ASTContext.cpp revision f50555eedef33fd5a67d369aa0ae8a6f1d201543
15d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
25d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
35d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//                     The LLVM Compiler Infrastructure
45d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
55d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// This file is distributed under the University of Illinois Open Source
65d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)// License. See LICENSE.TXT for details.
75d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
85d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//===----------------------------------------------------------------------===//
95d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//
105d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)//  This file implements the ASTContext interface.
11a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)//
12a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)//===----------------------------------------------------------------------===//
135d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
145d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "clang/AST/ASTContext.h"
155d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "clang/AST/CharUnits.h"
16a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/AST/CommentCommandTraits.h"
17a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/AST/DeclCXX.h"
18a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/AST/DeclObjC.h"
19a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/AST/DeclTemplate.h"
205d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "clang/AST/TypeLoc.h"
215d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "clang/AST/Expr.h"
225d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "clang/AST/ExprCXX.h"
23a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/AST/ExternalASTSource.h"
24a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/AST/ASTMutationListener.h"
25a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/AST/RecordLayout.h"
265d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "clang/AST/Mangle.h"
27f8ee788a64d60abd8f2d742a5fdedde054ecd910Torne (Richard Coles)#include "clang/Basic/Builtins.h"
285d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "clang/Basic/SourceManager.h"
29a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "clang/Basic/TargetInfo.h"
305d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/ADT/SmallString.h"
315d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/ADT/StringExtras.h"
325d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "llvm/Support/MathExtras.h"
33a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "llvm/Support/raw_ostream.h"
34a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)#include "llvm/Support/Capacity.h"
355d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include "CXXABI.h"
365d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)#include <map>
375d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
385d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)using namespace clang;
395d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
405d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitDefaultConstructors;
415d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
42a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)unsigned ASTContext::NumImplicitCopyConstructors;
43a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
445d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitMoveConstructors;
455d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
465d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitCopyAssignmentOperators;
475d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
485d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitMoveAssignmentOperators;
495d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
505d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitDestructors;
515d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)unsigned ASTContext::NumImplicitDestructorsDeclared;
525d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
535d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)enum FloatingRank {
54a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  HalfRank, FloatRank, DoubleRank, LongDoubleRank
55a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)};
56a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)
575d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
585d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  if (!CommentsLoaded && ExternalSource) {
595d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    ExternalSource->ReadComments();
605d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    CommentsLoaded = true;
61a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  }
62a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)
635d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  assert(D);
645d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
65a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  // User can not attach documentation to implicit declarations.
66a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  if (D->isImplicit())
67a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)    return NULL;
68a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)
69a1401311d1ab56c4ed0a474bd38c108f75cb0cd9Torne (Richard Coles)  // TODO: handle comments for function parameters properly.
705d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  if (isa<ParmVarDecl>(D))
715d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)    return NULL;
725d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)
735d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // TODO: we could look up template parameter documentation in the template
745d1f7b1de12d16ceb2c938c56701a3e8bfa558f7Torne (Richard Coles)  // documentation.
75  if (isa<TemplateTypeParmDecl>(D) ||
76      isa<NonTypeTemplateParmDecl>(D) ||
77      isa<TemplateTemplateParmDecl>(D))
78    return NULL;
79
80  ArrayRef<RawComment *> RawComments = Comments.getComments();
81
82  // If there are no comments anywhere, we won't find anything.
83  if (RawComments.empty())
84    return NULL;
85
86  // Find declaration location.
87  // For Objective-C declarations we generally don't expect to have multiple
88  // declarators, thus use declaration starting location as the "declaration
89  // location".
90  // For all other declarations multiple declarators are used quite frequently,
91  // so we use the location of the identifier as the "declaration location".
92  SourceLocation DeclLoc;
93  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
94      isa<ObjCPropertyDecl>(D) ||
95      isa<RedeclarableTemplateDecl>(D) ||
96      isa<ClassTemplateSpecializationDecl>(D))
97    DeclLoc = D->getLocStart();
98  else
99    DeclLoc = D->getLocation();
100
101  // If the declaration doesn't map directly to a location in a file, we
102  // can't find the comment.
103  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
104    return NULL;
105
106  // Find the comment that occurs just after this declaration.
107  ArrayRef<RawComment *>::iterator Comment;
108  {
109    // When searching for comments during parsing, the comment we are looking
110    // for is usually among the last two comments we parsed -- check them
111    // first.
112    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
113    BeforeThanCompare<RawComment> Compare(SourceMgr);
114    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
115    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
116    if (!Found && RawComments.size() >= 2) {
117      MaybeBeforeDecl--;
118      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
119    }
120
121    if (Found) {
122      Comment = MaybeBeforeDecl + 1;
123      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
124                                         &CommentAtDeclLoc, Compare));
125    } else {
126      // Slow path.
127      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
128                                 &CommentAtDeclLoc, Compare);
129    }
130  }
131
132  // Decompose the location for the declaration and find the beginning of the
133  // file buffer.
134  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
135
136  // First check whether we have a trailing comment.
137  if (Comment != RawComments.end() &&
138      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
139      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
140    std::pair<FileID, unsigned> CommentBeginDecomp
141      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
142    // Check that Doxygen trailing comment comes after the declaration, starts
143    // on the same line and in the same file as the declaration.
144    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
145        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
146          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
147                                     CommentBeginDecomp.second)) {
148      (*Comment)->setDecl(D);
149      return *Comment;
150    }
151  }
152
153  // The comment just after the declaration was not a trailing comment.
154  // Let's look at the previous comment.
155  if (Comment == RawComments.begin())
156    return NULL;
157  --Comment;
158
159  // Check that we actually have a non-member Doxygen comment.
160  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
161    return NULL;
162
163  // Decompose the end of the comment.
164  std::pair<FileID, unsigned> CommentEndDecomp
165    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
166
167  // If the comment and the declaration aren't in the same file, then they
168  // aren't related.
169  if (DeclLocDecomp.first != CommentEndDecomp.first)
170    return NULL;
171
172  // Get the corresponding buffer.
173  bool Invalid = false;
174  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
175                                               &Invalid).data();
176  if (Invalid)
177    return NULL;
178
179  // Extract text between the comment and declaration.
180  StringRef Text(Buffer + CommentEndDecomp.second,
181                 DeclLocDecomp.second - CommentEndDecomp.second);
182
183  // There should be no other declarations or preprocessor directives between
184  // comment and declaration.
185  if (Text.find_first_of(",;{}#@") != StringRef::npos)
186    return NULL;
187
188   (*Comment)->setDecl(D);
189  return *Comment;
190}
191
192const RawComment *ASTContext::getRawCommentForAnyRedecl(const Decl *D) const {
193  // Check whether we have cached a comment for this declaration already.
194  {
195    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
196        RedeclComments.find(D);
197    if (Pos != RedeclComments.end()) {
198      const RawCommentAndCacheFlags &Raw = Pos->second;
199      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl)
200        return Raw.getRaw();
201    }
202  }
203
204  // Search for comments attached to declarations in the redeclaration chain.
205  const RawComment *RC = NULL;
206  for (Decl::redecl_iterator I = D->redecls_begin(),
207                             E = D->redecls_end();
208       I != E; ++I) {
209    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
210        RedeclComments.find(*I);
211    if (Pos != RedeclComments.end()) {
212      const RawCommentAndCacheFlags &Raw = Pos->second;
213      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
214        RC = Raw.getRaw();
215        break;
216      }
217    } else {
218      RC = getRawCommentForDeclNoCache(*I);
219      RawCommentAndCacheFlags Raw;
220      if (RC) {
221        Raw.setRaw(RC);
222        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
223      } else
224        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
225      RedeclComments[*I] = Raw;
226      if (RC)
227        break;
228    }
229  }
230
231  // If we found a comment, it should be a documentation comment.
232  assert(!RC || RC->isDocumentation());
233
234  // Update cache for every declaration in the redeclaration chain.
235  RawCommentAndCacheFlags Raw;
236  Raw.setRaw(RC);
237  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
238
239  for (Decl::redecl_iterator I = D->redecls_begin(),
240                             E = D->redecls_end();
241       I != E; ++I) {
242    RawCommentAndCacheFlags &R = RedeclComments[*I];
243    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
244      R = Raw;
245  }
246
247  return RC;
248}
249
250comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
251  const RawComment *RC = getRawCommentForAnyRedecl(D);
252  if (!RC)
253    return NULL;
254
255  return RC->getParsed(*this);
256}
257
258void
259ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
260                                               TemplateTemplateParmDecl *Parm) {
261  ID.AddInteger(Parm->getDepth());
262  ID.AddInteger(Parm->getPosition());
263  ID.AddBoolean(Parm->isParameterPack());
264
265  TemplateParameterList *Params = Parm->getTemplateParameters();
266  ID.AddInteger(Params->size());
267  for (TemplateParameterList::const_iterator P = Params->begin(),
268                                          PEnd = Params->end();
269       P != PEnd; ++P) {
270    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
271      ID.AddInteger(0);
272      ID.AddBoolean(TTP->isParameterPack());
273      continue;
274    }
275
276    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
277      ID.AddInteger(1);
278      ID.AddBoolean(NTTP->isParameterPack());
279      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
280      if (NTTP->isExpandedParameterPack()) {
281        ID.AddBoolean(true);
282        ID.AddInteger(NTTP->getNumExpansionTypes());
283        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
284          QualType T = NTTP->getExpansionType(I);
285          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
286        }
287      } else
288        ID.AddBoolean(false);
289      continue;
290    }
291
292    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
293    ID.AddInteger(2);
294    Profile(ID, TTP);
295  }
296}
297
298TemplateTemplateParmDecl *
299ASTContext::getCanonicalTemplateTemplateParmDecl(
300                                          TemplateTemplateParmDecl *TTP) const {
301  // Check if we already have a canonical template template parameter.
302  llvm::FoldingSetNodeID ID;
303  CanonicalTemplateTemplateParm::Profile(ID, TTP);
304  void *InsertPos = 0;
305  CanonicalTemplateTemplateParm *Canonical
306    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
307  if (Canonical)
308    return Canonical->getParam();
309
310  // Build a canonical template parameter list.
311  TemplateParameterList *Params = TTP->getTemplateParameters();
312  SmallVector<NamedDecl *, 4> CanonParams;
313  CanonParams.reserve(Params->size());
314  for (TemplateParameterList::const_iterator P = Params->begin(),
315                                          PEnd = Params->end();
316       P != PEnd; ++P) {
317    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
318      CanonParams.push_back(
319                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
320                                               SourceLocation(),
321                                               SourceLocation(),
322                                               TTP->getDepth(),
323                                               TTP->getIndex(), 0, false,
324                                               TTP->isParameterPack()));
325    else if (NonTypeTemplateParmDecl *NTTP
326             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
327      QualType T = getCanonicalType(NTTP->getType());
328      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
329      NonTypeTemplateParmDecl *Param;
330      if (NTTP->isExpandedParameterPack()) {
331        SmallVector<QualType, 2> ExpandedTypes;
332        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
333        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
334          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
335          ExpandedTInfos.push_back(
336                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
337        }
338
339        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
340                                                SourceLocation(),
341                                                SourceLocation(),
342                                                NTTP->getDepth(),
343                                                NTTP->getPosition(), 0,
344                                                T,
345                                                TInfo,
346                                                ExpandedTypes.data(),
347                                                ExpandedTypes.size(),
348                                                ExpandedTInfos.data());
349      } else {
350        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
351                                                SourceLocation(),
352                                                SourceLocation(),
353                                                NTTP->getDepth(),
354                                                NTTP->getPosition(), 0,
355                                                T,
356                                                NTTP->isParameterPack(),
357                                                TInfo);
358      }
359      CanonParams.push_back(Param);
360
361    } else
362      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
363                                           cast<TemplateTemplateParmDecl>(*P)));
364  }
365
366  TemplateTemplateParmDecl *CanonTTP
367    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
368                                       SourceLocation(), TTP->getDepth(),
369                                       TTP->getPosition(),
370                                       TTP->isParameterPack(),
371                                       0,
372                         TemplateParameterList::Create(*this, SourceLocation(),
373                                                       SourceLocation(),
374                                                       CanonParams.data(),
375                                                       CanonParams.size(),
376                                                       SourceLocation()));
377
378  // Get the new insert position for the node we care about.
379  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
380  assert(Canonical == 0 && "Shouldn't be in the map!");
381  (void)Canonical;
382
383  // Create the canonical template template parameter entry.
384  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
385  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
386  return CanonTTP;
387}
388
389CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
390  if (!LangOpts.CPlusPlus) return 0;
391
392  switch (T.getCXXABI()) {
393  case CXXABI_ARM:
394    return CreateARMCXXABI(*this);
395  case CXXABI_Itanium:
396    return CreateItaniumCXXABI(*this);
397  case CXXABI_Microsoft:
398    return CreateMicrosoftCXXABI(*this);
399  }
400  llvm_unreachable("Invalid CXXABI type!");
401}
402
403static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
404                                             const LangOptions &LOpts) {
405  if (LOpts.FakeAddressSpaceMap) {
406    // The fake address space map must have a distinct entry for each
407    // language-specific address space.
408    static const unsigned FakeAddrSpaceMap[] = {
409      1, // opencl_global
410      2, // opencl_local
411      3, // opencl_constant
412      4, // cuda_device
413      5, // cuda_constant
414      6  // cuda_shared
415    };
416    return &FakeAddrSpaceMap;
417  } else {
418    return &T.getAddressSpaceMap();
419  }
420}
421
422ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
423                       const TargetInfo *t,
424                       IdentifierTable &idents, SelectorTable &sels,
425                       Builtin::Context &builtins,
426                       unsigned size_reserve,
427                       bool DelayInitialization)
428  : FunctionProtoTypes(this_()),
429    TemplateSpecializationTypes(this_()),
430    DependentTemplateSpecializationTypes(this_()),
431    SubstTemplateTemplateParmPacks(this_()),
432    GlobalNestedNameSpecifier(0),
433    Int128Decl(0), UInt128Decl(0),
434    BuiltinVaListDecl(0),
435    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
436    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
437    FILEDecl(0),
438    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
439    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
440    cudaConfigureCallDecl(0),
441    NullTypeSourceInfo(QualType()),
442    FirstLocalImport(), LastLocalImport(),
443    SourceMgr(SM), LangOpts(LOpts),
444    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
445    Idents(idents), Selectors(sels),
446    BuiltinInfo(builtins),
447    DeclarationNames(*this),
448    ExternalSource(0), Listener(0),
449    Comments(SM), CommentsLoaded(false),
450    LastSDM(0, 0),
451    UniqueBlockByRefTypeID(0)
452{
453  if (size_reserve > 0) Types.reserve(size_reserve);
454  TUDecl = TranslationUnitDecl::Create(*this);
455
456  if (!DelayInitialization) {
457    assert(t && "No target supplied for ASTContext initialization");
458    InitBuiltinTypes(*t);
459  }
460}
461
462ASTContext::~ASTContext() {
463  // Release the DenseMaps associated with DeclContext objects.
464  // FIXME: Is this the ideal solution?
465  ReleaseDeclContextMaps();
466
467  // Call all of the deallocation functions.
468  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
469    Deallocations[I].first(Deallocations[I].second);
470
471  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
472  // because they can contain DenseMaps.
473  for (llvm::DenseMap<const ObjCContainerDecl*,
474       const ASTRecordLayout*>::iterator
475       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
476    // Increment in loop to prevent using deallocated memory.
477    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
478      R->Destroy(*this);
479
480  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
481       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
482    // Increment in loop to prevent using deallocated memory.
483    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
484      R->Destroy(*this);
485  }
486
487  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
488                                                    AEnd = DeclAttrs.end();
489       A != AEnd; ++A)
490    A->second->~AttrVec();
491}
492
493void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
494  Deallocations.push_back(std::make_pair(Callback, Data));
495}
496
497void
498ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
499  ExternalSource.reset(Source.take());
500}
501
502void ASTContext::PrintStats() const {
503  llvm::errs() << "\n*** AST Context Stats:\n";
504  llvm::errs() << "  " << Types.size() << " types total.\n";
505
506  unsigned counts[] = {
507#define TYPE(Name, Parent) 0,
508#define ABSTRACT_TYPE(Name, Parent)
509#include "clang/AST/TypeNodes.def"
510    0 // Extra
511  };
512
513  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
514    Type *T = Types[i];
515    counts[(unsigned)T->getTypeClass()]++;
516  }
517
518  unsigned Idx = 0;
519  unsigned TotalBytes = 0;
520#define TYPE(Name, Parent)                                              \
521  if (counts[Idx])                                                      \
522    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
523                 << " types\n";                                         \
524  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
525  ++Idx;
526#define ABSTRACT_TYPE(Name, Parent)
527#include "clang/AST/TypeNodes.def"
528
529  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
530
531  // Implicit special member functions.
532  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
533               << NumImplicitDefaultConstructors
534               << " implicit default constructors created\n";
535  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
536               << NumImplicitCopyConstructors
537               << " implicit copy constructors created\n";
538  if (getLangOpts().CPlusPlus)
539    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
540                 << NumImplicitMoveConstructors
541                 << " implicit move constructors created\n";
542  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
543               << NumImplicitCopyAssignmentOperators
544               << " implicit copy assignment operators created\n";
545  if (getLangOpts().CPlusPlus)
546    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
547                 << NumImplicitMoveAssignmentOperators
548                 << " implicit move assignment operators created\n";
549  llvm::errs() << NumImplicitDestructorsDeclared << "/"
550               << NumImplicitDestructors
551               << " implicit destructors created\n";
552
553  if (ExternalSource.get()) {
554    llvm::errs() << "\n";
555    ExternalSource->PrintStats();
556  }
557
558  BumpAlloc.PrintStats();
559}
560
561TypedefDecl *ASTContext::getInt128Decl() const {
562  if (!Int128Decl) {
563    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
564    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
565                                     getTranslationUnitDecl(),
566                                     SourceLocation(),
567                                     SourceLocation(),
568                                     &Idents.get("__int128_t"),
569                                     TInfo);
570  }
571
572  return Int128Decl;
573}
574
575TypedefDecl *ASTContext::getUInt128Decl() const {
576  if (!UInt128Decl) {
577    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
578    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
579                                     getTranslationUnitDecl(),
580                                     SourceLocation(),
581                                     SourceLocation(),
582                                     &Idents.get("__uint128_t"),
583                                     TInfo);
584  }
585
586  return UInt128Decl;
587}
588
589void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
590  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
591  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
592  Types.push_back(Ty);
593}
594
595void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
596  assert((!this->Target || this->Target == &Target) &&
597         "Incorrect target reinitialization");
598  assert(VoidTy.isNull() && "Context reinitialized?");
599
600  this->Target = &Target;
601
602  ABI.reset(createCXXABI(Target));
603  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
604
605  // C99 6.2.5p19.
606  InitBuiltinType(VoidTy,              BuiltinType::Void);
607
608  // C99 6.2.5p2.
609  InitBuiltinType(BoolTy,              BuiltinType::Bool);
610  // C99 6.2.5p3.
611  if (LangOpts.CharIsSigned)
612    InitBuiltinType(CharTy,            BuiltinType::Char_S);
613  else
614    InitBuiltinType(CharTy,            BuiltinType::Char_U);
615  // C99 6.2.5p4.
616  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
617  InitBuiltinType(ShortTy,             BuiltinType::Short);
618  InitBuiltinType(IntTy,               BuiltinType::Int);
619  InitBuiltinType(LongTy,              BuiltinType::Long);
620  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
621
622  // C99 6.2.5p6.
623  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
624  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
625  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
626  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
627  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
628
629  // C99 6.2.5p10.
630  InitBuiltinType(FloatTy,             BuiltinType::Float);
631  InitBuiltinType(DoubleTy,            BuiltinType::Double);
632  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
633
634  // GNU extension, 128-bit integers.
635  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
636  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
637
638  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
639    if (TargetInfo::isTypeSigned(Target.getWCharType()))
640      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
641    else  // -fshort-wchar makes wchar_t be unsigned.
642      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
643  } else // C99
644    WCharTy = getFromTargetType(Target.getWCharType());
645
646  WIntTy = getFromTargetType(Target.getWIntType());
647
648  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
649    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
650  else // C99
651    Char16Ty = getFromTargetType(Target.getChar16Type());
652
653  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
654    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
655  else // C99
656    Char32Ty = getFromTargetType(Target.getChar32Type());
657
658  // Placeholder type for type-dependent expressions whose type is
659  // completely unknown. No code should ever check a type against
660  // DependentTy and users should never see it; however, it is here to
661  // help diagnose failures to properly check for type-dependent
662  // expressions.
663  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
664
665  // Placeholder type for functions.
666  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
667
668  // Placeholder type for bound members.
669  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
670
671  // Placeholder type for pseudo-objects.
672  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
673
674  // "any" type; useful for debugger-like clients.
675  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
676
677  // Placeholder type for unbridged ARC casts.
678  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
679
680  // C99 6.2.5p11.
681  FloatComplexTy      = getComplexType(FloatTy);
682  DoubleComplexTy     = getComplexType(DoubleTy);
683  LongDoubleComplexTy = getComplexType(LongDoubleTy);
684
685  // Builtin types for 'id', 'Class', and 'SEL'.
686  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
687  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
688  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
689
690  // Builtin type for __objc_yes and __objc_no
691  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
692                       SignedCharTy : BoolTy);
693
694  ObjCConstantStringType = QualType();
695
696  // void * type
697  VoidPtrTy = getPointerType(VoidTy);
698
699  // nullptr type (C++0x 2.14.7)
700  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
701
702  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
703  InitBuiltinType(HalfTy, BuiltinType::Half);
704
705  // Builtin type used to help define __builtin_va_list.
706  VaListTagTy = QualType();
707}
708
709DiagnosticsEngine &ASTContext::getDiagnostics() const {
710  return SourceMgr.getDiagnostics();
711}
712
713AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
714  AttrVec *&Result = DeclAttrs[D];
715  if (!Result) {
716    void *Mem = Allocate(sizeof(AttrVec));
717    Result = new (Mem) AttrVec;
718  }
719
720  return *Result;
721}
722
723/// \brief Erase the attributes corresponding to the given declaration.
724void ASTContext::eraseDeclAttrs(const Decl *D) {
725  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
726  if (Pos != DeclAttrs.end()) {
727    Pos->second->~AttrVec();
728    DeclAttrs.erase(Pos);
729  }
730}
731
732MemberSpecializationInfo *
733ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
734  assert(Var->isStaticDataMember() && "Not a static data member");
735  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
736    = InstantiatedFromStaticDataMember.find(Var);
737  if (Pos == InstantiatedFromStaticDataMember.end())
738    return 0;
739
740  return Pos->second;
741}
742
743void
744ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
745                                                TemplateSpecializationKind TSK,
746                                          SourceLocation PointOfInstantiation) {
747  assert(Inst->isStaticDataMember() && "Not a static data member");
748  assert(Tmpl->isStaticDataMember() && "Not a static data member");
749  assert(!InstantiatedFromStaticDataMember[Inst] &&
750         "Already noted what static data member was instantiated from");
751  InstantiatedFromStaticDataMember[Inst]
752    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
753}
754
755FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
756                                                     const FunctionDecl *FD){
757  assert(FD && "Specialization is 0");
758  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
759    = ClassScopeSpecializationPattern.find(FD);
760  if (Pos == ClassScopeSpecializationPattern.end())
761    return 0;
762
763  return Pos->second;
764}
765
766void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
767                                        FunctionDecl *Pattern) {
768  assert(FD && "Specialization is 0");
769  assert(Pattern && "Class scope specialization pattern is 0");
770  ClassScopeSpecializationPattern[FD] = Pattern;
771}
772
773NamedDecl *
774ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
775  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
776    = InstantiatedFromUsingDecl.find(UUD);
777  if (Pos == InstantiatedFromUsingDecl.end())
778    return 0;
779
780  return Pos->second;
781}
782
783void
784ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
785  assert((isa<UsingDecl>(Pattern) ||
786          isa<UnresolvedUsingValueDecl>(Pattern) ||
787          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
788         "pattern decl is not a using decl");
789  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
790  InstantiatedFromUsingDecl[Inst] = Pattern;
791}
792
793UsingShadowDecl *
794ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
795  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
796    = InstantiatedFromUsingShadowDecl.find(Inst);
797  if (Pos == InstantiatedFromUsingShadowDecl.end())
798    return 0;
799
800  return Pos->second;
801}
802
803void
804ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
805                                               UsingShadowDecl *Pattern) {
806  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
807  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
808}
809
810FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
811  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
812    = InstantiatedFromUnnamedFieldDecl.find(Field);
813  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
814    return 0;
815
816  return Pos->second;
817}
818
819void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
820                                                     FieldDecl *Tmpl) {
821  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
822  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
823  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
824         "Already noted what unnamed field was instantiated from");
825
826  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
827}
828
829bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
830                                    const FieldDecl *LastFD) const {
831  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
832          FD->getBitWidthValue(*this) == 0);
833}
834
835bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
836                                             const FieldDecl *LastFD) const {
837  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
838          FD->getBitWidthValue(*this) == 0 &&
839          LastFD->getBitWidthValue(*this) != 0);
840}
841
842bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
843                                         const FieldDecl *LastFD) const {
844  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
845          FD->getBitWidthValue(*this) &&
846          LastFD->getBitWidthValue(*this));
847}
848
849bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
850                                         const FieldDecl *LastFD) const {
851  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
852          LastFD->getBitWidthValue(*this));
853}
854
855bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
856                                             const FieldDecl *LastFD) const {
857  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
858          FD->getBitWidthValue(*this));
859}
860
861ASTContext::overridden_cxx_method_iterator
862ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
863  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
864    = OverriddenMethods.find(Method);
865  if (Pos == OverriddenMethods.end())
866    return 0;
867
868  return Pos->second.begin();
869}
870
871ASTContext::overridden_cxx_method_iterator
872ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
873  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
874    = OverriddenMethods.find(Method);
875  if (Pos == OverriddenMethods.end())
876    return 0;
877
878  return Pos->second.end();
879}
880
881unsigned
882ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
883  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
884    = OverriddenMethods.find(Method);
885  if (Pos == OverriddenMethods.end())
886    return 0;
887
888  return Pos->second.size();
889}
890
891void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
892                                     const CXXMethodDecl *Overridden) {
893  OverriddenMethods[Method].push_back(Overridden);
894}
895
896void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
897  assert(!Import->NextLocalImport && "Import declaration already in the chain");
898  assert(!Import->isFromASTFile() && "Non-local import declaration");
899  if (!FirstLocalImport) {
900    FirstLocalImport = Import;
901    LastLocalImport = Import;
902    return;
903  }
904
905  LastLocalImport->NextLocalImport = Import;
906  LastLocalImport = Import;
907}
908
909//===----------------------------------------------------------------------===//
910//                         Type Sizing and Analysis
911//===----------------------------------------------------------------------===//
912
913/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
914/// scalar floating point type.
915const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
916  const BuiltinType *BT = T->getAs<BuiltinType>();
917  assert(BT && "Not a floating point type!");
918  switch (BT->getKind()) {
919  default: llvm_unreachable("Not a floating point type!");
920  case BuiltinType::Half:       return Target->getHalfFormat();
921  case BuiltinType::Float:      return Target->getFloatFormat();
922  case BuiltinType::Double:     return Target->getDoubleFormat();
923  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
924  }
925}
926
927/// getDeclAlign - Return a conservative estimate of the alignment of the
928/// specified decl.  Note that bitfields do not have a valid alignment, so
929/// this method will assert on them.
930/// If @p RefAsPointee, references are treated like their underlying type
931/// (for alignof), else they're treated like pointers (for CodeGen).
932CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
933  unsigned Align = Target->getCharWidth();
934
935  bool UseAlignAttrOnly = false;
936  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
937    Align = AlignFromAttr;
938
939    // __attribute__((aligned)) can increase or decrease alignment
940    // *except* on a struct or struct member, where it only increases
941    // alignment unless 'packed' is also specified.
942    //
943    // It is an error for alignas to decrease alignment, so we can
944    // ignore that possibility;  Sema should diagnose it.
945    if (isa<FieldDecl>(D)) {
946      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
947        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
948    } else {
949      UseAlignAttrOnly = true;
950    }
951  }
952  else if (isa<FieldDecl>(D))
953      UseAlignAttrOnly =
954        D->hasAttr<PackedAttr>() ||
955        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
956
957  // If we're using the align attribute only, just ignore everything
958  // else about the declaration and its type.
959  if (UseAlignAttrOnly) {
960    // do nothing
961
962  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
963    QualType T = VD->getType();
964    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
965      if (RefAsPointee)
966        T = RT->getPointeeType();
967      else
968        T = getPointerType(RT->getPointeeType());
969    }
970    if (!T->isIncompleteType() && !T->isFunctionType()) {
971      // Adjust alignments of declarations with array type by the
972      // large-array alignment on the target.
973      unsigned MinWidth = Target->getLargeArrayMinWidth();
974      const ArrayType *arrayType;
975      if (MinWidth && (arrayType = getAsArrayType(T))) {
976        if (isa<VariableArrayType>(arrayType))
977          Align = std::max(Align, Target->getLargeArrayAlign());
978        else if (isa<ConstantArrayType>(arrayType) &&
979                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
980          Align = std::max(Align, Target->getLargeArrayAlign());
981
982        // Walk through any array types while we're at it.
983        T = getBaseElementType(arrayType);
984      }
985      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
986    }
987
988    // Fields can be subject to extra alignment constraints, like if
989    // the field is packed, the struct is packed, or the struct has a
990    // a max-field-alignment constraint (#pragma pack).  So calculate
991    // the actual alignment of the field within the struct, and then
992    // (as we're expected to) constrain that by the alignment of the type.
993    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
994      // So calculate the alignment of the field.
995      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
996
997      // Start with the record's overall alignment.
998      unsigned fieldAlign = toBits(layout.getAlignment());
999
1000      // Use the GCD of that and the offset within the record.
1001      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1002      if (offset > 0) {
1003        // Alignment is always a power of 2, so the GCD will be a power of 2,
1004        // which means we get to do this crazy thing instead of Euclid's.
1005        uint64_t lowBitOfOffset = offset & (~offset + 1);
1006        if (lowBitOfOffset < fieldAlign)
1007          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1008      }
1009
1010      Align = std::min(Align, fieldAlign);
1011    }
1012  }
1013
1014  return toCharUnitsFromBits(Align);
1015}
1016
1017std::pair<CharUnits, CharUnits>
1018ASTContext::getTypeInfoInChars(const Type *T) const {
1019  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1020  return std::make_pair(toCharUnitsFromBits(Info.first),
1021                        toCharUnitsFromBits(Info.second));
1022}
1023
1024std::pair<CharUnits, CharUnits>
1025ASTContext::getTypeInfoInChars(QualType T) const {
1026  return getTypeInfoInChars(T.getTypePtr());
1027}
1028
1029std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1030  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1031  if (it != MemoizedTypeInfo.end())
1032    return it->second;
1033
1034  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1035  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1036  return Info;
1037}
1038
1039/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1040/// method does not work on incomplete types.
1041///
1042/// FIXME: Pointers into different addr spaces could have different sizes and
1043/// alignment requirements: getPointerInfo should take an AddrSpace, this
1044/// should take a QualType, &c.
1045std::pair<uint64_t, unsigned>
1046ASTContext::getTypeInfoImpl(const Type *T) const {
1047  uint64_t Width=0;
1048  unsigned Align=8;
1049  switch (T->getTypeClass()) {
1050#define TYPE(Class, Base)
1051#define ABSTRACT_TYPE(Class, Base)
1052#define NON_CANONICAL_TYPE(Class, Base)
1053#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1054#include "clang/AST/TypeNodes.def"
1055    llvm_unreachable("Should not see dependent types");
1056
1057  case Type::FunctionNoProto:
1058  case Type::FunctionProto:
1059    // GCC extension: alignof(function) = 32 bits
1060    Width = 0;
1061    Align = 32;
1062    break;
1063
1064  case Type::IncompleteArray:
1065  case Type::VariableArray:
1066    Width = 0;
1067    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1068    break;
1069
1070  case Type::ConstantArray: {
1071    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1072
1073    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1074    uint64_t Size = CAT->getSize().getZExtValue();
1075    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1076           "Overflow in array type bit size evaluation");
1077    Width = EltInfo.first*Size;
1078    Align = EltInfo.second;
1079    Width = llvm::RoundUpToAlignment(Width, Align);
1080    break;
1081  }
1082  case Type::ExtVector:
1083  case Type::Vector: {
1084    const VectorType *VT = cast<VectorType>(T);
1085    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1086    Width = EltInfo.first*VT->getNumElements();
1087    Align = Width;
1088    // If the alignment is not a power of 2, round up to the next power of 2.
1089    // This happens for non-power-of-2 length vectors.
1090    if (Align & (Align-1)) {
1091      Align = llvm::NextPowerOf2(Align);
1092      Width = llvm::RoundUpToAlignment(Width, Align);
1093    }
1094    // Adjust the alignment based on the target max.
1095    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1096    if (TargetVectorAlign && TargetVectorAlign < Align)
1097      Align = TargetVectorAlign;
1098    break;
1099  }
1100
1101  case Type::Builtin:
1102    switch (cast<BuiltinType>(T)->getKind()) {
1103    default: llvm_unreachable("Unknown builtin type!");
1104    case BuiltinType::Void:
1105      // GCC extension: alignof(void) = 8 bits.
1106      Width = 0;
1107      Align = 8;
1108      break;
1109
1110    case BuiltinType::Bool:
1111      Width = Target->getBoolWidth();
1112      Align = Target->getBoolAlign();
1113      break;
1114    case BuiltinType::Char_S:
1115    case BuiltinType::Char_U:
1116    case BuiltinType::UChar:
1117    case BuiltinType::SChar:
1118      Width = Target->getCharWidth();
1119      Align = Target->getCharAlign();
1120      break;
1121    case BuiltinType::WChar_S:
1122    case BuiltinType::WChar_U:
1123      Width = Target->getWCharWidth();
1124      Align = Target->getWCharAlign();
1125      break;
1126    case BuiltinType::Char16:
1127      Width = Target->getChar16Width();
1128      Align = Target->getChar16Align();
1129      break;
1130    case BuiltinType::Char32:
1131      Width = Target->getChar32Width();
1132      Align = Target->getChar32Align();
1133      break;
1134    case BuiltinType::UShort:
1135    case BuiltinType::Short:
1136      Width = Target->getShortWidth();
1137      Align = Target->getShortAlign();
1138      break;
1139    case BuiltinType::UInt:
1140    case BuiltinType::Int:
1141      Width = Target->getIntWidth();
1142      Align = Target->getIntAlign();
1143      break;
1144    case BuiltinType::ULong:
1145    case BuiltinType::Long:
1146      Width = Target->getLongWidth();
1147      Align = Target->getLongAlign();
1148      break;
1149    case BuiltinType::ULongLong:
1150    case BuiltinType::LongLong:
1151      Width = Target->getLongLongWidth();
1152      Align = Target->getLongLongAlign();
1153      break;
1154    case BuiltinType::Int128:
1155    case BuiltinType::UInt128:
1156      Width = 128;
1157      Align = 128; // int128_t is 128-bit aligned on all targets.
1158      break;
1159    case BuiltinType::Half:
1160      Width = Target->getHalfWidth();
1161      Align = Target->getHalfAlign();
1162      break;
1163    case BuiltinType::Float:
1164      Width = Target->getFloatWidth();
1165      Align = Target->getFloatAlign();
1166      break;
1167    case BuiltinType::Double:
1168      Width = Target->getDoubleWidth();
1169      Align = Target->getDoubleAlign();
1170      break;
1171    case BuiltinType::LongDouble:
1172      Width = Target->getLongDoubleWidth();
1173      Align = Target->getLongDoubleAlign();
1174      break;
1175    case BuiltinType::NullPtr:
1176      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1177      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1178      break;
1179    case BuiltinType::ObjCId:
1180    case BuiltinType::ObjCClass:
1181    case BuiltinType::ObjCSel:
1182      Width = Target->getPointerWidth(0);
1183      Align = Target->getPointerAlign(0);
1184      break;
1185    }
1186    break;
1187  case Type::ObjCObjectPointer:
1188    Width = Target->getPointerWidth(0);
1189    Align = Target->getPointerAlign(0);
1190    break;
1191  case Type::BlockPointer: {
1192    unsigned AS = getTargetAddressSpace(
1193        cast<BlockPointerType>(T)->getPointeeType());
1194    Width = Target->getPointerWidth(AS);
1195    Align = Target->getPointerAlign(AS);
1196    break;
1197  }
1198  case Type::LValueReference:
1199  case Type::RValueReference: {
1200    // alignof and sizeof should never enter this code path here, so we go
1201    // the pointer route.
1202    unsigned AS = getTargetAddressSpace(
1203        cast<ReferenceType>(T)->getPointeeType());
1204    Width = Target->getPointerWidth(AS);
1205    Align = Target->getPointerAlign(AS);
1206    break;
1207  }
1208  case Type::Pointer: {
1209    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1210    Width = Target->getPointerWidth(AS);
1211    Align = Target->getPointerAlign(AS);
1212    break;
1213  }
1214  case Type::MemberPointer: {
1215    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1216    std::pair<uint64_t, unsigned> PtrDiffInfo =
1217      getTypeInfo(getPointerDiffType());
1218    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1219    Align = PtrDiffInfo.second;
1220    break;
1221  }
1222  case Type::Complex: {
1223    // Complex types have the same alignment as their elements, but twice the
1224    // size.
1225    std::pair<uint64_t, unsigned> EltInfo =
1226      getTypeInfo(cast<ComplexType>(T)->getElementType());
1227    Width = EltInfo.first*2;
1228    Align = EltInfo.second;
1229    break;
1230  }
1231  case Type::ObjCObject:
1232    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1233  case Type::ObjCInterface: {
1234    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1235    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1236    Width = toBits(Layout.getSize());
1237    Align = toBits(Layout.getAlignment());
1238    break;
1239  }
1240  case Type::Record:
1241  case Type::Enum: {
1242    const TagType *TT = cast<TagType>(T);
1243
1244    if (TT->getDecl()->isInvalidDecl()) {
1245      Width = 8;
1246      Align = 8;
1247      break;
1248    }
1249
1250    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1251      return getTypeInfo(ET->getDecl()->getIntegerType());
1252
1253    const RecordType *RT = cast<RecordType>(TT);
1254    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1255    Width = toBits(Layout.getSize());
1256    Align = toBits(Layout.getAlignment());
1257    break;
1258  }
1259
1260  case Type::SubstTemplateTypeParm:
1261    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1262                       getReplacementType().getTypePtr());
1263
1264  case Type::Auto: {
1265    const AutoType *A = cast<AutoType>(T);
1266    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1267    return getTypeInfo(A->getDeducedType().getTypePtr());
1268  }
1269
1270  case Type::Paren:
1271    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1272
1273  case Type::Typedef: {
1274    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1275    std::pair<uint64_t, unsigned> Info
1276      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1277    // If the typedef has an aligned attribute on it, it overrides any computed
1278    // alignment we have.  This violates the GCC documentation (which says that
1279    // attribute(aligned) can only round up) but matches its implementation.
1280    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1281      Align = AttrAlign;
1282    else
1283      Align = Info.second;
1284    Width = Info.first;
1285    break;
1286  }
1287
1288  case Type::TypeOfExpr:
1289    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1290                         .getTypePtr());
1291
1292  case Type::TypeOf:
1293    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1294
1295  case Type::Decltype:
1296    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1297                        .getTypePtr());
1298
1299  case Type::UnaryTransform:
1300    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1301
1302  case Type::Elaborated:
1303    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1304
1305  case Type::Attributed:
1306    return getTypeInfo(
1307                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1308
1309  case Type::TemplateSpecialization: {
1310    assert(getCanonicalType(T) != T &&
1311           "Cannot request the size of a dependent type");
1312    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1313    // A type alias template specialization may refer to a typedef with the
1314    // aligned attribute on it.
1315    if (TST->isTypeAlias())
1316      return getTypeInfo(TST->getAliasedType().getTypePtr());
1317    else
1318      return getTypeInfo(getCanonicalType(T));
1319  }
1320
1321  case Type::Atomic: {
1322    std::pair<uint64_t, unsigned> Info
1323      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1324    Width = Info.first;
1325    Align = Info.second;
1326    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1327        llvm::isPowerOf2_64(Width)) {
1328      // We can potentially perform lock-free atomic operations for this
1329      // type; promote the alignment appropriately.
1330      // FIXME: We could potentially promote the width here as well...
1331      // is that worthwhile?  (Non-struct atomic types generally have
1332      // power-of-two size anyway, but structs might not.  Requires a bit
1333      // of implementation work to make sure we zero out the extra bits.)
1334      Align = static_cast<unsigned>(Width);
1335    }
1336  }
1337
1338  }
1339
1340  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1341  return std::make_pair(Width, Align);
1342}
1343
1344/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1345CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1346  return CharUnits::fromQuantity(BitSize / getCharWidth());
1347}
1348
1349/// toBits - Convert a size in characters to a size in characters.
1350int64_t ASTContext::toBits(CharUnits CharSize) const {
1351  return CharSize.getQuantity() * getCharWidth();
1352}
1353
1354/// getTypeSizeInChars - Return the size of the specified type, in characters.
1355/// This method does not work on incomplete types.
1356CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1357  return toCharUnitsFromBits(getTypeSize(T));
1358}
1359CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1360  return toCharUnitsFromBits(getTypeSize(T));
1361}
1362
1363/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1364/// characters. This method does not work on incomplete types.
1365CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1366  return toCharUnitsFromBits(getTypeAlign(T));
1367}
1368CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1369  return toCharUnitsFromBits(getTypeAlign(T));
1370}
1371
1372/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1373/// type for the current target in bits.  This can be different than the ABI
1374/// alignment in cases where it is beneficial for performance to overalign
1375/// a data type.
1376unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1377  unsigned ABIAlign = getTypeAlign(T);
1378
1379  // Double and long long should be naturally aligned if possible.
1380  if (const ComplexType* CT = T->getAs<ComplexType>())
1381    T = CT->getElementType().getTypePtr();
1382  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1383      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1384      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1385    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1386
1387  return ABIAlign;
1388}
1389
1390/// DeepCollectObjCIvars -
1391/// This routine first collects all declared, but not synthesized, ivars in
1392/// super class and then collects all ivars, including those synthesized for
1393/// current class. This routine is used for implementation of current class
1394/// when all ivars, declared and synthesized are known.
1395///
1396void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1397                                      bool leafClass,
1398                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1399  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1400    DeepCollectObjCIvars(SuperClass, false, Ivars);
1401  if (!leafClass) {
1402    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1403         E = OI->ivar_end(); I != E; ++I)
1404      Ivars.push_back(*I);
1405  } else {
1406    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1407    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1408         Iv= Iv->getNextIvar())
1409      Ivars.push_back(Iv);
1410  }
1411}
1412
1413/// CollectInheritedProtocols - Collect all protocols in current class and
1414/// those inherited by it.
1415void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1416                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1417  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1418    // We can use protocol_iterator here instead of
1419    // all_referenced_protocol_iterator since we are walking all categories.
1420    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1421         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1422      ObjCProtocolDecl *Proto = (*P);
1423      Protocols.insert(Proto->getCanonicalDecl());
1424      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1425           PE = Proto->protocol_end(); P != PE; ++P) {
1426        Protocols.insert((*P)->getCanonicalDecl());
1427        CollectInheritedProtocols(*P, Protocols);
1428      }
1429    }
1430
1431    // Categories of this Interface.
1432    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1433         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1434      CollectInheritedProtocols(CDeclChain, Protocols);
1435    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1436      while (SD) {
1437        CollectInheritedProtocols(SD, Protocols);
1438        SD = SD->getSuperClass();
1439      }
1440  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1441    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1442         PE = OC->protocol_end(); P != PE; ++P) {
1443      ObjCProtocolDecl *Proto = (*P);
1444      Protocols.insert(Proto->getCanonicalDecl());
1445      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1446           PE = Proto->protocol_end(); P != PE; ++P)
1447        CollectInheritedProtocols(*P, Protocols);
1448    }
1449  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1450    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1451         PE = OP->protocol_end(); P != PE; ++P) {
1452      ObjCProtocolDecl *Proto = (*P);
1453      Protocols.insert(Proto->getCanonicalDecl());
1454      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1455           PE = Proto->protocol_end(); P != PE; ++P)
1456        CollectInheritedProtocols(*P, Protocols);
1457    }
1458  }
1459}
1460
1461unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1462  unsigned count = 0;
1463  // Count ivars declared in class extension.
1464  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1465       CDecl = CDecl->getNextClassExtension())
1466    count += CDecl->ivar_size();
1467
1468  // Count ivar defined in this class's implementation.  This
1469  // includes synthesized ivars.
1470  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1471    count += ImplDecl->ivar_size();
1472
1473  return count;
1474}
1475
1476bool ASTContext::isSentinelNullExpr(const Expr *E) {
1477  if (!E)
1478    return false;
1479
1480  // nullptr_t is always treated as null.
1481  if (E->getType()->isNullPtrType()) return true;
1482
1483  if (E->getType()->isAnyPointerType() &&
1484      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1485                                                Expr::NPC_ValueDependentIsNull))
1486    return true;
1487
1488  // Unfortunately, __null has type 'int'.
1489  if (isa<GNUNullExpr>(E)) return true;
1490
1491  return false;
1492}
1493
1494/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1495ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1496  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1497    I = ObjCImpls.find(D);
1498  if (I != ObjCImpls.end())
1499    return cast<ObjCImplementationDecl>(I->second);
1500  return 0;
1501}
1502/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1503ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1504  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1505    I = ObjCImpls.find(D);
1506  if (I != ObjCImpls.end())
1507    return cast<ObjCCategoryImplDecl>(I->second);
1508  return 0;
1509}
1510
1511/// \brief Set the implementation of ObjCInterfaceDecl.
1512void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1513                           ObjCImplementationDecl *ImplD) {
1514  assert(IFaceD && ImplD && "Passed null params");
1515  ObjCImpls[IFaceD] = ImplD;
1516}
1517/// \brief Set the implementation of ObjCCategoryDecl.
1518void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1519                           ObjCCategoryImplDecl *ImplD) {
1520  assert(CatD && ImplD && "Passed null params");
1521  ObjCImpls[CatD] = ImplD;
1522}
1523
1524ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1525  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1526    return ID;
1527  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1528    return CD->getClassInterface();
1529  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1530    return IMD->getClassInterface();
1531
1532  return 0;
1533}
1534
1535/// \brief Get the copy initialization expression of VarDecl,or NULL if
1536/// none exists.
1537Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1538  assert(VD && "Passed null params");
1539  assert(VD->hasAttr<BlocksAttr>() &&
1540         "getBlockVarCopyInits - not __block var");
1541  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1542    I = BlockVarCopyInits.find(VD);
1543  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1544}
1545
1546/// \brief Set the copy inialization expression of a block var decl.
1547void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1548  assert(VD && Init && "Passed null params");
1549  assert(VD->hasAttr<BlocksAttr>() &&
1550         "setBlockVarCopyInits - not __block var");
1551  BlockVarCopyInits[VD] = Init;
1552}
1553
1554TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1555                                                 unsigned DataSize) const {
1556  if (!DataSize)
1557    DataSize = TypeLoc::getFullDataSizeForType(T);
1558  else
1559    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1560           "incorrect data size provided to CreateTypeSourceInfo!");
1561
1562  TypeSourceInfo *TInfo =
1563    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1564  new (TInfo) TypeSourceInfo(T);
1565  return TInfo;
1566}
1567
1568TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1569                                                     SourceLocation L) const {
1570  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1571  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1572  return DI;
1573}
1574
1575const ASTRecordLayout &
1576ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1577  return getObjCLayout(D, 0);
1578}
1579
1580const ASTRecordLayout &
1581ASTContext::getASTObjCImplementationLayout(
1582                                        const ObjCImplementationDecl *D) const {
1583  return getObjCLayout(D->getClassInterface(), D);
1584}
1585
1586//===----------------------------------------------------------------------===//
1587//                   Type creation/memoization methods
1588//===----------------------------------------------------------------------===//
1589
1590QualType
1591ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1592  unsigned fastQuals = quals.getFastQualifiers();
1593  quals.removeFastQualifiers();
1594
1595  // Check if we've already instantiated this type.
1596  llvm::FoldingSetNodeID ID;
1597  ExtQuals::Profile(ID, baseType, quals);
1598  void *insertPos = 0;
1599  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1600    assert(eq->getQualifiers() == quals);
1601    return QualType(eq, fastQuals);
1602  }
1603
1604  // If the base type is not canonical, make the appropriate canonical type.
1605  QualType canon;
1606  if (!baseType->isCanonicalUnqualified()) {
1607    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1608    canonSplit.Quals.addConsistentQualifiers(quals);
1609    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1610
1611    // Re-find the insert position.
1612    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1613  }
1614
1615  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1616  ExtQualNodes.InsertNode(eq, insertPos);
1617  return QualType(eq, fastQuals);
1618}
1619
1620QualType
1621ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1622  QualType CanT = getCanonicalType(T);
1623  if (CanT.getAddressSpace() == AddressSpace)
1624    return T;
1625
1626  // If we are composing extended qualifiers together, merge together
1627  // into one ExtQuals node.
1628  QualifierCollector Quals;
1629  const Type *TypeNode = Quals.strip(T);
1630
1631  // If this type already has an address space specified, it cannot get
1632  // another one.
1633  assert(!Quals.hasAddressSpace() &&
1634         "Type cannot be in multiple addr spaces!");
1635  Quals.addAddressSpace(AddressSpace);
1636
1637  return getExtQualType(TypeNode, Quals);
1638}
1639
1640QualType ASTContext::getObjCGCQualType(QualType T,
1641                                       Qualifiers::GC GCAttr) const {
1642  QualType CanT = getCanonicalType(T);
1643  if (CanT.getObjCGCAttr() == GCAttr)
1644    return T;
1645
1646  if (const PointerType *ptr = T->getAs<PointerType>()) {
1647    QualType Pointee = ptr->getPointeeType();
1648    if (Pointee->isAnyPointerType()) {
1649      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1650      return getPointerType(ResultType);
1651    }
1652  }
1653
1654  // If we are composing extended qualifiers together, merge together
1655  // into one ExtQuals node.
1656  QualifierCollector Quals;
1657  const Type *TypeNode = Quals.strip(T);
1658
1659  // If this type already has an ObjCGC specified, it cannot get
1660  // another one.
1661  assert(!Quals.hasObjCGCAttr() &&
1662         "Type cannot have multiple ObjCGCs!");
1663  Quals.addObjCGCAttr(GCAttr);
1664
1665  return getExtQualType(TypeNode, Quals);
1666}
1667
1668const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1669                                                   FunctionType::ExtInfo Info) {
1670  if (T->getExtInfo() == Info)
1671    return T;
1672
1673  QualType Result;
1674  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1675    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1676  } else {
1677    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1678    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1679    EPI.ExtInfo = Info;
1680    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1681                             FPT->getNumArgs(), EPI);
1682  }
1683
1684  return cast<FunctionType>(Result.getTypePtr());
1685}
1686
1687/// getComplexType - Return the uniqued reference to the type for a complex
1688/// number with the specified element type.
1689QualType ASTContext::getComplexType(QualType T) const {
1690  // Unique pointers, to guarantee there is only one pointer of a particular
1691  // structure.
1692  llvm::FoldingSetNodeID ID;
1693  ComplexType::Profile(ID, T);
1694
1695  void *InsertPos = 0;
1696  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1697    return QualType(CT, 0);
1698
1699  // If the pointee type isn't canonical, this won't be a canonical type either,
1700  // so fill in the canonical type field.
1701  QualType Canonical;
1702  if (!T.isCanonical()) {
1703    Canonical = getComplexType(getCanonicalType(T));
1704
1705    // Get the new insert position for the node we care about.
1706    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1707    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1708  }
1709  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1710  Types.push_back(New);
1711  ComplexTypes.InsertNode(New, InsertPos);
1712  return QualType(New, 0);
1713}
1714
1715/// getPointerType - Return the uniqued reference to the type for a pointer to
1716/// the specified type.
1717QualType ASTContext::getPointerType(QualType T) const {
1718  // Unique pointers, to guarantee there is only one pointer of a particular
1719  // structure.
1720  llvm::FoldingSetNodeID ID;
1721  PointerType::Profile(ID, T);
1722
1723  void *InsertPos = 0;
1724  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1725    return QualType(PT, 0);
1726
1727  // If the pointee type isn't canonical, this won't be a canonical type either,
1728  // so fill in the canonical type field.
1729  QualType Canonical;
1730  if (!T.isCanonical()) {
1731    Canonical = getPointerType(getCanonicalType(T));
1732
1733    // Get the new insert position for the node we care about.
1734    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1735    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1736  }
1737  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1738  Types.push_back(New);
1739  PointerTypes.InsertNode(New, InsertPos);
1740  return QualType(New, 0);
1741}
1742
1743/// getBlockPointerType - Return the uniqued reference to the type for
1744/// a pointer to the specified block.
1745QualType ASTContext::getBlockPointerType(QualType T) const {
1746  assert(T->isFunctionType() && "block of function types only");
1747  // Unique pointers, to guarantee there is only one block of a particular
1748  // structure.
1749  llvm::FoldingSetNodeID ID;
1750  BlockPointerType::Profile(ID, T);
1751
1752  void *InsertPos = 0;
1753  if (BlockPointerType *PT =
1754        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1755    return QualType(PT, 0);
1756
1757  // If the block pointee type isn't canonical, this won't be a canonical
1758  // type either so fill in the canonical type field.
1759  QualType Canonical;
1760  if (!T.isCanonical()) {
1761    Canonical = getBlockPointerType(getCanonicalType(T));
1762
1763    // Get the new insert position for the node we care about.
1764    BlockPointerType *NewIP =
1765      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1766    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1767  }
1768  BlockPointerType *New
1769    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1770  Types.push_back(New);
1771  BlockPointerTypes.InsertNode(New, InsertPos);
1772  return QualType(New, 0);
1773}
1774
1775/// getLValueReferenceType - Return the uniqued reference to the type for an
1776/// lvalue reference to the specified type.
1777QualType
1778ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1779  assert(getCanonicalType(T) != OverloadTy &&
1780         "Unresolved overloaded function type");
1781
1782  // Unique pointers, to guarantee there is only one pointer of a particular
1783  // structure.
1784  llvm::FoldingSetNodeID ID;
1785  ReferenceType::Profile(ID, T, SpelledAsLValue);
1786
1787  void *InsertPos = 0;
1788  if (LValueReferenceType *RT =
1789        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1790    return QualType(RT, 0);
1791
1792  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1793
1794  // If the referencee type isn't canonical, this won't be a canonical type
1795  // either, so fill in the canonical type field.
1796  QualType Canonical;
1797  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1798    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1799    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1800
1801    // Get the new insert position for the node we care about.
1802    LValueReferenceType *NewIP =
1803      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1804    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1805  }
1806
1807  LValueReferenceType *New
1808    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1809                                                     SpelledAsLValue);
1810  Types.push_back(New);
1811  LValueReferenceTypes.InsertNode(New, InsertPos);
1812
1813  return QualType(New, 0);
1814}
1815
1816/// getRValueReferenceType - Return the uniqued reference to the type for an
1817/// rvalue reference to the specified type.
1818QualType ASTContext::getRValueReferenceType(QualType T) const {
1819  // Unique pointers, to guarantee there is only one pointer of a particular
1820  // structure.
1821  llvm::FoldingSetNodeID ID;
1822  ReferenceType::Profile(ID, T, false);
1823
1824  void *InsertPos = 0;
1825  if (RValueReferenceType *RT =
1826        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1827    return QualType(RT, 0);
1828
1829  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1830
1831  // If the referencee type isn't canonical, this won't be a canonical type
1832  // either, so fill in the canonical type field.
1833  QualType Canonical;
1834  if (InnerRef || !T.isCanonical()) {
1835    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1836    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1837
1838    // Get the new insert position for the node we care about.
1839    RValueReferenceType *NewIP =
1840      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1841    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1842  }
1843
1844  RValueReferenceType *New
1845    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1846  Types.push_back(New);
1847  RValueReferenceTypes.InsertNode(New, InsertPos);
1848  return QualType(New, 0);
1849}
1850
1851/// getMemberPointerType - Return the uniqued reference to the type for a
1852/// member pointer to the specified type, in the specified class.
1853QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1854  // Unique pointers, to guarantee there is only one pointer of a particular
1855  // structure.
1856  llvm::FoldingSetNodeID ID;
1857  MemberPointerType::Profile(ID, T, Cls);
1858
1859  void *InsertPos = 0;
1860  if (MemberPointerType *PT =
1861      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1862    return QualType(PT, 0);
1863
1864  // If the pointee or class type isn't canonical, this won't be a canonical
1865  // type either, so fill in the canonical type field.
1866  QualType Canonical;
1867  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1868    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1869
1870    // Get the new insert position for the node we care about.
1871    MemberPointerType *NewIP =
1872      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1873    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1874  }
1875  MemberPointerType *New
1876    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1877  Types.push_back(New);
1878  MemberPointerTypes.InsertNode(New, InsertPos);
1879  return QualType(New, 0);
1880}
1881
1882/// getConstantArrayType - Return the unique reference to the type for an
1883/// array of the specified element type.
1884QualType ASTContext::getConstantArrayType(QualType EltTy,
1885                                          const llvm::APInt &ArySizeIn,
1886                                          ArrayType::ArraySizeModifier ASM,
1887                                          unsigned IndexTypeQuals) const {
1888  assert((EltTy->isDependentType() ||
1889          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1890         "Constant array of VLAs is illegal!");
1891
1892  // Convert the array size into a canonical width matching the pointer size for
1893  // the target.
1894  llvm::APInt ArySize(ArySizeIn);
1895  ArySize =
1896    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1897
1898  llvm::FoldingSetNodeID ID;
1899  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1900
1901  void *InsertPos = 0;
1902  if (ConstantArrayType *ATP =
1903      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1904    return QualType(ATP, 0);
1905
1906  // If the element type isn't canonical or has qualifiers, this won't
1907  // be a canonical type either, so fill in the canonical type field.
1908  QualType Canon;
1909  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1910    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1911    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1912                                 ASM, IndexTypeQuals);
1913    Canon = getQualifiedType(Canon, canonSplit.Quals);
1914
1915    // Get the new insert position for the node we care about.
1916    ConstantArrayType *NewIP =
1917      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1918    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1919  }
1920
1921  ConstantArrayType *New = new(*this,TypeAlignment)
1922    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1923  ConstantArrayTypes.InsertNode(New, InsertPos);
1924  Types.push_back(New);
1925  return QualType(New, 0);
1926}
1927
1928/// getVariableArrayDecayedType - Turns the given type, which may be
1929/// variably-modified, into the corresponding type with all the known
1930/// sizes replaced with [*].
1931QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1932  // Vastly most common case.
1933  if (!type->isVariablyModifiedType()) return type;
1934
1935  QualType result;
1936
1937  SplitQualType split = type.getSplitDesugaredType();
1938  const Type *ty = split.Ty;
1939  switch (ty->getTypeClass()) {
1940#define TYPE(Class, Base)
1941#define ABSTRACT_TYPE(Class, Base)
1942#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1943#include "clang/AST/TypeNodes.def"
1944    llvm_unreachable("didn't desugar past all non-canonical types?");
1945
1946  // These types should never be variably-modified.
1947  case Type::Builtin:
1948  case Type::Complex:
1949  case Type::Vector:
1950  case Type::ExtVector:
1951  case Type::DependentSizedExtVector:
1952  case Type::ObjCObject:
1953  case Type::ObjCInterface:
1954  case Type::ObjCObjectPointer:
1955  case Type::Record:
1956  case Type::Enum:
1957  case Type::UnresolvedUsing:
1958  case Type::TypeOfExpr:
1959  case Type::TypeOf:
1960  case Type::Decltype:
1961  case Type::UnaryTransform:
1962  case Type::DependentName:
1963  case Type::InjectedClassName:
1964  case Type::TemplateSpecialization:
1965  case Type::DependentTemplateSpecialization:
1966  case Type::TemplateTypeParm:
1967  case Type::SubstTemplateTypeParmPack:
1968  case Type::Auto:
1969  case Type::PackExpansion:
1970    llvm_unreachable("type should never be variably-modified");
1971
1972  // These types can be variably-modified but should never need to
1973  // further decay.
1974  case Type::FunctionNoProto:
1975  case Type::FunctionProto:
1976  case Type::BlockPointer:
1977  case Type::MemberPointer:
1978    return type;
1979
1980  // These types can be variably-modified.  All these modifications
1981  // preserve structure except as noted by comments.
1982  // TODO: if we ever care about optimizing VLAs, there are no-op
1983  // optimizations available here.
1984  case Type::Pointer:
1985    result = getPointerType(getVariableArrayDecayedType(
1986                              cast<PointerType>(ty)->getPointeeType()));
1987    break;
1988
1989  case Type::LValueReference: {
1990    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1991    result = getLValueReferenceType(
1992                 getVariableArrayDecayedType(lv->getPointeeType()),
1993                                    lv->isSpelledAsLValue());
1994    break;
1995  }
1996
1997  case Type::RValueReference: {
1998    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1999    result = getRValueReferenceType(
2000                 getVariableArrayDecayedType(lv->getPointeeType()));
2001    break;
2002  }
2003
2004  case Type::Atomic: {
2005    const AtomicType *at = cast<AtomicType>(ty);
2006    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2007    break;
2008  }
2009
2010  case Type::ConstantArray: {
2011    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2012    result = getConstantArrayType(
2013                 getVariableArrayDecayedType(cat->getElementType()),
2014                                  cat->getSize(),
2015                                  cat->getSizeModifier(),
2016                                  cat->getIndexTypeCVRQualifiers());
2017    break;
2018  }
2019
2020  case Type::DependentSizedArray: {
2021    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2022    result = getDependentSizedArrayType(
2023                 getVariableArrayDecayedType(dat->getElementType()),
2024                                        dat->getSizeExpr(),
2025                                        dat->getSizeModifier(),
2026                                        dat->getIndexTypeCVRQualifiers(),
2027                                        dat->getBracketsRange());
2028    break;
2029  }
2030
2031  // Turn incomplete types into [*] types.
2032  case Type::IncompleteArray: {
2033    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2034    result = getVariableArrayType(
2035                 getVariableArrayDecayedType(iat->getElementType()),
2036                                  /*size*/ 0,
2037                                  ArrayType::Normal,
2038                                  iat->getIndexTypeCVRQualifiers(),
2039                                  SourceRange());
2040    break;
2041  }
2042
2043  // Turn VLA types into [*] types.
2044  case Type::VariableArray: {
2045    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2046    result = getVariableArrayType(
2047                 getVariableArrayDecayedType(vat->getElementType()),
2048                                  /*size*/ 0,
2049                                  ArrayType::Star,
2050                                  vat->getIndexTypeCVRQualifiers(),
2051                                  vat->getBracketsRange());
2052    break;
2053  }
2054  }
2055
2056  // Apply the top-level qualifiers from the original.
2057  return getQualifiedType(result, split.Quals);
2058}
2059
2060/// getVariableArrayType - Returns a non-unique reference to the type for a
2061/// variable array of the specified element type.
2062QualType ASTContext::getVariableArrayType(QualType EltTy,
2063                                          Expr *NumElts,
2064                                          ArrayType::ArraySizeModifier ASM,
2065                                          unsigned IndexTypeQuals,
2066                                          SourceRange Brackets) const {
2067  // Since we don't unique expressions, it isn't possible to unique VLA's
2068  // that have an expression provided for their size.
2069  QualType Canon;
2070
2071  // Be sure to pull qualifiers off the element type.
2072  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2073    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2074    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2075                                 IndexTypeQuals, Brackets);
2076    Canon = getQualifiedType(Canon, canonSplit.Quals);
2077  }
2078
2079  VariableArrayType *New = new(*this, TypeAlignment)
2080    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2081
2082  VariableArrayTypes.push_back(New);
2083  Types.push_back(New);
2084  return QualType(New, 0);
2085}
2086
2087/// getDependentSizedArrayType - Returns a non-unique reference to
2088/// the type for a dependently-sized array of the specified element
2089/// type.
2090QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2091                                                Expr *numElements,
2092                                                ArrayType::ArraySizeModifier ASM,
2093                                                unsigned elementTypeQuals,
2094                                                SourceRange brackets) const {
2095  assert((!numElements || numElements->isTypeDependent() ||
2096          numElements->isValueDependent()) &&
2097         "Size must be type- or value-dependent!");
2098
2099  // Dependently-sized array types that do not have a specified number
2100  // of elements will have their sizes deduced from a dependent
2101  // initializer.  We do no canonicalization here at all, which is okay
2102  // because they can't be used in most locations.
2103  if (!numElements) {
2104    DependentSizedArrayType *newType
2105      = new (*this, TypeAlignment)
2106          DependentSizedArrayType(*this, elementType, QualType(),
2107                                  numElements, ASM, elementTypeQuals,
2108                                  brackets);
2109    Types.push_back(newType);
2110    return QualType(newType, 0);
2111  }
2112
2113  // Otherwise, we actually build a new type every time, but we
2114  // also build a canonical type.
2115
2116  SplitQualType canonElementType = getCanonicalType(elementType).split();
2117
2118  void *insertPos = 0;
2119  llvm::FoldingSetNodeID ID;
2120  DependentSizedArrayType::Profile(ID, *this,
2121                                   QualType(canonElementType.Ty, 0),
2122                                   ASM, elementTypeQuals, numElements);
2123
2124  // Look for an existing type with these properties.
2125  DependentSizedArrayType *canonTy =
2126    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2127
2128  // If we don't have one, build one.
2129  if (!canonTy) {
2130    canonTy = new (*this, TypeAlignment)
2131      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2132                              QualType(), numElements, ASM, elementTypeQuals,
2133                              brackets);
2134    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2135    Types.push_back(canonTy);
2136  }
2137
2138  // Apply qualifiers from the element type to the array.
2139  QualType canon = getQualifiedType(QualType(canonTy,0),
2140                                    canonElementType.Quals);
2141
2142  // If we didn't need extra canonicalization for the element type,
2143  // then just use that as our result.
2144  if (QualType(canonElementType.Ty, 0) == elementType)
2145    return canon;
2146
2147  // Otherwise, we need to build a type which follows the spelling
2148  // of the element type.
2149  DependentSizedArrayType *sugaredType
2150    = new (*this, TypeAlignment)
2151        DependentSizedArrayType(*this, elementType, canon, numElements,
2152                                ASM, elementTypeQuals, brackets);
2153  Types.push_back(sugaredType);
2154  return QualType(sugaredType, 0);
2155}
2156
2157QualType ASTContext::getIncompleteArrayType(QualType elementType,
2158                                            ArrayType::ArraySizeModifier ASM,
2159                                            unsigned elementTypeQuals) const {
2160  llvm::FoldingSetNodeID ID;
2161  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2162
2163  void *insertPos = 0;
2164  if (IncompleteArrayType *iat =
2165       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2166    return QualType(iat, 0);
2167
2168  // If the element type isn't canonical, this won't be a canonical type
2169  // either, so fill in the canonical type field.  We also have to pull
2170  // qualifiers off the element type.
2171  QualType canon;
2172
2173  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2174    SplitQualType canonSplit = getCanonicalType(elementType).split();
2175    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2176                                   ASM, elementTypeQuals);
2177    canon = getQualifiedType(canon, canonSplit.Quals);
2178
2179    // Get the new insert position for the node we care about.
2180    IncompleteArrayType *existing =
2181      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2182    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2183  }
2184
2185  IncompleteArrayType *newType = new (*this, TypeAlignment)
2186    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2187
2188  IncompleteArrayTypes.InsertNode(newType, insertPos);
2189  Types.push_back(newType);
2190  return QualType(newType, 0);
2191}
2192
2193/// getVectorType - Return the unique reference to a vector type of
2194/// the specified element type and size. VectorType must be a built-in type.
2195QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2196                                   VectorType::VectorKind VecKind) const {
2197  assert(vecType->isBuiltinType());
2198
2199  // Check if we've already instantiated a vector of this type.
2200  llvm::FoldingSetNodeID ID;
2201  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2202
2203  void *InsertPos = 0;
2204  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2205    return QualType(VTP, 0);
2206
2207  // If the element type isn't canonical, this won't be a canonical type either,
2208  // so fill in the canonical type field.
2209  QualType Canonical;
2210  if (!vecType.isCanonical()) {
2211    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2212
2213    // Get the new insert position for the node we care about.
2214    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2215    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2216  }
2217  VectorType *New = new (*this, TypeAlignment)
2218    VectorType(vecType, NumElts, Canonical, VecKind);
2219  VectorTypes.InsertNode(New, InsertPos);
2220  Types.push_back(New);
2221  return QualType(New, 0);
2222}
2223
2224/// getExtVectorType - Return the unique reference to an extended vector type of
2225/// the specified element type and size. VectorType must be a built-in type.
2226QualType
2227ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2228  assert(vecType->isBuiltinType() || vecType->isDependentType());
2229
2230  // Check if we've already instantiated a vector of this type.
2231  llvm::FoldingSetNodeID ID;
2232  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2233                      VectorType::GenericVector);
2234  void *InsertPos = 0;
2235  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2236    return QualType(VTP, 0);
2237
2238  // If the element type isn't canonical, this won't be a canonical type either,
2239  // so fill in the canonical type field.
2240  QualType Canonical;
2241  if (!vecType.isCanonical()) {
2242    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2243
2244    // Get the new insert position for the node we care about.
2245    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2246    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2247  }
2248  ExtVectorType *New = new (*this, TypeAlignment)
2249    ExtVectorType(vecType, NumElts, Canonical);
2250  VectorTypes.InsertNode(New, InsertPos);
2251  Types.push_back(New);
2252  return QualType(New, 0);
2253}
2254
2255QualType
2256ASTContext::getDependentSizedExtVectorType(QualType vecType,
2257                                           Expr *SizeExpr,
2258                                           SourceLocation AttrLoc) const {
2259  llvm::FoldingSetNodeID ID;
2260  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2261                                       SizeExpr);
2262
2263  void *InsertPos = 0;
2264  DependentSizedExtVectorType *Canon
2265    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2266  DependentSizedExtVectorType *New;
2267  if (Canon) {
2268    // We already have a canonical version of this array type; use it as
2269    // the canonical type for a newly-built type.
2270    New = new (*this, TypeAlignment)
2271      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2272                                  SizeExpr, AttrLoc);
2273  } else {
2274    QualType CanonVecTy = getCanonicalType(vecType);
2275    if (CanonVecTy == vecType) {
2276      New = new (*this, TypeAlignment)
2277        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2278                                    AttrLoc);
2279
2280      DependentSizedExtVectorType *CanonCheck
2281        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2282      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2283      (void)CanonCheck;
2284      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2285    } else {
2286      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2287                                                      SourceLocation());
2288      New = new (*this, TypeAlignment)
2289        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2290    }
2291  }
2292
2293  Types.push_back(New);
2294  return QualType(New, 0);
2295}
2296
2297/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2298///
2299QualType
2300ASTContext::getFunctionNoProtoType(QualType ResultTy,
2301                                   const FunctionType::ExtInfo &Info) const {
2302  const CallingConv DefaultCC = Info.getCC();
2303  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2304                               CC_X86StdCall : DefaultCC;
2305  // Unique functions, to guarantee there is only one function of a particular
2306  // structure.
2307  llvm::FoldingSetNodeID ID;
2308  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2309
2310  void *InsertPos = 0;
2311  if (FunctionNoProtoType *FT =
2312        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2313    return QualType(FT, 0);
2314
2315  QualType Canonical;
2316  if (!ResultTy.isCanonical() ||
2317      getCanonicalCallConv(CallConv) != CallConv) {
2318    Canonical =
2319      getFunctionNoProtoType(getCanonicalType(ResultTy),
2320                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2321
2322    // Get the new insert position for the node we care about.
2323    FunctionNoProtoType *NewIP =
2324      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2325    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2326  }
2327
2328  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2329  FunctionNoProtoType *New = new (*this, TypeAlignment)
2330    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2331  Types.push_back(New);
2332  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2333  return QualType(New, 0);
2334}
2335
2336/// getFunctionType - Return a normal function type with a typed argument
2337/// list.  isVariadic indicates whether the argument list includes '...'.
2338QualType
2339ASTContext::getFunctionType(QualType ResultTy,
2340                            const QualType *ArgArray, unsigned NumArgs,
2341                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2342  // Unique functions, to guarantee there is only one function of a particular
2343  // structure.
2344  llvm::FoldingSetNodeID ID;
2345  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2346
2347  void *InsertPos = 0;
2348  if (FunctionProtoType *FTP =
2349        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2350    return QualType(FTP, 0);
2351
2352  // Determine whether the type being created is already canonical or not.
2353  bool isCanonical =
2354    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2355    !EPI.HasTrailingReturn;
2356  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2357    if (!ArgArray[i].isCanonicalAsParam())
2358      isCanonical = false;
2359
2360  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2361  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2362                               CC_X86StdCall : DefaultCC;
2363
2364  // If this type isn't canonical, get the canonical version of it.
2365  // The exception spec is not part of the canonical type.
2366  QualType Canonical;
2367  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2368    SmallVector<QualType, 16> CanonicalArgs;
2369    CanonicalArgs.reserve(NumArgs);
2370    for (unsigned i = 0; i != NumArgs; ++i)
2371      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2372
2373    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2374    CanonicalEPI.HasTrailingReturn = false;
2375    CanonicalEPI.ExceptionSpecType = EST_None;
2376    CanonicalEPI.NumExceptions = 0;
2377    CanonicalEPI.ExtInfo
2378      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2379
2380    Canonical = getFunctionType(getCanonicalType(ResultTy),
2381                                CanonicalArgs.data(), NumArgs,
2382                                CanonicalEPI);
2383
2384    // Get the new insert position for the node we care about.
2385    FunctionProtoType *NewIP =
2386      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2387    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2388  }
2389
2390  // FunctionProtoType objects are allocated with extra bytes after
2391  // them for three variable size arrays at the end:
2392  //  - parameter types
2393  //  - exception types
2394  //  - consumed-arguments flags
2395  // Instead of the exception types, there could be a noexcept
2396  // expression, or information used to resolve the exception
2397  // specification.
2398  size_t Size = sizeof(FunctionProtoType) +
2399                NumArgs * sizeof(QualType);
2400  if (EPI.ExceptionSpecType == EST_Dynamic) {
2401    Size += EPI.NumExceptions * sizeof(QualType);
2402  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2403    Size += sizeof(Expr*);
2404  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2405    Size += 2 * sizeof(FunctionDecl*);
2406  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2407    Size += sizeof(FunctionDecl*);
2408  }
2409  if (EPI.ConsumedArguments)
2410    Size += NumArgs * sizeof(bool);
2411
2412  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2413  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2414  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2415  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2416  Types.push_back(FTP);
2417  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2418  return QualType(FTP, 0);
2419}
2420
2421#ifndef NDEBUG
2422static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2423  if (!isa<CXXRecordDecl>(D)) return false;
2424  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2425  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2426    return true;
2427  if (RD->getDescribedClassTemplate() &&
2428      !isa<ClassTemplateSpecializationDecl>(RD))
2429    return true;
2430  return false;
2431}
2432#endif
2433
2434/// getInjectedClassNameType - Return the unique reference to the
2435/// injected class name type for the specified templated declaration.
2436QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2437                                              QualType TST) const {
2438  assert(NeedsInjectedClassNameType(Decl));
2439  if (Decl->TypeForDecl) {
2440    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2441  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2442    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2443    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2444    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2445  } else {
2446    Type *newType =
2447      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2448    Decl->TypeForDecl = newType;
2449    Types.push_back(newType);
2450  }
2451  return QualType(Decl->TypeForDecl, 0);
2452}
2453
2454/// getTypeDeclType - Return the unique reference to the type for the
2455/// specified type declaration.
2456QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2457  assert(Decl && "Passed null for Decl param");
2458  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2459
2460  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2461    return getTypedefType(Typedef);
2462
2463  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2464         "Template type parameter types are always available.");
2465
2466  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2467    assert(!Record->getPreviousDecl() &&
2468           "struct/union has previous declaration");
2469    assert(!NeedsInjectedClassNameType(Record));
2470    return getRecordType(Record);
2471  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2472    assert(!Enum->getPreviousDecl() &&
2473           "enum has previous declaration");
2474    return getEnumType(Enum);
2475  } else if (const UnresolvedUsingTypenameDecl *Using =
2476               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2477    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2478    Decl->TypeForDecl = newType;
2479    Types.push_back(newType);
2480  } else
2481    llvm_unreachable("TypeDecl without a type?");
2482
2483  return QualType(Decl->TypeForDecl, 0);
2484}
2485
2486/// getTypedefType - Return the unique reference to the type for the
2487/// specified typedef name decl.
2488QualType
2489ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2490                           QualType Canonical) const {
2491  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2492
2493  if (Canonical.isNull())
2494    Canonical = getCanonicalType(Decl->getUnderlyingType());
2495  TypedefType *newType = new(*this, TypeAlignment)
2496    TypedefType(Type::Typedef, Decl, Canonical);
2497  Decl->TypeForDecl = newType;
2498  Types.push_back(newType);
2499  return QualType(newType, 0);
2500}
2501
2502QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2503  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2504
2505  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2506    if (PrevDecl->TypeForDecl)
2507      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2508
2509  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2510  Decl->TypeForDecl = newType;
2511  Types.push_back(newType);
2512  return QualType(newType, 0);
2513}
2514
2515QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2516  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2517
2518  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2519    if (PrevDecl->TypeForDecl)
2520      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2521
2522  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2523  Decl->TypeForDecl = newType;
2524  Types.push_back(newType);
2525  return QualType(newType, 0);
2526}
2527
2528QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2529                                       QualType modifiedType,
2530                                       QualType equivalentType) {
2531  llvm::FoldingSetNodeID id;
2532  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2533
2534  void *insertPos = 0;
2535  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2536  if (type) return QualType(type, 0);
2537
2538  QualType canon = getCanonicalType(equivalentType);
2539  type = new (*this, TypeAlignment)
2540           AttributedType(canon, attrKind, modifiedType, equivalentType);
2541
2542  Types.push_back(type);
2543  AttributedTypes.InsertNode(type, insertPos);
2544
2545  return QualType(type, 0);
2546}
2547
2548
2549/// \brief Retrieve a substitution-result type.
2550QualType
2551ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2552                                         QualType Replacement) const {
2553  assert(Replacement.isCanonical()
2554         && "replacement types must always be canonical");
2555
2556  llvm::FoldingSetNodeID ID;
2557  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2558  void *InsertPos = 0;
2559  SubstTemplateTypeParmType *SubstParm
2560    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2561
2562  if (!SubstParm) {
2563    SubstParm = new (*this, TypeAlignment)
2564      SubstTemplateTypeParmType(Parm, Replacement);
2565    Types.push_back(SubstParm);
2566    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2567  }
2568
2569  return QualType(SubstParm, 0);
2570}
2571
2572/// \brief Retrieve a
2573QualType ASTContext::getSubstTemplateTypeParmPackType(
2574                                          const TemplateTypeParmType *Parm,
2575                                              const TemplateArgument &ArgPack) {
2576#ifndef NDEBUG
2577  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2578                                    PEnd = ArgPack.pack_end();
2579       P != PEnd; ++P) {
2580    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2581    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2582  }
2583#endif
2584
2585  llvm::FoldingSetNodeID ID;
2586  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2587  void *InsertPos = 0;
2588  if (SubstTemplateTypeParmPackType *SubstParm
2589        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2590    return QualType(SubstParm, 0);
2591
2592  QualType Canon;
2593  if (!Parm->isCanonicalUnqualified()) {
2594    Canon = getCanonicalType(QualType(Parm, 0));
2595    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2596                                             ArgPack);
2597    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2598  }
2599
2600  SubstTemplateTypeParmPackType *SubstParm
2601    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2602                                                               ArgPack);
2603  Types.push_back(SubstParm);
2604  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2605  return QualType(SubstParm, 0);
2606}
2607
2608/// \brief Retrieve the template type parameter type for a template
2609/// parameter or parameter pack with the given depth, index, and (optionally)
2610/// name.
2611QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2612                                             bool ParameterPack,
2613                                             TemplateTypeParmDecl *TTPDecl) const {
2614  llvm::FoldingSetNodeID ID;
2615  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2616  void *InsertPos = 0;
2617  TemplateTypeParmType *TypeParm
2618    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2619
2620  if (TypeParm)
2621    return QualType(TypeParm, 0);
2622
2623  if (TTPDecl) {
2624    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2625    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2626
2627    TemplateTypeParmType *TypeCheck
2628      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2629    assert(!TypeCheck && "Template type parameter canonical type broken");
2630    (void)TypeCheck;
2631  } else
2632    TypeParm = new (*this, TypeAlignment)
2633      TemplateTypeParmType(Depth, Index, ParameterPack);
2634
2635  Types.push_back(TypeParm);
2636  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2637
2638  return QualType(TypeParm, 0);
2639}
2640
2641TypeSourceInfo *
2642ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2643                                              SourceLocation NameLoc,
2644                                        const TemplateArgumentListInfo &Args,
2645                                              QualType Underlying) const {
2646  assert(!Name.getAsDependentTemplateName() &&
2647         "No dependent template names here!");
2648  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2649
2650  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2651  TemplateSpecializationTypeLoc TL
2652    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2653  TL.setTemplateKeywordLoc(SourceLocation());
2654  TL.setTemplateNameLoc(NameLoc);
2655  TL.setLAngleLoc(Args.getLAngleLoc());
2656  TL.setRAngleLoc(Args.getRAngleLoc());
2657  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2658    TL.setArgLocInfo(i, Args[i].getLocInfo());
2659  return DI;
2660}
2661
2662QualType
2663ASTContext::getTemplateSpecializationType(TemplateName Template,
2664                                          const TemplateArgumentListInfo &Args,
2665                                          QualType Underlying) const {
2666  assert(!Template.getAsDependentTemplateName() &&
2667         "No dependent template names here!");
2668
2669  unsigned NumArgs = Args.size();
2670
2671  SmallVector<TemplateArgument, 4> ArgVec;
2672  ArgVec.reserve(NumArgs);
2673  for (unsigned i = 0; i != NumArgs; ++i)
2674    ArgVec.push_back(Args[i].getArgument());
2675
2676  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2677                                       Underlying);
2678}
2679
2680#ifndef NDEBUG
2681static bool hasAnyPackExpansions(const TemplateArgument *Args,
2682                                 unsigned NumArgs) {
2683  for (unsigned I = 0; I != NumArgs; ++I)
2684    if (Args[I].isPackExpansion())
2685      return true;
2686
2687  return true;
2688}
2689#endif
2690
2691QualType
2692ASTContext::getTemplateSpecializationType(TemplateName Template,
2693                                          const TemplateArgument *Args,
2694                                          unsigned NumArgs,
2695                                          QualType Underlying) const {
2696  assert(!Template.getAsDependentTemplateName() &&
2697         "No dependent template names here!");
2698  // Look through qualified template names.
2699  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2700    Template = TemplateName(QTN->getTemplateDecl());
2701
2702  bool IsTypeAlias =
2703    Template.getAsTemplateDecl() &&
2704    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2705  QualType CanonType;
2706  if (!Underlying.isNull())
2707    CanonType = getCanonicalType(Underlying);
2708  else {
2709    // We can get here with an alias template when the specialization contains
2710    // a pack expansion that does not match up with a parameter pack.
2711    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2712           "Caller must compute aliased type");
2713    IsTypeAlias = false;
2714    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2715                                                       NumArgs);
2716  }
2717
2718  // Allocate the (non-canonical) template specialization type, but don't
2719  // try to unique it: these types typically have location information that
2720  // we don't unique and don't want to lose.
2721  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2722                       sizeof(TemplateArgument) * NumArgs +
2723                       (IsTypeAlias? sizeof(QualType) : 0),
2724                       TypeAlignment);
2725  TemplateSpecializationType *Spec
2726    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2727                                         IsTypeAlias ? Underlying : QualType());
2728
2729  Types.push_back(Spec);
2730  return QualType(Spec, 0);
2731}
2732
2733QualType
2734ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2735                                                   const TemplateArgument *Args,
2736                                                   unsigned NumArgs) const {
2737  assert(!Template.getAsDependentTemplateName() &&
2738         "No dependent template names here!");
2739
2740  // Look through qualified template names.
2741  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2742    Template = TemplateName(QTN->getTemplateDecl());
2743
2744  // Build the canonical template specialization type.
2745  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2746  SmallVector<TemplateArgument, 4> CanonArgs;
2747  CanonArgs.reserve(NumArgs);
2748  for (unsigned I = 0; I != NumArgs; ++I)
2749    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2750
2751  // Determine whether this canonical template specialization type already
2752  // exists.
2753  llvm::FoldingSetNodeID ID;
2754  TemplateSpecializationType::Profile(ID, CanonTemplate,
2755                                      CanonArgs.data(), NumArgs, *this);
2756
2757  void *InsertPos = 0;
2758  TemplateSpecializationType *Spec
2759    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2760
2761  if (!Spec) {
2762    // Allocate a new canonical template specialization type.
2763    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2764                          sizeof(TemplateArgument) * NumArgs),
2765                         TypeAlignment);
2766    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2767                                                CanonArgs.data(), NumArgs,
2768                                                QualType(), QualType());
2769    Types.push_back(Spec);
2770    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2771  }
2772
2773  assert(Spec->isDependentType() &&
2774         "Non-dependent template-id type must have a canonical type");
2775  return QualType(Spec, 0);
2776}
2777
2778QualType
2779ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2780                              NestedNameSpecifier *NNS,
2781                              QualType NamedType) const {
2782  llvm::FoldingSetNodeID ID;
2783  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2784
2785  void *InsertPos = 0;
2786  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2787  if (T)
2788    return QualType(T, 0);
2789
2790  QualType Canon = NamedType;
2791  if (!Canon.isCanonical()) {
2792    Canon = getCanonicalType(NamedType);
2793    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2794    assert(!CheckT && "Elaborated canonical type broken");
2795    (void)CheckT;
2796  }
2797
2798  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2799  Types.push_back(T);
2800  ElaboratedTypes.InsertNode(T, InsertPos);
2801  return QualType(T, 0);
2802}
2803
2804QualType
2805ASTContext::getParenType(QualType InnerType) const {
2806  llvm::FoldingSetNodeID ID;
2807  ParenType::Profile(ID, InnerType);
2808
2809  void *InsertPos = 0;
2810  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2811  if (T)
2812    return QualType(T, 0);
2813
2814  QualType Canon = InnerType;
2815  if (!Canon.isCanonical()) {
2816    Canon = getCanonicalType(InnerType);
2817    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2818    assert(!CheckT && "Paren canonical type broken");
2819    (void)CheckT;
2820  }
2821
2822  T = new (*this) ParenType(InnerType, Canon);
2823  Types.push_back(T);
2824  ParenTypes.InsertNode(T, InsertPos);
2825  return QualType(T, 0);
2826}
2827
2828QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2829                                          NestedNameSpecifier *NNS,
2830                                          const IdentifierInfo *Name,
2831                                          QualType Canon) const {
2832  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2833
2834  if (Canon.isNull()) {
2835    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2836    ElaboratedTypeKeyword CanonKeyword = Keyword;
2837    if (Keyword == ETK_None)
2838      CanonKeyword = ETK_Typename;
2839
2840    if (CanonNNS != NNS || CanonKeyword != Keyword)
2841      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2842  }
2843
2844  llvm::FoldingSetNodeID ID;
2845  DependentNameType::Profile(ID, Keyword, NNS, Name);
2846
2847  void *InsertPos = 0;
2848  DependentNameType *T
2849    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2850  if (T)
2851    return QualType(T, 0);
2852
2853  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2854  Types.push_back(T);
2855  DependentNameTypes.InsertNode(T, InsertPos);
2856  return QualType(T, 0);
2857}
2858
2859QualType
2860ASTContext::getDependentTemplateSpecializationType(
2861                                 ElaboratedTypeKeyword Keyword,
2862                                 NestedNameSpecifier *NNS,
2863                                 const IdentifierInfo *Name,
2864                                 const TemplateArgumentListInfo &Args) const {
2865  // TODO: avoid this copy
2866  SmallVector<TemplateArgument, 16> ArgCopy;
2867  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2868    ArgCopy.push_back(Args[I].getArgument());
2869  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2870                                                ArgCopy.size(),
2871                                                ArgCopy.data());
2872}
2873
2874QualType
2875ASTContext::getDependentTemplateSpecializationType(
2876                                 ElaboratedTypeKeyword Keyword,
2877                                 NestedNameSpecifier *NNS,
2878                                 const IdentifierInfo *Name,
2879                                 unsigned NumArgs,
2880                                 const TemplateArgument *Args) const {
2881  assert((!NNS || NNS->isDependent()) &&
2882         "nested-name-specifier must be dependent");
2883
2884  llvm::FoldingSetNodeID ID;
2885  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2886                                               Name, NumArgs, Args);
2887
2888  void *InsertPos = 0;
2889  DependentTemplateSpecializationType *T
2890    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2891  if (T)
2892    return QualType(T, 0);
2893
2894  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2895
2896  ElaboratedTypeKeyword CanonKeyword = Keyword;
2897  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2898
2899  bool AnyNonCanonArgs = false;
2900  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2901  for (unsigned I = 0; I != NumArgs; ++I) {
2902    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2903    if (!CanonArgs[I].structurallyEquals(Args[I]))
2904      AnyNonCanonArgs = true;
2905  }
2906
2907  QualType Canon;
2908  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2909    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2910                                                   Name, NumArgs,
2911                                                   CanonArgs.data());
2912
2913    // Find the insert position again.
2914    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2915  }
2916
2917  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2918                        sizeof(TemplateArgument) * NumArgs),
2919                       TypeAlignment);
2920  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2921                                                    Name, NumArgs, Args, Canon);
2922  Types.push_back(T);
2923  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2924  return QualType(T, 0);
2925}
2926
2927QualType ASTContext::getPackExpansionType(QualType Pattern,
2928                                      llvm::Optional<unsigned> NumExpansions) {
2929  llvm::FoldingSetNodeID ID;
2930  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2931
2932  assert(Pattern->containsUnexpandedParameterPack() &&
2933         "Pack expansions must expand one or more parameter packs");
2934  void *InsertPos = 0;
2935  PackExpansionType *T
2936    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2937  if (T)
2938    return QualType(T, 0);
2939
2940  QualType Canon;
2941  if (!Pattern.isCanonical()) {
2942    Canon = getCanonicalType(Pattern);
2943    // The canonical type might not contain an unexpanded parameter pack, if it
2944    // contains an alias template specialization which ignores one of its
2945    // parameters.
2946    if (Canon->containsUnexpandedParameterPack()) {
2947      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2948
2949      // Find the insert position again, in case we inserted an element into
2950      // PackExpansionTypes and invalidated our insert position.
2951      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2952    }
2953  }
2954
2955  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2956  Types.push_back(T);
2957  PackExpansionTypes.InsertNode(T, InsertPos);
2958  return QualType(T, 0);
2959}
2960
2961/// CmpProtocolNames - Comparison predicate for sorting protocols
2962/// alphabetically.
2963static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2964                            const ObjCProtocolDecl *RHS) {
2965  return LHS->getDeclName() < RHS->getDeclName();
2966}
2967
2968static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2969                                unsigned NumProtocols) {
2970  if (NumProtocols == 0) return true;
2971
2972  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2973    return false;
2974
2975  for (unsigned i = 1; i != NumProtocols; ++i)
2976    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2977        Protocols[i]->getCanonicalDecl() != Protocols[i])
2978      return false;
2979  return true;
2980}
2981
2982static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2983                                   unsigned &NumProtocols) {
2984  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2985
2986  // Sort protocols, keyed by name.
2987  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2988
2989  // Canonicalize.
2990  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2991    Protocols[I] = Protocols[I]->getCanonicalDecl();
2992
2993  // Remove duplicates.
2994  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2995  NumProtocols = ProtocolsEnd-Protocols;
2996}
2997
2998QualType ASTContext::getObjCObjectType(QualType BaseType,
2999                                       ObjCProtocolDecl * const *Protocols,
3000                                       unsigned NumProtocols) const {
3001  // If the base type is an interface and there aren't any protocols
3002  // to add, then the interface type will do just fine.
3003  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3004    return BaseType;
3005
3006  // Look in the folding set for an existing type.
3007  llvm::FoldingSetNodeID ID;
3008  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3009  void *InsertPos = 0;
3010  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3011    return QualType(QT, 0);
3012
3013  // Build the canonical type, which has the canonical base type and
3014  // a sorted-and-uniqued list of protocols.
3015  QualType Canonical;
3016  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3017  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3018    if (!ProtocolsSorted) {
3019      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3020                                                     Protocols + NumProtocols);
3021      unsigned UniqueCount = NumProtocols;
3022
3023      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3024      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3025                                    &Sorted[0], UniqueCount);
3026    } else {
3027      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3028                                    Protocols, NumProtocols);
3029    }
3030
3031    // Regenerate InsertPos.
3032    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3033  }
3034
3035  unsigned Size = sizeof(ObjCObjectTypeImpl);
3036  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3037  void *Mem = Allocate(Size, TypeAlignment);
3038  ObjCObjectTypeImpl *T =
3039    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3040
3041  Types.push_back(T);
3042  ObjCObjectTypes.InsertNode(T, InsertPos);
3043  return QualType(T, 0);
3044}
3045
3046/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3047/// the given object type.
3048QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3049  llvm::FoldingSetNodeID ID;
3050  ObjCObjectPointerType::Profile(ID, ObjectT);
3051
3052  void *InsertPos = 0;
3053  if (ObjCObjectPointerType *QT =
3054              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3055    return QualType(QT, 0);
3056
3057  // Find the canonical object type.
3058  QualType Canonical;
3059  if (!ObjectT.isCanonical()) {
3060    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3061
3062    // Regenerate InsertPos.
3063    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3064  }
3065
3066  // No match.
3067  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3068  ObjCObjectPointerType *QType =
3069    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3070
3071  Types.push_back(QType);
3072  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3073  return QualType(QType, 0);
3074}
3075
3076/// getObjCInterfaceType - Return the unique reference to the type for the
3077/// specified ObjC interface decl. The list of protocols is optional.
3078QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3079                                          ObjCInterfaceDecl *PrevDecl) const {
3080  if (Decl->TypeForDecl)
3081    return QualType(Decl->TypeForDecl, 0);
3082
3083  if (PrevDecl) {
3084    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3085    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3086    return QualType(PrevDecl->TypeForDecl, 0);
3087  }
3088
3089  // Prefer the definition, if there is one.
3090  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3091    Decl = Def;
3092
3093  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3094  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3095  Decl->TypeForDecl = T;
3096  Types.push_back(T);
3097  return QualType(T, 0);
3098}
3099
3100/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3101/// TypeOfExprType AST's (since expression's are never shared). For example,
3102/// multiple declarations that refer to "typeof(x)" all contain different
3103/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3104/// on canonical type's (which are always unique).
3105QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3106  TypeOfExprType *toe;
3107  if (tofExpr->isTypeDependent()) {
3108    llvm::FoldingSetNodeID ID;
3109    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3110
3111    void *InsertPos = 0;
3112    DependentTypeOfExprType *Canon
3113      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3114    if (Canon) {
3115      // We already have a "canonical" version of an identical, dependent
3116      // typeof(expr) type. Use that as our canonical type.
3117      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3118                                          QualType((TypeOfExprType*)Canon, 0));
3119    } else {
3120      // Build a new, canonical typeof(expr) type.
3121      Canon
3122        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3123      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3124      toe = Canon;
3125    }
3126  } else {
3127    QualType Canonical = getCanonicalType(tofExpr->getType());
3128    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3129  }
3130  Types.push_back(toe);
3131  return QualType(toe, 0);
3132}
3133
3134/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3135/// TypeOfType AST's. The only motivation to unique these nodes would be
3136/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3137/// an issue. This doesn't effect the type checker, since it operates
3138/// on canonical type's (which are always unique).
3139QualType ASTContext::getTypeOfType(QualType tofType) const {
3140  QualType Canonical = getCanonicalType(tofType);
3141  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3142  Types.push_back(tot);
3143  return QualType(tot, 0);
3144}
3145
3146
3147/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3148/// DecltypeType AST's. The only motivation to unique these nodes would be
3149/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3150/// an issue. This doesn't effect the type checker, since it operates
3151/// on canonical types (which are always unique).
3152QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3153  DecltypeType *dt;
3154
3155  // C++0x [temp.type]p2:
3156  //   If an expression e involves a template parameter, decltype(e) denotes a
3157  //   unique dependent type. Two such decltype-specifiers refer to the same
3158  //   type only if their expressions are equivalent (14.5.6.1).
3159  if (e->isInstantiationDependent()) {
3160    llvm::FoldingSetNodeID ID;
3161    DependentDecltypeType::Profile(ID, *this, e);
3162
3163    void *InsertPos = 0;
3164    DependentDecltypeType *Canon
3165      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3166    if (Canon) {
3167      // We already have a "canonical" version of an equivalent, dependent
3168      // decltype type. Use that as our canonical type.
3169      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
3170                                       QualType((DecltypeType*)Canon, 0));
3171    } else {
3172      // Build a new, canonical typeof(expr) type.
3173      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3174      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3175      dt = Canon;
3176    }
3177  } else {
3178    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3179                                      getCanonicalType(UnderlyingType));
3180  }
3181  Types.push_back(dt);
3182  return QualType(dt, 0);
3183}
3184
3185/// getUnaryTransformationType - We don't unique these, since the memory
3186/// savings are minimal and these are rare.
3187QualType ASTContext::getUnaryTransformType(QualType BaseType,
3188                                           QualType UnderlyingType,
3189                                           UnaryTransformType::UTTKind Kind)
3190    const {
3191  UnaryTransformType *Ty =
3192    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3193                                                   Kind,
3194                                 UnderlyingType->isDependentType() ?
3195                                 QualType() : getCanonicalType(UnderlyingType));
3196  Types.push_back(Ty);
3197  return QualType(Ty, 0);
3198}
3199
3200/// getAutoType - We only unique auto types after they've been deduced.
3201QualType ASTContext::getAutoType(QualType DeducedType) const {
3202  void *InsertPos = 0;
3203  if (!DeducedType.isNull()) {
3204    // Look in the folding set for an existing type.
3205    llvm::FoldingSetNodeID ID;
3206    AutoType::Profile(ID, DeducedType);
3207    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3208      return QualType(AT, 0);
3209  }
3210
3211  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3212  Types.push_back(AT);
3213  if (InsertPos)
3214    AutoTypes.InsertNode(AT, InsertPos);
3215  return QualType(AT, 0);
3216}
3217
3218/// getAtomicType - Return the uniqued reference to the atomic type for
3219/// the given value type.
3220QualType ASTContext::getAtomicType(QualType T) const {
3221  // Unique pointers, to guarantee there is only one pointer of a particular
3222  // structure.
3223  llvm::FoldingSetNodeID ID;
3224  AtomicType::Profile(ID, T);
3225
3226  void *InsertPos = 0;
3227  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3228    return QualType(AT, 0);
3229
3230  // If the atomic value type isn't canonical, this won't be a canonical type
3231  // either, so fill in the canonical type field.
3232  QualType Canonical;
3233  if (!T.isCanonical()) {
3234    Canonical = getAtomicType(getCanonicalType(T));
3235
3236    // Get the new insert position for the node we care about.
3237    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3238    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3239  }
3240  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3241  Types.push_back(New);
3242  AtomicTypes.InsertNode(New, InsertPos);
3243  return QualType(New, 0);
3244}
3245
3246/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3247QualType ASTContext::getAutoDeductType() const {
3248  if (AutoDeductTy.isNull())
3249    AutoDeductTy = getAutoType(QualType());
3250  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3251  return AutoDeductTy;
3252}
3253
3254/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3255QualType ASTContext::getAutoRRefDeductType() const {
3256  if (AutoRRefDeductTy.isNull())
3257    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3258  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3259  return AutoRRefDeductTy;
3260}
3261
3262/// getTagDeclType - Return the unique reference to the type for the
3263/// specified TagDecl (struct/union/class/enum) decl.
3264QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3265  assert (Decl);
3266  // FIXME: What is the design on getTagDeclType when it requires casting
3267  // away const?  mutable?
3268  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3269}
3270
3271/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3272/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3273/// needs to agree with the definition in <stddef.h>.
3274CanQualType ASTContext::getSizeType() const {
3275  return getFromTargetType(Target->getSizeType());
3276}
3277
3278/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3279CanQualType ASTContext::getIntMaxType() const {
3280  return getFromTargetType(Target->getIntMaxType());
3281}
3282
3283/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3284CanQualType ASTContext::getUIntMaxType() const {
3285  return getFromTargetType(Target->getUIntMaxType());
3286}
3287
3288/// getSignedWCharType - Return the type of "signed wchar_t".
3289/// Used when in C++, as a GCC extension.
3290QualType ASTContext::getSignedWCharType() const {
3291  // FIXME: derive from "Target" ?
3292  return WCharTy;
3293}
3294
3295/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3296/// Used when in C++, as a GCC extension.
3297QualType ASTContext::getUnsignedWCharType() const {
3298  // FIXME: derive from "Target" ?
3299  return UnsignedIntTy;
3300}
3301
3302/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3303/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3304QualType ASTContext::getPointerDiffType() const {
3305  return getFromTargetType(Target->getPtrDiffType(0));
3306}
3307
3308//===----------------------------------------------------------------------===//
3309//                              Type Operators
3310//===----------------------------------------------------------------------===//
3311
3312CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3313  // Push qualifiers into arrays, and then discard any remaining
3314  // qualifiers.
3315  T = getCanonicalType(T);
3316  T = getVariableArrayDecayedType(T);
3317  const Type *Ty = T.getTypePtr();
3318  QualType Result;
3319  if (isa<ArrayType>(Ty)) {
3320    Result = getArrayDecayedType(QualType(Ty,0));
3321  } else if (isa<FunctionType>(Ty)) {
3322    Result = getPointerType(QualType(Ty, 0));
3323  } else {
3324    Result = QualType(Ty, 0);
3325  }
3326
3327  return CanQualType::CreateUnsafe(Result);
3328}
3329
3330QualType ASTContext::getUnqualifiedArrayType(QualType type,
3331                                             Qualifiers &quals) {
3332  SplitQualType splitType = type.getSplitUnqualifiedType();
3333
3334  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3335  // the unqualified desugared type and then drops it on the floor.
3336  // We then have to strip that sugar back off with
3337  // getUnqualifiedDesugaredType(), which is silly.
3338  const ArrayType *AT =
3339    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3340
3341  // If we don't have an array, just use the results in splitType.
3342  if (!AT) {
3343    quals = splitType.Quals;
3344    return QualType(splitType.Ty, 0);
3345  }
3346
3347  // Otherwise, recurse on the array's element type.
3348  QualType elementType = AT->getElementType();
3349  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3350
3351  // If that didn't change the element type, AT has no qualifiers, so we
3352  // can just use the results in splitType.
3353  if (elementType == unqualElementType) {
3354    assert(quals.empty()); // from the recursive call
3355    quals = splitType.Quals;
3356    return QualType(splitType.Ty, 0);
3357  }
3358
3359  // Otherwise, add in the qualifiers from the outermost type, then
3360  // build the type back up.
3361  quals.addConsistentQualifiers(splitType.Quals);
3362
3363  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3364    return getConstantArrayType(unqualElementType, CAT->getSize(),
3365                                CAT->getSizeModifier(), 0);
3366  }
3367
3368  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3369    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3370  }
3371
3372  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3373    return getVariableArrayType(unqualElementType,
3374                                VAT->getSizeExpr(),
3375                                VAT->getSizeModifier(),
3376                                VAT->getIndexTypeCVRQualifiers(),
3377                                VAT->getBracketsRange());
3378  }
3379
3380  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3381  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3382                                    DSAT->getSizeModifier(), 0,
3383                                    SourceRange());
3384}
3385
3386/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3387/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3388/// they point to and return true. If T1 and T2 aren't pointer types
3389/// or pointer-to-member types, or if they are not similar at this
3390/// level, returns false and leaves T1 and T2 unchanged. Top-level
3391/// qualifiers on T1 and T2 are ignored. This function will typically
3392/// be called in a loop that successively "unwraps" pointer and
3393/// pointer-to-member types to compare them at each level.
3394bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3395  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3396                    *T2PtrType = T2->getAs<PointerType>();
3397  if (T1PtrType && T2PtrType) {
3398    T1 = T1PtrType->getPointeeType();
3399    T2 = T2PtrType->getPointeeType();
3400    return true;
3401  }
3402
3403  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3404                          *T2MPType = T2->getAs<MemberPointerType>();
3405  if (T1MPType && T2MPType &&
3406      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3407                             QualType(T2MPType->getClass(), 0))) {
3408    T1 = T1MPType->getPointeeType();
3409    T2 = T2MPType->getPointeeType();
3410    return true;
3411  }
3412
3413  if (getLangOpts().ObjC1) {
3414    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3415                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3416    if (T1OPType && T2OPType) {
3417      T1 = T1OPType->getPointeeType();
3418      T2 = T2OPType->getPointeeType();
3419      return true;
3420    }
3421  }
3422
3423  // FIXME: Block pointers, too?
3424
3425  return false;
3426}
3427
3428DeclarationNameInfo
3429ASTContext::getNameForTemplate(TemplateName Name,
3430                               SourceLocation NameLoc) const {
3431  switch (Name.getKind()) {
3432  case TemplateName::QualifiedTemplate:
3433  case TemplateName::Template:
3434    // DNInfo work in progress: CHECKME: what about DNLoc?
3435    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3436                               NameLoc);
3437
3438  case TemplateName::OverloadedTemplate: {
3439    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3440    // DNInfo work in progress: CHECKME: what about DNLoc?
3441    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3442  }
3443
3444  case TemplateName::DependentTemplate: {
3445    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3446    DeclarationName DName;
3447    if (DTN->isIdentifier()) {
3448      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3449      return DeclarationNameInfo(DName, NameLoc);
3450    } else {
3451      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3452      // DNInfo work in progress: FIXME: source locations?
3453      DeclarationNameLoc DNLoc;
3454      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3455      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3456      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3457    }
3458  }
3459
3460  case TemplateName::SubstTemplateTemplateParm: {
3461    SubstTemplateTemplateParmStorage *subst
3462      = Name.getAsSubstTemplateTemplateParm();
3463    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3464                               NameLoc);
3465  }
3466
3467  case TemplateName::SubstTemplateTemplateParmPack: {
3468    SubstTemplateTemplateParmPackStorage *subst
3469      = Name.getAsSubstTemplateTemplateParmPack();
3470    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3471                               NameLoc);
3472  }
3473  }
3474
3475  llvm_unreachable("bad template name kind!");
3476}
3477
3478TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3479  switch (Name.getKind()) {
3480  case TemplateName::QualifiedTemplate:
3481  case TemplateName::Template: {
3482    TemplateDecl *Template = Name.getAsTemplateDecl();
3483    if (TemplateTemplateParmDecl *TTP
3484          = dyn_cast<TemplateTemplateParmDecl>(Template))
3485      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3486
3487    // The canonical template name is the canonical template declaration.
3488    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3489  }
3490
3491  case TemplateName::OverloadedTemplate:
3492    llvm_unreachable("cannot canonicalize overloaded template");
3493
3494  case TemplateName::DependentTemplate: {
3495    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3496    assert(DTN && "Non-dependent template names must refer to template decls.");
3497    return DTN->CanonicalTemplateName;
3498  }
3499
3500  case TemplateName::SubstTemplateTemplateParm: {
3501    SubstTemplateTemplateParmStorage *subst
3502      = Name.getAsSubstTemplateTemplateParm();
3503    return getCanonicalTemplateName(subst->getReplacement());
3504  }
3505
3506  case TemplateName::SubstTemplateTemplateParmPack: {
3507    SubstTemplateTemplateParmPackStorage *subst
3508                                  = Name.getAsSubstTemplateTemplateParmPack();
3509    TemplateTemplateParmDecl *canonParameter
3510      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3511    TemplateArgument canonArgPack
3512      = getCanonicalTemplateArgument(subst->getArgumentPack());
3513    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3514  }
3515  }
3516
3517  llvm_unreachable("bad template name!");
3518}
3519
3520bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3521  X = getCanonicalTemplateName(X);
3522  Y = getCanonicalTemplateName(Y);
3523  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3524}
3525
3526TemplateArgument
3527ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3528  switch (Arg.getKind()) {
3529    case TemplateArgument::Null:
3530      return Arg;
3531
3532    case TemplateArgument::Expression:
3533      return Arg;
3534
3535    case TemplateArgument::Declaration: {
3536      if (Decl *D = Arg.getAsDecl())
3537          return TemplateArgument(D->getCanonicalDecl());
3538      return TemplateArgument((Decl*)0);
3539    }
3540
3541    case TemplateArgument::Template:
3542      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3543
3544    case TemplateArgument::TemplateExpansion:
3545      return TemplateArgument(getCanonicalTemplateName(
3546                                         Arg.getAsTemplateOrTemplatePattern()),
3547                              Arg.getNumTemplateExpansions());
3548
3549    case TemplateArgument::Integral:
3550      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3551
3552    case TemplateArgument::Type:
3553      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3554
3555    case TemplateArgument::Pack: {
3556      if (Arg.pack_size() == 0)
3557        return Arg;
3558
3559      TemplateArgument *CanonArgs
3560        = new (*this) TemplateArgument[Arg.pack_size()];
3561      unsigned Idx = 0;
3562      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3563                                        AEnd = Arg.pack_end();
3564           A != AEnd; (void)++A, ++Idx)
3565        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3566
3567      return TemplateArgument(CanonArgs, Arg.pack_size());
3568    }
3569  }
3570
3571  // Silence GCC warning
3572  llvm_unreachable("Unhandled template argument kind");
3573}
3574
3575NestedNameSpecifier *
3576ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3577  if (!NNS)
3578    return 0;
3579
3580  switch (NNS->getKind()) {
3581  case NestedNameSpecifier::Identifier:
3582    // Canonicalize the prefix but keep the identifier the same.
3583    return NestedNameSpecifier::Create(*this,
3584                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3585                                       NNS->getAsIdentifier());
3586
3587  case NestedNameSpecifier::Namespace:
3588    // A namespace is canonical; build a nested-name-specifier with
3589    // this namespace and no prefix.
3590    return NestedNameSpecifier::Create(*this, 0,
3591                                 NNS->getAsNamespace()->getOriginalNamespace());
3592
3593  case NestedNameSpecifier::NamespaceAlias:
3594    // A namespace is canonical; build a nested-name-specifier with
3595    // this namespace and no prefix.
3596    return NestedNameSpecifier::Create(*this, 0,
3597                                    NNS->getAsNamespaceAlias()->getNamespace()
3598                                                      ->getOriginalNamespace());
3599
3600  case NestedNameSpecifier::TypeSpec:
3601  case NestedNameSpecifier::TypeSpecWithTemplate: {
3602    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3603
3604    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3605    // break it apart into its prefix and identifier, then reconsititute those
3606    // as the canonical nested-name-specifier. This is required to canonicalize
3607    // a dependent nested-name-specifier involving typedefs of dependent-name
3608    // types, e.g.,
3609    //   typedef typename T::type T1;
3610    //   typedef typename T1::type T2;
3611    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3612      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3613                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3614
3615    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3616    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3617    // first place?
3618    return NestedNameSpecifier::Create(*this, 0, false,
3619                                       const_cast<Type*>(T.getTypePtr()));
3620  }
3621
3622  case NestedNameSpecifier::Global:
3623    // The global specifier is canonical and unique.
3624    return NNS;
3625  }
3626
3627  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3628}
3629
3630
3631const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3632  // Handle the non-qualified case efficiently.
3633  if (!T.hasLocalQualifiers()) {
3634    // Handle the common positive case fast.
3635    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3636      return AT;
3637  }
3638
3639  // Handle the common negative case fast.
3640  if (!isa<ArrayType>(T.getCanonicalType()))
3641    return 0;
3642
3643  // Apply any qualifiers from the array type to the element type.  This
3644  // implements C99 6.7.3p8: "If the specification of an array type includes
3645  // any type qualifiers, the element type is so qualified, not the array type."
3646
3647  // If we get here, we either have type qualifiers on the type, or we have
3648  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3649  // we must propagate them down into the element type.
3650
3651  SplitQualType split = T.getSplitDesugaredType();
3652  Qualifiers qs = split.Quals;
3653
3654  // If we have a simple case, just return now.
3655  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3656  if (ATy == 0 || qs.empty())
3657    return ATy;
3658
3659  // Otherwise, we have an array and we have qualifiers on it.  Push the
3660  // qualifiers into the array element type and return a new array type.
3661  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3662
3663  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3664    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3665                                                CAT->getSizeModifier(),
3666                                           CAT->getIndexTypeCVRQualifiers()));
3667  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3668    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3669                                                  IAT->getSizeModifier(),
3670                                           IAT->getIndexTypeCVRQualifiers()));
3671
3672  if (const DependentSizedArrayType *DSAT
3673        = dyn_cast<DependentSizedArrayType>(ATy))
3674    return cast<ArrayType>(
3675                     getDependentSizedArrayType(NewEltTy,
3676                                                DSAT->getSizeExpr(),
3677                                                DSAT->getSizeModifier(),
3678                                              DSAT->getIndexTypeCVRQualifiers(),
3679                                                DSAT->getBracketsRange()));
3680
3681  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3682  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3683                                              VAT->getSizeExpr(),
3684                                              VAT->getSizeModifier(),
3685                                              VAT->getIndexTypeCVRQualifiers(),
3686                                              VAT->getBracketsRange()));
3687}
3688
3689QualType ASTContext::getAdjustedParameterType(QualType T) const {
3690  // C99 6.7.5.3p7:
3691  //   A declaration of a parameter as "array of type" shall be
3692  //   adjusted to "qualified pointer to type", where the type
3693  //   qualifiers (if any) are those specified within the [ and ] of
3694  //   the array type derivation.
3695  if (T->isArrayType())
3696    return getArrayDecayedType(T);
3697
3698  // C99 6.7.5.3p8:
3699  //   A declaration of a parameter as "function returning type"
3700  //   shall be adjusted to "pointer to function returning type", as
3701  //   in 6.3.2.1.
3702  if (T->isFunctionType())
3703    return getPointerType(T);
3704
3705  return T;
3706}
3707
3708QualType ASTContext::getSignatureParameterType(QualType T) const {
3709  T = getVariableArrayDecayedType(T);
3710  T = getAdjustedParameterType(T);
3711  return T.getUnqualifiedType();
3712}
3713
3714/// getArrayDecayedType - Return the properly qualified result of decaying the
3715/// specified array type to a pointer.  This operation is non-trivial when
3716/// handling typedefs etc.  The canonical type of "T" must be an array type,
3717/// this returns a pointer to a properly qualified element of the array.
3718///
3719/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3720QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3721  // Get the element type with 'getAsArrayType' so that we don't lose any
3722  // typedefs in the element type of the array.  This also handles propagation
3723  // of type qualifiers from the array type into the element type if present
3724  // (C99 6.7.3p8).
3725  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3726  assert(PrettyArrayType && "Not an array type!");
3727
3728  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3729
3730  // int x[restrict 4] ->  int *restrict
3731  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3732}
3733
3734QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3735  return getBaseElementType(array->getElementType());
3736}
3737
3738QualType ASTContext::getBaseElementType(QualType type) const {
3739  Qualifiers qs;
3740  while (true) {
3741    SplitQualType split = type.getSplitDesugaredType();
3742    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3743    if (!array) break;
3744
3745    type = array->getElementType();
3746    qs.addConsistentQualifiers(split.Quals);
3747  }
3748
3749  return getQualifiedType(type, qs);
3750}
3751
3752/// getConstantArrayElementCount - Returns number of constant array elements.
3753uint64_t
3754ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3755  uint64_t ElementCount = 1;
3756  do {
3757    ElementCount *= CA->getSize().getZExtValue();
3758    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3759  } while (CA);
3760  return ElementCount;
3761}
3762
3763/// getFloatingRank - Return a relative rank for floating point types.
3764/// This routine will assert if passed a built-in type that isn't a float.
3765static FloatingRank getFloatingRank(QualType T) {
3766  if (const ComplexType *CT = T->getAs<ComplexType>())
3767    return getFloatingRank(CT->getElementType());
3768
3769  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3770  switch (T->getAs<BuiltinType>()->getKind()) {
3771  default: llvm_unreachable("getFloatingRank(): not a floating type");
3772  case BuiltinType::Half:       return HalfRank;
3773  case BuiltinType::Float:      return FloatRank;
3774  case BuiltinType::Double:     return DoubleRank;
3775  case BuiltinType::LongDouble: return LongDoubleRank;
3776  }
3777}
3778
3779/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3780/// point or a complex type (based on typeDomain/typeSize).
3781/// 'typeDomain' is a real floating point or complex type.
3782/// 'typeSize' is a real floating point or complex type.
3783QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3784                                                       QualType Domain) const {
3785  FloatingRank EltRank = getFloatingRank(Size);
3786  if (Domain->isComplexType()) {
3787    switch (EltRank) {
3788    case HalfRank: llvm_unreachable("Complex half is not supported");
3789    case FloatRank:      return FloatComplexTy;
3790    case DoubleRank:     return DoubleComplexTy;
3791    case LongDoubleRank: return LongDoubleComplexTy;
3792    }
3793  }
3794
3795  assert(Domain->isRealFloatingType() && "Unknown domain!");
3796  switch (EltRank) {
3797  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3798  case FloatRank:      return FloatTy;
3799  case DoubleRank:     return DoubleTy;
3800  case LongDoubleRank: return LongDoubleTy;
3801  }
3802  llvm_unreachable("getFloatingRank(): illegal value for rank");
3803}
3804
3805/// getFloatingTypeOrder - Compare the rank of the two specified floating
3806/// point types, ignoring the domain of the type (i.e. 'double' ==
3807/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3808/// LHS < RHS, return -1.
3809int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3810  FloatingRank LHSR = getFloatingRank(LHS);
3811  FloatingRank RHSR = getFloatingRank(RHS);
3812
3813  if (LHSR == RHSR)
3814    return 0;
3815  if (LHSR > RHSR)
3816    return 1;
3817  return -1;
3818}
3819
3820/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3821/// routine will assert if passed a built-in type that isn't an integer or enum,
3822/// or if it is not canonicalized.
3823unsigned ASTContext::getIntegerRank(const Type *T) const {
3824  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3825
3826  switch (cast<BuiltinType>(T)->getKind()) {
3827  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3828  case BuiltinType::Bool:
3829    return 1 + (getIntWidth(BoolTy) << 3);
3830  case BuiltinType::Char_S:
3831  case BuiltinType::Char_U:
3832  case BuiltinType::SChar:
3833  case BuiltinType::UChar:
3834    return 2 + (getIntWidth(CharTy) << 3);
3835  case BuiltinType::Short:
3836  case BuiltinType::UShort:
3837    return 3 + (getIntWidth(ShortTy) << 3);
3838  case BuiltinType::Int:
3839  case BuiltinType::UInt:
3840    return 4 + (getIntWidth(IntTy) << 3);
3841  case BuiltinType::Long:
3842  case BuiltinType::ULong:
3843    return 5 + (getIntWidth(LongTy) << 3);
3844  case BuiltinType::LongLong:
3845  case BuiltinType::ULongLong:
3846    return 6 + (getIntWidth(LongLongTy) << 3);
3847  case BuiltinType::Int128:
3848  case BuiltinType::UInt128:
3849    return 7 + (getIntWidth(Int128Ty) << 3);
3850  }
3851}
3852
3853/// \brief Whether this is a promotable bitfield reference according
3854/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3855///
3856/// \returns the type this bit-field will promote to, or NULL if no
3857/// promotion occurs.
3858QualType ASTContext::isPromotableBitField(Expr *E) const {
3859  if (E->isTypeDependent() || E->isValueDependent())
3860    return QualType();
3861
3862  FieldDecl *Field = E->getBitField();
3863  if (!Field)
3864    return QualType();
3865
3866  QualType FT = Field->getType();
3867
3868  uint64_t BitWidth = Field->getBitWidthValue(*this);
3869  uint64_t IntSize = getTypeSize(IntTy);
3870  // GCC extension compatibility: if the bit-field size is less than or equal
3871  // to the size of int, it gets promoted no matter what its type is.
3872  // For instance, unsigned long bf : 4 gets promoted to signed int.
3873  if (BitWidth < IntSize)
3874    return IntTy;
3875
3876  if (BitWidth == IntSize)
3877    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3878
3879  // Types bigger than int are not subject to promotions, and therefore act
3880  // like the base type.
3881  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3882  // is ridiculous.
3883  return QualType();
3884}
3885
3886/// getPromotedIntegerType - Returns the type that Promotable will
3887/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3888/// integer type.
3889QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3890  assert(!Promotable.isNull());
3891  assert(Promotable->isPromotableIntegerType());
3892  if (const EnumType *ET = Promotable->getAs<EnumType>())
3893    return ET->getDecl()->getPromotionType();
3894
3895  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3896    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3897    // (3.9.1) can be converted to a prvalue of the first of the following
3898    // types that can represent all the values of its underlying type:
3899    // int, unsigned int, long int, unsigned long int, long long int, or
3900    // unsigned long long int [...]
3901    // FIXME: Is there some better way to compute this?
3902    if (BT->getKind() == BuiltinType::WChar_S ||
3903        BT->getKind() == BuiltinType::WChar_U ||
3904        BT->getKind() == BuiltinType::Char16 ||
3905        BT->getKind() == BuiltinType::Char32) {
3906      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3907      uint64_t FromSize = getTypeSize(BT);
3908      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3909                                  LongLongTy, UnsignedLongLongTy };
3910      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3911        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3912        if (FromSize < ToSize ||
3913            (FromSize == ToSize &&
3914             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3915          return PromoteTypes[Idx];
3916      }
3917      llvm_unreachable("char type should fit into long long");
3918    }
3919  }
3920
3921  // At this point, we should have a signed or unsigned integer type.
3922  if (Promotable->isSignedIntegerType())
3923    return IntTy;
3924  uint64_t PromotableSize = getTypeSize(Promotable);
3925  uint64_t IntSize = getTypeSize(IntTy);
3926  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3927  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3928}
3929
3930/// \brief Recurses in pointer/array types until it finds an objc retainable
3931/// type and returns its ownership.
3932Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3933  while (!T.isNull()) {
3934    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3935      return T.getObjCLifetime();
3936    if (T->isArrayType())
3937      T = getBaseElementType(T);
3938    else if (const PointerType *PT = T->getAs<PointerType>())
3939      T = PT->getPointeeType();
3940    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3941      T = RT->getPointeeType();
3942    else
3943      break;
3944  }
3945
3946  return Qualifiers::OCL_None;
3947}
3948
3949/// getIntegerTypeOrder - Returns the highest ranked integer type:
3950/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3951/// LHS < RHS, return -1.
3952int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3953  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3954  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3955  if (LHSC == RHSC) return 0;
3956
3957  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3958  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3959
3960  unsigned LHSRank = getIntegerRank(LHSC);
3961  unsigned RHSRank = getIntegerRank(RHSC);
3962
3963  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3964    if (LHSRank == RHSRank) return 0;
3965    return LHSRank > RHSRank ? 1 : -1;
3966  }
3967
3968  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3969  if (LHSUnsigned) {
3970    // If the unsigned [LHS] type is larger, return it.
3971    if (LHSRank >= RHSRank)
3972      return 1;
3973
3974    // If the signed type can represent all values of the unsigned type, it
3975    // wins.  Because we are dealing with 2's complement and types that are
3976    // powers of two larger than each other, this is always safe.
3977    return -1;
3978  }
3979
3980  // If the unsigned [RHS] type is larger, return it.
3981  if (RHSRank >= LHSRank)
3982    return -1;
3983
3984  // If the signed type can represent all values of the unsigned type, it
3985  // wins.  Because we are dealing with 2's complement and types that are
3986  // powers of two larger than each other, this is always safe.
3987  return 1;
3988}
3989
3990static RecordDecl *
3991CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3992                 DeclContext *DC, IdentifierInfo *Id) {
3993  SourceLocation Loc;
3994  if (Ctx.getLangOpts().CPlusPlus)
3995    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3996  else
3997    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3998}
3999
4000// getCFConstantStringType - Return the type used for constant CFStrings.
4001QualType ASTContext::getCFConstantStringType() const {
4002  if (!CFConstantStringTypeDecl) {
4003    CFConstantStringTypeDecl =
4004      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4005                       &Idents.get("NSConstantString"));
4006    CFConstantStringTypeDecl->startDefinition();
4007
4008    QualType FieldTypes[4];
4009
4010    // const int *isa;
4011    FieldTypes[0] = getPointerType(IntTy.withConst());
4012    // int flags;
4013    FieldTypes[1] = IntTy;
4014    // const char *str;
4015    FieldTypes[2] = getPointerType(CharTy.withConst());
4016    // long length;
4017    FieldTypes[3] = LongTy;
4018
4019    // Create fields
4020    for (unsigned i = 0; i < 4; ++i) {
4021      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4022                                           SourceLocation(),
4023                                           SourceLocation(), 0,
4024                                           FieldTypes[i], /*TInfo=*/0,
4025                                           /*BitWidth=*/0,
4026                                           /*Mutable=*/false,
4027                                           ICIS_NoInit);
4028      Field->setAccess(AS_public);
4029      CFConstantStringTypeDecl->addDecl(Field);
4030    }
4031
4032    CFConstantStringTypeDecl->completeDefinition();
4033  }
4034
4035  return getTagDeclType(CFConstantStringTypeDecl);
4036}
4037
4038void ASTContext::setCFConstantStringType(QualType T) {
4039  const RecordType *Rec = T->getAs<RecordType>();
4040  assert(Rec && "Invalid CFConstantStringType");
4041  CFConstantStringTypeDecl = Rec->getDecl();
4042}
4043
4044QualType ASTContext::getBlockDescriptorType() const {
4045  if (BlockDescriptorType)
4046    return getTagDeclType(BlockDescriptorType);
4047
4048  RecordDecl *T;
4049  // FIXME: Needs the FlagAppleBlock bit.
4050  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4051                       &Idents.get("__block_descriptor"));
4052  T->startDefinition();
4053
4054  QualType FieldTypes[] = {
4055    UnsignedLongTy,
4056    UnsignedLongTy,
4057  };
4058
4059  const char *FieldNames[] = {
4060    "reserved",
4061    "Size"
4062  };
4063
4064  for (size_t i = 0; i < 2; ++i) {
4065    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4066                                         SourceLocation(),
4067                                         &Idents.get(FieldNames[i]),
4068                                         FieldTypes[i], /*TInfo=*/0,
4069                                         /*BitWidth=*/0,
4070                                         /*Mutable=*/false,
4071                                         ICIS_NoInit);
4072    Field->setAccess(AS_public);
4073    T->addDecl(Field);
4074  }
4075
4076  T->completeDefinition();
4077
4078  BlockDescriptorType = T;
4079
4080  return getTagDeclType(BlockDescriptorType);
4081}
4082
4083QualType ASTContext::getBlockDescriptorExtendedType() const {
4084  if (BlockDescriptorExtendedType)
4085    return getTagDeclType(BlockDescriptorExtendedType);
4086
4087  RecordDecl *T;
4088  // FIXME: Needs the FlagAppleBlock bit.
4089  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4090                       &Idents.get("__block_descriptor_withcopydispose"));
4091  T->startDefinition();
4092
4093  QualType FieldTypes[] = {
4094    UnsignedLongTy,
4095    UnsignedLongTy,
4096    getPointerType(VoidPtrTy),
4097    getPointerType(VoidPtrTy)
4098  };
4099
4100  const char *FieldNames[] = {
4101    "reserved",
4102    "Size",
4103    "CopyFuncPtr",
4104    "DestroyFuncPtr"
4105  };
4106
4107  for (size_t i = 0; i < 4; ++i) {
4108    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4109                                         SourceLocation(),
4110                                         &Idents.get(FieldNames[i]),
4111                                         FieldTypes[i], /*TInfo=*/0,
4112                                         /*BitWidth=*/0,
4113                                         /*Mutable=*/false,
4114                                         ICIS_NoInit);
4115    Field->setAccess(AS_public);
4116    T->addDecl(Field);
4117  }
4118
4119  T->completeDefinition();
4120
4121  BlockDescriptorExtendedType = T;
4122
4123  return getTagDeclType(BlockDescriptorExtendedType);
4124}
4125
4126bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4127  if (Ty->isObjCRetainableType())
4128    return true;
4129  if (getLangOpts().CPlusPlus) {
4130    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4131      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4132      return RD->hasConstCopyConstructor();
4133
4134    }
4135  }
4136  return false;
4137}
4138
4139QualType
4140ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4141  //  type = struct __Block_byref_1_X {
4142  //    void *__isa;
4143  //    struct __Block_byref_1_X *__forwarding;
4144  //    unsigned int __flags;
4145  //    unsigned int __size;
4146  //    void *__copy_helper;            // as needed
4147  //    void *__destroy_help            // as needed
4148  //    int X;
4149  //  } *
4150
4151  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4152
4153  // FIXME: Move up
4154  SmallString<36> Name;
4155  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4156                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4157  RecordDecl *T;
4158  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4159  T->startDefinition();
4160  QualType Int32Ty = IntTy;
4161  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4162  QualType FieldTypes[] = {
4163    getPointerType(VoidPtrTy),
4164    getPointerType(getTagDeclType(T)),
4165    Int32Ty,
4166    Int32Ty,
4167    getPointerType(VoidPtrTy),
4168    getPointerType(VoidPtrTy),
4169    Ty
4170  };
4171
4172  StringRef FieldNames[] = {
4173    "__isa",
4174    "__forwarding",
4175    "__flags",
4176    "__size",
4177    "__copy_helper",
4178    "__destroy_helper",
4179    DeclName,
4180  };
4181
4182  for (size_t i = 0; i < 7; ++i) {
4183    if (!HasCopyAndDispose && i >=4 && i <= 5)
4184      continue;
4185    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4186                                         SourceLocation(),
4187                                         &Idents.get(FieldNames[i]),
4188                                         FieldTypes[i], /*TInfo=*/0,
4189                                         /*BitWidth=*/0, /*Mutable=*/false,
4190                                         ICIS_NoInit);
4191    Field->setAccess(AS_public);
4192    T->addDecl(Field);
4193  }
4194
4195  T->completeDefinition();
4196
4197  return getPointerType(getTagDeclType(T));
4198}
4199
4200TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4201  if (!ObjCInstanceTypeDecl)
4202    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4203                                               getTranslationUnitDecl(),
4204                                               SourceLocation(),
4205                                               SourceLocation(),
4206                                               &Idents.get("instancetype"),
4207                                     getTrivialTypeSourceInfo(getObjCIdType()));
4208  return ObjCInstanceTypeDecl;
4209}
4210
4211// This returns true if a type has been typedefed to BOOL:
4212// typedef <type> BOOL;
4213static bool isTypeTypedefedAsBOOL(QualType T) {
4214  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4215    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4216      return II->isStr("BOOL");
4217
4218  return false;
4219}
4220
4221/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4222/// purpose.
4223CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4224  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4225    return CharUnits::Zero();
4226
4227  CharUnits sz = getTypeSizeInChars(type);
4228
4229  // Make all integer and enum types at least as large as an int
4230  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4231    sz = std::max(sz, getTypeSizeInChars(IntTy));
4232  // Treat arrays as pointers, since that's how they're passed in.
4233  else if (type->isArrayType())
4234    sz = getTypeSizeInChars(VoidPtrTy);
4235  return sz;
4236}
4237
4238static inline
4239std::string charUnitsToString(const CharUnits &CU) {
4240  return llvm::itostr(CU.getQuantity());
4241}
4242
4243/// getObjCEncodingForBlock - Return the encoded type for this block
4244/// declaration.
4245std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4246  std::string S;
4247
4248  const BlockDecl *Decl = Expr->getBlockDecl();
4249  QualType BlockTy =
4250      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4251  // Encode result type.
4252  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4253  // Compute size of all parameters.
4254  // Start with computing size of a pointer in number of bytes.
4255  // FIXME: There might(should) be a better way of doing this computation!
4256  SourceLocation Loc;
4257  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4258  CharUnits ParmOffset = PtrSize;
4259  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4260       E = Decl->param_end(); PI != E; ++PI) {
4261    QualType PType = (*PI)->getType();
4262    CharUnits sz = getObjCEncodingTypeSize(PType);
4263    if (sz.isZero())
4264      continue;
4265    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4266    ParmOffset += sz;
4267  }
4268  // Size of the argument frame
4269  S += charUnitsToString(ParmOffset);
4270  // Block pointer and offset.
4271  S += "@?0";
4272
4273  // Argument types.
4274  ParmOffset = PtrSize;
4275  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4276       Decl->param_end(); PI != E; ++PI) {
4277    ParmVarDecl *PVDecl = *PI;
4278    QualType PType = PVDecl->getOriginalType();
4279    if (const ArrayType *AT =
4280          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4281      // Use array's original type only if it has known number of
4282      // elements.
4283      if (!isa<ConstantArrayType>(AT))
4284        PType = PVDecl->getType();
4285    } else if (PType->isFunctionType())
4286      PType = PVDecl->getType();
4287    getObjCEncodingForType(PType, S);
4288    S += charUnitsToString(ParmOffset);
4289    ParmOffset += getObjCEncodingTypeSize(PType);
4290  }
4291
4292  return S;
4293}
4294
4295bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4296                                                std::string& S) {
4297  // Encode result type.
4298  getObjCEncodingForType(Decl->getResultType(), S);
4299  CharUnits ParmOffset;
4300  // Compute size of all parameters.
4301  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4302       E = Decl->param_end(); PI != E; ++PI) {
4303    QualType PType = (*PI)->getType();
4304    CharUnits sz = getObjCEncodingTypeSize(PType);
4305    if (sz.isZero())
4306      continue;
4307
4308    assert (sz.isPositive() &&
4309        "getObjCEncodingForFunctionDecl - Incomplete param type");
4310    ParmOffset += sz;
4311  }
4312  S += charUnitsToString(ParmOffset);
4313  ParmOffset = CharUnits::Zero();
4314
4315  // Argument types.
4316  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4317       E = Decl->param_end(); PI != E; ++PI) {
4318    ParmVarDecl *PVDecl = *PI;
4319    QualType PType = PVDecl->getOriginalType();
4320    if (const ArrayType *AT =
4321          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4322      // Use array's original type only if it has known number of
4323      // elements.
4324      if (!isa<ConstantArrayType>(AT))
4325        PType = PVDecl->getType();
4326    } else if (PType->isFunctionType())
4327      PType = PVDecl->getType();
4328    getObjCEncodingForType(PType, S);
4329    S += charUnitsToString(ParmOffset);
4330    ParmOffset += getObjCEncodingTypeSize(PType);
4331  }
4332
4333  return false;
4334}
4335
4336/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4337/// method parameter or return type. If Extended, include class names and
4338/// block object types.
4339void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4340                                                   QualType T, std::string& S,
4341                                                   bool Extended) const {
4342  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4343  getObjCEncodingForTypeQualifier(QT, S);
4344  // Encode parameter type.
4345  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4346                             true     /*OutermostType*/,
4347                             false    /*EncodingProperty*/,
4348                             false    /*StructField*/,
4349                             Extended /*EncodeBlockParameters*/,
4350                             Extended /*EncodeClassNames*/);
4351}
4352
4353/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4354/// declaration.
4355bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4356                                              std::string& S,
4357                                              bool Extended) const {
4358  // FIXME: This is not very efficient.
4359  // Encode return type.
4360  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4361                                    Decl->getResultType(), S, Extended);
4362  // Compute size of all parameters.
4363  // Start with computing size of a pointer in number of bytes.
4364  // FIXME: There might(should) be a better way of doing this computation!
4365  SourceLocation Loc;
4366  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4367  // The first two arguments (self and _cmd) are pointers; account for
4368  // their size.
4369  CharUnits ParmOffset = 2 * PtrSize;
4370  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4371       E = Decl->sel_param_end(); PI != E; ++PI) {
4372    QualType PType = (*PI)->getType();
4373    CharUnits sz = getObjCEncodingTypeSize(PType);
4374    if (sz.isZero())
4375      continue;
4376
4377    assert (sz.isPositive() &&
4378        "getObjCEncodingForMethodDecl - Incomplete param type");
4379    ParmOffset += sz;
4380  }
4381  S += charUnitsToString(ParmOffset);
4382  S += "@0:";
4383  S += charUnitsToString(PtrSize);
4384
4385  // Argument types.
4386  ParmOffset = 2 * PtrSize;
4387  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4388       E = Decl->sel_param_end(); PI != E; ++PI) {
4389    const ParmVarDecl *PVDecl = *PI;
4390    QualType PType = PVDecl->getOriginalType();
4391    if (const ArrayType *AT =
4392          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4393      // Use array's original type only if it has known number of
4394      // elements.
4395      if (!isa<ConstantArrayType>(AT))
4396        PType = PVDecl->getType();
4397    } else if (PType->isFunctionType())
4398      PType = PVDecl->getType();
4399    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4400                                      PType, S, Extended);
4401    S += charUnitsToString(ParmOffset);
4402    ParmOffset += getObjCEncodingTypeSize(PType);
4403  }
4404
4405  return false;
4406}
4407
4408/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4409/// property declaration. If non-NULL, Container must be either an
4410/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4411/// NULL when getting encodings for protocol properties.
4412/// Property attributes are stored as a comma-delimited C string. The simple
4413/// attributes readonly and bycopy are encoded as single characters. The
4414/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4415/// encoded as single characters, followed by an identifier. Property types
4416/// are also encoded as a parametrized attribute. The characters used to encode
4417/// these attributes are defined by the following enumeration:
4418/// @code
4419/// enum PropertyAttributes {
4420/// kPropertyReadOnly = 'R',   // property is read-only.
4421/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4422/// kPropertyByref = '&',  // property is a reference to the value last assigned
4423/// kPropertyDynamic = 'D',    // property is dynamic
4424/// kPropertyGetter = 'G',     // followed by getter selector name
4425/// kPropertySetter = 'S',     // followed by setter selector name
4426/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4427/// kPropertyType = 'T'              // followed by old-style type encoding.
4428/// kPropertyWeak = 'W'              // 'weak' property
4429/// kPropertyStrong = 'P'            // property GC'able
4430/// kPropertyNonAtomic = 'N'         // property non-atomic
4431/// };
4432/// @endcode
4433void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4434                                                const Decl *Container,
4435                                                std::string& S) const {
4436  // Collect information from the property implementation decl(s).
4437  bool Dynamic = false;
4438  ObjCPropertyImplDecl *SynthesizePID = 0;
4439
4440  // FIXME: Duplicated code due to poor abstraction.
4441  if (Container) {
4442    if (const ObjCCategoryImplDecl *CID =
4443        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4444      for (ObjCCategoryImplDecl::propimpl_iterator
4445             i = CID->propimpl_begin(), e = CID->propimpl_end();
4446           i != e; ++i) {
4447        ObjCPropertyImplDecl *PID = *i;
4448        if (PID->getPropertyDecl() == PD) {
4449          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4450            Dynamic = true;
4451          } else {
4452            SynthesizePID = PID;
4453          }
4454        }
4455      }
4456    } else {
4457      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4458      for (ObjCCategoryImplDecl::propimpl_iterator
4459             i = OID->propimpl_begin(), e = OID->propimpl_end();
4460           i != e; ++i) {
4461        ObjCPropertyImplDecl *PID = *i;
4462        if (PID->getPropertyDecl() == PD) {
4463          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4464            Dynamic = true;
4465          } else {
4466            SynthesizePID = PID;
4467          }
4468        }
4469      }
4470    }
4471  }
4472
4473  // FIXME: This is not very efficient.
4474  S = "T";
4475
4476  // Encode result type.
4477  // GCC has some special rules regarding encoding of properties which
4478  // closely resembles encoding of ivars.
4479  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4480                             true /* outermost type */,
4481                             true /* encoding for property */);
4482
4483  if (PD->isReadOnly()) {
4484    S += ",R";
4485  } else {
4486    switch (PD->getSetterKind()) {
4487    case ObjCPropertyDecl::Assign: break;
4488    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4489    case ObjCPropertyDecl::Retain: S += ",&"; break;
4490    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4491    }
4492  }
4493
4494  // It really isn't clear at all what this means, since properties
4495  // are "dynamic by default".
4496  if (Dynamic)
4497    S += ",D";
4498
4499  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4500    S += ",N";
4501
4502  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4503    S += ",G";
4504    S += PD->getGetterName().getAsString();
4505  }
4506
4507  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4508    S += ",S";
4509    S += PD->getSetterName().getAsString();
4510  }
4511
4512  if (SynthesizePID) {
4513    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4514    S += ",V";
4515    S += OID->getNameAsString();
4516  }
4517
4518  // FIXME: OBJCGC: weak & strong
4519}
4520
4521/// getLegacyIntegralTypeEncoding -
4522/// Another legacy compatibility encoding: 32-bit longs are encoded as
4523/// 'l' or 'L' , but not always.  For typedefs, we need to use
4524/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4525///
4526void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4527  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4528    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4529      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4530        PointeeTy = UnsignedIntTy;
4531      else
4532        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4533          PointeeTy = IntTy;
4534    }
4535  }
4536}
4537
4538void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4539                                        const FieldDecl *Field) const {
4540  // We follow the behavior of gcc, expanding structures which are
4541  // directly pointed to, and expanding embedded structures. Note that
4542  // these rules are sufficient to prevent recursive encoding of the
4543  // same type.
4544  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4545                             true /* outermost type */);
4546}
4547
4548static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4549    switch (T->getAs<BuiltinType>()->getKind()) {
4550    default: llvm_unreachable("Unhandled builtin type kind");
4551    case BuiltinType::Void:       return 'v';
4552    case BuiltinType::Bool:       return 'B';
4553    case BuiltinType::Char_U:
4554    case BuiltinType::UChar:      return 'C';
4555    case BuiltinType::UShort:     return 'S';
4556    case BuiltinType::UInt:       return 'I';
4557    case BuiltinType::ULong:
4558        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4559    case BuiltinType::UInt128:    return 'T';
4560    case BuiltinType::ULongLong:  return 'Q';
4561    case BuiltinType::Char_S:
4562    case BuiltinType::SChar:      return 'c';
4563    case BuiltinType::Short:      return 's';
4564    case BuiltinType::WChar_S:
4565    case BuiltinType::WChar_U:
4566    case BuiltinType::Int:        return 'i';
4567    case BuiltinType::Long:
4568      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4569    case BuiltinType::LongLong:   return 'q';
4570    case BuiltinType::Int128:     return 't';
4571    case BuiltinType::Float:      return 'f';
4572    case BuiltinType::Double:     return 'd';
4573    case BuiltinType::LongDouble: return 'D';
4574    }
4575}
4576
4577static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4578  EnumDecl *Enum = ET->getDecl();
4579
4580  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4581  if (!Enum->isFixed())
4582    return 'i';
4583
4584  // The encoding of a fixed enum type matches its fixed underlying type.
4585  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4586}
4587
4588static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4589                           QualType T, const FieldDecl *FD) {
4590  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4591  S += 'b';
4592  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4593  // The GNU runtime requires more information; bitfields are encoded as b,
4594  // then the offset (in bits) of the first element, then the type of the
4595  // bitfield, then the size in bits.  For example, in this structure:
4596  //
4597  // struct
4598  // {
4599  //    int integer;
4600  //    int flags:2;
4601  // };
4602  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4603  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4604  // information is not especially sensible, but we're stuck with it for
4605  // compatibility with GCC, although providing it breaks anything that
4606  // actually uses runtime introspection and wants to work on both runtimes...
4607  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4608    const RecordDecl *RD = FD->getParent();
4609    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4610    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4611    if (const EnumType *ET = T->getAs<EnumType>())
4612      S += ObjCEncodingForEnumType(Ctx, ET);
4613    else
4614      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4615  }
4616  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4617}
4618
4619// FIXME: Use SmallString for accumulating string.
4620void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4621                                            bool ExpandPointedToStructures,
4622                                            bool ExpandStructures,
4623                                            const FieldDecl *FD,
4624                                            bool OutermostType,
4625                                            bool EncodingProperty,
4626                                            bool StructField,
4627                                            bool EncodeBlockParameters,
4628                                            bool EncodeClassNames) const {
4629  if (T->getAs<BuiltinType>()) {
4630    if (FD && FD->isBitField())
4631      return EncodeBitField(this, S, T, FD);
4632    S += ObjCEncodingForPrimitiveKind(this, T);
4633    return;
4634  }
4635
4636  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4637    S += 'j';
4638    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4639                               false);
4640    return;
4641  }
4642
4643  // encoding for pointer or r3eference types.
4644  QualType PointeeTy;
4645  if (const PointerType *PT = T->getAs<PointerType>()) {
4646    if (PT->isObjCSelType()) {
4647      S += ':';
4648      return;
4649    }
4650    PointeeTy = PT->getPointeeType();
4651  }
4652  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4653    PointeeTy = RT->getPointeeType();
4654  if (!PointeeTy.isNull()) {
4655    bool isReadOnly = false;
4656    // For historical/compatibility reasons, the read-only qualifier of the
4657    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4658    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4659    // Also, do not emit the 'r' for anything but the outermost type!
4660    if (isa<TypedefType>(T.getTypePtr())) {
4661      if (OutermostType && T.isConstQualified()) {
4662        isReadOnly = true;
4663        S += 'r';
4664      }
4665    } else if (OutermostType) {
4666      QualType P = PointeeTy;
4667      while (P->getAs<PointerType>())
4668        P = P->getAs<PointerType>()->getPointeeType();
4669      if (P.isConstQualified()) {
4670        isReadOnly = true;
4671        S += 'r';
4672      }
4673    }
4674    if (isReadOnly) {
4675      // Another legacy compatibility encoding. Some ObjC qualifier and type
4676      // combinations need to be rearranged.
4677      // Rewrite "in const" from "nr" to "rn"
4678      if (StringRef(S).endswith("nr"))
4679        S.replace(S.end()-2, S.end(), "rn");
4680    }
4681
4682    if (PointeeTy->isCharType()) {
4683      // char pointer types should be encoded as '*' unless it is a
4684      // type that has been typedef'd to 'BOOL'.
4685      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4686        S += '*';
4687        return;
4688      }
4689    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4690      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4691      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4692        S += '#';
4693        return;
4694      }
4695      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4696      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4697        S += '@';
4698        return;
4699      }
4700      // fall through...
4701    }
4702    S += '^';
4703    getLegacyIntegralTypeEncoding(PointeeTy);
4704
4705    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4706                               NULL);
4707    return;
4708  }
4709
4710  if (const ArrayType *AT =
4711      // Ignore type qualifiers etc.
4712        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4713    if (isa<IncompleteArrayType>(AT) && !StructField) {
4714      // Incomplete arrays are encoded as a pointer to the array element.
4715      S += '^';
4716
4717      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4718                                 false, ExpandStructures, FD);
4719    } else {
4720      S += '[';
4721
4722      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4723        if (getTypeSize(CAT->getElementType()) == 0)
4724          S += '0';
4725        else
4726          S += llvm::utostr(CAT->getSize().getZExtValue());
4727      } else {
4728        //Variable length arrays are encoded as a regular array with 0 elements.
4729        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4730               "Unknown array type!");
4731        S += '0';
4732      }
4733
4734      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4735                                 false, ExpandStructures, FD);
4736      S += ']';
4737    }
4738    return;
4739  }
4740
4741  if (T->getAs<FunctionType>()) {
4742    S += '?';
4743    return;
4744  }
4745
4746  if (const RecordType *RTy = T->getAs<RecordType>()) {
4747    RecordDecl *RDecl = RTy->getDecl();
4748    S += RDecl->isUnion() ? '(' : '{';
4749    // Anonymous structures print as '?'
4750    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4751      S += II->getName();
4752      if (ClassTemplateSpecializationDecl *Spec
4753          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4754        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4755        std::string TemplateArgsStr
4756          = TemplateSpecializationType::PrintTemplateArgumentList(
4757                                            TemplateArgs.data(),
4758                                            TemplateArgs.size(),
4759                                            (*this).getPrintingPolicy());
4760
4761        S += TemplateArgsStr;
4762      }
4763    } else {
4764      S += '?';
4765    }
4766    if (ExpandStructures) {
4767      S += '=';
4768      if (!RDecl->isUnion()) {
4769        getObjCEncodingForStructureImpl(RDecl, S, FD);
4770      } else {
4771        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4772                                     FieldEnd = RDecl->field_end();
4773             Field != FieldEnd; ++Field) {
4774          if (FD) {
4775            S += '"';
4776            S += Field->getNameAsString();
4777            S += '"';
4778          }
4779
4780          // Special case bit-fields.
4781          if (Field->isBitField()) {
4782            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4783                                       *Field);
4784          } else {
4785            QualType qt = Field->getType();
4786            getLegacyIntegralTypeEncoding(qt);
4787            getObjCEncodingForTypeImpl(qt, S, false, true,
4788                                       FD, /*OutermostType*/false,
4789                                       /*EncodingProperty*/false,
4790                                       /*StructField*/true);
4791          }
4792        }
4793      }
4794    }
4795    S += RDecl->isUnion() ? ')' : '}';
4796    return;
4797  }
4798
4799  if (const EnumType *ET = T->getAs<EnumType>()) {
4800    if (FD && FD->isBitField())
4801      EncodeBitField(this, S, T, FD);
4802    else
4803      S += ObjCEncodingForEnumType(this, ET);
4804    return;
4805  }
4806
4807  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4808    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4809    if (EncodeBlockParameters) {
4810      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4811
4812      S += '<';
4813      // Block return type
4814      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4815                                 ExpandPointedToStructures, ExpandStructures,
4816                                 FD,
4817                                 false /* OutermostType */,
4818                                 EncodingProperty,
4819                                 false /* StructField */,
4820                                 EncodeBlockParameters,
4821                                 EncodeClassNames);
4822      // Block self
4823      S += "@?";
4824      // Block parameters
4825      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4826        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4827               E = FPT->arg_type_end(); I && (I != E); ++I) {
4828          getObjCEncodingForTypeImpl(*I, S,
4829                                     ExpandPointedToStructures,
4830                                     ExpandStructures,
4831                                     FD,
4832                                     false /* OutermostType */,
4833                                     EncodingProperty,
4834                                     false /* StructField */,
4835                                     EncodeBlockParameters,
4836                                     EncodeClassNames);
4837        }
4838      }
4839      S += '>';
4840    }
4841    return;
4842  }
4843
4844  // Ignore protocol qualifiers when mangling at this level.
4845  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4846    T = OT->getBaseType();
4847
4848  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4849    // @encode(class_name)
4850    ObjCInterfaceDecl *OI = OIT->getDecl();
4851    S += '{';
4852    const IdentifierInfo *II = OI->getIdentifier();
4853    S += II->getName();
4854    S += '=';
4855    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4856    DeepCollectObjCIvars(OI, true, Ivars);
4857    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4858      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4859      if (Field->isBitField())
4860        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4861      else
4862        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4863    }
4864    S += '}';
4865    return;
4866  }
4867
4868  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4869    if (OPT->isObjCIdType()) {
4870      S += '@';
4871      return;
4872    }
4873
4874    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4875      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4876      // Since this is a binary compatibility issue, need to consult with runtime
4877      // folks. Fortunately, this is a *very* obsure construct.
4878      S += '#';
4879      return;
4880    }
4881
4882    if (OPT->isObjCQualifiedIdType()) {
4883      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4884                                 ExpandPointedToStructures,
4885                                 ExpandStructures, FD);
4886      if (FD || EncodingProperty || EncodeClassNames) {
4887        // Note that we do extended encoding of protocol qualifer list
4888        // Only when doing ivar or property encoding.
4889        S += '"';
4890        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4891             E = OPT->qual_end(); I != E; ++I) {
4892          S += '<';
4893          S += (*I)->getNameAsString();
4894          S += '>';
4895        }
4896        S += '"';
4897      }
4898      return;
4899    }
4900
4901    QualType PointeeTy = OPT->getPointeeType();
4902    if (!EncodingProperty &&
4903        isa<TypedefType>(PointeeTy.getTypePtr())) {
4904      // Another historical/compatibility reason.
4905      // We encode the underlying type which comes out as
4906      // {...};
4907      S += '^';
4908      getObjCEncodingForTypeImpl(PointeeTy, S,
4909                                 false, ExpandPointedToStructures,
4910                                 NULL);
4911      return;
4912    }
4913
4914    S += '@';
4915    if (OPT->getInterfaceDecl() &&
4916        (FD || EncodingProperty || EncodeClassNames)) {
4917      S += '"';
4918      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4919      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4920           E = OPT->qual_end(); I != E; ++I) {
4921        S += '<';
4922        S += (*I)->getNameAsString();
4923        S += '>';
4924      }
4925      S += '"';
4926    }
4927    return;
4928  }
4929
4930  // gcc just blithely ignores member pointers.
4931  // TODO: maybe there should be a mangling for these
4932  if (T->getAs<MemberPointerType>())
4933    return;
4934
4935  if (T->isVectorType()) {
4936    // This matches gcc's encoding, even though technically it is
4937    // insufficient.
4938    // FIXME. We should do a better job than gcc.
4939    return;
4940  }
4941
4942  llvm_unreachable("@encode for type not implemented!");
4943}
4944
4945void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4946                                                 std::string &S,
4947                                                 const FieldDecl *FD,
4948                                                 bool includeVBases) const {
4949  assert(RDecl && "Expected non-null RecordDecl");
4950  assert(!RDecl->isUnion() && "Should not be called for unions");
4951  if (!RDecl->getDefinition())
4952    return;
4953
4954  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4955  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4956  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4957
4958  if (CXXRec) {
4959    for (CXXRecordDecl::base_class_iterator
4960           BI = CXXRec->bases_begin(),
4961           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4962      if (!BI->isVirtual()) {
4963        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4964        if (base->isEmpty())
4965          continue;
4966        uint64_t offs = toBits(layout.getBaseClassOffset(base));
4967        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4968                                  std::make_pair(offs, base));
4969      }
4970    }
4971  }
4972
4973  unsigned i = 0;
4974  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4975                               FieldEnd = RDecl->field_end();
4976       Field != FieldEnd; ++Field, ++i) {
4977    uint64_t offs = layout.getFieldOffset(i);
4978    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4979                              std::make_pair(offs, *Field));
4980  }
4981
4982  if (CXXRec && includeVBases) {
4983    for (CXXRecordDecl::base_class_iterator
4984           BI = CXXRec->vbases_begin(),
4985           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4986      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4987      if (base->isEmpty())
4988        continue;
4989      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
4990      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4991        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4992                                  std::make_pair(offs, base));
4993    }
4994  }
4995
4996  CharUnits size;
4997  if (CXXRec) {
4998    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4999  } else {
5000    size = layout.getSize();
5001  }
5002
5003  uint64_t CurOffs = 0;
5004  std::multimap<uint64_t, NamedDecl *>::iterator
5005    CurLayObj = FieldOrBaseOffsets.begin();
5006
5007  if (CXXRec && CXXRec->isDynamicClass() &&
5008      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5009    if (FD) {
5010      S += "\"_vptr$";
5011      std::string recname = CXXRec->getNameAsString();
5012      if (recname.empty()) recname = "?";
5013      S += recname;
5014      S += '"';
5015    }
5016    S += "^^?";
5017    CurOffs += getTypeSize(VoidPtrTy);
5018  }
5019
5020  if (!RDecl->hasFlexibleArrayMember()) {
5021    // Mark the end of the structure.
5022    uint64_t offs = toBits(size);
5023    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5024                              std::make_pair(offs, (NamedDecl*)0));
5025  }
5026
5027  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5028    assert(CurOffs <= CurLayObj->first);
5029
5030    if (CurOffs < CurLayObj->first) {
5031      uint64_t padding = CurLayObj->first - CurOffs;
5032      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5033      // packing/alignment of members is different that normal, in which case
5034      // the encoding will be out-of-sync with the real layout.
5035      // If the runtime switches to just consider the size of types without
5036      // taking into account alignment, we could make padding explicit in the
5037      // encoding (e.g. using arrays of chars). The encoding strings would be
5038      // longer then though.
5039      CurOffs += padding;
5040    }
5041
5042    NamedDecl *dcl = CurLayObj->second;
5043    if (dcl == 0)
5044      break; // reached end of structure.
5045
5046    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5047      // We expand the bases without their virtual bases since those are going
5048      // in the initial structure. Note that this differs from gcc which
5049      // expands virtual bases each time one is encountered in the hierarchy,
5050      // making the encoding type bigger than it really is.
5051      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5052      assert(!base->isEmpty());
5053      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5054    } else {
5055      FieldDecl *field = cast<FieldDecl>(dcl);
5056      if (FD) {
5057        S += '"';
5058        S += field->getNameAsString();
5059        S += '"';
5060      }
5061
5062      if (field->isBitField()) {
5063        EncodeBitField(this, S, field->getType(), field);
5064        CurOffs += field->getBitWidthValue(*this);
5065      } else {
5066        QualType qt = field->getType();
5067        getLegacyIntegralTypeEncoding(qt);
5068        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5069                                   /*OutermostType*/false,
5070                                   /*EncodingProperty*/false,
5071                                   /*StructField*/true);
5072        CurOffs += getTypeSize(field->getType());
5073      }
5074    }
5075  }
5076}
5077
5078void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5079                                                 std::string& S) const {
5080  if (QT & Decl::OBJC_TQ_In)
5081    S += 'n';
5082  if (QT & Decl::OBJC_TQ_Inout)
5083    S += 'N';
5084  if (QT & Decl::OBJC_TQ_Out)
5085    S += 'o';
5086  if (QT & Decl::OBJC_TQ_Bycopy)
5087    S += 'O';
5088  if (QT & Decl::OBJC_TQ_Byref)
5089    S += 'R';
5090  if (QT & Decl::OBJC_TQ_Oneway)
5091    S += 'V';
5092}
5093
5094TypedefDecl *ASTContext::getObjCIdDecl() const {
5095  if (!ObjCIdDecl) {
5096    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5097    T = getObjCObjectPointerType(T);
5098    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5099    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5100                                     getTranslationUnitDecl(),
5101                                     SourceLocation(), SourceLocation(),
5102                                     &Idents.get("id"), IdInfo);
5103  }
5104
5105  return ObjCIdDecl;
5106}
5107
5108TypedefDecl *ASTContext::getObjCSelDecl() const {
5109  if (!ObjCSelDecl) {
5110    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5111    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5112    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5113                                      getTranslationUnitDecl(),
5114                                      SourceLocation(), SourceLocation(),
5115                                      &Idents.get("SEL"), SelInfo);
5116  }
5117  return ObjCSelDecl;
5118}
5119
5120TypedefDecl *ASTContext::getObjCClassDecl() const {
5121  if (!ObjCClassDecl) {
5122    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5123    T = getObjCObjectPointerType(T);
5124    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5125    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5126                                        getTranslationUnitDecl(),
5127                                        SourceLocation(), SourceLocation(),
5128                                        &Idents.get("Class"), ClassInfo);
5129  }
5130
5131  return ObjCClassDecl;
5132}
5133
5134ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5135  if (!ObjCProtocolClassDecl) {
5136    ObjCProtocolClassDecl
5137      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5138                                  SourceLocation(),
5139                                  &Idents.get("Protocol"),
5140                                  /*PrevDecl=*/0,
5141                                  SourceLocation(), true);
5142  }
5143
5144  return ObjCProtocolClassDecl;
5145}
5146
5147//===----------------------------------------------------------------------===//
5148// __builtin_va_list Construction Functions
5149//===----------------------------------------------------------------------===//
5150
5151static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5152  // typedef char* __builtin_va_list;
5153  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5154  TypeSourceInfo *TInfo
5155    = Context->getTrivialTypeSourceInfo(CharPtrType);
5156
5157  TypedefDecl *VaListTypeDecl
5158    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5159                          Context->getTranslationUnitDecl(),
5160                          SourceLocation(), SourceLocation(),
5161                          &Context->Idents.get("__builtin_va_list"),
5162                          TInfo);
5163  return VaListTypeDecl;
5164}
5165
5166static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5167  // typedef void* __builtin_va_list;
5168  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5169  TypeSourceInfo *TInfo
5170    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5171
5172  TypedefDecl *VaListTypeDecl
5173    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5174                          Context->getTranslationUnitDecl(),
5175                          SourceLocation(), SourceLocation(),
5176                          &Context->Idents.get("__builtin_va_list"),
5177                          TInfo);
5178  return VaListTypeDecl;
5179}
5180
5181static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5182  // typedef struct __va_list_tag {
5183  RecordDecl *VaListTagDecl;
5184
5185  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5186                                   Context->getTranslationUnitDecl(),
5187                                   &Context->Idents.get("__va_list_tag"));
5188  VaListTagDecl->startDefinition();
5189
5190  const size_t NumFields = 5;
5191  QualType FieldTypes[NumFields];
5192  const char *FieldNames[NumFields];
5193
5194  //   unsigned char gpr;
5195  FieldTypes[0] = Context->UnsignedCharTy;
5196  FieldNames[0] = "gpr";
5197
5198  //   unsigned char fpr;
5199  FieldTypes[1] = Context->UnsignedCharTy;
5200  FieldNames[1] = "fpr";
5201
5202  //   unsigned short reserved;
5203  FieldTypes[2] = Context->UnsignedShortTy;
5204  FieldNames[2] = "reserved";
5205
5206  //   void* overflow_arg_area;
5207  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5208  FieldNames[3] = "overflow_arg_area";
5209
5210  //   void* reg_save_area;
5211  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5212  FieldNames[4] = "reg_save_area";
5213
5214  // Create fields
5215  for (unsigned i = 0; i < NumFields; ++i) {
5216    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5217                                         SourceLocation(),
5218                                         SourceLocation(),
5219                                         &Context->Idents.get(FieldNames[i]),
5220                                         FieldTypes[i], /*TInfo=*/0,
5221                                         /*BitWidth=*/0,
5222                                         /*Mutable=*/false,
5223                                         ICIS_NoInit);
5224    Field->setAccess(AS_public);
5225    VaListTagDecl->addDecl(Field);
5226  }
5227  VaListTagDecl->completeDefinition();
5228  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5229  Context->VaListTagTy = VaListTagType;
5230
5231  // } __va_list_tag;
5232  TypedefDecl *VaListTagTypedefDecl
5233    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5234                          Context->getTranslationUnitDecl(),
5235                          SourceLocation(), SourceLocation(),
5236                          &Context->Idents.get("__va_list_tag"),
5237                          Context->getTrivialTypeSourceInfo(VaListTagType));
5238  QualType VaListTagTypedefType =
5239    Context->getTypedefType(VaListTagTypedefDecl);
5240
5241  // typedef __va_list_tag __builtin_va_list[1];
5242  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5243  QualType VaListTagArrayType
5244    = Context->getConstantArrayType(VaListTagTypedefType,
5245                                    Size, ArrayType::Normal, 0);
5246  TypeSourceInfo *TInfo
5247    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5248  TypedefDecl *VaListTypedefDecl
5249    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5250                          Context->getTranslationUnitDecl(),
5251                          SourceLocation(), SourceLocation(),
5252                          &Context->Idents.get("__builtin_va_list"),
5253                          TInfo);
5254
5255  return VaListTypedefDecl;
5256}
5257
5258static TypedefDecl *
5259CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5260  // typedef struct __va_list_tag {
5261  RecordDecl *VaListTagDecl;
5262  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5263                                   Context->getTranslationUnitDecl(),
5264                                   &Context->Idents.get("__va_list_tag"));
5265  VaListTagDecl->startDefinition();
5266
5267  const size_t NumFields = 4;
5268  QualType FieldTypes[NumFields];
5269  const char *FieldNames[NumFields];
5270
5271  //   unsigned gp_offset;
5272  FieldTypes[0] = Context->UnsignedIntTy;
5273  FieldNames[0] = "gp_offset";
5274
5275  //   unsigned fp_offset;
5276  FieldTypes[1] = Context->UnsignedIntTy;
5277  FieldNames[1] = "fp_offset";
5278
5279  //   void* overflow_arg_area;
5280  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5281  FieldNames[2] = "overflow_arg_area";
5282
5283  //   void* reg_save_area;
5284  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5285  FieldNames[3] = "reg_save_area";
5286
5287  // Create fields
5288  for (unsigned i = 0; i < NumFields; ++i) {
5289    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5290                                         VaListTagDecl,
5291                                         SourceLocation(),
5292                                         SourceLocation(),
5293                                         &Context->Idents.get(FieldNames[i]),
5294                                         FieldTypes[i], /*TInfo=*/0,
5295                                         /*BitWidth=*/0,
5296                                         /*Mutable=*/false,
5297                                         ICIS_NoInit);
5298    Field->setAccess(AS_public);
5299    VaListTagDecl->addDecl(Field);
5300  }
5301  VaListTagDecl->completeDefinition();
5302  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5303  Context->VaListTagTy = VaListTagType;
5304
5305  // } __va_list_tag;
5306  TypedefDecl *VaListTagTypedefDecl
5307    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5308                          Context->getTranslationUnitDecl(),
5309                          SourceLocation(), SourceLocation(),
5310                          &Context->Idents.get("__va_list_tag"),
5311                          Context->getTrivialTypeSourceInfo(VaListTagType));
5312  QualType VaListTagTypedefType =
5313    Context->getTypedefType(VaListTagTypedefDecl);
5314
5315  // typedef __va_list_tag __builtin_va_list[1];
5316  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5317  QualType VaListTagArrayType
5318    = Context->getConstantArrayType(VaListTagTypedefType,
5319                                      Size, ArrayType::Normal,0);
5320  TypeSourceInfo *TInfo
5321    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5322  TypedefDecl *VaListTypedefDecl
5323    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5324                          Context->getTranslationUnitDecl(),
5325                          SourceLocation(), SourceLocation(),
5326                          &Context->Idents.get("__builtin_va_list"),
5327                          TInfo);
5328
5329  return VaListTypedefDecl;
5330}
5331
5332static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5333  // typedef int __builtin_va_list[4];
5334  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5335  QualType IntArrayType
5336    = Context->getConstantArrayType(Context->IntTy,
5337				    Size, ArrayType::Normal, 0);
5338  TypedefDecl *VaListTypedefDecl
5339    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5340                          Context->getTranslationUnitDecl(),
5341                          SourceLocation(), SourceLocation(),
5342                          &Context->Idents.get("__builtin_va_list"),
5343                          Context->getTrivialTypeSourceInfo(IntArrayType));
5344
5345  return VaListTypedefDecl;
5346}
5347
5348static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5349                                     TargetInfo::BuiltinVaListKind Kind) {
5350  switch (Kind) {
5351  case TargetInfo::CharPtrBuiltinVaList:
5352    return CreateCharPtrBuiltinVaListDecl(Context);
5353  case TargetInfo::VoidPtrBuiltinVaList:
5354    return CreateVoidPtrBuiltinVaListDecl(Context);
5355  case TargetInfo::PowerABIBuiltinVaList:
5356    return CreatePowerABIBuiltinVaListDecl(Context);
5357  case TargetInfo::X86_64ABIBuiltinVaList:
5358    return CreateX86_64ABIBuiltinVaListDecl(Context);
5359  case TargetInfo::PNaClABIBuiltinVaList:
5360    return CreatePNaClABIBuiltinVaListDecl(Context);
5361  }
5362
5363  llvm_unreachable("Unhandled __builtin_va_list type kind");
5364}
5365
5366TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5367  if (!BuiltinVaListDecl)
5368    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5369
5370  return BuiltinVaListDecl;
5371}
5372
5373QualType ASTContext::getVaListTagType() const {
5374  // Force the creation of VaListTagTy by building the __builtin_va_list
5375  // declaration.
5376  if (VaListTagTy.isNull())
5377    (void) getBuiltinVaListDecl();
5378
5379  return VaListTagTy;
5380}
5381
5382void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5383  assert(ObjCConstantStringType.isNull() &&
5384         "'NSConstantString' type already set!");
5385
5386  ObjCConstantStringType = getObjCInterfaceType(Decl);
5387}
5388
5389/// \brief Retrieve the template name that corresponds to a non-empty
5390/// lookup.
5391TemplateName
5392ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5393                                      UnresolvedSetIterator End) const {
5394  unsigned size = End - Begin;
5395  assert(size > 1 && "set is not overloaded!");
5396
5397  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5398                          size * sizeof(FunctionTemplateDecl*));
5399  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5400
5401  NamedDecl **Storage = OT->getStorage();
5402  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5403    NamedDecl *D = *I;
5404    assert(isa<FunctionTemplateDecl>(D) ||
5405           (isa<UsingShadowDecl>(D) &&
5406            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5407    *Storage++ = D;
5408  }
5409
5410  return TemplateName(OT);
5411}
5412
5413/// \brief Retrieve the template name that represents a qualified
5414/// template name such as \c std::vector.
5415TemplateName
5416ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5417                                     bool TemplateKeyword,
5418                                     TemplateDecl *Template) const {
5419  assert(NNS && "Missing nested-name-specifier in qualified template name");
5420
5421  // FIXME: Canonicalization?
5422  llvm::FoldingSetNodeID ID;
5423  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5424
5425  void *InsertPos = 0;
5426  QualifiedTemplateName *QTN =
5427    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5428  if (!QTN) {
5429    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
5430    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5431  }
5432
5433  return TemplateName(QTN);
5434}
5435
5436/// \brief Retrieve the template name that represents a dependent
5437/// template name such as \c MetaFun::template apply.
5438TemplateName
5439ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5440                                     const IdentifierInfo *Name) const {
5441  assert((!NNS || NNS->isDependent()) &&
5442         "Nested name specifier must be dependent");
5443
5444  llvm::FoldingSetNodeID ID;
5445  DependentTemplateName::Profile(ID, NNS, Name);
5446
5447  void *InsertPos = 0;
5448  DependentTemplateName *QTN =
5449    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5450
5451  if (QTN)
5452    return TemplateName(QTN);
5453
5454  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5455  if (CanonNNS == NNS) {
5456    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5457  } else {
5458    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5459    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5460    DependentTemplateName *CheckQTN =
5461      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5462    assert(!CheckQTN && "Dependent type name canonicalization broken");
5463    (void)CheckQTN;
5464  }
5465
5466  DependentTemplateNames.InsertNode(QTN, InsertPos);
5467  return TemplateName(QTN);
5468}
5469
5470/// \brief Retrieve the template name that represents a dependent
5471/// template name such as \c MetaFun::template operator+.
5472TemplateName
5473ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5474                                     OverloadedOperatorKind Operator) const {
5475  assert((!NNS || NNS->isDependent()) &&
5476         "Nested name specifier must be dependent");
5477
5478  llvm::FoldingSetNodeID ID;
5479  DependentTemplateName::Profile(ID, NNS, Operator);
5480
5481  void *InsertPos = 0;
5482  DependentTemplateName *QTN
5483    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5484
5485  if (QTN)
5486    return TemplateName(QTN);
5487
5488  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5489  if (CanonNNS == NNS) {
5490    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5491  } else {
5492    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5493    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5494
5495    DependentTemplateName *CheckQTN
5496      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5497    assert(!CheckQTN && "Dependent template name canonicalization broken");
5498    (void)CheckQTN;
5499  }
5500
5501  DependentTemplateNames.InsertNode(QTN, InsertPos);
5502  return TemplateName(QTN);
5503}
5504
5505TemplateName
5506ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5507                                         TemplateName replacement) const {
5508  llvm::FoldingSetNodeID ID;
5509  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5510
5511  void *insertPos = 0;
5512  SubstTemplateTemplateParmStorage *subst
5513    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5514
5515  if (!subst) {
5516    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5517    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5518  }
5519
5520  return TemplateName(subst);
5521}
5522
5523TemplateName
5524ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5525                                       const TemplateArgument &ArgPack) const {
5526  ASTContext &Self = const_cast<ASTContext &>(*this);
5527  llvm::FoldingSetNodeID ID;
5528  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5529
5530  void *InsertPos = 0;
5531  SubstTemplateTemplateParmPackStorage *Subst
5532    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5533
5534  if (!Subst) {
5535    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5536                                                           ArgPack.pack_size(),
5537                                                         ArgPack.pack_begin());
5538    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5539  }
5540
5541  return TemplateName(Subst);
5542}
5543
5544/// getFromTargetType - Given one of the integer types provided by
5545/// TargetInfo, produce the corresponding type. The unsigned @p Type
5546/// is actually a value of type @c TargetInfo::IntType.
5547CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5548  switch (Type) {
5549  case TargetInfo::NoInt: return CanQualType();
5550  case TargetInfo::SignedShort: return ShortTy;
5551  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5552  case TargetInfo::SignedInt: return IntTy;
5553  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5554  case TargetInfo::SignedLong: return LongTy;
5555  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5556  case TargetInfo::SignedLongLong: return LongLongTy;
5557  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5558  }
5559
5560  llvm_unreachable("Unhandled TargetInfo::IntType value");
5561}
5562
5563//===----------------------------------------------------------------------===//
5564//                        Type Predicates.
5565//===----------------------------------------------------------------------===//
5566
5567/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5568/// garbage collection attribute.
5569///
5570Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5571  if (getLangOpts().getGC() == LangOptions::NonGC)
5572    return Qualifiers::GCNone;
5573
5574  assert(getLangOpts().ObjC1);
5575  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5576
5577  // Default behaviour under objective-C's gc is for ObjC pointers
5578  // (or pointers to them) be treated as though they were declared
5579  // as __strong.
5580  if (GCAttrs == Qualifiers::GCNone) {
5581    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5582      return Qualifiers::Strong;
5583    else if (Ty->isPointerType())
5584      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5585  } else {
5586    // It's not valid to set GC attributes on anything that isn't a
5587    // pointer.
5588#ifndef NDEBUG
5589    QualType CT = Ty->getCanonicalTypeInternal();
5590    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5591      CT = AT->getElementType();
5592    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5593#endif
5594  }
5595  return GCAttrs;
5596}
5597
5598//===----------------------------------------------------------------------===//
5599//                        Type Compatibility Testing
5600//===----------------------------------------------------------------------===//
5601
5602/// areCompatVectorTypes - Return true if the two specified vector types are
5603/// compatible.
5604static bool areCompatVectorTypes(const VectorType *LHS,
5605                                 const VectorType *RHS) {
5606  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5607  return LHS->getElementType() == RHS->getElementType() &&
5608         LHS->getNumElements() == RHS->getNumElements();
5609}
5610
5611bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5612                                          QualType SecondVec) {
5613  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5614  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5615
5616  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5617    return true;
5618
5619  // Treat Neon vector types and most AltiVec vector types as if they are the
5620  // equivalent GCC vector types.
5621  const VectorType *First = FirstVec->getAs<VectorType>();
5622  const VectorType *Second = SecondVec->getAs<VectorType>();
5623  if (First->getNumElements() == Second->getNumElements() &&
5624      hasSameType(First->getElementType(), Second->getElementType()) &&
5625      First->getVectorKind() != VectorType::AltiVecPixel &&
5626      First->getVectorKind() != VectorType::AltiVecBool &&
5627      Second->getVectorKind() != VectorType::AltiVecPixel &&
5628      Second->getVectorKind() != VectorType::AltiVecBool)
5629    return true;
5630
5631  return false;
5632}
5633
5634//===----------------------------------------------------------------------===//
5635// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5636//===----------------------------------------------------------------------===//
5637
5638/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5639/// inheritance hierarchy of 'rProto'.
5640bool
5641ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5642                                           ObjCProtocolDecl *rProto) const {
5643  if (declaresSameEntity(lProto, rProto))
5644    return true;
5645  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5646       E = rProto->protocol_end(); PI != E; ++PI)
5647    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5648      return true;
5649  return false;
5650}
5651
5652/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5653/// return true if lhs's protocols conform to rhs's protocol; false
5654/// otherwise.
5655bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5656  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5657    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5658  return false;
5659}
5660
5661/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5662/// Class<p1, ...>.
5663bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5664                                                      QualType rhs) {
5665  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5666  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5667  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5668
5669  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5670       E = lhsQID->qual_end(); I != E; ++I) {
5671    bool match = false;
5672    ObjCProtocolDecl *lhsProto = *I;
5673    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5674         E = rhsOPT->qual_end(); J != E; ++J) {
5675      ObjCProtocolDecl *rhsProto = *J;
5676      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5677        match = true;
5678        break;
5679      }
5680    }
5681    if (!match)
5682      return false;
5683  }
5684  return true;
5685}
5686
5687/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5688/// ObjCQualifiedIDType.
5689bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5690                                                   bool compare) {
5691  // Allow id<P..> and an 'id' or void* type in all cases.
5692  if (lhs->isVoidPointerType() ||
5693      lhs->isObjCIdType() || lhs->isObjCClassType())
5694    return true;
5695  else if (rhs->isVoidPointerType() ||
5696           rhs->isObjCIdType() || rhs->isObjCClassType())
5697    return true;
5698
5699  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5700    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5701
5702    if (!rhsOPT) return false;
5703
5704    if (rhsOPT->qual_empty()) {
5705      // If the RHS is a unqualified interface pointer "NSString*",
5706      // make sure we check the class hierarchy.
5707      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5708        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5709             E = lhsQID->qual_end(); I != E; ++I) {
5710          // when comparing an id<P> on lhs with a static type on rhs,
5711          // see if static class implements all of id's protocols, directly or
5712          // through its super class and categories.
5713          if (!rhsID->ClassImplementsProtocol(*I, true))
5714            return false;
5715        }
5716      }
5717      // If there are no qualifiers and no interface, we have an 'id'.
5718      return true;
5719    }
5720    // Both the right and left sides have qualifiers.
5721    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5722         E = lhsQID->qual_end(); I != E; ++I) {
5723      ObjCProtocolDecl *lhsProto = *I;
5724      bool match = false;
5725
5726      // when comparing an id<P> on lhs with a static type on rhs,
5727      // see if static class implements all of id's protocols, directly or
5728      // through its super class and categories.
5729      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5730           E = rhsOPT->qual_end(); J != E; ++J) {
5731        ObjCProtocolDecl *rhsProto = *J;
5732        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5733            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5734          match = true;
5735          break;
5736        }
5737      }
5738      // If the RHS is a qualified interface pointer "NSString<P>*",
5739      // make sure we check the class hierarchy.
5740      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5741        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5742             E = lhsQID->qual_end(); I != E; ++I) {
5743          // when comparing an id<P> on lhs with a static type on rhs,
5744          // see if static class implements all of id's protocols, directly or
5745          // through its super class and categories.
5746          if (rhsID->ClassImplementsProtocol(*I, true)) {
5747            match = true;
5748            break;
5749          }
5750        }
5751      }
5752      if (!match)
5753        return false;
5754    }
5755
5756    return true;
5757  }
5758
5759  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5760  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5761
5762  if (const ObjCObjectPointerType *lhsOPT =
5763        lhs->getAsObjCInterfacePointerType()) {
5764    // If both the right and left sides have qualifiers.
5765    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5766         E = lhsOPT->qual_end(); I != E; ++I) {
5767      ObjCProtocolDecl *lhsProto = *I;
5768      bool match = false;
5769
5770      // when comparing an id<P> on rhs with a static type on lhs,
5771      // see if static class implements all of id's protocols, directly or
5772      // through its super class and categories.
5773      // First, lhs protocols in the qualifier list must be found, direct
5774      // or indirect in rhs's qualifier list or it is a mismatch.
5775      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5776           E = rhsQID->qual_end(); J != E; ++J) {
5777        ObjCProtocolDecl *rhsProto = *J;
5778        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5779            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5780          match = true;
5781          break;
5782        }
5783      }
5784      if (!match)
5785        return false;
5786    }
5787
5788    // Static class's protocols, or its super class or category protocols
5789    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5790    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5791      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5792      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5793      // This is rather dubious but matches gcc's behavior. If lhs has
5794      // no type qualifier and its class has no static protocol(s)
5795      // assume that it is mismatch.
5796      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5797        return false;
5798      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5799           LHSInheritedProtocols.begin(),
5800           E = LHSInheritedProtocols.end(); I != E; ++I) {
5801        bool match = false;
5802        ObjCProtocolDecl *lhsProto = (*I);
5803        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5804             E = rhsQID->qual_end(); J != E; ++J) {
5805          ObjCProtocolDecl *rhsProto = *J;
5806          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5807              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5808            match = true;
5809            break;
5810          }
5811        }
5812        if (!match)
5813          return false;
5814      }
5815    }
5816    return true;
5817  }
5818  return false;
5819}
5820
5821/// canAssignObjCInterfaces - Return true if the two interface types are
5822/// compatible for assignment from RHS to LHS.  This handles validation of any
5823/// protocol qualifiers on the LHS or RHS.
5824///
5825bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5826                                         const ObjCObjectPointerType *RHSOPT) {
5827  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5828  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5829
5830  // If either type represents the built-in 'id' or 'Class' types, return true.
5831  if (LHS->isObjCUnqualifiedIdOrClass() ||
5832      RHS->isObjCUnqualifiedIdOrClass())
5833    return true;
5834
5835  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5836    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5837                                             QualType(RHSOPT,0),
5838                                             false);
5839
5840  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5841    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5842                                                QualType(RHSOPT,0));
5843
5844  // If we have 2 user-defined types, fall into that path.
5845  if (LHS->getInterface() && RHS->getInterface())
5846    return canAssignObjCInterfaces(LHS, RHS);
5847
5848  return false;
5849}
5850
5851/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5852/// for providing type-safety for objective-c pointers used to pass/return
5853/// arguments in block literals. When passed as arguments, passing 'A*' where
5854/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5855/// not OK. For the return type, the opposite is not OK.
5856bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5857                                         const ObjCObjectPointerType *LHSOPT,
5858                                         const ObjCObjectPointerType *RHSOPT,
5859                                         bool BlockReturnType) {
5860  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5861    return true;
5862
5863  if (LHSOPT->isObjCBuiltinType()) {
5864    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5865  }
5866
5867  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5868    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5869                                             QualType(RHSOPT,0),
5870                                             false);
5871
5872  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5873  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5874  if (LHS && RHS)  { // We have 2 user-defined types.
5875    if (LHS != RHS) {
5876      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5877        return BlockReturnType;
5878      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5879        return !BlockReturnType;
5880    }
5881    else
5882      return true;
5883  }
5884  return false;
5885}
5886
5887/// getIntersectionOfProtocols - This routine finds the intersection of set
5888/// of protocols inherited from two distinct objective-c pointer objects.
5889/// It is used to build composite qualifier list of the composite type of
5890/// the conditional expression involving two objective-c pointer objects.
5891static
5892void getIntersectionOfProtocols(ASTContext &Context,
5893                                const ObjCObjectPointerType *LHSOPT,
5894                                const ObjCObjectPointerType *RHSOPT,
5895      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5896
5897  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5898  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5899  assert(LHS->getInterface() && "LHS must have an interface base");
5900  assert(RHS->getInterface() && "RHS must have an interface base");
5901
5902  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5903  unsigned LHSNumProtocols = LHS->getNumProtocols();
5904  if (LHSNumProtocols > 0)
5905    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5906  else {
5907    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5908    Context.CollectInheritedProtocols(LHS->getInterface(),
5909                                      LHSInheritedProtocols);
5910    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5911                                LHSInheritedProtocols.end());
5912  }
5913
5914  unsigned RHSNumProtocols = RHS->getNumProtocols();
5915  if (RHSNumProtocols > 0) {
5916    ObjCProtocolDecl **RHSProtocols =
5917      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5918    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5919      if (InheritedProtocolSet.count(RHSProtocols[i]))
5920        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5921  } else {
5922    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5923    Context.CollectInheritedProtocols(RHS->getInterface(),
5924                                      RHSInheritedProtocols);
5925    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5926         RHSInheritedProtocols.begin(),
5927         E = RHSInheritedProtocols.end(); I != E; ++I)
5928      if (InheritedProtocolSet.count((*I)))
5929        IntersectionOfProtocols.push_back((*I));
5930  }
5931}
5932
5933/// areCommonBaseCompatible - Returns common base class of the two classes if
5934/// one found. Note that this is O'2 algorithm. But it will be called as the
5935/// last type comparison in a ?-exp of ObjC pointer types before a
5936/// warning is issued. So, its invokation is extremely rare.
5937QualType ASTContext::areCommonBaseCompatible(
5938                                          const ObjCObjectPointerType *Lptr,
5939                                          const ObjCObjectPointerType *Rptr) {
5940  const ObjCObjectType *LHS = Lptr->getObjectType();
5941  const ObjCObjectType *RHS = Rptr->getObjectType();
5942  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5943  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5944  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5945    return QualType();
5946
5947  do {
5948    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5949    if (canAssignObjCInterfaces(LHS, RHS)) {
5950      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5951      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5952
5953      QualType Result = QualType(LHS, 0);
5954      if (!Protocols.empty())
5955        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5956      Result = getObjCObjectPointerType(Result);
5957      return Result;
5958    }
5959  } while ((LDecl = LDecl->getSuperClass()));
5960
5961  return QualType();
5962}
5963
5964bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5965                                         const ObjCObjectType *RHS) {
5966  assert(LHS->getInterface() && "LHS is not an interface type");
5967  assert(RHS->getInterface() && "RHS is not an interface type");
5968
5969  // Verify that the base decls are compatible: the RHS must be a subclass of
5970  // the LHS.
5971  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5972    return false;
5973
5974  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5975  // protocol qualified at all, then we are good.
5976  if (LHS->getNumProtocols() == 0)
5977    return true;
5978
5979  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5980  // more detailed analysis is required.
5981  if (RHS->getNumProtocols() == 0) {
5982    // OK, if LHS is a superclass of RHS *and*
5983    // this superclass is assignment compatible with LHS.
5984    // false otherwise.
5985    bool IsSuperClass =
5986      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5987    if (IsSuperClass) {
5988      // OK if conversion of LHS to SuperClass results in narrowing of types
5989      // ; i.e., SuperClass may implement at least one of the protocols
5990      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5991      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5992      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5993      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5994      // If super class has no protocols, it is not a match.
5995      if (SuperClassInheritedProtocols.empty())
5996        return false;
5997
5998      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5999           LHSPE = LHS->qual_end();
6000           LHSPI != LHSPE; LHSPI++) {
6001        bool SuperImplementsProtocol = false;
6002        ObjCProtocolDecl *LHSProto = (*LHSPI);
6003
6004        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6005             SuperClassInheritedProtocols.begin(),
6006             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6007          ObjCProtocolDecl *SuperClassProto = (*I);
6008          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6009            SuperImplementsProtocol = true;
6010            break;
6011          }
6012        }
6013        if (!SuperImplementsProtocol)
6014          return false;
6015      }
6016      return true;
6017    }
6018    return false;
6019  }
6020
6021  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6022                                     LHSPE = LHS->qual_end();
6023       LHSPI != LHSPE; LHSPI++) {
6024    bool RHSImplementsProtocol = false;
6025
6026    // If the RHS doesn't implement the protocol on the left, the types
6027    // are incompatible.
6028    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6029                                       RHSPE = RHS->qual_end();
6030         RHSPI != RHSPE; RHSPI++) {
6031      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6032        RHSImplementsProtocol = true;
6033        break;
6034      }
6035    }
6036    // FIXME: For better diagnostics, consider passing back the protocol name.
6037    if (!RHSImplementsProtocol)
6038      return false;
6039  }
6040  // The RHS implements all protocols listed on the LHS.
6041  return true;
6042}
6043
6044bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6045  // get the "pointed to" types
6046  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6047  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6048
6049  if (!LHSOPT || !RHSOPT)
6050    return false;
6051
6052  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6053         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6054}
6055
6056bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6057  return canAssignObjCInterfaces(
6058                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6059                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6060}
6061
6062/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6063/// both shall have the identically qualified version of a compatible type.
6064/// C99 6.2.7p1: Two types have compatible types if their types are the
6065/// same. See 6.7.[2,3,5] for additional rules.
6066bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6067                                    bool CompareUnqualified) {
6068  if (getLangOpts().CPlusPlus)
6069    return hasSameType(LHS, RHS);
6070
6071  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6072}
6073
6074bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6075  return typesAreCompatible(LHS, RHS);
6076}
6077
6078bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6079  return !mergeTypes(LHS, RHS, true).isNull();
6080}
6081
6082/// mergeTransparentUnionType - if T is a transparent union type and a member
6083/// of T is compatible with SubType, return the merged type, else return
6084/// QualType()
6085QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6086                                               bool OfBlockPointer,
6087                                               bool Unqualified) {
6088  if (const RecordType *UT = T->getAsUnionType()) {
6089    RecordDecl *UD = UT->getDecl();
6090    if (UD->hasAttr<TransparentUnionAttr>()) {
6091      for (RecordDecl::field_iterator it = UD->field_begin(),
6092           itend = UD->field_end(); it != itend; ++it) {
6093        QualType ET = it->getType().getUnqualifiedType();
6094        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6095        if (!MT.isNull())
6096          return MT;
6097      }
6098    }
6099  }
6100
6101  return QualType();
6102}
6103
6104/// mergeFunctionArgumentTypes - merge two types which appear as function
6105/// argument types
6106QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6107                                                bool OfBlockPointer,
6108                                                bool Unqualified) {
6109  // GNU extension: two types are compatible if they appear as a function
6110  // argument, one of the types is a transparent union type and the other
6111  // type is compatible with a union member
6112  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6113                                              Unqualified);
6114  if (!lmerge.isNull())
6115    return lmerge;
6116
6117  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6118                                              Unqualified);
6119  if (!rmerge.isNull())
6120    return rmerge;
6121
6122  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6123}
6124
6125QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6126                                        bool OfBlockPointer,
6127                                        bool Unqualified) {
6128  const FunctionType *lbase = lhs->getAs<FunctionType>();
6129  const FunctionType *rbase = rhs->getAs<FunctionType>();
6130  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6131  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6132  bool allLTypes = true;
6133  bool allRTypes = true;
6134
6135  // Check return type
6136  QualType retType;
6137  if (OfBlockPointer) {
6138    QualType RHS = rbase->getResultType();
6139    QualType LHS = lbase->getResultType();
6140    bool UnqualifiedResult = Unqualified;
6141    if (!UnqualifiedResult)
6142      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6143    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6144  }
6145  else
6146    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6147                         Unqualified);
6148  if (retType.isNull()) return QualType();
6149
6150  if (Unqualified)
6151    retType = retType.getUnqualifiedType();
6152
6153  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6154  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6155  if (Unqualified) {
6156    LRetType = LRetType.getUnqualifiedType();
6157    RRetType = RRetType.getUnqualifiedType();
6158  }
6159
6160  if (getCanonicalType(retType) != LRetType)
6161    allLTypes = false;
6162  if (getCanonicalType(retType) != RRetType)
6163    allRTypes = false;
6164
6165  // FIXME: double check this
6166  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6167  //                           rbase->getRegParmAttr() != 0 &&
6168  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6169  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6170  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6171
6172  // Compatible functions must have compatible calling conventions
6173  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6174    return QualType();
6175
6176  // Regparm is part of the calling convention.
6177  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6178    return QualType();
6179  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6180    return QualType();
6181
6182  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6183    return QualType();
6184
6185  // functypes which return are preferred over those that do not.
6186  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6187    allLTypes = false;
6188  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6189    allRTypes = false;
6190  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6191  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6192
6193  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6194
6195  if (lproto && rproto) { // two C99 style function prototypes
6196    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6197           "C++ shouldn't be here");
6198    unsigned lproto_nargs = lproto->getNumArgs();
6199    unsigned rproto_nargs = rproto->getNumArgs();
6200
6201    // Compatible functions must have the same number of arguments
6202    if (lproto_nargs != rproto_nargs)
6203      return QualType();
6204
6205    // Variadic and non-variadic functions aren't compatible
6206    if (lproto->isVariadic() != rproto->isVariadic())
6207      return QualType();
6208
6209    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6210      return QualType();
6211
6212    if (LangOpts.ObjCAutoRefCount &&
6213        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6214      return QualType();
6215
6216    // Check argument compatibility
6217    SmallVector<QualType, 10> types;
6218    for (unsigned i = 0; i < lproto_nargs; i++) {
6219      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6220      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6221      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6222                                                    OfBlockPointer,
6223                                                    Unqualified);
6224      if (argtype.isNull()) return QualType();
6225
6226      if (Unqualified)
6227        argtype = argtype.getUnqualifiedType();
6228
6229      types.push_back(argtype);
6230      if (Unqualified) {
6231        largtype = largtype.getUnqualifiedType();
6232        rargtype = rargtype.getUnqualifiedType();
6233      }
6234
6235      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6236        allLTypes = false;
6237      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6238        allRTypes = false;
6239    }
6240
6241    if (allLTypes) return lhs;
6242    if (allRTypes) return rhs;
6243
6244    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6245    EPI.ExtInfo = einfo;
6246    return getFunctionType(retType, types.begin(), types.size(), EPI);
6247  }
6248
6249  if (lproto) allRTypes = false;
6250  if (rproto) allLTypes = false;
6251
6252  const FunctionProtoType *proto = lproto ? lproto : rproto;
6253  if (proto) {
6254    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6255    if (proto->isVariadic()) return QualType();
6256    // Check that the types are compatible with the types that
6257    // would result from default argument promotions (C99 6.7.5.3p15).
6258    // The only types actually affected are promotable integer
6259    // types and floats, which would be passed as a different
6260    // type depending on whether the prototype is visible.
6261    unsigned proto_nargs = proto->getNumArgs();
6262    for (unsigned i = 0; i < proto_nargs; ++i) {
6263      QualType argTy = proto->getArgType(i);
6264
6265      // Look at the promotion type of enum types, since that is the type used
6266      // to pass enum values.
6267      if (const EnumType *Enum = argTy->getAs<EnumType>())
6268        argTy = Enum->getDecl()->getPromotionType();
6269
6270      if (argTy->isPromotableIntegerType() ||
6271          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6272        return QualType();
6273    }
6274
6275    if (allLTypes) return lhs;
6276    if (allRTypes) return rhs;
6277
6278    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6279    EPI.ExtInfo = einfo;
6280    return getFunctionType(retType, proto->arg_type_begin(),
6281                           proto->getNumArgs(), EPI);
6282  }
6283
6284  if (allLTypes) return lhs;
6285  if (allRTypes) return rhs;
6286  return getFunctionNoProtoType(retType, einfo);
6287}
6288
6289QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6290                                bool OfBlockPointer,
6291                                bool Unqualified, bool BlockReturnType) {
6292  // C++ [expr]: If an expression initially has the type "reference to T", the
6293  // type is adjusted to "T" prior to any further analysis, the expression
6294  // designates the object or function denoted by the reference, and the
6295  // expression is an lvalue unless the reference is an rvalue reference and
6296  // the expression is a function call (possibly inside parentheses).
6297  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6298  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6299
6300  if (Unqualified) {
6301    LHS = LHS.getUnqualifiedType();
6302    RHS = RHS.getUnqualifiedType();
6303  }
6304
6305  QualType LHSCan = getCanonicalType(LHS),
6306           RHSCan = getCanonicalType(RHS);
6307
6308  // If two types are identical, they are compatible.
6309  if (LHSCan == RHSCan)
6310    return LHS;
6311
6312  // If the qualifiers are different, the types aren't compatible... mostly.
6313  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6314  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6315  if (LQuals != RQuals) {
6316    // If any of these qualifiers are different, we have a type
6317    // mismatch.
6318    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6319        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6320        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6321      return QualType();
6322
6323    // Exactly one GC qualifier difference is allowed: __strong is
6324    // okay if the other type has no GC qualifier but is an Objective
6325    // C object pointer (i.e. implicitly strong by default).  We fix
6326    // this by pretending that the unqualified type was actually
6327    // qualified __strong.
6328    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6329    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6330    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6331
6332    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6333      return QualType();
6334
6335    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6336      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6337    }
6338    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6339      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6340    }
6341    return QualType();
6342  }
6343
6344  // Okay, qualifiers are equal.
6345
6346  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6347  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6348
6349  // We want to consider the two function types to be the same for these
6350  // comparisons, just force one to the other.
6351  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6352  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6353
6354  // Same as above for arrays
6355  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6356    LHSClass = Type::ConstantArray;
6357  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6358    RHSClass = Type::ConstantArray;
6359
6360  // ObjCInterfaces are just specialized ObjCObjects.
6361  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6362  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6363
6364  // Canonicalize ExtVector -> Vector.
6365  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6366  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6367
6368  // If the canonical type classes don't match.
6369  if (LHSClass != RHSClass) {
6370    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6371    // a signed integer type, or an unsigned integer type.
6372    // Compatibility is based on the underlying type, not the promotion
6373    // type.
6374    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6375      QualType TINT = ETy->getDecl()->getIntegerType();
6376      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6377        return RHS;
6378    }
6379    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6380      QualType TINT = ETy->getDecl()->getIntegerType();
6381      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6382        return LHS;
6383    }
6384    // allow block pointer type to match an 'id' type.
6385    if (OfBlockPointer && !BlockReturnType) {
6386       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6387         return LHS;
6388      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6389        return RHS;
6390    }
6391
6392    return QualType();
6393  }
6394
6395  // The canonical type classes match.
6396  switch (LHSClass) {
6397#define TYPE(Class, Base)
6398#define ABSTRACT_TYPE(Class, Base)
6399#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6400#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6401#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6402#include "clang/AST/TypeNodes.def"
6403    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6404
6405  case Type::LValueReference:
6406  case Type::RValueReference:
6407  case Type::MemberPointer:
6408    llvm_unreachable("C++ should never be in mergeTypes");
6409
6410  case Type::ObjCInterface:
6411  case Type::IncompleteArray:
6412  case Type::VariableArray:
6413  case Type::FunctionProto:
6414  case Type::ExtVector:
6415    llvm_unreachable("Types are eliminated above");
6416
6417  case Type::Pointer:
6418  {
6419    // Merge two pointer types, while trying to preserve typedef info
6420    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6421    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6422    if (Unqualified) {
6423      LHSPointee = LHSPointee.getUnqualifiedType();
6424      RHSPointee = RHSPointee.getUnqualifiedType();
6425    }
6426    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6427                                     Unqualified);
6428    if (ResultType.isNull()) return QualType();
6429    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6430      return LHS;
6431    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6432      return RHS;
6433    return getPointerType(ResultType);
6434  }
6435  case Type::BlockPointer:
6436  {
6437    // Merge two block pointer types, while trying to preserve typedef info
6438    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6439    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6440    if (Unqualified) {
6441      LHSPointee = LHSPointee.getUnqualifiedType();
6442      RHSPointee = RHSPointee.getUnqualifiedType();
6443    }
6444    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6445                                     Unqualified);
6446    if (ResultType.isNull()) return QualType();
6447    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6448      return LHS;
6449    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6450      return RHS;
6451    return getBlockPointerType(ResultType);
6452  }
6453  case Type::Atomic:
6454  {
6455    // Merge two pointer types, while trying to preserve typedef info
6456    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6457    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6458    if (Unqualified) {
6459      LHSValue = LHSValue.getUnqualifiedType();
6460      RHSValue = RHSValue.getUnqualifiedType();
6461    }
6462    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6463                                     Unqualified);
6464    if (ResultType.isNull()) return QualType();
6465    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6466      return LHS;
6467    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6468      return RHS;
6469    return getAtomicType(ResultType);
6470  }
6471  case Type::ConstantArray:
6472  {
6473    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6474    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6475    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6476      return QualType();
6477
6478    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6479    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6480    if (Unqualified) {
6481      LHSElem = LHSElem.getUnqualifiedType();
6482      RHSElem = RHSElem.getUnqualifiedType();
6483    }
6484
6485    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6486    if (ResultType.isNull()) return QualType();
6487    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6488      return LHS;
6489    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6490      return RHS;
6491    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6492                                          ArrayType::ArraySizeModifier(), 0);
6493    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6494                                          ArrayType::ArraySizeModifier(), 0);
6495    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6496    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6497    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6498      return LHS;
6499    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6500      return RHS;
6501    if (LVAT) {
6502      // FIXME: This isn't correct! But tricky to implement because
6503      // the array's size has to be the size of LHS, but the type
6504      // has to be different.
6505      return LHS;
6506    }
6507    if (RVAT) {
6508      // FIXME: This isn't correct! But tricky to implement because
6509      // the array's size has to be the size of RHS, but the type
6510      // has to be different.
6511      return RHS;
6512    }
6513    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6514    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6515    return getIncompleteArrayType(ResultType,
6516                                  ArrayType::ArraySizeModifier(), 0);
6517  }
6518  case Type::FunctionNoProto:
6519    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6520  case Type::Record:
6521  case Type::Enum:
6522    return QualType();
6523  case Type::Builtin:
6524    // Only exactly equal builtin types are compatible, which is tested above.
6525    return QualType();
6526  case Type::Complex:
6527    // Distinct complex types are incompatible.
6528    return QualType();
6529  case Type::Vector:
6530    // FIXME: The merged type should be an ExtVector!
6531    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6532                             RHSCan->getAs<VectorType>()))
6533      return LHS;
6534    return QualType();
6535  case Type::ObjCObject: {
6536    // Check if the types are assignment compatible.
6537    // FIXME: This should be type compatibility, e.g. whether
6538    // "LHS x; RHS x;" at global scope is legal.
6539    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6540    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6541    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6542      return LHS;
6543
6544    return QualType();
6545  }
6546  case Type::ObjCObjectPointer: {
6547    if (OfBlockPointer) {
6548      if (canAssignObjCInterfacesInBlockPointer(
6549                                          LHS->getAs<ObjCObjectPointerType>(),
6550                                          RHS->getAs<ObjCObjectPointerType>(),
6551                                          BlockReturnType))
6552        return LHS;
6553      return QualType();
6554    }
6555    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6556                                RHS->getAs<ObjCObjectPointerType>()))
6557      return LHS;
6558
6559    return QualType();
6560  }
6561  }
6562
6563  llvm_unreachable("Invalid Type::Class!");
6564}
6565
6566bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6567                   const FunctionProtoType *FromFunctionType,
6568                   const FunctionProtoType *ToFunctionType) {
6569  if (FromFunctionType->hasAnyConsumedArgs() !=
6570      ToFunctionType->hasAnyConsumedArgs())
6571    return false;
6572  FunctionProtoType::ExtProtoInfo FromEPI =
6573    FromFunctionType->getExtProtoInfo();
6574  FunctionProtoType::ExtProtoInfo ToEPI =
6575    ToFunctionType->getExtProtoInfo();
6576  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6577    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6578         ArgIdx != NumArgs; ++ArgIdx)  {
6579      if (FromEPI.ConsumedArguments[ArgIdx] !=
6580          ToEPI.ConsumedArguments[ArgIdx])
6581        return false;
6582    }
6583  return true;
6584}
6585
6586/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6587/// 'RHS' attributes and returns the merged version; including for function
6588/// return types.
6589QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6590  QualType LHSCan = getCanonicalType(LHS),
6591  RHSCan = getCanonicalType(RHS);
6592  // If two types are identical, they are compatible.
6593  if (LHSCan == RHSCan)
6594    return LHS;
6595  if (RHSCan->isFunctionType()) {
6596    if (!LHSCan->isFunctionType())
6597      return QualType();
6598    QualType OldReturnType =
6599      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6600    QualType NewReturnType =
6601      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6602    QualType ResReturnType =
6603      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6604    if (ResReturnType.isNull())
6605      return QualType();
6606    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6607      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6608      // In either case, use OldReturnType to build the new function type.
6609      const FunctionType *F = LHS->getAs<FunctionType>();
6610      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6611        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6612        EPI.ExtInfo = getFunctionExtInfo(LHS);
6613        QualType ResultType
6614          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6615                            FPT->getNumArgs(), EPI);
6616        return ResultType;
6617      }
6618    }
6619    return QualType();
6620  }
6621
6622  // If the qualifiers are different, the types can still be merged.
6623  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6624  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6625  if (LQuals != RQuals) {
6626    // If any of these qualifiers are different, we have a type mismatch.
6627    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6628        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6629      return QualType();
6630
6631    // Exactly one GC qualifier difference is allowed: __strong is
6632    // okay if the other type has no GC qualifier but is an Objective
6633    // C object pointer (i.e. implicitly strong by default).  We fix
6634    // this by pretending that the unqualified type was actually
6635    // qualified __strong.
6636    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6637    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6638    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6639
6640    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6641      return QualType();
6642
6643    if (GC_L == Qualifiers::Strong)
6644      return LHS;
6645    if (GC_R == Qualifiers::Strong)
6646      return RHS;
6647    return QualType();
6648  }
6649
6650  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6651    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6652    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6653    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6654    if (ResQT == LHSBaseQT)
6655      return LHS;
6656    if (ResQT == RHSBaseQT)
6657      return RHS;
6658  }
6659  return QualType();
6660}
6661
6662//===----------------------------------------------------------------------===//
6663//                         Integer Predicates
6664//===----------------------------------------------------------------------===//
6665
6666unsigned ASTContext::getIntWidth(QualType T) const {
6667  if (const EnumType *ET = dyn_cast<EnumType>(T))
6668    T = ET->getDecl()->getIntegerType();
6669  if (T->isBooleanType())
6670    return 1;
6671  // For builtin types, just use the standard type sizing method
6672  return (unsigned)getTypeSize(T);
6673}
6674
6675QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6676  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6677
6678  // Turn <4 x signed int> -> <4 x unsigned int>
6679  if (const VectorType *VTy = T->getAs<VectorType>())
6680    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6681                         VTy->getNumElements(), VTy->getVectorKind());
6682
6683  // For enums, we return the unsigned version of the base type.
6684  if (const EnumType *ETy = T->getAs<EnumType>())
6685    T = ETy->getDecl()->getIntegerType();
6686
6687  const BuiltinType *BTy = T->getAs<BuiltinType>();
6688  assert(BTy && "Unexpected signed integer type");
6689  switch (BTy->getKind()) {
6690  case BuiltinType::Char_S:
6691  case BuiltinType::SChar:
6692    return UnsignedCharTy;
6693  case BuiltinType::Short:
6694    return UnsignedShortTy;
6695  case BuiltinType::Int:
6696    return UnsignedIntTy;
6697  case BuiltinType::Long:
6698    return UnsignedLongTy;
6699  case BuiltinType::LongLong:
6700    return UnsignedLongLongTy;
6701  case BuiltinType::Int128:
6702    return UnsignedInt128Ty;
6703  default:
6704    llvm_unreachable("Unexpected signed integer type");
6705  }
6706}
6707
6708ASTMutationListener::~ASTMutationListener() { }
6709
6710
6711//===----------------------------------------------------------------------===//
6712//                          Builtin Type Computation
6713//===----------------------------------------------------------------------===//
6714
6715/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6716/// pointer over the consumed characters.  This returns the resultant type.  If
6717/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6718/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6719/// a vector of "i*".
6720///
6721/// RequiresICE is filled in on return to indicate whether the value is required
6722/// to be an Integer Constant Expression.
6723static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6724                                  ASTContext::GetBuiltinTypeError &Error,
6725                                  bool &RequiresICE,
6726                                  bool AllowTypeModifiers) {
6727  // Modifiers.
6728  int HowLong = 0;
6729  bool Signed = false, Unsigned = false;
6730  RequiresICE = false;
6731
6732  // Read the prefixed modifiers first.
6733  bool Done = false;
6734  while (!Done) {
6735    switch (*Str++) {
6736    default: Done = true; --Str; break;
6737    case 'I':
6738      RequiresICE = true;
6739      break;
6740    case 'S':
6741      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6742      assert(!Signed && "Can't use 'S' modifier multiple times!");
6743      Signed = true;
6744      break;
6745    case 'U':
6746      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6747      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6748      Unsigned = true;
6749      break;
6750    case 'L':
6751      assert(HowLong <= 2 && "Can't have LLLL modifier");
6752      ++HowLong;
6753      break;
6754    }
6755  }
6756
6757  QualType Type;
6758
6759  // Read the base type.
6760  switch (*Str++) {
6761  default: llvm_unreachable("Unknown builtin type letter!");
6762  case 'v':
6763    assert(HowLong == 0 && !Signed && !Unsigned &&
6764           "Bad modifiers used with 'v'!");
6765    Type = Context.VoidTy;
6766    break;
6767  case 'f':
6768    assert(HowLong == 0 && !Signed && !Unsigned &&
6769           "Bad modifiers used with 'f'!");
6770    Type = Context.FloatTy;
6771    break;
6772  case 'd':
6773    assert(HowLong < 2 && !Signed && !Unsigned &&
6774           "Bad modifiers used with 'd'!");
6775    if (HowLong)
6776      Type = Context.LongDoubleTy;
6777    else
6778      Type = Context.DoubleTy;
6779    break;
6780  case 's':
6781    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6782    if (Unsigned)
6783      Type = Context.UnsignedShortTy;
6784    else
6785      Type = Context.ShortTy;
6786    break;
6787  case 'i':
6788    if (HowLong == 3)
6789      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6790    else if (HowLong == 2)
6791      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6792    else if (HowLong == 1)
6793      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6794    else
6795      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6796    break;
6797  case 'c':
6798    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6799    if (Signed)
6800      Type = Context.SignedCharTy;
6801    else if (Unsigned)
6802      Type = Context.UnsignedCharTy;
6803    else
6804      Type = Context.CharTy;
6805    break;
6806  case 'b': // boolean
6807    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6808    Type = Context.BoolTy;
6809    break;
6810  case 'z':  // size_t.
6811    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6812    Type = Context.getSizeType();
6813    break;
6814  case 'F':
6815    Type = Context.getCFConstantStringType();
6816    break;
6817  case 'G':
6818    Type = Context.getObjCIdType();
6819    break;
6820  case 'H':
6821    Type = Context.getObjCSelType();
6822    break;
6823  case 'a':
6824    Type = Context.getBuiltinVaListType();
6825    assert(!Type.isNull() && "builtin va list type not initialized!");
6826    break;
6827  case 'A':
6828    // This is a "reference" to a va_list; however, what exactly
6829    // this means depends on how va_list is defined. There are two
6830    // different kinds of va_list: ones passed by value, and ones
6831    // passed by reference.  An example of a by-value va_list is
6832    // x86, where va_list is a char*. An example of by-ref va_list
6833    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6834    // we want this argument to be a char*&; for x86-64, we want
6835    // it to be a __va_list_tag*.
6836    Type = Context.getBuiltinVaListType();
6837    assert(!Type.isNull() && "builtin va list type not initialized!");
6838    if (Type->isArrayType())
6839      Type = Context.getArrayDecayedType(Type);
6840    else
6841      Type = Context.getLValueReferenceType(Type);
6842    break;
6843  case 'V': {
6844    char *End;
6845    unsigned NumElements = strtoul(Str, &End, 10);
6846    assert(End != Str && "Missing vector size");
6847    Str = End;
6848
6849    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6850                                             RequiresICE, false);
6851    assert(!RequiresICE && "Can't require vector ICE");
6852
6853    // TODO: No way to make AltiVec vectors in builtins yet.
6854    Type = Context.getVectorType(ElementType, NumElements,
6855                                 VectorType::GenericVector);
6856    break;
6857  }
6858  case 'E': {
6859    char *End;
6860
6861    unsigned NumElements = strtoul(Str, &End, 10);
6862    assert(End != Str && "Missing vector size");
6863
6864    Str = End;
6865
6866    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6867                                             false);
6868    Type = Context.getExtVectorType(ElementType, NumElements);
6869    break;
6870  }
6871  case 'X': {
6872    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6873                                             false);
6874    assert(!RequiresICE && "Can't require complex ICE");
6875    Type = Context.getComplexType(ElementType);
6876    break;
6877  }
6878  case 'Y' : {
6879    Type = Context.getPointerDiffType();
6880    break;
6881  }
6882  case 'P':
6883    Type = Context.getFILEType();
6884    if (Type.isNull()) {
6885      Error = ASTContext::GE_Missing_stdio;
6886      return QualType();
6887    }
6888    break;
6889  case 'J':
6890    if (Signed)
6891      Type = Context.getsigjmp_bufType();
6892    else
6893      Type = Context.getjmp_bufType();
6894
6895    if (Type.isNull()) {
6896      Error = ASTContext::GE_Missing_setjmp;
6897      return QualType();
6898    }
6899    break;
6900  case 'K':
6901    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6902    Type = Context.getucontext_tType();
6903
6904    if (Type.isNull()) {
6905      Error = ASTContext::GE_Missing_ucontext;
6906      return QualType();
6907    }
6908    break;
6909  }
6910
6911  // If there are modifiers and if we're allowed to parse them, go for it.
6912  Done = !AllowTypeModifiers;
6913  while (!Done) {
6914    switch (char c = *Str++) {
6915    default: Done = true; --Str; break;
6916    case '*':
6917    case '&': {
6918      // Both pointers and references can have their pointee types
6919      // qualified with an address space.
6920      char *End;
6921      unsigned AddrSpace = strtoul(Str, &End, 10);
6922      if (End != Str && AddrSpace != 0) {
6923        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6924        Str = End;
6925      }
6926      if (c == '*')
6927        Type = Context.getPointerType(Type);
6928      else
6929        Type = Context.getLValueReferenceType(Type);
6930      break;
6931    }
6932    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6933    case 'C':
6934      Type = Type.withConst();
6935      break;
6936    case 'D':
6937      Type = Context.getVolatileType(Type);
6938      break;
6939    case 'R':
6940      Type = Type.withRestrict();
6941      break;
6942    }
6943  }
6944
6945  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6946         "Integer constant 'I' type must be an integer");
6947
6948  return Type;
6949}
6950
6951/// GetBuiltinType - Return the type for the specified builtin.
6952QualType ASTContext::GetBuiltinType(unsigned Id,
6953                                    GetBuiltinTypeError &Error,
6954                                    unsigned *IntegerConstantArgs) const {
6955  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6956
6957  SmallVector<QualType, 8> ArgTypes;
6958
6959  bool RequiresICE = false;
6960  Error = GE_None;
6961  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6962                                       RequiresICE, true);
6963  if (Error != GE_None)
6964    return QualType();
6965
6966  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6967
6968  while (TypeStr[0] && TypeStr[0] != '.') {
6969    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6970    if (Error != GE_None)
6971      return QualType();
6972
6973    // If this argument is required to be an IntegerConstantExpression and the
6974    // caller cares, fill in the bitmask we return.
6975    if (RequiresICE && IntegerConstantArgs)
6976      *IntegerConstantArgs |= 1 << ArgTypes.size();
6977
6978    // Do array -> pointer decay.  The builtin should use the decayed type.
6979    if (Ty->isArrayType())
6980      Ty = getArrayDecayedType(Ty);
6981
6982    ArgTypes.push_back(Ty);
6983  }
6984
6985  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6986         "'.' should only occur at end of builtin type list!");
6987
6988  FunctionType::ExtInfo EI;
6989  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6990
6991  bool Variadic = (TypeStr[0] == '.');
6992
6993  // We really shouldn't be making a no-proto type here, especially in C++.
6994  if (ArgTypes.empty() && Variadic)
6995    return getFunctionNoProtoType(ResType, EI);
6996
6997  FunctionProtoType::ExtProtoInfo EPI;
6998  EPI.ExtInfo = EI;
6999  EPI.Variadic = Variadic;
7000
7001  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7002}
7003
7004GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7005  GVALinkage External = GVA_StrongExternal;
7006
7007  Linkage L = FD->getLinkage();
7008  switch (L) {
7009  case NoLinkage:
7010  case InternalLinkage:
7011  case UniqueExternalLinkage:
7012    return GVA_Internal;
7013
7014  case ExternalLinkage:
7015    switch (FD->getTemplateSpecializationKind()) {
7016    case TSK_Undeclared:
7017    case TSK_ExplicitSpecialization:
7018      External = GVA_StrongExternal;
7019      break;
7020
7021    case TSK_ExplicitInstantiationDefinition:
7022      return GVA_ExplicitTemplateInstantiation;
7023
7024    case TSK_ExplicitInstantiationDeclaration:
7025    case TSK_ImplicitInstantiation:
7026      External = GVA_TemplateInstantiation;
7027      break;
7028    }
7029  }
7030
7031  if (!FD->isInlined())
7032    return External;
7033
7034  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7035    // GNU or C99 inline semantics. Determine whether this symbol should be
7036    // externally visible.
7037    if (FD->isInlineDefinitionExternallyVisible())
7038      return External;
7039
7040    // C99 inline semantics, where the symbol is not externally visible.
7041    return GVA_C99Inline;
7042  }
7043
7044  // C++0x [temp.explicit]p9:
7045  //   [ Note: The intent is that an inline function that is the subject of
7046  //   an explicit instantiation declaration will still be implicitly
7047  //   instantiated when used so that the body can be considered for
7048  //   inlining, but that no out-of-line copy of the inline function would be
7049  //   generated in the translation unit. -- end note ]
7050  if (FD->getTemplateSpecializationKind()
7051                                       == TSK_ExplicitInstantiationDeclaration)
7052    return GVA_C99Inline;
7053
7054  return GVA_CXXInline;
7055}
7056
7057GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7058  // If this is a static data member, compute the kind of template
7059  // specialization. Otherwise, this variable is not part of a
7060  // template.
7061  TemplateSpecializationKind TSK = TSK_Undeclared;
7062  if (VD->isStaticDataMember())
7063    TSK = VD->getTemplateSpecializationKind();
7064
7065  Linkage L = VD->getLinkage();
7066  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7067      VD->getType()->getLinkage() == UniqueExternalLinkage)
7068    L = UniqueExternalLinkage;
7069
7070  switch (L) {
7071  case NoLinkage:
7072  case InternalLinkage:
7073  case UniqueExternalLinkage:
7074    return GVA_Internal;
7075
7076  case ExternalLinkage:
7077    switch (TSK) {
7078    case TSK_Undeclared:
7079    case TSK_ExplicitSpecialization:
7080      return GVA_StrongExternal;
7081
7082    case TSK_ExplicitInstantiationDeclaration:
7083      llvm_unreachable("Variable should not be instantiated");
7084      // Fall through to treat this like any other instantiation.
7085
7086    case TSK_ExplicitInstantiationDefinition:
7087      return GVA_ExplicitTemplateInstantiation;
7088
7089    case TSK_ImplicitInstantiation:
7090      return GVA_TemplateInstantiation;
7091    }
7092  }
7093
7094  llvm_unreachable("Invalid Linkage!");
7095}
7096
7097bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7098  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7099    if (!VD->isFileVarDecl())
7100      return false;
7101  } else if (!isa<FunctionDecl>(D))
7102    return false;
7103
7104  // Weak references don't produce any output by themselves.
7105  if (D->hasAttr<WeakRefAttr>())
7106    return false;
7107
7108  // Aliases and used decls are required.
7109  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7110    return true;
7111
7112  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7113    // Forward declarations aren't required.
7114    if (!FD->doesThisDeclarationHaveABody())
7115      return FD->doesDeclarationForceExternallyVisibleDefinition();
7116
7117    // Constructors and destructors are required.
7118    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7119      return true;
7120
7121    // The key function for a class is required.
7122    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7123      const CXXRecordDecl *RD = MD->getParent();
7124      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7125        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7126        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7127          return true;
7128      }
7129    }
7130
7131    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7132
7133    // static, static inline, always_inline, and extern inline functions can
7134    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7135    // Implicit template instantiations can also be deferred in C++.
7136    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7137        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7138      return false;
7139    return true;
7140  }
7141
7142  const VarDecl *VD = cast<VarDecl>(D);
7143  assert(VD->isFileVarDecl() && "Expected file scoped var");
7144
7145  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7146    return false;
7147
7148  // Structs that have non-trivial constructors or destructors are required.
7149
7150  // FIXME: Handle references.
7151  // FIXME: Be more selective about which constructors we care about.
7152  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7153    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7154      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7155                                   RD->hasTrivialCopyConstructor() &&
7156                                   RD->hasTrivialMoveConstructor() &&
7157                                   RD->hasTrivialDestructor()))
7158        return true;
7159    }
7160  }
7161
7162  GVALinkage L = GetGVALinkageForVariable(VD);
7163  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7164    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7165      return false;
7166  }
7167
7168  return true;
7169}
7170
7171CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7172  // Pass through to the C++ ABI object
7173  return ABI->getDefaultMethodCallConv(isVariadic);
7174}
7175
7176CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7177  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7178    return CC_Default;
7179  return CC;
7180}
7181
7182bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7183  // Pass through to the C++ ABI object
7184  return ABI->isNearlyEmpty(RD);
7185}
7186
7187MangleContext *ASTContext::createMangleContext() {
7188  switch (Target->getCXXABI()) {
7189  case CXXABI_ARM:
7190  case CXXABI_Itanium:
7191    return createItaniumMangleContext(*this, getDiagnostics());
7192  case CXXABI_Microsoft:
7193    return createMicrosoftMangleContext(*this, getDiagnostics());
7194  }
7195  llvm_unreachable("Unsupported ABI");
7196}
7197
7198CXXABI::~CXXABI() {}
7199
7200size_t ASTContext::getSideTableAllocatedMemory() const {
7201  return ASTRecordLayouts.getMemorySize()
7202    + llvm::capacity_in_bytes(ObjCLayouts)
7203    + llvm::capacity_in_bytes(KeyFunctions)
7204    + llvm::capacity_in_bytes(ObjCImpls)
7205    + llvm::capacity_in_bytes(BlockVarCopyInits)
7206    + llvm::capacity_in_bytes(DeclAttrs)
7207    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7208    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7209    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7210    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7211    + llvm::capacity_in_bytes(OverriddenMethods)
7212    + llvm::capacity_in_bytes(Types)
7213    + llvm::capacity_in_bytes(VariableArrayTypes)
7214    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7215}
7216
7217unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7218  CXXRecordDecl *Lambda = CallOperator->getParent();
7219  return LambdaMangleContexts[Lambda->getDeclContext()]
7220           .getManglingNumber(CallOperator);
7221}
7222
7223
7224void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7225  ParamIndices[D] = index;
7226}
7227
7228unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7229  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7230  assert(I != ParamIndices.end() &&
7231         "ParmIndices lacks entry set by ParmVarDecl");
7232  return I->second;
7233}
7234