0);
3211}
3212
3213/// CmpProtocolNames - Comparison predicate for sorting protocols
3214/// alphabetically.
3215static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3216                            const ObjCProtocolDecl *RHS) {
3217  return LHS->getDeclName() < RHS->getDeclName();
3218}
3219
3220static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3221                                unsigned NumProtocols) {
3222  if (NumProtocols == 0) return true;
3223
3224  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3225    return false;
3226
3227  for (unsigned i = 1; i != NumProtocols; ++i)
3228    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3229        Protocols[i]->getCanonicalDecl() != Protocols[i])
3230      return false;
3231  return true;
3232}
3233
3234static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3235                                   unsigned &NumProtocols) {
3236  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3237
3238  // Sort protocols, keyed by name.
3239  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3240
3241  // Canonicalize.
3242  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3243    Protocols[I] = Protocols[I]->getCanonicalDecl();
3244
3245  // Remove duplicates.
3246  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3247  NumProtocols = ProtocolsEnd-Protocols;
3248}
3249
3250QualType ASTContext::getObjCObjectType(QualType BaseType,
3251                                       ObjCProtocolDecl * const *Protocols,
3252                                       unsigned NumProtocols) const {
3253  // If the base type is an interface and there aren't any protocols
3254  // to add, then the interface type will do just fine.
3255  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3256    return BaseType;
3257
3258  // Look in the folding set for an existing type.
3259  llvm::FoldingSetNodeID ID;
3260  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3261  void *InsertPos = 0;
3262  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3263    return QualType(QT, 0);
3264
3265  // Build the canonical type, which has the canonical base type and
3266  // a sorted-and-uniqued list of protocols.
3267  QualType Canonical;
3268  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3269  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3270    if (!ProtocolsSorted) {
3271      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3272                                                     Protocols + NumProtocols);
3273      unsigned UniqueCount = NumProtocols;
3274
3275      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3276      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3277                                    &Sorted[0], UniqueCount);
3278    } else {
3279      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3280                                    Protocols, NumProtocols);
3281    }
3282
3283    // Regenerate InsertPos.
3284    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3285  }
3286
3287  unsigned Size = sizeof(ObjCObjectTypeImpl);
3288  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3289  void *Mem = Allocate(Size, TypeAlignment);
3290  ObjCObjectTypeImpl *T =
3291    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3292
3293  Types.push_back(T);
3294  ObjCObjectTypes.InsertNode(T, InsertPos);
3295  return QualType(T, 0);
3296}
3297
3298/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3299/// the given object type.
3300QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3301  llvm::FoldingSetNodeID ID;
3302  ObjCObjectPointerType::Profile(ID, ObjectT);
3303
3304  void *InsertPos = 0;
3305  if (ObjCObjectPointerType *QT =
3306              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3307    return QualType(QT, 0);
3308
3309  // Find the canonical object type.
3310  QualType Canonical;
3311  if (!ObjectT.isCanonical()) {
3312    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3313
3314    // Regenerate InsertPos.
3315    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3316  }
3317
3318  // No match.
3319  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3320  ObjCObjectPointerType *QType =
3321    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3322
3323  Types.push_back(QType);
3324  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3325  return QualType(QType, 0);
3326}
3327
3328/// getObjCInterfaceType - Return the unique reference to the type for the
3329/// specified ObjC interface decl. The list of protocols is optional.
3330QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3331                                          ObjCInterfaceDecl *PrevDecl) const {
3332  if (Decl->TypeForDecl)
3333    return QualType(Decl->TypeForDecl, 0);
3334
3335  if (PrevDecl) {
3336    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3337    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3338    return QualType(PrevDecl->TypeForDecl, 0);
3339  }
3340
3341  // Prefer the definition, if there is one.
3342  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3343    Decl = Def;
3344
3345  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3346  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3347  Decl->TypeForDecl = T;
3348  Types.push_back(T);
3349  return QualType(T, 0);
3350}
3351
3352/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3353/// TypeOfExprType AST's (since expression's are never shared). For example,
3354/// multiple declarations that refer to "typeof(x)" all contain different
3355/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3356/// on canonical type's (which are always unique).
3357QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3358  TypeOfExprType *toe;
3359  if (tofExpr->isTypeDependent()) {
3360    llvm::FoldingSetNodeID ID;
3361    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3362
3363    void *InsertPos = 0;
3364    DependentTypeOfExprType *Canon
3365      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3366    if (Canon) {
3367      // We already have a "canonical" version of an identical, dependent
3368      // typeof(expr) type. Use that as our canonical type.
3369      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3370                                          QualType((TypeOfExprType*)Canon, 0));
3371    } else {
3372      // Build a new, canonical typeof(expr) type.
3373      Canon
3374        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3375      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3376      toe = Canon;
3377    }
3378  } else {
3379    QualType Canonical = getCanonicalType(tofExpr->getType());
3380    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3381  }
3382  Types.push_back(toe);
3383  return QualType(toe, 0);
3384}
3385
3386/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3387/// TypeOfType AST's. The only motivation to unique these nodes would be
3388/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3389/// an issue. This doesn't effect the type checker, since it operates
3390/// on canonical type's (which are always unique).
3391QualType ASTContext::getTypeOfType(QualType tofType) const {
3392  QualType Canonical = getCanonicalType(tofType);
3393  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3394  Types.push_back(tot);
3395  return QualType(tot, 0);
3396}
3397
3398
3399/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3400/// DecltypeType AST's. The only motivation to unique these nodes would be
3401/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3402/// an issue. This doesn't effect the type checker, since it operates
3403/// on canonical types (which are always unique).
3404QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3405  DecltypeType *dt;
3406
3407  // C++0x [temp.type]p2:
3408  //   If an expression e involves a template parameter, decltype(e) denotes a
3409  //   unique dependent type. Two such decltype-specifiers refer to the same
3410  //   type only if their expressions are equivalent (14.5.6.1).
3411  if (e->isInstantiationDependent()) {
3412    llvm::FoldingSetNodeID ID;
3413    DependentDecltypeType::Profile(ID, *this, e);
3414
3415    void *InsertPos = 0;
3416    DependentDecltypeType *Canon
3417      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3418    if (Canon) {
3419      // We already have a "canonical" version of an equivalent, dependent
3420      // decltype type. Use that as our canonical type.
3421      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3422                                       QualType((DecltypeType*)Canon, 0));
3423    } else {
3424      // Build a new, canonical typeof(expr) type.
3425      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3426      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3427      dt = Canon;
3428    }
3429  } else {
3430    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3431                                      getCanonicalType(UnderlyingType));
3432  }
3433  Types.push_back(dt);
3434  return QualType(dt, 0);
3435}
3436
3437/// getUnaryTransformationType - We don't unique these, since the memory
3438/// savings are minimal and these are rare.
3439QualType ASTContext::getUnaryTransformType(QualType BaseType,
3440                                           QualType UnderlyingType,
3441                                           UnaryTransformType::UTTKind Kind)
3442    const {
3443  UnaryTransformType *Ty =
3444    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3445                                                   Kind,
3446                                 UnderlyingType->isDependentType() ?
3447                                 QualType() : getCanonicalType(UnderlyingType));
3448  Types.push_back(Ty);
3449  return QualType(Ty, 0);
3450}
3451
3452/// getAutoType - We only unique auto types after they've been deduced.
3453QualType ASTContext::getAutoType(QualType DeducedType) const {
3454  void *InsertPos = 0;
3455  if (!DeducedType.isNull()) {
3456    // Look in the folding set for an existing type.
3457    llvm::FoldingSetNodeID ID;
3458    AutoType::Profile(ID, DeducedType);
3459    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3460      return QualType(AT, 0);
3461  }
3462
3463  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3464  Types.push_back(AT);
3465  if (InsertPos)
3466    AutoTypes.InsertNode(AT, InsertPos);
3467  return QualType(AT, 0);
3468}
3469
3470/// getAtomicType - Return the uniqued reference to the atomic type for
3471/// the given value type.
3472QualType ASTContext::getAtomicType(QualType T) const {
3473  // Unique pointers, to guarantee there is only one pointer of a particular
3474  // structure.
3475  llvm::FoldingSetNodeID ID;
3476  AtomicType::Profile(ID, T);
3477
3478  void *InsertPos = 0;
3479  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3480    return QualType(AT, 0);
3481
3482  // If the atomic value type isn't canonical, this won't be a canonical type
3483  // either, so fill in the canonical type field.
3484  QualType Canonical;
3485  if (!T.isCanonical()) {
3486    Canonical = getAtomicType(getCanonicalType(T));
3487
3488    // Get the new insert position for the node we care about.
3489    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3490    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3491  }
3492  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3493  Types.push_back(New);
3494  AtomicTypes.InsertNode(New, InsertPos);
3495  return QualType(New, 0);
3496}
3497
3498/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3499QualType ASTContext::getAutoDeductType() const {
3500  if (AutoDeductTy.isNull())
3501    AutoDeductTy = getAutoType(QualType());
3502  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3503  return AutoDeductTy;
3504}
3505
3506/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3507QualType ASTContext::getAutoRRefDeductType() const {
3508  if (AutoRRefDeductTy.isNull())
3509    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3510  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3511  return AutoRRefDeductTy;
3512}
3513
3514/// getTagDeclType - Return the unique reference to the type for the
3515/// specified TagDecl (struct/union/class/enum) decl.
3516QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3517  assert (Decl);
3518  // FIXME: What is the design on getTagDeclType when it requires casting
3519  // away const?  mutable?
3520  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3521}
3522
3523/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3524/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3525/// needs to agree with the definition in <stddef.h>.
3526CanQualType ASTContext::getSizeType() const {
3527  return getFromTargetType(Target->getSizeType());
3528}
3529
3530/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3531CanQualType ASTContext::getIntMaxType() const {
3532  return getFromTargetType(Target->getIntMaxType());
3533}
3534
3535/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3536CanQualType ASTContext::getUIntMaxType() const {
3537  return getFromTargetType(Target->getUIntMaxType());
3538}
3539
3540/// getSignedWCharType - Return the type of "signed wchar_t".
3541/// Used when in C++, as a GCC extension.
3542QualType ASTContext::getSignedWCharType() const {
3543  // FIXME: derive from "Target" ?
3544  return WCharTy;
3545}
3546
3547/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3548/// Used when in C++, as a GCC extension.
3549QualType ASTContext::getUnsignedWCharType() const {
3550  // FIXME: derive from "Target" ?
3551  return UnsignedIntTy;
3552}
3553
3554/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3555/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3556QualType ASTContext::getPointerDiffType() const {
3557  return getFromTargetType(Target->getPtrDiffType(0));
3558}
3559
3560/// \brief Return the unique type for "pid_t" defined in
3561/// <sys/types.h>. We need this to compute the correct type for vfork().
3562QualType ASTContext::getProcessIDType() const {
3563  return getFromTargetType(Target->getProcessIDType());
3564}
3565
3566//===----------------------------------------------------------------------===//
3567//                              Type Operators
3568//===----------------------------------------------------------------------===//
3569
3570CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3571  // Push qualifiers into arrays, and then discard any remaining
3572  // qualifiers.
3573  T = getCanonicalType(T);
3574  T = getVariableArrayDecayedType(T);
3575  const Type *Ty = T.getTypePtr();
3576  QualType Result;
3577  if (isa<ArrayType>(Ty)) {
3578    Result = getArrayDecayedType(QualType(Ty,0));
3579  } else if (isa<FunctionType>(Ty)) {
3580    Result = getPointerType(QualType(Ty, 0));
3581  } else {
3582    Result = QualType(Ty, 0);
3583  }
3584
3585  return CanQualType::CreateUnsafe(Result);
3586}
3587
3588QualType ASTContext::getUnqualifiedArrayType(QualType type,
3589                                             Qualifiers &quals) {
3590  SplitQualType splitType = type.getSplitUnqualifiedType();
3591
3592  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3593  // the unqualified desugared type and then drops it on the floor.
3594  // We then have to strip that sugar back off with
3595  // getUnqualifiedDesugaredType(), which is silly.
3596  const ArrayType *AT =
3597    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3598
3599  // If we don't have an array, just use the results in splitType.
3600  if (!AT) {
3601    quals = splitType.Quals;
3602    return QualType(splitType.Ty, 0);
3603  }
3604
3605  // Otherwise, recurse on the array's element type.
3606  QualType elementType = AT->getElementType();
3607  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3608
3609  // If that didn't change the element type, AT has no qualifiers, so we
3610  // can just use the results in splitType.
3611  if (elementType == unqualElementType) {
3612    assert(quals.empty()); // from the recursive call
3613    quals = splitType.Quals;
3614    return QualType(splitType.Ty, 0);
3615  }
3616
3617  // Otherwise, add in the qualifiers from the outermost type, then
3618  // build the type back up.
3619  quals.addConsistentQualifiers(splitType.Quals);
3620
3621  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3622    return getConstantArrayType(unqualElementType, CAT->getSize(),
3623                                CAT->getSizeModifier(), 0);
3624  }
3625
3626  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3627    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3628  }
3629
3630  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3631    return getVariableArrayType(unqualElementType,
3632                                VAT->getSizeExpr(),
3633                                VAT->getSizeModifier(),
3634                                VAT->getIndexTypeCVRQualifiers(),
3635                                VAT->getBracketsRange());
3636  }
3637
3638  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3639  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3640                                    DSAT->getSizeModifier(), 0,
3641                                    SourceRange());
3642}
3643
3644/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3645/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3646/// they point to and return true. If T1 and T2 aren't pointer types
3647/// or pointer-to-member types, or if they are not similar at this
3648/// level, returns false and leaves T1 and T2 unchanged. Top-level
3649/// qualifiers on T1 and T2 are ignored. This function will typically
3650/// be called in a loop that successively "unwraps" pointer and
3651/// pointer-to-member types to compare them at each level.
3652bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3653  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3654                    *T2PtrType = T2->getAs<PointerType>();
3655  if (T1PtrType && T2PtrType) {
3656    T1 = T1PtrType->getPointeeType();
3657    T2 = T2PtrType->getPointeeType();
3658    return true;
3659  }
3660
3661  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3662                          *T2MPType = T2->getAs<MemberPointerType>();
3663  if (T1MPType && T2MPType &&
3664      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3665                             QualType(T2MPType->getClass(), 0))) {
3666    T1 = T1MPType->getPointeeType();
3667    T2 = T2MPType->getPointeeType();
3668    return true;
3669  }
3670
3671  if (getLangOpts().ObjC1) {
3672    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3673                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3674    if (T1OPType && T2OPType) {
3675      T1 = T1OPType->getPointeeType();
3676      T2 = T2OPType->getPointeeType();
3677      return true;
3678    }
3679  }
3680
3681  // FIXME: Block pointers, too?
3682
3683  return false;
3684}
3685
3686DeclarationNameInfo
3687ASTContext::getNameForTemplate(TemplateName Name,
3688                               SourceLocation NameLoc) const {
3689  switch (Name.getKind()) {
3690  case TemplateName::QualifiedTemplate:
3691  case TemplateName::Template:
3692    // DNInfo work in progress: CHECKME: what about DNLoc?
3693    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3694                               NameLoc);
3695
3696  case TemplateName::OverloadedTemplate: {
3697    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3698    // DNInfo work in progress: CHECKME: what about DNLoc?
3699    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3700  }
3701
3702  case TemplateName::DependentTemplate: {
3703    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3704    DeclarationName DName;
3705    if (DTN->isIdentifier()) {
3706      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3707      return DeclarationNameInfo(DName, NameLoc);
3708    } else {
3709      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3710      // DNInfo work in progress: FIXME: source locations?
3711      DeclarationNameLoc DNLoc;
3712      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3713      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3714      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3715    }
3716  }
3717
3718  case TemplateName::SubstTemplateTemplateParm: {
3719    SubstTemplateTemplateParmStorage *subst
3720      = Name.getAsSubstTemplateTemplateParm();
3721    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3722                               NameLoc);
3723  }
3724
3725  case TemplateName::SubstTemplateTemplateParmPack: {
3726    SubstTemplateTemplateParmPackStorage *subst
3727      = Name.getAsSubstTemplateTemplateParmPack();
3728    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3729                               NameLoc);
3730  }
3731  }
3732
3733  llvm_unreachable("bad template name kind!");
3734}
3735
3736TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3737  switch (Name.getKind()) {
3738  case TemplateName::QualifiedTemplate:
3739  case TemplateName::Template: {
3740    TemplateDecl *Template = Name.getAsTemplateDecl();
3741    if (TemplateTemplateParmDecl *TTP
3742          = dyn_cast<TemplateTemplateParmDecl>(Template))
3743      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3744
3745    // The canonical template name is the canonical template declaration.
3746    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3747  }
3748
3749  case TemplateName::OverloadedTemplate:
3750    llvm_unreachable("cannot canonicalize overloaded template");
3751
3752  case TemplateName::DependentTemplate: {
3753    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3754    assert(DTN && "Non-dependent template names must refer to template decls.");
3755    return DTN->CanonicalTemplateName;
3756  }
3757
3758  case TemplateName::SubstTemplateTemplateParm: {
3759    SubstTemplateTemplateParmStorage *subst
3760      = Name.getAsSubstTemplateTemplateParm();
3761    return getCanonicalTemplateName(subst->getReplacement());
3762  }
3763
3764  case TemplateName::SubstTemplateTemplateParmPack: {
3765    SubstTemplateTemplateParmPackStorage *subst
3766                                  = Name.getAsSubstTemplateTemplateParmPack();
3767    TemplateTemplateParmDecl *canonParameter
3768      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3769    TemplateArgument canonArgPack
3770      = getCanonicalTemplateArgument(subst->getArgumentPack());
3771    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3772  }
3773  }
3774
3775  llvm_unreachable("bad template name!");
3776}
3777
3778bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3779  X = getCanonicalTemplateName(X);
3780  Y = getCanonicalTemplateName(Y);
3781  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3782}
3783
3784TemplateArgument
3785ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3786  switch (Arg.getKind()) {
3787    case TemplateArgument::Null:
3788      return Arg;
3789
3790    case TemplateArgument::Expression:
3791      return Arg;
3792
3793    case TemplateArgument::Declaration: {
3794      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3795      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3796    }
3797
3798    case TemplateArgument::NullPtr:
3799      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3800                              /*isNullPtr*/true);
3801
3802    case TemplateArgument::Template:
3803      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3804
3805    case TemplateArgument::TemplateExpansion:
3806      return TemplateArgument(getCanonicalTemplateName(
3807                                         Arg.getAsTemplateOrTemplatePattern()),
3808                              Arg.getNumTemplateExpansions());
3809
3810    case TemplateArgument::Integral:
3811      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3812
3813    case TemplateArgument::Type:
3814      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3815
3816    case TemplateArgument::Pack: {
3817      if (Arg.pack_size() == 0)
3818        return Arg;
3819
3820      TemplateArgument *CanonArgs
3821        = new (*this) TemplateArgument[Arg.pack_size()];
3822      unsigned Idx = 0;
3823      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3824                                        AEnd = Arg.pack_end();
3825           A != AEnd; (void)++A, ++Idx)
3826        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3827
3828      return TemplateArgument(CanonArgs, Arg.pack_size());
3829    }
3830  }
3831
3832  // Silence GCC warning
3833  llvm_unreachable("Unhandled template argument kind");
3834}
3835
3836NestedNameSpecifier *
3837ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3838  if (!NNS)
3839    return 0;
3840
3841  switch (NNS->getKind()) {
3842  case NestedNameSpecifier::Identifier:
3843    // Canonicalize the prefix but keep the identifier the same.
3844    return NestedNameSpecifier::Create(*this,
3845                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3846                                       NNS->getAsIdentifier());
3847
3848  case NestedNameSpecifier::Namespace:
3849    // A namespace is canonical; build a nested-name-specifier with
3850    // this namespace and no prefix.
3851    return NestedNameSpecifier::Create(*this, 0,
3852                                 NNS->getAsNamespace()->getOriginalNamespace());
3853
3854  case NestedNameSpecifier::NamespaceAlias:
3855    // A namespace is canonical; build a nested-name-specifier with
3856    // this namespace and no prefix.
3857    return NestedNameSpecifier::Create(*this, 0,
3858                                    NNS->getAsNamespaceAlias()->getNamespace()
3859                                                      ->getOriginalNamespace());
3860
3861  case NestedNameSpecifier::TypeSpec:
3862  case NestedNameSpecifier::TypeSpecWithTemplate: {
3863    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3864
3865    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3866    // break it apart into its prefix and identifier, then reconsititute those
3867    // as the canonical nested-name-specifier. This is required to canonicalize
3868    // a dependent nested-name-specifier involving typedefs of dependent-name
3869    // types, e.g.,
3870    //   typedef typename T::type T1;
3871    //   typedef typename T1::type T2;
3872    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3873      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3874                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3875
3876    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3877    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3878    // first place?
3879    return NestedNameSpecifier::Create(*this, 0, false,
3880                                       const_cast<Type*>(T.getTypePtr()));
3881  }
3882
3883  case NestedNameSpecifier::Global:
3884    // The global specifier is canonical and unique.
3885    return NNS;
3886  }
3887
3888  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3889}
3890
3891
3892const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3893  // Handle the non-qualified case efficiently.
3894  if (!T.hasLocalQualifiers()) {
3895    // Handle the common positive case fast.
3896    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3897      return AT;
3898  }
3899
3900  // Handle the common negative case fast.
3901  if (!isa<ArrayType>(T.getCanonicalType()))
3902    return 0;
3903
3904  // Apply any qualifiers from the array type to the element type.  This
3905  // implements C99 6.7.3p8: "If the specification of an array type includes
3906  // any type qualifiers, the element type is so qualified, not the array type."
3907
3908  // If we get here, we either have type qualifiers on the type, or we have
3909  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3910  // we must propagate them down into the element type.
3911
3912  SplitQualType split = T.getSplitDesugaredType();
3913  Qualifiers qs = split.Quals;
3914
3915  // If we have a simple case, just return now.
3916  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3917  if (ATy == 0 || qs.empty())
3918    return ATy;
3919
3920  // Otherwise, we have an array and we have qualifiers on it.  Push the
3921  // qualifiers into the array element type and return a new array type.
3922  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3923
3924  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3925    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3926                                                CAT->getSizeModifier(),
3927                                           CAT->getIndexTypeCVRQualifiers()));
3928  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3929    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3930                                                  IAT->getSizeModifier(),
3931                                           IAT->getIndexTypeCVRQualifiers()));
3932
3933  if (const DependentSizedArrayType *DSAT
3934        = dyn_cast<DependentSizedArrayType>(ATy))
3935    return cast<ArrayType>(
3936                     getDependentSizedArrayType(NewEltTy,
3937                                                DSAT->getSizeExpr(),
3938                                                DSAT->getSizeModifier(),
3939                                              DSAT->getIndexTypeCVRQualifiers(),
3940                                                DSAT->getBracketsRange()));
3941
3942  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3943  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3944                                              VAT->getSizeExpr(),
3945                                              VAT->getSizeModifier(),
3946                                              VAT->getIndexTypeCVRQualifiers(),
3947                                              VAT->getBracketsRange()));
3948}
3949
3950QualType ASTContext::getAdjustedParameterType(QualType T) const {
3951  // C99 6.7.5.3p7:
3952  //   A declaration of a parameter as "array of type" shall be
3953  //   adjusted to "qualified pointer to type", where the type
3954  //   qualifiers (if any) are those specified within the [ and ] of
3955  //   the array type derivation.
3956  if (T->isArrayType())
3957    return getArrayDecayedType(T);
3958
3959  // C99 6.7.5.3p8:
3960  //   A declaration of a parameter as "function returning type"
3961  //   shall be adjusted to "pointer to function returning type", as
3962  //   in 6.3.2.1.
3963  if (T->isFunctionType())
3964    return getPointerType(T);
3965
3966  return T;
3967}
3968
3969QualType ASTContext::getSignatureParameterType(QualType T) const {
3970  T = getVariableArrayDecayedType(T);
3971  T = getAdjustedParameterType(T);
3972  return T.getUnqualifiedType();
3973}
3974
3975/// getArrayDecayedType - Return the properly qualified result of decaying the
3976/// specified array type to a pointer.  This operation is non-trivial when
3977/// handling typedefs etc.  The canonical type of "T" must be an array type,
3978/// this returns a pointer to a properly qualified element of the array.
3979///
3980/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3981QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3982  // Get the element type with 'getAsArrayType' so that we don't lose any
3983  // typedefs in the element type of the array.  This also handles propagation
3984  // of type qualifiers from the array type into the element type if present
3985  // (C99 6.7.3p8).
3986  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3987  assert(PrettyArrayType && "Not an array type!");
3988
3989  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3990
3991  // int x[restrict 4] ->  int *restrict
3992  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3993}
3994
3995QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3996  return getBaseElementType(array->getElementType());
3997}
3998
3999QualType ASTContext::getBaseElementType(QualType type) const {
4000  Qualifiers qs;
4001  while (true) {
4002    SplitQualType split = type.getSplitDesugaredType();
4003    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4004    if (!array) break;
4005
4006    type = array->getElementType();
4007    qs.addConsistentQualifiers(split.Quals);
4008  }
4009
4010  return getQualifiedType(type, qs);
4011}
4012
4013/// getConstantArrayElementCount - Returns number of constant array elements.
4014uint64_t
4015ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4016  uint64_t ElementCount = 1;
4017  do {
4018    ElementCount *= CA->getSize().getZExtValue();
4019    CA = dyn_cast_or_null<ConstantArrayType>(
4020      CA->getElementType()->getAsArrayTypeUnsafe());
4021  } while (CA);
4022  return ElementCount;
4023}
4024
4025/// getFloatingRank - Return a relative rank for floating point types.
4026/// This routine will assert if passed a built-in type that isn't a float.
4027static FloatingRank getFloatingRank(QualType T) {
4028  if (const ComplexType *CT = T->getAs<ComplexType>())
4029    return getFloatingRank(CT->getElementType());
4030
4031  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4032  switch (T->getAs<BuiltinType>()->getKind()) {
4033  default: llvm_unreachable("getFloatingRank(): not a floating type");
4034  case BuiltinType::Half:       return HalfRank;
4035  case BuiltinType::Float:      return FloatRank;
4036  case BuiltinType::Double:     return DoubleRank;
4037  case BuiltinType::LongDouble: return LongDoubleRank;
4038  }
4039}
4040
4041/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4042/// point or a complex type (based on typeDomain/typeSize).
4043/// 'typeDomain' is a real floating point or complex type.
4044/// 'typeSize' is a real floating point or complex type.
4045QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4046                                                       QualType Domain) const {
4047  FloatingRank EltRank = getFloatingRank(Size);
4048  if (Domain->isComplexType()) {
4049    switch (EltRank) {
4050    case HalfRank: llvm_unreachable("Complex half is not supported");
4051    case FloatRank:      return FloatComplexTy;
4052    case DoubleRank:     return DoubleComplexTy;
4053    case LongDoubleRank: return LongDoubleComplexTy;
4054    }
4055  }
4056
4057  assert(Domain->isRealFloatingType() && "Unknown domain!");
4058  switch (EltRank) {
4059  case HalfRank: llvm_unreachable("Half ranks are not valid here");
4060  case FloatRank:      return FloatTy;
4061  case DoubleRank:     return DoubleTy;
4062  case LongDoubleRank: return LongDoubleTy;
4063  }
4064  llvm_unreachable("getFloatingRank(): illegal value for rank");
4065}
4066
4067/// getFloatingTypeOrder - Compare the rank of the two specified floating
4068/// point types, ignoring the domain of the type (i.e. 'double' ==
4069/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4070/// LHS < RHS, return -1.
4071int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4072  FloatingRank LHSR = getFloatingRank(LHS);
4073  FloatingRank RHSR = getFloatingRank(RHS);
4074
4075  if (LHSR == RHSR)
4076    return 0;
4077  if (LHSR > RHSR)
4078    return 1;
4079  return -1;
4080}
4081
4082/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4083/// routine will assert if passed a built-in type that isn't an integer or enum,
4084/// or if it is not canonicalized.
4085unsigned ASTContext::getIntegerRank(const Type *T) const {
4086  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4087
4088  switch (cast<BuiltinType>(T)->getKind()) {
4089  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4090  case BuiltinType::Bool:
4091    return 1 + (getIntWidth(BoolTy) << 3);
4092  case BuiltinType::Char_S:
4093  case BuiltinType::Char_U:
4094  case BuiltinType::SChar:
4095  case BuiltinType::UChar:
4096    return 2 + (getIntWidth(CharTy) << 3);
4097  case BuiltinType::Short:
4098  case BuiltinType::UShort:
4099    return 3 + (getIntWidth(ShortTy) << 3);
4100  case BuiltinType::Int:
4101  case BuiltinType::UInt:
4102    return 4 + (getIntWidth(IntTy) << 3);
4103  case BuiltinType::Long:
4104  case BuiltinType::ULong:
4105    return 5 + (getIntWidth(LongTy) << 3);
4106  case BuiltinType::LongLong:
4107  case BuiltinType::ULongLong:
4108    return 6 + (getIntWidth(LongLongTy) << 3);
4109  case BuiltinType::Int128:
4110  case BuiltinType::UInt128:
4111    return 7 + (getIntWidth(Int128Ty) << 3);
4112  }
4113}
4114
4115/// \brief Whether this is a promotable bitfield reference according
4116/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4117///
4118/// \returns the type this bit-field will promote to, or NULL if no
4119/// promotion occurs.
4120QualType ASTContext::isPromotableBitField(Expr *E) const {
4121  if (E->isTypeDependent() || E->isValueDependent())
4122    return QualType();
4123
4124  FieldDecl *Field = E->getBitField();
4125  if (!Field)
4126    return QualType();
4127
4128  QualType FT = Field->getType();
4129
4130  uint64_t BitWidth = Field->getBitWidthValue(*this);
4131  uint64_t IntSize = getTypeSize(IntTy);
4132  // GCC extension compatibility: if the bit-field size is less than or equal
4133  // to the size of int, it gets promoted no matter what its type is.
4134  // For instance, unsigned long bf : 4 gets promoted to signed int.
4135  if (BitWidth < IntSize)
4136    return IntTy;
4137
4138  if (BitWidth == IntSize)
4139    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4140
4141  // Types bigger than int are not subject to promotions, and therefore act
4142  // like the base type.
4143  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4144  // is ridiculous.
4145  return QualType();
4146}
4147
4148/// getPromotedIntegerType - Returns the type that Promotable will
4149/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4150/// integer type.
4151QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4152  assert(!Promotable.isNull());
4153  assert(Promotable->isPromotableIntegerType());
4154  if (const EnumType *ET = Promotable->getAs<EnumType>())
4155    return ET->getDecl()->getPromotionType();
4156
4157  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4158    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4159    // (3.9.1) can be converted to a prvalue of the first of the following
4160    // types that can represent all the values of its underlying type:
4161    // int, unsigned int, long int, unsigned long int, long long int, or
4162    // unsigned long long int [...]
4163    // FIXME: Is there some better way to compute this?
4164    if (BT->getKind() == BuiltinType::WChar_S ||
4165        BT->getKind() == BuiltinType::WChar_U ||
4166        BT->getKind() == BuiltinType::Char16 ||
4167        BT->getKind() == BuiltinType::Char32) {
4168      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4169      uint64_t FromSize = getTypeSize(BT);
4170      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4171                                  LongLongTy, UnsignedLongLongTy };
4172      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4173        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4174        if (FromSize < ToSize ||
4175            (FromSize == ToSize &&
4176             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4177          return PromoteTypes[Idx];
4178      }
4179      llvm_unreachable("char type should fit into long long");
4180    }
4181  }
4182
4183  // At this point, we should have a signed or unsigned integer type.
4184  if (Promotable->isSignedIntegerType())
4185    return IntTy;
4186  uint64_t PromotableSize = getIntWidth(Promotable);
4187  uint64_t IntSize = getIntWidth(IntTy);
4188  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4189  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4190}
4191
4192/// \brief Recurses in pointer/array types until it finds an objc retainable
4193/// type and returns its ownership.
4194Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4195  while (!T.isNull()) {
4196    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4197      return T.getObjCLifetime();
4198    if (T->isArrayType())
4199      T = getBaseElementType(T);
4200    else if (const PointerType *PT = T->getAs<PointerType>())
4201      T = PT->getPointeeType();
4202    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4203      T = RT->getPointeeType();
4204    else
4205      break;
4206  }
4207
4208  return Qualifiers::OCL_None;
4209}
4210
4211/// getIntegerTypeOrder - Returns the highest ranked integer type:
4212/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4213/// LHS < RHS, return -1.
4214int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4215  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4216  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4217  if (LHSC == RHSC) return 0;
4218
4219  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4220  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4221
4222  unsigned LHSRank = getIntegerRank(LHSC);
4223  unsigned RHSRank = getIntegerRank(RHSC);
4224
4225  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4226    if (LHSRank == RHSRank) return 0;
4227    return LHSRank > RHSRank ? 1 : -1;
4228  }
4229
4230  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4231  if (LHSUnsigned) {
4232    // If the unsigned [LHS] type is larger, return it.
4233    if (LHSRank >= RHSRank)
4234      return 1;
4235
4236    // If the signed type can represent all values of the unsigned type, it
4237    // wins.  Because we are dealing with 2's complement and types that are
4238    // powers of two larger than each other, this is always safe.
4239    return -1;
4240  }
4241
4242  // If the unsigned [RHS] type is larger, return it.
4243  if (RHSRank >= LHSRank)
4244    return -1;
4245
4246  // If the signed type can represent all values of the unsigned type, it
4247  // wins.  Because we are dealing with 2's complement and types that are
4248  // powers of two larger than each other, this is always safe.
4249  return 1;
4250}
4251
4252static RecordDecl *
4253CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4254                 DeclContext *DC, IdentifierInfo *Id) {
4255  SourceLocation Loc;
4256  if (Ctx.getLangOpts().CPlusPlus)
4257    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4258  else
4259    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4260}
4261
4262// getCFConstantStringType - Return the type used for constant CFStrings.
4263QualType ASTContext::getCFConstantStringType() const {
4264  if (!CFConstantStringTypeDecl) {
4265    CFConstantStringTypeDecl =
4266      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4267                       &Idents.get("NSConstantString"));
4268    CFConstantStringTypeDecl->startDefinition();
4269
4270    QualType FieldTypes[4];
4271
4272    // const int *isa;
4273    FieldTypes[0] = getPointerType(IntTy.withConst());
4274    // int flags;
4275    FieldTypes[1] = IntTy;
4276    // const char *str;
4277    FieldTypes[2] = getPointerType(CharTy.withConst());
4278    // long length;
4279    FieldTypes[3] = LongTy;
4280
4281    // Create fields
4282    for (unsigned i = 0; i < 4; ++i) {
4283      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4284                                           SourceLocation(),
4285                                           SourceLocation(), 0,
4286                                           FieldTypes[i], /*TInfo=*/0,
4287                                           /*BitWidth=*/0,
4288                                           /*Mutable=*/false,
4289                                           ICIS_NoInit);
4290      Field->setAccess(AS_public);
4291      CFConstantStringTypeDecl->addDecl(Field);
4292    }
4293
4294    CFConstantStringTypeDecl->completeDefinition();
4295  }
4296
4297  return getTagDeclType(CFConstantStringTypeDecl);
4298}
4299
4300QualType ASTContext::getObjCSuperType() const {
4301  if (ObjCSuperType.isNull()) {
4302    RecordDecl *ObjCSuperTypeDecl  =
4303      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4304    TUDecl->addDecl(ObjCSuperTypeDecl);
4305    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4306  }
4307  return ObjCSuperType;
4308}
4309
4310void ASTContext::setCFConstantStringType(QualType T) {
4311  const RecordType *Rec = T->getAs<RecordType>();
4312  assert(Rec && "Invalid CFConstantStringType");
4313  CFConstantStringTypeDecl = Rec->getDecl();
4314}
4315
4316QualType ASTContext::getBlockDescriptorType() const {
4317  if (BlockDescriptorType)
4318    return getTagDeclType(BlockDescriptorType);
4319
4320  RecordDecl *T;
4321  // FIXME: Needs the FlagAppleBlock bit.
4322  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4323                       &Idents.get("__block_descriptor"));
4324  T->startDefinition();
4325
4326  QualType FieldTypes[] = {
4327    UnsignedLongTy,
4328    UnsignedLongTy,
4329  };
4330
4331  const char *FieldNames[] = {
4332    "reserved",
4333    "Size"
4334  };
4335
4336  for (size_t i = 0; i < 2; ++i) {
4337    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4338                                         SourceLocation(),
4339                                         &Idents.get(FieldNames[i]),
4340                                         FieldTypes[i], /*TInfo=*/0,
4341                                         /*BitWidth=*/0,
4342                                         /*Mutable=*/false,
4343                                         ICIS_NoInit);
4344    Field->setAccess(AS_public);
4345    T->addDecl(Field);
4346  }
4347
4348  T->completeDefinition();
4349
4350  BlockDescriptorType = T;
4351
4352  return getTagDeclType(BlockDescriptorType);
4353}
4354
4355QualType ASTContext::getBlockDescriptorExtendedType() const {
4356  if (BlockDescriptorExtendedType)
4357    return getTagDeclType(BlockDescriptorExtendedType);
4358
4359  RecordDecl *T;
4360  // FIXME: Needs the FlagAppleBlock bit.
4361  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4362                       &Idents.get("__block_descriptor_withcopydispose"));
4363  T->startDefinition();
4364
4365  QualType FieldTypes[] = {
4366    UnsignedLongTy,
4367    UnsignedLongTy,
4368    getPointerType(VoidPtrTy),
4369    getPointerType(VoidPtrTy)
4370  };
4371
4372  const char *FieldNames[] = {
4373    "reserved",
4374    "Size",
4375    "CopyFuncPtr",
4376    "DestroyFuncPtr"
4377  };
4378
4379  for (size_t i = 0; i < 4; ++i) {
4380    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4381                                         SourceLocation(),
4382                                         &Idents.get(FieldNames[i]),
4383                                         FieldTypes[i], /*TInfo=*/0,
4384                                         /*BitWidth=*/0,
4385                                         /*Mutable=*/false,
4386                                         ICIS_NoInit);
4387    Field->setAccess(AS_public);
4388    T->addDecl(Field);
4389  }
4390
4391  T->completeDefinition();
4392
4393  BlockDescriptorExtendedType = T;
4394
4395  return getTagDeclType(BlockDescriptorExtendedType);
4396}
4397
4398/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4399/// requires copy/dispose. Note that this must match the logic
4400/// in buildByrefHelpers.
4401bool ASTContext::BlockRequiresCopying(QualType Ty,
4402                                      const VarDecl *D) {
4403  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4404    const Expr *copyExpr = getBlockVarCopyInits(D);
4405    if (!copyExpr && record->hasTrivialDestructor()) return false;
4406
4407    return true;
4408  }
4409
4410  if (!Ty->isObjCRetainableType()) return false;
4411
4412  Qualifiers qs = Ty.getQualifiers();
4413
4414  // If we have lifetime, that dominates.
4415  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4416    assert(getLangOpts().ObjCAutoRefCount);
4417
4418    switch (lifetime) {
4419      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4420
4421      // These are just bits as far as the runtime is concerned.
4422      case Qualifiers::OCL_ExplicitNone:
4423      case Qualifiers::OCL_Autoreleasing:
4424        return false;
4425
4426      // Tell the runtime that this is ARC __weak, called by the
4427      // byref routines.
4428      case Qualifiers::OCL_Weak:
4429      // ARC __strong __block variables need to be retained.
4430      case Qualifiers::OCL_Strong:
4431        return true;
4432    }
4433    llvm_unreachable("fell out of lifetime switch!");
4434  }
4435  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4436          Ty->isObjCObjectPointerType());
4437}
4438
4439bool ASTContext::getByrefLifetime(QualType Ty,
4440                              Qualifiers::ObjCLifetime &LifeTime,
4441                              bool &HasByrefExtendedLayout) const {
4442
4443  if (!getLangOpts().ObjC1 ||
4444      getLangOpts().getGC() != LangOptions::NonGC)
4445    return false;
4446
4447  HasByrefExtendedLayout = false;
4448  if (Ty->isRecordType()) {
4449    HasByrefExtendedLayout = true;
4450    LifeTime = Qualifiers::OCL_None;
4451  }
4452  else if (getLangOpts().ObjCAutoRefCount)
4453    LifeTime = Ty.getObjCLifetime();
4454  // MRR.
4455  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4456    LifeTime = Qualifiers::OCL_ExplicitNone;
4457  else
4458    LifeTime = Qualifiers::OCL_None;
4459  return true;
4460}
4461
4462TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4463  if (!ObjCInstanceTypeDecl)
4464    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4465                                               getTranslationUnitDecl(),
4466                                               SourceLocation(),
4467                                               SourceLocation(),
4468                                               &Idents.get("instancetype"),
4469                                     getTrivialTypeSourceInfo(getObjCIdType()));
4470  return ObjCInstanceTypeDecl;
4471}
4472
4473// This returns true if a type has been typedefed to BOOL:
4474// typedef <type> BOOL;
4475static bool isTypeTypedefedAsBOOL(QualType T) {
4476  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4477    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4478      return II->isStr("BOOL");
4479
4480  return false;
4481}
4482
4483/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4484/// purpose.
4485CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4486  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4487    return CharUnits::Zero();
4488
4489  CharUnits sz = getTypeSizeInChars(type);
4490
4491  // Make all integer and enum types at least as large as an int
4492  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4493    sz = std::max(sz, getTypeSizeInChars(IntTy));
4494  // Treat arrays as pointers, since that's how they're passed in.
4495  else if (type->isArrayType())
4496    sz = getTypeSizeInChars(VoidPtrTy);
4497  return sz;
4498}
4499
4500static inline
4501std::string charUnitsToString(const CharUnits &CU) {
4502  return llvm::itostr(CU.getQuantity());
4503}
4504
4505/// getObjCEncodingForBlock - Return the encoded type for this block
4506/// declaration.
4507std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4508  std::string S;
4509
4510  const BlockDecl *Decl = Expr->getBlockDecl();
4511  QualType BlockTy =
4512      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4513  // Encode result type.
4514  if (getLangOpts().EncodeExtendedBlockSig)
4515    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4516                            BlockTy->getAs<FunctionType>()->getResultType(),
4517                            S, true /*Extended*/);
4518  else
4519    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4520                           S);
4521  // Compute size of all parameters.
4522  // Start with computing size of a pointer in number of bytes.
4523  // FIXME: There might(should) be a better way of doing this computation!
4524  SourceLocation Loc;
4525  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4526  CharUnits ParmOffset = PtrSize;
4527  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4528       E = Decl->param_end(); PI != E; ++PI) {
4529    QualType PType = (*PI)->getType();
4530    CharUnits sz = getObjCEncodingTypeSize(PType);
4531    if (sz.isZero())
4532      continue;
4533    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4534    ParmOffset += sz;
4535  }
4536  // Size of the argument frame
4537  S += charUnitsToString(ParmOffset);
4538  // Block pointer and offset.
4539  S += "@?0";
4540
4541  // Argument types.
4542  ParmOffset = PtrSize;
4543  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4544       Decl->param_end(); PI != E; ++PI) {
4545    ParmVarDecl *PVDecl = *PI;
4546    QualType PType = PVDecl->getOriginalType();
4547    if (const ArrayType *AT =
4548          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4549      // Use array's original type only if it has known number of
4550      // elements.
4551      if (!isa<ConstantArrayType>(AT))
4552        PType = PVDecl->getType();
4553    } else if (PType->isFunctionType())
4554      PType = PVDecl->getType();
4555    if (getLangOpts().EncodeExtendedBlockSig)
4556      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4557                                      S, true /*Extended*/);
4558    else
4559      getObjCEncodingForType(PType, S);
4560    S += charUnitsToString(ParmOffset);
4561    ParmOffset += getObjCEncodingTypeSize(PType);
4562  }
4563
4564  return S;
4565}
4566
4567bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4568                                                std::string& S) {
4569  // Encode result type.
4570  getObjCEncodingForType(Decl->getResultType(), S);
4571  CharUnits ParmOffset;
4572  // Compute size of all parameters.
4573  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4574       E = Decl->param_end(); PI != E; ++PI) {
4575    QualType PType = (*PI)->getType();
4576    CharUnits sz = getObjCEncodingTypeSize(PType);
4577    if (sz.isZero())
4578      continue;
4579
4580    assert (sz.isPositive() &&
4581        "getObjCEncodingForFunctionDecl - Incomplete param type");
4582    ParmOffset += sz;
4583  }
4584  S += charUnitsToString(ParmOffset);
4585  ParmOffset = CharUnits::Zero();
4586
4587  // Argument types.
4588  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4589       E = Decl->param_end(); PI != E; ++PI) {
4590    ParmVarDecl *PVDecl = *PI;
4591    QualType PType = PVDecl->getOriginalType();
4592    if (const ArrayType *AT =
4593          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4594      // Use array's original type only if it has known number of
4595      // elements.
4596      if (!isa<ConstantArrayType>(AT))
4597        PType = PVDecl->getType();
4598    } else if (PType->isFunctionType())
4599      PType = PVDecl->getType();
4600    getObjCEncodingForType(PType, S);
4601    S += charUnitsToString(ParmOffset);
4602    ParmOffset += getObjCEncodingTypeSize(PType);
4603  }
4604
4605  return false;
4606}
4607
4608/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4609/// method parameter or return type. If Extended, include class names and
4610/// block object types.
4611void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4612                                                   QualType T, std::string& S,
4613                                                   bool Extended) const {
4614  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4615  getObjCEncodingForTypeQualifier(QT, S);
4616  // Encode parameter type.
4617  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4618                             true     /*OutermostType*/,
4619                             false    /*EncodingProperty*/,
4620                             false    /*StructField*/,
4621                             Extended /*EncodeBlockParameters*/,
4622                             Extended /*EncodeClassNames*/);
4623}
4624
4625/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4626/// declaration.
4627bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4628                                              std::string& S,
4629                                              bool Extended) const {
4630  // FIXME: This is not very efficient.
4631  // Encode return type.
4632  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4633                                    Decl->getResultType(), S, Extended);
4634  // Compute size of all parameters.
4635  // Start with computing size of a pointer in number of bytes.
4636  // FIXME: There might(should) be a better way of doing this computation!
4637  SourceLocation Loc;
4638  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4639  // The first two arguments (self and _cmd) are pointers; account for
4640  // their size.
4641  CharUnits ParmOffset = 2 * PtrSize;
4642  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4643       E = Decl->sel_param_end(); PI != E; ++PI) {
4644    QualType PType = (*PI)->getType();
4645    CharUnits sz = getObjCEncodingTypeSize(PType);
4646    if (sz.isZero())
4647      continue;
4648
4649    assert (sz.isPositive() &&
4650        "getObjCEncodingForMethodDecl - Incomplete param type");
4651    ParmOffset += sz;
4652  }
4653  S += charUnitsToString(ParmOffset);
4654  S += "@0:";
4655  S += charUnitsToString(PtrSize);
4656
4657  // Argument types.
4658  ParmOffset = 2 * PtrSize;
4659  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4660       E = Decl->sel_param_end(); PI != E; ++PI) {
4661    const ParmVarDecl *PVDecl = *PI;
4662    QualType PType = PVDecl->getOriginalType();
4663    if (const ArrayType *AT =
4664          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4665      // Use array's original type only if it has known number of
4666      // elements.
4667      if (!isa<ConstantArrayType>(AT))
4668        PType = PVDecl->getType();
4669    } else if (PType->isFunctionType())
4670      PType = PVDecl->getType();
4671    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4672                                      PType, S, Extended);
4673    S += charUnitsToString(ParmOffset);
4674    ParmOffset += getObjCEncodingTypeSize(PType);
4675  }
4676
4677  return false;
4678}
4679
4680/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4681/// property declaration. If non-NULL, Container must be either an
4682/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4683/// NULL when getting encodings for protocol properties.
4684/// Property attributes are stored as a comma-delimited C string. The simple
4685/// attributes readonly and bycopy are encoded as single characters. The
4686/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4687/// encoded as single characters, followed by an identifier. Property types
4688/// are also encoded as a parametrized attribute. The characters used to encode
4689/// these attributes are defined by the following enumeration:
4690/// @code
4691/// enum PropertyAttributes {
4692/// kPropertyReadOnly = 'R',   // property is read-only.
4693/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4694/// kPropertyByref = '&',  // property is a reference to the value last assigned
4695/// kPropertyDynamic = 'D',    // property is dynamic
4696/// kPropertyGetter = 'G',     // followed by getter selector name
4697/// kPropertySetter = 'S',     // followed by setter selector name
4698/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4699/// kPropertyType = 'T'              // followed by old-style type encoding.
4700/// kPropertyWeak = 'W'              // 'weak' property
4701/// kPropertyStrong = 'P'            // property GC'able
4702/// kPropertyNonAtomic = 'N'         // property non-atomic
4703/// };
4704/// @endcode
4705void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4706                                                const Decl *Container,
4707                                                std::string& S) const {
4708  // Collect information from the property implementation decl(s).
4709  bool Dynamic = false;
4710  ObjCPropertyImplDecl *SynthesizePID = 0;
4711
4712  // FIXME: Duplicated code due to poor abstraction.
4713  if (Container) {
4714    if (const ObjCCategoryImplDecl *CID =
4715        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4716      for (ObjCCategoryImplDecl::propimpl_iterator
4717             i = CID->propimpl_begin(), e = CID->propimpl_end();
4718           i != e; ++i) {
4719        ObjCPropertyImplDecl *PID = *i;
4720        if (PID->getPropertyDecl() == PD) {
4721          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4722            Dynamic = true;
4723          } else {
4724            SynthesizePID = PID;
4725          }
4726        }
4727      }
4728    } else {
4729      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4730      for (ObjCCategoryImplDecl::propimpl_iterator
4731             i = OID->propimpl_begin(), e = OID->propimpl_end();
4732           i != e; ++i) {
4733        ObjCPropertyImplDecl *PID = *i;
4734        if (PID->getPropertyDecl() == PD) {
4735          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4736            Dynamic = true;
4737          } else {
4738            SynthesizePID = PID;
4739          }
4740        }
4741      }
4742    }
4743  }
4744
4745  // FIXME: This is not very efficient.
4746  S = "T";
4747
4748  // Encode result type.
4749  // GCC has some special rules regarding encoding of properties which
4750  // closely resembles encoding of ivars.
4751  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4752                             true /* outermost type */,
4753                             true /* encoding for property */);
4754
4755  if (PD->isReadOnly()) {
4756    S += ",R";
4757  } else {
4758    switch (PD->getSetterKind()) {
4759    case ObjCPropertyDecl::Assign: break;
4760    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4761    case ObjCPropertyDecl::Retain: S += ",&"; break;
4762    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4763    }
4764  }
4765
4766  // It really isn't clear at all what this means, since properties
4767  // are "dynamic by default".
4768  if (Dynamic)
4769    S += ",D";
4770
4771  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4772    S += ",N";
4773
4774  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4775    S += ",G";
4776    S += PD->getGetterName().getAsString();
4777  }
4778
4779  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4780    S += ",S";
4781    S += PD->getSetterName().getAsString();
4782  }
4783
4784  if (SynthesizePID) {
4785    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4786    S += ",V";
4787    S += OID->getNameAsString();
4788  }
4789
4790  // FIXME: OBJCGC: weak & strong
4791}
4792
4793/// getLegacyIntegralTypeEncoding -
4794/// Another legacy compatibility encoding: 32-bit longs are encoded as
4795/// 'l' or 'L' , but not always.  For typedefs, we need to use
4796/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4797///
4798void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4799  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4800    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4801      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4802        PointeeTy = UnsignedIntTy;
4803      else
4804        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4805          PointeeTy = IntTy;
4806    }
4807  }
4808}
4809
4810void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4811                                        const FieldDecl *Field) const {
4812  // We follow the behavior of gcc, expanding structures which are
4813  // directly pointed to, and expanding embedded structures. Note that
4814  // these rules are sufficient to prevent recursive encoding of the
4815  // same type.
4816  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4817                             true /* outermost type */);
4818}
4819
4820static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4821                                            BuiltinType::Kind kind) {
4822    switch (kind) {
4823    case BuiltinType::Void:       return 'v';
4824    case BuiltinType::Bool:       return 'B';
4825    case BuiltinType::Char_U:
4826    case BuiltinType::UChar:      return 'C';
4827    case BuiltinType::Char16:
4828    case BuiltinType::UShort:     return 'S';
4829    case BuiltinType::Char32:
4830    case BuiltinType::UInt:       return 'I';
4831    case BuiltinType::ULong:
4832        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4833    case BuiltinType::UInt128:    return 'T';
4834    case BuiltinType::ULongLong:  return 'Q';
4835    case BuiltinType::Char_S:
4836    case BuiltinType::SChar:      return 'c';
4837    case BuiltinType::Short:      return 's';
4838    case BuiltinType::WChar_S:
4839    case BuiltinType::WChar_U:
4840    case BuiltinType::Int:        return 'i';
4841    case BuiltinType::Long:
4842      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4843    case BuiltinType::LongLong:   return 'q';
4844    case BuiltinType::Int128:     return 't';
4845    case BuiltinType::Float:      return 'f';
4846    case BuiltinType::Double:     return 'd';
4847    case BuiltinType::LongDouble: return 'D';
4848    case BuiltinType::NullPtr:    return '*'; // like char*
4849
4850    case BuiltinType::Half:
4851      // FIXME: potentially need @encodes for these!
4852      return ' ';
4853
4854    case BuiltinType::ObjCId:
4855    case BuiltinType::ObjCClass:
4856    case BuiltinType::ObjCSel:
4857      llvm_unreachable("@encoding ObjC primitive type");
4858
4859    // OpenCL and placeholder types don't need @encodings.
4860    case BuiltinType::OCLImage1d:
4861    case BuiltinType::OCLImage1dArray:
4862    case BuiltinType::OCLImage1dBuffer:
4863    case BuiltinType::OCLImage2d:
4864    case BuiltinType::OCLImage2dArray:
4865    case BuiltinType::OCLImage3d:
4866    case BuiltinType::Dependent:
4867#define BUILTIN_TYPE(KIND, ID)
4868#define PLACEHOLDER_TYPE(KIND, ID) \
4869    case BuiltinType::KIND:
4870#include "clang/AST/BuiltinTypes.def"
4871      llvm_unreachable("invalid builtin type for @encode");
4872    }
4873}
4874
4875static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4876  EnumDecl *Enum = ET->getDecl();
4877
4878  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4879  if (!Enum->isFixed())
4880    return 'i';
4881
4882  // The encoding of a fixed enum type matches its fixed underlying type.
4883  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4884  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4885}
4886
4887static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4888                           QualType T, const FieldDecl *FD) {
4889  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4890  S += 'b';
4891  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4892  // The GNU runtime requires more information; bitfields are encoded as b,
4893  // then the offset (in bits) of the first element, then the type of the
4894  // bitfield, then the size in bits.  For example, in this structure:
4895  //
4896  // struct
4897  // {
4898  //    int integer;
4899  //    int flags:2;
4900  // };
4901  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4902  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4903  // information is not especially sensible, but we're stuck with it for
4904  // compatibility with GCC, although providing it breaks anything that
4905  // actually uses runtime introspection and wants to work on both runtimes...
4906  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4907    const RecordDecl *RD = FD->getParent();
4908    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4909    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4910    if (const EnumType *ET = T->getAs<EnumType>())
4911      S += ObjCEncodingForEnumType(Ctx, ET);
4912    else {
4913      const BuiltinType *BT = T->castAs<BuiltinType>();
4914      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4915    }
4916  }
4917  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4918}
4919
4920// FIXME: Use SmallString for accumulating string.
4921void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4922                                            bool ExpandPointedToStructures,
4923                                            bool ExpandStructures,
4924                                            const FieldDecl *FD,
4925                                            bool OutermostType,
4926                                            bool EncodingProperty,
4927                                            bool StructField,
4928                                            bool EncodeBlockParameters,
4929                                            bool EncodeClassNames) const {
4930  CanQualType CT = getCanonicalType(T);
4931  switch (CT->getTypeClass()) {
4932  case Type::Builtin:
4933  case Type::Enum:
4934    if (FD && FD->isBitField())
4935      return EncodeBitField(this, S, T, FD);
4936    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
4937      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
4938    else
4939      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
4940    return;
4941
4942  case Type::Complex: {
4943    const ComplexType *CT = T->castAs<ComplexType>();
4944    S += 'j';
4945    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4946                               false);
4947    return;
4948  }
4949
4950  case Type::Atomic: {
4951    const AtomicType *AT = T->castAs<AtomicType>();
4952    S += 'A';
4953    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
4954                               false, false);
4955    return;
4956  }
4957
4958  // encoding for pointer or reference types.
4959  case Type::Pointer:
4960  case Type::LValueReference:
4961  case Type::RValueReference: {
4962    QualType PointeeTy;
4963    if (isa<PointerType>(CT)) {
4964      const PointerType *PT = T->castAs<PointerType>();
4965      if (PT->isObjCSelType()) {
4966        S += ':';
4967        return;
4968      }
4969      PointeeTy = PT->getPointeeType();
4970    } else {
4971      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
4972    }
4973
4974    bool isReadOnly = false;
4975    // For historical/compatibility reasons, the read-only qualifier of the
4976    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4977    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4978    // Also, do not emit the 'r' for anything but the outermost type!
4979    if (isa<TypedefType>(T.getTypePtr())) {
4980      if (OutermostType && T.isConstQualified()) {
4981        isReadOnly = true;
4982        S += 'r';
4983      }
4984    } else if (OutermostType) {
4985      QualType P = PointeeTy;
4986      while (P->getAs<PointerType>())
4987        P = P->getAs<PointerType>()->getPointeeType();
4988      if (P.isConstQualified()) {
4989        isReadOnly = true;
4990        S += 'r';
4991      }
4992    }
4993    if (isReadOnly) {
4994      // Another legacy compatibility encoding. Some ObjC qualifier and type
4995      // combinations need to be rearranged.
4996      // Rewrite "in const" from "nr" to "rn"
4997      if (StringRef(S).endswith("nr"))
4998        S.replace(S.end()-2, S.end(), "rn");
4999    }
5000
5001    if (PointeeTy->isCharType()) {
5002      // char pointer types should be encoded as '*' unless it is a
5003      // type that has been typedef'd to 'BOOL'.
5004      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5005        S += '*';
5006        return;
5007      }
5008    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5009      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5010      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5011        S += '#';
5012        return;
5013      }
5014      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5015      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5016        S += '@';
5017        return;
5018      }
5019      // fall through...
5020    }
5021    S += '^';
5022    getLegacyIntegralTypeEncoding(PointeeTy);
5023
5024    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5025                               NULL);
5026    return;
5027  }
5028
5029  case Type::ConstantArray:
5030  case Type::IncompleteArray:
5031  case Type::VariableArray: {
5032    const ArrayType *AT = cast<ArrayType>(CT);
5033
5034    if (isa<IncompleteArrayType>(AT) && !StructField) {
5035      // Incomplete arrays are encoded as a pointer to the array element.
5036      S += '^';
5037
5038      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5039                                 false, ExpandStructures, FD);
5040    } else {
5041      S += '[';
5042
5043      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5044        if (getTypeSize(CAT->getElementType()) == 0)
5045          S += '0';
5046        else
5047          S += llvm::utostr(CAT->getSize().getZExtValue());
5048      } else {
5049        //Variable length arrays are encoded as a regular array with 0 elements.
5050        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5051               "Unknown array type!");
5052        S += '0';
5053      }
5054
5055      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5056                                 false, ExpandStructures, FD);
5057      S += ']';
5058    }
5059    return;
5060  }
5061
5062  case Type::FunctionNoProto:
5063  case Type::FunctionProto:
5064    S += '?';
5065    return;
5066
5067  case Type::Record: {
5068    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5069    S += RDecl->isUnion() ? '(' : '{';
5070    // Anonymous structures print as '?'
5071    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5072      S += II->getName();
5073      if (ClassTemplateSpecializationDecl *Spec
5074          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5075        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5076        std::string TemplateArgsStr
5077          = TemplateSpecializationType::PrintTemplateArgumentList(
5078                                            TemplateArgs.data(),
5079                                            TemplateArgs.size(),
5080                                            (*this).getPrintingPolicy());
5081
5082        S += TemplateArgsStr;
5083      }
5084    } else {
5085      S += '?';
5086    }
5087    if (ExpandStructures) {
5088      S += '=';
5089      if (!RDecl->isUnion()) {
5090        getObjCEncodingForStructureImpl(RDecl, S, FD);
5091      } else {
5092        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5093                                     FieldEnd = RDecl->field_end();
5094             Field != FieldEnd; ++Field) {
5095          if (FD) {
5096            S += '"';
5097            S += Field->getNameAsString();
5098            S += '"';
5099          }
5100
5101          // Special case bit-fields.
5102          if (Field->isBitField()) {
5103            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5104                                       *Field);
5105          } else {
5106            QualType qt = Field->getType();
5107            getLegacyIntegralTypeEncoding(qt);
5108            getObjCEncodingForTypeImpl(qt, S, false, true,
5109                                       FD, /*OutermostType*/false,
5110                                       /*EncodingProperty*/false,
5111                                       /*StructField*/true);
5112          }
5113        }
5114      }
5115    }
5116    S += RDecl->isUnion() ? ')' : '}';
5117    return;
5118  }
5119
5120  case Type::BlockPointer: {
5121    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5122    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5123    if (EncodeBlockParameters) {
5124      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5125
5126      S += '<';
5127      // Block return type
5128      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5129                                 ExpandPointedToStructures, ExpandStructures,
5130                                 FD,
5131                                 false /* OutermostType */,
5132                                 EncodingProperty,
5133                                 false /* StructField */,
5134                                 EncodeBlockParameters,
5135                                 EncodeClassNames);
5136      // Block self
5137      S += "@?";
5138      // Block parameters
5139      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5140        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5141               E = FPT->arg_type_end(); I && (I != E); ++I) {
5142          getObjCEncodingForTypeImpl(*I, S,
5143                                     ExpandPointedToStructures,
5144                                     ExpandStructures,
5145                                     FD,
5146                                     false /* OutermostType */,
5147                                     EncodingProperty,
5148                                     false /* StructField */,
5149                                     EncodeBlockParameters,
5150                                     EncodeClassNames);
5151        }
5152      }
5153      S += '>';
5154    }
5155    return;
5156  }
5157
5158  case Type::ObjCObject:
5159  case Type::ObjCInterface: {
5160    // Ignore protocol qualifiers when mangling at this level.
5161    T = T->castAs<ObjCObjectType>()->getBaseType();
5162
5163    // The assumption seems to be that this assert will succeed
5164    // because nested levels will have filtered out 'id' and 'Class'.
5165    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5166    // @encode(class_name)
5167    ObjCInterfaceDecl *OI = OIT->getDecl();
5168    S += '{';
5169    const IdentifierInfo *II = OI->getIdentifier();
5170    S += II->getName();
5171    S += '=';
5172    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5173    DeepCollectObjCIvars(OI, true, Ivars);
5174    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5175      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5176      if (Field->isBitField())
5177        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5178      else
5179        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5180    }
5181    S += '}';
5182    return;
5183  }
5184
5185  case Type::ObjCObjectPointer: {
5186    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5187    if (OPT->isObjCIdType()) {
5188      S += '@';
5189      return;
5190    }
5191
5192    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5193      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5194      // Since this is a binary compatibility issue, need to consult with runtime
5195      // folks. Fortunately, this is a *very* obsure construct.
5196      S += '#';
5197      return;
5198    }
5199
5200    if (OPT->isObjCQualifiedIdType()) {
5201      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5202                                 ExpandPointedToStructures,
5203                                 ExpandStructures, FD);
5204      if (FD || EncodingProperty || EncodeClassNames) {
5205        // Note that we do extended encoding of protocol qualifer list
5206        // Only when doing ivar or property encoding.
5207        S += '"';
5208        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5209             E = OPT->qual_end(); I != E; ++I) {
5210          S += '<';
5211          S += (*I)->getNameAsString();
5212          S += '>';
5213        }
5214        S += '"';
5215      }
5216      return;
5217    }
5218
5219    QualType PointeeTy = OPT->getPointeeType();
5220    if (!EncodingProperty &&
5221        isa<TypedefType>(PointeeTy.getTypePtr())) {
5222      // Another historical/compatibility reason.
5223      // We encode the underlying type which comes out as
5224      // {...};
5225      S += '^';
5226      getObjCEncodingForTypeImpl(PointeeTy, S,
5227                                 false, ExpandPointedToStructures,
5228                                 NULL);
5229      return;
5230    }
5231
5232    S += '@';
5233    if (OPT->getInterfaceDecl() &&
5234        (FD || EncodingProperty || EncodeClassNames)) {
5235      S += '"';
5236      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5237      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5238           E = OPT->qual_end(); I != E; ++I) {
5239        S += '<';
5240        S += (*I)->getNameAsString();
5241        S += '>';
5242      }
5243      S += '"';
5244    }
5245    return;
5246  }
5247
5248  // gcc just blithely ignores member pointers.
5249  // FIXME: we shoul do better than that.  'M' is available.
5250  case Type::MemberPointer:
5251    return;
5252
5253  case Type::Vector:
5254  case Type::ExtVector:
5255    // This matches gcc's encoding, even though technically it is
5256    // insufficient.
5257    // FIXME. We should do a better job than gcc.
5258    return;
5259
5260#define ABSTRACT_TYPE(KIND, BASE)
5261#define TYPE(KIND, BASE)
5262#define DEPENDENT_TYPE(KIND, BASE) \
5263  case Type::KIND:
5264#define NON_CANONICAL_TYPE(KIND, BASE) \
5265  case Type::KIND:
5266#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5267  case Type::KIND:
5268#include "clang/AST/TypeNodes.def"
5269    llvm_unreachable("@encode for dependent type!");
5270  }
5271  llvm_unreachable("bad type kind!");
5272}
5273
5274void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5275                                                 std::string &S,
5276                                                 const FieldDecl *FD,
5277                                                 bool includeVBases) const {
5278  assert(RDecl && "Expected non-null RecordDecl");
5279  assert(!RDecl->isUnion() && "Should not be called for unions");
5280  if (!RDecl->getDefinition())
5281    return;
5282
5283  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5284  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5285  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5286
5287  if (CXXRec) {
5288    for (CXXRecordDecl::base_class_iterator
5289           BI = CXXRec->bases_begin(),
5290           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5291      if (!BI->isVirtual()) {
5292        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5293        if (base->isEmpty())
5294          continue;
5295        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5296        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5297                                  std::make_pair(offs, base));
5298      }
5299    }
5300  }
5301
5302  unsigned i = 0;
5303  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5304                               FieldEnd = RDecl->field_end();
5305       Field != FieldEnd; ++Field, ++i) {
5306    uint64_t offs = layout.getFieldOffset(i);
5307    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5308                              std::make_pair(offs, *Field));
5309  }
5310
5311  if (CXXRec && includeVBases) {
5312    for (CXXRecordDecl::base_class_iterator
5313           BI = CXXRec->vbases_begin(),
5314           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5315      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5316      if (base->isEmpty())
5317        continue;
5318      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5319      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5320        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5321                                  std::make_pair(offs, base));
5322    }
5323  }
5324
5325  CharUnits size;
5326  if (CXXRec) {
5327    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5328  } else {
5329    size = layout.getSize();
5330  }
5331
5332  uint64_t CurOffs = 0;
5333  std::multimap<uint64_t, NamedDecl *>::iterator
5334    CurLayObj = FieldOrBaseOffsets.begin();
5335
5336  if (CXXRec && CXXRec->isDynamicClass() &&
5337      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5338    if (FD) {
5339      S += "\"_vptr$";
5340      std::string recname = CXXRec->getNameAsString();
5341      if (recname.empty()) recname = "?";
5342      S += recname;
5343      S += '"';
5344    }
5345    S += "^^?";
5346    CurOffs += getTypeSize(VoidPtrTy);
5347  }
5348
5349  if (!RDecl->hasFlexibleArrayMember()) {
5350    // Mark the end of the structure.
5351    uint64_t offs = toBits(size);
5352    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5353                              std::make_pair(offs, (NamedDecl*)0));
5354  }
5355
5356  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5357    assert(CurOffs <= CurLayObj->first);
5358
5359    if (CurOffs < CurLayObj->first) {
5360      uint64_t padding = CurLayObj->first - CurOffs;
5361      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5362      // packing/alignment of members is different that normal, in which case
5363      // the encoding will be out-of-sync with the real layout.
5364      // If the runtime switches to just consider the size of types without
5365      // taking into account alignment, we could make padding explicit in the
5366      // encoding (e.g. using arrays of chars). The encoding strings would be
5367      // longer then though.
5368      CurOffs += padding;
5369    }
5370
5371    NamedDecl *dcl = CurLayObj->second;
5372    if (dcl == 0)
5373      break; // reached end of structure.
5374
5375    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5376      // We expand the bases without their virtual bases since those are going
5377      // in the initial structure. Note that this differs from gcc which
5378      // expands virtual bases each time one is encountered in the hierarchy,
5379      // making the encoding type bigger than it really is.
5380      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5381      assert(!base->isEmpty());
5382      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5383    } else {
5384      FieldDecl *field = cast<FieldDecl>(dcl);
5385      if (FD) {
5386        S += '"';
5387        S += field->getNameAsString();
5388        S += '"';
5389      }
5390
5391      if (field->isBitField()) {
5392        EncodeBitField(this, S, field->getType(), field);
5393        CurOffs += field->getBitWidthValue(*this);
5394      } else {
5395        QualType qt = field->getType();
5396        getLegacyIntegralTypeEncoding(qt);
5397        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5398                                   /*OutermostType*/false,
5399                                   /*EncodingProperty*/false,
5400                                   /*StructField*/true);
5401        CurOffs += getTypeSize(field->getType());
5402      }
5403    }
5404  }
5405}
5406
5407void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5408                                                 std::string& S) const {
5409  if (QT & Decl::OBJC_TQ_In)
5410    S += 'n';
5411  if (QT & Decl::OBJC_TQ_Inout)
5412    S += 'N';
5413  if (QT & Decl::OBJC_TQ_Out)
5414    S += 'o';
5415  if (QT & Decl::OBJC_TQ_Bycopy)
5416    S += 'O';
5417  if (QT & Decl::OBJC_TQ_Byref)
5418    S += 'R';
5419  if (QT & Decl::OBJC_TQ_Oneway)
5420    S += 'V';
5421}
5422
5423TypedefDecl *ASTContext::getObjCIdDecl() const {
5424  if (!ObjCIdDecl) {
5425    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5426    T = getObjCObjectPointerType(T);
5427    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5428    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5429                                     getTranslationUnitDecl(),
5430                                     SourceLocation(), SourceLocation(),
5431                                     &Idents.get("id"), IdInfo);
5432  }
5433
5434  return ObjCIdDecl;
5435}
5436
5437TypedefDecl *ASTContext::getObjCSelDecl() const {
5438  if (!ObjCSelDecl) {
5439    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5440    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5441    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5442                                      getTranslationUnitDecl(),
5443                                      SourceLocation(), SourceLocation(),
5444                                      &Idents.get("SEL"), SelInfo);
5445  }
5446  return ObjCSelDecl;
5447}
5448
5449TypedefDecl *ASTContext::getObjCClassDecl() const {
5450  if (!ObjCClassDecl) {
5451    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5452    T = getObjCObjectPointerType(T);
5453    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5454    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5455                                        getTranslationUnitDecl(),
5456                                        SourceLocation(), SourceLocation(),
5457                                        &Idents.get("Class"), ClassInfo);
5458  }
5459
5460  return ObjCClassDecl;
5461}
5462
5463ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5464  if (!ObjCProtocolClassDecl) {
5465    ObjCProtocolClassDecl
5466      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5467                                  SourceLocation(),
5468                                  &Idents.get("Protocol"),
5469                                  /*PrevDecl=*/0,
5470                                  SourceLocation(), true);
5471  }
5472
5473  return ObjCProtocolClassDecl;
5474}
5475
5476//===----------------------------------------------------------------------===//
5477// __builtin_va_list Construction Functions
5478//===----------------------------------------------------------------------===//
5479
5480static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5481  // typedef char* __builtin_va_list;
5482  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5483  TypeSourceInfo *TInfo
5484    = Context->getTrivialTypeSourceInfo(CharPtrType);
5485
5486  TypedefDecl *VaListTypeDecl
5487    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5488                          Context->getTranslationUnitDecl(),
5489                          SourceLocation(), SourceLocation(),
5490                          &Context->Idents.get("__builtin_va_list"),
5491                          TInfo);
5492  return VaListTypeDecl;
5493}
5494
5495static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5496  // typedef void* __builtin_va_list;
5497  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5498  TypeSourceInfo *TInfo
5499    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5500
5501  TypedefDecl *VaListTypeDecl
5502    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5503                          Context->getTranslationUnitDecl(),
5504                          SourceLocation(), SourceLocation(),
5505                          &Context->Idents.get("__builtin_va_list"),
5506                          TInfo);
5507  return VaListTypeDecl;
5508}
5509
5510static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5511  // typedef struct __va_list_tag {
5512  RecordDecl *VaListTagDecl;
5513
5514  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5515                                   Context->getTranslationUnitDecl(),
5516                                   &Context->Idents.get("__va_list_tag"));
5517  VaListTagDecl->startDefinition();
5518
5519  const size_t NumFields = 5;
5520  QualType FieldTypes[NumFields];
5521  const char *FieldNames[NumFields];
5522
5523  //   unsigned char gpr;
5524  FieldTypes[0] = Context->UnsignedCharTy;
5525  FieldNames[0] = "gpr";
5526
5527  //   unsigned char fpr;
5528  FieldTypes[1] = Context->UnsignedCharTy;
5529  FieldNames[1] = "fpr";
5530
5531  //   unsigned short reserved;
5532  FieldTypes[2] = Context->UnsignedShortTy;
5533  FieldNames[2] = "reserved";
5534
5535  //   void* overflow_arg_area;
5536  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5537  FieldNames[3] = "overflow_arg_area";
5538
5539  //   void* reg_save_area;
5540  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5541  FieldNames[4] = "reg_save_area";
5542
5543  // Create fields
5544  for (unsigned i = 0; i < NumFields; ++i) {
5545    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5546                                         SourceLocation(),
5547                                         SourceLocation(),
5548                                         &Context->Idents.get(FieldNames[i]),
5549                                         FieldTypes[i], /*TInfo=*/0,
5550                                         /*BitWidth=*/0,
5551                                         /*Mutable=*/false,
5552                                         ICIS_NoInit);
5553    Field->setAccess(AS_public);
5554    VaListTagDecl->addDecl(Field);
5555  }
5556  VaListTagDecl->completeDefinition();
5557  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5558  Context->VaListTagTy = VaListTagType;
5559
5560  // } __va_list_tag;
5561  TypedefDecl *VaListTagTypedefDecl
5562    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5563                          Context->getTranslationUnitDecl(),
5564                          SourceLocation(), SourceLocation(),
5565                          &Context->Idents.get("__va_list_tag"),
5566                          Context->getTrivialTypeSourceInfo(VaListTagType));
5567  QualType VaListTagTypedefType =
5568    Context->getTypedefType(VaListTagTypedefDecl);
5569
5570  // typedef __va_list_tag __builtin_va_list[1];
5571  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5572  QualType VaListTagArrayType
5573    = Context->getConstantArrayType(VaListTagTypedefType,
5574                                    Size, ArrayType::Normal, 0);
5575  TypeSourceInfo *TInfo
5576    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5577  TypedefDecl *VaListTypedefDecl
5578    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5579                          Context->getTranslationUnitDecl(),
5580                          SourceLocation(), SourceLocation(),
5581                          &Context->Idents.get("__builtin_va_list"),
5582                          TInfo);
5583
5584  return VaListTypedefDecl;
5585}
5586
5587static TypedefDecl *
5588CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5589  // typedef struct __va_list_tag {
5590  RecordDecl *VaListTagDecl;
5591  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5592                                   Context->getTranslationUnitDecl(),
5593                                   &Context->Idents.get("__va_list_tag"));
5594  VaListTagDecl->startDefinition();
5595
5596  const size_t NumFields = 4;
5597  QualType FieldTypes[NumFields];
5598  const char *FieldNames[NumFields];
5599
5600  //   unsigned gp_offset;
5601  FieldTypes[0] = Context->UnsignedIntTy;
5602  FieldNames[0] = "gp_offset";
5603
5604  //   unsigned fp_offset;
5605  FieldTypes[1] = Context->UnsignedIntTy;
5606  FieldNames[1] = "fp_offset";
5607
5608  //   void* overflow_arg_area;
5609  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5610  FieldNames[2] = "overflow_arg_area";
5611
5612  //   void* reg_save_area;
5613  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5614  FieldNames[3] = "reg_save_area";
5615
5616  // Create fields
5617  for (unsigned i = 0; i < NumFields; ++i) {
5618    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5619                                         VaListTagDecl,
5620                                         SourceLocation(),
5621                                         SourceLocation(),
5622                                         &Context->Idents.get(FieldNames[i]),
5623                                         FieldTypes[i], /*TInfo=*/0,
5624                                         /*BitWidth=*/0,
5625                                         /*Mutable=*/false,
5626                                         ICIS_NoInit);
5627    Field->setAccess(AS_public);
5628    VaListTagDecl->addDecl(Field);
5629  }
5630  VaListTagDecl->completeDefinition();
5631  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5632  Context->VaListTagTy = VaListTagType;
5633
5634  // } __va_list_tag;
5635  TypedefDecl *VaListTagTypedefDecl
5636    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5637                          Context->getTranslationUnitDecl(),
5638                          SourceLocation(), SourceLocation(),
5639                          &Context->Idents.get("__va_list_tag"),
5640                          Context->getTrivialTypeSourceInfo(VaListTagType));
5641  QualType VaListTagTypedefType =
5642    Context->getTypedefType(VaListTagTypedefDecl);
5643
5644  // typedef __va_list_tag __builtin_va_list[1];
5645  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5646  QualType VaListTagArrayType
5647    = Context->getConstantArrayType(VaListTagTypedefType,
5648                                      Size, ArrayType::Normal,0);
5649  TypeSourceInfo *TInfo
5650    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5651  TypedefDecl *VaListTypedefDecl
5652    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5653                          Context->getTranslationUnitDecl(),
5654                          SourceLocation(), SourceLocation(),
5655                          &Context->Idents.get("__builtin_va_list"),
5656                          TInfo);
5657
5658  return VaListTypedefDecl;
5659}
5660
5661static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5662  // typedef int __builtin_va_list[4];
5663  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5664  QualType IntArrayType
5665    = Context->getConstantArrayType(Context->IntTy,
5666				    Size, ArrayType::Normal, 0);
5667  TypedefDecl *VaListTypedefDecl
5668    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5669                          Context->getTranslationUnitDecl(),
5670                          SourceLocation(), SourceLocation(),
5671                          &Context->Idents.get("__builtin_va_list"),
5672                          Context->getTrivialTypeSourceInfo(IntArrayType));
5673
5674  return VaListTypedefDecl;
5675}
5676
5677static TypedefDecl *
5678CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5679  RecordDecl *VaListDecl;
5680  if (Context->getLangOpts().CPlusPlus) {
5681    // namespace std { struct __va_list {
5682    NamespaceDecl *NS;
5683    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5684                               Context->getTranslationUnitDecl(),
5685                               /*Inline*/false, SourceLocation(),
5686                               SourceLocation(), &Context->Idents.get("std"),
5687                               /*PrevDecl*/0);
5688
5689    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5690                                       Context->getTranslationUnitDecl(),
5691                                       SourceLocation(), SourceLocation(),
5692                                       &Context->Idents.get("__va_list"));
5693
5694    VaListDecl->setDeclContext(NS);
5695
5696  } else {
5697    // struct __va_list {
5698    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5699                                  Context->getTranslationUnitDecl(),
5700                                  &Context->Idents.get("__va_list"));
5701  }
5702
5703  VaListDecl->startDefinition();
5704
5705  // void * __ap;
5706  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5707                                       VaListDecl,
5708                                       SourceLocation(),
5709                                       SourceLocation(),
5710                                       &Context->Idents.get("__ap"),
5711                                       Context->getPointerType(Context->VoidTy),
5712                                       /*TInfo=*/0,
5713                                       /*BitWidth=*/0,
5714                                       /*Mutable=*/false,
5715                                       ICIS_NoInit);
5716  Field->setAccess(AS_public);
5717  VaListDecl->addDecl(Field);
5718
5719  // };
5720  VaListDecl->completeDefinition();
5721
5722  // typedef struct __va_list __builtin_va_list;
5723  TypeSourceInfo *TInfo
5724    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5725
5726  TypedefDecl *VaListTypeDecl
5727    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5728                          Context->getTranslationUnitDecl(),
5729                          SourceLocation(), SourceLocation(),
5730                          &Context->Idents.get("__builtin_va_list"),
5731                          TInfo);
5732
5733  return VaListTypeDecl;
5734}
5735
5736static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5737                                     TargetInfo::BuiltinVaListKind Kind) {
5738  switch (Kind) {
5739  case TargetInfo::CharPtrBuiltinVaList:
5740    return CreateCharPtrBuiltinVaListDecl(Context);
5741  case TargetInfo::VoidPtrBuiltinVaList:
5742    return CreateVoidPtrBuiltinVaListDecl(Context);
5743  case TargetInfo::PowerABIBuiltinVaList:
5744    return CreatePowerABIBuiltinVaListDecl(Context);
5745  case TargetInfo::X86_64ABIBuiltinVaList:
5746    return CreateX86_64ABIBuiltinVaListDecl(Context);
5747  case TargetInfo::PNaClABIBuiltinVaList:
5748    return CreatePNaClABIBuiltinVaListDecl(Context);
5749  case TargetInfo::AAPCSABIBuiltinVaList:
5750    return CreateAAPCSABIBuiltinVaListDecl(Context);
5751  }
5752
5753  llvm_unreachable("Unhandled __builtin_va_list type kind");
5754}
5755
5756TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5757  if (!BuiltinVaListDecl)
5758    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5759
5760  return BuiltinVaListDecl;
5761}
5762
5763QualType ASTContext::getVaListTagType() const {
5764  // Force the creation of VaListTagTy by building the __builtin_va_list
5765  // declaration.
5766  if (VaListTagTy.isNull())
5767    (void) getBuiltinVaListDecl();
5768
5769  return VaListTagTy;
5770}
5771
5772void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5773  assert(ObjCConstantStringType.isNull() &&
5774         "'NSConstantString' type already set!");
5775
5776  ObjCConstantStringType = getObjCInterfaceType(Decl);
5777}
5778
5779/// \brief Retrieve the template name that corresponds to a non-empty
5780/// lookup.
5781TemplateName
5782ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5783                                      UnresolvedSetIterator End) const {
5784  unsigned size = End - Begin;
5785  assert(size > 1 && "set is not overloaded!");
5786
5787  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5788                          size * sizeof(FunctionTemplateDecl*));
5789  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5790
5791  NamedDecl **Storage = OT->getStorage();
5792  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5793    NamedDecl *D = *I;
5794    assert(isa<FunctionTemplateDecl>(D) ||
5795           (isa<UsingShadowDecl>(D) &&
5796            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5797    *Storage++ = D;
5798  }
5799
5800  return TemplateName(OT);
5801}
5802
5803/// \brief Retrieve the template name that represents a qualified
5804/// template name such as \c std::vector.
5805TemplateName
5806ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5807                                     bool TemplateKeyword,
5808                                     TemplateDecl *Template) const {
5809  assert(NNS && "Missing nested-name-specifier in qualified template name");
5810
5811  // FIXME: Canonicalization?
5812  llvm::FoldingSetNodeID ID;
5813  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5814
5815  void *InsertPos = 0;
5816  QualifiedTemplateName *QTN =
5817    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5818  if (!QTN) {
5819    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5820        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5821    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5822  }
5823
5824  return TemplateName(QTN);
5825}
5826
5827/// \brief Retrieve the template name that represents a dependent
5828/// template name such as \c MetaFun::template apply.
5829TemplateName
5830ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5831                                     const IdentifierInfo *Name) const {
5832  assert((!NNS || NNS->isDependent()) &&
5833         "Nested name specifier must be dependent");
5834
5835  llvm::FoldingSetNodeID ID;
5836  DependentTemplateName::Profile(ID, NNS, Name);
5837
5838  void *InsertPos = 0;
5839  DependentTemplateName *QTN =
5840    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5841
5842  if (QTN)
5843    return TemplateName(QTN);
5844
5845  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5846  if (CanonNNS == NNS) {
5847    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5848        DependentTemplateName(NNS, Name);
5849  } else {
5850    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5851    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5852        DependentTemplateName(NNS, Name, Canon);
5853    DependentTemplateName *CheckQTN =
5854      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5855    assert(!CheckQTN && "Dependent type name canonicalization broken");
5856    (void)CheckQTN;
5857  }
5858
5859  DependentTemplateNames.InsertNode(QTN, InsertPos);
5860  return TemplateName(QTN);
5861}
5862
5863/// \brief Retrieve the template name that represents a dependent
5864/// template name such as \c MetaFun::template operator+.
5865TemplateName
5866ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5867                                     OverloadedOperatorKind Operator) const {
5868  assert((!NNS || NNS->isDependent()) &&
5869         "Nested name specifier must be dependent");
5870
5871  llvm::FoldingSetNodeID ID;
5872  DependentTemplateName::Profile(ID, NNS, Operator);
5873
5874  void *InsertPos = 0;
5875  DependentTemplateName *QTN
5876    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5877
5878  if (QTN)
5879    return TemplateName(QTN);
5880
5881  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5882  if (CanonNNS == NNS) {
5883    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5884        DependentTemplateName(NNS, Operator);
5885  } else {
5886    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5887    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5888        DependentTemplateName(NNS, Operator, Canon);
5889
5890    DependentTemplateName *CheckQTN
5891      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5892    assert(!CheckQTN && "Dependent template name canonicalization broken");
5893    (void)CheckQTN;
5894  }
5895
5896  DependentTemplateNames.InsertNode(QTN, InsertPos);
5897  return TemplateName(QTN);
5898}
5899
5900TemplateName
5901ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5902                                         TemplateName replacement) const {
5903  llvm::FoldingSetNodeID ID;
5904  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5905
5906  void *insertPos = 0;
5907  SubstTemplateTemplateParmStorage *subst
5908    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5909
5910  if (!subst) {
5911    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5912    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5913  }
5914
5915  return TemplateName(subst);
5916}
5917
5918TemplateName
5919ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5920                                       const TemplateArgument &ArgPack) const {
5921  ASTContext &Self = const_cast<ASTContext &>(*this);
5922  llvm::FoldingSetNodeID ID;
5923  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5924
5925  void *InsertPos = 0;
5926  SubstTemplateTemplateParmPackStorage *Subst
5927    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5928
5929  if (!Subst) {
5930    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5931                                                           ArgPack.pack_size(),
5932                                                         ArgPack.pack_begin());
5933    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5934  }
5935
5936  return TemplateName(Subst);
5937}
5938
5939/// getFromTargetType - Given one of the integer types provided by
5940/// TargetInfo, produce the corresponding type. The unsigned @p Type
5941/// is actually a value of type @c TargetInfo::IntType.
5942CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5943  switch (Type) {
5944  case TargetInfo::NoInt: return CanQualType();
5945  case TargetInfo::SignedShort: return ShortTy;
5946  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5947  case TargetInfo::SignedInt: return IntTy;
5948  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5949  case TargetInfo::SignedLong: return LongTy;
5950  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5951  case TargetInfo::SignedLongLong: return LongLongTy;
5952  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5953  }
5954
5955  llvm_unreachable("Unhandled TargetInfo::IntType value");
5956}
5957
5958//===----------------------------------------------------------------------===//
5959//                        Type Predicates.
5960//===----------------------------------------------------------------------===//
5961
5962/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5963/// garbage collection attribute.
5964///
5965Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5966  if (getLangOpts().getGC() == LangOptions::NonGC)
5967    return Qualifiers::GCNone;
5968
5969  assert(getLangOpts().ObjC1);
5970  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5971
5972  // Default behaviour under objective-C's gc is for ObjC pointers
5973  // (or pointers to them) be treated as though they were declared
5974  // as __strong.
5975  if (GCAttrs == Qualifiers::GCNone) {
5976    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5977      return Qualifiers::Strong;
5978    else if (Ty->isPointerType())
5979      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5980  } else {
5981    // It's not valid to set GC attributes on anything that isn't a
5982    // pointer.
5983#ifndef NDEBUG
5984    QualType CT = Ty->getCanonicalTypeInternal();
5985    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5986      CT = AT->getElementType();
5987    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5988#endif
5989  }
5990  return GCAttrs;
5991}
5992
5993//===----------------------------------------------------------------------===//
5994//                        Type Compatibility Testing
5995//===----------------------------------------------------------------------===//
5996
5997/// areCompatVectorTypes - Return true if the two specified vector types are
5998/// compatible.
5999static bool areCompatVectorTypes(const VectorType *LHS,
6000                                 const VectorType *RHS) {
6001  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6002  return LHS->getElementType() == RHS->getElementType() &&
6003         LHS->getNumElements() == RHS->getNumElements();
6004}
6005
6006bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6007                                          QualType SecondVec) {
6008  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6009  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6010
6011  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6012    return true;
6013
6014  // Treat Neon vector types and most AltiVec vector types as if they are the
6015  // equivalent GCC vector types.
6016  const VectorType *First = FirstVec->getAs<VectorType>();
6017  const VectorType *Second = SecondVec->getAs<VectorType>();
6018  if (First->getNumElements() == Second->getNumElements() &&
6019      hasSameType(First->getElementType(), Second->getElementType()) &&
6020      First->getVectorKind() != VectorType::AltiVecPixel &&
6021      First->getVectorKind() != VectorType::AltiVecBool &&
6022      Second->getVectorKind() != VectorType::AltiVecPixel &&
6023      Second->getVectorKind() != VectorType::AltiVecBool)
6024    return true;
6025
6026  return false;
6027}
6028
6029//===----------------------------------------------------------------------===//
6030// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6031//===----------------------------------------------------------------------===//
6032
6033/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6034/// inheritance hierarchy of 'rProto'.
6035bool
6036ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6037                                           ObjCProtocolDecl *rProto) const {
6038  if (declaresSameEntity(lProto, rProto))
6039    return true;
6040  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6041       E = rProto->protocol_end(); PI != E; ++PI)
6042    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6043      return true;
6044  return false;
6045}
6046
6047/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6048/// return true if lhs's protocols conform to rhs's protocol; false
6049/// otherwise.
6050bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6051  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6052    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6053  return false;
6054}
6055
6056/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6057/// Class<pr1, ...>.
6058bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6059                                                      QualType rhs) {
6060  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6061  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6062  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6063
6064  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6065       E = lhsQID->qual_end(); I != E; ++I) {
6066    bool match = false;
6067    ObjCProtocolDecl *lhsProto = *I;
6068    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6069         E = rhsOPT->qual_end(); J != E; ++J) {
6070      ObjCProtocolDecl *rhsProto = *J;
6071      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6072        match = true;
6073        break;
6074      }
6075    }
6076    if (!match)
6077      return false;
6078  }
6079  return true;
6080}
6081
6082/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6083/// ObjCQualifiedIDType.
6084bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6085                                                   bool compare) {
6086  // Allow id<P..> and an 'id' or void* type in all cases.
6087  if (lhs->isVoidPointerType() ||
6088      lhs->isObjCIdType() || lhs->isObjCClassType())
6089    return true;
6090  else if (rhs->isVoidPointerType() ||
6091           rhs->isObjCIdType() || rhs->isObjCClassType())
6092    return true;
6093
6094  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6095    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6096
6097    if (!rhsOPT) return false;
6098
6099    if (rhsOPT->qual_empty()) {
6100      // If the RHS is a unqualified interface pointer "NSString*",
6101      // make sure we check the class hierarchy.
6102      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6103        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6104             E = lhsQID->qual_end(); I != E; ++I) {
6105          // when comparing an id<P> on lhs with a static type on rhs,
6106          // see if static class implements all of id's protocols, directly or
6107          // through its super class and categories.
6108          if (!rhsID->ClassImplementsProtocol(*I, true))
6109            return false;
6110        }
6111      }
6112      // If there are no qualifiers and no interface, we have an 'id'.
6113      return true;
6114    }
6115    // Both the right and left sides have qualifiers.
6116    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6117         E = lhsQID->qual_end(); I != E; ++I) {
6118      ObjCProtocolDecl *lhsProto = *I;
6119      bool match = false;
6120
6121      // when comparing an id<P> on lhs with a static type on rhs,
6122      // see if static class implements all of id's protocols, directly or
6123      // through its super class and categories.
6124      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6125           E = rhsOPT->qual_end(); J != E; ++J) {
6126        ObjCProtocolDecl *rhsProto = *J;
6127        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6128            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6129          match = true;
6130          break;
6131        }
6132      }
6133      // If the RHS is a qualified interface pointer "NSString<P>*",
6134      // make sure we check the class hierarchy.
6135      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6136        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6137             E = lhsQID->qual_end(); I != E; ++I) {
6138          // when comparing an id<P> on lhs with a static type on rhs,
6139          // see if static class implements all of id's protocols, directly or
6140          // through its super class and categories.
6141          if (rhsID->ClassImplementsProtocol(*I, true)) {
6142            match = true;
6143            break;
6144          }
6145        }
6146      }
6147      if (!match)
6148        return false;
6149    }
6150
6151    return true;
6152  }
6153
6154  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6155  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6156
6157  if (const ObjCObjectPointerType *lhsOPT =
6158        lhs->getAsObjCInterfacePointerType()) {
6159    // If both the right and left sides have qualifiers.
6160    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6161         E = lhsOPT->qual_end(); I != E; ++I) {
6162      ObjCProtocolDecl *lhsProto = *I;
6163      bool match = false;
6164
6165      // when comparing an id<P> on rhs with a static type on lhs,
6166      // see if static class implements all of id's protocols, directly or
6167      // through its super class and categories.
6168      // First, lhs protocols in the qualifier list must be found, direct
6169      // or indirect in rhs's qualifier list or it is a mismatch.
6170      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6171           E = rhsQID->qual_end(); J != E; ++J) {
6172        ObjCProtocolDecl *rhsProto = *J;
6173        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6174            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6175          match = true;
6176          break;
6177        }
6178      }
6179      if (!match)
6180        return false;
6181    }
6182
6183    // Static class's protocols, or its super class or category protocols
6184    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6185    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6186      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6187      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6188      // This is rather dubious but matches gcc's behavior. If lhs has
6189      // no type qualifier and its class has no static protocol(s)
6190      // assume that it is mismatch.
6191      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6192        return false;
6193      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6194           LHSInheritedProtocols.begin(),
6195           E = LHSInheritedProtocols.end(); I != E; ++I) {
6196        bool match = false;
6197        ObjCProtocolDecl *lhsProto = (*I);
6198        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6199             E = rhsQID->qual_end(); J != E; ++J) {
6200          ObjCProtocolDecl *rhsProto = *J;
6201          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6202              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6203            match = true;
6204            break;
6205          }
6206        }
6207        if (!match)
6208          return false;
6209      }
6210    }
6211    return true;
6212  }
6213  return false;
6214}
6215
6216/// canAssignObjCInterfaces - Return true if the two interface types are
6217/// compatible for assignment from RHS to LHS.  This handles validation of any
6218/// protocol qualifiers on the LHS or RHS.
6219///
6220bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6221                                         const ObjCObjectPointerType *RHSOPT) {
6222  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6223  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6224
6225  // If either type represents the built-in 'id' or 'Class' types, return true.
6226  if (LHS->isObjCUnqualifiedIdOrClass() ||
6227      RHS->isObjCUnqualifiedIdOrClass())
6228    return true;
6229
6230  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6231    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6232                                             QualType(RHSOPT,0),
6233                                             false);
6234
6235  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6236    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6237                                                QualType(RHSOPT,0));
6238
6239  // If we have 2 user-defined types, fall into that path.
6240  if (LHS->getInterface() && RHS->getInterface())
6241    return canAssignObjCInterfaces(LHS, RHS);
6242
6243  return false;
6244}
6245
6246/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6247/// for providing type-safety for objective-c pointers used to pass/return
6248/// arguments in block literals. When passed as arguments, passing 'A*' where
6249/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6250/// not OK. For the return type, the opposite is not OK.
6251bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6252                                         const ObjCObjectPointerType *LHSOPT,
6253                                         const ObjCObjectPointerType *RHSOPT,
6254                                         bool BlockReturnType) {
6255  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6256    return true;
6257
6258  if (LHSOPT->isObjCBuiltinType()) {
6259    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6260  }
6261
6262  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6263    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6264                                             QualType(RHSOPT,0),
6265                                             false);
6266
6267  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6268  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6269  if (LHS && RHS)  { // We have 2 user-defined types.
6270    if (LHS != RHS) {
6271      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6272        return BlockReturnType;
6273      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6274        return !BlockReturnType;
6275    }
6276    else
6277      return true;
6278  }
6279  return false;
6280}
6281
6282/// getIntersectionOfProtocols - This routine finds the intersection of set
6283/// of protocols inherited from two distinct objective-c pointer objects.
6284/// It is used to build composite qualifier list of the composite type of
6285/// the conditional expression involving two objective-c pointer objects.
6286static
6287void getIntersectionOfProtocols(ASTContext &Context,
6288                                const ObjCObjectPointerType *LHSOPT,
6289                                const ObjCObjectPointerType *RHSOPT,
6290      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6291
6292  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6293  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6294  assert(LHS->getInterface() && "LHS must have an interface base");
6295  assert(RHS->getInterface() && "RHS must have an interface base");
6296
6297  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6298  unsigned LHSNumProtocols = LHS->getNumProtocols();
6299  if (LHSNumProtocols > 0)
6300    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6301  else {
6302    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6303    Context.CollectInheritedProtocols(LHS->getInterface(),
6304                                      LHSInheritedProtocols);
6305    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6306                                LHSInheritedProtocols.end());
6307  }
6308
6309  unsigned RHSNumProtocols = RHS->getNumProtocols();
6310  if (RHSNumProtocols > 0) {
6311    ObjCProtocolDecl **RHSProtocols =
6312      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6313    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6314      if (InheritedProtocolSet.count(RHSProtocols[i]))
6315        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6316  } else {
6317    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6318    Context.CollectInheritedProtocols(RHS->getInterface(),
6319                                      RHSInheritedProtocols);
6320    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6321         RHSInheritedProtocols.begin(),
6322         E = RHSInheritedProtocols.end(); I != E; ++I)
6323      if (InheritedProtocolSet.count((*I)))
6324        IntersectionOfProtocols.push_back((*I));
6325  }
6326}
6327
6328/// areCommonBaseCompatible - Returns common base class of the two classes if
6329/// one found. Note that this is O'2 algorithm. But it will be called as the
6330/// last type comparison in a ?-exp of ObjC pointer types before a
6331/// warning is issued. So, its invokation is extremely rare.
6332QualType ASTContext::areCommonBaseCompatible(
6333                                          const ObjCObjectPointerType *Lptr,
6334                                          const ObjCObjectPointerType *Rptr) {
6335  const ObjCObjectType *LHS = Lptr->getObjectType();
6336  const ObjCObjectType *RHS = Rptr->getObjectType();
6337  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6338  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6339  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6340    return QualType();
6341
6342  do {
6343    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6344    if (canAssignObjCInterfaces(LHS, RHS)) {
6345      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6346      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6347
6348      QualType Result = QualType(LHS, 0);
6349      if (!Protocols.empty())
6350        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6351      Result = getObjCObjectPointerType(Result);
6352      return Result;
6353    }
6354  } while ((LDecl = LDecl->getSuperClass()));
6355
6356  return QualType();
6357}
6358
6359bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6360                                         const ObjCObjectType *RHS) {
6361  assert(LHS->getInterface() && "LHS is not an interface type");
6362  assert(RHS->getInterface() && "RHS is not an interface type");
6363
6364  // Verify that the base decls are compatible: the RHS must be a subclass of
6365  // the LHS.
6366  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6367    return false;
6368
6369  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6370  // protocol qualified at all, then we are good.
6371  if (LHS->getNumProtocols() == 0)
6372    return true;
6373
6374  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6375  // more detailed analysis is required.
6376  if (RHS->getNumProtocols() == 0) {
6377    // OK, if LHS is a superclass of RHS *and*
6378    // this superclass is assignment compatible with LHS.
6379    // false otherwise.
6380    bool IsSuperClass =
6381      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6382    if (IsSuperClass) {
6383      // OK if conversion of LHS to SuperClass results in narrowing of types
6384      // ; i.e., SuperClass may implement at least one of the protocols
6385      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6386      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6387      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6388      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6389      // If super class has no protocols, it is not a match.
6390      if (SuperClassInheritedProtocols.empty())
6391        return false;
6392
6393      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6394           LHSPE = LHS->qual_end();
6395           LHSPI != LHSPE; LHSPI++) {
6396        bool SuperImplementsProtocol = false;
6397        ObjCProtocolDecl *LHSProto = (*LHSPI);
6398
6399        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6400             SuperClassInheritedProtocols.begin(),
6401             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6402          ObjCProtocolDecl *SuperClassProto = (*I);
6403          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6404            SuperImplementsProtocol = true;
6405            break;
6406          }
6407        }
6408        if (!SuperImplementsProtocol)
6409          return false;
6410      }
6411      return true;
6412    }
6413    return false;
6414  }
6415
6416  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6417                                     LHSPE = LHS->qual_end();
6418       LHSPI != LHSPE; LHSPI++) {
6419    bool RHSImplementsProtocol = false;
6420
6421    // If the RHS doesn't implement the protocol on the left, the types
6422    // are incompatible.
6423    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6424                                       RHSPE = RHS->qual_end();
6425         RHSPI != RHSPE; RHSPI++) {
6426      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6427        RHSImplementsProtocol = true;
6428        break;
6429      }
6430    }
6431    // FIXME: For better diagnostics, consider passing back the protocol name.
6432    if (!RHSImplementsProtocol)
6433      return false;
6434  }
6435  // The RHS implements all protocols listed on the LHS.
6436  return true;
6437}
6438
6439bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6440  // get the "pointed to" types
6441  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6442  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6443
6444  if (!LHSOPT || !RHSOPT)
6445    return false;
6446
6447  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6448         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6449}
6450
6451bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6452  return canAssignObjCInterfaces(
6453                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6454                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6455}
6456
6457/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6458/// both shall have the identically qualified version of a compatible type.
6459/// C99 6.2.7p1: Two types have compatible types if their types are the
6460/// same. See 6.7.[2,3,5] for additional rules.
6461bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6462                                    bool CompareUnqualified) {
6463  if (getLangOpts().CPlusPlus)
6464    return hasSameType(LHS, RHS);
6465
6466  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6467}
6468
6469bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6470  return typesAreCompatible(LHS, RHS);
6471}
6472
6473bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6474  return !mergeTypes(LHS, RHS, true).isNull();
6475}
6476
6477/// mergeTransparentUnionType - if T is a transparent union type and a member
6478/// of T is compatible with SubType, return the merged type, else return
6479/// QualType()
6480QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6481                                               bool OfBlockPointer,
6482                                               bool Unqualified) {
6483  if (const RecordType *UT = T->getAsUnionType()) {
6484    RecordDecl *UD = UT->getDecl();
6485    if (UD->hasAttr<TransparentUnionAttr>()) {
6486      for (RecordDecl::field_iterator it = UD->field_begin(),
6487           itend = UD->field_end(); it != itend; ++it) {
6488        QualType ET = it->getType().getUnqualifiedType();
6489        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6490        if (!MT.isNull())
6491          return MT;
6492      }
6493    }
6494  }
6495
6496  return QualType();
6497}
6498
6499/// mergeFunctionArgumentTypes - merge two types which appear as function
6500/// argument types
6501QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6502                                                bool OfBlockPointer,
6503                                                bool Unqualified) {
6504  // GNU extension: two types are compatible if they appear as a function
6505  // argument, one of the types is a transparent union type and the other
6506  // type is compatible with a union member
6507  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6508                                              Unqualified);
6509  if (!lmerge.isNull())
6510    return lmerge;
6511
6512  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6513                                              Unqualified);
6514  if (!rmerge.isNull())
6515    return rmerge;
6516
6517  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6518}
6519
6520QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6521                                        bool OfBlockPointer,
6522                                        bool Unqualified) {
6523  const FunctionType *lbase = lhs->getAs<FunctionType>();
6524  const FunctionType *rbase = rhs->getAs<FunctionType>();
6525  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6526  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6527  bool allLTypes = true;
6528  bool allRTypes = true;
6529
6530  // Check return type
6531  QualType retType;
6532  if (OfBlockPointer) {
6533    QualType RHS = rbase->getResultType();
6534    QualType LHS = lbase->getResultType();
6535    bool UnqualifiedResult = Unqualified;
6536    if (!UnqualifiedResult)
6537      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6538    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6539  }
6540  else
6541    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6542                         Unqualified);
6543  if (retType.isNull()) return QualType();
6544
6545  if (Unqualified)
6546    retType = retType.getUnqualifiedType();
6547
6548  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6549  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6550  if (Unqualified) {
6551    LRetType = LRetType.getUnqualifiedType();
6552    RRetType = RRetType.getUnqualifiedType();
6553  }
6554
6555  if (getCanonicalType(retType) != LRetType)
6556    allLTypes = false;
6557  if (getCanonicalType(retType) != RRetType)
6558    allRTypes = false;
6559
6560  // FIXME: double check this
6561  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6562  //                           rbase->getRegParmAttr() != 0 &&
6563  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6564  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6565  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6566
6567  // Compatible functions must have compatible calling conventions
6568  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6569    return QualType();
6570
6571  // Regparm is part of the calling convention.
6572  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6573    return QualType();
6574  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6575    return QualType();
6576
6577  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6578    return QualType();
6579
6580  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6581  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6582
6583  if (lbaseInfo.getNoReturn() != NoReturn)
6584    allLTypes = false;
6585  if (rbaseInfo.getNoReturn() != NoReturn)
6586    allRTypes = false;
6587
6588  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6589
6590  if (lproto && rproto) { // two C99 style function prototypes
6591    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6592           "C++ shouldn't be here");
6593    unsigned lproto_nargs = lproto->getNumArgs();
6594    unsigned rproto_nargs = rproto->getNumArgs();
6595
6596    // Compatible functions must have the same number of arguments
6597    if (lproto_nargs != rproto_nargs)
6598      return QualType();
6599
6600    // Variadic and non-variadic functions aren't compatible
6601    if (lproto->isVariadic() != rproto->isVariadic())
6602      return QualType();
6603
6604    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6605      return QualType();
6606
6607    if (LangOpts.ObjCAutoRefCount &&
6608        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6609      return QualType();
6610
6611    // Check argument compatibility
6612    SmallVector<QualType, 10> types;
6613    for (unsigned i = 0; i < lproto_nargs; i++) {
6614      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6615      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6616      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6617                                                    OfBlockPointer,
6618                                                    Unqualified);
6619      if (argtype.isNull()) return QualType();
6620
6621      if (Unqualified)
6622        argtype = argtype.getUnqualifiedType();
6623
6624      types.push_back(argtype);
6625      if (Unqualified) {
6626        largtype = largtype.getUnqualifiedType();
6627        rargtype = rargtype.getUnqualifiedType();
6628      }
6629
6630      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6631        allLTypes = false;
6632      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6633        allRTypes = false;
6634    }
6635
6636    if (allLTypes) return lhs;
6637    if (allRTypes) return rhs;
6638
6639    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6640    EPI.ExtInfo = einfo;
6641    return getFunctionType(retType, types.begin(), types.size(), EPI);
6642  }
6643
6644  if (lproto) allRTypes = false;
6645  if (rproto) allLTypes = false;
6646
6647  const FunctionProtoType *proto = lproto ? lproto : rproto;
6648  if (proto) {
6649    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6650    if (proto->isVariadic()) return QualType();
6651    // Check that the types are compatible with the types that
6652    // would result from default argument promotions (C99 6.7.5.3p15).
6653    // The only types actually affected are promotable integer
6654    // types and floats, which would be passed as a different
6655    // type depending on whether the prototype is visible.
6656    unsigned proto_nargs = proto->getNumArgs();
6657    for (unsigned i = 0; i < proto_nargs; ++i) {
6658      QualType argTy = proto->getArgType(i);
6659
6660      // Look at the converted type of enum types, since that is the type used
6661      // to pass enum values.
6662      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6663        argTy = Enum->getDecl()->getIntegerType();
6664        if (argTy.isNull())
6665          return QualType();
6666      }
6667
6668      if (argTy->isPromotableIntegerType() ||
6669          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6670        return QualType();
6671    }
6672
6673    if (allLTypes) return lhs;
6674    if (allRTypes) return rhs;
6675
6676    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6677    EPI.ExtInfo = einfo;
6678    return getFunctionType(retType, proto->arg_type_begin(),
6679                           proto->getNumArgs(), EPI);
6680  }
6681
6682  if (allLTypes) return lhs;
6683  if (allRTypes) return rhs;
6684  return getFunctionNoProtoType(retType, einfo);
6685}
6686
6687QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6688                                bool OfBlockPointer,
6689                                bool Unqualified, bool BlockReturnType) {
6690  // C++ [expr]: If an expression initially has the type "reference to T", the
6691  // type is adjusted to "T" prior to any further analysis, the expression
6692  // designates the object or function denoted by the reference, and the
6693  // expression is an lvalue unless the reference is an rvalue reference and
6694  // the expression is a function call (possibly inside parentheses).
6695  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6696  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6697
6698  if (Unqualified) {
6699    LHS = LHS.getUnqualifiedType();
6700    RHS = RHS.getUnqualifiedType();
6701  }
6702
6703  QualType LHSCan = getCanonicalType(LHS),
6704           RHSCan = getCanonicalType(RHS);
6705
6706  // If two types are identical, they are compatible.
6707  if (LHSCan == RHSCan)
6708    return LHS;
6709
6710  // If the qualifiers are different, the types aren't compatible... mostly.
6711  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6712  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6713  if (LQuals != RQuals) {
6714    // If any of these qualifiers are different, we have a type
6715    // mismatch.
6716    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6717        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6718        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6719      return QualType();
6720
6721    // Exactly one GC qualifier difference is allowed: __strong is
6722    // okay if the other type has no GC qualifier but is an Objective
6723    // C object pointer (i.e. implicitly strong by default).  We fix
6724    // this by pretending that the unqualified type was actually
6725    // qualified __strong.
6726    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6727    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6728    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6729
6730    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6731      return QualType();
6732
6733    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6734      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6735    }
6736    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6737      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6738    }
6739    return QualType();
6740  }
6741
6742  // Okay, qualifiers are equal.
6743
6744  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6745  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6746
6747  // We want to consider the two function types to be the same for these
6748  // comparisons, just force one to the other.
6749  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6750  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6751
6752  // Same as above for arrays
6753  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6754    LHSClass = Type::ConstantArray;
6755  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6756    RHSClass = Type::ConstantArray;
6757
6758  // ObjCInterfaces are just specialized ObjCObjects.
6759  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6760  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6761
6762  // Canonicalize ExtVector -> Vector.
6763  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6764  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6765
6766  // If the canonical type classes don't match.
6767  if (LHSClass != RHSClass) {
6768    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6769    // a signed integer type, or an unsigned integer type.
6770    // Compatibility is based on the underlying type, not the promotion
6771    // type.
6772    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6773      QualType TINT = ETy->getDecl()->getIntegerType();
6774      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6775        return RHS;
6776    }
6777    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6778      QualType TINT = ETy->getDecl()->getIntegerType();
6779      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6780        return LHS;
6781    }
6782    // allow block pointer type to match an 'id' type.
6783    if (OfBlockPointer && !BlockReturnType) {
6784       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6785         return LHS;
6786      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6787        return RHS;
6788    }
6789
6790    return QualType();
6791  }
6792
6793  // The canonical type classes match.
6794  switch (LHSClass) {
6795#define TYPE(Class, Base)
6796#define ABSTRACT_TYPE(Class, Base)
6797#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6798#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6799#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6800#include "clang/AST/TypeNodes.def"
6801    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6802
6803  case Type::LValueReference:
6804  case Type::RValueReference:
6805  case Type::MemberPointer:
6806    llvm_unreachable("C++ should never be in mergeTypes");
6807
6808  case Type::ObjCInterface:
6809  case Type::IncompleteArray:
6810  case Type::VariableArray:
6811  case Type::FunctionProto:
6812  case Type::ExtVector:
6813    llvm_unreachable("Types are eliminated above");
6814
6815  case Type::Pointer:
6816  {
6817    // Merge two pointer types, while trying to preserve typedef info
6818    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6819    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6820    if (Unqualified) {
6821      LHSPointee = LHSPointee.getUnqualifiedType();
6822      RHSPointee = RHSPointee.getUnqualifiedType();
6823    }
6824    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6825                                     Unqualified);
6826    if (ResultType.isNull()) return QualType();
6827    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6828      return LHS;
6829    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6830      return RHS;
6831    return getPointerType(ResultType);
6832  }
6833  case Type::BlockPointer:
6834  {
6835    // Merge two block pointer types, while trying to preserve typedef info
6836    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6837    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6838    if (Unqualified) {
6839      LHSPointee = LHSPointee.getUnqualifiedType();
6840      RHSPointee = RHSPointee.getUnqualifiedType();
6841    }
6842    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6843                                     Unqualified);
6844    if (ResultType.isNull()) return QualType();
6845    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6846      return LHS;
6847    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6848      return RHS;
6849    return getBlockPointerType(ResultType);
6850  }
6851  case Type::Atomic:
6852  {
6853    // Merge two pointer types, while trying to preserve typedef info
6854    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6855    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6856    if (Unqualified) {
6857      LHSValue = LHSValue.getUnqualifiedType();
6858      RHSValue = RHSValue.getUnqualifiedType();
6859    }
6860    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6861                                     Unqualified);
6862    if (ResultType.isNull()) return QualType();
6863    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6864      return LHS;
6865    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6866      return RHS;
6867    return getAtomicType(ResultType);
6868  }
6869  case Type::ConstantArray:
6870  {
6871    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6872    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6873    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6874      return QualType();
6875
6876    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6877    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6878    if (Unqualified) {
6879      LHSElem = LHSElem.getUnqualifiedType();
6880      RHSElem = RHSElem.getUnqualifiedType();
6881    }
6882
6883    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6884    if (ResultType.isNull()) return QualType();
6885    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6886      return LHS;
6887    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6888      return RHS;
6889    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6890                                          ArrayType::ArraySizeModifier(), 0);
6891    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6892                                          ArrayType::ArraySizeModifier(), 0);
6893    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6894    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6895    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6896      return LHS;
6897    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6898      return RHS;
6899    if (LVAT) {
6900      // FIXME: This isn't correct! But tricky to implement because
6901      // the array's size has to be the size of LHS, but the type
6902      // has to be different.
6903      return LHS;
6904    }
6905    if (RVAT) {
6906      // FIXME: This isn't correct! But tricky to implement because
6907      // the array's size has to be the size of RHS, but the type
6908      // has to be different.
6909      return RHS;
6910    }
6911    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6912    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6913    return getIncompleteArrayType(ResultType,
6914                                  ArrayType::ArraySizeModifier(), 0);
6915  }
6916  case Type::FunctionNoProto:
6917    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6918  case Type::Record:
6919  case Type::Enum:
6920    return QualType();
6921  case Type::Builtin:
6922    // Only exactly equal builtin types are compatible, which is tested above.
6923    return QualType();
6924  case Type::Complex:
6925    // Distinct complex types are incompatible.
6926    return QualType();
6927  case Type::Vector:
6928    // FIXME: The merged type should be an ExtVector!
6929    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6930                             RHSCan->getAs<VectorType>()))
6931      return LHS;
6932    return QualType();
6933  case Type::ObjCObject: {
6934    // Check if the types are assignment compatible.
6935    // FIXME: This should be type compatibility, e.g. whether
6936    // "LHS x; RHS x;" at global scope is legal.
6937    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6938    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6939    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6940      return LHS;
6941
6942    return QualType();
6943  }
6944  case Type::ObjCObjectPointer: {
6945    if (OfBlockPointer) {
6946      if (canAssignObjCInterfacesInBlockPointer(
6947                                          LHS->getAs<ObjCObjectPointerType>(),
6948                                          RHS->getAs<ObjCObjectPointerType>(),
6949                                          BlockReturnType))
6950        return LHS;
6951      return QualType();
6952    }
6953    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6954                                RHS->getAs<ObjCObjectPointerType>()))
6955      return LHS;
6956
6957    return QualType();
6958  }
6959  }
6960
6961  llvm_unreachable("Invalid Type::Class!");
6962}
6963
6964bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6965                   const FunctionProtoType *FromFunctionType,
6966                   const FunctionProtoType *ToFunctionType) {
6967  if (FromFunctionType->hasAnyConsumedArgs() !=
6968      ToFunctionType->hasAnyConsumedArgs())
6969    return false;
6970  FunctionProtoType::ExtProtoInfo FromEPI =
6971    FromFunctionType->getExtProtoInfo();
6972  FunctionProtoType::ExtProtoInfo ToEPI =
6973    ToFunctionType->getExtProtoInfo();
6974  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6975    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6976         ArgIdx != NumArgs; ++ArgIdx)  {
6977      if (FromEPI.ConsumedArguments[ArgIdx] !=
6978          ToEPI.ConsumedArguments[ArgIdx])
6979        return false;
6980    }
6981  return true;
6982}
6983
6984/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6985/// 'RHS' attributes and returns the merged version; including for function
6986/// return types.
6987QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6988  QualType LHSCan = getCanonicalType(LHS),
6989  RHSCan = getCanonicalType(RHS);
6990  // If two types are identical, they are compatible.
6991  if (LHSCan == RHSCan)
6992    return LHS;
6993  if (RHSCan->isFunctionType()) {
6994    if (!LHSCan->isFunctionType())
6995      return QualType();
6996    QualType OldReturnType =
6997      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6998    QualType NewReturnType =
6999      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7000    QualType ResReturnType =
7001      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7002    if (ResReturnType.isNull())
7003      return QualType();
7004    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7005      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7006      // In either case, use OldReturnType to build the new function type.
7007      const FunctionType *F = LHS->getAs<FunctionType>();
7008      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7009        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7010        EPI.ExtInfo = getFunctionExtInfo(LHS);
7011        QualType ResultType
7012          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
7013                            FPT->getNumArgs(), EPI);
7014        return ResultType;
7015      }
7016    }
7017    return QualType();
7018  }
7019
7020  // If the qualifiers are different, the types can still be merged.
7021  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7022  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7023  if (LQuals != RQuals) {
7024    // If any of these qualifiers are different, we have a type mismatch.
7025    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7026        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7027      return QualType();
7028
7029    // Exactly one GC qualifier difference is allowed: __strong is
7030    // okay if the other type has no GC qualifier but is an Objective
7031    // C object pointer (i.e. implicitly strong by default).  We fix
7032    // this by pretending that the unqualified type was actually
7033    // qualified __strong.
7034    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7035    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7036    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7037
7038    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7039      return QualType();
7040
7041    if (GC_L == Qualifiers::Strong)
7042      return LHS;
7043    if (GC_R == Qualifiers::Strong)
7044      return RHS;
7045    return QualType();
7046  }
7047
7048  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7049    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7050    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7051    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7052    if (ResQT == LHSBaseQT)
7053      return LHS;
7054    if (ResQT == RHSBaseQT)
7055      return RHS;
7056  }
7057  return QualType();
7058}
7059
7060//===----------------------------------------------------------------------===//
7061//                         Integer Predicates
7062//===----------------------------------------------------------------------===//
7063
7064unsigned ASTContext::getIntWidth(QualType T) const {
7065  if (const EnumType *ET = dyn_cast<EnumType>(T))
7066    T = ET->getDecl()->getIntegerType();
7067  if (T->isBooleanType())
7068    return 1;
7069  // For builtin types, just use the standard type sizing method
7070  return (unsigned)getTypeSize(T);
7071}
7072
7073QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7074  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7075
7076  // Turn <4 x signed int> -> <4 x unsigned int>
7077  if (const VectorType *VTy = T->getAs<VectorType>())
7078    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7079                         VTy->getNumElements(), VTy->getVectorKind());
7080
7081  // For enums, we return the unsigned version of the base type.
7082  if (const EnumType *ETy = T->getAs<EnumType>())
7083    T = ETy->getDecl()->getIntegerType();
7084
7085  const BuiltinType *BTy = T->getAs<BuiltinType>();
7086  assert(BTy && "Unexpected signed integer type");
7087  switch (BTy->getKind()) {
7088  case BuiltinType::Char_S:
7089  case BuiltinType::SChar:
7090    return UnsignedCharTy;
7091  case BuiltinType::Short:
7092    return UnsignedShortTy;
7093  case BuiltinType::Int:
7094    return UnsignedIntTy;
7095  case BuiltinType::Long:
7096    return UnsignedLongTy;
7097  case BuiltinType::LongLong:
7098    return UnsignedLongLongTy;
7099  case BuiltinType::Int128:
7100    return UnsignedInt128Ty;
7101  default:
7102    llvm_unreachable("Unexpected signed integer type");
7103  }
7104}
7105
7106ASTMutationListener::~ASTMutationListener() { }
7107
7108
7109//===----------------------------------------------------------------------===//
7110//                          Builtin Type Computation
7111//===----------------------------------------------------------------------===//
7112
7113/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7114/// pointer over the consumed characters.  This returns the resultant type.  If
7115/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7116/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7117/// a vector of "i*".
7118///
7119/// RequiresICE is filled in on return to indicate whether the value is required
7120/// to be an Integer Constant Expression.
7121static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7122                                  ASTContext::GetBuiltinTypeError &Error,
7123                                  bool &RequiresICE,
7124                                  bool AllowTypeModifiers) {
7125  // Modifiers.
7126  int HowLong = 0;
7127  bool Signed = false, Unsigned = false;
7128  RequiresICE = false;
7129
7130  // Read the prefixed modifiers first.
7131  bool Done = false;
7132  while (!Done) {
7133    switch (*Str++) {
7134    default: Done = true; --Str; break;
7135    case 'I':
7136      RequiresICE = true;
7137      break;
7138    case 'S':
7139      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7140      assert(!Signed && "Can't use 'S' modifier multiple times!");
7141      Signed = true;
7142      break;
7143    case 'U':
7144      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7145      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7146      Unsigned = true;
7147      break;
7148    case 'L':
7149      assert(HowLong <= 2 && "Can't have LLLL modifier");
7150      ++HowLong;
7151      break;
7152    }
7153  }
7154
7155  QualType Type;
7156
7157  // Read the base type.
7158  switch (*Str++) {
7159  default: llvm_unreachable("Unknown builtin type letter!");
7160  case 'v':
7161    assert(HowLong == 0 && !Signed && !Unsigned &&
7162           "Bad modifiers used with 'v'!");
7163    Type = Context.VoidTy;
7164    break;
7165  case 'f':
7166    assert(HowLong == 0 && !Signed && !Unsigned &&
7167           "Bad modifiers used with 'f'!");
7168    Type = Context.FloatTy;
7169    break;
7170  case 'd':
7171    assert(HowLong < 2 && !Signed && !Unsigned &&
7172           "Bad modifiers used with 'd'!");
7173    if (HowLong)
7174      Type = Context.LongDoubleTy;
7175    else
7176      Type = Context.DoubleTy;
7177    break;
7178  case 's':
7179    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7180    if (Unsigned)
7181      Type = Context.UnsignedShortTy;
7182    else
7183      Type = Context.ShortTy;
7184    break;
7185  case 'i':
7186    if (HowLong == 3)
7187      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7188    else if (HowLong == 2)
7189      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7190    else if (HowLong == 1)
7191      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7192    else
7193      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7194    break;
7195  case 'c':
7196    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7197    if (Signed)
7198      Type = Context.SignedCharTy;
7199    else if (Unsigned)
7200      Type = Context.UnsignedCharTy;
7201    else
7202      Type = Context.CharTy;
7203    break;
7204  case 'b': // boolean
7205    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7206    Type = Context.BoolTy;
7207    break;
7208  case 'z':  // size_t.
7209    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7210    Type = Context.getSizeType();
7211    break;
7212  case 'F':
7213    Type = Context.getCFConstantStringType();
7214    break;
7215  case 'G':
7216    Type = Context.getObjCIdType();
7217    break;
7218  case 'H':
7219    Type = Context.getObjCSelType();
7220    break;
7221  case 'M':
7222    Type = Context.getObjCSuperType();
7223    break;
7224  case 'a':
7225    Type = Context.getBuiltinVaListType();
7226    assert(!Type.isNull() && "builtin va list type not initialized!");
7227    break;
7228  case 'A':
7229    // This is a "reference" to a va_list; however, what exactly
7230    // this means depends on how va_list is defined. There are two
7231    // different kinds of va_list: ones passed by value, and ones
7232    // passed by reference.  An example of a by-value va_list is
7233    // x86, where va_list is a char*. An example of by-ref va_list
7234    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7235    // we want this argument to be a char*&; for x86-64, we want
7236    // it to be a __va_list_tag*.
7237    Type = Context.getBuiltinVaListType();
7238    assert(!Type.isNull() && "builtin va list type not initialized!");
7239    if (Type->isArrayType())
7240      Type = Context.getArrayDecayedType(Type);
7241    else
7242      Type = Context.getLValueReferenceType(Type);
7243    break;
7244  case 'V': {
7245    char *End;
7246    unsigned NumElements = strtoul(Str, &End, 10);
7247    assert(End != Str && "Missing vector size");
7248    Str = End;
7249
7250    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7251                                             RequiresICE, false);
7252    assert(!RequiresICE && "Can't require vector ICE");
7253
7254    // TODO: No way to make AltiVec vectors in builtins yet.
7255    Type = Context.getVectorType(ElementType, NumElements,
7256                                 VectorType::GenericVector);
7257    break;
7258  }
7259  case 'E': {
7260    char *End;
7261
7262    unsigned NumElements = strtoul(Str, &End, 10);
7263    assert(End != Str && "Missing vector size");
7264
7265    Str = End;
7266
7267    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7268                                             false);
7269    Type = Context.getExtVectorType(ElementType, NumElements);
7270    break;
7271  }
7272  case 'X': {
7273    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7274                                             false);
7275    assert(!RequiresICE && "Can't require complex ICE");
7276    Type = Context.getComplexType(ElementType);
7277    break;
7278  }
7279  case 'Y' : {
7280    Type = Context.getPointerDiffType();
7281    break;
7282  }
7283  case 'P':
7284    Type = Context.getFILEType();
7285    if (Type.isNull()) {
7286      Error = ASTContext::GE_Missing_stdio;
7287      return QualType();
7288    }
7289    break;
7290  case 'J':
7291    if (Signed)
7292      Type = Context.getsigjmp_bufType();
7293    else
7294      Type = Context.getjmp_bufType();
7295
7296    if (Type.isNull()) {
7297      Error = ASTContext::GE_Missing_setjmp;
7298      return QualType();
7299    }
7300    break;
7301  case 'K':
7302    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7303    Type = Context.getucontext_tType();
7304
7305    if (Type.isNull()) {
7306      Error = ASTContext::GE_Missing_ucontext;
7307      return QualType();
7308    }
7309    break;
7310  case 'p':
7311    Type = Context.getProcessIDType();
7312    break;
7313  }
7314
7315  // If there are modifiers and if we're allowed to parse them, go for it.
7316  Done = !AllowTypeModifiers;
7317  while (!Done) {
7318    switch (char c = *Str++) {
7319    default: Done = true; --Str; break;
7320    case '*':
7321    case '&': {
7322      // Both pointers and references can have their pointee types
7323      // qualified with an address space.
7324      char *End;
7325      unsigned AddrSpace = strtoul(Str, &End, 10);
7326      if (End != Str && AddrSpace != 0) {
7327        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7328        Str = End;
7329      }
7330      if (c == '*')
7331        Type = Context.getPointerType(Type);
7332      else
7333        Type = Context.getLValueReferenceType(Type);
7334      break;
7335    }
7336    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7337    case 'C':
7338      Type = Type.withConst();
7339      break;
7340    case 'D':
7341      Type = Context.getVolatileType(Type);
7342      break;
7343    case 'R':
7344      Type = Type.withRestrict();
7345      break;
7346    }
7347  }
7348
7349  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7350         "Integer constant 'I' type must be an integer");
7351
7352  return Type;
7353}
7354
7355/// GetBuiltinType - Return the type for the specified builtin.
7356QualType ASTContext::GetBuiltinType(unsigned Id,
7357                                    GetBuiltinTypeError &Error,
7358                                    unsigned *IntegerConstantArgs) const {
7359  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7360
7361  SmallVector<QualType, 8> ArgTypes;
7362
7363  bool RequiresICE = false;
7364  Error = GE_None;
7365  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7366                                       RequiresICE, true);
7367  if (Error != GE_None)
7368    return QualType();
7369
7370  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7371
7372  while (TypeStr[0] && TypeStr[0] != '.') {
7373    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7374    if (Error != GE_None)
7375      return QualType();
7376
7377    // If this argument is required to be an IntegerConstantExpression and the
7378    // caller cares, fill in the bitmask we return.
7379    if (RequiresICE && IntegerConstantArgs)
7380      *IntegerConstantArgs |= 1 << ArgTypes.size();
7381
7382    // Do array -> pointer decay.  The builtin should use the decayed type.
7383    if (Ty->isArrayType())
7384      Ty = getArrayDecayedType(Ty);
7385
7386    ArgTypes.push_back(Ty);
7387  }
7388
7389  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7390         "'.' should only occur at end of builtin type list!");
7391
7392  FunctionType::ExtInfo EI;
7393  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7394
7395  bool Variadic = (TypeStr[0] == '.');
7396
7397  // We really shouldn't be making a no-proto type here, especially in C++.
7398  if (ArgTypes.empty() && Variadic)
7399    return getFunctionNoProtoType(ResType, EI);
7400
7401  FunctionProtoType::ExtProtoInfo EPI;
7402  EPI.ExtInfo = EI;
7403  EPI.Variadic = Variadic;
7404
7405  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7406}
7407
7408GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7409  GVALinkage External = GVA_StrongExternal;
7410
7411  Linkage L = FD->getLinkage();
7412  switch (L) {
7413  case NoLinkage:
7414  case InternalLinkage:
7415  case UniqueExternalLinkage:
7416    return GVA_Internal;
7417
7418  case ExternalLinkage:
7419    switch (FD->getTemplateSpecializationKind()) {
7420    case TSK_Undeclared:
7421    case TSK_ExplicitSpecialization:
7422      External = GVA_StrongExternal;
7423      break;
7424
7425    case TSK_ExplicitInstantiationDefinition:
7426      return GVA_ExplicitTemplateInstantiation;
7427
7428    case TSK_ExplicitInstantiationDeclaration:
7429    case TSK_ImplicitInstantiation:
7430      External = GVA_TemplateInstantiation;
7431      break;
7432    }
7433  }
7434
7435  if (!FD->isInlined())
7436    return External;
7437
7438  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7439    // GNU or C99 inline semantics. Determine whether this symbol should be
7440    // externally visible.
7441    if (FD->isInlineDefinitionExternallyVisible())
7442      return External;
7443
7444    // C99 inline semantics, where the symbol is not externally visible.
7445    return GVA_C99Inline;
7446  }
7447
7448  // C++0x [temp.explicit]p9:
7449  //   [ Note: The intent is that an inline function that is the subject of
7450  //   an explicit instantiation declaration will still be implicitly
7451  //   instantiated when used so that the body can be considered for
7452  //   inlining, but that no out-of-line copy of the inline function would be
7453  //   generated in the translation unit. -- end note ]
7454  if (FD->getTemplateSpecializationKind()
7455                                       == TSK_ExplicitInstantiationDeclaration)
7456    return GVA_C99Inline;
7457
7458  return GVA_CXXInline;
7459}
7460
7461GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7462  // If this is a static data member, compute the kind of template
7463  // specialization. Otherwise, this variable is not part of a
7464  // template.
7465  TemplateSpecializationKind TSK = TSK_Undeclared;
7466  if (VD->isStaticDataMember())
7467    TSK = VD->getTemplateSpecializationKind();
7468
7469  Linkage L = VD->getLinkage();
7470  assert (!(L == ExternalLinkage && getLangOpts().CPlusPlus &&
7471            VD->getType()->getLinkage() == UniqueExternalLinkage));
7472
7473  switch (L) {
7474  case NoLinkage:
7475  case InternalLinkage:
7476  case UniqueExternalLinkage:
7477    return GVA_Internal;
7478
7479  case ExternalLinkage:
7480    switch (TSK) {
7481    case TSK_Undeclared:
7482    case TSK_ExplicitSpecialization:
7483      return GVA_StrongExternal;
7484
7485    case TSK_ExplicitInstantiationDeclaration:
7486      llvm_unreachable("Variable should not be instantiated");
7487      // Fall through to treat this like any other instantiation.
7488
7489    case TSK_ExplicitInstantiationDefinition:
7490      return GVA_ExplicitTemplateInstantiation;
7491
7492    case TSK_ImplicitInstantiation:
7493      return GVA_TemplateInstantiation;
7494    }
7495  }
7496
7497  llvm_unreachable("Invalid Linkage!");
7498}
7499
7500bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7501  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7502    if (!VD->isFileVarDecl())
7503      return false;
7504  } else if (!isa<FunctionDecl>(D))
7505    return false;
7506
7507  // Weak references don't produce any output by themselves.
7508  if (D->hasAttr<WeakRefAttr>())
7509    return false;
7510
7511  // Aliases and used decls are required.
7512  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7513    return true;
7514
7515  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7516    // Forward declarations aren't required.
7517    if (!FD->doesThisDeclarationHaveABody())
7518      return FD->doesDeclarationForceExternallyVisibleDefinition();
7519
7520    // Constructors and destructors are required.
7521    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7522      return true;
7523
7524    // The key function for a class is required.
7525    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7526      const CXXRecordDecl *RD = MD->getParent();
7527      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7528        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7529        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7530          return true;
7531      }
7532    }
7533
7534    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7535
7536    // static, static inline, always_inline, and extern inline functions can
7537    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7538    // Implicit template instantiations can also be deferred in C++.
7539    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7540        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7541      return false;
7542    return true;
7543  }
7544
7545  const VarDecl *VD = cast<VarDecl>(D);
7546  assert(VD->isFileVarDecl() && "Expected file scoped var");
7547
7548  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7549    return false;
7550
7551  // Variables that can be needed in other TUs are required.
7552  GVALinkage L = GetGVALinkageForVariable(VD);
7553  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7554    return true;
7555
7556  // Variables that have destruction with side-effects are required.
7557  if (VD->getType().isDestructedType())
7558    return true;
7559
7560  // Variables that have initialization with side-effects are required.
7561  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7562    return true;
7563
7564  return false;
7565}
7566
7567CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7568  // Pass through to the C++ ABI object
7569  return ABI->getDefaultMethodCallConv(isVariadic);
7570}
7571
7572CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7573  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7574    return CC_Default;
7575  return CC;
7576}
7577
7578bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7579  // Pass through to the C++ ABI object
7580  return ABI->isNearlyEmpty(RD);
7581}
7582
7583MangleContext *ASTContext::createMangleContext() {
7584  switch (Target->getCXXABI()) {
7585  case CXXABI_ARM:
7586  case CXXABI_Itanium:
7587    return createItaniumMangleContext(*this, getDiagnostics());
7588  case CXXABI_Microsoft:
7589    return createMicrosoftMangleContext(*this, getDiagnostics());
7590  }
7591  llvm_unreachable("Unsupported ABI");
7592}
7593
7594CXXABI::~CXXABI() {}
7595
7596size_t ASTContext::getSideTableAllocatedMemory() const {
7597  return ASTRecordLayouts.getMemorySize()
7598    + llvm::capacity_in_bytes(ObjCLayouts)
7599    + llvm::capacity_in_bytes(KeyFunctions)
7600    + llvm::capacity_in_bytes(ObjCImpls)
7601    + llvm::capacity_in_bytes(BlockVarCopyInits)
7602    + llvm::capacity_in_bytes(DeclAttrs)
7603    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7604    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7605    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7606    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7607    + llvm::capacity_in_bytes(OverriddenMethods)
7608    + llvm::capacity_in_bytes(Types)
7609    + llvm::capacity_in_bytes(VariableArrayTypes)
7610    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7611}
7612
7613void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7614  // FIXME: This mangling should be applied to function local classes too
7615  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7616      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7617    return;
7618
7619  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7620    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7621  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7622}
7623
7624int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7625  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7626    UnnamedMangleNumbers.find(Tag);
7627  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7628}
7629
7630unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7631  CXXRecordDecl *Lambda = CallOperator->getParent();
7632  return LambdaMangleContexts[Lambda->getDeclContext()]
7633           .getManglingNumber(CallOperator);
7634}
7635
7636
7637void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7638  ParamIndices[D] = index;
7639}
7640
7641unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7642  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7643  assert(I != ParamIndices.end() &&
7644         "ParmIndices lacks entry set by ParmVarDecl");
7645  return I->second;
7646}
7647