ASTContext.cpp revision efed5c832de630715dd42211dd3b2aab5dd97a1b
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  TemplateSpecializationTypes(this_()),
44  DependentTemplateSpecializationTypes(this_()),
45  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
46  NSConstantStringTypeDecl(0),
47  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
48  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
49  NullTypeSourceInfo(QualType()),
50  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
51  Idents(idents), Selectors(sels),
52  BuiltinInfo(builtins),
53  DeclarationNames(*this),
54  ExternalSource(0), PrintingPolicy(LOpts),
55  LastSDM(0, 0) {
56  ObjCIdRedefinitionType = QualType();
57  ObjCClassRedefinitionType = QualType();
58  ObjCSelRedefinitionType = QualType();
59  if (size_reserve > 0) Types.reserve(size_reserve);
60  TUDecl = TranslationUnitDecl::Create(*this);
61  InitBuiltinTypes();
62}
63
64ASTContext::~ASTContext() {
65  // Release the DenseMaps associated with DeclContext objects.
66  // FIXME: Is this the ideal solution?
67  ReleaseDeclContextMaps();
68
69  if (!FreeMemory) {
70    // Call all of the deallocation functions.
71    for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
72      Deallocations[I].first(Deallocations[I].second);
73  }
74
75  // Release all of the memory associated with overridden C++ methods.
76  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
77         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
78       OM != OMEnd; ++OM)
79    OM->second.Destroy();
80
81  if (FreeMemory) {
82    // Deallocate all the types.
83    while (!Types.empty()) {
84      Types.back()->Destroy(*this);
85      Types.pop_back();
86    }
87
88    for (llvm::FoldingSet<ExtQuals>::iterator
89         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
90      // Increment in loop to prevent using deallocated memory.
91      Deallocate(&*I++);
92    }
93
94    for (llvm::DenseMap<const ObjCContainerDecl*,
95         const ASTRecordLayout*>::iterator
96         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
97      // Increment in loop to prevent using deallocated memory.
98      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
99        R->Destroy(*this);
100    }
101  }
102
103  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
104  // even when using the BumpPtrAllocator because they can contain
105  // DenseMaps.
106  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
107       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
108    // Increment in loop to prevent using deallocated memory.
109    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
110      R->Destroy(*this);
111  }
112
113  // Destroy nested-name-specifiers.
114  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
115         NNS = NestedNameSpecifiers.begin(),
116         NNSEnd = NestedNameSpecifiers.end();
117       NNS != NNSEnd; ) {
118    // Increment in loop to prevent using deallocated memory.
119    (*NNS++).Destroy(*this);
120  }
121
122  if (GlobalNestedNameSpecifier)
123    GlobalNestedNameSpecifier->Destroy(*this);
124
125  TUDecl->Destroy(*this);
126}
127
128void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
129  Deallocations.push_back(std::make_pair(Callback, Data));
130}
131
132void
133ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
134  ExternalSource.reset(Source.take());
135}
136
137void ASTContext::PrintStats() const {
138  fprintf(stderr, "*** AST Context Stats:\n");
139  fprintf(stderr, "  %d types total.\n", (int)Types.size());
140
141  unsigned counts[] = {
142#define TYPE(Name, Parent) 0,
143#define ABSTRACT_TYPE(Name, Parent)
144#include "clang/AST/TypeNodes.def"
145    0 // Extra
146  };
147
148  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
149    Type *T = Types[i];
150    counts[(unsigned)T->getTypeClass()]++;
151  }
152
153  unsigned Idx = 0;
154  unsigned TotalBytes = 0;
155#define TYPE(Name, Parent)                                              \
156  if (counts[Idx])                                                      \
157    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
158  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
159  ++Idx;
160#define ABSTRACT_TYPE(Name, Parent)
161#include "clang/AST/TypeNodes.def"
162
163  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
164
165  if (ExternalSource.get()) {
166    fprintf(stderr, "\n");
167    ExternalSource->PrintStats();
168  }
169}
170
171
172void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
173  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
174  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
175  Types.push_back(Ty);
176}
177
178void ASTContext::InitBuiltinTypes() {
179  assert(VoidTy.isNull() && "Context reinitialized?");
180
181  // C99 6.2.5p19.
182  InitBuiltinType(VoidTy,              BuiltinType::Void);
183
184  // C99 6.2.5p2.
185  InitBuiltinType(BoolTy,              BuiltinType::Bool);
186  // C99 6.2.5p3.
187  if (LangOpts.CharIsSigned)
188    InitBuiltinType(CharTy,            BuiltinType::Char_S);
189  else
190    InitBuiltinType(CharTy,            BuiltinType::Char_U);
191  // C99 6.2.5p4.
192  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
193  InitBuiltinType(ShortTy,             BuiltinType::Short);
194  InitBuiltinType(IntTy,               BuiltinType::Int);
195  InitBuiltinType(LongTy,              BuiltinType::Long);
196  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
197
198  // C99 6.2.5p6.
199  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
200  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
201  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
202  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
203  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
204
205  // C99 6.2.5p10.
206  InitBuiltinType(FloatTy,             BuiltinType::Float);
207  InitBuiltinType(DoubleTy,            BuiltinType::Double);
208  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
209
210  // GNU extension, 128-bit integers.
211  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
212  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
213
214  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
215    InitBuiltinType(WCharTy,           BuiltinType::WChar);
216  else // C99
217    WCharTy = getFromTargetType(Target.getWCharType());
218
219  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
220    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
221  else // C99
222    Char16Ty = getFromTargetType(Target.getChar16Type());
223
224  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
225    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
226  else // C99
227    Char32Ty = getFromTargetType(Target.getChar32Type());
228
229  // Placeholder type for functions.
230  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
231
232  // Placeholder type for type-dependent expressions whose type is
233  // completely unknown. No code should ever check a type against
234  // DependentTy and users should never see it; however, it is here to
235  // help diagnose failures to properly check for type-dependent
236  // expressions.
237  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
238
239  // Placeholder type for C++0x auto declarations whose real type has
240  // not yet been deduced.
241  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
242
243  // C99 6.2.5p11.
244  FloatComplexTy      = getComplexType(FloatTy);
245  DoubleComplexTy     = getComplexType(DoubleTy);
246  LongDoubleComplexTy = getComplexType(LongDoubleTy);
247
248  BuiltinVaListType = QualType();
249
250  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
251  ObjCIdTypedefType = QualType();
252  ObjCClassTypedefType = QualType();
253  ObjCSelTypedefType = QualType();
254
255  // Builtin types for 'id', 'Class', and 'SEL'.
256  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
257  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
258  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
259
260  ObjCConstantStringType = QualType();
261
262  // void * type
263  VoidPtrTy = getPointerType(VoidTy);
264
265  // nullptr type (C++0x 2.14.7)
266  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
267}
268
269MemberSpecializationInfo *
270ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
271  assert(Var->isStaticDataMember() && "Not a static data member");
272  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
273    = InstantiatedFromStaticDataMember.find(Var);
274  if (Pos == InstantiatedFromStaticDataMember.end())
275    return 0;
276
277  return Pos->second;
278}
279
280void
281ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
282                                                TemplateSpecializationKind TSK) {
283  assert(Inst->isStaticDataMember() && "Not a static data member");
284  assert(Tmpl->isStaticDataMember() && "Not a static data member");
285  assert(!InstantiatedFromStaticDataMember[Inst] &&
286         "Already noted what static data member was instantiated from");
287  InstantiatedFromStaticDataMember[Inst]
288    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
289}
290
291NamedDecl *
292ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
293  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
294    = InstantiatedFromUsingDecl.find(UUD);
295  if (Pos == InstantiatedFromUsingDecl.end())
296    return 0;
297
298  return Pos->second;
299}
300
301void
302ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
303  assert((isa<UsingDecl>(Pattern) ||
304          isa<UnresolvedUsingValueDecl>(Pattern) ||
305          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
306         "pattern decl is not a using decl");
307  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
308  InstantiatedFromUsingDecl[Inst] = Pattern;
309}
310
311UsingShadowDecl *
312ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
313  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
314    = InstantiatedFromUsingShadowDecl.find(Inst);
315  if (Pos == InstantiatedFromUsingShadowDecl.end())
316    return 0;
317
318  return Pos->second;
319}
320
321void
322ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
323                                               UsingShadowDecl *Pattern) {
324  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
325  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
326}
327
328FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
329  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
330    = InstantiatedFromUnnamedFieldDecl.find(Field);
331  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
332    return 0;
333
334  return Pos->second;
335}
336
337void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
338                                                     FieldDecl *Tmpl) {
339  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
340  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
341  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
342         "Already noted what unnamed field was instantiated from");
343
344  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
345}
346
347ASTContext::overridden_cxx_method_iterator
348ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
349  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
350    = OverriddenMethods.find(Method);
351  if (Pos == OverriddenMethods.end())
352    return 0;
353
354  return Pos->second.begin();
355}
356
357ASTContext::overridden_cxx_method_iterator
358ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
359  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
360    = OverriddenMethods.find(Method);
361  if (Pos == OverriddenMethods.end())
362    return 0;
363
364  return Pos->second.end();
365}
366
367void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
368                                     const CXXMethodDecl *Overridden) {
369  OverriddenMethods[Method].push_back(Overridden);
370}
371
372namespace {
373  class BeforeInTranslationUnit
374    : std::binary_function<SourceRange, SourceRange, bool> {
375    SourceManager *SourceMgr;
376
377  public:
378    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
379
380    bool operator()(SourceRange X, SourceRange Y) {
381      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
382    }
383  };
384}
385
386//===----------------------------------------------------------------------===//
387//                         Type Sizing and Analysis
388//===----------------------------------------------------------------------===//
389
390/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
391/// scalar floating point type.
392const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
393  const BuiltinType *BT = T->getAs<BuiltinType>();
394  assert(BT && "Not a floating point type!");
395  switch (BT->getKind()) {
396  default: assert(0 && "Not a floating point type!");
397  case BuiltinType::Float:      return Target.getFloatFormat();
398  case BuiltinType::Double:     return Target.getDoubleFormat();
399  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
400  }
401}
402
403/// getDeclAlign - Return a conservative estimate of the alignment of the
404/// specified decl.  Note that bitfields do not have a valid alignment, so
405/// this method will assert on them.
406/// If @p RefAsPointee, references are treated like their underlying type
407/// (for alignof), else they're treated like pointers (for CodeGen).
408CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
409  unsigned Align = Target.getCharWidth();
410
411  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
412    Align = std::max(Align, AA->getMaxAlignment());
413
414  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
415    QualType T = VD->getType();
416    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
417      if (RefAsPointee)
418        T = RT->getPointeeType();
419      else
420        T = getPointerType(RT->getPointeeType());
421    }
422    if (!T->isIncompleteType() && !T->isFunctionType()) {
423      unsigned MinWidth = Target.getLargeArrayMinWidth();
424      unsigned ArrayAlign = Target.getLargeArrayAlign();
425      if (isa<VariableArrayType>(T) && MinWidth != 0)
426        Align = std::max(Align, ArrayAlign);
427      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
428        unsigned Size = getTypeSize(CT);
429        if (MinWidth != 0 && MinWidth <= Size)
430          Align = std::max(Align, ArrayAlign);
431      }
432      // Incomplete or function types default to 1.
433      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
434        T = cast<ArrayType>(T)->getElementType();
435
436      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
437    }
438    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
439      // In the case of a field in a packed struct, we want the minimum
440      // of the alignment of the field and the alignment of the struct.
441      Align = std::min(Align,
442        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
443    }
444  }
445
446  return CharUnits::fromQuantity(Align / Target.getCharWidth());
447}
448
449std::pair<CharUnits, CharUnits>
450ASTContext::getTypeInfoInChars(const Type *T) {
451  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
452  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
453                        CharUnits::fromQuantity(Info.second / getCharWidth()));
454}
455
456std::pair<CharUnits, CharUnits>
457ASTContext::getTypeInfoInChars(QualType T) {
458  return getTypeInfoInChars(T.getTypePtr());
459}
460
461/// getTypeSize - Return the size of the specified type, in bits.  This method
462/// does not work on incomplete types.
463///
464/// FIXME: Pointers into different addr spaces could have different sizes and
465/// alignment requirements: getPointerInfo should take an AddrSpace, this
466/// should take a QualType, &c.
467std::pair<uint64_t, unsigned>
468ASTContext::getTypeInfo(const Type *T) {
469  uint64_t Width=0;
470  unsigned Align=8;
471  switch (T->getTypeClass()) {
472#define TYPE(Class, Base)
473#define ABSTRACT_TYPE(Class, Base)
474#define NON_CANONICAL_TYPE(Class, Base)
475#define DEPENDENT_TYPE(Class, Base) case Type::Class:
476#include "clang/AST/TypeNodes.def"
477    assert(false && "Should not see dependent types");
478    break;
479
480  case Type::FunctionNoProto:
481  case Type::FunctionProto:
482    // GCC extension: alignof(function) = 32 bits
483    Width = 0;
484    Align = 32;
485    break;
486
487  case Type::IncompleteArray:
488  case Type::VariableArray:
489    Width = 0;
490    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
491    break;
492
493  case Type::ConstantArray: {
494    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
495
496    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
497    Width = EltInfo.first*CAT->getSize().getZExtValue();
498    Align = EltInfo.second;
499    break;
500  }
501  case Type::ExtVector:
502  case Type::Vector: {
503    const VectorType *VT = cast<VectorType>(T);
504    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
505    Width = EltInfo.first*VT->getNumElements();
506    Align = Width;
507    // If the alignment is not a power of 2, round up to the next power of 2.
508    // This happens for non-power-of-2 length vectors.
509    if (Align & (Align-1)) {
510      Align = llvm::NextPowerOf2(Align);
511      Width = llvm::RoundUpToAlignment(Width, Align);
512    }
513    break;
514  }
515
516  case Type::Builtin:
517    switch (cast<BuiltinType>(T)->getKind()) {
518    default: assert(0 && "Unknown builtin type!");
519    case BuiltinType::Void:
520      // GCC extension: alignof(void) = 8 bits.
521      Width = 0;
522      Align = 8;
523      break;
524
525    case BuiltinType::Bool:
526      Width = Target.getBoolWidth();
527      Align = Target.getBoolAlign();
528      break;
529    case BuiltinType::Char_S:
530    case BuiltinType::Char_U:
531    case BuiltinType::UChar:
532    case BuiltinType::SChar:
533      Width = Target.getCharWidth();
534      Align = Target.getCharAlign();
535      break;
536    case BuiltinType::WChar:
537      Width = Target.getWCharWidth();
538      Align = Target.getWCharAlign();
539      break;
540    case BuiltinType::Char16:
541      Width = Target.getChar16Width();
542      Align = Target.getChar16Align();
543      break;
544    case BuiltinType::Char32:
545      Width = Target.getChar32Width();
546      Align = Target.getChar32Align();
547      break;
548    case BuiltinType::UShort:
549    case BuiltinType::Short:
550      Width = Target.getShortWidth();
551      Align = Target.getShortAlign();
552      break;
553    case BuiltinType::UInt:
554    case BuiltinType::Int:
555      Width = Target.getIntWidth();
556      Align = Target.getIntAlign();
557      break;
558    case BuiltinType::ULong:
559    case BuiltinType::Long:
560      Width = Target.getLongWidth();
561      Align = Target.getLongAlign();
562      break;
563    case BuiltinType::ULongLong:
564    case BuiltinType::LongLong:
565      Width = Target.getLongLongWidth();
566      Align = Target.getLongLongAlign();
567      break;
568    case BuiltinType::Int128:
569    case BuiltinType::UInt128:
570      Width = 128;
571      Align = 128; // int128_t is 128-bit aligned on all targets.
572      break;
573    case BuiltinType::Float:
574      Width = Target.getFloatWidth();
575      Align = Target.getFloatAlign();
576      break;
577    case BuiltinType::Double:
578      Width = Target.getDoubleWidth();
579      Align = Target.getDoubleAlign();
580      break;
581    case BuiltinType::LongDouble:
582      Width = Target.getLongDoubleWidth();
583      Align = Target.getLongDoubleAlign();
584      break;
585    case BuiltinType::NullPtr:
586      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
587      Align = Target.getPointerAlign(0); //   == sizeof(void*)
588      break;
589    }
590    break;
591  case Type::ObjCObjectPointer:
592    Width = Target.getPointerWidth(0);
593    Align = Target.getPointerAlign(0);
594    break;
595  case Type::BlockPointer: {
596    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
597    Width = Target.getPointerWidth(AS);
598    Align = Target.getPointerAlign(AS);
599    break;
600  }
601  case Type::LValueReference:
602  case Type::RValueReference: {
603    // alignof and sizeof should never enter this code path here, so we go
604    // the pointer route.
605    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
606    Width = Target.getPointerWidth(AS);
607    Align = Target.getPointerAlign(AS);
608    break;
609  }
610  case Type::Pointer: {
611    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
612    Width = Target.getPointerWidth(AS);
613    Align = Target.getPointerAlign(AS);
614    break;
615  }
616  case Type::MemberPointer: {
617    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
618    std::pair<uint64_t, unsigned> PtrDiffInfo =
619      getTypeInfo(getPointerDiffType());
620    Width = PtrDiffInfo.first;
621    if (Pointee->isFunctionType())
622      Width *= 2;
623    Align = PtrDiffInfo.second;
624    break;
625  }
626  case Type::Complex: {
627    // Complex types have the same alignment as their elements, but twice the
628    // size.
629    std::pair<uint64_t, unsigned> EltInfo =
630      getTypeInfo(cast<ComplexType>(T)->getElementType());
631    Width = EltInfo.first*2;
632    Align = EltInfo.second;
633    break;
634  }
635  case Type::ObjCObject:
636    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
637  case Type::ObjCInterface: {
638    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
639    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
640    Width = Layout.getSize();
641    Align = Layout.getAlignment();
642    break;
643  }
644  case Type::Record:
645  case Type::Enum: {
646    const TagType *TT = cast<TagType>(T);
647
648    if (TT->getDecl()->isInvalidDecl()) {
649      Width = 1;
650      Align = 1;
651      break;
652    }
653
654    if (const EnumType *ET = dyn_cast<EnumType>(TT))
655      return getTypeInfo(ET->getDecl()->getIntegerType());
656
657    const RecordType *RT = cast<RecordType>(TT);
658    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
659    Width = Layout.getSize();
660    Align = Layout.getAlignment();
661    break;
662  }
663
664  case Type::SubstTemplateTypeParm:
665    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
666                       getReplacementType().getTypePtr());
667
668  case Type::Typedef: {
669    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
670    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
671      Align = std::max(Aligned->getMaxAlignment(),
672                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
673      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
674    } else
675      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
676    break;
677  }
678
679  case Type::TypeOfExpr:
680    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
681                         .getTypePtr());
682
683  case Type::TypeOf:
684    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
685
686  case Type::Decltype:
687    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
688                        .getTypePtr());
689
690  case Type::Elaborated:
691    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
692
693  case Type::TemplateSpecialization:
694    assert(getCanonicalType(T) != T &&
695           "Cannot request the size of a dependent type");
696    // FIXME: this is likely to be wrong once we support template
697    // aliases, since a template alias could refer to a typedef that
698    // has an __aligned__ attribute on it.
699    return getTypeInfo(getCanonicalType(T));
700  }
701
702  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
703  return std::make_pair(Width, Align);
704}
705
706/// getTypeSizeInChars - Return the size of the specified type, in characters.
707/// This method does not work on incomplete types.
708CharUnits ASTContext::getTypeSizeInChars(QualType T) {
709  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
710}
711CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
712  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
713}
714
715/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
716/// characters. This method does not work on incomplete types.
717CharUnits ASTContext::getTypeAlignInChars(QualType T) {
718  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
719}
720CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
721  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
722}
723
724/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
725/// type for the current target in bits.  This can be different than the ABI
726/// alignment in cases where it is beneficial for performance to overalign
727/// a data type.
728unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
729  unsigned ABIAlign = getTypeAlign(T);
730
731  // Double and long long should be naturally aligned if possible.
732  if (const ComplexType* CT = T->getAs<ComplexType>())
733    T = CT->getElementType().getTypePtr();
734  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
735      T->isSpecificBuiltinType(BuiltinType::LongLong))
736    return std::max(ABIAlign, (unsigned)getTypeSize(T));
737
738  return ABIAlign;
739}
740
741static void CollectLocalObjCIvars(ASTContext *Ctx,
742                                  const ObjCInterfaceDecl *OI,
743                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
744  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
745       E = OI->ivar_end(); I != E; ++I) {
746    ObjCIvarDecl *IVDecl = *I;
747    if (!IVDecl->isInvalidDecl())
748      Fields.push_back(cast<FieldDecl>(IVDecl));
749  }
750}
751
752void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
753                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
754  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
755    CollectObjCIvars(SuperClass, Fields);
756  CollectLocalObjCIvars(this, OI, Fields);
757}
758
759/// ShallowCollectObjCIvars -
760/// Collect all ivars, including those synthesized, in the current class.
761///
762void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
763                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
764  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
765         E = OI->ivar_end(); I != E; ++I) {
766     Ivars.push_back(*I);
767  }
768
769  CollectNonClassIvars(OI, Ivars);
770}
771
772/// CollectNonClassIvars -
773/// This routine collects all other ivars which are not declared in the class.
774/// This includes synthesized ivars (via @synthesize) and those in
775//  class's @implementation.
776///
777void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
778                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
779  // Find ivars declared in class extension.
780  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
781    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
782         E = CDecl->ivar_end(); I != E; ++I) {
783      Ivars.push_back(*I);
784    }
785  }
786
787  // Also add any ivar defined in this class's implementation.  This
788  // includes synthesized ivars.
789  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
790    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
791         E = ImplDecl->ivar_end(); I != E; ++I)
792      Ivars.push_back(*I);
793  }
794}
795
796/// CollectInheritedProtocols - Collect all protocols in current class and
797/// those inherited by it.
798void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
799                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
800  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
801    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
802         PE = OI->protocol_end(); P != PE; ++P) {
803      ObjCProtocolDecl *Proto = (*P);
804      Protocols.insert(Proto);
805      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
806           PE = Proto->protocol_end(); P != PE; ++P) {
807        Protocols.insert(*P);
808        CollectInheritedProtocols(*P, Protocols);
809      }
810    }
811
812    // Categories of this Interface.
813    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
814         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
815      CollectInheritedProtocols(CDeclChain, Protocols);
816    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
817      while (SD) {
818        CollectInheritedProtocols(SD, Protocols);
819        SD = SD->getSuperClass();
820      }
821  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
822    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
823         PE = OC->protocol_end(); P != PE; ++P) {
824      ObjCProtocolDecl *Proto = (*P);
825      Protocols.insert(Proto);
826      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
827           PE = Proto->protocol_end(); P != PE; ++P)
828        CollectInheritedProtocols(*P, Protocols);
829    }
830  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
831    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
832         PE = OP->protocol_end(); P != PE; ++P) {
833      ObjCProtocolDecl *Proto = (*P);
834      Protocols.insert(Proto);
835      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
836           PE = Proto->protocol_end(); P != PE; ++P)
837        CollectInheritedProtocols(*P, Protocols);
838    }
839  }
840}
841
842unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
843  unsigned count = 0;
844  // Count ivars declared in class extension.
845  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension())
846    count += CDecl->ivar_size();
847
848  // Count ivar defined in this class's implementation.  This
849  // includes synthesized ivars.
850  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
851    count += ImplDecl->ivar_size();
852
853  return count;
854}
855
856/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
857ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
858  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
859    I = ObjCImpls.find(D);
860  if (I != ObjCImpls.end())
861    return cast<ObjCImplementationDecl>(I->second);
862  return 0;
863}
864/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
865ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
866  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
867    I = ObjCImpls.find(D);
868  if (I != ObjCImpls.end())
869    return cast<ObjCCategoryImplDecl>(I->second);
870  return 0;
871}
872
873/// \brief Set the implementation of ObjCInterfaceDecl.
874void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
875                           ObjCImplementationDecl *ImplD) {
876  assert(IFaceD && ImplD && "Passed null params");
877  ObjCImpls[IFaceD] = ImplD;
878}
879/// \brief Set the implementation of ObjCCategoryDecl.
880void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
881                           ObjCCategoryImplDecl *ImplD) {
882  assert(CatD && ImplD && "Passed null params");
883  ObjCImpls[CatD] = ImplD;
884}
885
886/// \brief Allocate an uninitialized TypeSourceInfo.
887///
888/// The caller should initialize the memory held by TypeSourceInfo using
889/// the TypeLoc wrappers.
890///
891/// \param T the type that will be the basis for type source info. This type
892/// should refer to how the declarator was written in source code, not to
893/// what type semantic analysis resolved the declarator to.
894TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
895                                                 unsigned DataSize) {
896  if (!DataSize)
897    DataSize = TypeLoc::getFullDataSizeForType(T);
898  else
899    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
900           "incorrect data size provided to CreateTypeSourceInfo!");
901
902  TypeSourceInfo *TInfo =
903    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
904  new (TInfo) TypeSourceInfo(T);
905  return TInfo;
906}
907
908TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
909                                                     SourceLocation L) {
910  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
911  DI->getTypeLoc().initialize(L);
912  return DI;
913}
914
915const ASTRecordLayout &
916ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
917  return getObjCLayout(D, 0);
918}
919
920const ASTRecordLayout &
921ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
922  return getObjCLayout(D->getClassInterface(), D);
923}
924
925//===----------------------------------------------------------------------===//
926//                   Type creation/memoization methods
927//===----------------------------------------------------------------------===//
928
929QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
930  unsigned Fast = Quals.getFastQualifiers();
931  Quals.removeFastQualifiers();
932
933  // Check if we've already instantiated this type.
934  llvm::FoldingSetNodeID ID;
935  ExtQuals::Profile(ID, TypeNode, Quals);
936  void *InsertPos = 0;
937  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
938    assert(EQ->getQualifiers() == Quals);
939    QualType T = QualType(EQ, Fast);
940    return T;
941  }
942
943  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
944  ExtQualNodes.InsertNode(New, InsertPos);
945  QualType T = QualType(New, Fast);
946  return T;
947}
948
949QualType ASTContext::getVolatileType(QualType T) {
950  QualType CanT = getCanonicalType(T);
951  if (CanT.isVolatileQualified()) return T;
952
953  QualifierCollector Quals;
954  const Type *TypeNode = Quals.strip(T);
955  Quals.addVolatile();
956
957  return getExtQualType(TypeNode, Quals);
958}
959
960QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
961  QualType CanT = getCanonicalType(T);
962  if (CanT.getAddressSpace() == AddressSpace)
963    return T;
964
965  // If we are composing extended qualifiers together, merge together
966  // into one ExtQuals node.
967  QualifierCollector Quals;
968  const Type *TypeNode = Quals.strip(T);
969
970  // If this type already has an address space specified, it cannot get
971  // another one.
972  assert(!Quals.hasAddressSpace() &&
973         "Type cannot be in multiple addr spaces!");
974  Quals.addAddressSpace(AddressSpace);
975
976  return getExtQualType(TypeNode, Quals);
977}
978
979QualType ASTContext::getObjCGCQualType(QualType T,
980                                       Qualifiers::GC GCAttr) {
981  QualType CanT = getCanonicalType(T);
982  if (CanT.getObjCGCAttr() == GCAttr)
983    return T;
984
985  if (T->isPointerType()) {
986    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
987    if (Pointee->isAnyPointerType()) {
988      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
989      return getPointerType(ResultType);
990    }
991  }
992
993  // If we are composing extended qualifiers together, merge together
994  // into one ExtQuals node.
995  QualifierCollector Quals;
996  const Type *TypeNode = Quals.strip(T);
997
998  // If this type already has an ObjCGC specified, it cannot get
999  // another one.
1000  assert(!Quals.hasObjCGCAttr() &&
1001         "Type cannot have multiple ObjCGCs!");
1002  Quals.addObjCGCAttr(GCAttr);
1003
1004  return getExtQualType(TypeNode, Quals);
1005}
1006
1007static QualType getExtFunctionType(ASTContext& Context, QualType T,
1008                                        const FunctionType::ExtInfo &Info) {
1009  QualType ResultType;
1010  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1011    QualType Pointee = Pointer->getPointeeType();
1012    ResultType = getExtFunctionType(Context, Pointee, Info);
1013    if (ResultType == Pointee)
1014      return T;
1015
1016    ResultType = Context.getPointerType(ResultType);
1017  } else if (const BlockPointerType *BlockPointer
1018                                              = T->getAs<BlockPointerType>()) {
1019    QualType Pointee = BlockPointer->getPointeeType();
1020    ResultType = getExtFunctionType(Context, Pointee, Info);
1021    if (ResultType == Pointee)
1022      return T;
1023
1024    ResultType = Context.getBlockPointerType(ResultType);
1025   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1026    if (F->getExtInfo() == Info)
1027      return T;
1028
1029    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1030      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1031                                                  Info);
1032    } else {
1033      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1034      ResultType
1035        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1036                                  FPT->getNumArgs(), FPT->isVariadic(),
1037                                  FPT->getTypeQuals(),
1038                                  FPT->hasExceptionSpec(),
1039                                  FPT->hasAnyExceptionSpec(),
1040                                  FPT->getNumExceptions(),
1041                                  FPT->exception_begin(),
1042                                  Info);
1043    }
1044  } else
1045    return T;
1046
1047  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1048}
1049
1050QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1051  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1052  return getExtFunctionType(*this, T,
1053                                 Info.withNoReturn(AddNoReturn));
1054}
1055
1056QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1057  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1058  return getExtFunctionType(*this, T,
1059                            Info.withCallingConv(CallConv));
1060}
1061
1062QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1063  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1064  return getExtFunctionType(*this, T,
1065                                 Info.withRegParm(RegParm));
1066}
1067
1068/// getComplexType - Return the uniqued reference to the type for a complex
1069/// number with the specified element type.
1070QualType ASTContext::getComplexType(QualType T) {
1071  // Unique pointers, to guarantee there is only one pointer of a particular
1072  // structure.
1073  llvm::FoldingSetNodeID ID;
1074  ComplexType::Profile(ID, T);
1075
1076  void *InsertPos = 0;
1077  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1078    return QualType(CT, 0);
1079
1080  // If the pointee type isn't canonical, this won't be a canonical type either,
1081  // so fill in the canonical type field.
1082  QualType Canonical;
1083  if (!T.isCanonical()) {
1084    Canonical = getComplexType(getCanonicalType(T));
1085
1086    // Get the new insert position for the node we care about.
1087    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1088    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1089  }
1090  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1091  Types.push_back(New);
1092  ComplexTypes.InsertNode(New, InsertPos);
1093  return QualType(New, 0);
1094}
1095
1096/// getPointerType - Return the uniqued reference to the type for a pointer to
1097/// the specified type.
1098QualType ASTContext::getPointerType(QualType T) {
1099  // Unique pointers, to guarantee there is only one pointer of a particular
1100  // structure.
1101  llvm::FoldingSetNodeID ID;
1102  PointerType::Profile(ID, T);
1103
1104  void *InsertPos = 0;
1105  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1106    return QualType(PT, 0);
1107
1108  // If the pointee type isn't canonical, this won't be a canonical type either,
1109  // so fill in the canonical type field.
1110  QualType Canonical;
1111  if (!T.isCanonical()) {
1112    Canonical = getPointerType(getCanonicalType(T));
1113
1114    // Get the new insert position for the node we care about.
1115    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1116    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1117  }
1118  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1119  Types.push_back(New);
1120  PointerTypes.InsertNode(New, InsertPos);
1121  return QualType(New, 0);
1122}
1123
1124/// getBlockPointerType - Return the uniqued reference to the type for
1125/// a pointer to the specified block.
1126QualType ASTContext::getBlockPointerType(QualType T) {
1127  assert(T->isFunctionType() && "block of function types only");
1128  // Unique pointers, to guarantee there is only one block of a particular
1129  // structure.
1130  llvm::FoldingSetNodeID ID;
1131  BlockPointerType::Profile(ID, T);
1132
1133  void *InsertPos = 0;
1134  if (BlockPointerType *PT =
1135        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1136    return QualType(PT, 0);
1137
1138  // If the block pointee type isn't canonical, this won't be a canonical
1139  // type either so fill in the canonical type field.
1140  QualType Canonical;
1141  if (!T.isCanonical()) {
1142    Canonical = getBlockPointerType(getCanonicalType(T));
1143
1144    // Get the new insert position for the node we care about.
1145    BlockPointerType *NewIP =
1146      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1147    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1148  }
1149  BlockPointerType *New
1150    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1151  Types.push_back(New);
1152  BlockPointerTypes.InsertNode(New, InsertPos);
1153  return QualType(New, 0);
1154}
1155
1156/// getLValueReferenceType - Return the uniqued reference to the type for an
1157/// lvalue reference to the specified type.
1158QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1159  // Unique pointers, to guarantee there is only one pointer of a particular
1160  // structure.
1161  llvm::FoldingSetNodeID ID;
1162  ReferenceType::Profile(ID, T, SpelledAsLValue);
1163
1164  void *InsertPos = 0;
1165  if (LValueReferenceType *RT =
1166        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1167    return QualType(RT, 0);
1168
1169  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1170
1171  // If the referencee type isn't canonical, this won't be a canonical type
1172  // either, so fill in the canonical type field.
1173  QualType Canonical;
1174  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1175    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1176    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1177
1178    // Get the new insert position for the node we care about.
1179    LValueReferenceType *NewIP =
1180      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1181    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1182  }
1183
1184  LValueReferenceType *New
1185    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1186                                                     SpelledAsLValue);
1187  Types.push_back(New);
1188  LValueReferenceTypes.InsertNode(New, InsertPos);
1189
1190  return QualType(New, 0);
1191}
1192
1193/// getRValueReferenceType - Return the uniqued reference to the type for an
1194/// rvalue reference to the specified type.
1195QualType ASTContext::getRValueReferenceType(QualType T) {
1196  // Unique pointers, to guarantee there is only one pointer of a particular
1197  // structure.
1198  llvm::FoldingSetNodeID ID;
1199  ReferenceType::Profile(ID, T, false);
1200
1201  void *InsertPos = 0;
1202  if (RValueReferenceType *RT =
1203        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1204    return QualType(RT, 0);
1205
1206  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1207
1208  // If the referencee type isn't canonical, this won't be a canonical type
1209  // either, so fill in the canonical type field.
1210  QualType Canonical;
1211  if (InnerRef || !T.isCanonical()) {
1212    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1213    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1214
1215    // Get the new insert position for the node we care about.
1216    RValueReferenceType *NewIP =
1217      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1218    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1219  }
1220
1221  RValueReferenceType *New
1222    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1223  Types.push_back(New);
1224  RValueReferenceTypes.InsertNode(New, InsertPos);
1225  return QualType(New, 0);
1226}
1227
1228/// getMemberPointerType - Return the uniqued reference to the type for a
1229/// member pointer to the specified type, in the specified class.
1230QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1231  // Unique pointers, to guarantee there is only one pointer of a particular
1232  // structure.
1233  llvm::FoldingSetNodeID ID;
1234  MemberPointerType::Profile(ID, T, Cls);
1235
1236  void *InsertPos = 0;
1237  if (MemberPointerType *PT =
1238      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1239    return QualType(PT, 0);
1240
1241  // If the pointee or class type isn't canonical, this won't be a canonical
1242  // type either, so fill in the canonical type field.
1243  QualType Canonical;
1244  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1245    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1246
1247    // Get the new insert position for the node we care about.
1248    MemberPointerType *NewIP =
1249      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1250    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1251  }
1252  MemberPointerType *New
1253    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1254  Types.push_back(New);
1255  MemberPointerTypes.InsertNode(New, InsertPos);
1256  return QualType(New, 0);
1257}
1258
1259/// getConstantArrayType - Return the unique reference to the type for an
1260/// array of the specified element type.
1261QualType ASTContext::getConstantArrayType(QualType EltTy,
1262                                          const llvm::APInt &ArySizeIn,
1263                                          ArrayType::ArraySizeModifier ASM,
1264                                          unsigned EltTypeQuals) {
1265  assert((EltTy->isDependentType() ||
1266          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1267         "Constant array of VLAs is illegal!");
1268
1269  // Convert the array size into a canonical width matching the pointer size for
1270  // the target.
1271  llvm::APInt ArySize(ArySizeIn);
1272  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1273
1274  llvm::FoldingSetNodeID ID;
1275  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1276
1277  void *InsertPos = 0;
1278  if (ConstantArrayType *ATP =
1279      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1280    return QualType(ATP, 0);
1281
1282  // If the element type isn't canonical, this won't be a canonical type either,
1283  // so fill in the canonical type field.
1284  QualType Canonical;
1285  if (!EltTy.isCanonical()) {
1286    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1287                                     ASM, EltTypeQuals);
1288    // Get the new insert position for the node we care about.
1289    ConstantArrayType *NewIP =
1290      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1291    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1292  }
1293
1294  ConstantArrayType *New = new(*this,TypeAlignment)
1295    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1296  ConstantArrayTypes.InsertNode(New, InsertPos);
1297  Types.push_back(New);
1298  return QualType(New, 0);
1299}
1300
1301/// getVariableArrayType - Returns a non-unique reference to the type for a
1302/// variable array of the specified element type.
1303QualType ASTContext::getVariableArrayType(QualType EltTy,
1304                                          Expr *NumElts,
1305                                          ArrayType::ArraySizeModifier ASM,
1306                                          unsigned EltTypeQuals,
1307                                          SourceRange Brackets) {
1308  // Since we don't unique expressions, it isn't possible to unique VLA's
1309  // that have an expression provided for their size.
1310  QualType CanonType;
1311
1312  if (!EltTy.isCanonical()) {
1313    if (NumElts)
1314      NumElts->Retain();
1315    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1316                                     EltTypeQuals, Brackets);
1317  }
1318
1319  VariableArrayType *New = new(*this, TypeAlignment)
1320    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1321
1322  VariableArrayTypes.push_back(New);
1323  Types.push_back(New);
1324  return QualType(New, 0);
1325}
1326
1327/// getDependentSizedArrayType - Returns a non-unique reference to
1328/// the type for a dependently-sized array of the specified element
1329/// type.
1330QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1331                                                Expr *NumElts,
1332                                                ArrayType::ArraySizeModifier ASM,
1333                                                unsigned EltTypeQuals,
1334                                                SourceRange Brackets) {
1335  assert((!NumElts || NumElts->isTypeDependent() ||
1336          NumElts->isValueDependent()) &&
1337         "Size must be type- or value-dependent!");
1338
1339  void *InsertPos = 0;
1340  DependentSizedArrayType *Canon = 0;
1341  llvm::FoldingSetNodeID ID;
1342
1343  if (NumElts) {
1344    // Dependently-sized array types that do not have a specified
1345    // number of elements will have their sizes deduced from an
1346    // initializer.
1347    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1348                                     EltTypeQuals, NumElts);
1349
1350    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1351  }
1352
1353  DependentSizedArrayType *New;
1354  if (Canon) {
1355    // We already have a canonical version of this array type; use it as
1356    // the canonical type for a newly-built type.
1357    New = new (*this, TypeAlignment)
1358      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1359                              NumElts, ASM, EltTypeQuals, Brackets);
1360  } else {
1361    QualType CanonEltTy = getCanonicalType(EltTy);
1362    if (CanonEltTy == EltTy) {
1363      New = new (*this, TypeAlignment)
1364        DependentSizedArrayType(*this, EltTy, QualType(),
1365                                NumElts, ASM, EltTypeQuals, Brackets);
1366
1367      if (NumElts) {
1368        DependentSizedArrayType *CanonCheck
1369          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1370        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1371        (void)CanonCheck;
1372        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1373      }
1374    } else {
1375      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1376                                                  ASM, EltTypeQuals,
1377                                                  SourceRange());
1378      New = new (*this, TypeAlignment)
1379        DependentSizedArrayType(*this, EltTy, Canon,
1380                                NumElts, ASM, EltTypeQuals, Brackets);
1381    }
1382  }
1383
1384  Types.push_back(New);
1385  return QualType(New, 0);
1386}
1387
1388QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1389                                            ArrayType::ArraySizeModifier ASM,
1390                                            unsigned EltTypeQuals) {
1391  llvm::FoldingSetNodeID ID;
1392  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1393
1394  void *InsertPos = 0;
1395  if (IncompleteArrayType *ATP =
1396       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1397    return QualType(ATP, 0);
1398
1399  // If the element type isn't canonical, this won't be a canonical type
1400  // either, so fill in the canonical type field.
1401  QualType Canonical;
1402
1403  if (!EltTy.isCanonical()) {
1404    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1405                                       ASM, EltTypeQuals);
1406
1407    // Get the new insert position for the node we care about.
1408    IncompleteArrayType *NewIP =
1409      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1410    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1411  }
1412
1413  IncompleteArrayType *New = new (*this, TypeAlignment)
1414    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1415
1416  IncompleteArrayTypes.InsertNode(New, InsertPos);
1417  Types.push_back(New);
1418  return QualType(New, 0);
1419}
1420
1421/// getVectorType - Return the unique reference to a vector type of
1422/// the specified element type and size. VectorType must be a built-in type.
1423QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1424                                   bool IsAltiVec, bool IsPixel) {
1425  BuiltinType *baseType;
1426
1427  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1428  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1429
1430  // Check if we've already instantiated a vector of this type.
1431  llvm::FoldingSetNodeID ID;
1432  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1433    IsAltiVec, IsPixel);
1434  void *InsertPos = 0;
1435  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1436    return QualType(VTP, 0);
1437
1438  // If the element type isn't canonical, this won't be a canonical type either,
1439  // so fill in the canonical type field.
1440  QualType Canonical;
1441  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1442    Canonical = getVectorType(getCanonicalType(vecType),
1443      NumElts, false, false);
1444
1445    // Get the new insert position for the node we care about.
1446    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1447    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1448  }
1449  VectorType *New = new (*this, TypeAlignment)
1450    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1451  VectorTypes.InsertNode(New, InsertPos);
1452  Types.push_back(New);
1453  return QualType(New, 0);
1454}
1455
1456/// getExtVectorType - Return the unique reference to an extended vector type of
1457/// the specified element type and size. VectorType must be a built-in type.
1458QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1459  BuiltinType *baseType;
1460
1461  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1462  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1463
1464  // Check if we've already instantiated a vector of this type.
1465  llvm::FoldingSetNodeID ID;
1466  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1467  void *InsertPos = 0;
1468  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1469    return QualType(VTP, 0);
1470
1471  // If the element type isn't canonical, this won't be a canonical type either,
1472  // so fill in the canonical type field.
1473  QualType Canonical;
1474  if (!vecType.isCanonical()) {
1475    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1476
1477    // Get the new insert position for the node we care about.
1478    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1479    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1480  }
1481  ExtVectorType *New = new (*this, TypeAlignment)
1482    ExtVectorType(vecType, NumElts, Canonical);
1483  VectorTypes.InsertNode(New, InsertPos);
1484  Types.push_back(New);
1485  return QualType(New, 0);
1486}
1487
1488QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1489                                                    Expr *SizeExpr,
1490                                                    SourceLocation AttrLoc) {
1491  llvm::FoldingSetNodeID ID;
1492  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1493                                       SizeExpr);
1494
1495  void *InsertPos = 0;
1496  DependentSizedExtVectorType *Canon
1497    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1498  DependentSizedExtVectorType *New;
1499  if (Canon) {
1500    // We already have a canonical version of this array type; use it as
1501    // the canonical type for a newly-built type.
1502    New = new (*this, TypeAlignment)
1503      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1504                                  SizeExpr, AttrLoc);
1505  } else {
1506    QualType CanonVecTy = getCanonicalType(vecType);
1507    if (CanonVecTy == vecType) {
1508      New = new (*this, TypeAlignment)
1509        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1510                                    AttrLoc);
1511
1512      DependentSizedExtVectorType *CanonCheck
1513        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1514      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1515      (void)CanonCheck;
1516      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1517    } else {
1518      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1519                                                      SourceLocation());
1520      New = new (*this, TypeAlignment)
1521        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1522    }
1523  }
1524
1525  Types.push_back(New);
1526  return QualType(New, 0);
1527}
1528
1529/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1530///
1531QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1532                                            const FunctionType::ExtInfo &Info) {
1533  const CallingConv CallConv = Info.getCC();
1534  // Unique functions, to guarantee there is only one function of a particular
1535  // structure.
1536  llvm::FoldingSetNodeID ID;
1537  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1538
1539  void *InsertPos = 0;
1540  if (FunctionNoProtoType *FT =
1541        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1542    return QualType(FT, 0);
1543
1544  QualType Canonical;
1545  if (!ResultTy.isCanonical() ||
1546      getCanonicalCallConv(CallConv) != CallConv) {
1547    Canonical =
1548      getFunctionNoProtoType(getCanonicalType(ResultTy),
1549                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1550
1551    // Get the new insert position for the node we care about.
1552    FunctionNoProtoType *NewIP =
1553      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1554    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1555  }
1556
1557  FunctionNoProtoType *New = new (*this, TypeAlignment)
1558    FunctionNoProtoType(ResultTy, Canonical, Info);
1559  Types.push_back(New);
1560  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1561  return QualType(New, 0);
1562}
1563
1564/// getFunctionType - Return a normal function type with a typed argument
1565/// list.  isVariadic indicates whether the argument list includes '...'.
1566QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1567                                     unsigned NumArgs, bool isVariadic,
1568                                     unsigned TypeQuals, bool hasExceptionSpec,
1569                                     bool hasAnyExceptionSpec, unsigned NumExs,
1570                                     const QualType *ExArray,
1571                                     const FunctionType::ExtInfo &Info) {
1572  const CallingConv CallConv= Info.getCC();
1573  // Unique functions, to guarantee there is only one function of a particular
1574  // structure.
1575  llvm::FoldingSetNodeID ID;
1576  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1577                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1578                             NumExs, ExArray, Info);
1579
1580  void *InsertPos = 0;
1581  if (FunctionProtoType *FTP =
1582        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1583    return QualType(FTP, 0);
1584
1585  // Determine whether the type being created is already canonical or not.
1586  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1587  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1588    if (!ArgArray[i].isCanonicalAsParam())
1589      isCanonical = false;
1590
1591  // If this type isn't canonical, get the canonical version of it.
1592  // The exception spec is not part of the canonical type.
1593  QualType Canonical;
1594  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1595    llvm::SmallVector<QualType, 16> CanonicalArgs;
1596    CanonicalArgs.reserve(NumArgs);
1597    for (unsigned i = 0; i != NumArgs; ++i)
1598      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1599
1600    Canonical = getFunctionType(getCanonicalType(ResultTy),
1601                                CanonicalArgs.data(), NumArgs,
1602                                isVariadic, TypeQuals, false,
1603                                false, 0, 0,
1604                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1605
1606    // Get the new insert position for the node we care about.
1607    FunctionProtoType *NewIP =
1608      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1609    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1610  }
1611
1612  // FunctionProtoType objects are allocated with extra bytes after them
1613  // for two variable size arrays (for parameter and exception types) at the
1614  // end of them.
1615  FunctionProtoType *FTP =
1616    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1617                                 NumArgs*sizeof(QualType) +
1618                                 NumExs*sizeof(QualType), TypeAlignment);
1619  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1620                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1621                              ExArray, NumExs, Canonical, Info);
1622  Types.push_back(FTP);
1623  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1624  return QualType(FTP, 0);
1625}
1626
1627#ifndef NDEBUG
1628static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1629  if (!isa<CXXRecordDecl>(D)) return false;
1630  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1631  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1632    return true;
1633  if (RD->getDescribedClassTemplate() &&
1634      !isa<ClassTemplateSpecializationDecl>(RD))
1635    return true;
1636  return false;
1637}
1638#endif
1639
1640/// getInjectedClassNameType - Return the unique reference to the
1641/// injected class name type for the specified templated declaration.
1642QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1643                                              QualType TST) {
1644  assert(NeedsInjectedClassNameType(Decl));
1645  if (Decl->TypeForDecl) {
1646    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1647  } else if (CXXRecordDecl *PrevDecl
1648               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1649    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1650    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1651    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1652  } else {
1653    Decl->TypeForDecl =
1654      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1655    Types.push_back(Decl->TypeForDecl);
1656  }
1657  return QualType(Decl->TypeForDecl, 0);
1658}
1659
1660/// getTypeDeclType - Return the unique reference to the type for the
1661/// specified type declaration.
1662QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1663  assert(Decl && "Passed null for Decl param");
1664  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1665
1666  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1667    return getTypedefType(Typedef);
1668
1669  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1670         "Template type parameter types are always available.");
1671
1672  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1673    assert(!Record->getPreviousDeclaration() &&
1674           "struct/union has previous declaration");
1675    assert(!NeedsInjectedClassNameType(Record));
1676    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1677  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1678    assert(!Enum->getPreviousDeclaration() &&
1679           "enum has previous declaration");
1680    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1681  } else if (const UnresolvedUsingTypenameDecl *Using =
1682               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1683    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1684  } else
1685    llvm_unreachable("TypeDecl without a type?");
1686
1687  Types.push_back(Decl->TypeForDecl);
1688  return QualType(Decl->TypeForDecl, 0);
1689}
1690
1691/// getTypedefType - Return the unique reference to the type for the
1692/// specified typename decl.
1693QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1694  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1695
1696  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1697  Decl->TypeForDecl = new(*this, TypeAlignment)
1698    TypedefType(Type::Typedef, Decl, Canonical);
1699  Types.push_back(Decl->TypeForDecl);
1700  return QualType(Decl->TypeForDecl, 0);
1701}
1702
1703/// \brief Retrieve a substitution-result type.
1704QualType
1705ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1706                                         QualType Replacement) {
1707  assert(Replacement.isCanonical()
1708         && "replacement types must always be canonical");
1709
1710  llvm::FoldingSetNodeID ID;
1711  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1712  void *InsertPos = 0;
1713  SubstTemplateTypeParmType *SubstParm
1714    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1715
1716  if (!SubstParm) {
1717    SubstParm = new (*this, TypeAlignment)
1718      SubstTemplateTypeParmType(Parm, Replacement);
1719    Types.push_back(SubstParm);
1720    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1721  }
1722
1723  return QualType(SubstParm, 0);
1724}
1725
1726/// \brief Retrieve the template type parameter type for a template
1727/// parameter or parameter pack with the given depth, index, and (optionally)
1728/// name.
1729QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1730                                             bool ParameterPack,
1731                                             IdentifierInfo *Name) {
1732  llvm::FoldingSetNodeID ID;
1733  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1734  void *InsertPos = 0;
1735  TemplateTypeParmType *TypeParm
1736    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1737
1738  if (TypeParm)
1739    return QualType(TypeParm, 0);
1740
1741  if (Name) {
1742    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1743    TypeParm = new (*this, TypeAlignment)
1744      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1745
1746    TemplateTypeParmType *TypeCheck
1747      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1748    assert(!TypeCheck && "Template type parameter canonical type broken");
1749    (void)TypeCheck;
1750  } else
1751    TypeParm = new (*this, TypeAlignment)
1752      TemplateTypeParmType(Depth, Index, ParameterPack);
1753
1754  Types.push_back(TypeParm);
1755  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1756
1757  return QualType(TypeParm, 0);
1758}
1759
1760TypeSourceInfo *
1761ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1762                                              SourceLocation NameLoc,
1763                                        const TemplateArgumentListInfo &Args,
1764                                              QualType CanonType) {
1765  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1766
1767  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1768  TemplateSpecializationTypeLoc TL
1769    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1770  TL.setTemplateNameLoc(NameLoc);
1771  TL.setLAngleLoc(Args.getLAngleLoc());
1772  TL.setRAngleLoc(Args.getRAngleLoc());
1773  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1774    TL.setArgLocInfo(i, Args[i].getLocInfo());
1775  return DI;
1776}
1777
1778QualType
1779ASTContext::getTemplateSpecializationType(TemplateName Template,
1780                                          const TemplateArgumentListInfo &Args,
1781                                          QualType Canon) {
1782  unsigned NumArgs = Args.size();
1783
1784  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1785  ArgVec.reserve(NumArgs);
1786  for (unsigned i = 0; i != NumArgs; ++i)
1787    ArgVec.push_back(Args[i].getArgument());
1788
1789  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1790                                       Canon);
1791}
1792
1793QualType
1794ASTContext::getTemplateSpecializationType(TemplateName Template,
1795                                          const TemplateArgument *Args,
1796                                          unsigned NumArgs,
1797                                          QualType Canon) {
1798  if (!Canon.isNull())
1799    Canon = getCanonicalType(Canon);
1800  else {
1801    // Build the canonical template specialization type.
1802    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1803    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1804    CanonArgs.reserve(NumArgs);
1805    for (unsigned I = 0; I != NumArgs; ++I)
1806      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1807
1808    // Determine whether this canonical template specialization type already
1809    // exists.
1810    llvm::FoldingSetNodeID ID;
1811    TemplateSpecializationType::Profile(ID, CanonTemplate,
1812                                        CanonArgs.data(), NumArgs, *this);
1813
1814    void *InsertPos = 0;
1815    TemplateSpecializationType *Spec
1816      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1817
1818    if (!Spec) {
1819      // Allocate a new canonical template specialization type.
1820      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1821                            sizeof(TemplateArgument) * NumArgs),
1822                           TypeAlignment);
1823      Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
1824                                                  CanonArgs.data(), NumArgs,
1825                                                  Canon);
1826      Types.push_back(Spec);
1827      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1828    }
1829
1830    if (Canon.isNull())
1831      Canon = QualType(Spec, 0);
1832    assert(Canon->isDependentType() &&
1833           "Non-dependent template-id type must have a canonical type");
1834  }
1835
1836  // Allocate the (non-canonical) template specialization type, but don't
1837  // try to unique it: these types typically have location information that
1838  // we don't unique and don't want to lose.
1839  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1840                        sizeof(TemplateArgument) * NumArgs),
1841                       TypeAlignment);
1842  TemplateSpecializationType *Spec
1843    = new (Mem) TemplateSpecializationType(Template,
1844                                           Args, NumArgs,
1845                                           Canon);
1846
1847  Types.push_back(Spec);
1848  return QualType(Spec, 0);
1849}
1850
1851QualType
1852ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1853                              NestedNameSpecifier *NNS,
1854                              QualType NamedType) {
1855  llvm::FoldingSetNodeID ID;
1856  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1857
1858  void *InsertPos = 0;
1859  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1860  if (T)
1861    return QualType(T, 0);
1862
1863  QualType Canon = NamedType;
1864  if (!Canon.isCanonical()) {
1865    Canon = getCanonicalType(NamedType);
1866    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1867    assert(!CheckT && "Elaborated canonical type broken");
1868    (void)CheckT;
1869  }
1870
1871  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
1872  Types.push_back(T);
1873  ElaboratedTypes.InsertNode(T, InsertPos);
1874  return QualType(T, 0);
1875}
1876
1877QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1878                                          NestedNameSpecifier *NNS,
1879                                          const IdentifierInfo *Name,
1880                                          QualType Canon) {
1881  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1882
1883  if (Canon.isNull()) {
1884    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1885    ElaboratedTypeKeyword CanonKeyword = Keyword;
1886    if (Keyword == ETK_None)
1887      CanonKeyword = ETK_Typename;
1888
1889    if (CanonNNS != NNS || CanonKeyword != Keyword)
1890      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
1891  }
1892
1893  llvm::FoldingSetNodeID ID;
1894  DependentNameType::Profile(ID, Keyword, NNS, Name);
1895
1896  void *InsertPos = 0;
1897  DependentNameType *T
1898    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1899  if (T)
1900    return QualType(T, 0);
1901
1902  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
1903  Types.push_back(T);
1904  DependentNameTypes.InsertNode(T, InsertPos);
1905  return QualType(T, 0);
1906}
1907
1908QualType
1909ASTContext::getDependentTemplateSpecializationType(
1910                                 ElaboratedTypeKeyword Keyword,
1911                                 NestedNameSpecifier *NNS,
1912                                 const IdentifierInfo *Name,
1913                                 const TemplateArgumentListInfo &Args) {
1914  // TODO: avoid this copy
1915  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
1916  for (unsigned I = 0, E = Args.size(); I != E; ++I)
1917    ArgCopy.push_back(Args[I].getArgument());
1918  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
1919                                                ArgCopy.size(),
1920                                                ArgCopy.data());
1921}
1922
1923QualType
1924ASTContext::getDependentTemplateSpecializationType(
1925                                 ElaboratedTypeKeyword Keyword,
1926                                 NestedNameSpecifier *NNS,
1927                                 const IdentifierInfo *Name,
1928                                 unsigned NumArgs,
1929                                 const TemplateArgument *Args) {
1930  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1931
1932  llvm::FoldingSetNodeID ID;
1933  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
1934                                               Name, NumArgs, Args);
1935
1936  void *InsertPos = 0;
1937  DependentTemplateSpecializationType *T
1938    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1939  if (T)
1940    return QualType(T, 0);
1941
1942  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1943
1944  ElaboratedTypeKeyword CanonKeyword = Keyword;
1945  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
1946
1947  bool AnyNonCanonArgs = false;
1948  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
1949  for (unsigned I = 0; I != NumArgs; ++I) {
1950    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
1951    if (!CanonArgs[I].structurallyEquals(Args[I]))
1952      AnyNonCanonArgs = true;
1953  }
1954
1955  QualType Canon;
1956  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
1957    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
1958                                                   Name, NumArgs,
1959                                                   CanonArgs.data());
1960
1961    // Find the insert position again.
1962    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1963  }
1964
1965  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
1966                        sizeof(TemplateArgument) * NumArgs),
1967                       TypeAlignment);
1968  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
1969                                                    Name, NumArgs, Args, Canon);
1970  Types.push_back(T);
1971  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
1972  return QualType(T, 0);
1973}
1974
1975/// CmpProtocolNames - Comparison predicate for sorting protocols
1976/// alphabetically.
1977static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1978                            const ObjCProtocolDecl *RHS) {
1979  return LHS->getDeclName() < RHS->getDeclName();
1980}
1981
1982static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
1983                                unsigned NumProtocols) {
1984  if (NumProtocols == 0) return true;
1985
1986  for (unsigned i = 1; i != NumProtocols; ++i)
1987    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1988      return false;
1989  return true;
1990}
1991
1992static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
1993                                   unsigned &NumProtocols) {
1994  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1995
1996  // Sort protocols, keyed by name.
1997  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1998
1999  // Remove duplicates.
2000  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2001  NumProtocols = ProtocolsEnd-Protocols;
2002}
2003
2004QualType ASTContext::getObjCObjectType(QualType BaseType,
2005                                       ObjCProtocolDecl * const *Protocols,
2006                                       unsigned NumProtocols) {
2007  // If the base type is an interface and there aren't any protocols
2008  // to add, then the interface type will do just fine.
2009  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2010    return BaseType;
2011
2012  // Look in the folding set for an existing type.
2013  llvm::FoldingSetNodeID ID;
2014  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2015  void *InsertPos = 0;
2016  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2017    return QualType(QT, 0);
2018
2019  // Build the canonical type, which has the canonical base type and
2020  // a sorted-and-uniqued list of protocols.
2021  QualType Canonical;
2022  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2023  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2024    if (!ProtocolsSorted) {
2025      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2026                                                     Protocols + NumProtocols);
2027      unsigned UniqueCount = NumProtocols;
2028
2029      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2030      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2031                                    &Sorted[0], UniqueCount);
2032    } else {
2033      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2034                                    Protocols, NumProtocols);
2035    }
2036
2037    // Regenerate InsertPos.
2038    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2039  }
2040
2041  unsigned Size = sizeof(ObjCObjectTypeImpl);
2042  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2043  void *Mem = Allocate(Size, TypeAlignment);
2044  ObjCObjectTypeImpl *T =
2045    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2046
2047  Types.push_back(T);
2048  ObjCObjectTypes.InsertNode(T, InsertPos);
2049  return QualType(T, 0);
2050}
2051
2052/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2053/// the given object type.
2054QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2055  llvm::FoldingSetNodeID ID;
2056  ObjCObjectPointerType::Profile(ID, ObjectT);
2057
2058  void *InsertPos = 0;
2059  if (ObjCObjectPointerType *QT =
2060              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2061    return QualType(QT, 0);
2062
2063  // Find the canonical object type.
2064  QualType Canonical;
2065  if (!ObjectT.isCanonical()) {
2066    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2067
2068    // Regenerate InsertPos.
2069    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2070  }
2071
2072  // No match.
2073  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2074  ObjCObjectPointerType *QType =
2075    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2076
2077  Types.push_back(QType);
2078  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2079  return QualType(QType, 0);
2080}
2081
2082/// getObjCInterfaceType - Return the unique reference to the type for the
2083/// specified ObjC interface decl. The list of protocols is optional.
2084QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2085  if (Decl->TypeForDecl)
2086    return QualType(Decl->TypeForDecl, 0);
2087
2088  // FIXME: redeclarations?
2089  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2090  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2091  Decl->TypeForDecl = T;
2092  Types.push_back(T);
2093  return QualType(T, 0);
2094}
2095
2096/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2097/// TypeOfExprType AST's (since expression's are never shared). For example,
2098/// multiple declarations that refer to "typeof(x)" all contain different
2099/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2100/// on canonical type's (which are always unique).
2101QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2102  TypeOfExprType *toe;
2103  if (tofExpr->isTypeDependent()) {
2104    llvm::FoldingSetNodeID ID;
2105    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2106
2107    void *InsertPos = 0;
2108    DependentTypeOfExprType *Canon
2109      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2110    if (Canon) {
2111      // We already have a "canonical" version of an identical, dependent
2112      // typeof(expr) type. Use that as our canonical type.
2113      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2114                                          QualType((TypeOfExprType*)Canon, 0));
2115    }
2116    else {
2117      // Build a new, canonical typeof(expr) type.
2118      Canon
2119        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2120      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2121      toe = Canon;
2122    }
2123  } else {
2124    QualType Canonical = getCanonicalType(tofExpr->getType());
2125    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2126  }
2127  Types.push_back(toe);
2128  return QualType(toe, 0);
2129}
2130
2131/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2132/// TypeOfType AST's. The only motivation to unique these nodes would be
2133/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2134/// an issue. This doesn't effect the type checker, since it operates
2135/// on canonical type's (which are always unique).
2136QualType ASTContext::getTypeOfType(QualType tofType) {
2137  QualType Canonical = getCanonicalType(tofType);
2138  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2139  Types.push_back(tot);
2140  return QualType(tot, 0);
2141}
2142
2143/// getDecltypeForExpr - Given an expr, will return the decltype for that
2144/// expression, according to the rules in C++0x [dcl.type.simple]p4
2145static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2146  if (e->isTypeDependent())
2147    return Context.DependentTy;
2148
2149  // If e is an id expression or a class member access, decltype(e) is defined
2150  // as the type of the entity named by e.
2151  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2152    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2153      return VD->getType();
2154  }
2155  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2156    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2157      return FD->getType();
2158  }
2159  // If e is a function call or an invocation of an overloaded operator,
2160  // (parentheses around e are ignored), decltype(e) is defined as the
2161  // return type of that function.
2162  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2163    return CE->getCallReturnType();
2164
2165  QualType T = e->getType();
2166
2167  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2168  // defined as T&, otherwise decltype(e) is defined as T.
2169  if (e->isLvalue(Context) == Expr::LV_Valid)
2170    T = Context.getLValueReferenceType(T);
2171
2172  return T;
2173}
2174
2175/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2176/// DecltypeType AST's. The only motivation to unique these nodes would be
2177/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2178/// an issue. This doesn't effect the type checker, since it operates
2179/// on canonical type's (which are always unique).
2180QualType ASTContext::getDecltypeType(Expr *e) {
2181  DecltypeType *dt;
2182  if (e->isTypeDependent()) {
2183    llvm::FoldingSetNodeID ID;
2184    DependentDecltypeType::Profile(ID, *this, e);
2185
2186    void *InsertPos = 0;
2187    DependentDecltypeType *Canon
2188      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2189    if (Canon) {
2190      // We already have a "canonical" version of an equivalent, dependent
2191      // decltype type. Use that as our canonical type.
2192      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2193                                       QualType((DecltypeType*)Canon, 0));
2194    }
2195    else {
2196      // Build a new, canonical typeof(expr) type.
2197      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2198      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2199      dt = Canon;
2200    }
2201  } else {
2202    QualType T = getDecltypeForExpr(e, *this);
2203    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2204  }
2205  Types.push_back(dt);
2206  return QualType(dt, 0);
2207}
2208
2209/// getTagDeclType - Return the unique reference to the type for the
2210/// specified TagDecl (struct/union/class/enum) decl.
2211QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2212  assert (Decl);
2213  // FIXME: What is the design on getTagDeclType when it requires casting
2214  // away const?  mutable?
2215  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2216}
2217
2218/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2219/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2220/// needs to agree with the definition in <stddef.h>.
2221CanQualType ASTContext::getSizeType() const {
2222  return getFromTargetType(Target.getSizeType());
2223}
2224
2225/// getSignedWCharType - Return the type of "signed wchar_t".
2226/// Used when in C++, as a GCC extension.
2227QualType ASTContext::getSignedWCharType() const {
2228  // FIXME: derive from "Target" ?
2229  return WCharTy;
2230}
2231
2232/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2233/// Used when in C++, as a GCC extension.
2234QualType ASTContext::getUnsignedWCharType() const {
2235  // FIXME: derive from "Target" ?
2236  return UnsignedIntTy;
2237}
2238
2239/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2240/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2241QualType ASTContext::getPointerDiffType() const {
2242  return getFromTargetType(Target.getPtrDiffType(0));
2243}
2244
2245//===----------------------------------------------------------------------===//
2246//                              Type Operators
2247//===----------------------------------------------------------------------===//
2248
2249CanQualType ASTContext::getCanonicalParamType(QualType T) {
2250  // Push qualifiers into arrays, and then discard any remaining
2251  // qualifiers.
2252  T = getCanonicalType(T);
2253  const Type *Ty = T.getTypePtr();
2254
2255  QualType Result;
2256  if (isa<ArrayType>(Ty)) {
2257    Result = getArrayDecayedType(QualType(Ty,0));
2258  } else if (isa<FunctionType>(Ty)) {
2259    Result = getPointerType(QualType(Ty, 0));
2260  } else {
2261    Result = QualType(Ty, 0);
2262  }
2263
2264  return CanQualType::CreateUnsafe(Result);
2265}
2266
2267/// getCanonicalType - Return the canonical (structural) type corresponding to
2268/// the specified potentially non-canonical type.  The non-canonical version
2269/// of a type may have many "decorated" versions of types.  Decorators can
2270/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2271/// to be free of any of these, allowing two canonical types to be compared
2272/// for exact equality with a simple pointer comparison.
2273CanQualType ASTContext::getCanonicalType(QualType T) {
2274  QualifierCollector Quals;
2275  const Type *Ptr = Quals.strip(T);
2276  QualType CanType = Ptr->getCanonicalTypeInternal();
2277
2278  // The canonical internal type will be the canonical type *except*
2279  // that we push type qualifiers down through array types.
2280
2281  // If there are no new qualifiers to push down, stop here.
2282  if (!Quals.hasQualifiers())
2283    return CanQualType::CreateUnsafe(CanType);
2284
2285  // If the type qualifiers are on an array type, get the canonical
2286  // type of the array with the qualifiers applied to the element
2287  // type.
2288  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2289  if (!AT)
2290    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2291
2292  // Get the canonical version of the element with the extra qualifiers on it.
2293  // This can recursively sink qualifiers through multiple levels of arrays.
2294  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2295  NewEltTy = getCanonicalType(NewEltTy);
2296
2297  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2298    return CanQualType::CreateUnsafe(
2299             getConstantArrayType(NewEltTy, CAT->getSize(),
2300                                  CAT->getSizeModifier(),
2301                                  CAT->getIndexTypeCVRQualifiers()));
2302  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2303    return CanQualType::CreateUnsafe(
2304             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2305                                    IAT->getIndexTypeCVRQualifiers()));
2306
2307  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2308    return CanQualType::CreateUnsafe(
2309             getDependentSizedArrayType(NewEltTy,
2310                                        DSAT->getSizeExpr() ?
2311                                          DSAT->getSizeExpr()->Retain() : 0,
2312                                        DSAT->getSizeModifier(),
2313                                        DSAT->getIndexTypeCVRQualifiers(),
2314                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2315
2316  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2317  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2318                                                        VAT->getSizeExpr() ?
2319                                              VAT->getSizeExpr()->Retain() : 0,
2320                                                        VAT->getSizeModifier(),
2321                                              VAT->getIndexTypeCVRQualifiers(),
2322                                                     VAT->getBracketsRange()));
2323}
2324
2325QualType ASTContext::getUnqualifiedArrayType(QualType T,
2326                                             Qualifiers &Quals) {
2327  Quals = T.getQualifiers();
2328  const ArrayType *AT = getAsArrayType(T);
2329  if (!AT) {
2330    return T.getUnqualifiedType();
2331  }
2332
2333  QualType Elt = AT->getElementType();
2334  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2335  if (Elt == UnqualElt)
2336    return T;
2337
2338  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2339    return getConstantArrayType(UnqualElt, CAT->getSize(),
2340                                CAT->getSizeModifier(), 0);
2341  }
2342
2343  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2344    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2345  }
2346
2347  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2348    return getVariableArrayType(UnqualElt,
2349                                VAT->getSizeExpr() ?
2350                                VAT->getSizeExpr()->Retain() : 0,
2351                                VAT->getSizeModifier(),
2352                                VAT->getIndexTypeCVRQualifiers(),
2353                                VAT->getBracketsRange());
2354  }
2355
2356  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2357  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2358                                    DSAT->getSizeModifier(), 0,
2359                                    SourceRange());
2360}
2361
2362/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2363/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2364/// they point to and return true. If T1 and T2 aren't pointer types
2365/// or pointer-to-member types, or if they are not similar at this
2366/// level, returns false and leaves T1 and T2 unchanged. Top-level
2367/// qualifiers on T1 and T2 are ignored. This function will typically
2368/// be called in a loop that successively "unwraps" pointer and
2369/// pointer-to-member types to compare them at each level.
2370bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2371  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2372                    *T2PtrType = T2->getAs<PointerType>();
2373  if (T1PtrType && T2PtrType) {
2374    T1 = T1PtrType->getPointeeType();
2375    T2 = T2PtrType->getPointeeType();
2376    return true;
2377  }
2378
2379  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2380                          *T2MPType = T2->getAs<MemberPointerType>();
2381  if (T1MPType && T2MPType &&
2382      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2383                             QualType(T2MPType->getClass(), 0))) {
2384    T1 = T1MPType->getPointeeType();
2385    T2 = T2MPType->getPointeeType();
2386    return true;
2387  }
2388
2389  if (getLangOptions().ObjC1) {
2390    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2391                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2392    if (T1OPType && T2OPType) {
2393      T1 = T1OPType->getPointeeType();
2394      T2 = T2OPType->getPointeeType();
2395      return true;
2396    }
2397  }
2398
2399  // FIXME: Block pointers, too?
2400
2401  return false;
2402}
2403
2404DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2405  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2406    return TD->getDeclName();
2407
2408  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2409    if (DTN->isIdentifier()) {
2410      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2411    } else {
2412      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2413    }
2414  }
2415
2416  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2417  assert(Storage);
2418  return (*Storage->begin())->getDeclName();
2419}
2420
2421TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2422  // If this template name refers to a template, the canonical
2423  // template name merely stores the template itself.
2424  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2425    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2426
2427  assert(!Name.getAsOverloadedTemplate());
2428
2429  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2430  assert(DTN && "Non-dependent template names must refer to template decls.");
2431  return DTN->CanonicalTemplateName;
2432}
2433
2434bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2435  X = getCanonicalTemplateName(X);
2436  Y = getCanonicalTemplateName(Y);
2437  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2438}
2439
2440TemplateArgument
2441ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2442  switch (Arg.getKind()) {
2443    case TemplateArgument::Null:
2444      return Arg;
2445
2446    case TemplateArgument::Expression:
2447      return Arg;
2448
2449    case TemplateArgument::Declaration:
2450      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2451
2452    case TemplateArgument::Template:
2453      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2454
2455    case TemplateArgument::Integral:
2456      return TemplateArgument(*Arg.getAsIntegral(),
2457                              getCanonicalType(Arg.getIntegralType()));
2458
2459    case TemplateArgument::Type:
2460      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2461
2462    case TemplateArgument::Pack: {
2463      // FIXME: Allocate in ASTContext
2464      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2465      unsigned Idx = 0;
2466      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2467                                        AEnd = Arg.pack_end();
2468           A != AEnd; (void)++A, ++Idx)
2469        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2470
2471      TemplateArgument Result;
2472      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2473      return Result;
2474    }
2475  }
2476
2477  // Silence GCC warning
2478  assert(false && "Unhandled template argument kind");
2479  return TemplateArgument();
2480}
2481
2482NestedNameSpecifier *
2483ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2484  if (!NNS)
2485    return 0;
2486
2487  switch (NNS->getKind()) {
2488  case NestedNameSpecifier::Identifier:
2489    // Canonicalize the prefix but keep the identifier the same.
2490    return NestedNameSpecifier::Create(*this,
2491                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2492                                       NNS->getAsIdentifier());
2493
2494  case NestedNameSpecifier::Namespace:
2495    // A namespace is canonical; build a nested-name-specifier with
2496    // this namespace and no prefix.
2497    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2498
2499  case NestedNameSpecifier::TypeSpec:
2500  case NestedNameSpecifier::TypeSpecWithTemplate: {
2501    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2502    return NestedNameSpecifier::Create(*this, 0,
2503                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2504                                       T.getTypePtr());
2505  }
2506
2507  case NestedNameSpecifier::Global:
2508    // The global specifier is canonical and unique.
2509    return NNS;
2510  }
2511
2512  // Required to silence a GCC warning
2513  return 0;
2514}
2515
2516
2517const ArrayType *ASTContext::getAsArrayType(QualType T) {
2518  // Handle the non-qualified case efficiently.
2519  if (!T.hasLocalQualifiers()) {
2520    // Handle the common positive case fast.
2521    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2522      return AT;
2523  }
2524
2525  // Handle the common negative case fast.
2526  QualType CType = T->getCanonicalTypeInternal();
2527  if (!isa<ArrayType>(CType))
2528    return 0;
2529
2530  // Apply any qualifiers from the array type to the element type.  This
2531  // implements C99 6.7.3p8: "If the specification of an array type includes
2532  // any type qualifiers, the element type is so qualified, not the array type."
2533
2534  // If we get here, we either have type qualifiers on the type, or we have
2535  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2536  // we must propagate them down into the element type.
2537
2538  QualifierCollector Qs;
2539  const Type *Ty = Qs.strip(T.getDesugaredType());
2540
2541  // If we have a simple case, just return now.
2542  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2543  if (ATy == 0 || Qs.empty())
2544    return ATy;
2545
2546  // Otherwise, we have an array and we have qualifiers on it.  Push the
2547  // qualifiers into the array element type and return a new array type.
2548  // Get the canonical version of the element with the extra qualifiers on it.
2549  // This can recursively sink qualifiers through multiple levels of arrays.
2550  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2551
2552  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2553    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2554                                                CAT->getSizeModifier(),
2555                                           CAT->getIndexTypeCVRQualifiers()));
2556  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2557    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2558                                                  IAT->getSizeModifier(),
2559                                           IAT->getIndexTypeCVRQualifiers()));
2560
2561  if (const DependentSizedArrayType *DSAT
2562        = dyn_cast<DependentSizedArrayType>(ATy))
2563    return cast<ArrayType>(
2564                     getDependentSizedArrayType(NewEltTy,
2565                                                DSAT->getSizeExpr() ?
2566                                              DSAT->getSizeExpr()->Retain() : 0,
2567                                                DSAT->getSizeModifier(),
2568                                              DSAT->getIndexTypeCVRQualifiers(),
2569                                                DSAT->getBracketsRange()));
2570
2571  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2572  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2573                                              VAT->getSizeExpr() ?
2574                                              VAT->getSizeExpr()->Retain() : 0,
2575                                              VAT->getSizeModifier(),
2576                                              VAT->getIndexTypeCVRQualifiers(),
2577                                              VAT->getBracketsRange()));
2578}
2579
2580
2581/// getArrayDecayedType - Return the properly qualified result of decaying the
2582/// specified array type to a pointer.  This operation is non-trivial when
2583/// handling typedefs etc.  The canonical type of "T" must be an array type,
2584/// this returns a pointer to a properly qualified element of the array.
2585///
2586/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2587QualType ASTContext::getArrayDecayedType(QualType Ty) {
2588  // Get the element type with 'getAsArrayType' so that we don't lose any
2589  // typedefs in the element type of the array.  This also handles propagation
2590  // of type qualifiers from the array type into the element type if present
2591  // (C99 6.7.3p8).
2592  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2593  assert(PrettyArrayType && "Not an array type!");
2594
2595  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2596
2597  // int x[restrict 4] ->  int *restrict
2598  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2599}
2600
2601QualType ASTContext::getBaseElementType(QualType QT) {
2602  QualifierCollector Qs;
2603  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2604    QT = AT->getElementType();
2605  return Qs.apply(QT);
2606}
2607
2608QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2609  QualType ElemTy = AT->getElementType();
2610
2611  if (const ArrayType *AT = getAsArrayType(ElemTy))
2612    return getBaseElementType(AT);
2613
2614  return ElemTy;
2615}
2616
2617/// getConstantArrayElementCount - Returns number of constant array elements.
2618uint64_t
2619ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2620  uint64_t ElementCount = 1;
2621  do {
2622    ElementCount *= CA->getSize().getZExtValue();
2623    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2624  } while (CA);
2625  return ElementCount;
2626}
2627
2628/// getFloatingRank - Return a relative rank for floating point types.
2629/// This routine will assert if passed a built-in type that isn't a float.
2630static FloatingRank getFloatingRank(QualType T) {
2631  if (const ComplexType *CT = T->getAs<ComplexType>())
2632    return getFloatingRank(CT->getElementType());
2633
2634  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2635  switch (T->getAs<BuiltinType>()->getKind()) {
2636  default: assert(0 && "getFloatingRank(): not a floating type");
2637  case BuiltinType::Float:      return FloatRank;
2638  case BuiltinType::Double:     return DoubleRank;
2639  case BuiltinType::LongDouble: return LongDoubleRank;
2640  }
2641}
2642
2643/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2644/// point or a complex type (based on typeDomain/typeSize).
2645/// 'typeDomain' is a real floating point or complex type.
2646/// 'typeSize' is a real floating point or complex type.
2647QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2648                                                       QualType Domain) const {
2649  FloatingRank EltRank = getFloatingRank(Size);
2650  if (Domain->isComplexType()) {
2651    switch (EltRank) {
2652    default: assert(0 && "getFloatingRank(): illegal value for rank");
2653    case FloatRank:      return FloatComplexTy;
2654    case DoubleRank:     return DoubleComplexTy;
2655    case LongDoubleRank: return LongDoubleComplexTy;
2656    }
2657  }
2658
2659  assert(Domain->isRealFloatingType() && "Unknown domain!");
2660  switch (EltRank) {
2661  default: assert(0 && "getFloatingRank(): illegal value for rank");
2662  case FloatRank:      return FloatTy;
2663  case DoubleRank:     return DoubleTy;
2664  case LongDoubleRank: return LongDoubleTy;
2665  }
2666}
2667
2668/// getFloatingTypeOrder - Compare the rank of the two specified floating
2669/// point types, ignoring the domain of the type (i.e. 'double' ==
2670/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2671/// LHS < RHS, return -1.
2672int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2673  FloatingRank LHSR = getFloatingRank(LHS);
2674  FloatingRank RHSR = getFloatingRank(RHS);
2675
2676  if (LHSR == RHSR)
2677    return 0;
2678  if (LHSR > RHSR)
2679    return 1;
2680  return -1;
2681}
2682
2683/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2684/// routine will assert if passed a built-in type that isn't an integer or enum,
2685/// or if it is not canonicalized.
2686unsigned ASTContext::getIntegerRank(Type *T) {
2687  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2688  if (EnumType* ET = dyn_cast<EnumType>(T))
2689    T = ET->getDecl()->getPromotionType().getTypePtr();
2690
2691  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2692    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2693
2694  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2695    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2696
2697  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2698    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2699
2700  switch (cast<BuiltinType>(T)->getKind()) {
2701  default: assert(0 && "getIntegerRank(): not a built-in integer");
2702  case BuiltinType::Bool:
2703    return 1 + (getIntWidth(BoolTy) << 3);
2704  case BuiltinType::Char_S:
2705  case BuiltinType::Char_U:
2706  case BuiltinType::SChar:
2707  case BuiltinType::UChar:
2708    return 2 + (getIntWidth(CharTy) << 3);
2709  case BuiltinType::Short:
2710  case BuiltinType::UShort:
2711    return 3 + (getIntWidth(ShortTy) << 3);
2712  case BuiltinType::Int:
2713  case BuiltinType::UInt:
2714    return 4 + (getIntWidth(IntTy) << 3);
2715  case BuiltinType::Long:
2716  case BuiltinType::ULong:
2717    return 5 + (getIntWidth(LongTy) << 3);
2718  case BuiltinType::LongLong:
2719  case BuiltinType::ULongLong:
2720    return 6 + (getIntWidth(LongLongTy) << 3);
2721  case BuiltinType::Int128:
2722  case BuiltinType::UInt128:
2723    return 7 + (getIntWidth(Int128Ty) << 3);
2724  }
2725}
2726
2727/// \brief Whether this is a promotable bitfield reference according
2728/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2729///
2730/// \returns the type this bit-field will promote to, or NULL if no
2731/// promotion occurs.
2732QualType ASTContext::isPromotableBitField(Expr *E) {
2733  if (E->isTypeDependent() || E->isValueDependent())
2734    return QualType();
2735
2736  FieldDecl *Field = E->getBitField();
2737  if (!Field)
2738    return QualType();
2739
2740  QualType FT = Field->getType();
2741
2742  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2743  uint64_t BitWidth = BitWidthAP.getZExtValue();
2744  uint64_t IntSize = getTypeSize(IntTy);
2745  // GCC extension compatibility: if the bit-field size is less than or equal
2746  // to the size of int, it gets promoted no matter what its type is.
2747  // For instance, unsigned long bf : 4 gets promoted to signed int.
2748  if (BitWidth < IntSize)
2749    return IntTy;
2750
2751  if (BitWidth == IntSize)
2752    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2753
2754  // Types bigger than int are not subject to promotions, and therefore act
2755  // like the base type.
2756  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2757  // is ridiculous.
2758  return QualType();
2759}
2760
2761/// getPromotedIntegerType - Returns the type that Promotable will
2762/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2763/// integer type.
2764QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2765  assert(!Promotable.isNull());
2766  assert(Promotable->isPromotableIntegerType());
2767  if (const EnumType *ET = Promotable->getAs<EnumType>())
2768    return ET->getDecl()->getPromotionType();
2769  if (Promotable->isSignedIntegerType())
2770    return IntTy;
2771  uint64_t PromotableSize = getTypeSize(Promotable);
2772  uint64_t IntSize = getTypeSize(IntTy);
2773  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2774  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2775}
2776
2777/// getIntegerTypeOrder - Returns the highest ranked integer type:
2778/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2779/// LHS < RHS, return -1.
2780int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2781  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2782  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2783  if (LHSC == RHSC) return 0;
2784
2785  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2786  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2787
2788  unsigned LHSRank = getIntegerRank(LHSC);
2789  unsigned RHSRank = getIntegerRank(RHSC);
2790
2791  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2792    if (LHSRank == RHSRank) return 0;
2793    return LHSRank > RHSRank ? 1 : -1;
2794  }
2795
2796  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2797  if (LHSUnsigned) {
2798    // If the unsigned [LHS] type is larger, return it.
2799    if (LHSRank >= RHSRank)
2800      return 1;
2801
2802    // If the signed type can represent all values of the unsigned type, it
2803    // wins.  Because we are dealing with 2's complement and types that are
2804    // powers of two larger than each other, this is always safe.
2805    return -1;
2806  }
2807
2808  // If the unsigned [RHS] type is larger, return it.
2809  if (RHSRank >= LHSRank)
2810    return -1;
2811
2812  // If the signed type can represent all values of the unsigned type, it
2813  // wins.  Because we are dealing with 2's complement and types that are
2814  // powers of two larger than each other, this is always safe.
2815  return 1;
2816}
2817
2818static RecordDecl *
2819CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2820                 SourceLocation L, IdentifierInfo *Id) {
2821  if (Ctx.getLangOptions().CPlusPlus)
2822    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2823  else
2824    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2825}
2826
2827// getCFConstantStringType - Return the type used for constant CFStrings.
2828QualType ASTContext::getCFConstantStringType() {
2829  if (!CFConstantStringTypeDecl) {
2830    CFConstantStringTypeDecl =
2831      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2832                       &Idents.get("NSConstantString"));
2833    CFConstantStringTypeDecl->startDefinition();
2834
2835    QualType FieldTypes[4];
2836
2837    // const int *isa;
2838    FieldTypes[0] = getPointerType(IntTy.withConst());
2839    // int flags;
2840    FieldTypes[1] = IntTy;
2841    // const char *str;
2842    FieldTypes[2] = getPointerType(CharTy.withConst());
2843    // long length;
2844    FieldTypes[3] = LongTy;
2845
2846    // Create fields
2847    for (unsigned i = 0; i < 4; ++i) {
2848      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2849                                           SourceLocation(), 0,
2850                                           FieldTypes[i], /*TInfo=*/0,
2851                                           /*BitWidth=*/0,
2852                                           /*Mutable=*/false);
2853      Field->setAccess(AS_public);
2854      CFConstantStringTypeDecl->addDecl(Field);
2855    }
2856
2857    CFConstantStringTypeDecl->completeDefinition();
2858  }
2859
2860  return getTagDeclType(CFConstantStringTypeDecl);
2861}
2862
2863void ASTContext::setCFConstantStringType(QualType T) {
2864  const RecordType *Rec = T->getAs<RecordType>();
2865  assert(Rec && "Invalid CFConstantStringType");
2866  CFConstantStringTypeDecl = Rec->getDecl();
2867}
2868
2869// getNSConstantStringType - Return the type used for constant NSStrings.
2870QualType ASTContext::getNSConstantStringType() {
2871  if (!NSConstantStringTypeDecl) {
2872    NSConstantStringTypeDecl =
2873    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2874                     &Idents.get("__builtin_NSString"));
2875    NSConstantStringTypeDecl->startDefinition();
2876
2877    QualType FieldTypes[3];
2878
2879    // const int *isa;
2880    FieldTypes[0] = getPointerType(IntTy.withConst());
2881    // const char *str;
2882    FieldTypes[1] = getPointerType(CharTy.withConst());
2883    // unsigned int length;
2884    FieldTypes[2] = UnsignedIntTy;
2885
2886    // Create fields
2887    for (unsigned i = 0; i < 3; ++i) {
2888      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
2889                                           SourceLocation(), 0,
2890                                           FieldTypes[i], /*TInfo=*/0,
2891                                           /*BitWidth=*/0,
2892                                           /*Mutable=*/false);
2893      Field->setAccess(AS_public);
2894      NSConstantStringTypeDecl->addDecl(Field);
2895    }
2896
2897    NSConstantStringTypeDecl->completeDefinition();
2898  }
2899
2900  return getTagDeclType(NSConstantStringTypeDecl);
2901}
2902
2903void ASTContext::setNSConstantStringType(QualType T) {
2904  const RecordType *Rec = T->getAs<RecordType>();
2905  assert(Rec && "Invalid NSConstantStringType");
2906  NSConstantStringTypeDecl = Rec->getDecl();
2907}
2908
2909QualType ASTContext::getObjCFastEnumerationStateType() {
2910  if (!ObjCFastEnumerationStateTypeDecl) {
2911    ObjCFastEnumerationStateTypeDecl =
2912      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2913                       &Idents.get("__objcFastEnumerationState"));
2914    ObjCFastEnumerationStateTypeDecl->startDefinition();
2915
2916    QualType FieldTypes[] = {
2917      UnsignedLongTy,
2918      getPointerType(ObjCIdTypedefType),
2919      getPointerType(UnsignedLongTy),
2920      getConstantArrayType(UnsignedLongTy,
2921                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2922    };
2923
2924    for (size_t i = 0; i < 4; ++i) {
2925      FieldDecl *Field = FieldDecl::Create(*this,
2926                                           ObjCFastEnumerationStateTypeDecl,
2927                                           SourceLocation(), 0,
2928                                           FieldTypes[i], /*TInfo=*/0,
2929                                           /*BitWidth=*/0,
2930                                           /*Mutable=*/false);
2931      Field->setAccess(AS_public);
2932      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2933    }
2934    if (getLangOptions().CPlusPlus)
2935      if (CXXRecordDecl *CXXRD =
2936            dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
2937        CXXRD->setEmpty(false);
2938
2939    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2940  }
2941
2942  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2943}
2944
2945QualType ASTContext::getBlockDescriptorType() {
2946  if (BlockDescriptorType)
2947    return getTagDeclType(BlockDescriptorType);
2948
2949  RecordDecl *T;
2950  // FIXME: Needs the FlagAppleBlock bit.
2951  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2952                       &Idents.get("__block_descriptor"));
2953  T->startDefinition();
2954
2955  QualType FieldTypes[] = {
2956    UnsignedLongTy,
2957    UnsignedLongTy,
2958  };
2959
2960  const char *FieldNames[] = {
2961    "reserved",
2962    "Size"
2963  };
2964
2965  for (size_t i = 0; i < 2; ++i) {
2966    FieldDecl *Field = FieldDecl::Create(*this,
2967                                         T,
2968                                         SourceLocation(),
2969                                         &Idents.get(FieldNames[i]),
2970                                         FieldTypes[i], /*TInfo=*/0,
2971                                         /*BitWidth=*/0,
2972                                         /*Mutable=*/false);
2973    Field->setAccess(AS_public);
2974    T->addDecl(Field);
2975  }
2976
2977  T->completeDefinition();
2978
2979  BlockDescriptorType = T;
2980
2981  return getTagDeclType(BlockDescriptorType);
2982}
2983
2984void ASTContext::setBlockDescriptorType(QualType T) {
2985  const RecordType *Rec = T->getAs<RecordType>();
2986  assert(Rec && "Invalid BlockDescriptorType");
2987  BlockDescriptorType = Rec->getDecl();
2988}
2989
2990QualType ASTContext::getBlockDescriptorExtendedType() {
2991  if (BlockDescriptorExtendedType)
2992    return getTagDeclType(BlockDescriptorExtendedType);
2993
2994  RecordDecl *T;
2995  // FIXME: Needs the FlagAppleBlock bit.
2996  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2997                       &Idents.get("__block_descriptor_withcopydispose"));
2998  T->startDefinition();
2999
3000  QualType FieldTypes[] = {
3001    UnsignedLongTy,
3002    UnsignedLongTy,
3003    getPointerType(VoidPtrTy),
3004    getPointerType(VoidPtrTy)
3005  };
3006
3007  const char *FieldNames[] = {
3008    "reserved",
3009    "Size",
3010    "CopyFuncPtr",
3011    "DestroyFuncPtr"
3012  };
3013
3014  for (size_t i = 0; i < 4; ++i) {
3015    FieldDecl *Field = FieldDecl::Create(*this,
3016                                         T,
3017                                         SourceLocation(),
3018                                         &Idents.get(FieldNames[i]),
3019                                         FieldTypes[i], /*TInfo=*/0,
3020                                         /*BitWidth=*/0,
3021                                         /*Mutable=*/false);
3022    Field->setAccess(AS_public);
3023    T->addDecl(Field);
3024  }
3025
3026  T->completeDefinition();
3027
3028  BlockDescriptorExtendedType = T;
3029
3030  return getTagDeclType(BlockDescriptorExtendedType);
3031}
3032
3033void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3034  const RecordType *Rec = T->getAs<RecordType>();
3035  assert(Rec && "Invalid BlockDescriptorType");
3036  BlockDescriptorExtendedType = Rec->getDecl();
3037}
3038
3039bool ASTContext::BlockRequiresCopying(QualType Ty) {
3040  if (Ty->isBlockPointerType())
3041    return true;
3042  if (isObjCNSObjectType(Ty))
3043    return true;
3044  if (Ty->isObjCObjectPointerType())
3045    return true;
3046  return false;
3047}
3048
3049QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3050  //  type = struct __Block_byref_1_X {
3051  //    void *__isa;
3052  //    struct __Block_byref_1_X *__forwarding;
3053  //    unsigned int __flags;
3054  //    unsigned int __size;
3055  //    void *__copy_helper;		// as needed
3056  //    void *__destroy_help		// as needed
3057  //    int X;
3058  //  } *
3059
3060  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3061
3062  // FIXME: Move up
3063  static unsigned int UniqueBlockByRefTypeID = 0;
3064  llvm::SmallString<36> Name;
3065  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3066                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3067  RecordDecl *T;
3068  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3069                       &Idents.get(Name.str()));
3070  T->startDefinition();
3071  QualType Int32Ty = IntTy;
3072  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3073  QualType FieldTypes[] = {
3074    getPointerType(VoidPtrTy),
3075    getPointerType(getTagDeclType(T)),
3076    Int32Ty,
3077    Int32Ty,
3078    getPointerType(VoidPtrTy),
3079    getPointerType(VoidPtrTy),
3080    Ty
3081  };
3082
3083  const char *FieldNames[] = {
3084    "__isa",
3085    "__forwarding",
3086    "__flags",
3087    "__size",
3088    "__copy_helper",
3089    "__destroy_helper",
3090    DeclName,
3091  };
3092
3093  for (size_t i = 0; i < 7; ++i) {
3094    if (!HasCopyAndDispose && i >=4 && i <= 5)
3095      continue;
3096    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3097                                         &Idents.get(FieldNames[i]),
3098                                         FieldTypes[i], /*TInfo=*/0,
3099                                         /*BitWidth=*/0, /*Mutable=*/false);
3100    Field->setAccess(AS_public);
3101    T->addDecl(Field);
3102  }
3103
3104  T->completeDefinition();
3105
3106  return getPointerType(getTagDeclType(T));
3107}
3108
3109
3110QualType ASTContext::getBlockParmType(
3111  bool BlockHasCopyDispose,
3112  llvm::SmallVectorImpl<const Expr *> &Layout) {
3113
3114  // FIXME: Move up
3115  static unsigned int UniqueBlockParmTypeID = 0;
3116  llvm::SmallString<36> Name;
3117  llvm::raw_svector_ostream(Name) << "__block_literal_"
3118                                  << ++UniqueBlockParmTypeID;
3119  RecordDecl *T;
3120  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3121                       &Idents.get(Name.str()));
3122  T->startDefinition();
3123  QualType FieldTypes[] = {
3124    getPointerType(VoidPtrTy),
3125    IntTy,
3126    IntTy,
3127    getPointerType(VoidPtrTy),
3128    (BlockHasCopyDispose ?
3129     getPointerType(getBlockDescriptorExtendedType()) :
3130     getPointerType(getBlockDescriptorType()))
3131  };
3132
3133  const char *FieldNames[] = {
3134    "__isa",
3135    "__flags",
3136    "__reserved",
3137    "__FuncPtr",
3138    "__descriptor"
3139  };
3140
3141  for (size_t i = 0; i < 5; ++i) {
3142    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3143                                         &Idents.get(FieldNames[i]),
3144                                         FieldTypes[i], /*TInfo=*/0,
3145                                         /*BitWidth=*/0, /*Mutable=*/false);
3146    Field->setAccess(AS_public);
3147    T->addDecl(Field);
3148  }
3149
3150  for (unsigned i = 0; i < Layout.size(); ++i) {
3151    const Expr *E = Layout[i];
3152
3153    QualType FieldType = E->getType();
3154    IdentifierInfo *FieldName = 0;
3155    if (isa<CXXThisExpr>(E)) {
3156      FieldName = &Idents.get("this");
3157    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3158      const ValueDecl *D = BDRE->getDecl();
3159      FieldName = D->getIdentifier();
3160      if (BDRE->isByRef())
3161        FieldType = BuildByRefType(D->getNameAsCString(), FieldType);
3162    } else {
3163      // Padding.
3164      assert(isa<ConstantArrayType>(FieldType) &&
3165             isa<DeclRefExpr>(E) &&
3166             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3167             "doesn't match characteristics of padding decl");
3168    }
3169
3170    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3171                                         FieldName, FieldType, /*TInfo=*/0,
3172                                         /*BitWidth=*/0, /*Mutable=*/false);
3173    Field->setAccess(AS_public);
3174    T->addDecl(Field);
3175  }
3176
3177  T->completeDefinition();
3178
3179  return getPointerType(getTagDeclType(T));
3180}
3181
3182void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3183  const RecordType *Rec = T->getAs<RecordType>();
3184  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3185  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3186}
3187
3188// This returns true if a type has been typedefed to BOOL:
3189// typedef <type> BOOL;
3190static bool isTypeTypedefedAsBOOL(QualType T) {
3191  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3192    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3193      return II->isStr("BOOL");
3194
3195  return false;
3196}
3197
3198/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3199/// purpose.
3200CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3201  CharUnits sz = getTypeSizeInChars(type);
3202
3203  // Make all integer and enum types at least as large as an int
3204  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3205    sz = std::max(sz, getTypeSizeInChars(IntTy));
3206  // Treat arrays as pointers, since that's how they're passed in.
3207  else if (type->isArrayType())
3208    sz = getTypeSizeInChars(VoidPtrTy);
3209  return sz;
3210}
3211
3212static inline
3213std::string charUnitsToString(const CharUnits &CU) {
3214  return llvm::itostr(CU.getQuantity());
3215}
3216
3217/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3218/// declaration.
3219void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3220                                             std::string& S) {
3221  const BlockDecl *Decl = Expr->getBlockDecl();
3222  QualType BlockTy =
3223      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3224  // Encode result type.
3225  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3226  // Compute size of all parameters.
3227  // Start with computing size of a pointer in number of bytes.
3228  // FIXME: There might(should) be a better way of doing this computation!
3229  SourceLocation Loc;
3230  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3231  CharUnits ParmOffset = PtrSize;
3232  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3233       E = Decl->param_end(); PI != E; ++PI) {
3234    QualType PType = (*PI)->getType();
3235    CharUnits sz = getObjCEncodingTypeSize(PType);
3236    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3237    ParmOffset += sz;
3238  }
3239  // Size of the argument frame
3240  S += charUnitsToString(ParmOffset);
3241  // Block pointer and offset.
3242  S += "@?0";
3243  ParmOffset = PtrSize;
3244
3245  // Argument types.
3246  ParmOffset = PtrSize;
3247  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3248       Decl->param_end(); PI != E; ++PI) {
3249    ParmVarDecl *PVDecl = *PI;
3250    QualType PType = PVDecl->getOriginalType();
3251    if (const ArrayType *AT =
3252          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3253      // Use array's original type only if it has known number of
3254      // elements.
3255      if (!isa<ConstantArrayType>(AT))
3256        PType = PVDecl->getType();
3257    } else if (PType->isFunctionType())
3258      PType = PVDecl->getType();
3259    getObjCEncodingForType(PType, S);
3260    S += charUnitsToString(ParmOffset);
3261    ParmOffset += getObjCEncodingTypeSize(PType);
3262  }
3263}
3264
3265/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3266/// declaration.
3267void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3268                                              std::string& S) {
3269  // FIXME: This is not very efficient.
3270  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3271  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3272  // Encode result type.
3273  getObjCEncodingForType(Decl->getResultType(), S);
3274  // Compute size of all parameters.
3275  // Start with computing size of a pointer in number of bytes.
3276  // FIXME: There might(should) be a better way of doing this computation!
3277  SourceLocation Loc;
3278  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3279  // The first two arguments (self and _cmd) are pointers; account for
3280  // their size.
3281  CharUnits ParmOffset = 2 * PtrSize;
3282  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3283       E = Decl->sel_param_end(); PI != E; ++PI) {
3284    QualType PType = (*PI)->getType();
3285    CharUnits sz = getObjCEncodingTypeSize(PType);
3286    assert (sz.isPositive() &&
3287        "getObjCEncodingForMethodDecl - Incomplete param type");
3288    ParmOffset += sz;
3289  }
3290  S += charUnitsToString(ParmOffset);
3291  S += "@0:";
3292  S += charUnitsToString(PtrSize);
3293
3294  // Argument types.
3295  ParmOffset = 2 * PtrSize;
3296  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3297       E = Decl->sel_param_end(); PI != E; ++PI) {
3298    ParmVarDecl *PVDecl = *PI;
3299    QualType PType = PVDecl->getOriginalType();
3300    if (const ArrayType *AT =
3301          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3302      // Use array's original type only if it has known number of
3303      // elements.
3304      if (!isa<ConstantArrayType>(AT))
3305        PType = PVDecl->getType();
3306    } else if (PType->isFunctionType())
3307      PType = PVDecl->getType();
3308    // Process argument qualifiers for user supplied arguments; such as,
3309    // 'in', 'inout', etc.
3310    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3311    getObjCEncodingForType(PType, S);
3312    S += charUnitsToString(ParmOffset);
3313    ParmOffset += getObjCEncodingTypeSize(PType);
3314  }
3315}
3316
3317/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3318/// property declaration. If non-NULL, Container must be either an
3319/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3320/// NULL when getting encodings for protocol properties.
3321/// Property attributes are stored as a comma-delimited C string. The simple
3322/// attributes readonly and bycopy are encoded as single characters. The
3323/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3324/// encoded as single characters, followed by an identifier. Property types
3325/// are also encoded as a parametrized attribute. The characters used to encode
3326/// these attributes are defined by the following enumeration:
3327/// @code
3328/// enum PropertyAttributes {
3329/// kPropertyReadOnly = 'R',   // property is read-only.
3330/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3331/// kPropertyByref = '&',  // property is a reference to the value last assigned
3332/// kPropertyDynamic = 'D',    // property is dynamic
3333/// kPropertyGetter = 'G',     // followed by getter selector name
3334/// kPropertySetter = 'S',     // followed by setter selector name
3335/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3336/// kPropertyType = 't'              // followed by old-style type encoding.
3337/// kPropertyWeak = 'W'              // 'weak' property
3338/// kPropertyStrong = 'P'            // property GC'able
3339/// kPropertyNonAtomic = 'N'         // property non-atomic
3340/// };
3341/// @endcode
3342void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3343                                                const Decl *Container,
3344                                                std::string& S) {
3345  // Collect information from the property implementation decl(s).
3346  bool Dynamic = false;
3347  ObjCPropertyImplDecl *SynthesizePID = 0;
3348
3349  // FIXME: Duplicated code due to poor abstraction.
3350  if (Container) {
3351    if (const ObjCCategoryImplDecl *CID =
3352        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3353      for (ObjCCategoryImplDecl::propimpl_iterator
3354             i = CID->propimpl_begin(), e = CID->propimpl_end();
3355           i != e; ++i) {
3356        ObjCPropertyImplDecl *PID = *i;
3357        if (PID->getPropertyDecl() == PD) {
3358          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3359            Dynamic = true;
3360          } else {
3361            SynthesizePID = PID;
3362          }
3363        }
3364      }
3365    } else {
3366      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3367      for (ObjCCategoryImplDecl::propimpl_iterator
3368             i = OID->propimpl_begin(), e = OID->propimpl_end();
3369           i != e; ++i) {
3370        ObjCPropertyImplDecl *PID = *i;
3371        if (PID->getPropertyDecl() == PD) {
3372          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3373            Dynamic = true;
3374          } else {
3375            SynthesizePID = PID;
3376          }
3377        }
3378      }
3379    }
3380  }
3381
3382  // FIXME: This is not very efficient.
3383  S = "T";
3384
3385  // Encode result type.
3386  // GCC has some special rules regarding encoding of properties which
3387  // closely resembles encoding of ivars.
3388  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3389                             true /* outermost type */,
3390                             true /* encoding for property */);
3391
3392  if (PD->isReadOnly()) {
3393    S += ",R";
3394  } else {
3395    switch (PD->getSetterKind()) {
3396    case ObjCPropertyDecl::Assign: break;
3397    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3398    case ObjCPropertyDecl::Retain: S += ",&"; break;
3399    }
3400  }
3401
3402  // It really isn't clear at all what this means, since properties
3403  // are "dynamic by default".
3404  if (Dynamic)
3405    S += ",D";
3406
3407  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3408    S += ",N";
3409
3410  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3411    S += ",G";
3412    S += PD->getGetterName().getAsString();
3413  }
3414
3415  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3416    S += ",S";
3417    S += PD->getSetterName().getAsString();
3418  }
3419
3420  if (SynthesizePID) {
3421    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3422    S += ",V";
3423    S += OID->getNameAsString();
3424  }
3425
3426  // FIXME: OBJCGC: weak & strong
3427}
3428
3429/// getLegacyIntegralTypeEncoding -
3430/// Another legacy compatibility encoding: 32-bit longs are encoded as
3431/// 'l' or 'L' , but not always.  For typedefs, we need to use
3432/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3433///
3434void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3435  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3436    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3437      if (BT->getKind() == BuiltinType::ULong &&
3438          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3439        PointeeTy = UnsignedIntTy;
3440      else
3441        if (BT->getKind() == BuiltinType::Long &&
3442            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3443          PointeeTy = IntTy;
3444    }
3445  }
3446}
3447
3448void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3449                                        const FieldDecl *Field) {
3450  // We follow the behavior of gcc, expanding structures which are
3451  // directly pointed to, and expanding embedded structures. Note that
3452  // these rules are sufficient to prevent recursive encoding of the
3453  // same type.
3454  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3455                             true /* outermost type */);
3456}
3457
3458static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3459    switch (T->getAs<BuiltinType>()->getKind()) {
3460    default: assert(0 && "Unhandled builtin type kind");
3461    case BuiltinType::Void:       return 'v';
3462    case BuiltinType::Bool:       return 'B';
3463    case BuiltinType::Char_U:
3464    case BuiltinType::UChar:      return 'C';
3465    case BuiltinType::UShort:     return 'S';
3466    case BuiltinType::UInt:       return 'I';
3467    case BuiltinType::ULong:
3468        return
3469          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3470    case BuiltinType::UInt128:    return 'T';
3471    case BuiltinType::ULongLong:  return 'Q';
3472    case BuiltinType::Char_S:
3473    case BuiltinType::SChar:      return 'c';
3474    case BuiltinType::Short:      return 's';
3475    case BuiltinType::WChar:
3476    case BuiltinType::Int:        return 'i';
3477    case BuiltinType::Long:
3478      return
3479        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3480    case BuiltinType::LongLong:   return 'q';
3481    case BuiltinType::Int128:     return 't';
3482    case BuiltinType::Float:      return 'f';
3483    case BuiltinType::Double:     return 'd';
3484    case BuiltinType::LongDouble: return 'd';
3485    }
3486}
3487
3488static void EncodeBitField(const ASTContext *Context, std::string& S,
3489                           QualType T, const FieldDecl *FD) {
3490  const Expr *E = FD->getBitWidth();
3491  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3492  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3493  S += 'b';
3494  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3495  // The GNU runtime requires more information; bitfields are encoded as b,
3496  // then the offset (in bits) of the first element, then the type of the
3497  // bitfield, then the size in bits.  For example, in this structure:
3498  //
3499  // struct
3500  // {
3501  //    int integer;
3502  //    int flags:2;
3503  // };
3504  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3505  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3506  // information is not especially sensible, but we're stuck with it for
3507  // compatibility with GCC, although providing it breaks anything that
3508  // actually uses runtime introspection and wants to work on both runtimes...
3509  if (!Ctx->getLangOptions().NeXTRuntime) {
3510    const RecordDecl *RD = FD->getParent();
3511    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3512    // FIXME: This same linear search is also used in ExprConstant - it might
3513    // be better if the FieldDecl stored its offset.  We'd be increasing the
3514    // size of the object slightly, but saving some time every time it is used.
3515    unsigned i = 0;
3516    for (RecordDecl::field_iterator Field = RD->field_begin(),
3517                                 FieldEnd = RD->field_end();
3518         Field != FieldEnd; (void)++Field, ++i) {
3519      if (*Field == FD)
3520        break;
3521    }
3522    S += llvm::utostr(RL.getFieldOffset(i));
3523    S += ObjCEncodingForPrimitiveKind(Context, T);
3524  }
3525  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3526  S += llvm::utostr(N);
3527}
3528
3529// FIXME: Use SmallString for accumulating string.
3530void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3531                                            bool ExpandPointedToStructures,
3532                                            bool ExpandStructures,
3533                                            const FieldDecl *FD,
3534                                            bool OutermostType,
3535                                            bool EncodingProperty) {
3536  if (T->getAs<BuiltinType>()) {
3537    if (FD && FD->isBitField())
3538      return EncodeBitField(this, S, T, FD);
3539    S += ObjCEncodingForPrimitiveKind(this, T);
3540    return;
3541  }
3542
3543  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3544    S += 'j';
3545    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3546                               false);
3547    return;
3548  }
3549
3550  // encoding for pointer or r3eference types.
3551  QualType PointeeTy;
3552  if (const PointerType *PT = T->getAs<PointerType>()) {
3553    if (PT->isObjCSelType()) {
3554      S += ':';
3555      return;
3556    }
3557    PointeeTy = PT->getPointeeType();
3558  }
3559  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3560    PointeeTy = RT->getPointeeType();
3561  if (!PointeeTy.isNull()) {
3562    bool isReadOnly = false;
3563    // For historical/compatibility reasons, the read-only qualifier of the
3564    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3565    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3566    // Also, do not emit the 'r' for anything but the outermost type!
3567    if (isa<TypedefType>(T.getTypePtr())) {
3568      if (OutermostType && T.isConstQualified()) {
3569        isReadOnly = true;
3570        S += 'r';
3571      }
3572    } else if (OutermostType) {
3573      QualType P = PointeeTy;
3574      while (P->getAs<PointerType>())
3575        P = P->getAs<PointerType>()->getPointeeType();
3576      if (P.isConstQualified()) {
3577        isReadOnly = true;
3578        S += 'r';
3579      }
3580    }
3581    if (isReadOnly) {
3582      // Another legacy compatibility encoding. Some ObjC qualifier and type
3583      // combinations need to be rearranged.
3584      // Rewrite "in const" from "nr" to "rn"
3585      if (llvm::StringRef(S).endswith("nr"))
3586        S.replace(S.end()-2, S.end(), "rn");
3587    }
3588
3589    if (PointeeTy->isCharType()) {
3590      // char pointer types should be encoded as '*' unless it is a
3591      // type that has been typedef'd to 'BOOL'.
3592      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3593        S += '*';
3594        return;
3595      }
3596    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3597      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3598      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3599        S += '#';
3600        return;
3601      }
3602      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3603      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3604        S += '@';
3605        return;
3606      }
3607      // fall through...
3608    }
3609    S += '^';
3610    getLegacyIntegralTypeEncoding(PointeeTy);
3611
3612    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3613                               NULL);
3614    return;
3615  }
3616
3617  if (const ArrayType *AT =
3618      // Ignore type qualifiers etc.
3619        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3620    if (isa<IncompleteArrayType>(AT)) {
3621      // Incomplete arrays are encoded as a pointer to the array element.
3622      S += '^';
3623
3624      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3625                                 false, ExpandStructures, FD);
3626    } else {
3627      S += '[';
3628
3629      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3630        S += llvm::utostr(CAT->getSize().getZExtValue());
3631      else {
3632        //Variable length arrays are encoded as a regular array with 0 elements.
3633        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3634        S += '0';
3635      }
3636
3637      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3638                                 false, ExpandStructures, FD);
3639      S += ']';
3640    }
3641    return;
3642  }
3643
3644  if (T->getAs<FunctionType>()) {
3645    S += '?';
3646    return;
3647  }
3648
3649  if (const RecordType *RTy = T->getAs<RecordType>()) {
3650    RecordDecl *RDecl = RTy->getDecl();
3651    S += RDecl->isUnion() ? '(' : '{';
3652    // Anonymous structures print as '?'
3653    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3654      S += II->getName();
3655      if (ClassTemplateSpecializationDecl *Spec
3656          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3657        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3658        std::string TemplateArgsStr
3659          = TemplateSpecializationType::PrintTemplateArgumentList(
3660                                            TemplateArgs.getFlatArgumentList(),
3661                                            TemplateArgs.flat_size(),
3662                                            (*this).PrintingPolicy);
3663
3664        S += TemplateArgsStr;
3665      }
3666    } else {
3667      S += '?';
3668    }
3669    if (ExpandStructures) {
3670      S += '=';
3671      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3672                                   FieldEnd = RDecl->field_end();
3673           Field != FieldEnd; ++Field) {
3674        if (FD) {
3675          S += '"';
3676          S += Field->getNameAsString();
3677          S += '"';
3678        }
3679
3680        // Special case bit-fields.
3681        if (Field->isBitField()) {
3682          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3683                                     (*Field));
3684        } else {
3685          QualType qt = Field->getType();
3686          getLegacyIntegralTypeEncoding(qt);
3687          getObjCEncodingForTypeImpl(qt, S, false, true,
3688                                     FD);
3689        }
3690      }
3691    }
3692    S += RDecl->isUnion() ? ')' : '}';
3693    return;
3694  }
3695
3696  if (T->isEnumeralType()) {
3697    if (FD && FD->isBitField())
3698      EncodeBitField(this, S, T, FD);
3699    else
3700      S += 'i';
3701    return;
3702  }
3703
3704  if (T->isBlockPointerType()) {
3705    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3706    return;
3707  }
3708
3709  // Ignore protocol qualifiers when mangling at this level.
3710  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3711    T = OT->getBaseType();
3712
3713  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3714    // @encode(class_name)
3715    ObjCInterfaceDecl *OI = OIT->getDecl();
3716    S += '{';
3717    const IdentifierInfo *II = OI->getIdentifier();
3718    S += II->getName();
3719    S += '=';
3720    llvm::SmallVector<FieldDecl*, 32> RecFields;
3721    CollectObjCIvars(OI, RecFields);
3722    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3723      if (RecFields[i]->isBitField())
3724        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3725                                   RecFields[i]);
3726      else
3727        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3728                                   FD);
3729    }
3730    S += '}';
3731    return;
3732  }
3733
3734  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3735    if (OPT->isObjCIdType()) {
3736      S += '@';
3737      return;
3738    }
3739
3740    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3741      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3742      // Since this is a binary compatibility issue, need to consult with runtime
3743      // folks. Fortunately, this is a *very* obsure construct.
3744      S += '#';
3745      return;
3746    }
3747
3748    if (OPT->isObjCQualifiedIdType()) {
3749      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3750                                 ExpandPointedToStructures,
3751                                 ExpandStructures, FD);
3752      if (FD || EncodingProperty) {
3753        // Note that we do extended encoding of protocol qualifer list
3754        // Only when doing ivar or property encoding.
3755        S += '"';
3756        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3757             E = OPT->qual_end(); I != E; ++I) {
3758          S += '<';
3759          S += (*I)->getNameAsString();
3760          S += '>';
3761        }
3762        S += '"';
3763      }
3764      return;
3765    }
3766
3767    QualType PointeeTy = OPT->getPointeeType();
3768    if (!EncodingProperty &&
3769        isa<TypedefType>(PointeeTy.getTypePtr())) {
3770      // Another historical/compatibility reason.
3771      // We encode the underlying type which comes out as
3772      // {...};
3773      S += '^';
3774      getObjCEncodingForTypeImpl(PointeeTy, S,
3775                                 false, ExpandPointedToStructures,
3776                                 NULL);
3777      return;
3778    }
3779
3780    S += '@';
3781    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3782      S += '"';
3783      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3784      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3785           E = OPT->qual_end(); I != E; ++I) {
3786        S += '<';
3787        S += (*I)->getNameAsString();
3788        S += '>';
3789      }
3790      S += '"';
3791    }
3792    return;
3793  }
3794
3795  // gcc just blithely ignores member pointers.
3796  // TODO: maybe there should be a mangling for these
3797  if (T->getAs<MemberPointerType>())
3798    return;
3799
3800  assert(0 && "@encode for type not implemented!");
3801}
3802
3803void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3804                                                 std::string& S) const {
3805  if (QT & Decl::OBJC_TQ_In)
3806    S += 'n';
3807  if (QT & Decl::OBJC_TQ_Inout)
3808    S += 'N';
3809  if (QT & Decl::OBJC_TQ_Out)
3810    S += 'o';
3811  if (QT & Decl::OBJC_TQ_Bycopy)
3812    S += 'O';
3813  if (QT & Decl::OBJC_TQ_Byref)
3814    S += 'R';
3815  if (QT & Decl::OBJC_TQ_Oneway)
3816    S += 'V';
3817}
3818
3819void ASTContext::setBuiltinVaListType(QualType T) {
3820  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3821
3822  BuiltinVaListType = T;
3823}
3824
3825void ASTContext::setObjCIdType(QualType T) {
3826  ObjCIdTypedefType = T;
3827}
3828
3829void ASTContext::setObjCSelType(QualType T) {
3830  ObjCSelTypedefType = T;
3831}
3832
3833void ASTContext::setObjCProtoType(QualType QT) {
3834  ObjCProtoType = QT;
3835}
3836
3837void ASTContext::setObjCClassType(QualType T) {
3838  ObjCClassTypedefType = T;
3839}
3840
3841void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3842  assert(ObjCConstantStringType.isNull() &&
3843         "'NSConstantString' type already set!");
3844
3845  ObjCConstantStringType = getObjCInterfaceType(Decl);
3846}
3847
3848/// \brief Retrieve the template name that corresponds to a non-empty
3849/// lookup.
3850TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3851                                                   UnresolvedSetIterator End) {
3852  unsigned size = End - Begin;
3853  assert(size > 1 && "set is not overloaded!");
3854
3855  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3856                          size * sizeof(FunctionTemplateDecl*));
3857  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3858
3859  NamedDecl **Storage = OT->getStorage();
3860  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3861    NamedDecl *D = *I;
3862    assert(isa<FunctionTemplateDecl>(D) ||
3863           (isa<UsingShadowDecl>(D) &&
3864            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3865    *Storage++ = D;
3866  }
3867
3868  return TemplateName(OT);
3869}
3870
3871/// \brief Retrieve the template name that represents a qualified
3872/// template name such as \c std::vector.
3873TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3874                                                  bool TemplateKeyword,
3875                                                  TemplateDecl *Template) {
3876  // FIXME: Canonicalization?
3877  llvm::FoldingSetNodeID ID;
3878  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3879
3880  void *InsertPos = 0;
3881  QualifiedTemplateName *QTN =
3882    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3883  if (!QTN) {
3884    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3885    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3886  }
3887
3888  return TemplateName(QTN);
3889}
3890
3891/// \brief Retrieve the template name that represents a dependent
3892/// template name such as \c MetaFun::template apply.
3893TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3894                                                  const IdentifierInfo *Name) {
3895  assert((!NNS || NNS->isDependent()) &&
3896         "Nested name specifier must be dependent");
3897
3898  llvm::FoldingSetNodeID ID;
3899  DependentTemplateName::Profile(ID, NNS, Name);
3900
3901  void *InsertPos = 0;
3902  DependentTemplateName *QTN =
3903    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3904
3905  if (QTN)
3906    return TemplateName(QTN);
3907
3908  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3909  if (CanonNNS == NNS) {
3910    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3911  } else {
3912    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3913    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3914    DependentTemplateName *CheckQTN =
3915      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3916    assert(!CheckQTN && "Dependent type name canonicalization broken");
3917    (void)CheckQTN;
3918  }
3919
3920  DependentTemplateNames.InsertNode(QTN, InsertPos);
3921  return TemplateName(QTN);
3922}
3923
3924/// \brief Retrieve the template name that represents a dependent
3925/// template name such as \c MetaFun::template operator+.
3926TemplateName
3927ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3928                                     OverloadedOperatorKind Operator) {
3929  assert((!NNS || NNS->isDependent()) &&
3930         "Nested name specifier must be dependent");
3931
3932  llvm::FoldingSetNodeID ID;
3933  DependentTemplateName::Profile(ID, NNS, Operator);
3934
3935  void *InsertPos = 0;
3936  DependentTemplateName *QTN
3937    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3938
3939  if (QTN)
3940    return TemplateName(QTN);
3941
3942  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3943  if (CanonNNS == NNS) {
3944    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3945  } else {
3946    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3947    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3948
3949    DependentTemplateName *CheckQTN
3950      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3951    assert(!CheckQTN && "Dependent template name canonicalization broken");
3952    (void)CheckQTN;
3953  }
3954
3955  DependentTemplateNames.InsertNode(QTN, InsertPos);
3956  return TemplateName(QTN);
3957}
3958
3959/// getFromTargetType - Given one of the integer types provided by
3960/// TargetInfo, produce the corresponding type. The unsigned @p Type
3961/// is actually a value of type @c TargetInfo::IntType.
3962CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3963  switch (Type) {
3964  case TargetInfo::NoInt: return CanQualType();
3965  case TargetInfo::SignedShort: return ShortTy;
3966  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3967  case TargetInfo::SignedInt: return IntTy;
3968  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3969  case TargetInfo::SignedLong: return LongTy;
3970  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3971  case TargetInfo::SignedLongLong: return LongLongTy;
3972  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3973  }
3974
3975  assert(false && "Unhandled TargetInfo::IntType value");
3976  return CanQualType();
3977}
3978
3979//===----------------------------------------------------------------------===//
3980//                        Type Predicates.
3981//===----------------------------------------------------------------------===//
3982
3983/// isObjCNSObjectType - Return true if this is an NSObject object using
3984/// NSObject attribute on a c-style pointer type.
3985/// FIXME - Make it work directly on types.
3986/// FIXME: Move to Type.
3987///
3988bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3989  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3990    if (TypedefDecl *TD = TDT->getDecl())
3991      if (TD->getAttr<ObjCNSObjectAttr>())
3992        return true;
3993  }
3994  return false;
3995}
3996
3997/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3998/// garbage collection attribute.
3999///
4000Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4001  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4002  if (getLangOptions().ObjC1 &&
4003      getLangOptions().getGCMode() != LangOptions::NonGC) {
4004    GCAttrs = Ty.getObjCGCAttr();
4005    // Default behavious under objective-c's gc is for objective-c pointers
4006    // (or pointers to them) be treated as though they were declared
4007    // as __strong.
4008    if (GCAttrs == Qualifiers::GCNone) {
4009      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4010        GCAttrs = Qualifiers::Strong;
4011      else if (Ty->isPointerType())
4012        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4013    }
4014    // Non-pointers have none gc'able attribute regardless of the attribute
4015    // set on them.
4016    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4017      return Qualifiers::GCNone;
4018  }
4019  return GCAttrs;
4020}
4021
4022//===----------------------------------------------------------------------===//
4023//                        Type Compatibility Testing
4024//===----------------------------------------------------------------------===//
4025
4026/// areCompatVectorTypes - Return true if the two specified vector types are
4027/// compatible.
4028static bool areCompatVectorTypes(const VectorType *LHS,
4029                                 const VectorType *RHS) {
4030  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4031  return LHS->getElementType() == RHS->getElementType() &&
4032         LHS->getNumElements() == RHS->getNumElements();
4033}
4034
4035//===----------------------------------------------------------------------===//
4036// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4037//===----------------------------------------------------------------------===//
4038
4039/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4040/// inheritance hierarchy of 'rProto'.
4041bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4042                                                ObjCProtocolDecl *rProto) {
4043  if (lProto == rProto)
4044    return true;
4045  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4046       E = rProto->protocol_end(); PI != E; ++PI)
4047    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4048      return true;
4049  return false;
4050}
4051
4052/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4053/// return true if lhs's protocols conform to rhs's protocol; false
4054/// otherwise.
4055bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4056  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4057    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4058  return false;
4059}
4060
4061/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4062/// ObjCQualifiedIDType.
4063bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4064                                                   bool compare) {
4065  // Allow id<P..> and an 'id' or void* type in all cases.
4066  if (lhs->isVoidPointerType() ||
4067      lhs->isObjCIdType() || lhs->isObjCClassType())
4068    return true;
4069  else if (rhs->isVoidPointerType() ||
4070           rhs->isObjCIdType() || rhs->isObjCClassType())
4071    return true;
4072
4073  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4074    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4075
4076    if (!rhsOPT) return false;
4077
4078    if (rhsOPT->qual_empty()) {
4079      // If the RHS is a unqualified interface pointer "NSString*",
4080      // make sure we check the class hierarchy.
4081      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4082        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4083             E = lhsQID->qual_end(); I != E; ++I) {
4084          // when comparing an id<P> on lhs with a static type on rhs,
4085          // see if static class implements all of id's protocols, directly or
4086          // through its super class and categories.
4087          if (!rhsID->ClassImplementsProtocol(*I, true))
4088            return false;
4089        }
4090      }
4091      // If there are no qualifiers and no interface, we have an 'id'.
4092      return true;
4093    }
4094    // Both the right and left sides have qualifiers.
4095    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4096         E = lhsQID->qual_end(); I != E; ++I) {
4097      ObjCProtocolDecl *lhsProto = *I;
4098      bool match = false;
4099
4100      // when comparing an id<P> on lhs with a static type on rhs,
4101      // see if static class implements all of id's protocols, directly or
4102      // through its super class and categories.
4103      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4104           E = rhsOPT->qual_end(); J != E; ++J) {
4105        ObjCProtocolDecl *rhsProto = *J;
4106        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4107            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4108          match = true;
4109          break;
4110        }
4111      }
4112      // If the RHS is a qualified interface pointer "NSString<P>*",
4113      // make sure we check the class hierarchy.
4114      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4115        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4116             E = lhsQID->qual_end(); I != E; ++I) {
4117          // when comparing an id<P> on lhs with a static type on rhs,
4118          // see if static class implements all of id's protocols, directly or
4119          // through its super class and categories.
4120          if (rhsID->ClassImplementsProtocol(*I, true)) {
4121            match = true;
4122            break;
4123          }
4124        }
4125      }
4126      if (!match)
4127        return false;
4128    }
4129
4130    return true;
4131  }
4132
4133  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4134  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4135
4136  if (const ObjCObjectPointerType *lhsOPT =
4137        lhs->getAsObjCInterfacePointerType()) {
4138    if (lhsOPT->qual_empty()) {
4139      bool match = false;
4140      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4141        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4142             E = rhsQID->qual_end(); I != E; ++I) {
4143          // when comparing an id<P> on lhs with a static type on rhs,
4144          // see if static class implements all of id's protocols, directly or
4145          // through its super class and categories.
4146          if (lhsID->ClassImplementsProtocol(*I, true)) {
4147            match = true;
4148            break;
4149          }
4150        }
4151        if (!match)
4152          return false;
4153      }
4154      return true;
4155    }
4156    // Both the right and left sides have qualifiers.
4157    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4158         E = lhsOPT->qual_end(); I != E; ++I) {
4159      ObjCProtocolDecl *lhsProto = *I;
4160      bool match = false;
4161
4162      // when comparing an id<P> on lhs with a static type on rhs,
4163      // see if static class implements all of id's protocols, directly or
4164      // through its super class and categories.
4165      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4166           E = rhsQID->qual_end(); J != E; ++J) {
4167        ObjCProtocolDecl *rhsProto = *J;
4168        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4169            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4170          match = true;
4171          break;
4172        }
4173      }
4174      if (!match)
4175        return false;
4176    }
4177    return true;
4178  }
4179  return false;
4180}
4181
4182/// canAssignObjCInterfaces - Return true if the two interface types are
4183/// compatible for assignment from RHS to LHS.  This handles validation of any
4184/// protocol qualifiers on the LHS or RHS.
4185///
4186bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4187                                         const ObjCObjectPointerType *RHSOPT) {
4188  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4189  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4190
4191  // If either type represents the built-in 'id' or 'Class' types, return true.
4192  if (LHS->isObjCUnqualifiedIdOrClass() ||
4193      RHS->isObjCUnqualifiedIdOrClass())
4194    return true;
4195
4196  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4197    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4198                                             QualType(RHSOPT,0),
4199                                             false);
4200
4201  // If we have 2 user-defined types, fall into that path.
4202  if (LHS->getInterface() && RHS->getInterface())
4203    return canAssignObjCInterfaces(LHS, RHS);
4204
4205  return false;
4206}
4207
4208/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4209/// for providing type-safty for objective-c pointers used to pass/return
4210/// arguments in block literals. When passed as arguments, passing 'A*' where
4211/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4212/// not OK. For the return type, the opposite is not OK.
4213bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4214                                         const ObjCObjectPointerType *LHSOPT,
4215                                         const ObjCObjectPointerType *RHSOPT) {
4216  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4217    return true;
4218
4219  if (LHSOPT->isObjCBuiltinType()) {
4220    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4221  }
4222
4223  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4224    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4225                                             QualType(RHSOPT,0),
4226                                             false);
4227
4228  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4229  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4230  if (LHS && RHS)  { // We have 2 user-defined types.
4231    if (LHS != RHS) {
4232      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4233        return false;
4234      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4235        return true;
4236    }
4237    else
4238      return true;
4239  }
4240  return false;
4241}
4242
4243/// getIntersectionOfProtocols - This routine finds the intersection of set
4244/// of protocols inherited from two distinct objective-c pointer objects.
4245/// It is used to build composite qualifier list of the composite type of
4246/// the conditional expression involving two objective-c pointer objects.
4247static
4248void getIntersectionOfProtocols(ASTContext &Context,
4249                                const ObjCObjectPointerType *LHSOPT,
4250                                const ObjCObjectPointerType *RHSOPT,
4251      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4252
4253  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4254  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4255  assert(LHS->getInterface() && "LHS must have an interface base");
4256  assert(RHS->getInterface() && "RHS must have an interface base");
4257
4258  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4259  unsigned LHSNumProtocols = LHS->getNumProtocols();
4260  if (LHSNumProtocols > 0)
4261    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4262  else {
4263    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4264    Context.CollectInheritedProtocols(LHS->getInterface(),
4265                                      LHSInheritedProtocols);
4266    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4267                                LHSInheritedProtocols.end());
4268  }
4269
4270  unsigned RHSNumProtocols = RHS->getNumProtocols();
4271  if (RHSNumProtocols > 0) {
4272    ObjCProtocolDecl **RHSProtocols =
4273      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4274    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4275      if (InheritedProtocolSet.count(RHSProtocols[i]))
4276        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4277  }
4278  else {
4279    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4280    Context.CollectInheritedProtocols(RHS->getInterface(),
4281                                      RHSInheritedProtocols);
4282    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4283         RHSInheritedProtocols.begin(),
4284         E = RHSInheritedProtocols.end(); I != E; ++I)
4285      if (InheritedProtocolSet.count((*I)))
4286        IntersectionOfProtocols.push_back((*I));
4287  }
4288}
4289
4290/// areCommonBaseCompatible - Returns common base class of the two classes if
4291/// one found. Note that this is O'2 algorithm. But it will be called as the
4292/// last type comparison in a ?-exp of ObjC pointer types before a
4293/// warning is issued. So, its invokation is extremely rare.
4294QualType ASTContext::areCommonBaseCompatible(
4295                                          const ObjCObjectPointerType *Lptr,
4296                                          const ObjCObjectPointerType *Rptr) {
4297  const ObjCObjectType *LHS = Lptr->getObjectType();
4298  const ObjCObjectType *RHS = Rptr->getObjectType();
4299  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4300  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4301  if (!LDecl || !RDecl)
4302    return QualType();
4303
4304  while ((LDecl = LDecl->getSuperClass())) {
4305    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4306    if (canAssignObjCInterfaces(LHS, RHS)) {
4307      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4308      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4309
4310      QualType Result = QualType(LHS, 0);
4311      if (!Protocols.empty())
4312        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4313      Result = getObjCObjectPointerType(Result);
4314      return Result;
4315    }
4316  }
4317
4318  return QualType();
4319}
4320
4321bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4322                                         const ObjCObjectType *RHS) {
4323  assert(LHS->getInterface() && "LHS is not an interface type");
4324  assert(RHS->getInterface() && "RHS is not an interface type");
4325
4326  // Verify that the base decls are compatible: the RHS must be a subclass of
4327  // the LHS.
4328  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4329    return false;
4330
4331  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4332  // protocol qualified at all, then we are good.
4333  if (LHS->getNumProtocols() == 0)
4334    return true;
4335
4336  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4337  // isn't a superset.
4338  if (RHS->getNumProtocols() == 0)
4339    return true;  // FIXME: should return false!
4340
4341  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4342                                     LHSPE = LHS->qual_end();
4343       LHSPI != LHSPE; LHSPI++) {
4344    bool RHSImplementsProtocol = false;
4345
4346    // If the RHS doesn't implement the protocol on the left, the types
4347    // are incompatible.
4348    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4349                                       RHSPE = RHS->qual_end();
4350         RHSPI != RHSPE; RHSPI++) {
4351      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4352        RHSImplementsProtocol = true;
4353        break;
4354      }
4355    }
4356    // FIXME: For better diagnostics, consider passing back the protocol name.
4357    if (!RHSImplementsProtocol)
4358      return false;
4359  }
4360  // The RHS implements all protocols listed on the LHS.
4361  return true;
4362}
4363
4364bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4365  // get the "pointed to" types
4366  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4367  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4368
4369  if (!LHSOPT || !RHSOPT)
4370    return false;
4371
4372  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4373         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4374}
4375
4376/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4377/// both shall have the identically qualified version of a compatible type.
4378/// C99 6.2.7p1: Two types have compatible types if their types are the
4379/// same. See 6.7.[2,3,5] for additional rules.
4380bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4381  if (getLangOptions().CPlusPlus)
4382    return hasSameType(LHS, RHS);
4383
4384  return !mergeTypes(LHS, RHS).isNull();
4385}
4386
4387bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4388  return !mergeTypes(LHS, RHS, true).isNull();
4389}
4390
4391QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4392                                        bool OfBlockPointer) {
4393  const FunctionType *lbase = lhs->getAs<FunctionType>();
4394  const FunctionType *rbase = rhs->getAs<FunctionType>();
4395  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4396  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4397  bool allLTypes = true;
4398  bool allRTypes = true;
4399
4400  // Check return type
4401  QualType retType;
4402  if (OfBlockPointer)
4403    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true);
4404  else
4405   retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4406  if (retType.isNull()) return QualType();
4407  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4408    allLTypes = false;
4409  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4410    allRTypes = false;
4411  // FIXME: double check this
4412  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4413  //                           rbase->getRegParmAttr() != 0 &&
4414  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4415  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4416  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4417  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4418      lbaseInfo.getRegParm();
4419  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4420  if (NoReturn != lbaseInfo.getNoReturn() ||
4421      RegParm != lbaseInfo.getRegParm())
4422    allLTypes = false;
4423  if (NoReturn != rbaseInfo.getNoReturn() ||
4424      RegParm != rbaseInfo.getRegParm())
4425    allRTypes = false;
4426  CallingConv lcc = lbaseInfo.getCC();
4427  CallingConv rcc = rbaseInfo.getCC();
4428  // Compatible functions must have compatible calling conventions
4429  if (!isSameCallConv(lcc, rcc))
4430    return QualType();
4431
4432  if (lproto && rproto) { // two C99 style function prototypes
4433    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4434           "C++ shouldn't be here");
4435    unsigned lproto_nargs = lproto->getNumArgs();
4436    unsigned rproto_nargs = rproto->getNumArgs();
4437
4438    // Compatible functions must have the same number of arguments
4439    if (lproto_nargs != rproto_nargs)
4440      return QualType();
4441
4442    // Variadic and non-variadic functions aren't compatible
4443    if (lproto->isVariadic() != rproto->isVariadic())
4444      return QualType();
4445
4446    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4447      return QualType();
4448
4449    // Check argument compatibility
4450    llvm::SmallVector<QualType, 10> types;
4451    for (unsigned i = 0; i < lproto_nargs; i++) {
4452      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4453      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4454      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer);
4455      if (argtype.isNull()) return QualType();
4456      types.push_back(argtype);
4457      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4458        allLTypes = false;
4459      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4460        allRTypes = false;
4461    }
4462    if (allLTypes) return lhs;
4463    if (allRTypes) return rhs;
4464    return getFunctionType(retType, types.begin(), types.size(),
4465                           lproto->isVariadic(), lproto->getTypeQuals(),
4466                           false, false, 0, 0,
4467                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4468  }
4469
4470  if (lproto) allRTypes = false;
4471  if (rproto) allLTypes = false;
4472
4473  const FunctionProtoType *proto = lproto ? lproto : rproto;
4474  if (proto) {
4475    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4476    if (proto->isVariadic()) return QualType();
4477    // Check that the types are compatible with the types that
4478    // would result from default argument promotions (C99 6.7.5.3p15).
4479    // The only types actually affected are promotable integer
4480    // types and floats, which would be passed as a different
4481    // type depending on whether the prototype is visible.
4482    unsigned proto_nargs = proto->getNumArgs();
4483    for (unsigned i = 0; i < proto_nargs; ++i) {
4484      QualType argTy = proto->getArgType(i);
4485
4486      // Look at the promotion type of enum types, since that is the type used
4487      // to pass enum values.
4488      if (const EnumType *Enum = argTy->getAs<EnumType>())
4489        argTy = Enum->getDecl()->getPromotionType();
4490
4491      if (argTy->isPromotableIntegerType() ||
4492          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4493        return QualType();
4494    }
4495
4496    if (allLTypes) return lhs;
4497    if (allRTypes) return rhs;
4498    return getFunctionType(retType, proto->arg_type_begin(),
4499                           proto->getNumArgs(), proto->isVariadic(),
4500                           proto->getTypeQuals(),
4501                           false, false, 0, 0,
4502                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4503  }
4504
4505  if (allLTypes) return lhs;
4506  if (allRTypes) return rhs;
4507  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4508  return getFunctionNoProtoType(retType, Info);
4509}
4510
4511QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4512                                bool OfBlockPointer) {
4513  // C++ [expr]: If an expression initially has the type "reference to T", the
4514  // type is adjusted to "T" prior to any further analysis, the expression
4515  // designates the object or function denoted by the reference, and the
4516  // expression is an lvalue unless the reference is an rvalue reference and
4517  // the expression is a function call (possibly inside parentheses).
4518  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4519  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4520
4521  QualType LHSCan = getCanonicalType(LHS),
4522           RHSCan = getCanonicalType(RHS);
4523
4524  // If two types are identical, they are compatible.
4525  if (LHSCan == RHSCan)
4526    return LHS;
4527
4528  // If the qualifiers are different, the types aren't compatible... mostly.
4529  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4530  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4531  if (LQuals != RQuals) {
4532    // If any of these qualifiers are different, we have a type
4533    // mismatch.
4534    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4535        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4536      return QualType();
4537
4538    // Exactly one GC qualifier difference is allowed: __strong is
4539    // okay if the other type has no GC qualifier but is an Objective
4540    // C object pointer (i.e. implicitly strong by default).  We fix
4541    // this by pretending that the unqualified type was actually
4542    // qualified __strong.
4543    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4544    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4545    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4546
4547    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4548      return QualType();
4549
4550    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4551      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4552    }
4553    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4554      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4555    }
4556    return QualType();
4557  }
4558
4559  // Okay, qualifiers are equal.
4560
4561  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4562  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4563
4564  // We want to consider the two function types to be the same for these
4565  // comparisons, just force one to the other.
4566  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4567  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4568
4569  // Same as above for arrays
4570  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4571    LHSClass = Type::ConstantArray;
4572  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4573    RHSClass = Type::ConstantArray;
4574
4575  // ObjCInterfaces are just specialized ObjCObjects.
4576  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4577  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4578
4579  // Canonicalize ExtVector -> Vector.
4580  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4581  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4582
4583  // If the canonical type classes don't match.
4584  if (LHSClass != RHSClass) {
4585    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4586    // a signed integer type, or an unsigned integer type.
4587    // Compatibility is based on the underlying type, not the promotion
4588    // type.
4589    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4590      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4591        return RHS;
4592    }
4593    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4594      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4595        return LHS;
4596    }
4597
4598    return QualType();
4599  }
4600
4601  // The canonical type classes match.
4602  switch (LHSClass) {
4603#define TYPE(Class, Base)
4604#define ABSTRACT_TYPE(Class, Base)
4605#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4606#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4607#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4608#include "clang/AST/TypeNodes.def"
4609    assert(false && "Non-canonical and dependent types shouldn't get here");
4610    return QualType();
4611
4612  case Type::LValueReference:
4613  case Type::RValueReference:
4614  case Type::MemberPointer:
4615    assert(false && "C++ should never be in mergeTypes");
4616    return QualType();
4617
4618  case Type::ObjCInterface:
4619  case Type::IncompleteArray:
4620  case Type::VariableArray:
4621  case Type::FunctionProto:
4622  case Type::ExtVector:
4623    assert(false && "Types are eliminated above");
4624    return QualType();
4625
4626  case Type::Pointer:
4627  {
4628    // Merge two pointer types, while trying to preserve typedef info
4629    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4630    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4631    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4632    if (ResultType.isNull()) return QualType();
4633    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4634      return LHS;
4635    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4636      return RHS;
4637    return getPointerType(ResultType);
4638  }
4639  case Type::BlockPointer:
4640  {
4641    // Merge two block pointer types, while trying to preserve typedef info
4642    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4643    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4644    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer);
4645    if (ResultType.isNull()) return QualType();
4646    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4647      return LHS;
4648    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4649      return RHS;
4650    return getBlockPointerType(ResultType);
4651  }
4652  case Type::ConstantArray:
4653  {
4654    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4655    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4656    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4657      return QualType();
4658
4659    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4660    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4661    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4662    if (ResultType.isNull()) return QualType();
4663    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4664      return LHS;
4665    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4666      return RHS;
4667    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4668                                          ArrayType::ArraySizeModifier(), 0);
4669    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4670                                          ArrayType::ArraySizeModifier(), 0);
4671    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4672    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4673    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4674      return LHS;
4675    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4676      return RHS;
4677    if (LVAT) {
4678      // FIXME: This isn't correct! But tricky to implement because
4679      // the array's size has to be the size of LHS, but the type
4680      // has to be different.
4681      return LHS;
4682    }
4683    if (RVAT) {
4684      // FIXME: This isn't correct! But tricky to implement because
4685      // the array's size has to be the size of RHS, but the type
4686      // has to be different.
4687      return RHS;
4688    }
4689    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4690    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4691    return getIncompleteArrayType(ResultType,
4692                                  ArrayType::ArraySizeModifier(), 0);
4693  }
4694  case Type::FunctionNoProto:
4695    return mergeFunctionTypes(LHS, RHS, OfBlockPointer);
4696  case Type::Record:
4697  case Type::Enum:
4698    return QualType();
4699  case Type::Builtin:
4700    // Only exactly equal builtin types are compatible, which is tested above.
4701    return QualType();
4702  case Type::Complex:
4703    // Distinct complex types are incompatible.
4704    return QualType();
4705  case Type::Vector:
4706    // FIXME: The merged type should be an ExtVector!
4707    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4708                             RHSCan->getAs<VectorType>()))
4709      return LHS;
4710    return QualType();
4711  case Type::ObjCObject: {
4712    // Check if the types are assignment compatible.
4713    // FIXME: This should be type compatibility, e.g. whether
4714    // "LHS x; RHS x;" at global scope is legal.
4715    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
4716    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
4717    if (canAssignObjCInterfaces(LHSIface, RHSIface))
4718      return LHS;
4719
4720    return QualType();
4721  }
4722  case Type::ObjCObjectPointer: {
4723    if (OfBlockPointer) {
4724      if (canAssignObjCInterfacesInBlockPointer(
4725                                          LHS->getAs<ObjCObjectPointerType>(),
4726                                          RHS->getAs<ObjCObjectPointerType>()))
4727      return LHS;
4728      return QualType();
4729    }
4730    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4731                                RHS->getAs<ObjCObjectPointerType>()))
4732      return LHS;
4733
4734    return QualType();
4735    }
4736  }
4737
4738  return QualType();
4739}
4740
4741/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
4742/// 'RHS' attributes and returns the merged version; including for function
4743/// return types.
4744QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
4745  QualType LHSCan = getCanonicalType(LHS),
4746  RHSCan = getCanonicalType(RHS);
4747  // If two types are identical, they are compatible.
4748  if (LHSCan == RHSCan)
4749    return LHS;
4750  if (RHSCan->isFunctionType()) {
4751    if (!LHSCan->isFunctionType())
4752      return QualType();
4753    QualType OldReturnType =
4754      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
4755    QualType NewReturnType =
4756      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
4757    QualType ResReturnType =
4758      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
4759    if (ResReturnType.isNull())
4760      return QualType();
4761    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
4762      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
4763      // In either case, use OldReturnType to build the new function type.
4764      const FunctionType *F = LHS->getAs<FunctionType>();
4765      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
4766        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
4767        QualType ResultType
4768          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
4769                                  FPT->getNumArgs(), FPT->isVariadic(),
4770                                  FPT->getTypeQuals(),
4771                                  FPT->hasExceptionSpec(),
4772                                  FPT->hasAnyExceptionSpec(),
4773                                  FPT->getNumExceptions(),
4774                                  FPT->exception_begin(),
4775                                  Info);
4776        return ResultType;
4777      }
4778    }
4779    return QualType();
4780  }
4781
4782  // If the qualifiers are different, the types can still be merged.
4783  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4784  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4785  if (LQuals != RQuals) {
4786    // If any of these qualifiers are different, we have a type mismatch.
4787    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4788        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4789      return QualType();
4790
4791    // Exactly one GC qualifier difference is allowed: __strong is
4792    // okay if the other type has no GC qualifier but is an Objective
4793    // C object pointer (i.e. implicitly strong by default).  We fix
4794    // this by pretending that the unqualified type was actually
4795    // qualified __strong.
4796    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4797    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4798    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4799
4800    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4801      return QualType();
4802
4803    if (GC_L == Qualifiers::Strong)
4804      return LHS;
4805    if (GC_R == Qualifiers::Strong)
4806      return RHS;
4807    return QualType();
4808  }
4809
4810  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
4811    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4812    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4813    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
4814    if (ResQT == LHSBaseQT)
4815      return LHS;
4816    if (ResQT == RHSBaseQT)
4817      return RHS;
4818  }
4819  return QualType();
4820}
4821
4822//===----------------------------------------------------------------------===//
4823//                         Integer Predicates
4824//===----------------------------------------------------------------------===//
4825
4826unsigned ASTContext::getIntWidth(QualType T) {
4827  if (T->isBooleanType())
4828    return 1;
4829  if (EnumType *ET = dyn_cast<EnumType>(T))
4830    T = ET->getDecl()->getIntegerType();
4831  // For builtin types, just use the standard type sizing method
4832  return (unsigned)getTypeSize(T);
4833}
4834
4835QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4836  assert(T->isSignedIntegerType() && "Unexpected type");
4837
4838  // Turn <4 x signed int> -> <4 x unsigned int>
4839  if (const VectorType *VTy = T->getAs<VectorType>())
4840    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4841             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4842
4843  // For enums, we return the unsigned version of the base type.
4844  if (const EnumType *ETy = T->getAs<EnumType>())
4845    T = ETy->getDecl()->getIntegerType();
4846
4847  const BuiltinType *BTy = T->getAs<BuiltinType>();
4848  assert(BTy && "Unexpected signed integer type");
4849  switch (BTy->getKind()) {
4850  case BuiltinType::Char_S:
4851  case BuiltinType::SChar:
4852    return UnsignedCharTy;
4853  case BuiltinType::Short:
4854    return UnsignedShortTy;
4855  case BuiltinType::Int:
4856    return UnsignedIntTy;
4857  case BuiltinType::Long:
4858    return UnsignedLongTy;
4859  case BuiltinType::LongLong:
4860    return UnsignedLongLongTy;
4861  case BuiltinType::Int128:
4862    return UnsignedInt128Ty;
4863  default:
4864    assert(0 && "Unexpected signed integer type");
4865    return QualType();
4866  }
4867}
4868
4869ExternalASTSource::~ExternalASTSource() { }
4870
4871void ExternalASTSource::PrintStats() { }
4872
4873
4874//===----------------------------------------------------------------------===//
4875//                          Builtin Type Computation
4876//===----------------------------------------------------------------------===//
4877
4878/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4879/// pointer over the consumed characters.  This returns the resultant type.
4880static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4881                                  ASTContext::GetBuiltinTypeError &Error,
4882                                  bool AllowTypeModifiers = true) {
4883  // Modifiers.
4884  int HowLong = 0;
4885  bool Signed = false, Unsigned = false;
4886
4887  // Read the modifiers first.
4888  bool Done = false;
4889  while (!Done) {
4890    switch (*Str++) {
4891    default: Done = true; --Str; break;
4892    case 'S':
4893      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4894      assert(!Signed && "Can't use 'S' modifier multiple times!");
4895      Signed = true;
4896      break;
4897    case 'U':
4898      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4899      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4900      Unsigned = true;
4901      break;
4902    case 'L':
4903      assert(HowLong <= 2 && "Can't have LLLL modifier");
4904      ++HowLong;
4905      break;
4906    }
4907  }
4908
4909  QualType Type;
4910
4911  // Read the base type.
4912  switch (*Str++) {
4913  default: assert(0 && "Unknown builtin type letter!");
4914  case 'v':
4915    assert(HowLong == 0 && !Signed && !Unsigned &&
4916           "Bad modifiers used with 'v'!");
4917    Type = Context.VoidTy;
4918    break;
4919  case 'f':
4920    assert(HowLong == 0 && !Signed && !Unsigned &&
4921           "Bad modifiers used with 'f'!");
4922    Type = Context.FloatTy;
4923    break;
4924  case 'd':
4925    assert(HowLong < 2 && !Signed && !Unsigned &&
4926           "Bad modifiers used with 'd'!");
4927    if (HowLong)
4928      Type = Context.LongDoubleTy;
4929    else
4930      Type = Context.DoubleTy;
4931    break;
4932  case 's':
4933    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4934    if (Unsigned)
4935      Type = Context.UnsignedShortTy;
4936    else
4937      Type = Context.ShortTy;
4938    break;
4939  case 'i':
4940    if (HowLong == 3)
4941      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4942    else if (HowLong == 2)
4943      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4944    else if (HowLong == 1)
4945      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4946    else
4947      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4948    break;
4949  case 'c':
4950    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4951    if (Signed)
4952      Type = Context.SignedCharTy;
4953    else if (Unsigned)
4954      Type = Context.UnsignedCharTy;
4955    else
4956      Type = Context.CharTy;
4957    break;
4958  case 'b': // boolean
4959    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4960    Type = Context.BoolTy;
4961    break;
4962  case 'z':  // size_t.
4963    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4964    Type = Context.getSizeType();
4965    break;
4966  case 'F':
4967    Type = Context.getCFConstantStringType();
4968    break;
4969  case 'a':
4970    Type = Context.getBuiltinVaListType();
4971    assert(!Type.isNull() && "builtin va list type not initialized!");
4972    break;
4973  case 'A':
4974    // This is a "reference" to a va_list; however, what exactly
4975    // this means depends on how va_list is defined. There are two
4976    // different kinds of va_list: ones passed by value, and ones
4977    // passed by reference.  An example of a by-value va_list is
4978    // x86, where va_list is a char*. An example of by-ref va_list
4979    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4980    // we want this argument to be a char*&; for x86-64, we want
4981    // it to be a __va_list_tag*.
4982    Type = Context.getBuiltinVaListType();
4983    assert(!Type.isNull() && "builtin va list type not initialized!");
4984    if (Type->isArrayType()) {
4985      Type = Context.getArrayDecayedType(Type);
4986    } else {
4987      Type = Context.getLValueReferenceType(Type);
4988    }
4989    break;
4990  case 'V': {
4991    char *End;
4992    unsigned NumElements = strtoul(Str, &End, 10);
4993    assert(End != Str && "Missing vector size");
4994
4995    Str = End;
4996
4997    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4998    // FIXME: Don't know what to do about AltiVec.
4999    Type = Context.getVectorType(ElementType, NumElements, false, false);
5000    break;
5001  }
5002  case 'X': {
5003    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5004    Type = Context.getComplexType(ElementType);
5005    break;
5006  }
5007  case 'P':
5008    Type = Context.getFILEType();
5009    if (Type.isNull()) {
5010      Error = ASTContext::GE_Missing_stdio;
5011      return QualType();
5012    }
5013    break;
5014  case 'J':
5015    if (Signed)
5016      Type = Context.getsigjmp_bufType();
5017    else
5018      Type = Context.getjmp_bufType();
5019
5020    if (Type.isNull()) {
5021      Error = ASTContext::GE_Missing_setjmp;
5022      return QualType();
5023    }
5024    break;
5025  }
5026
5027  if (!AllowTypeModifiers)
5028    return Type;
5029
5030  Done = false;
5031  while (!Done) {
5032    switch (char c = *Str++) {
5033      default: Done = true; --Str; break;
5034      case '*':
5035      case '&':
5036        {
5037          // Both pointers and references can have their pointee types
5038          // qualified with an address space.
5039          char *End;
5040          unsigned AddrSpace = strtoul(Str, &End, 10);
5041          if (End != Str && AddrSpace != 0) {
5042            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5043            Str = End;
5044          }
5045        }
5046        if (c == '*')
5047          Type = Context.getPointerType(Type);
5048        else
5049          Type = Context.getLValueReferenceType(Type);
5050        break;
5051      // FIXME: There's no way to have a built-in with an rvalue ref arg.
5052      case 'C':
5053        Type = Type.withConst();
5054        break;
5055      case 'D':
5056        Type = Context.getVolatileType(Type);
5057        break;
5058    }
5059  }
5060
5061  return Type;
5062}
5063
5064/// GetBuiltinType - Return the type for the specified builtin.
5065QualType ASTContext::GetBuiltinType(unsigned id,
5066                                    GetBuiltinTypeError &Error) {
5067  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5068
5069  llvm::SmallVector<QualType, 8> ArgTypes;
5070
5071  Error = GE_None;
5072  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5073  if (Error != GE_None)
5074    return QualType();
5075  while (TypeStr[0] && TypeStr[0] != '.') {
5076    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5077    if (Error != GE_None)
5078      return QualType();
5079
5080    // Do array -> pointer decay.  The builtin should use the decayed type.
5081    if (Ty->isArrayType())
5082      Ty = getArrayDecayedType(Ty);
5083
5084    ArgTypes.push_back(Ty);
5085  }
5086
5087  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5088         "'.' should only occur at end of builtin type list!");
5089
5090  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5091  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5092    return getFunctionNoProtoType(ResType);
5093
5094  // FIXME: Should we create noreturn types?
5095  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5096                         TypeStr[0] == '.', 0, false, false, 0, 0,
5097                         FunctionType::ExtInfo());
5098}
5099
5100QualType
5101ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5102  // Perform the usual unary conversions. We do this early so that
5103  // integral promotions to "int" can allow us to exit early, in the
5104  // lhs == rhs check. Also, for conversion purposes, we ignore any
5105  // qualifiers.  For example, "const float" and "float" are
5106  // equivalent.
5107  if (lhs->isPromotableIntegerType())
5108    lhs = getPromotedIntegerType(lhs);
5109  else
5110    lhs = lhs.getUnqualifiedType();
5111  if (rhs->isPromotableIntegerType())
5112    rhs = getPromotedIntegerType(rhs);
5113  else
5114    rhs = rhs.getUnqualifiedType();
5115
5116  // If both types are identical, no conversion is needed.
5117  if (lhs == rhs)
5118    return lhs;
5119
5120  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5121  // The caller can deal with this (e.g. pointer + int).
5122  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5123    return lhs;
5124
5125  // At this point, we have two different arithmetic types.
5126
5127  // Handle complex types first (C99 6.3.1.8p1).
5128  if (lhs->isComplexType() || rhs->isComplexType()) {
5129    // if we have an integer operand, the result is the complex type.
5130    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5131      // convert the rhs to the lhs complex type.
5132      return lhs;
5133    }
5134    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5135      // convert the lhs to the rhs complex type.
5136      return rhs;
5137    }
5138    // This handles complex/complex, complex/float, or float/complex.
5139    // When both operands are complex, the shorter operand is converted to the
5140    // type of the longer, and that is the type of the result. This corresponds
5141    // to what is done when combining two real floating-point operands.
5142    // The fun begins when size promotion occur across type domains.
5143    // From H&S 6.3.4: When one operand is complex and the other is a real
5144    // floating-point type, the less precise type is converted, within it's
5145    // real or complex domain, to the precision of the other type. For example,
5146    // when combining a "long double" with a "double _Complex", the
5147    // "double _Complex" is promoted to "long double _Complex".
5148    int result = getFloatingTypeOrder(lhs, rhs);
5149
5150    if (result > 0) { // The left side is bigger, convert rhs.
5151      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5152    } else if (result < 0) { // The right side is bigger, convert lhs.
5153      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5154    }
5155    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5156    // domains match. This is a requirement for our implementation, C99
5157    // does not require this promotion.
5158    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5159      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5160        return rhs;
5161      } else { // handle "_Complex double, double".
5162        return lhs;
5163      }
5164    }
5165    return lhs; // The domain/size match exactly.
5166  }
5167  // Now handle "real" floating types (i.e. float, double, long double).
5168  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5169    // if we have an integer operand, the result is the real floating type.
5170    if (rhs->isIntegerType()) {
5171      // convert rhs to the lhs floating point type.
5172      return lhs;
5173    }
5174    if (rhs->isComplexIntegerType()) {
5175      // convert rhs to the complex floating point type.
5176      return getComplexType(lhs);
5177    }
5178    if (lhs->isIntegerType()) {
5179      // convert lhs to the rhs floating point type.
5180      return rhs;
5181    }
5182    if (lhs->isComplexIntegerType()) {
5183      // convert lhs to the complex floating point type.
5184      return getComplexType(rhs);
5185    }
5186    // We have two real floating types, float/complex combos were handled above.
5187    // Convert the smaller operand to the bigger result.
5188    int result = getFloatingTypeOrder(lhs, rhs);
5189    if (result > 0) // convert the rhs
5190      return lhs;
5191    assert(result < 0 && "illegal float comparison");
5192    return rhs;   // convert the lhs
5193  }
5194  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5195    // Handle GCC complex int extension.
5196    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5197    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5198
5199    if (lhsComplexInt && rhsComplexInt) {
5200      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5201                              rhsComplexInt->getElementType()) >= 0)
5202        return lhs; // convert the rhs
5203      return rhs;
5204    } else if (lhsComplexInt && rhs->isIntegerType()) {
5205      // convert the rhs to the lhs complex type.
5206      return lhs;
5207    } else if (rhsComplexInt && lhs->isIntegerType()) {
5208      // convert the lhs to the rhs complex type.
5209      return rhs;
5210    }
5211  }
5212  // Finally, we have two differing integer types.
5213  // The rules for this case are in C99 6.3.1.8
5214  int compare = getIntegerTypeOrder(lhs, rhs);
5215  bool lhsSigned = lhs->isSignedIntegerType(),
5216       rhsSigned = rhs->isSignedIntegerType();
5217  QualType destType;
5218  if (lhsSigned == rhsSigned) {
5219    // Same signedness; use the higher-ranked type
5220    destType = compare >= 0 ? lhs : rhs;
5221  } else if (compare != (lhsSigned ? 1 : -1)) {
5222    // The unsigned type has greater than or equal rank to the
5223    // signed type, so use the unsigned type
5224    destType = lhsSigned ? rhs : lhs;
5225  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5226    // The two types are different widths; if we are here, that
5227    // means the signed type is larger than the unsigned type, so
5228    // use the signed type.
5229    destType = lhsSigned ? lhs : rhs;
5230  } else {
5231    // The signed type is higher-ranked than the unsigned type,
5232    // but isn't actually any bigger (like unsigned int and long
5233    // on most 32-bit systems).  Use the unsigned type corresponding
5234    // to the signed type.
5235    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5236  }
5237  return destType;
5238}
5239