ASTContext.cpp revision f968d8374791c37bc464efd9168c2d33dd73605f
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34#include <map>
35
36using namespace clang;
37
38unsigned ASTContext::NumImplicitDefaultConstructors;
39unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyConstructors;
41unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
42unsigned ASTContext::NumImplicitMoveConstructors;
43unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyAssignmentOperators;
45unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
46unsigned ASTContext::NumImplicitMoveAssignmentOperators;
47unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitDestructors;
49unsigned ASTContext::NumImplicitDestructorsDeclared;
50
51enum FloatingRank {
52  FloatRank, DoubleRank, LongDoubleRank
53};
54
55void
56ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
57                                               TemplateTemplateParmDecl *Parm) {
58  ID.AddInteger(Parm->getDepth());
59  ID.AddInteger(Parm->getPosition());
60  ID.AddBoolean(Parm->isParameterPack());
61
62  TemplateParameterList *Params = Parm->getTemplateParameters();
63  ID.AddInteger(Params->size());
64  for (TemplateParameterList::const_iterator P = Params->begin(),
65                                          PEnd = Params->end();
66       P != PEnd; ++P) {
67    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
68      ID.AddInteger(0);
69      ID.AddBoolean(TTP->isParameterPack());
70      continue;
71    }
72
73    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
74      ID.AddInteger(1);
75      ID.AddBoolean(NTTP->isParameterPack());
76      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
77      if (NTTP->isExpandedParameterPack()) {
78        ID.AddBoolean(true);
79        ID.AddInteger(NTTP->getNumExpansionTypes());
80        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
81          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
82      } else
83        ID.AddBoolean(false);
84      continue;
85    }
86
87    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
88    ID.AddInteger(2);
89    Profile(ID, TTP);
90  }
91}
92
93TemplateTemplateParmDecl *
94ASTContext::getCanonicalTemplateTemplateParmDecl(
95                                          TemplateTemplateParmDecl *TTP) const {
96  // Check if we already have a canonical template template parameter.
97  llvm::FoldingSetNodeID ID;
98  CanonicalTemplateTemplateParm::Profile(ID, TTP);
99  void *InsertPos = 0;
100  CanonicalTemplateTemplateParm *Canonical
101    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
102  if (Canonical)
103    return Canonical->getParam();
104
105  // Build a canonical template parameter list.
106  TemplateParameterList *Params = TTP->getTemplateParameters();
107  llvm::SmallVector<NamedDecl *, 4> CanonParams;
108  CanonParams.reserve(Params->size());
109  for (TemplateParameterList::const_iterator P = Params->begin(),
110                                          PEnd = Params->end();
111       P != PEnd; ++P) {
112    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
113      CanonParams.push_back(
114                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
115                                               SourceLocation(),
116                                               SourceLocation(),
117                                               TTP->getDepth(),
118                                               TTP->getIndex(), 0, false,
119                                               TTP->isParameterPack()));
120    else if (NonTypeTemplateParmDecl *NTTP
121             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
122      QualType T = getCanonicalType(NTTP->getType());
123      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
124      NonTypeTemplateParmDecl *Param;
125      if (NTTP->isExpandedParameterPack()) {
126        llvm::SmallVector<QualType, 2> ExpandedTypes;
127        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
128        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
129          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
130          ExpandedTInfos.push_back(
131                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
132        }
133
134        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
135                                                SourceLocation(),
136                                                SourceLocation(),
137                                                NTTP->getDepth(),
138                                                NTTP->getPosition(), 0,
139                                                T,
140                                                TInfo,
141                                                ExpandedTypes.data(),
142                                                ExpandedTypes.size(),
143                                                ExpandedTInfos.data());
144      } else {
145        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
146                                                SourceLocation(),
147                                                SourceLocation(),
148                                                NTTP->getDepth(),
149                                                NTTP->getPosition(), 0,
150                                                T,
151                                                NTTP->isParameterPack(),
152                                                TInfo);
153      }
154      CanonParams.push_back(Param);
155
156    } else
157      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
158                                           cast<TemplateTemplateParmDecl>(*P)));
159  }
160
161  TemplateTemplateParmDecl *CanonTTP
162    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
163                                       SourceLocation(), TTP->getDepth(),
164                                       TTP->getPosition(),
165                                       TTP->isParameterPack(),
166                                       0,
167                         TemplateParameterList::Create(*this, SourceLocation(),
168                                                       SourceLocation(),
169                                                       CanonParams.data(),
170                                                       CanonParams.size(),
171                                                       SourceLocation()));
172
173  // Get the new insert position for the node we care about.
174  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
175  assert(Canonical == 0 && "Shouldn't be in the map!");
176  (void)Canonical;
177
178  // Create the canonical template template parameter entry.
179  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
180  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
181  return CanonTTP;
182}
183
184CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
185  if (!LangOpts.CPlusPlus) return 0;
186
187  switch (T.getCXXABI()) {
188  case CXXABI_ARM:
189    return CreateARMCXXABI(*this);
190  case CXXABI_Itanium:
191    return CreateItaniumCXXABI(*this);
192  case CXXABI_Microsoft:
193    return CreateMicrosoftCXXABI(*this);
194  }
195  return 0;
196}
197
198static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
199                                             const LangOptions &LOpts) {
200  if (LOpts.FakeAddressSpaceMap) {
201    // The fake address space map must have a distinct entry for each
202    // language-specific address space.
203    static const unsigned FakeAddrSpaceMap[] = {
204      1, // opencl_global
205      2, // opencl_local
206      3  // opencl_constant
207    };
208    return FakeAddrSpaceMap;
209  } else {
210    return T.getAddressSpaceMap();
211  }
212}
213
214ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
215                       const TargetInfo &t,
216                       IdentifierTable &idents, SelectorTable &sels,
217                       Builtin::Context &builtins,
218                       unsigned size_reserve) :
219  FunctionProtoTypes(this_()),
220  TemplateSpecializationTypes(this_()),
221  DependentTemplateSpecializationTypes(this_()),
222  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
223  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
224  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
225  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
226  cudaConfigureCallDecl(0),
227  NullTypeSourceInfo(QualType()),
228  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
229  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
230  Idents(idents), Selectors(sels),
231  BuiltinInfo(builtins),
232  DeclarationNames(*this),
233  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
234  LastSDM(0, 0),
235  UniqueBlockByRefTypeID(0) {
236  ObjCIdRedefinitionType = QualType();
237  ObjCClassRedefinitionType = QualType();
238  ObjCSelRedefinitionType = QualType();
239  if (size_reserve > 0) Types.reserve(size_reserve);
240  TUDecl = TranslationUnitDecl::Create(*this);
241  InitBuiltinTypes();
242}
243
244ASTContext::~ASTContext() {
245  // Release the DenseMaps associated with DeclContext objects.
246  // FIXME: Is this the ideal solution?
247  ReleaseDeclContextMaps();
248
249  // Call all of the deallocation functions.
250  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
251    Deallocations[I].first(Deallocations[I].second);
252
253  // Release all of the memory associated with overridden C++ methods.
254  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
255         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
256       OM != OMEnd; ++OM)
257    OM->second.Destroy();
258
259  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
260  // because they can contain DenseMaps.
261  for (llvm::DenseMap<const ObjCContainerDecl*,
262       const ASTRecordLayout*>::iterator
263       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
264    // Increment in loop to prevent using deallocated memory.
265    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
266      R->Destroy(*this);
267
268  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
269       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
270    // Increment in loop to prevent using deallocated memory.
271    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
272      R->Destroy(*this);
273  }
274
275  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
276                                                    AEnd = DeclAttrs.end();
277       A != AEnd; ++A)
278    A->second->~AttrVec();
279}
280
281void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
282  Deallocations.push_back(std::make_pair(Callback, Data));
283}
284
285void
286ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
287  ExternalSource.reset(Source.take());
288}
289
290void ASTContext::PrintStats() const {
291  fprintf(stderr, "*** AST Context Stats:\n");
292  fprintf(stderr, "  %d types total.\n", (int)Types.size());
293
294  unsigned counts[] = {
295#define TYPE(Name, Parent) 0,
296#define ABSTRACT_TYPE(Name, Parent)
297#include "clang/AST/TypeNodes.def"
298    0 // Extra
299  };
300
301  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
302    Type *T = Types[i];
303    counts[(unsigned)T->getTypeClass()]++;
304  }
305
306  unsigned Idx = 0;
307  unsigned TotalBytes = 0;
308#define TYPE(Name, Parent)                                              \
309  if (counts[Idx])                                                      \
310    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
311  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
312  ++Idx;
313#define ABSTRACT_TYPE(Name, Parent)
314#include "clang/AST/TypeNodes.def"
315
316  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
317
318  // Implicit special member functions.
319  fprintf(stderr, "  %u/%u implicit default constructors created\n",
320          NumImplicitDefaultConstructorsDeclared,
321          NumImplicitDefaultConstructors);
322  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
323          NumImplicitCopyConstructorsDeclared,
324          NumImplicitCopyConstructors);
325  if (getLangOptions().CPlusPlus)
326    fprintf(stderr, "  %u/%u implicit move constructors created\n",
327            NumImplicitMoveConstructorsDeclared,
328            NumImplicitMoveConstructors);
329  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
330          NumImplicitCopyAssignmentOperatorsDeclared,
331          NumImplicitCopyAssignmentOperators);
332  if (getLangOptions().CPlusPlus)
333    fprintf(stderr, "  %u/%u implicit move assignment operators created\n",
334            NumImplicitMoveAssignmentOperatorsDeclared,
335            NumImplicitMoveAssignmentOperators);
336  fprintf(stderr, "  %u/%u implicit destructors created\n",
337          NumImplicitDestructorsDeclared, NumImplicitDestructors);
338
339  if (ExternalSource.get()) {
340    fprintf(stderr, "\n");
341    ExternalSource->PrintStats();
342  }
343
344  BumpAlloc.PrintStats();
345}
346
347
348void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
349  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
350  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
351  Types.push_back(Ty);
352}
353
354void ASTContext::InitBuiltinTypes() {
355  assert(VoidTy.isNull() && "Context reinitialized?");
356
357  // C99 6.2.5p19.
358  InitBuiltinType(VoidTy,              BuiltinType::Void);
359
360  // C99 6.2.5p2.
361  InitBuiltinType(BoolTy,              BuiltinType::Bool);
362  // C99 6.2.5p3.
363  if (LangOpts.CharIsSigned)
364    InitBuiltinType(CharTy,            BuiltinType::Char_S);
365  else
366    InitBuiltinType(CharTy,            BuiltinType::Char_U);
367  // C99 6.2.5p4.
368  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
369  InitBuiltinType(ShortTy,             BuiltinType::Short);
370  InitBuiltinType(IntTy,               BuiltinType::Int);
371  InitBuiltinType(LongTy,              BuiltinType::Long);
372  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
373
374  // C99 6.2.5p6.
375  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
376  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
377  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
378  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
379  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
380
381  // C99 6.2.5p10.
382  InitBuiltinType(FloatTy,             BuiltinType::Float);
383  InitBuiltinType(DoubleTy,            BuiltinType::Double);
384  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
385
386  // GNU extension, 128-bit integers.
387  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
388  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
389
390  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
391    if (TargetInfo::isTypeSigned(Target.getWCharType()))
392      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
393    else  // -fshort-wchar makes wchar_t be unsigned.
394      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
395  } else // C99
396    WCharTy = getFromTargetType(Target.getWCharType());
397
398  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
399    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
400  else // C99
401    Char16Ty = getFromTargetType(Target.getChar16Type());
402
403  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
404    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
405  else // C99
406    Char32Ty = getFromTargetType(Target.getChar32Type());
407
408  // Placeholder type for type-dependent expressions whose type is
409  // completely unknown. No code should ever check a type against
410  // DependentTy and users should never see it; however, it is here to
411  // help diagnose failures to properly check for type-dependent
412  // expressions.
413  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
414
415  // Placeholder type for functions.
416  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
417
418  // Placeholder type for bound members.
419  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
420
421  // "any" type; useful for debugger-like clients.
422  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
423
424  // C99 6.2.5p11.
425  FloatComplexTy      = getComplexType(FloatTy);
426  DoubleComplexTy     = getComplexType(DoubleTy);
427  LongDoubleComplexTy = getComplexType(LongDoubleTy);
428
429  BuiltinVaListType = QualType();
430
431  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
432  ObjCIdTypedefType = QualType();
433  ObjCClassTypedefType = QualType();
434  ObjCSelTypedefType = QualType();
435
436  // Builtin types for 'id', 'Class', and 'SEL'.
437  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
438  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
439  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
440
441  ObjCConstantStringType = QualType();
442
443  // void * type
444  VoidPtrTy = getPointerType(VoidTy);
445
446  // nullptr type (C++0x 2.14.7)
447  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
448}
449
450Diagnostic &ASTContext::getDiagnostics() const {
451  return SourceMgr.getDiagnostics();
452}
453
454AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
455  AttrVec *&Result = DeclAttrs[D];
456  if (!Result) {
457    void *Mem = Allocate(sizeof(AttrVec));
458    Result = new (Mem) AttrVec;
459  }
460
461  return *Result;
462}
463
464/// \brief Erase the attributes corresponding to the given declaration.
465void ASTContext::eraseDeclAttrs(const Decl *D) {
466  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
467  if (Pos != DeclAttrs.end()) {
468    Pos->second->~AttrVec();
469    DeclAttrs.erase(Pos);
470  }
471}
472
473MemberSpecializationInfo *
474ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
475  assert(Var->isStaticDataMember() && "Not a static data member");
476  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
477    = InstantiatedFromStaticDataMember.find(Var);
478  if (Pos == InstantiatedFromStaticDataMember.end())
479    return 0;
480
481  return Pos->second;
482}
483
484void
485ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
486                                                TemplateSpecializationKind TSK,
487                                          SourceLocation PointOfInstantiation) {
488  assert(Inst->isStaticDataMember() && "Not a static data member");
489  assert(Tmpl->isStaticDataMember() && "Not a static data member");
490  assert(!InstantiatedFromStaticDataMember[Inst] &&
491         "Already noted what static data member was instantiated from");
492  InstantiatedFromStaticDataMember[Inst]
493    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
494}
495
496NamedDecl *
497ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
498  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
499    = InstantiatedFromUsingDecl.find(UUD);
500  if (Pos == InstantiatedFromUsingDecl.end())
501    return 0;
502
503  return Pos->second;
504}
505
506void
507ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
508  assert((isa<UsingDecl>(Pattern) ||
509          isa<UnresolvedUsingValueDecl>(Pattern) ||
510          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
511         "pattern decl is not a using decl");
512  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
513  InstantiatedFromUsingDecl[Inst] = Pattern;
514}
515
516UsingShadowDecl *
517ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
518  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
519    = InstantiatedFromUsingShadowDecl.find(Inst);
520  if (Pos == InstantiatedFromUsingShadowDecl.end())
521    return 0;
522
523  return Pos->second;
524}
525
526void
527ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
528                                               UsingShadowDecl *Pattern) {
529  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
530  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
531}
532
533FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
534  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
535    = InstantiatedFromUnnamedFieldDecl.find(Field);
536  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
537    return 0;
538
539  return Pos->second;
540}
541
542void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
543                                                     FieldDecl *Tmpl) {
544  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
545  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
546  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
547         "Already noted what unnamed field was instantiated from");
548
549  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
550}
551
552bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
553                                    const FieldDecl *LastFD) const {
554  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
555          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
556
557}
558
559bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
560                                             const FieldDecl *LastFD) const {
561  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
562          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
563          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
564
565}
566
567bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
568                                         const FieldDecl *LastFD) const {
569  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
570          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
571          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
572}
573
574bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
575                                         const FieldDecl *LastFD) const {
576  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
577          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
578}
579
580bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
581                                             const FieldDecl *LastFD) const {
582  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
583          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
584}
585
586ASTContext::overridden_cxx_method_iterator
587ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
588  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
589    = OverriddenMethods.find(Method);
590  if (Pos == OverriddenMethods.end())
591    return 0;
592
593  return Pos->second.begin();
594}
595
596ASTContext::overridden_cxx_method_iterator
597ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
598  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
599    = OverriddenMethods.find(Method);
600  if (Pos == OverriddenMethods.end())
601    return 0;
602
603  return Pos->second.end();
604}
605
606unsigned
607ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
608  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
609    = OverriddenMethods.find(Method);
610  if (Pos == OverriddenMethods.end())
611    return 0;
612
613  return Pos->second.size();
614}
615
616void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
617                                     const CXXMethodDecl *Overridden) {
618  OverriddenMethods[Method].push_back(Overridden);
619}
620
621//===----------------------------------------------------------------------===//
622//                         Type Sizing and Analysis
623//===----------------------------------------------------------------------===//
624
625/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
626/// scalar floating point type.
627const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
628  const BuiltinType *BT = T->getAs<BuiltinType>();
629  assert(BT && "Not a floating point type!");
630  switch (BT->getKind()) {
631  default: assert(0 && "Not a floating point type!");
632  case BuiltinType::Float:      return Target.getFloatFormat();
633  case BuiltinType::Double:     return Target.getDoubleFormat();
634  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
635  }
636}
637
638/// getDeclAlign - Return a conservative estimate of the alignment of the
639/// specified decl.  Note that bitfields do not have a valid alignment, so
640/// this method will assert on them.
641/// If @p RefAsPointee, references are treated like their underlying type
642/// (for alignof), else they're treated like pointers (for CodeGen).
643CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
644  unsigned Align = Target.getCharWidth();
645
646  bool UseAlignAttrOnly = false;
647  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
648    Align = AlignFromAttr;
649
650    // __attribute__((aligned)) can increase or decrease alignment
651    // *except* on a struct or struct member, where it only increases
652    // alignment unless 'packed' is also specified.
653    //
654    // It is an error for [[align]] to decrease alignment, so we can
655    // ignore that possibility;  Sema should diagnose it.
656    if (isa<FieldDecl>(D)) {
657      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
658        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
659    } else {
660      UseAlignAttrOnly = true;
661    }
662  }
663  else if (isa<FieldDecl>(D))
664      UseAlignAttrOnly =
665        D->hasAttr<PackedAttr>() ||
666        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
667
668  // If we're using the align attribute only, just ignore everything
669  // else about the declaration and its type.
670  if (UseAlignAttrOnly) {
671    // do nothing
672
673  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
674    QualType T = VD->getType();
675    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
676      if (RefAsPointee)
677        T = RT->getPointeeType();
678      else
679        T = getPointerType(RT->getPointeeType());
680    }
681    if (!T->isIncompleteType() && !T->isFunctionType()) {
682      // Adjust alignments of declarations with array type by the
683      // large-array alignment on the target.
684      unsigned MinWidth = Target.getLargeArrayMinWidth();
685      const ArrayType *arrayType;
686      if (MinWidth && (arrayType = getAsArrayType(T))) {
687        if (isa<VariableArrayType>(arrayType))
688          Align = std::max(Align, Target.getLargeArrayAlign());
689        else if (isa<ConstantArrayType>(arrayType) &&
690                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
691          Align = std::max(Align, Target.getLargeArrayAlign());
692
693        // Walk through any array types while we're at it.
694        T = getBaseElementType(arrayType);
695      }
696      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
697    }
698
699    // Fields can be subject to extra alignment constraints, like if
700    // the field is packed, the struct is packed, or the struct has a
701    // a max-field-alignment constraint (#pragma pack).  So calculate
702    // the actual alignment of the field within the struct, and then
703    // (as we're expected to) constrain that by the alignment of the type.
704    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
705      // So calculate the alignment of the field.
706      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
707
708      // Start with the record's overall alignment.
709      unsigned fieldAlign = toBits(layout.getAlignment());
710
711      // Use the GCD of that and the offset within the record.
712      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
713      if (offset > 0) {
714        // Alignment is always a power of 2, so the GCD will be a power of 2,
715        // which means we get to do this crazy thing instead of Euclid's.
716        uint64_t lowBitOfOffset = offset & (~offset + 1);
717        if (lowBitOfOffset < fieldAlign)
718          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
719      }
720
721      Align = std::min(Align, fieldAlign);
722    }
723  }
724
725  return toCharUnitsFromBits(Align);
726}
727
728std::pair<CharUnits, CharUnits>
729ASTContext::getTypeInfoInChars(const Type *T) const {
730  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
731  return std::make_pair(toCharUnitsFromBits(Info.first),
732                        toCharUnitsFromBits(Info.second));
733}
734
735std::pair<CharUnits, CharUnits>
736ASTContext::getTypeInfoInChars(QualType T) const {
737  return getTypeInfoInChars(T.getTypePtr());
738}
739
740/// getTypeSize - Return the size of the specified type, in bits.  This method
741/// does not work on incomplete types.
742///
743/// FIXME: Pointers into different addr spaces could have different sizes and
744/// alignment requirements: getPointerInfo should take an AddrSpace, this
745/// should take a QualType, &c.
746std::pair<uint64_t, unsigned>
747ASTContext::getTypeInfo(const Type *T) const {
748  uint64_t Width=0;
749  unsigned Align=8;
750  switch (T->getTypeClass()) {
751#define TYPE(Class, Base)
752#define ABSTRACT_TYPE(Class, Base)
753#define NON_CANONICAL_TYPE(Class, Base)
754#define DEPENDENT_TYPE(Class, Base) case Type::Class:
755#include "clang/AST/TypeNodes.def"
756    assert(false && "Should not see dependent types");
757    break;
758
759  case Type::FunctionNoProto:
760  case Type::FunctionProto:
761    // GCC extension: alignof(function) = 32 bits
762    Width = 0;
763    Align = 32;
764    break;
765
766  case Type::IncompleteArray:
767  case Type::VariableArray:
768    Width = 0;
769    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
770    break;
771
772  case Type::ConstantArray: {
773    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
774
775    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
776    Width = EltInfo.first*CAT->getSize().getZExtValue();
777    Align = EltInfo.second;
778    Width = llvm::RoundUpToAlignment(Width, Align);
779    break;
780  }
781  case Type::ExtVector:
782  case Type::Vector: {
783    const VectorType *VT = cast<VectorType>(T);
784    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
785    Width = EltInfo.first*VT->getNumElements();
786    Align = Width;
787    // If the alignment is not a power of 2, round up to the next power of 2.
788    // This happens for non-power-of-2 length vectors.
789    if (Align & (Align-1)) {
790      Align = llvm::NextPowerOf2(Align);
791      Width = llvm::RoundUpToAlignment(Width, Align);
792    }
793    break;
794  }
795
796  case Type::Builtin:
797    switch (cast<BuiltinType>(T)->getKind()) {
798    default: assert(0 && "Unknown builtin type!");
799    case BuiltinType::Void:
800      // GCC extension: alignof(void) = 8 bits.
801      Width = 0;
802      Align = 8;
803      break;
804
805    case BuiltinType::Bool:
806      Width = Target.getBoolWidth();
807      Align = Target.getBoolAlign();
808      break;
809    case BuiltinType::Char_S:
810    case BuiltinType::Char_U:
811    case BuiltinType::UChar:
812    case BuiltinType::SChar:
813      Width = Target.getCharWidth();
814      Align = Target.getCharAlign();
815      break;
816    case BuiltinType::WChar_S:
817    case BuiltinType::WChar_U:
818      Width = Target.getWCharWidth();
819      Align = Target.getWCharAlign();
820      break;
821    case BuiltinType::Char16:
822      Width = Target.getChar16Width();
823      Align = Target.getChar16Align();
824      break;
825    case BuiltinType::Char32:
826      Width = Target.getChar32Width();
827      Align = Target.getChar32Align();
828      break;
829    case BuiltinType::UShort:
830    case BuiltinType::Short:
831      Width = Target.getShortWidth();
832      Align = Target.getShortAlign();
833      break;
834    case BuiltinType::UInt:
835    case BuiltinType::Int:
836      Width = Target.getIntWidth();
837      Align = Target.getIntAlign();
838      break;
839    case BuiltinType::ULong:
840    case BuiltinType::Long:
841      Width = Target.getLongWidth();
842      Align = Target.getLongAlign();
843      break;
844    case BuiltinType::ULongLong:
845    case BuiltinType::LongLong:
846      Width = Target.getLongLongWidth();
847      Align = Target.getLongLongAlign();
848      break;
849    case BuiltinType::Int128:
850    case BuiltinType::UInt128:
851      Width = 128;
852      Align = 128; // int128_t is 128-bit aligned on all targets.
853      break;
854    case BuiltinType::Float:
855      Width = Target.getFloatWidth();
856      Align = Target.getFloatAlign();
857      break;
858    case BuiltinType::Double:
859      Width = Target.getDoubleWidth();
860      Align = Target.getDoubleAlign();
861      break;
862    case BuiltinType::LongDouble:
863      Width = Target.getLongDoubleWidth();
864      Align = Target.getLongDoubleAlign();
865      break;
866    case BuiltinType::NullPtr:
867      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
868      Align = Target.getPointerAlign(0); //   == sizeof(void*)
869      break;
870    case BuiltinType::ObjCId:
871    case BuiltinType::ObjCClass:
872    case BuiltinType::ObjCSel:
873      Width = Target.getPointerWidth(0);
874      Align = Target.getPointerAlign(0);
875      break;
876    }
877    break;
878  case Type::ObjCObjectPointer:
879    Width = Target.getPointerWidth(0);
880    Align = Target.getPointerAlign(0);
881    break;
882  case Type::BlockPointer: {
883    unsigned AS = getTargetAddressSpace(
884        cast<BlockPointerType>(T)->getPointeeType());
885    Width = Target.getPointerWidth(AS);
886    Align = Target.getPointerAlign(AS);
887    break;
888  }
889  case Type::LValueReference:
890  case Type::RValueReference: {
891    // alignof and sizeof should never enter this code path here, so we go
892    // the pointer route.
893    unsigned AS = getTargetAddressSpace(
894        cast<ReferenceType>(T)->getPointeeType());
895    Width = Target.getPointerWidth(AS);
896    Align = Target.getPointerAlign(AS);
897    break;
898  }
899  case Type::Pointer: {
900    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
901    Width = Target.getPointerWidth(AS);
902    Align = Target.getPointerAlign(AS);
903    break;
904  }
905  case Type::MemberPointer: {
906    const MemberPointerType *MPT = cast<MemberPointerType>(T);
907    std::pair<uint64_t, unsigned> PtrDiffInfo =
908      getTypeInfo(getPointerDiffType());
909    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
910    Align = PtrDiffInfo.second;
911    break;
912  }
913  case Type::Complex: {
914    // Complex types have the same alignment as their elements, but twice the
915    // size.
916    std::pair<uint64_t, unsigned> EltInfo =
917      getTypeInfo(cast<ComplexType>(T)->getElementType());
918    Width = EltInfo.first*2;
919    Align = EltInfo.second;
920    break;
921  }
922  case Type::ObjCObject:
923    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
924  case Type::ObjCInterface: {
925    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
926    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
927    Width = toBits(Layout.getSize());
928    Align = toBits(Layout.getAlignment());
929    break;
930  }
931  case Type::Record:
932  case Type::Enum: {
933    const TagType *TT = cast<TagType>(T);
934
935    if (TT->getDecl()->isInvalidDecl()) {
936      Width = 8;
937      Align = 8;
938      break;
939    }
940
941    if (const EnumType *ET = dyn_cast<EnumType>(TT))
942      return getTypeInfo(ET->getDecl()->getIntegerType());
943
944    const RecordType *RT = cast<RecordType>(TT);
945    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
946    Width = toBits(Layout.getSize());
947    Align = toBits(Layout.getAlignment());
948    break;
949  }
950
951  case Type::SubstTemplateTypeParm:
952    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
953                       getReplacementType().getTypePtr());
954
955  case Type::Auto: {
956    const AutoType *A = cast<AutoType>(T);
957    assert(A->isDeduced() && "Cannot request the size of a dependent type");
958    return getTypeInfo(A->getDeducedType().getTypePtr());
959  }
960
961  case Type::Paren:
962    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
963
964  case Type::Typedef: {
965    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
966    std::pair<uint64_t, unsigned> Info
967      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
968    // If the typedef has an aligned attribute on it, it overrides any computed
969    // alignment we have.  This violates the GCC documentation (which says that
970    // attribute(aligned) can only round up) but matches its implementation.
971    if (unsigned AttrAlign = Typedef->getMaxAlignment())
972      Align = AttrAlign;
973    else
974      Align = Info.second;
975    Width = Info.first;
976    break;
977  }
978
979  case Type::TypeOfExpr:
980    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
981                         .getTypePtr());
982
983  case Type::TypeOf:
984    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
985
986  case Type::Decltype:
987    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
988                        .getTypePtr());
989
990  case Type::UnaryTransform:
991    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
992
993  case Type::Elaborated:
994    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
995
996  case Type::Attributed:
997    return getTypeInfo(
998                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
999
1000  case Type::TemplateSpecialization: {
1001    assert(getCanonicalType(T) != T &&
1002           "Cannot request the size of a dependent type");
1003    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1004    // A type alias template specialization may refer to a typedef with the
1005    // aligned attribute on it.
1006    if (TST->isTypeAlias())
1007      return getTypeInfo(TST->getAliasedType().getTypePtr());
1008    else
1009      return getTypeInfo(getCanonicalType(T));
1010  }
1011
1012  }
1013
1014  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1015  return std::make_pair(Width, Align);
1016}
1017
1018/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1019CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1020  return CharUnits::fromQuantity(BitSize / getCharWidth());
1021}
1022
1023/// toBits - Convert a size in characters to a size in characters.
1024int64_t ASTContext::toBits(CharUnits CharSize) const {
1025  return CharSize.getQuantity() * getCharWidth();
1026}
1027
1028/// getTypeSizeInChars - Return the size of the specified type, in characters.
1029/// This method does not work on incomplete types.
1030CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1031  return toCharUnitsFromBits(getTypeSize(T));
1032}
1033CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1034  return toCharUnitsFromBits(getTypeSize(T));
1035}
1036
1037/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1038/// characters. This method does not work on incomplete types.
1039CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1040  return toCharUnitsFromBits(getTypeAlign(T));
1041}
1042CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1043  return toCharUnitsFromBits(getTypeAlign(T));
1044}
1045
1046/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1047/// type for the current target in bits.  This can be different than the ABI
1048/// alignment in cases where it is beneficial for performance to overalign
1049/// a data type.
1050unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1051  unsigned ABIAlign = getTypeAlign(T);
1052
1053  // Double and long long should be naturally aligned if possible.
1054  if (const ComplexType* CT = T->getAs<ComplexType>())
1055    T = CT->getElementType().getTypePtr();
1056  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1057      T->isSpecificBuiltinType(BuiltinType::LongLong))
1058    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1059
1060  return ABIAlign;
1061}
1062
1063/// ShallowCollectObjCIvars -
1064/// Collect all ivars, including those synthesized, in the current class.
1065///
1066void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1067                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1068  // FIXME. This need be removed but there are two many places which
1069  // assume const-ness of ObjCInterfaceDecl
1070  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1071  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1072        Iv= Iv->getNextIvar())
1073    Ivars.push_back(Iv);
1074}
1075
1076/// DeepCollectObjCIvars -
1077/// This routine first collects all declared, but not synthesized, ivars in
1078/// super class and then collects all ivars, including those synthesized for
1079/// current class. This routine is used for implementation of current class
1080/// when all ivars, declared and synthesized are known.
1081///
1082void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1083                                      bool leafClass,
1084                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
1085  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1086    DeepCollectObjCIvars(SuperClass, false, Ivars);
1087  if (!leafClass) {
1088    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1089         E = OI->ivar_end(); I != E; ++I)
1090      Ivars.push_back(*I);
1091  }
1092  else
1093    ShallowCollectObjCIvars(OI, Ivars);
1094}
1095
1096/// CollectInheritedProtocols - Collect all protocols in current class and
1097/// those inherited by it.
1098void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1099                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1100  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1101    // We can use protocol_iterator here instead of
1102    // all_referenced_protocol_iterator since we are walking all categories.
1103    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1104         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1105      ObjCProtocolDecl *Proto = (*P);
1106      Protocols.insert(Proto);
1107      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1108           PE = Proto->protocol_end(); P != PE; ++P) {
1109        Protocols.insert(*P);
1110        CollectInheritedProtocols(*P, Protocols);
1111      }
1112    }
1113
1114    // Categories of this Interface.
1115    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1116         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1117      CollectInheritedProtocols(CDeclChain, Protocols);
1118    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1119      while (SD) {
1120        CollectInheritedProtocols(SD, Protocols);
1121        SD = SD->getSuperClass();
1122      }
1123  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1124    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1125         PE = OC->protocol_end(); P != PE; ++P) {
1126      ObjCProtocolDecl *Proto = (*P);
1127      Protocols.insert(Proto);
1128      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1129           PE = Proto->protocol_end(); P != PE; ++P)
1130        CollectInheritedProtocols(*P, Protocols);
1131    }
1132  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1133    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1134         PE = OP->protocol_end(); P != PE; ++P) {
1135      ObjCProtocolDecl *Proto = (*P);
1136      Protocols.insert(Proto);
1137      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1138           PE = Proto->protocol_end(); P != PE; ++P)
1139        CollectInheritedProtocols(*P, Protocols);
1140    }
1141  }
1142}
1143
1144unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1145  unsigned count = 0;
1146  // Count ivars declared in class extension.
1147  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1148       CDecl = CDecl->getNextClassExtension())
1149    count += CDecl->ivar_size();
1150
1151  // Count ivar defined in this class's implementation.  This
1152  // includes synthesized ivars.
1153  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1154    count += ImplDecl->ivar_size();
1155
1156  return count;
1157}
1158
1159/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1160ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1161  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1162    I = ObjCImpls.find(D);
1163  if (I != ObjCImpls.end())
1164    return cast<ObjCImplementationDecl>(I->second);
1165  return 0;
1166}
1167/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1168ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1169  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1170    I = ObjCImpls.find(D);
1171  if (I != ObjCImpls.end())
1172    return cast<ObjCCategoryImplDecl>(I->second);
1173  return 0;
1174}
1175
1176/// \brief Set the implementation of ObjCInterfaceDecl.
1177void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1178                           ObjCImplementationDecl *ImplD) {
1179  assert(IFaceD && ImplD && "Passed null params");
1180  ObjCImpls[IFaceD] = ImplD;
1181}
1182/// \brief Set the implementation of ObjCCategoryDecl.
1183void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1184                           ObjCCategoryImplDecl *ImplD) {
1185  assert(CatD && ImplD && "Passed null params");
1186  ObjCImpls[CatD] = ImplD;
1187}
1188
1189/// \brief Get the copy initialization expression of VarDecl,or NULL if
1190/// none exists.
1191Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1192  assert(VD && "Passed null params");
1193  assert(VD->hasAttr<BlocksAttr>() &&
1194         "getBlockVarCopyInits - not __block var");
1195  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1196    I = BlockVarCopyInits.find(VD);
1197  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1198}
1199
1200/// \brief Set the copy inialization expression of a block var decl.
1201void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1202  assert(VD && Init && "Passed null params");
1203  assert(VD->hasAttr<BlocksAttr>() &&
1204         "setBlockVarCopyInits - not __block var");
1205  BlockVarCopyInits[VD] = Init;
1206}
1207
1208/// \brief Allocate an uninitialized TypeSourceInfo.
1209///
1210/// The caller should initialize the memory held by TypeSourceInfo using
1211/// the TypeLoc wrappers.
1212///
1213/// \param T the type that will be the basis for type source info. This type
1214/// should refer to how the declarator was written in source code, not to
1215/// what type semantic analysis resolved the declarator to.
1216TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1217                                                 unsigned DataSize) const {
1218  if (!DataSize)
1219    DataSize = TypeLoc::getFullDataSizeForType(T);
1220  else
1221    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1222           "incorrect data size provided to CreateTypeSourceInfo!");
1223
1224  TypeSourceInfo *TInfo =
1225    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1226  new (TInfo) TypeSourceInfo(T);
1227  return TInfo;
1228}
1229
1230TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1231                                                     SourceLocation L) const {
1232  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1233  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1234  return DI;
1235}
1236
1237const ASTRecordLayout &
1238ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1239  return getObjCLayout(D, 0);
1240}
1241
1242const ASTRecordLayout &
1243ASTContext::getASTObjCImplementationLayout(
1244                                        const ObjCImplementationDecl *D) const {
1245  return getObjCLayout(D->getClassInterface(), D);
1246}
1247
1248//===----------------------------------------------------------------------===//
1249//                   Type creation/memoization methods
1250//===----------------------------------------------------------------------===//
1251
1252QualType
1253ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1254  unsigned fastQuals = quals.getFastQualifiers();
1255  quals.removeFastQualifiers();
1256
1257  // Check if we've already instantiated this type.
1258  llvm::FoldingSetNodeID ID;
1259  ExtQuals::Profile(ID, baseType, quals);
1260  void *insertPos = 0;
1261  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1262    assert(eq->getQualifiers() == quals);
1263    return QualType(eq, fastQuals);
1264  }
1265
1266  // If the base type is not canonical, make the appropriate canonical type.
1267  QualType canon;
1268  if (!baseType->isCanonicalUnqualified()) {
1269    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1270    canonSplit.second.addConsistentQualifiers(quals);
1271    canon = getExtQualType(canonSplit.first, canonSplit.second);
1272
1273    // Re-find the insert position.
1274    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1275  }
1276
1277  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1278  ExtQualNodes.InsertNode(eq, insertPos);
1279  return QualType(eq, fastQuals);
1280}
1281
1282QualType
1283ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1284  QualType CanT = getCanonicalType(T);
1285  if (CanT.getAddressSpace() == AddressSpace)
1286    return T;
1287
1288  // If we are composing extended qualifiers together, merge together
1289  // into one ExtQuals node.
1290  QualifierCollector Quals;
1291  const Type *TypeNode = Quals.strip(T);
1292
1293  // If this type already has an address space specified, it cannot get
1294  // another one.
1295  assert(!Quals.hasAddressSpace() &&
1296         "Type cannot be in multiple addr spaces!");
1297  Quals.addAddressSpace(AddressSpace);
1298
1299  return getExtQualType(TypeNode, Quals);
1300}
1301
1302QualType ASTContext::getObjCGCQualType(QualType T,
1303                                       Qualifiers::GC GCAttr) const {
1304  QualType CanT = getCanonicalType(T);
1305  if (CanT.getObjCGCAttr() == GCAttr)
1306    return T;
1307
1308  if (const PointerType *ptr = T->getAs<PointerType>()) {
1309    QualType Pointee = ptr->getPointeeType();
1310    if (Pointee->isAnyPointerType()) {
1311      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1312      return getPointerType(ResultType);
1313    }
1314  }
1315
1316  // If we are composing extended qualifiers together, merge together
1317  // into one ExtQuals node.
1318  QualifierCollector Quals;
1319  const Type *TypeNode = Quals.strip(T);
1320
1321  // If this type already has an ObjCGC specified, it cannot get
1322  // another one.
1323  assert(!Quals.hasObjCGCAttr() &&
1324         "Type cannot have multiple ObjCGCs!");
1325  Quals.addObjCGCAttr(GCAttr);
1326
1327  return getExtQualType(TypeNode, Quals);
1328}
1329
1330const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1331                                                   FunctionType::ExtInfo Info) {
1332  if (T->getExtInfo() == Info)
1333    return T;
1334
1335  QualType Result;
1336  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1337    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1338  } else {
1339    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1340    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1341    EPI.ExtInfo = Info;
1342    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1343                             FPT->getNumArgs(), EPI);
1344  }
1345
1346  return cast<FunctionType>(Result.getTypePtr());
1347}
1348
1349/// getComplexType - Return the uniqued reference to the type for a complex
1350/// number with the specified element type.
1351QualType ASTContext::getComplexType(QualType T) const {
1352  // Unique pointers, to guarantee there is only one pointer of a particular
1353  // structure.
1354  llvm::FoldingSetNodeID ID;
1355  ComplexType::Profile(ID, T);
1356
1357  void *InsertPos = 0;
1358  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1359    return QualType(CT, 0);
1360
1361  // If the pointee type isn't canonical, this won't be a canonical type either,
1362  // so fill in the canonical type field.
1363  QualType Canonical;
1364  if (!T.isCanonical()) {
1365    Canonical = getComplexType(getCanonicalType(T));
1366
1367    // Get the new insert position for the node we care about.
1368    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1369    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1370  }
1371  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1372  Types.push_back(New);
1373  ComplexTypes.InsertNode(New, InsertPos);
1374  return QualType(New, 0);
1375}
1376
1377/// getPointerType - Return the uniqued reference to the type for a pointer to
1378/// the specified type.
1379QualType ASTContext::getPointerType(QualType T) const {
1380  // Unique pointers, to guarantee there is only one pointer of a particular
1381  // structure.
1382  llvm::FoldingSetNodeID ID;
1383  PointerType::Profile(ID, T);
1384
1385  void *InsertPos = 0;
1386  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1387    return QualType(PT, 0);
1388
1389  // If the pointee type isn't canonical, this won't be a canonical type either,
1390  // so fill in the canonical type field.
1391  QualType Canonical;
1392  if (!T.isCanonical()) {
1393    Canonical = getPointerType(getCanonicalType(T));
1394
1395    // Get the new insert position for the node we care about.
1396    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1397    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1398  }
1399  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1400  Types.push_back(New);
1401  PointerTypes.InsertNode(New, InsertPos);
1402  return QualType(New, 0);
1403}
1404
1405/// getBlockPointerType - Return the uniqued reference to the type for
1406/// a pointer to the specified block.
1407QualType ASTContext::getBlockPointerType(QualType T) const {
1408  assert(T->isFunctionType() && "block of function types only");
1409  // Unique pointers, to guarantee there is only one block of a particular
1410  // structure.
1411  llvm::FoldingSetNodeID ID;
1412  BlockPointerType::Profile(ID, T);
1413
1414  void *InsertPos = 0;
1415  if (BlockPointerType *PT =
1416        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1417    return QualType(PT, 0);
1418
1419  // If the block pointee type isn't canonical, this won't be a canonical
1420  // type either so fill in the canonical type field.
1421  QualType Canonical;
1422  if (!T.isCanonical()) {
1423    Canonical = getBlockPointerType(getCanonicalType(T));
1424
1425    // Get the new insert position for the node we care about.
1426    BlockPointerType *NewIP =
1427      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1428    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1429  }
1430  BlockPointerType *New
1431    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1432  Types.push_back(New);
1433  BlockPointerTypes.InsertNode(New, InsertPos);
1434  return QualType(New, 0);
1435}
1436
1437/// getLValueReferenceType - Return the uniqued reference to the type for an
1438/// lvalue reference to the specified type.
1439QualType
1440ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1441  assert(getCanonicalType(T) != OverloadTy &&
1442         "Unresolved overloaded function type");
1443
1444  // Unique pointers, to guarantee there is only one pointer of a particular
1445  // structure.
1446  llvm::FoldingSetNodeID ID;
1447  ReferenceType::Profile(ID, T, SpelledAsLValue);
1448
1449  void *InsertPos = 0;
1450  if (LValueReferenceType *RT =
1451        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1452    return QualType(RT, 0);
1453
1454  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1455
1456  // If the referencee type isn't canonical, this won't be a canonical type
1457  // either, so fill in the canonical type field.
1458  QualType Canonical;
1459  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1460    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1461    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1462
1463    // Get the new insert position for the node we care about.
1464    LValueReferenceType *NewIP =
1465      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1466    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1467  }
1468
1469  LValueReferenceType *New
1470    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1471                                                     SpelledAsLValue);
1472  Types.push_back(New);
1473  LValueReferenceTypes.InsertNode(New, InsertPos);
1474
1475  return QualType(New, 0);
1476}
1477
1478/// getRValueReferenceType - Return the uniqued reference to the type for an
1479/// rvalue reference to the specified type.
1480QualType ASTContext::getRValueReferenceType(QualType T) const {
1481  // Unique pointers, to guarantee there is only one pointer of a particular
1482  // structure.
1483  llvm::FoldingSetNodeID ID;
1484  ReferenceType::Profile(ID, T, false);
1485
1486  void *InsertPos = 0;
1487  if (RValueReferenceType *RT =
1488        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1489    return QualType(RT, 0);
1490
1491  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1492
1493  // If the referencee type isn't canonical, this won't be a canonical type
1494  // either, so fill in the canonical type field.
1495  QualType Canonical;
1496  if (InnerRef || !T.isCanonical()) {
1497    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1498    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1499
1500    // Get the new insert position for the node we care about.
1501    RValueReferenceType *NewIP =
1502      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1503    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1504  }
1505
1506  RValueReferenceType *New
1507    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1508  Types.push_back(New);
1509  RValueReferenceTypes.InsertNode(New, InsertPos);
1510  return QualType(New, 0);
1511}
1512
1513/// getMemberPointerType - Return the uniqued reference to the type for a
1514/// member pointer to the specified type, in the specified class.
1515QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1516  // Unique pointers, to guarantee there is only one pointer of a particular
1517  // structure.
1518  llvm::FoldingSetNodeID ID;
1519  MemberPointerType::Profile(ID, T, Cls);
1520
1521  void *InsertPos = 0;
1522  if (MemberPointerType *PT =
1523      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1524    return QualType(PT, 0);
1525
1526  // If the pointee or class type isn't canonical, this won't be a canonical
1527  // type either, so fill in the canonical type field.
1528  QualType Canonical;
1529  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1530    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1531
1532    // Get the new insert position for the node we care about.
1533    MemberPointerType *NewIP =
1534      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1535    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1536  }
1537  MemberPointerType *New
1538    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1539  Types.push_back(New);
1540  MemberPointerTypes.InsertNode(New, InsertPos);
1541  return QualType(New, 0);
1542}
1543
1544/// getConstantArrayType - Return the unique reference to the type for an
1545/// array of the specified element type.
1546QualType ASTContext::getConstantArrayType(QualType EltTy,
1547                                          const llvm::APInt &ArySizeIn,
1548                                          ArrayType::ArraySizeModifier ASM,
1549                                          unsigned IndexTypeQuals) const {
1550  assert((EltTy->isDependentType() ||
1551          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1552         "Constant array of VLAs is illegal!");
1553
1554  // Convert the array size into a canonical width matching the pointer size for
1555  // the target.
1556  llvm::APInt ArySize(ArySizeIn);
1557  ArySize =
1558    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1559
1560  llvm::FoldingSetNodeID ID;
1561  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1562
1563  void *InsertPos = 0;
1564  if (ConstantArrayType *ATP =
1565      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1566    return QualType(ATP, 0);
1567
1568  // If the element type isn't canonical or has qualifiers, this won't
1569  // be a canonical type either, so fill in the canonical type field.
1570  QualType Canon;
1571  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1572    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1573    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1574                                 ASM, IndexTypeQuals);
1575    Canon = getQualifiedType(Canon, canonSplit.second);
1576
1577    // Get the new insert position for the node we care about.
1578    ConstantArrayType *NewIP =
1579      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1580    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1581  }
1582
1583  ConstantArrayType *New = new(*this,TypeAlignment)
1584    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1585  ConstantArrayTypes.InsertNode(New, InsertPos);
1586  Types.push_back(New);
1587  return QualType(New, 0);
1588}
1589
1590/// getVariableArrayDecayedType - Turns the given type, which may be
1591/// variably-modified, into the corresponding type with all the known
1592/// sizes replaced with [*].
1593QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1594  // Vastly most common case.
1595  if (!type->isVariablyModifiedType()) return type;
1596
1597  QualType result;
1598
1599  SplitQualType split = type.getSplitDesugaredType();
1600  const Type *ty = split.first;
1601  switch (ty->getTypeClass()) {
1602#define TYPE(Class, Base)
1603#define ABSTRACT_TYPE(Class, Base)
1604#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1605#include "clang/AST/TypeNodes.def"
1606    llvm_unreachable("didn't desugar past all non-canonical types?");
1607
1608  // These types should never be variably-modified.
1609  case Type::Builtin:
1610  case Type::Complex:
1611  case Type::Vector:
1612  case Type::ExtVector:
1613  case Type::DependentSizedExtVector:
1614  case Type::ObjCObject:
1615  case Type::ObjCInterface:
1616  case Type::ObjCObjectPointer:
1617  case Type::Record:
1618  case Type::Enum:
1619  case Type::UnresolvedUsing:
1620  case Type::TypeOfExpr:
1621  case Type::TypeOf:
1622  case Type::Decltype:
1623  case Type::UnaryTransform:
1624  case Type::DependentName:
1625  case Type::InjectedClassName:
1626  case Type::TemplateSpecialization:
1627  case Type::DependentTemplateSpecialization:
1628  case Type::TemplateTypeParm:
1629  case Type::SubstTemplateTypeParmPack:
1630  case Type::Auto:
1631  case Type::PackExpansion:
1632    llvm_unreachable("type should never be variably-modified");
1633
1634  // These types can be variably-modified but should never need to
1635  // further decay.
1636  case Type::FunctionNoProto:
1637  case Type::FunctionProto:
1638  case Type::BlockPointer:
1639  case Type::MemberPointer:
1640    return type;
1641
1642  // These types can be variably-modified.  All these modifications
1643  // preserve structure except as noted by comments.
1644  // TODO: if we ever care about optimizing VLAs, there are no-op
1645  // optimizations available here.
1646  case Type::Pointer:
1647    result = getPointerType(getVariableArrayDecayedType(
1648                              cast<PointerType>(ty)->getPointeeType()));
1649    break;
1650
1651  case Type::LValueReference: {
1652    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1653    result = getLValueReferenceType(
1654                 getVariableArrayDecayedType(lv->getPointeeType()),
1655                                    lv->isSpelledAsLValue());
1656    break;
1657  }
1658
1659  case Type::RValueReference: {
1660    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1661    result = getRValueReferenceType(
1662                 getVariableArrayDecayedType(lv->getPointeeType()));
1663    break;
1664  }
1665
1666  case Type::ConstantArray: {
1667    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1668    result = getConstantArrayType(
1669                 getVariableArrayDecayedType(cat->getElementType()),
1670                                  cat->getSize(),
1671                                  cat->getSizeModifier(),
1672                                  cat->getIndexTypeCVRQualifiers());
1673    break;
1674  }
1675
1676  case Type::DependentSizedArray: {
1677    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1678    result = getDependentSizedArrayType(
1679                 getVariableArrayDecayedType(dat->getElementType()),
1680                                        dat->getSizeExpr(),
1681                                        dat->getSizeModifier(),
1682                                        dat->getIndexTypeCVRQualifiers(),
1683                                        dat->getBracketsRange());
1684    break;
1685  }
1686
1687  // Turn incomplete types into [*] types.
1688  case Type::IncompleteArray: {
1689    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1690    result = getVariableArrayType(
1691                 getVariableArrayDecayedType(iat->getElementType()),
1692                                  /*size*/ 0,
1693                                  ArrayType::Normal,
1694                                  iat->getIndexTypeCVRQualifiers(),
1695                                  SourceRange());
1696    break;
1697  }
1698
1699  // Turn VLA types into [*] types.
1700  case Type::VariableArray: {
1701    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1702    result = getVariableArrayType(
1703                 getVariableArrayDecayedType(vat->getElementType()),
1704                                  /*size*/ 0,
1705                                  ArrayType::Star,
1706                                  vat->getIndexTypeCVRQualifiers(),
1707                                  vat->getBracketsRange());
1708    break;
1709  }
1710  }
1711
1712  // Apply the top-level qualifiers from the original.
1713  return getQualifiedType(result, split.second);
1714}
1715
1716/// getVariableArrayType - Returns a non-unique reference to the type for a
1717/// variable array of the specified element type.
1718QualType ASTContext::getVariableArrayType(QualType EltTy,
1719                                          Expr *NumElts,
1720                                          ArrayType::ArraySizeModifier ASM,
1721                                          unsigned IndexTypeQuals,
1722                                          SourceRange Brackets) const {
1723  // Since we don't unique expressions, it isn't possible to unique VLA's
1724  // that have an expression provided for their size.
1725  QualType Canon;
1726
1727  // Be sure to pull qualifiers off the element type.
1728  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1729    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1730    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1731                                 IndexTypeQuals, Brackets);
1732    Canon = getQualifiedType(Canon, canonSplit.second);
1733  }
1734
1735  VariableArrayType *New = new(*this, TypeAlignment)
1736    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1737
1738  VariableArrayTypes.push_back(New);
1739  Types.push_back(New);
1740  return QualType(New, 0);
1741}
1742
1743/// getDependentSizedArrayType - Returns a non-unique reference to
1744/// the type for a dependently-sized array of the specified element
1745/// type.
1746QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1747                                                Expr *numElements,
1748                                                ArrayType::ArraySizeModifier ASM,
1749                                                unsigned elementTypeQuals,
1750                                                SourceRange brackets) const {
1751  assert((!numElements || numElements->isTypeDependent() ||
1752          numElements->isValueDependent()) &&
1753         "Size must be type- or value-dependent!");
1754
1755  // Dependently-sized array types that do not have a specified number
1756  // of elements will have their sizes deduced from a dependent
1757  // initializer.  We do no canonicalization here at all, which is okay
1758  // because they can't be used in most locations.
1759  if (!numElements) {
1760    DependentSizedArrayType *newType
1761      = new (*this, TypeAlignment)
1762          DependentSizedArrayType(*this, elementType, QualType(),
1763                                  numElements, ASM, elementTypeQuals,
1764                                  brackets);
1765    Types.push_back(newType);
1766    return QualType(newType, 0);
1767  }
1768
1769  // Otherwise, we actually build a new type every time, but we
1770  // also build a canonical type.
1771
1772  SplitQualType canonElementType = getCanonicalType(elementType).split();
1773
1774  void *insertPos = 0;
1775  llvm::FoldingSetNodeID ID;
1776  DependentSizedArrayType::Profile(ID, *this,
1777                                   QualType(canonElementType.first, 0),
1778                                   ASM, elementTypeQuals, numElements);
1779
1780  // Look for an existing type with these properties.
1781  DependentSizedArrayType *canonTy =
1782    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1783
1784  // If we don't have one, build one.
1785  if (!canonTy) {
1786    canonTy = new (*this, TypeAlignment)
1787      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1788                              QualType(), numElements, ASM, elementTypeQuals,
1789                              brackets);
1790    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1791    Types.push_back(canonTy);
1792  }
1793
1794  // Apply qualifiers from the element type to the array.
1795  QualType canon = getQualifiedType(QualType(canonTy,0),
1796                                    canonElementType.second);
1797
1798  // If we didn't need extra canonicalization for the element type,
1799  // then just use that as our result.
1800  if (QualType(canonElementType.first, 0) == elementType)
1801    return canon;
1802
1803  // Otherwise, we need to build a type which follows the spelling
1804  // of the element type.
1805  DependentSizedArrayType *sugaredType
1806    = new (*this, TypeAlignment)
1807        DependentSizedArrayType(*this, elementType, canon, numElements,
1808                                ASM, elementTypeQuals, brackets);
1809  Types.push_back(sugaredType);
1810  return QualType(sugaredType, 0);
1811}
1812
1813QualType ASTContext::getIncompleteArrayType(QualType elementType,
1814                                            ArrayType::ArraySizeModifier ASM,
1815                                            unsigned elementTypeQuals) const {
1816  llvm::FoldingSetNodeID ID;
1817  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1818
1819  void *insertPos = 0;
1820  if (IncompleteArrayType *iat =
1821       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1822    return QualType(iat, 0);
1823
1824  // If the element type isn't canonical, this won't be a canonical type
1825  // either, so fill in the canonical type field.  We also have to pull
1826  // qualifiers off the element type.
1827  QualType canon;
1828
1829  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1830    SplitQualType canonSplit = getCanonicalType(elementType).split();
1831    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1832                                   ASM, elementTypeQuals);
1833    canon = getQualifiedType(canon, canonSplit.second);
1834
1835    // Get the new insert position for the node we care about.
1836    IncompleteArrayType *existing =
1837      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1838    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1839  }
1840
1841  IncompleteArrayType *newType = new (*this, TypeAlignment)
1842    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1843
1844  IncompleteArrayTypes.InsertNode(newType, insertPos);
1845  Types.push_back(newType);
1846  return QualType(newType, 0);
1847}
1848
1849/// getVectorType - Return the unique reference to a vector type of
1850/// the specified element type and size. VectorType must be a built-in type.
1851QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1852                                   VectorType::VectorKind VecKind) const {
1853  assert(vecType->isBuiltinType());
1854
1855  // Check if we've already instantiated a vector of this type.
1856  llvm::FoldingSetNodeID ID;
1857  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1858
1859  void *InsertPos = 0;
1860  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1861    return QualType(VTP, 0);
1862
1863  // If the element type isn't canonical, this won't be a canonical type either,
1864  // so fill in the canonical type field.
1865  QualType Canonical;
1866  if (!vecType.isCanonical()) {
1867    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1868
1869    // Get the new insert position for the node we care about.
1870    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1871    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1872  }
1873  VectorType *New = new (*this, TypeAlignment)
1874    VectorType(vecType, NumElts, Canonical, VecKind);
1875  VectorTypes.InsertNode(New, InsertPos);
1876  Types.push_back(New);
1877  return QualType(New, 0);
1878}
1879
1880/// getExtVectorType - Return the unique reference to an extended vector type of
1881/// the specified element type and size. VectorType must be a built-in type.
1882QualType
1883ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1884  assert(vecType->isBuiltinType());
1885
1886  // Check if we've already instantiated a vector of this type.
1887  llvm::FoldingSetNodeID ID;
1888  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1889                      VectorType::GenericVector);
1890  void *InsertPos = 0;
1891  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1892    return QualType(VTP, 0);
1893
1894  // If the element type isn't canonical, this won't be a canonical type either,
1895  // so fill in the canonical type field.
1896  QualType Canonical;
1897  if (!vecType.isCanonical()) {
1898    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1899
1900    // Get the new insert position for the node we care about.
1901    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1902    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1903  }
1904  ExtVectorType *New = new (*this, TypeAlignment)
1905    ExtVectorType(vecType, NumElts, Canonical);
1906  VectorTypes.InsertNode(New, InsertPos);
1907  Types.push_back(New);
1908  return QualType(New, 0);
1909}
1910
1911QualType
1912ASTContext::getDependentSizedExtVectorType(QualType vecType,
1913                                           Expr *SizeExpr,
1914                                           SourceLocation AttrLoc) const {
1915  llvm::FoldingSetNodeID ID;
1916  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1917                                       SizeExpr);
1918
1919  void *InsertPos = 0;
1920  DependentSizedExtVectorType *Canon
1921    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1922  DependentSizedExtVectorType *New;
1923  if (Canon) {
1924    // We already have a canonical version of this array type; use it as
1925    // the canonical type for a newly-built type.
1926    New = new (*this, TypeAlignment)
1927      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1928                                  SizeExpr, AttrLoc);
1929  } else {
1930    QualType CanonVecTy = getCanonicalType(vecType);
1931    if (CanonVecTy == vecType) {
1932      New = new (*this, TypeAlignment)
1933        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1934                                    AttrLoc);
1935
1936      DependentSizedExtVectorType *CanonCheck
1937        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1938      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1939      (void)CanonCheck;
1940      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1941    } else {
1942      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1943                                                      SourceLocation());
1944      New = new (*this, TypeAlignment)
1945        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1946    }
1947  }
1948
1949  Types.push_back(New);
1950  return QualType(New, 0);
1951}
1952
1953/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1954///
1955QualType
1956ASTContext::getFunctionNoProtoType(QualType ResultTy,
1957                                   const FunctionType::ExtInfo &Info) const {
1958  const CallingConv DefaultCC = Info.getCC();
1959  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1960                               CC_X86StdCall : DefaultCC;
1961  // Unique functions, to guarantee there is only one function of a particular
1962  // structure.
1963  llvm::FoldingSetNodeID ID;
1964  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1965
1966  void *InsertPos = 0;
1967  if (FunctionNoProtoType *FT =
1968        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1969    return QualType(FT, 0);
1970
1971  QualType Canonical;
1972  if (!ResultTy.isCanonical() ||
1973      getCanonicalCallConv(CallConv) != CallConv) {
1974    Canonical =
1975      getFunctionNoProtoType(getCanonicalType(ResultTy),
1976                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1977
1978    // Get the new insert position for the node we care about.
1979    FunctionNoProtoType *NewIP =
1980      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1981    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1982  }
1983
1984  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1985  FunctionNoProtoType *New = new (*this, TypeAlignment)
1986    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1987  Types.push_back(New);
1988  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1989  return QualType(New, 0);
1990}
1991
1992/// getFunctionType - Return a normal function type with a typed argument
1993/// list.  isVariadic indicates whether the argument list includes '...'.
1994QualType
1995ASTContext::getFunctionType(QualType ResultTy,
1996                            const QualType *ArgArray, unsigned NumArgs,
1997                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1998  // Unique functions, to guarantee there is only one function of a particular
1999  // structure.
2000  llvm::FoldingSetNodeID ID;
2001  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2002
2003  void *InsertPos = 0;
2004  if (FunctionProtoType *FTP =
2005        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2006    return QualType(FTP, 0);
2007
2008  // Determine whether the type being created is already canonical or not.
2009  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2010  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2011    if (!ArgArray[i].isCanonicalAsParam())
2012      isCanonical = false;
2013
2014  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2015  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2016                               CC_X86StdCall : DefaultCC;
2017
2018  // If this type isn't canonical, get the canonical version of it.
2019  // The exception spec is not part of the canonical type.
2020  QualType Canonical;
2021  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2022    llvm::SmallVector<QualType, 16> CanonicalArgs;
2023    CanonicalArgs.reserve(NumArgs);
2024    for (unsigned i = 0; i != NumArgs; ++i)
2025      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2026
2027    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2028    CanonicalEPI.ExceptionSpecType = EST_None;
2029    CanonicalEPI.NumExceptions = 0;
2030    CanonicalEPI.ExtInfo
2031      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2032
2033    Canonical = getFunctionType(getCanonicalType(ResultTy),
2034                                CanonicalArgs.data(), NumArgs,
2035                                CanonicalEPI);
2036
2037    // Get the new insert position for the node we care about.
2038    FunctionProtoType *NewIP =
2039      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2040    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2041  }
2042
2043  // FunctionProtoType objects are allocated with extra bytes after them
2044  // for two variable size arrays (for parameter and exception types) at the
2045  // end of them. Instead of the exception types, there could be a noexcept
2046  // expression and a context pointer.
2047  size_t Size = sizeof(FunctionProtoType) +
2048                NumArgs * sizeof(QualType);
2049  if (EPI.ExceptionSpecType == EST_Dynamic)
2050    Size += EPI.NumExceptions * sizeof(QualType);
2051  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2052    Size += sizeof(Expr*);
2053  }
2054  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2055  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2056  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2057  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2058  Types.push_back(FTP);
2059  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2060  return QualType(FTP, 0);
2061}
2062
2063#ifndef NDEBUG
2064static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2065  if (!isa<CXXRecordDecl>(D)) return false;
2066  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2067  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2068    return true;
2069  if (RD->getDescribedClassTemplate() &&
2070      !isa<ClassTemplateSpecializationDecl>(RD))
2071    return true;
2072  return false;
2073}
2074#endif
2075
2076/// getInjectedClassNameType - Return the unique reference to the
2077/// injected class name type for the specified templated declaration.
2078QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2079                                              QualType TST) const {
2080  assert(NeedsInjectedClassNameType(Decl));
2081  if (Decl->TypeForDecl) {
2082    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2083  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2084    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2085    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2086    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2087  } else {
2088    Type *newType =
2089      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2090    Decl->TypeForDecl = newType;
2091    Types.push_back(newType);
2092  }
2093  return QualType(Decl->TypeForDecl, 0);
2094}
2095
2096/// getTypeDeclType - Return the unique reference to the type for the
2097/// specified type declaration.
2098QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2099  assert(Decl && "Passed null for Decl param");
2100  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2101
2102  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2103    return getTypedefType(Typedef);
2104
2105  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2106         "Template type parameter types are always available.");
2107
2108  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2109    assert(!Record->getPreviousDeclaration() &&
2110           "struct/union has previous declaration");
2111    assert(!NeedsInjectedClassNameType(Record));
2112    return getRecordType(Record);
2113  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2114    assert(!Enum->getPreviousDeclaration() &&
2115           "enum has previous declaration");
2116    return getEnumType(Enum);
2117  } else if (const UnresolvedUsingTypenameDecl *Using =
2118               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2119    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2120    Decl->TypeForDecl = newType;
2121    Types.push_back(newType);
2122  } else
2123    llvm_unreachable("TypeDecl without a type?");
2124
2125  return QualType(Decl->TypeForDecl, 0);
2126}
2127
2128/// getTypedefType - Return the unique reference to the type for the
2129/// specified typedef name decl.
2130QualType
2131ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2132                           QualType Canonical) const {
2133  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2134
2135  if (Canonical.isNull())
2136    Canonical = getCanonicalType(Decl->getUnderlyingType());
2137  TypedefType *newType = new(*this, TypeAlignment)
2138    TypedefType(Type::Typedef, Decl, Canonical);
2139  Decl->TypeForDecl = newType;
2140  Types.push_back(newType);
2141  return QualType(newType, 0);
2142}
2143
2144QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2145  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2146
2147  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2148    if (PrevDecl->TypeForDecl)
2149      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2150
2151  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2152  Decl->TypeForDecl = newType;
2153  Types.push_back(newType);
2154  return QualType(newType, 0);
2155}
2156
2157QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2158  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2159
2160  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2161    if (PrevDecl->TypeForDecl)
2162      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2163
2164  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2165  Decl->TypeForDecl = newType;
2166  Types.push_back(newType);
2167  return QualType(newType, 0);
2168}
2169
2170QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2171                                       QualType modifiedType,
2172                                       QualType equivalentType) {
2173  llvm::FoldingSetNodeID id;
2174  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2175
2176  void *insertPos = 0;
2177  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2178  if (type) return QualType(type, 0);
2179
2180  QualType canon = getCanonicalType(equivalentType);
2181  type = new (*this, TypeAlignment)
2182           AttributedType(canon, attrKind, modifiedType, equivalentType);
2183
2184  Types.push_back(type);
2185  AttributedTypes.InsertNode(type, insertPos);
2186
2187  return QualType(type, 0);
2188}
2189
2190
2191/// \brief Retrieve a substitution-result type.
2192QualType
2193ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2194                                         QualType Replacement) const {
2195  assert(Replacement.isCanonical()
2196         && "replacement types must always be canonical");
2197
2198  llvm::FoldingSetNodeID ID;
2199  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2200  void *InsertPos = 0;
2201  SubstTemplateTypeParmType *SubstParm
2202    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2203
2204  if (!SubstParm) {
2205    SubstParm = new (*this, TypeAlignment)
2206      SubstTemplateTypeParmType(Parm, Replacement);
2207    Types.push_back(SubstParm);
2208    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2209  }
2210
2211  return QualType(SubstParm, 0);
2212}
2213
2214/// \brief Retrieve a
2215QualType ASTContext::getSubstTemplateTypeParmPackType(
2216                                          const TemplateTypeParmType *Parm,
2217                                              const TemplateArgument &ArgPack) {
2218#ifndef NDEBUG
2219  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2220                                    PEnd = ArgPack.pack_end();
2221       P != PEnd; ++P) {
2222    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2223    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2224  }
2225#endif
2226
2227  llvm::FoldingSetNodeID ID;
2228  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2229  void *InsertPos = 0;
2230  if (SubstTemplateTypeParmPackType *SubstParm
2231        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2232    return QualType(SubstParm, 0);
2233
2234  QualType Canon;
2235  if (!Parm->isCanonicalUnqualified()) {
2236    Canon = getCanonicalType(QualType(Parm, 0));
2237    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2238                                             ArgPack);
2239    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2240  }
2241
2242  SubstTemplateTypeParmPackType *SubstParm
2243    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2244                                                               ArgPack);
2245  Types.push_back(SubstParm);
2246  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2247  return QualType(SubstParm, 0);
2248}
2249
2250/// \brief Retrieve the template type parameter type for a template
2251/// parameter or parameter pack with the given depth, index, and (optionally)
2252/// name.
2253QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2254                                             bool ParameterPack,
2255                                             TemplateTypeParmDecl *TTPDecl) const {
2256  llvm::FoldingSetNodeID ID;
2257  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2258  void *InsertPos = 0;
2259  TemplateTypeParmType *TypeParm
2260    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2261
2262  if (TypeParm)
2263    return QualType(TypeParm, 0);
2264
2265  if (TTPDecl) {
2266    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2267    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2268
2269    TemplateTypeParmType *TypeCheck
2270      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2271    assert(!TypeCheck && "Template type parameter canonical type broken");
2272    (void)TypeCheck;
2273  } else
2274    TypeParm = new (*this, TypeAlignment)
2275      TemplateTypeParmType(Depth, Index, ParameterPack);
2276
2277  Types.push_back(TypeParm);
2278  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2279
2280  return QualType(TypeParm, 0);
2281}
2282
2283TypeSourceInfo *
2284ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2285                                              SourceLocation NameLoc,
2286                                        const TemplateArgumentListInfo &Args,
2287                                              QualType Underlying) const {
2288  assert(!Name.getAsDependentTemplateName() &&
2289         "No dependent template names here!");
2290  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2291
2292  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2293  TemplateSpecializationTypeLoc TL
2294    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2295  TL.setTemplateNameLoc(NameLoc);
2296  TL.setLAngleLoc(Args.getLAngleLoc());
2297  TL.setRAngleLoc(Args.getRAngleLoc());
2298  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2299    TL.setArgLocInfo(i, Args[i].getLocInfo());
2300  return DI;
2301}
2302
2303QualType
2304ASTContext::getTemplateSpecializationType(TemplateName Template,
2305                                          const TemplateArgumentListInfo &Args,
2306                                          QualType Underlying) const {
2307  assert(!Template.getAsDependentTemplateName() &&
2308         "No dependent template names here!");
2309
2310  unsigned NumArgs = Args.size();
2311
2312  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2313  ArgVec.reserve(NumArgs);
2314  for (unsigned i = 0; i != NumArgs; ++i)
2315    ArgVec.push_back(Args[i].getArgument());
2316
2317  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2318                                       Underlying);
2319}
2320
2321QualType
2322ASTContext::getTemplateSpecializationType(TemplateName Template,
2323                                          const TemplateArgument *Args,
2324                                          unsigned NumArgs,
2325                                          QualType Underlying) const {
2326  assert(!Template.getAsDependentTemplateName() &&
2327         "No dependent template names here!");
2328  // Look through qualified template names.
2329  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2330    Template = TemplateName(QTN->getTemplateDecl());
2331
2332  bool isTypeAlias =
2333    Template.getAsTemplateDecl() &&
2334    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2335
2336  QualType CanonType;
2337  if (!Underlying.isNull())
2338    CanonType = getCanonicalType(Underlying);
2339  else {
2340    assert(!isTypeAlias &&
2341           "Underlying type for template alias must be computed by caller");
2342    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2343                                                       NumArgs);
2344  }
2345
2346  // Allocate the (non-canonical) template specialization type, but don't
2347  // try to unique it: these types typically have location information that
2348  // we don't unique and don't want to lose.
2349  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2350                       sizeof(TemplateArgument) * NumArgs +
2351                       (isTypeAlias ? sizeof(QualType) : 0),
2352                       TypeAlignment);
2353  TemplateSpecializationType *Spec
2354    = new (Mem) TemplateSpecializationType(Template,
2355                                           Args, NumArgs,
2356                                           CanonType,
2357                                         isTypeAlias ? Underlying : QualType());
2358
2359  Types.push_back(Spec);
2360  return QualType(Spec, 0);
2361}
2362
2363QualType
2364ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2365                                                   const TemplateArgument *Args,
2366                                                   unsigned NumArgs) const {
2367  assert(!Template.getAsDependentTemplateName() &&
2368         "No dependent template names here!");
2369  assert((!Template.getAsTemplateDecl() ||
2370          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2371         "Underlying type for template alias must be computed by caller");
2372
2373  // Look through qualified template names.
2374  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2375    Template = TemplateName(QTN->getTemplateDecl());
2376
2377  // Build the canonical template specialization type.
2378  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2379  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2380  CanonArgs.reserve(NumArgs);
2381  for (unsigned I = 0; I != NumArgs; ++I)
2382    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2383
2384  // Determine whether this canonical template specialization type already
2385  // exists.
2386  llvm::FoldingSetNodeID ID;
2387  TemplateSpecializationType::Profile(ID, CanonTemplate,
2388                                      CanonArgs.data(), NumArgs, *this);
2389
2390  void *InsertPos = 0;
2391  TemplateSpecializationType *Spec
2392    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2393
2394  if (!Spec) {
2395    // Allocate a new canonical template specialization type.
2396    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2397                          sizeof(TemplateArgument) * NumArgs),
2398                         TypeAlignment);
2399    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2400                                                CanonArgs.data(), NumArgs,
2401                                                QualType(), QualType());
2402    Types.push_back(Spec);
2403    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2404  }
2405
2406  assert(Spec->isDependentType() &&
2407         "Non-dependent template-id type must have a canonical type");
2408  return QualType(Spec, 0);
2409}
2410
2411QualType
2412ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2413                              NestedNameSpecifier *NNS,
2414                              QualType NamedType) const {
2415  llvm::FoldingSetNodeID ID;
2416  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2417
2418  void *InsertPos = 0;
2419  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2420  if (T)
2421    return QualType(T, 0);
2422
2423  QualType Canon = NamedType;
2424  if (!Canon.isCanonical()) {
2425    Canon = getCanonicalType(NamedType);
2426    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2427    assert(!CheckT && "Elaborated canonical type broken");
2428    (void)CheckT;
2429  }
2430
2431  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2432  Types.push_back(T);
2433  ElaboratedTypes.InsertNode(T, InsertPos);
2434  return QualType(T, 0);
2435}
2436
2437QualType
2438ASTContext::getParenType(QualType InnerType) const {
2439  llvm::FoldingSetNodeID ID;
2440  ParenType::Profile(ID, InnerType);
2441
2442  void *InsertPos = 0;
2443  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2444  if (T)
2445    return QualType(T, 0);
2446
2447  QualType Canon = InnerType;
2448  if (!Canon.isCanonical()) {
2449    Canon = getCanonicalType(InnerType);
2450    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2451    assert(!CheckT && "Paren canonical type broken");
2452    (void)CheckT;
2453  }
2454
2455  T = new (*this) ParenType(InnerType, Canon);
2456  Types.push_back(T);
2457  ParenTypes.InsertNode(T, InsertPos);
2458  return QualType(T, 0);
2459}
2460
2461QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2462                                          NestedNameSpecifier *NNS,
2463                                          const IdentifierInfo *Name,
2464                                          QualType Canon) const {
2465  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2466
2467  if (Canon.isNull()) {
2468    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2469    ElaboratedTypeKeyword CanonKeyword = Keyword;
2470    if (Keyword == ETK_None)
2471      CanonKeyword = ETK_Typename;
2472
2473    if (CanonNNS != NNS || CanonKeyword != Keyword)
2474      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2475  }
2476
2477  llvm::FoldingSetNodeID ID;
2478  DependentNameType::Profile(ID, Keyword, NNS, Name);
2479
2480  void *InsertPos = 0;
2481  DependentNameType *T
2482    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2483  if (T)
2484    return QualType(T, 0);
2485
2486  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2487  Types.push_back(T);
2488  DependentNameTypes.InsertNode(T, InsertPos);
2489  return QualType(T, 0);
2490}
2491
2492QualType
2493ASTContext::getDependentTemplateSpecializationType(
2494                                 ElaboratedTypeKeyword Keyword,
2495                                 NestedNameSpecifier *NNS,
2496                                 const IdentifierInfo *Name,
2497                                 const TemplateArgumentListInfo &Args) const {
2498  // TODO: avoid this copy
2499  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2500  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2501    ArgCopy.push_back(Args[I].getArgument());
2502  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2503                                                ArgCopy.size(),
2504                                                ArgCopy.data());
2505}
2506
2507QualType
2508ASTContext::getDependentTemplateSpecializationType(
2509                                 ElaboratedTypeKeyword Keyword,
2510                                 NestedNameSpecifier *NNS,
2511                                 const IdentifierInfo *Name,
2512                                 unsigned NumArgs,
2513                                 const TemplateArgument *Args) const {
2514  assert((!NNS || NNS->isDependent()) &&
2515         "nested-name-specifier must be dependent");
2516
2517  llvm::FoldingSetNodeID ID;
2518  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2519                                               Name, NumArgs, Args);
2520
2521  void *InsertPos = 0;
2522  DependentTemplateSpecializationType *T
2523    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2524  if (T)
2525    return QualType(T, 0);
2526
2527  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2528
2529  ElaboratedTypeKeyword CanonKeyword = Keyword;
2530  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2531
2532  bool AnyNonCanonArgs = false;
2533  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2534  for (unsigned I = 0; I != NumArgs; ++I) {
2535    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2536    if (!CanonArgs[I].structurallyEquals(Args[I]))
2537      AnyNonCanonArgs = true;
2538  }
2539
2540  QualType Canon;
2541  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2542    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2543                                                   Name, NumArgs,
2544                                                   CanonArgs.data());
2545
2546    // Find the insert position again.
2547    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2548  }
2549
2550  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2551                        sizeof(TemplateArgument) * NumArgs),
2552                       TypeAlignment);
2553  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2554                                                    Name, NumArgs, Args, Canon);
2555  Types.push_back(T);
2556  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2557  return QualType(T, 0);
2558}
2559
2560QualType ASTContext::getPackExpansionType(QualType Pattern,
2561                                      llvm::Optional<unsigned> NumExpansions) {
2562  llvm::FoldingSetNodeID ID;
2563  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2564
2565  assert(Pattern->containsUnexpandedParameterPack() &&
2566         "Pack expansions must expand one or more parameter packs");
2567  void *InsertPos = 0;
2568  PackExpansionType *T
2569    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2570  if (T)
2571    return QualType(T, 0);
2572
2573  QualType Canon;
2574  if (!Pattern.isCanonical()) {
2575    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2576
2577    // Find the insert position again.
2578    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2579  }
2580
2581  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2582  Types.push_back(T);
2583  PackExpansionTypes.InsertNode(T, InsertPos);
2584  return QualType(T, 0);
2585}
2586
2587/// CmpProtocolNames - Comparison predicate for sorting protocols
2588/// alphabetically.
2589static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2590                            const ObjCProtocolDecl *RHS) {
2591  return LHS->getDeclName() < RHS->getDeclName();
2592}
2593
2594static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2595                                unsigned NumProtocols) {
2596  if (NumProtocols == 0) return true;
2597
2598  for (unsigned i = 1; i != NumProtocols; ++i)
2599    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2600      return false;
2601  return true;
2602}
2603
2604static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2605                                   unsigned &NumProtocols) {
2606  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2607
2608  // Sort protocols, keyed by name.
2609  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2610
2611  // Remove duplicates.
2612  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2613  NumProtocols = ProtocolsEnd-Protocols;
2614}
2615
2616QualType ASTContext::getObjCObjectType(QualType BaseType,
2617                                       ObjCProtocolDecl * const *Protocols,
2618                                       unsigned NumProtocols) const {
2619  // If the base type is an interface and there aren't any protocols
2620  // to add, then the interface type will do just fine.
2621  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2622    return BaseType;
2623
2624  // Look in the folding set for an existing type.
2625  llvm::FoldingSetNodeID ID;
2626  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2627  void *InsertPos = 0;
2628  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2629    return QualType(QT, 0);
2630
2631  // Build the canonical type, which has the canonical base type and
2632  // a sorted-and-uniqued list of protocols.
2633  QualType Canonical;
2634  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2635  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2636    if (!ProtocolsSorted) {
2637      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2638                                                     Protocols + NumProtocols);
2639      unsigned UniqueCount = NumProtocols;
2640
2641      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2642      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2643                                    &Sorted[0], UniqueCount);
2644    } else {
2645      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2646                                    Protocols, NumProtocols);
2647    }
2648
2649    // Regenerate InsertPos.
2650    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2651  }
2652
2653  unsigned Size = sizeof(ObjCObjectTypeImpl);
2654  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2655  void *Mem = Allocate(Size, TypeAlignment);
2656  ObjCObjectTypeImpl *T =
2657    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2658
2659  Types.push_back(T);
2660  ObjCObjectTypes.InsertNode(T, InsertPos);
2661  return QualType(T, 0);
2662}
2663
2664/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2665/// the given object type.
2666QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2667  llvm::FoldingSetNodeID ID;
2668  ObjCObjectPointerType::Profile(ID, ObjectT);
2669
2670  void *InsertPos = 0;
2671  if (ObjCObjectPointerType *QT =
2672              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2673    return QualType(QT, 0);
2674
2675  // Find the canonical object type.
2676  QualType Canonical;
2677  if (!ObjectT.isCanonical()) {
2678    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2679
2680    // Regenerate InsertPos.
2681    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2682  }
2683
2684  // No match.
2685  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2686  ObjCObjectPointerType *QType =
2687    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2688
2689  Types.push_back(QType);
2690  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2691  return QualType(QType, 0);
2692}
2693
2694/// getObjCInterfaceType - Return the unique reference to the type for the
2695/// specified ObjC interface decl. The list of protocols is optional.
2696QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2697  if (Decl->TypeForDecl)
2698    return QualType(Decl->TypeForDecl, 0);
2699
2700  // FIXME: redeclarations?
2701  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2702  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2703  Decl->TypeForDecl = T;
2704  Types.push_back(T);
2705  return QualType(T, 0);
2706}
2707
2708/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2709/// TypeOfExprType AST's (since expression's are never shared). For example,
2710/// multiple declarations that refer to "typeof(x)" all contain different
2711/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2712/// on canonical type's (which are always unique).
2713QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2714  TypeOfExprType *toe;
2715  if (tofExpr->isTypeDependent()) {
2716    llvm::FoldingSetNodeID ID;
2717    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2718
2719    void *InsertPos = 0;
2720    DependentTypeOfExprType *Canon
2721      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2722    if (Canon) {
2723      // We already have a "canonical" version of an identical, dependent
2724      // typeof(expr) type. Use that as our canonical type.
2725      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2726                                          QualType((TypeOfExprType*)Canon, 0));
2727    }
2728    else {
2729      // Build a new, canonical typeof(expr) type.
2730      Canon
2731        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2732      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2733      toe = Canon;
2734    }
2735  } else {
2736    QualType Canonical = getCanonicalType(tofExpr->getType());
2737    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2738  }
2739  Types.push_back(toe);
2740  return QualType(toe, 0);
2741}
2742
2743/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2744/// TypeOfType AST's. The only motivation to unique these nodes would be
2745/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2746/// an issue. This doesn't effect the type checker, since it operates
2747/// on canonical type's (which are always unique).
2748QualType ASTContext::getTypeOfType(QualType tofType) const {
2749  QualType Canonical = getCanonicalType(tofType);
2750  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2751  Types.push_back(tot);
2752  return QualType(tot, 0);
2753}
2754
2755/// getDecltypeForExpr - Given an expr, will return the decltype for that
2756/// expression, according to the rules in C++0x [dcl.type.simple]p4
2757static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2758  if (e->isTypeDependent())
2759    return Context.DependentTy;
2760
2761  // If e is an id expression or a class member access, decltype(e) is defined
2762  // as the type of the entity named by e.
2763  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2764    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2765      return VD->getType();
2766  }
2767  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2768    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2769      return FD->getType();
2770  }
2771  // If e is a function call or an invocation of an overloaded operator,
2772  // (parentheses around e are ignored), decltype(e) is defined as the
2773  // return type of that function.
2774  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2775    return CE->getCallReturnType();
2776
2777  QualType T = e->getType();
2778
2779  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2780  // defined as T&, otherwise decltype(e) is defined as T.
2781  if (e->isLValue())
2782    T = Context.getLValueReferenceType(T);
2783
2784  return T;
2785}
2786
2787/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2788/// DecltypeType AST's. The only motivation to unique these nodes would be
2789/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2790/// an issue. This doesn't effect the type checker, since it operates
2791/// on canonical type's (which are always unique).
2792QualType ASTContext::getDecltypeType(Expr *e) const {
2793  DecltypeType *dt;
2794  if (e->isTypeDependent()) {
2795    llvm::FoldingSetNodeID ID;
2796    DependentDecltypeType::Profile(ID, *this, e);
2797
2798    void *InsertPos = 0;
2799    DependentDecltypeType *Canon
2800      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2801    if (Canon) {
2802      // We already have a "canonical" version of an equivalent, dependent
2803      // decltype type. Use that as our canonical type.
2804      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2805                                       QualType((DecltypeType*)Canon, 0));
2806    }
2807    else {
2808      // Build a new, canonical typeof(expr) type.
2809      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2810      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2811      dt = Canon;
2812    }
2813  } else {
2814    QualType T = getDecltypeForExpr(e, *this);
2815    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2816  }
2817  Types.push_back(dt);
2818  return QualType(dt, 0);
2819}
2820
2821/// getUnaryTransformationType - We don't unique these, since the memory
2822/// savings are minimal and these are rare.
2823QualType ASTContext::getUnaryTransformType(QualType BaseType,
2824                                           QualType UnderlyingType,
2825                                           UnaryTransformType::UTTKind Kind)
2826    const {
2827  UnaryTransformType *Ty =
2828    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2829                                                   Kind,
2830                                 UnderlyingType->isDependentType() ?
2831                                    QualType() : UnderlyingType);
2832  Types.push_back(Ty);
2833  return QualType(Ty, 0);
2834}
2835
2836/// getAutoType - We only unique auto types after they've been deduced.
2837QualType ASTContext::getAutoType(QualType DeducedType) const {
2838  void *InsertPos = 0;
2839  if (!DeducedType.isNull()) {
2840    // Look in the folding set for an existing type.
2841    llvm::FoldingSetNodeID ID;
2842    AutoType::Profile(ID, DeducedType);
2843    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2844      return QualType(AT, 0);
2845  }
2846
2847  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2848  Types.push_back(AT);
2849  if (InsertPos)
2850    AutoTypes.InsertNode(AT, InsertPos);
2851  return QualType(AT, 0);
2852}
2853
2854/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2855QualType ASTContext::getAutoDeductType() const {
2856  if (AutoDeductTy.isNull())
2857    AutoDeductTy = getAutoType(QualType());
2858  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2859  return AutoDeductTy;
2860}
2861
2862/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2863QualType ASTContext::getAutoRRefDeductType() const {
2864  if (AutoRRefDeductTy.isNull())
2865    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2866  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2867  return AutoRRefDeductTy;
2868}
2869
2870/// getTagDeclType - Return the unique reference to the type for the
2871/// specified TagDecl (struct/union/class/enum) decl.
2872QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2873  assert (Decl);
2874  // FIXME: What is the design on getTagDeclType when it requires casting
2875  // away const?  mutable?
2876  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2877}
2878
2879/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2880/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2881/// needs to agree with the definition in <stddef.h>.
2882CanQualType ASTContext::getSizeType() const {
2883  return getFromTargetType(Target.getSizeType());
2884}
2885
2886/// getSignedWCharType - Return the type of "signed wchar_t".
2887/// Used when in C++, as a GCC extension.
2888QualType ASTContext::getSignedWCharType() const {
2889  // FIXME: derive from "Target" ?
2890  return WCharTy;
2891}
2892
2893/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2894/// Used when in C++, as a GCC extension.
2895QualType ASTContext::getUnsignedWCharType() const {
2896  // FIXME: derive from "Target" ?
2897  return UnsignedIntTy;
2898}
2899
2900/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2901/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2902QualType ASTContext::getPointerDiffType() const {
2903  return getFromTargetType(Target.getPtrDiffType(0));
2904}
2905
2906//===----------------------------------------------------------------------===//
2907//                              Type Operators
2908//===----------------------------------------------------------------------===//
2909
2910CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2911  // Push qualifiers into arrays, and then discard any remaining
2912  // qualifiers.
2913  T = getCanonicalType(T);
2914  T = getVariableArrayDecayedType(T);
2915  const Type *Ty = T.getTypePtr();
2916  QualType Result;
2917  if (isa<ArrayType>(Ty)) {
2918    Result = getArrayDecayedType(QualType(Ty,0));
2919  } else if (isa<FunctionType>(Ty)) {
2920    Result = getPointerType(QualType(Ty, 0));
2921  } else {
2922    Result = QualType(Ty, 0);
2923  }
2924
2925  return CanQualType::CreateUnsafe(Result);
2926}
2927
2928
2929QualType ASTContext::getUnqualifiedArrayType(QualType type,
2930                                             Qualifiers &quals) {
2931  SplitQualType splitType = type.getSplitUnqualifiedType();
2932
2933  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2934  // the unqualified desugared type and then drops it on the floor.
2935  // We then have to strip that sugar back off with
2936  // getUnqualifiedDesugaredType(), which is silly.
2937  const ArrayType *AT =
2938    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2939
2940  // If we don't have an array, just use the results in splitType.
2941  if (!AT) {
2942    quals = splitType.second;
2943    return QualType(splitType.first, 0);
2944  }
2945
2946  // Otherwise, recurse on the array's element type.
2947  QualType elementType = AT->getElementType();
2948  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2949
2950  // If that didn't change the element type, AT has no qualifiers, so we
2951  // can just use the results in splitType.
2952  if (elementType == unqualElementType) {
2953    assert(quals.empty()); // from the recursive call
2954    quals = splitType.second;
2955    return QualType(splitType.first, 0);
2956  }
2957
2958  // Otherwise, add in the qualifiers from the outermost type, then
2959  // build the type back up.
2960  quals.addConsistentQualifiers(splitType.second);
2961
2962  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2963    return getConstantArrayType(unqualElementType, CAT->getSize(),
2964                                CAT->getSizeModifier(), 0);
2965  }
2966
2967  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2968    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2969  }
2970
2971  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2972    return getVariableArrayType(unqualElementType,
2973                                VAT->getSizeExpr(),
2974                                VAT->getSizeModifier(),
2975                                VAT->getIndexTypeCVRQualifiers(),
2976                                VAT->getBracketsRange());
2977  }
2978
2979  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2980  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2981                                    DSAT->getSizeModifier(), 0,
2982                                    SourceRange());
2983}
2984
2985/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2986/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2987/// they point to and return true. If T1 and T2 aren't pointer types
2988/// or pointer-to-member types, or if they are not similar at this
2989/// level, returns false and leaves T1 and T2 unchanged. Top-level
2990/// qualifiers on T1 and T2 are ignored. This function will typically
2991/// be called in a loop that successively "unwraps" pointer and
2992/// pointer-to-member types to compare them at each level.
2993bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2994  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2995                    *T2PtrType = T2->getAs<PointerType>();
2996  if (T1PtrType && T2PtrType) {
2997    T1 = T1PtrType->getPointeeType();
2998    T2 = T2PtrType->getPointeeType();
2999    return true;
3000  }
3001
3002  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3003                          *T2MPType = T2->getAs<MemberPointerType>();
3004  if (T1MPType && T2MPType &&
3005      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3006                             QualType(T2MPType->getClass(), 0))) {
3007    T1 = T1MPType->getPointeeType();
3008    T2 = T2MPType->getPointeeType();
3009    return true;
3010  }
3011
3012  if (getLangOptions().ObjC1) {
3013    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3014                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3015    if (T1OPType && T2OPType) {
3016      T1 = T1OPType->getPointeeType();
3017      T2 = T2OPType->getPointeeType();
3018      return true;
3019    }
3020  }
3021
3022  // FIXME: Block pointers, too?
3023
3024  return false;
3025}
3026
3027DeclarationNameInfo
3028ASTContext::getNameForTemplate(TemplateName Name,
3029                               SourceLocation NameLoc) const {
3030  if (TemplateDecl *TD = Name.getAsTemplateDecl())
3031    // DNInfo work in progress: CHECKME: what about DNLoc?
3032    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
3033
3034  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
3035    DeclarationName DName;
3036    if (DTN->isIdentifier()) {
3037      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3038      return DeclarationNameInfo(DName, NameLoc);
3039    } else {
3040      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3041      // DNInfo work in progress: FIXME: source locations?
3042      DeclarationNameLoc DNLoc;
3043      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3044      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3045      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3046    }
3047  }
3048
3049  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3050  assert(Storage);
3051  // DNInfo work in progress: CHECKME: what about DNLoc?
3052  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3053}
3054
3055TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3056  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3057    if (TemplateTemplateParmDecl *TTP
3058                              = dyn_cast<TemplateTemplateParmDecl>(Template))
3059      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3060
3061    // The canonical template name is the canonical template declaration.
3062    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3063  }
3064
3065  if (SubstTemplateTemplateParmPackStorage *SubstPack
3066                                  = Name.getAsSubstTemplateTemplateParmPack()) {
3067    TemplateTemplateParmDecl *CanonParam
3068      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
3069    TemplateArgument CanonArgPack
3070      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
3071    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
3072  }
3073
3074  assert(!Name.getAsOverloadedTemplate());
3075
3076  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3077  assert(DTN && "Non-dependent template names must refer to template decls.");
3078  return DTN->CanonicalTemplateName;
3079}
3080
3081bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3082  X = getCanonicalTemplateName(X);
3083  Y = getCanonicalTemplateName(Y);
3084  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3085}
3086
3087TemplateArgument
3088ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3089  switch (Arg.getKind()) {
3090    case TemplateArgument::Null:
3091      return Arg;
3092
3093    case TemplateArgument::Expression:
3094      return Arg;
3095
3096    case TemplateArgument::Declaration:
3097      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3098
3099    case TemplateArgument::Template:
3100      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3101
3102    case TemplateArgument::TemplateExpansion:
3103      return TemplateArgument(getCanonicalTemplateName(
3104                                         Arg.getAsTemplateOrTemplatePattern()),
3105                              Arg.getNumTemplateExpansions());
3106
3107    case TemplateArgument::Integral:
3108      return TemplateArgument(*Arg.getAsIntegral(),
3109                              getCanonicalType(Arg.getIntegralType()));
3110
3111    case TemplateArgument::Type:
3112      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3113
3114    case TemplateArgument::Pack: {
3115      if (Arg.pack_size() == 0)
3116        return Arg;
3117
3118      TemplateArgument *CanonArgs
3119        = new (*this) TemplateArgument[Arg.pack_size()];
3120      unsigned Idx = 0;
3121      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3122                                        AEnd = Arg.pack_end();
3123           A != AEnd; (void)++A, ++Idx)
3124        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3125
3126      return TemplateArgument(CanonArgs, Arg.pack_size());
3127    }
3128  }
3129
3130  // Silence GCC warning
3131  assert(false && "Unhandled template argument kind");
3132  return TemplateArgument();
3133}
3134
3135NestedNameSpecifier *
3136ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3137  if (!NNS)
3138    return 0;
3139
3140  switch (NNS->getKind()) {
3141  case NestedNameSpecifier::Identifier:
3142    // Canonicalize the prefix but keep the identifier the same.
3143    return NestedNameSpecifier::Create(*this,
3144                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3145                                       NNS->getAsIdentifier());
3146
3147  case NestedNameSpecifier::Namespace:
3148    // A namespace is canonical; build a nested-name-specifier with
3149    // this namespace and no prefix.
3150    return NestedNameSpecifier::Create(*this, 0,
3151                                 NNS->getAsNamespace()->getOriginalNamespace());
3152
3153  case NestedNameSpecifier::NamespaceAlias:
3154    // A namespace is canonical; build a nested-name-specifier with
3155    // this namespace and no prefix.
3156    return NestedNameSpecifier::Create(*this, 0,
3157                                    NNS->getAsNamespaceAlias()->getNamespace()
3158                                                      ->getOriginalNamespace());
3159
3160  case NestedNameSpecifier::TypeSpec:
3161  case NestedNameSpecifier::TypeSpecWithTemplate: {
3162    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3163
3164    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3165    // break it apart into its prefix and identifier, then reconsititute those
3166    // as the canonical nested-name-specifier. This is required to canonicalize
3167    // a dependent nested-name-specifier involving typedefs of dependent-name
3168    // types, e.g.,
3169    //   typedef typename T::type T1;
3170    //   typedef typename T1::type T2;
3171    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3172      NestedNameSpecifier *Prefix
3173        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3174      return NestedNameSpecifier::Create(*this, Prefix,
3175                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3176    }
3177
3178    // Do the same thing as above, but with dependent-named specializations.
3179    if (const DependentTemplateSpecializationType *DTST
3180          = T->getAs<DependentTemplateSpecializationType>()) {
3181      NestedNameSpecifier *Prefix
3182        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3183
3184      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3185                                                 Prefix, DTST->getIdentifier(),
3186                                                 DTST->getNumArgs(),
3187                                                 DTST->getArgs());
3188      T = getCanonicalType(T);
3189    }
3190
3191    return NestedNameSpecifier::Create(*this, 0, false,
3192                                       const_cast<Type*>(T.getTypePtr()));
3193  }
3194
3195  case NestedNameSpecifier::Global:
3196    // The global specifier is canonical and unique.
3197    return NNS;
3198  }
3199
3200  // Required to silence a GCC warning
3201  return 0;
3202}
3203
3204
3205const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3206  // Handle the non-qualified case efficiently.
3207  if (!T.hasLocalQualifiers()) {
3208    // Handle the common positive case fast.
3209    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3210      return AT;
3211  }
3212
3213  // Handle the common negative case fast.
3214  if (!isa<ArrayType>(T.getCanonicalType()))
3215    return 0;
3216
3217  // Apply any qualifiers from the array type to the element type.  This
3218  // implements C99 6.7.3p8: "If the specification of an array type includes
3219  // any type qualifiers, the element type is so qualified, not the array type."
3220
3221  // If we get here, we either have type qualifiers on the type, or we have
3222  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3223  // we must propagate them down into the element type.
3224
3225  SplitQualType split = T.getSplitDesugaredType();
3226  Qualifiers qs = split.second;
3227
3228  // If we have a simple case, just return now.
3229  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3230  if (ATy == 0 || qs.empty())
3231    return ATy;
3232
3233  // Otherwise, we have an array and we have qualifiers on it.  Push the
3234  // qualifiers into the array element type and return a new array type.
3235  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3236
3237  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3238    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3239                                                CAT->getSizeModifier(),
3240                                           CAT->getIndexTypeCVRQualifiers()));
3241  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3242    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3243                                                  IAT->getSizeModifier(),
3244                                           IAT->getIndexTypeCVRQualifiers()));
3245
3246  if (const DependentSizedArrayType *DSAT
3247        = dyn_cast<DependentSizedArrayType>(ATy))
3248    return cast<ArrayType>(
3249                     getDependentSizedArrayType(NewEltTy,
3250                                                DSAT->getSizeExpr(),
3251                                                DSAT->getSizeModifier(),
3252                                              DSAT->getIndexTypeCVRQualifiers(),
3253                                                DSAT->getBracketsRange()));
3254
3255  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3256  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3257                                              VAT->getSizeExpr(),
3258                                              VAT->getSizeModifier(),
3259                                              VAT->getIndexTypeCVRQualifiers(),
3260                                              VAT->getBracketsRange()));
3261}
3262
3263/// getArrayDecayedType - Return the properly qualified result of decaying the
3264/// specified array type to a pointer.  This operation is non-trivial when
3265/// handling typedefs etc.  The canonical type of "T" must be an array type,
3266/// this returns a pointer to a properly qualified element of the array.
3267///
3268/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3269QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3270  // Get the element type with 'getAsArrayType' so that we don't lose any
3271  // typedefs in the element type of the array.  This also handles propagation
3272  // of type qualifiers from the array type into the element type if present
3273  // (C99 6.7.3p8).
3274  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3275  assert(PrettyArrayType && "Not an array type!");
3276
3277  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3278
3279  // int x[restrict 4] ->  int *restrict
3280  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3281}
3282
3283QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3284  return getBaseElementType(array->getElementType());
3285}
3286
3287QualType ASTContext::getBaseElementType(QualType type) const {
3288  Qualifiers qs;
3289  while (true) {
3290    SplitQualType split = type.getSplitDesugaredType();
3291    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3292    if (!array) break;
3293
3294    type = array->getElementType();
3295    qs.addConsistentQualifiers(split.second);
3296  }
3297
3298  return getQualifiedType(type, qs);
3299}
3300
3301/// getConstantArrayElementCount - Returns number of constant array elements.
3302uint64_t
3303ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3304  uint64_t ElementCount = 1;
3305  do {
3306    ElementCount *= CA->getSize().getZExtValue();
3307    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3308  } while (CA);
3309  return ElementCount;
3310}
3311
3312/// getFloatingRank - Return a relative rank for floating point types.
3313/// This routine will assert if passed a built-in type that isn't a float.
3314static FloatingRank getFloatingRank(QualType T) {
3315  if (const ComplexType *CT = T->getAs<ComplexType>())
3316    return getFloatingRank(CT->getElementType());
3317
3318  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3319  switch (T->getAs<BuiltinType>()->getKind()) {
3320  default: assert(0 && "getFloatingRank(): not a floating type");
3321  case BuiltinType::Float:      return FloatRank;
3322  case BuiltinType::Double:     return DoubleRank;
3323  case BuiltinType::LongDouble: return LongDoubleRank;
3324  }
3325}
3326
3327/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3328/// point or a complex type (based on typeDomain/typeSize).
3329/// 'typeDomain' is a real floating point or complex type.
3330/// 'typeSize' is a real floating point or complex type.
3331QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3332                                                       QualType Domain) const {
3333  FloatingRank EltRank = getFloatingRank(Size);
3334  if (Domain->isComplexType()) {
3335    switch (EltRank) {
3336    default: assert(0 && "getFloatingRank(): illegal value for rank");
3337    case FloatRank:      return FloatComplexTy;
3338    case DoubleRank:     return DoubleComplexTy;
3339    case LongDoubleRank: return LongDoubleComplexTy;
3340    }
3341  }
3342
3343  assert(Domain->isRealFloatingType() && "Unknown domain!");
3344  switch (EltRank) {
3345  default: assert(0 && "getFloatingRank(): illegal value for rank");
3346  case FloatRank:      return FloatTy;
3347  case DoubleRank:     return DoubleTy;
3348  case LongDoubleRank: return LongDoubleTy;
3349  }
3350}
3351
3352/// getFloatingTypeOrder - Compare the rank of the two specified floating
3353/// point types, ignoring the domain of the type (i.e. 'double' ==
3354/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3355/// LHS < RHS, return -1.
3356int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3357  FloatingRank LHSR = getFloatingRank(LHS);
3358  FloatingRank RHSR = getFloatingRank(RHS);
3359
3360  if (LHSR == RHSR)
3361    return 0;
3362  if (LHSR > RHSR)
3363    return 1;
3364  return -1;
3365}
3366
3367/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3368/// routine will assert if passed a built-in type that isn't an integer or enum,
3369/// or if it is not canonicalized.
3370unsigned ASTContext::getIntegerRank(const Type *T) const {
3371  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3372  if (const EnumType* ET = dyn_cast<EnumType>(T))
3373    T = ET->getDecl()->getPromotionType().getTypePtr();
3374
3375  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3376      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3377    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3378
3379  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3380    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3381
3382  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3383    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3384
3385  switch (cast<BuiltinType>(T)->getKind()) {
3386  default: assert(0 && "getIntegerRank(): not a built-in integer");
3387  case BuiltinType::Bool:
3388    return 1 + (getIntWidth(BoolTy) << 3);
3389  case BuiltinType::Char_S:
3390  case BuiltinType::Char_U:
3391  case BuiltinType::SChar:
3392  case BuiltinType::UChar:
3393    return 2 + (getIntWidth(CharTy) << 3);
3394  case BuiltinType::Short:
3395  case BuiltinType::UShort:
3396    return 3 + (getIntWidth(ShortTy) << 3);
3397  case BuiltinType::Int:
3398  case BuiltinType::UInt:
3399    return 4 + (getIntWidth(IntTy) << 3);
3400  case BuiltinType::Long:
3401  case BuiltinType::ULong:
3402    return 5 + (getIntWidth(LongTy) << 3);
3403  case BuiltinType::LongLong:
3404  case BuiltinType::ULongLong:
3405    return 6 + (getIntWidth(LongLongTy) << 3);
3406  case BuiltinType::Int128:
3407  case BuiltinType::UInt128:
3408    return 7 + (getIntWidth(Int128Ty) << 3);
3409  }
3410}
3411
3412/// \brief Whether this is a promotable bitfield reference according
3413/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3414///
3415/// \returns the type this bit-field will promote to, or NULL if no
3416/// promotion occurs.
3417QualType ASTContext::isPromotableBitField(Expr *E) const {
3418  if (E->isTypeDependent() || E->isValueDependent())
3419    return QualType();
3420
3421  FieldDecl *Field = E->getBitField();
3422  if (!Field)
3423    return QualType();
3424
3425  QualType FT = Field->getType();
3426
3427  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3428  uint64_t BitWidth = BitWidthAP.getZExtValue();
3429  uint64_t IntSize = getTypeSize(IntTy);
3430  // GCC extension compatibility: if the bit-field size is less than or equal
3431  // to the size of int, it gets promoted no matter what its type is.
3432  // For instance, unsigned long bf : 4 gets promoted to signed int.
3433  if (BitWidth < IntSize)
3434    return IntTy;
3435
3436  if (BitWidth == IntSize)
3437    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3438
3439  // Types bigger than int are not subject to promotions, and therefore act
3440  // like the base type.
3441  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3442  // is ridiculous.
3443  return QualType();
3444}
3445
3446/// getPromotedIntegerType - Returns the type that Promotable will
3447/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3448/// integer type.
3449QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3450  assert(!Promotable.isNull());
3451  assert(Promotable->isPromotableIntegerType());
3452  if (const EnumType *ET = Promotable->getAs<EnumType>())
3453    return ET->getDecl()->getPromotionType();
3454  if (Promotable->isSignedIntegerType())
3455    return IntTy;
3456  uint64_t PromotableSize = getTypeSize(Promotable);
3457  uint64_t IntSize = getTypeSize(IntTy);
3458  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3459  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3460}
3461
3462/// getIntegerTypeOrder - Returns the highest ranked integer type:
3463/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3464/// LHS < RHS, return -1.
3465int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3466  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3467  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3468  if (LHSC == RHSC) return 0;
3469
3470  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3471  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3472
3473  unsigned LHSRank = getIntegerRank(LHSC);
3474  unsigned RHSRank = getIntegerRank(RHSC);
3475
3476  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3477    if (LHSRank == RHSRank) return 0;
3478    return LHSRank > RHSRank ? 1 : -1;
3479  }
3480
3481  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3482  if (LHSUnsigned) {
3483    // If the unsigned [LHS] type is larger, return it.
3484    if (LHSRank >= RHSRank)
3485      return 1;
3486
3487    // If the signed type can represent all values of the unsigned type, it
3488    // wins.  Because we are dealing with 2's complement and types that are
3489    // powers of two larger than each other, this is always safe.
3490    return -1;
3491  }
3492
3493  // If the unsigned [RHS] type is larger, return it.
3494  if (RHSRank >= LHSRank)
3495    return -1;
3496
3497  // If the signed type can represent all values of the unsigned type, it
3498  // wins.  Because we are dealing with 2's complement and types that are
3499  // powers of two larger than each other, this is always safe.
3500  return 1;
3501}
3502
3503static RecordDecl *
3504CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3505                 DeclContext *DC, IdentifierInfo *Id) {
3506  SourceLocation Loc;
3507  if (Ctx.getLangOptions().CPlusPlus)
3508    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3509  else
3510    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3511}
3512
3513// getCFConstantStringType - Return the type used for constant CFStrings.
3514QualType ASTContext::getCFConstantStringType() const {
3515  if (!CFConstantStringTypeDecl) {
3516    CFConstantStringTypeDecl =
3517      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3518                       &Idents.get("NSConstantString"));
3519    CFConstantStringTypeDecl->startDefinition();
3520
3521    QualType FieldTypes[4];
3522
3523    // const int *isa;
3524    FieldTypes[0] = getPointerType(IntTy.withConst());
3525    // int flags;
3526    FieldTypes[1] = IntTy;
3527    // const char *str;
3528    FieldTypes[2] = getPointerType(CharTy.withConst());
3529    // long length;
3530    FieldTypes[3] = LongTy;
3531
3532    // Create fields
3533    for (unsigned i = 0; i < 4; ++i) {
3534      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3535                                           SourceLocation(),
3536                                           SourceLocation(), 0,
3537                                           FieldTypes[i], /*TInfo=*/0,
3538                                           /*BitWidth=*/0,
3539                                           /*Mutable=*/false);
3540      Field->setAccess(AS_public);
3541      CFConstantStringTypeDecl->addDecl(Field);
3542    }
3543
3544    CFConstantStringTypeDecl->completeDefinition();
3545  }
3546
3547  return getTagDeclType(CFConstantStringTypeDecl);
3548}
3549
3550void ASTContext::setCFConstantStringType(QualType T) {
3551  const RecordType *Rec = T->getAs<RecordType>();
3552  assert(Rec && "Invalid CFConstantStringType");
3553  CFConstantStringTypeDecl = Rec->getDecl();
3554}
3555
3556// getNSConstantStringType - Return the type used for constant NSStrings.
3557QualType ASTContext::getNSConstantStringType() const {
3558  if (!NSConstantStringTypeDecl) {
3559    NSConstantStringTypeDecl =
3560    CreateRecordDecl(*this, TTK_Struct, TUDecl,
3561                     &Idents.get("__builtin_NSString"));
3562    NSConstantStringTypeDecl->startDefinition();
3563
3564    QualType FieldTypes[3];
3565
3566    // const int *isa;
3567    FieldTypes[0] = getPointerType(IntTy.withConst());
3568    // const char *str;
3569    FieldTypes[1] = getPointerType(CharTy.withConst());
3570    // unsigned int length;
3571    FieldTypes[2] = UnsignedIntTy;
3572
3573    // Create fields
3574    for (unsigned i = 0; i < 3; ++i) {
3575      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3576                                           SourceLocation(),
3577                                           SourceLocation(), 0,
3578                                           FieldTypes[i], /*TInfo=*/0,
3579                                           /*BitWidth=*/0,
3580                                           /*Mutable=*/false);
3581      Field->setAccess(AS_public);
3582      NSConstantStringTypeDecl->addDecl(Field);
3583    }
3584
3585    NSConstantStringTypeDecl->completeDefinition();
3586  }
3587
3588  return getTagDeclType(NSConstantStringTypeDecl);
3589}
3590
3591void ASTContext::setNSConstantStringType(QualType T) {
3592  const RecordType *Rec = T->getAs<RecordType>();
3593  assert(Rec && "Invalid NSConstantStringType");
3594  NSConstantStringTypeDecl = Rec->getDecl();
3595}
3596
3597QualType ASTContext::getObjCFastEnumerationStateType() const {
3598  if (!ObjCFastEnumerationStateTypeDecl) {
3599    ObjCFastEnumerationStateTypeDecl =
3600      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3601                       &Idents.get("__objcFastEnumerationState"));
3602    ObjCFastEnumerationStateTypeDecl->startDefinition();
3603
3604    QualType FieldTypes[] = {
3605      UnsignedLongTy,
3606      getPointerType(ObjCIdTypedefType),
3607      getPointerType(UnsignedLongTy),
3608      getConstantArrayType(UnsignedLongTy,
3609                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3610    };
3611
3612    for (size_t i = 0; i < 4; ++i) {
3613      FieldDecl *Field = FieldDecl::Create(*this,
3614                                           ObjCFastEnumerationStateTypeDecl,
3615                                           SourceLocation(),
3616                                           SourceLocation(), 0,
3617                                           FieldTypes[i], /*TInfo=*/0,
3618                                           /*BitWidth=*/0,
3619                                           /*Mutable=*/false);
3620      Field->setAccess(AS_public);
3621      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3622    }
3623
3624    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3625  }
3626
3627  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3628}
3629
3630QualType ASTContext::getBlockDescriptorType() const {
3631  if (BlockDescriptorType)
3632    return getTagDeclType(BlockDescriptorType);
3633
3634  RecordDecl *T;
3635  // FIXME: Needs the FlagAppleBlock bit.
3636  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3637                       &Idents.get("__block_descriptor"));
3638  T->startDefinition();
3639
3640  QualType FieldTypes[] = {
3641    UnsignedLongTy,
3642    UnsignedLongTy,
3643  };
3644
3645  const char *FieldNames[] = {
3646    "reserved",
3647    "Size"
3648  };
3649
3650  for (size_t i = 0; i < 2; ++i) {
3651    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3652                                         SourceLocation(),
3653                                         &Idents.get(FieldNames[i]),
3654                                         FieldTypes[i], /*TInfo=*/0,
3655                                         /*BitWidth=*/0,
3656                                         /*Mutable=*/false);
3657    Field->setAccess(AS_public);
3658    T->addDecl(Field);
3659  }
3660
3661  T->completeDefinition();
3662
3663  BlockDescriptorType = T;
3664
3665  return getTagDeclType(BlockDescriptorType);
3666}
3667
3668void ASTContext::setBlockDescriptorType(QualType T) {
3669  const RecordType *Rec = T->getAs<RecordType>();
3670  assert(Rec && "Invalid BlockDescriptorType");
3671  BlockDescriptorType = Rec->getDecl();
3672}
3673
3674QualType ASTContext::getBlockDescriptorExtendedType() const {
3675  if (BlockDescriptorExtendedType)
3676    return getTagDeclType(BlockDescriptorExtendedType);
3677
3678  RecordDecl *T;
3679  // FIXME: Needs the FlagAppleBlock bit.
3680  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3681                       &Idents.get("__block_descriptor_withcopydispose"));
3682  T->startDefinition();
3683
3684  QualType FieldTypes[] = {
3685    UnsignedLongTy,
3686    UnsignedLongTy,
3687    getPointerType(VoidPtrTy),
3688    getPointerType(VoidPtrTy)
3689  };
3690
3691  const char *FieldNames[] = {
3692    "reserved",
3693    "Size",
3694    "CopyFuncPtr",
3695    "DestroyFuncPtr"
3696  };
3697
3698  for (size_t i = 0; i < 4; ++i) {
3699    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3700                                         SourceLocation(),
3701                                         &Idents.get(FieldNames[i]),
3702                                         FieldTypes[i], /*TInfo=*/0,
3703                                         /*BitWidth=*/0,
3704                                         /*Mutable=*/false);
3705    Field->setAccess(AS_public);
3706    T->addDecl(Field);
3707  }
3708
3709  T->completeDefinition();
3710
3711  BlockDescriptorExtendedType = T;
3712
3713  return getTagDeclType(BlockDescriptorExtendedType);
3714}
3715
3716void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3717  const RecordType *Rec = T->getAs<RecordType>();
3718  assert(Rec && "Invalid BlockDescriptorType");
3719  BlockDescriptorExtendedType = Rec->getDecl();
3720}
3721
3722bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3723  if (Ty->isBlockPointerType())
3724    return true;
3725  if (isObjCNSObjectType(Ty))
3726    return true;
3727  if (Ty->isObjCObjectPointerType())
3728    return true;
3729  if (getLangOptions().CPlusPlus) {
3730    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3731      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3732      return RD->hasConstCopyConstructor();
3733
3734    }
3735  }
3736  return false;
3737}
3738
3739QualType
3740ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3741  //  type = struct __Block_byref_1_X {
3742  //    void *__isa;
3743  //    struct __Block_byref_1_X *__forwarding;
3744  //    unsigned int __flags;
3745  //    unsigned int __size;
3746  //    void *__copy_helper;            // as needed
3747  //    void *__destroy_help            // as needed
3748  //    int X;
3749  //  } *
3750
3751  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3752
3753  // FIXME: Move up
3754  llvm::SmallString<36> Name;
3755  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3756                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3757  RecordDecl *T;
3758  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3759  T->startDefinition();
3760  QualType Int32Ty = IntTy;
3761  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3762  QualType FieldTypes[] = {
3763    getPointerType(VoidPtrTy),
3764    getPointerType(getTagDeclType(T)),
3765    Int32Ty,
3766    Int32Ty,
3767    getPointerType(VoidPtrTy),
3768    getPointerType(VoidPtrTy),
3769    Ty
3770  };
3771
3772  llvm::StringRef FieldNames[] = {
3773    "__isa",
3774    "__forwarding",
3775    "__flags",
3776    "__size",
3777    "__copy_helper",
3778    "__destroy_helper",
3779    DeclName,
3780  };
3781
3782  for (size_t i = 0; i < 7; ++i) {
3783    if (!HasCopyAndDispose && i >=4 && i <= 5)
3784      continue;
3785    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3786                                         SourceLocation(),
3787                                         &Idents.get(FieldNames[i]),
3788                                         FieldTypes[i], /*TInfo=*/0,
3789                                         /*BitWidth=*/0, /*Mutable=*/false);
3790    Field->setAccess(AS_public);
3791    T->addDecl(Field);
3792  }
3793
3794  T->completeDefinition();
3795
3796  return getPointerType(getTagDeclType(T));
3797}
3798
3799void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3800  const RecordType *Rec = T->getAs<RecordType>();
3801  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3802  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3803}
3804
3805// This returns true if a type has been typedefed to BOOL:
3806// typedef <type> BOOL;
3807static bool isTypeTypedefedAsBOOL(QualType T) {
3808  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3809    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3810      return II->isStr("BOOL");
3811
3812  return false;
3813}
3814
3815/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3816/// purpose.
3817CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3818  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3819    return CharUnits::Zero();
3820
3821  CharUnits sz = getTypeSizeInChars(type);
3822
3823  // Make all integer and enum types at least as large as an int
3824  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3825    sz = std::max(sz, getTypeSizeInChars(IntTy));
3826  // Treat arrays as pointers, since that's how they're passed in.
3827  else if (type->isArrayType())
3828    sz = getTypeSizeInChars(VoidPtrTy);
3829  return sz;
3830}
3831
3832static inline
3833std::string charUnitsToString(const CharUnits &CU) {
3834  return llvm::itostr(CU.getQuantity());
3835}
3836
3837/// getObjCEncodingForBlock - Return the encoded type for this block
3838/// declaration.
3839std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3840  std::string S;
3841
3842  const BlockDecl *Decl = Expr->getBlockDecl();
3843  QualType BlockTy =
3844      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3845  // Encode result type.
3846  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3847  // Compute size of all parameters.
3848  // Start with computing size of a pointer in number of bytes.
3849  // FIXME: There might(should) be a better way of doing this computation!
3850  SourceLocation Loc;
3851  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3852  CharUnits ParmOffset = PtrSize;
3853  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3854       E = Decl->param_end(); PI != E; ++PI) {
3855    QualType PType = (*PI)->getType();
3856    CharUnits sz = getObjCEncodingTypeSize(PType);
3857    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3858    ParmOffset += sz;
3859  }
3860  // Size of the argument frame
3861  S += charUnitsToString(ParmOffset);
3862  // Block pointer and offset.
3863  S += "@?0";
3864  ParmOffset = PtrSize;
3865
3866  // Argument types.
3867  ParmOffset = PtrSize;
3868  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3869       Decl->param_end(); PI != E; ++PI) {
3870    ParmVarDecl *PVDecl = *PI;
3871    QualType PType = PVDecl->getOriginalType();
3872    if (const ArrayType *AT =
3873          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3874      // Use array's original type only if it has known number of
3875      // elements.
3876      if (!isa<ConstantArrayType>(AT))
3877        PType = PVDecl->getType();
3878    } else if (PType->isFunctionType())
3879      PType = PVDecl->getType();
3880    getObjCEncodingForType(PType, S);
3881    S += charUnitsToString(ParmOffset);
3882    ParmOffset += getObjCEncodingTypeSize(PType);
3883  }
3884
3885  return S;
3886}
3887
3888bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3889                                                std::string& S) {
3890  // Encode result type.
3891  getObjCEncodingForType(Decl->getResultType(), S);
3892  CharUnits ParmOffset;
3893  // Compute size of all parameters.
3894  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3895       E = Decl->param_end(); PI != E; ++PI) {
3896    QualType PType = (*PI)->getType();
3897    CharUnits sz = getObjCEncodingTypeSize(PType);
3898    if (sz.isZero())
3899      return true;
3900
3901    assert (sz.isPositive() &&
3902        "getObjCEncodingForFunctionDecl - Incomplete param type");
3903    ParmOffset += sz;
3904  }
3905  S += charUnitsToString(ParmOffset);
3906  ParmOffset = CharUnits::Zero();
3907
3908  // Argument types.
3909  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3910       E = Decl->param_end(); PI != E; ++PI) {
3911    ParmVarDecl *PVDecl = *PI;
3912    QualType PType = PVDecl->getOriginalType();
3913    if (const ArrayType *AT =
3914          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3915      // Use array's original type only if it has known number of
3916      // elements.
3917      if (!isa<ConstantArrayType>(AT))
3918        PType = PVDecl->getType();
3919    } else if (PType->isFunctionType())
3920      PType = PVDecl->getType();
3921    getObjCEncodingForType(PType, S);
3922    S += charUnitsToString(ParmOffset);
3923    ParmOffset += getObjCEncodingTypeSize(PType);
3924  }
3925
3926  return false;
3927}
3928
3929/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3930/// declaration.
3931bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3932                                              std::string& S) const {
3933  // FIXME: This is not very efficient.
3934  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3935  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3936  // Encode result type.
3937  getObjCEncodingForType(Decl->getResultType(), S);
3938  // Compute size of all parameters.
3939  // Start with computing size of a pointer in number of bytes.
3940  // FIXME: There might(should) be a better way of doing this computation!
3941  SourceLocation Loc;
3942  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3943  // The first two arguments (self and _cmd) are pointers; account for
3944  // their size.
3945  CharUnits ParmOffset = 2 * PtrSize;
3946  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3947       E = Decl->sel_param_end(); PI != E; ++PI) {
3948    QualType PType = (*PI)->getType();
3949    CharUnits sz = getObjCEncodingTypeSize(PType);
3950    if (sz.isZero())
3951      return true;
3952
3953    assert (sz.isPositive() &&
3954        "getObjCEncodingForMethodDecl - Incomplete param type");
3955    ParmOffset += sz;
3956  }
3957  S += charUnitsToString(ParmOffset);
3958  S += "@0:";
3959  S += charUnitsToString(PtrSize);
3960
3961  // Argument types.
3962  ParmOffset = 2 * PtrSize;
3963  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3964       E = Decl->sel_param_end(); PI != E; ++PI) {
3965    ParmVarDecl *PVDecl = *PI;
3966    QualType PType = PVDecl->getOriginalType();
3967    if (const ArrayType *AT =
3968          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3969      // Use array's original type only if it has known number of
3970      // elements.
3971      if (!isa<ConstantArrayType>(AT))
3972        PType = PVDecl->getType();
3973    } else if (PType->isFunctionType())
3974      PType = PVDecl->getType();
3975    // Process argument qualifiers for user supplied arguments; such as,
3976    // 'in', 'inout', etc.
3977    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3978    getObjCEncodingForType(PType, S);
3979    S += charUnitsToString(ParmOffset);
3980    ParmOffset += getObjCEncodingTypeSize(PType);
3981  }
3982
3983  return false;
3984}
3985
3986/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3987/// property declaration. If non-NULL, Container must be either an
3988/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3989/// NULL when getting encodings for protocol properties.
3990/// Property attributes are stored as a comma-delimited C string. The simple
3991/// attributes readonly and bycopy are encoded as single characters. The
3992/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3993/// encoded as single characters, followed by an identifier. Property types
3994/// are also encoded as a parametrized attribute. The characters used to encode
3995/// these attributes are defined by the following enumeration:
3996/// @code
3997/// enum PropertyAttributes {
3998/// kPropertyReadOnly = 'R',   // property is read-only.
3999/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4000/// kPropertyByref = '&',  // property is a reference to the value last assigned
4001/// kPropertyDynamic = 'D',    // property is dynamic
4002/// kPropertyGetter = 'G',     // followed by getter selector name
4003/// kPropertySetter = 'S',     // followed by setter selector name
4004/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4005/// kPropertyType = 't'              // followed by old-style type encoding.
4006/// kPropertyWeak = 'W'              // 'weak' property
4007/// kPropertyStrong = 'P'            // property GC'able
4008/// kPropertyNonAtomic = 'N'         // property non-atomic
4009/// };
4010/// @endcode
4011void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4012                                                const Decl *Container,
4013                                                std::string& S) const {
4014  // Collect information from the property implementation decl(s).
4015  bool Dynamic = false;
4016  ObjCPropertyImplDecl *SynthesizePID = 0;
4017
4018  // FIXME: Duplicated code due to poor abstraction.
4019  if (Container) {
4020    if (const ObjCCategoryImplDecl *CID =
4021        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4022      for (ObjCCategoryImplDecl::propimpl_iterator
4023             i = CID->propimpl_begin(), e = CID->propimpl_end();
4024           i != e; ++i) {
4025        ObjCPropertyImplDecl *PID = *i;
4026        if (PID->getPropertyDecl() == PD) {
4027          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4028            Dynamic = true;
4029          } else {
4030            SynthesizePID = PID;
4031          }
4032        }
4033      }
4034    } else {
4035      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4036      for (ObjCCategoryImplDecl::propimpl_iterator
4037             i = OID->propimpl_begin(), e = OID->propimpl_end();
4038           i != e; ++i) {
4039        ObjCPropertyImplDecl *PID = *i;
4040        if (PID->getPropertyDecl() == PD) {
4041          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4042            Dynamic = true;
4043          } else {
4044            SynthesizePID = PID;
4045          }
4046        }
4047      }
4048    }
4049  }
4050
4051  // FIXME: This is not very efficient.
4052  S = "T";
4053
4054  // Encode result type.
4055  // GCC has some special rules regarding encoding of properties which
4056  // closely resembles encoding of ivars.
4057  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4058                             true /* outermost type */,
4059                             true /* encoding for property */);
4060
4061  if (PD->isReadOnly()) {
4062    S += ",R";
4063  } else {
4064    switch (PD->getSetterKind()) {
4065    case ObjCPropertyDecl::Assign: break;
4066    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4067    case ObjCPropertyDecl::Retain: S += ",&"; break;
4068    }
4069  }
4070
4071  // It really isn't clear at all what this means, since properties
4072  // are "dynamic by default".
4073  if (Dynamic)
4074    S += ",D";
4075
4076  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4077    S += ",N";
4078
4079  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4080    S += ",G";
4081    S += PD->getGetterName().getAsString();
4082  }
4083
4084  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4085    S += ",S";
4086    S += PD->getSetterName().getAsString();
4087  }
4088
4089  if (SynthesizePID) {
4090    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4091    S += ",V";
4092    S += OID->getNameAsString();
4093  }
4094
4095  // FIXME: OBJCGC: weak & strong
4096}
4097
4098/// getLegacyIntegralTypeEncoding -
4099/// Another legacy compatibility encoding: 32-bit longs are encoded as
4100/// 'l' or 'L' , but not always.  For typedefs, we need to use
4101/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4102///
4103void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4104  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4105    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4106      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4107        PointeeTy = UnsignedIntTy;
4108      else
4109        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4110          PointeeTy = IntTy;
4111    }
4112  }
4113}
4114
4115void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4116                                        const FieldDecl *Field) const {
4117  // We follow the behavior of gcc, expanding structures which are
4118  // directly pointed to, and expanding embedded structures. Note that
4119  // these rules are sufficient to prevent recursive encoding of the
4120  // same type.
4121  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4122                             true /* outermost type */);
4123}
4124
4125static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4126    switch (T->getAs<BuiltinType>()->getKind()) {
4127    default: assert(0 && "Unhandled builtin type kind");
4128    case BuiltinType::Void:       return 'v';
4129    case BuiltinType::Bool:       return 'B';
4130    case BuiltinType::Char_U:
4131    case BuiltinType::UChar:      return 'C';
4132    case BuiltinType::UShort:     return 'S';
4133    case BuiltinType::UInt:       return 'I';
4134    case BuiltinType::ULong:
4135        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4136    case BuiltinType::UInt128:    return 'T';
4137    case BuiltinType::ULongLong:  return 'Q';
4138    case BuiltinType::Char_S:
4139    case BuiltinType::SChar:      return 'c';
4140    case BuiltinType::Short:      return 's';
4141    case BuiltinType::WChar_S:
4142    case BuiltinType::WChar_U:
4143    case BuiltinType::Int:        return 'i';
4144    case BuiltinType::Long:
4145      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4146    case BuiltinType::LongLong:   return 'q';
4147    case BuiltinType::Int128:     return 't';
4148    case BuiltinType::Float:      return 'f';
4149    case BuiltinType::Double:     return 'd';
4150    case BuiltinType::LongDouble: return 'D';
4151    }
4152}
4153
4154static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4155                           QualType T, const FieldDecl *FD) {
4156  const Expr *E = FD->getBitWidth();
4157  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4158  S += 'b';
4159  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4160  // The GNU runtime requires more information; bitfields are encoded as b,
4161  // then the offset (in bits) of the first element, then the type of the
4162  // bitfield, then the size in bits.  For example, in this structure:
4163  //
4164  // struct
4165  // {
4166  //    int integer;
4167  //    int flags:2;
4168  // };
4169  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4170  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4171  // information is not especially sensible, but we're stuck with it for
4172  // compatibility with GCC, although providing it breaks anything that
4173  // actually uses runtime introspection and wants to work on both runtimes...
4174  if (!Ctx->getLangOptions().NeXTRuntime) {
4175    const RecordDecl *RD = FD->getParent();
4176    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4177    // FIXME: This same linear search is also used in ExprConstant - it might
4178    // be better if the FieldDecl stored its offset.  We'd be increasing the
4179    // size of the object slightly, but saving some time every time it is used.
4180    unsigned i = 0;
4181    for (RecordDecl::field_iterator Field = RD->field_begin(),
4182                                 FieldEnd = RD->field_end();
4183         Field != FieldEnd; (void)++Field, ++i) {
4184      if (*Field == FD)
4185        break;
4186    }
4187    S += llvm::utostr(RL.getFieldOffset(i));
4188    if (T->isEnumeralType())
4189      S += 'i';
4190    else
4191      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4192  }
4193  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4194  S += llvm::utostr(N);
4195}
4196
4197// FIXME: Use SmallString for accumulating string.
4198void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4199                                            bool ExpandPointedToStructures,
4200                                            bool ExpandStructures,
4201                                            const FieldDecl *FD,
4202                                            bool OutermostType,
4203                                            bool EncodingProperty,
4204                                            bool StructField) const {
4205  if (T->getAs<BuiltinType>()) {
4206    if (FD && FD->isBitField())
4207      return EncodeBitField(this, S, T, FD);
4208    S += ObjCEncodingForPrimitiveKind(this, T);
4209    return;
4210  }
4211
4212  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4213    S += 'j';
4214    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4215                               false);
4216    return;
4217  }
4218
4219  // encoding for pointer or r3eference types.
4220  QualType PointeeTy;
4221  if (const PointerType *PT = T->getAs<PointerType>()) {
4222    if (PT->isObjCSelType()) {
4223      S += ':';
4224      return;
4225    }
4226    PointeeTy = PT->getPointeeType();
4227  }
4228  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4229    PointeeTy = RT->getPointeeType();
4230  if (!PointeeTy.isNull()) {
4231    bool isReadOnly = false;
4232    // For historical/compatibility reasons, the read-only qualifier of the
4233    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4234    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4235    // Also, do not emit the 'r' for anything but the outermost type!
4236    if (isa<TypedefType>(T.getTypePtr())) {
4237      if (OutermostType && T.isConstQualified()) {
4238        isReadOnly = true;
4239        S += 'r';
4240      }
4241    } else if (OutermostType) {
4242      QualType P = PointeeTy;
4243      while (P->getAs<PointerType>())
4244        P = P->getAs<PointerType>()->getPointeeType();
4245      if (P.isConstQualified()) {
4246        isReadOnly = true;
4247        S += 'r';
4248      }
4249    }
4250    if (isReadOnly) {
4251      // Another legacy compatibility encoding. Some ObjC qualifier and type
4252      // combinations need to be rearranged.
4253      // Rewrite "in const" from "nr" to "rn"
4254      if (llvm::StringRef(S).endswith("nr"))
4255        S.replace(S.end()-2, S.end(), "rn");
4256    }
4257
4258    if (PointeeTy->isCharType()) {
4259      // char pointer types should be encoded as '*' unless it is a
4260      // type that has been typedef'd to 'BOOL'.
4261      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4262        S += '*';
4263        return;
4264      }
4265    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4266      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4267      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4268        S += '#';
4269        return;
4270      }
4271      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4272      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4273        S += '@';
4274        return;
4275      }
4276      // fall through...
4277    }
4278    S += '^';
4279    getLegacyIntegralTypeEncoding(PointeeTy);
4280
4281    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4282                               NULL);
4283    return;
4284  }
4285
4286  if (const ArrayType *AT =
4287      // Ignore type qualifiers etc.
4288        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4289    if (isa<IncompleteArrayType>(AT) && !StructField) {
4290      // Incomplete arrays are encoded as a pointer to the array element.
4291      S += '^';
4292
4293      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4294                                 false, ExpandStructures, FD);
4295    } else {
4296      S += '[';
4297
4298      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4299        if (getTypeSize(CAT->getElementType()) == 0)
4300          S += '0';
4301        else
4302          S += llvm::utostr(CAT->getSize().getZExtValue());
4303      } else {
4304        //Variable length arrays are encoded as a regular array with 0 elements.
4305        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4306               "Unknown array type!");
4307        S += '0';
4308      }
4309
4310      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4311                                 false, ExpandStructures, FD);
4312      S += ']';
4313    }
4314    return;
4315  }
4316
4317  if (T->getAs<FunctionType>()) {
4318    S += '?';
4319    return;
4320  }
4321
4322  if (const RecordType *RTy = T->getAs<RecordType>()) {
4323    RecordDecl *RDecl = RTy->getDecl();
4324    S += RDecl->isUnion() ? '(' : '{';
4325    // Anonymous structures print as '?'
4326    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4327      S += II->getName();
4328      if (ClassTemplateSpecializationDecl *Spec
4329          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4330        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4331        std::string TemplateArgsStr
4332          = TemplateSpecializationType::PrintTemplateArgumentList(
4333                                            TemplateArgs.data(),
4334                                            TemplateArgs.size(),
4335                                            (*this).PrintingPolicy);
4336
4337        S += TemplateArgsStr;
4338      }
4339    } else {
4340      S += '?';
4341    }
4342    if (ExpandStructures) {
4343      S += '=';
4344      if (!RDecl->isUnion()) {
4345        getObjCEncodingForStructureImpl(RDecl, S, FD);
4346      } else {
4347        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4348                                     FieldEnd = RDecl->field_end();
4349             Field != FieldEnd; ++Field) {
4350          if (FD) {
4351            S += '"';
4352            S += Field->getNameAsString();
4353            S += '"';
4354          }
4355
4356          // Special case bit-fields.
4357          if (Field->isBitField()) {
4358            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4359                                       (*Field));
4360          } else {
4361            QualType qt = Field->getType();
4362            getLegacyIntegralTypeEncoding(qt);
4363            getObjCEncodingForTypeImpl(qt, S, false, true,
4364                                       FD, /*OutermostType*/false,
4365                                       /*EncodingProperty*/false,
4366                                       /*StructField*/true);
4367          }
4368        }
4369      }
4370    }
4371    S += RDecl->isUnion() ? ')' : '}';
4372    return;
4373  }
4374
4375  if (T->isEnumeralType()) {
4376    if (FD && FD->isBitField())
4377      EncodeBitField(this, S, T, FD);
4378    else
4379      S += 'i';
4380    return;
4381  }
4382
4383  if (T->isBlockPointerType()) {
4384    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4385    return;
4386  }
4387
4388  // Ignore protocol qualifiers when mangling at this level.
4389  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4390    T = OT->getBaseType();
4391
4392  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4393    // @encode(class_name)
4394    ObjCInterfaceDecl *OI = OIT->getDecl();
4395    S += '{';
4396    const IdentifierInfo *II = OI->getIdentifier();
4397    S += II->getName();
4398    S += '=';
4399    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4400    DeepCollectObjCIvars(OI, true, Ivars);
4401    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4402      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4403      if (Field->isBitField())
4404        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4405      else
4406        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4407    }
4408    S += '}';
4409    return;
4410  }
4411
4412  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4413    if (OPT->isObjCIdType()) {
4414      S += '@';
4415      return;
4416    }
4417
4418    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4419      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4420      // Since this is a binary compatibility issue, need to consult with runtime
4421      // folks. Fortunately, this is a *very* obsure construct.
4422      S += '#';
4423      return;
4424    }
4425
4426    if (OPT->isObjCQualifiedIdType()) {
4427      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4428                                 ExpandPointedToStructures,
4429                                 ExpandStructures, FD);
4430      if (FD || EncodingProperty) {
4431        // Note that we do extended encoding of protocol qualifer list
4432        // Only when doing ivar or property encoding.
4433        S += '"';
4434        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4435             E = OPT->qual_end(); I != E; ++I) {
4436          S += '<';
4437          S += (*I)->getNameAsString();
4438          S += '>';
4439        }
4440        S += '"';
4441      }
4442      return;
4443    }
4444
4445    QualType PointeeTy = OPT->getPointeeType();
4446    if (!EncodingProperty &&
4447        isa<TypedefType>(PointeeTy.getTypePtr())) {
4448      // Another historical/compatibility reason.
4449      // We encode the underlying type which comes out as
4450      // {...};
4451      S += '^';
4452      getObjCEncodingForTypeImpl(PointeeTy, S,
4453                                 false, ExpandPointedToStructures,
4454                                 NULL);
4455      return;
4456    }
4457
4458    S += '@';
4459    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4460      S += '"';
4461      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4462      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4463           E = OPT->qual_end(); I != E; ++I) {
4464        S += '<';
4465        S += (*I)->getNameAsString();
4466        S += '>';
4467      }
4468      S += '"';
4469    }
4470    return;
4471  }
4472
4473  // gcc just blithely ignores member pointers.
4474  // TODO: maybe there should be a mangling for these
4475  if (T->getAs<MemberPointerType>())
4476    return;
4477
4478  if (T->isVectorType()) {
4479    // This matches gcc's encoding, even though technically it is
4480    // insufficient.
4481    // FIXME. We should do a better job than gcc.
4482    return;
4483  }
4484
4485  assert(0 && "@encode for type not implemented!");
4486}
4487
4488void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4489                                                 std::string &S,
4490                                                 const FieldDecl *FD,
4491                                                 bool includeVBases) const {
4492  assert(RDecl && "Expected non-null RecordDecl");
4493  assert(!RDecl->isUnion() && "Should not be called for unions");
4494  if (!RDecl->getDefinition())
4495    return;
4496
4497  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4498  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4499  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4500
4501  if (CXXRec) {
4502    for (CXXRecordDecl::base_class_iterator
4503           BI = CXXRec->bases_begin(),
4504           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4505      if (!BI->isVirtual()) {
4506        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4507        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4508        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4509                                  std::make_pair(offs, base));
4510      }
4511    }
4512  }
4513
4514  unsigned i = 0;
4515  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4516                               FieldEnd = RDecl->field_end();
4517       Field != FieldEnd; ++Field, ++i) {
4518    uint64_t offs = layout.getFieldOffset(i);
4519    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4520                              std::make_pair(offs, *Field));
4521  }
4522
4523  if (CXXRec && includeVBases) {
4524    for (CXXRecordDecl::base_class_iterator
4525           BI = CXXRec->vbases_begin(),
4526           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4527      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4528      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4529      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4530                                std::make_pair(offs, base));
4531    }
4532  }
4533
4534  CharUnits size;
4535  if (CXXRec) {
4536    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4537  } else {
4538    size = layout.getSize();
4539  }
4540
4541  uint64_t CurOffs = 0;
4542  std::multimap<uint64_t, NamedDecl *>::iterator
4543    CurLayObj = FieldOrBaseOffsets.begin();
4544
4545  if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4546    assert(CXXRec && CXXRec->isDynamicClass() &&
4547           "Offset 0 was empty but no VTable ?");
4548    if (FD) {
4549      S += "\"_vptr$";
4550      std::string recname = CXXRec->getNameAsString();
4551      if (recname.empty()) recname = "?";
4552      S += recname;
4553      S += '"';
4554    }
4555    S += "^^?";
4556    CurOffs += getTypeSize(VoidPtrTy);
4557  }
4558
4559  if (!RDecl->hasFlexibleArrayMember()) {
4560    // Mark the end of the structure.
4561    uint64_t offs = toBits(size);
4562    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4563                              std::make_pair(offs, (NamedDecl*)0));
4564  }
4565
4566  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4567    assert(CurOffs <= CurLayObj->first);
4568
4569    if (CurOffs < CurLayObj->first) {
4570      uint64_t padding = CurLayObj->first - CurOffs;
4571      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4572      // packing/alignment of members is different that normal, in which case
4573      // the encoding will be out-of-sync with the real layout.
4574      // If the runtime switches to just consider the size of types without
4575      // taking into account alignment, we could make padding explicit in the
4576      // encoding (e.g. using arrays of chars). The encoding strings would be
4577      // longer then though.
4578      CurOffs += padding;
4579    }
4580
4581    NamedDecl *dcl = CurLayObj->second;
4582    if (dcl == 0)
4583      break; // reached end of structure.
4584
4585    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4586      // We expand the bases without their virtual bases since those are going
4587      // in the initial structure. Note that this differs from gcc which
4588      // expands virtual bases each time one is encountered in the hierarchy,
4589      // making the encoding type bigger than it really is.
4590      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4591      if (!base->isEmpty())
4592        CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4593    } else {
4594      FieldDecl *field = cast<FieldDecl>(dcl);
4595      if (FD) {
4596        S += '"';
4597        S += field->getNameAsString();
4598        S += '"';
4599      }
4600
4601      if (field->isBitField()) {
4602        EncodeBitField(this, S, field->getType(), field);
4603        CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4604      } else {
4605        QualType qt = field->getType();
4606        getLegacyIntegralTypeEncoding(qt);
4607        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4608                                   /*OutermostType*/false,
4609                                   /*EncodingProperty*/false,
4610                                   /*StructField*/true);
4611        CurOffs += getTypeSize(field->getType());
4612      }
4613    }
4614  }
4615}
4616
4617void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4618                                                 std::string& S) const {
4619  if (QT & Decl::OBJC_TQ_In)
4620    S += 'n';
4621  if (QT & Decl::OBJC_TQ_Inout)
4622    S += 'N';
4623  if (QT & Decl::OBJC_TQ_Out)
4624    S += 'o';
4625  if (QT & Decl::OBJC_TQ_Bycopy)
4626    S += 'O';
4627  if (QT & Decl::OBJC_TQ_Byref)
4628    S += 'R';
4629  if (QT & Decl::OBJC_TQ_Oneway)
4630    S += 'V';
4631}
4632
4633void ASTContext::setBuiltinVaListType(QualType T) {
4634  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4635
4636  BuiltinVaListType = T;
4637}
4638
4639void ASTContext::setObjCIdType(QualType T) {
4640  ObjCIdTypedefType = T;
4641}
4642
4643void ASTContext::setObjCSelType(QualType T) {
4644  ObjCSelTypedefType = T;
4645}
4646
4647void ASTContext::setObjCProtoType(QualType QT) {
4648  ObjCProtoType = QT;
4649}
4650
4651void ASTContext::setObjCClassType(QualType T) {
4652  ObjCClassTypedefType = T;
4653}
4654
4655void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4656  assert(ObjCConstantStringType.isNull() &&
4657         "'NSConstantString' type already set!");
4658
4659  ObjCConstantStringType = getObjCInterfaceType(Decl);
4660}
4661
4662/// \brief Retrieve the template name that corresponds to a non-empty
4663/// lookup.
4664TemplateName
4665ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4666                                      UnresolvedSetIterator End) const {
4667  unsigned size = End - Begin;
4668  assert(size > 1 && "set is not overloaded!");
4669
4670  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4671                          size * sizeof(FunctionTemplateDecl*));
4672  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4673
4674  NamedDecl **Storage = OT->getStorage();
4675  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4676    NamedDecl *D = *I;
4677    assert(isa<FunctionTemplateDecl>(D) ||
4678           (isa<UsingShadowDecl>(D) &&
4679            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4680    *Storage++ = D;
4681  }
4682
4683  return TemplateName(OT);
4684}
4685
4686/// \brief Retrieve the template name that represents a qualified
4687/// template name such as \c std::vector.
4688TemplateName
4689ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4690                                     bool TemplateKeyword,
4691                                     TemplateDecl *Template) const {
4692  assert(NNS && "Missing nested-name-specifier in qualified template name");
4693
4694  // FIXME: Canonicalization?
4695  llvm::FoldingSetNodeID ID;
4696  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4697
4698  void *InsertPos = 0;
4699  QualifiedTemplateName *QTN =
4700    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4701  if (!QTN) {
4702    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4703    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4704  }
4705
4706  return TemplateName(QTN);
4707}
4708
4709/// \brief Retrieve the template name that represents a dependent
4710/// template name such as \c MetaFun::template apply.
4711TemplateName
4712ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4713                                     const IdentifierInfo *Name) const {
4714  assert((!NNS || NNS->isDependent()) &&
4715         "Nested name specifier must be dependent");
4716
4717  llvm::FoldingSetNodeID ID;
4718  DependentTemplateName::Profile(ID, NNS, Name);
4719
4720  void *InsertPos = 0;
4721  DependentTemplateName *QTN =
4722    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4723
4724  if (QTN)
4725    return TemplateName(QTN);
4726
4727  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4728  if (CanonNNS == NNS) {
4729    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4730  } else {
4731    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4732    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4733    DependentTemplateName *CheckQTN =
4734      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4735    assert(!CheckQTN && "Dependent type name canonicalization broken");
4736    (void)CheckQTN;
4737  }
4738
4739  DependentTemplateNames.InsertNode(QTN, InsertPos);
4740  return TemplateName(QTN);
4741}
4742
4743/// \brief Retrieve the template name that represents a dependent
4744/// template name such as \c MetaFun::template operator+.
4745TemplateName
4746ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4747                                     OverloadedOperatorKind Operator) const {
4748  assert((!NNS || NNS->isDependent()) &&
4749         "Nested name specifier must be dependent");
4750
4751  llvm::FoldingSetNodeID ID;
4752  DependentTemplateName::Profile(ID, NNS, Operator);
4753
4754  void *InsertPos = 0;
4755  DependentTemplateName *QTN
4756    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4757
4758  if (QTN)
4759    return TemplateName(QTN);
4760
4761  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4762  if (CanonNNS == NNS) {
4763    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4764  } else {
4765    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4766    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4767
4768    DependentTemplateName *CheckQTN
4769      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4770    assert(!CheckQTN && "Dependent template name canonicalization broken");
4771    (void)CheckQTN;
4772  }
4773
4774  DependentTemplateNames.InsertNode(QTN, InsertPos);
4775  return TemplateName(QTN);
4776}
4777
4778TemplateName
4779ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4780                                       const TemplateArgument &ArgPack) const {
4781  ASTContext &Self = const_cast<ASTContext &>(*this);
4782  llvm::FoldingSetNodeID ID;
4783  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4784
4785  void *InsertPos = 0;
4786  SubstTemplateTemplateParmPackStorage *Subst
4787    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4788
4789  if (!Subst) {
4790    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param,
4791                                                           ArgPack.pack_size(),
4792                                                         ArgPack.pack_begin());
4793    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4794  }
4795
4796  return TemplateName(Subst);
4797}
4798
4799/// getFromTargetType - Given one of the integer types provided by
4800/// TargetInfo, produce the corresponding type. The unsigned @p Type
4801/// is actually a value of type @c TargetInfo::IntType.
4802CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4803  switch (Type) {
4804  case TargetInfo::NoInt: return CanQualType();
4805  case TargetInfo::SignedShort: return ShortTy;
4806  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4807  case TargetInfo::SignedInt: return IntTy;
4808  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4809  case TargetInfo::SignedLong: return LongTy;
4810  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4811  case TargetInfo::SignedLongLong: return LongLongTy;
4812  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4813  }
4814
4815  assert(false && "Unhandled TargetInfo::IntType value");
4816  return CanQualType();
4817}
4818
4819//===----------------------------------------------------------------------===//
4820//                        Type Predicates.
4821//===----------------------------------------------------------------------===//
4822
4823/// isObjCNSObjectType - Return true if this is an NSObject object using
4824/// NSObject attribute on a c-style pointer type.
4825/// FIXME - Make it work directly on types.
4826/// FIXME: Move to Type.
4827///
4828bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4829  if (const TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4830    if (TypedefNameDecl *TD = TDT->getDecl())
4831      if (TD->getAttr<ObjCNSObjectAttr>())
4832        return true;
4833  }
4834  return false;
4835}
4836
4837/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4838/// garbage collection attribute.
4839///
4840Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4841  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4842    return Qualifiers::GCNone;
4843
4844  assert(getLangOptions().ObjC1);
4845  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4846
4847  // Default behaviour under objective-C's gc is for ObjC pointers
4848  // (or pointers to them) be treated as though they were declared
4849  // as __strong.
4850  if (GCAttrs == Qualifiers::GCNone) {
4851    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4852      return Qualifiers::Strong;
4853    else if (Ty->isPointerType())
4854      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4855  } else {
4856    // It's not valid to set GC attributes on anything that isn't a
4857    // pointer.
4858#ifndef NDEBUG
4859    QualType CT = Ty->getCanonicalTypeInternal();
4860    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4861      CT = AT->getElementType();
4862    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4863#endif
4864  }
4865  return GCAttrs;
4866}
4867
4868//===----------------------------------------------------------------------===//
4869//                        Type Compatibility Testing
4870//===----------------------------------------------------------------------===//
4871
4872/// areCompatVectorTypes - Return true if the two specified vector types are
4873/// compatible.
4874static bool areCompatVectorTypes(const VectorType *LHS,
4875                                 const VectorType *RHS) {
4876  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4877  return LHS->getElementType() == RHS->getElementType() &&
4878         LHS->getNumElements() == RHS->getNumElements();
4879}
4880
4881bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4882                                          QualType SecondVec) {
4883  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4884  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4885
4886  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4887    return true;
4888
4889  // Treat Neon vector types and most AltiVec vector types as if they are the
4890  // equivalent GCC vector types.
4891  const VectorType *First = FirstVec->getAs<VectorType>();
4892  const VectorType *Second = SecondVec->getAs<VectorType>();
4893  if (First->getNumElements() == Second->getNumElements() &&
4894      hasSameType(First->getElementType(), Second->getElementType()) &&
4895      First->getVectorKind() != VectorType::AltiVecPixel &&
4896      First->getVectorKind() != VectorType::AltiVecBool &&
4897      Second->getVectorKind() != VectorType::AltiVecPixel &&
4898      Second->getVectorKind() != VectorType::AltiVecBool)
4899    return true;
4900
4901  return false;
4902}
4903
4904//===----------------------------------------------------------------------===//
4905// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4906//===----------------------------------------------------------------------===//
4907
4908/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4909/// inheritance hierarchy of 'rProto'.
4910bool
4911ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4912                                           ObjCProtocolDecl *rProto) const {
4913  if (lProto == rProto)
4914    return true;
4915  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4916       E = rProto->protocol_end(); PI != E; ++PI)
4917    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4918      return true;
4919  return false;
4920}
4921
4922/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4923/// return true if lhs's protocols conform to rhs's protocol; false
4924/// otherwise.
4925bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4926  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4927    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4928  return false;
4929}
4930
4931/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4932/// Class<p1, ...>.
4933bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4934                                                      QualType rhs) {
4935  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4936  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4937  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4938
4939  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4940       E = lhsQID->qual_end(); I != E; ++I) {
4941    bool match = false;
4942    ObjCProtocolDecl *lhsProto = *I;
4943    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4944         E = rhsOPT->qual_end(); J != E; ++J) {
4945      ObjCProtocolDecl *rhsProto = *J;
4946      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4947        match = true;
4948        break;
4949      }
4950    }
4951    if (!match)
4952      return false;
4953  }
4954  return true;
4955}
4956
4957/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4958/// ObjCQualifiedIDType.
4959bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4960                                                   bool compare) {
4961  // Allow id<P..> and an 'id' or void* type in all cases.
4962  if (lhs->isVoidPointerType() ||
4963      lhs->isObjCIdType() || lhs->isObjCClassType())
4964    return true;
4965  else if (rhs->isVoidPointerType() ||
4966           rhs->isObjCIdType() || rhs->isObjCClassType())
4967    return true;
4968
4969  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4970    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4971
4972    if (!rhsOPT) return false;
4973
4974    if (rhsOPT->qual_empty()) {
4975      // If the RHS is a unqualified interface pointer "NSString*",
4976      // make sure we check the class hierarchy.
4977      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4978        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4979             E = lhsQID->qual_end(); I != E; ++I) {
4980          // when comparing an id<P> on lhs with a static type on rhs,
4981          // see if static class implements all of id's protocols, directly or
4982          // through its super class and categories.
4983          if (!rhsID->ClassImplementsProtocol(*I, true))
4984            return false;
4985        }
4986      }
4987      // If there are no qualifiers and no interface, we have an 'id'.
4988      return true;
4989    }
4990    // Both the right and left sides have qualifiers.
4991    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4992         E = lhsQID->qual_end(); I != E; ++I) {
4993      ObjCProtocolDecl *lhsProto = *I;
4994      bool match = false;
4995
4996      // when comparing an id<P> on lhs with a static type on rhs,
4997      // see if static class implements all of id's protocols, directly or
4998      // through its super class and categories.
4999      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5000           E = rhsOPT->qual_end(); J != E; ++J) {
5001        ObjCProtocolDecl *rhsProto = *J;
5002        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5003            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5004          match = true;
5005          break;
5006        }
5007      }
5008      // If the RHS is a qualified interface pointer "NSString<P>*",
5009      // make sure we check the class hierarchy.
5010      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5011        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5012             E = lhsQID->qual_end(); I != E; ++I) {
5013          // when comparing an id<P> on lhs with a static type on rhs,
5014          // see if static class implements all of id's protocols, directly or
5015          // through its super class and categories.
5016          if (rhsID->ClassImplementsProtocol(*I, true)) {
5017            match = true;
5018            break;
5019          }
5020        }
5021      }
5022      if (!match)
5023        return false;
5024    }
5025
5026    return true;
5027  }
5028
5029  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5030  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5031
5032  if (const ObjCObjectPointerType *lhsOPT =
5033        lhs->getAsObjCInterfacePointerType()) {
5034    // If both the right and left sides have qualifiers.
5035    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5036         E = lhsOPT->qual_end(); I != E; ++I) {
5037      ObjCProtocolDecl *lhsProto = *I;
5038      bool match = false;
5039
5040      // when comparing an id<P> on rhs with a static type on lhs,
5041      // see if static class implements all of id's protocols, directly or
5042      // through its super class and categories.
5043      // First, lhs protocols in the qualifier list must be found, direct
5044      // or indirect in rhs's qualifier list or it is a mismatch.
5045      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5046           E = rhsQID->qual_end(); J != E; ++J) {
5047        ObjCProtocolDecl *rhsProto = *J;
5048        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5049            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5050          match = true;
5051          break;
5052        }
5053      }
5054      if (!match)
5055        return false;
5056    }
5057
5058    // Static class's protocols, or its super class or category protocols
5059    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5060    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5061      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5062      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5063      // This is rather dubious but matches gcc's behavior. If lhs has
5064      // no type qualifier and its class has no static protocol(s)
5065      // assume that it is mismatch.
5066      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5067        return false;
5068      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5069           LHSInheritedProtocols.begin(),
5070           E = LHSInheritedProtocols.end(); I != E; ++I) {
5071        bool match = false;
5072        ObjCProtocolDecl *lhsProto = (*I);
5073        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5074             E = rhsQID->qual_end(); J != E; ++J) {
5075          ObjCProtocolDecl *rhsProto = *J;
5076          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5077              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5078            match = true;
5079            break;
5080          }
5081        }
5082        if (!match)
5083          return false;
5084      }
5085    }
5086    return true;
5087  }
5088  return false;
5089}
5090
5091/// canAssignObjCInterfaces - Return true if the two interface types are
5092/// compatible for assignment from RHS to LHS.  This handles validation of any
5093/// protocol qualifiers on the LHS or RHS.
5094///
5095bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5096                                         const ObjCObjectPointerType *RHSOPT) {
5097  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5098  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5099
5100  // If either type represents the built-in 'id' or 'Class' types, return true.
5101  if (LHS->isObjCUnqualifiedIdOrClass() ||
5102      RHS->isObjCUnqualifiedIdOrClass())
5103    return true;
5104
5105  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5106    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5107                                             QualType(RHSOPT,0),
5108                                             false);
5109
5110  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5111    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5112                                                QualType(RHSOPT,0));
5113
5114  // If we have 2 user-defined types, fall into that path.
5115  if (LHS->getInterface() && RHS->getInterface())
5116    return canAssignObjCInterfaces(LHS, RHS);
5117
5118  return false;
5119}
5120
5121/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5122/// for providing type-safety for objective-c pointers used to pass/return
5123/// arguments in block literals. When passed as arguments, passing 'A*' where
5124/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5125/// not OK. For the return type, the opposite is not OK.
5126bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5127                                         const ObjCObjectPointerType *LHSOPT,
5128                                         const ObjCObjectPointerType *RHSOPT,
5129                                         bool BlockReturnType) {
5130  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5131    return true;
5132
5133  if (LHSOPT->isObjCBuiltinType()) {
5134    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5135  }
5136
5137  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5138    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5139                                             QualType(RHSOPT,0),
5140                                             false);
5141
5142  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5143  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5144  if (LHS && RHS)  { // We have 2 user-defined types.
5145    if (LHS != RHS) {
5146      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5147        return BlockReturnType;
5148      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5149        return !BlockReturnType;
5150    }
5151    else
5152      return true;
5153  }
5154  return false;
5155}
5156
5157/// getIntersectionOfProtocols - This routine finds the intersection of set
5158/// of protocols inherited from two distinct objective-c pointer objects.
5159/// It is used to build composite qualifier list of the composite type of
5160/// the conditional expression involving two objective-c pointer objects.
5161static
5162void getIntersectionOfProtocols(ASTContext &Context,
5163                                const ObjCObjectPointerType *LHSOPT,
5164                                const ObjCObjectPointerType *RHSOPT,
5165      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5166
5167  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5168  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5169  assert(LHS->getInterface() && "LHS must have an interface base");
5170  assert(RHS->getInterface() && "RHS must have an interface base");
5171
5172  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5173  unsigned LHSNumProtocols = LHS->getNumProtocols();
5174  if (LHSNumProtocols > 0)
5175    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5176  else {
5177    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5178    Context.CollectInheritedProtocols(LHS->getInterface(),
5179                                      LHSInheritedProtocols);
5180    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5181                                LHSInheritedProtocols.end());
5182  }
5183
5184  unsigned RHSNumProtocols = RHS->getNumProtocols();
5185  if (RHSNumProtocols > 0) {
5186    ObjCProtocolDecl **RHSProtocols =
5187      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5188    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5189      if (InheritedProtocolSet.count(RHSProtocols[i]))
5190        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5191  }
5192  else {
5193    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5194    Context.CollectInheritedProtocols(RHS->getInterface(),
5195                                      RHSInheritedProtocols);
5196    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5197         RHSInheritedProtocols.begin(),
5198         E = RHSInheritedProtocols.end(); I != E; ++I)
5199      if (InheritedProtocolSet.count((*I)))
5200        IntersectionOfProtocols.push_back((*I));
5201  }
5202}
5203
5204/// areCommonBaseCompatible - Returns common base class of the two classes if
5205/// one found. Note that this is O'2 algorithm. But it will be called as the
5206/// last type comparison in a ?-exp of ObjC pointer types before a
5207/// warning is issued. So, its invokation is extremely rare.
5208QualType ASTContext::areCommonBaseCompatible(
5209                                          const ObjCObjectPointerType *Lptr,
5210                                          const ObjCObjectPointerType *Rptr) {
5211  const ObjCObjectType *LHS = Lptr->getObjectType();
5212  const ObjCObjectType *RHS = Rptr->getObjectType();
5213  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5214  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5215  if (!LDecl || !RDecl || (LDecl == RDecl))
5216    return QualType();
5217
5218  do {
5219    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5220    if (canAssignObjCInterfaces(LHS, RHS)) {
5221      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
5222      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5223
5224      QualType Result = QualType(LHS, 0);
5225      if (!Protocols.empty())
5226        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5227      Result = getObjCObjectPointerType(Result);
5228      return Result;
5229    }
5230  } while ((LDecl = LDecl->getSuperClass()));
5231
5232  return QualType();
5233}
5234
5235bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5236                                         const ObjCObjectType *RHS) {
5237  assert(LHS->getInterface() && "LHS is not an interface type");
5238  assert(RHS->getInterface() && "RHS is not an interface type");
5239
5240  // Verify that the base decls are compatible: the RHS must be a subclass of
5241  // the LHS.
5242  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5243    return false;
5244
5245  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5246  // protocol qualified at all, then we are good.
5247  if (LHS->getNumProtocols() == 0)
5248    return true;
5249
5250  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5251  // more detailed analysis is required.
5252  if (RHS->getNumProtocols() == 0) {
5253    // OK, if LHS is a superclass of RHS *and*
5254    // this superclass is assignment compatible with LHS.
5255    // false otherwise.
5256    bool IsSuperClass =
5257      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5258    if (IsSuperClass) {
5259      // OK if conversion of LHS to SuperClass results in narrowing of types
5260      // ; i.e., SuperClass may implement at least one of the protocols
5261      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5262      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5263      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5264      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5265      // If super class has no protocols, it is not a match.
5266      if (SuperClassInheritedProtocols.empty())
5267        return false;
5268
5269      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5270           LHSPE = LHS->qual_end();
5271           LHSPI != LHSPE; LHSPI++) {
5272        bool SuperImplementsProtocol = false;
5273        ObjCProtocolDecl *LHSProto = (*LHSPI);
5274
5275        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5276             SuperClassInheritedProtocols.begin(),
5277             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5278          ObjCProtocolDecl *SuperClassProto = (*I);
5279          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5280            SuperImplementsProtocol = true;
5281            break;
5282          }
5283        }
5284        if (!SuperImplementsProtocol)
5285          return false;
5286      }
5287      return true;
5288    }
5289    return false;
5290  }
5291
5292  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5293                                     LHSPE = LHS->qual_end();
5294       LHSPI != LHSPE; LHSPI++) {
5295    bool RHSImplementsProtocol = false;
5296
5297    // If the RHS doesn't implement the protocol on the left, the types
5298    // are incompatible.
5299    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5300                                       RHSPE = RHS->qual_end();
5301         RHSPI != RHSPE; RHSPI++) {
5302      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5303        RHSImplementsProtocol = true;
5304        break;
5305      }
5306    }
5307    // FIXME: For better diagnostics, consider passing back the protocol name.
5308    if (!RHSImplementsProtocol)
5309      return false;
5310  }
5311  // The RHS implements all protocols listed on the LHS.
5312  return true;
5313}
5314
5315bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5316  // get the "pointed to" types
5317  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5318  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5319
5320  if (!LHSOPT || !RHSOPT)
5321    return false;
5322
5323  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5324         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5325}
5326
5327bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5328  return canAssignObjCInterfaces(
5329                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5330                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5331}
5332
5333/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5334/// both shall have the identically qualified version of a compatible type.
5335/// C99 6.2.7p1: Two types have compatible types if their types are the
5336/// same. See 6.7.[2,3,5] for additional rules.
5337bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5338                                    bool CompareUnqualified) {
5339  if (getLangOptions().CPlusPlus)
5340    return hasSameType(LHS, RHS);
5341
5342  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5343}
5344
5345bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5346  return !mergeTypes(LHS, RHS, true).isNull();
5347}
5348
5349/// mergeTransparentUnionType - if T is a transparent union type and a member
5350/// of T is compatible with SubType, return the merged type, else return
5351/// QualType()
5352QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5353                                               bool OfBlockPointer,
5354                                               bool Unqualified) {
5355  if (const RecordType *UT = T->getAsUnionType()) {
5356    RecordDecl *UD = UT->getDecl();
5357    if (UD->hasAttr<TransparentUnionAttr>()) {
5358      for (RecordDecl::field_iterator it = UD->field_begin(),
5359           itend = UD->field_end(); it != itend; ++it) {
5360        QualType ET = it->getType().getUnqualifiedType();
5361        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5362        if (!MT.isNull())
5363          return MT;
5364      }
5365    }
5366  }
5367
5368  return QualType();
5369}
5370
5371/// mergeFunctionArgumentTypes - merge two types which appear as function
5372/// argument types
5373QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5374                                                bool OfBlockPointer,
5375                                                bool Unqualified) {
5376  // GNU extension: two types are compatible if they appear as a function
5377  // argument, one of the types is a transparent union type and the other
5378  // type is compatible with a union member
5379  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5380                                              Unqualified);
5381  if (!lmerge.isNull())
5382    return lmerge;
5383
5384  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5385                                              Unqualified);
5386  if (!rmerge.isNull())
5387    return rmerge;
5388
5389  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5390}
5391
5392QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5393                                        bool OfBlockPointer,
5394                                        bool Unqualified) {
5395  const FunctionType *lbase = lhs->getAs<FunctionType>();
5396  const FunctionType *rbase = rhs->getAs<FunctionType>();
5397  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5398  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5399  bool allLTypes = true;
5400  bool allRTypes = true;
5401
5402  // Check return type
5403  QualType retType;
5404  if (OfBlockPointer) {
5405    QualType RHS = rbase->getResultType();
5406    QualType LHS = lbase->getResultType();
5407    bool UnqualifiedResult = Unqualified;
5408    if (!UnqualifiedResult)
5409      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5410    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5411  }
5412  else
5413    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5414                         Unqualified);
5415  if (retType.isNull()) return QualType();
5416
5417  if (Unqualified)
5418    retType = retType.getUnqualifiedType();
5419
5420  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5421  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5422  if (Unqualified) {
5423    LRetType = LRetType.getUnqualifiedType();
5424    RRetType = RRetType.getUnqualifiedType();
5425  }
5426
5427  if (getCanonicalType(retType) != LRetType)
5428    allLTypes = false;
5429  if (getCanonicalType(retType) != RRetType)
5430    allRTypes = false;
5431
5432  // FIXME: double check this
5433  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5434  //                           rbase->getRegParmAttr() != 0 &&
5435  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5436  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5437  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5438
5439  // Compatible functions must have compatible calling conventions
5440  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5441    return QualType();
5442
5443  // Regparm is part of the calling convention.
5444  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5445    return QualType();
5446  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5447    return QualType();
5448
5449  // It's noreturn if either type is.
5450  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5451  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5452  if (NoReturn != lbaseInfo.getNoReturn())
5453    allLTypes = false;
5454  if (NoReturn != rbaseInfo.getNoReturn())
5455    allRTypes = false;
5456
5457  FunctionType::ExtInfo einfo(NoReturn,
5458                              lbaseInfo.getHasRegParm(),
5459                              lbaseInfo.getRegParm(),
5460                              lbaseInfo.getCC());
5461
5462  if (lproto && rproto) { // two C99 style function prototypes
5463    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5464           "C++ shouldn't be here");
5465    unsigned lproto_nargs = lproto->getNumArgs();
5466    unsigned rproto_nargs = rproto->getNumArgs();
5467
5468    // Compatible functions must have the same number of arguments
5469    if (lproto_nargs != rproto_nargs)
5470      return QualType();
5471
5472    // Variadic and non-variadic functions aren't compatible
5473    if (lproto->isVariadic() != rproto->isVariadic())
5474      return QualType();
5475
5476    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5477      return QualType();
5478
5479    // Check argument compatibility
5480    llvm::SmallVector<QualType, 10> types;
5481    for (unsigned i = 0; i < lproto_nargs; i++) {
5482      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5483      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5484      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5485                                                    OfBlockPointer,
5486                                                    Unqualified);
5487      if (argtype.isNull()) return QualType();
5488
5489      if (Unqualified)
5490        argtype = argtype.getUnqualifiedType();
5491
5492      types.push_back(argtype);
5493      if (Unqualified) {
5494        largtype = largtype.getUnqualifiedType();
5495        rargtype = rargtype.getUnqualifiedType();
5496      }
5497
5498      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5499        allLTypes = false;
5500      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5501        allRTypes = false;
5502    }
5503    if (allLTypes) return lhs;
5504    if (allRTypes) return rhs;
5505
5506    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5507    EPI.ExtInfo = einfo;
5508    return getFunctionType(retType, types.begin(), types.size(), EPI);
5509  }
5510
5511  if (lproto) allRTypes = false;
5512  if (rproto) allLTypes = false;
5513
5514  const FunctionProtoType *proto = lproto ? lproto : rproto;
5515  if (proto) {
5516    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5517    if (proto->isVariadic()) return QualType();
5518    // Check that the types are compatible with the types that
5519    // would result from default argument promotions (C99 6.7.5.3p15).
5520    // The only types actually affected are promotable integer
5521    // types and floats, which would be passed as a different
5522    // type depending on whether the prototype is visible.
5523    unsigned proto_nargs = proto->getNumArgs();
5524    for (unsigned i = 0; i < proto_nargs; ++i) {
5525      QualType argTy = proto->getArgType(i);
5526
5527      // Look at the promotion type of enum types, since that is the type used
5528      // to pass enum values.
5529      if (const EnumType *Enum = argTy->getAs<EnumType>())
5530        argTy = Enum->getDecl()->getPromotionType();
5531
5532      if (argTy->isPromotableIntegerType() ||
5533          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5534        return QualType();
5535    }
5536
5537    if (allLTypes) return lhs;
5538    if (allRTypes) return rhs;
5539
5540    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5541    EPI.ExtInfo = einfo;
5542    return getFunctionType(retType, proto->arg_type_begin(),
5543                           proto->getNumArgs(), EPI);
5544  }
5545
5546  if (allLTypes) return lhs;
5547  if (allRTypes) return rhs;
5548  return getFunctionNoProtoType(retType, einfo);
5549}
5550
5551QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5552                                bool OfBlockPointer,
5553                                bool Unqualified, bool BlockReturnType) {
5554  // C++ [expr]: If an expression initially has the type "reference to T", the
5555  // type is adjusted to "T" prior to any further analysis, the expression
5556  // designates the object or function denoted by the reference, and the
5557  // expression is an lvalue unless the reference is an rvalue reference and
5558  // the expression is a function call (possibly inside parentheses).
5559  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5560  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5561
5562  if (Unqualified) {
5563    LHS = LHS.getUnqualifiedType();
5564    RHS = RHS.getUnqualifiedType();
5565  }
5566
5567  QualType LHSCan = getCanonicalType(LHS),
5568           RHSCan = getCanonicalType(RHS);
5569
5570  // If two types are identical, they are compatible.
5571  if (LHSCan == RHSCan)
5572    return LHS;
5573
5574  // If the qualifiers are different, the types aren't compatible... mostly.
5575  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5576  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5577  if (LQuals != RQuals) {
5578    // If any of these qualifiers are different, we have a type
5579    // mismatch.
5580    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5581        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5582      return QualType();
5583
5584    // Exactly one GC qualifier difference is allowed: __strong is
5585    // okay if the other type has no GC qualifier but is an Objective
5586    // C object pointer (i.e. implicitly strong by default).  We fix
5587    // this by pretending that the unqualified type was actually
5588    // qualified __strong.
5589    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5590    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5591    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5592
5593    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5594      return QualType();
5595
5596    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5597      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5598    }
5599    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5600      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5601    }
5602    return QualType();
5603  }
5604
5605  // Okay, qualifiers are equal.
5606
5607  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5608  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5609
5610  // We want to consider the two function types to be the same for these
5611  // comparisons, just force one to the other.
5612  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5613  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5614
5615  // Same as above for arrays
5616  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5617    LHSClass = Type::ConstantArray;
5618  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5619    RHSClass = Type::ConstantArray;
5620
5621  // ObjCInterfaces are just specialized ObjCObjects.
5622  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5623  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5624
5625  // Canonicalize ExtVector -> Vector.
5626  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5627  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5628
5629  // If the canonical type classes don't match.
5630  if (LHSClass != RHSClass) {
5631    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5632    // a signed integer type, or an unsigned integer type.
5633    // Compatibility is based on the underlying type, not the promotion
5634    // type.
5635    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5636      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5637        return RHS;
5638    }
5639    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5640      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5641        return LHS;
5642    }
5643
5644    return QualType();
5645  }
5646
5647  // The canonical type classes match.
5648  switch (LHSClass) {
5649#define TYPE(Class, Base)
5650#define ABSTRACT_TYPE(Class, Base)
5651#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5652#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5653#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5654#include "clang/AST/TypeNodes.def"
5655    assert(false && "Non-canonical and dependent types shouldn't get here");
5656    return QualType();
5657
5658  case Type::LValueReference:
5659  case Type::RValueReference:
5660  case Type::MemberPointer:
5661    assert(false && "C++ should never be in mergeTypes");
5662    return QualType();
5663
5664  case Type::ObjCInterface:
5665  case Type::IncompleteArray:
5666  case Type::VariableArray:
5667  case Type::FunctionProto:
5668  case Type::ExtVector:
5669    assert(false && "Types are eliminated above");
5670    return QualType();
5671
5672  case Type::Pointer:
5673  {
5674    // Merge two pointer types, while trying to preserve typedef info
5675    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5676    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5677    if (Unqualified) {
5678      LHSPointee = LHSPointee.getUnqualifiedType();
5679      RHSPointee = RHSPointee.getUnqualifiedType();
5680    }
5681    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5682                                     Unqualified);
5683    if (ResultType.isNull()) return QualType();
5684    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5685      return LHS;
5686    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5687      return RHS;
5688    return getPointerType(ResultType);
5689  }
5690  case Type::BlockPointer:
5691  {
5692    // Merge two block pointer types, while trying to preserve typedef info
5693    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5694    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5695    if (Unqualified) {
5696      LHSPointee = LHSPointee.getUnqualifiedType();
5697      RHSPointee = RHSPointee.getUnqualifiedType();
5698    }
5699    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5700                                     Unqualified);
5701    if (ResultType.isNull()) return QualType();
5702    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5703      return LHS;
5704    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5705      return RHS;
5706    return getBlockPointerType(ResultType);
5707  }
5708  case Type::ConstantArray:
5709  {
5710    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5711    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5712    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5713      return QualType();
5714
5715    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5716    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5717    if (Unqualified) {
5718      LHSElem = LHSElem.getUnqualifiedType();
5719      RHSElem = RHSElem.getUnqualifiedType();
5720    }
5721
5722    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5723    if (ResultType.isNull()) return QualType();
5724    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5725      return LHS;
5726    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5727      return RHS;
5728    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5729                                          ArrayType::ArraySizeModifier(), 0);
5730    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5731                                          ArrayType::ArraySizeModifier(), 0);
5732    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5733    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5734    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5735      return LHS;
5736    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5737      return RHS;
5738    if (LVAT) {
5739      // FIXME: This isn't correct! But tricky to implement because
5740      // the array's size has to be the size of LHS, but the type
5741      // has to be different.
5742      return LHS;
5743    }
5744    if (RVAT) {
5745      // FIXME: This isn't correct! But tricky to implement because
5746      // the array's size has to be the size of RHS, but the type
5747      // has to be different.
5748      return RHS;
5749    }
5750    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5751    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5752    return getIncompleteArrayType(ResultType,
5753                                  ArrayType::ArraySizeModifier(), 0);
5754  }
5755  case Type::FunctionNoProto:
5756    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5757  case Type::Record:
5758  case Type::Enum:
5759    return QualType();
5760  case Type::Builtin:
5761    // Only exactly equal builtin types are compatible, which is tested above.
5762    return QualType();
5763  case Type::Complex:
5764    // Distinct complex types are incompatible.
5765    return QualType();
5766  case Type::Vector:
5767    // FIXME: The merged type should be an ExtVector!
5768    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5769                             RHSCan->getAs<VectorType>()))
5770      return LHS;
5771    return QualType();
5772  case Type::ObjCObject: {
5773    // Check if the types are assignment compatible.
5774    // FIXME: This should be type compatibility, e.g. whether
5775    // "LHS x; RHS x;" at global scope is legal.
5776    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5777    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5778    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5779      return LHS;
5780
5781    return QualType();
5782  }
5783  case Type::ObjCObjectPointer: {
5784    if (OfBlockPointer) {
5785      if (canAssignObjCInterfacesInBlockPointer(
5786                                          LHS->getAs<ObjCObjectPointerType>(),
5787                                          RHS->getAs<ObjCObjectPointerType>(),
5788                                          BlockReturnType))
5789      return LHS;
5790      return QualType();
5791    }
5792    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5793                                RHS->getAs<ObjCObjectPointerType>()))
5794      return LHS;
5795
5796    return QualType();
5797    }
5798  }
5799
5800  return QualType();
5801}
5802
5803/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5804/// 'RHS' attributes and returns the merged version; including for function
5805/// return types.
5806QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5807  QualType LHSCan = getCanonicalType(LHS),
5808  RHSCan = getCanonicalType(RHS);
5809  // If two types are identical, they are compatible.
5810  if (LHSCan == RHSCan)
5811    return LHS;
5812  if (RHSCan->isFunctionType()) {
5813    if (!LHSCan->isFunctionType())
5814      return QualType();
5815    QualType OldReturnType =
5816      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5817    QualType NewReturnType =
5818      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5819    QualType ResReturnType =
5820      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5821    if (ResReturnType.isNull())
5822      return QualType();
5823    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5824      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5825      // In either case, use OldReturnType to build the new function type.
5826      const FunctionType *F = LHS->getAs<FunctionType>();
5827      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5828        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5829        EPI.ExtInfo = getFunctionExtInfo(LHS);
5830        QualType ResultType
5831          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5832                            FPT->getNumArgs(), EPI);
5833        return ResultType;
5834      }
5835    }
5836    return QualType();
5837  }
5838
5839  // If the qualifiers are different, the types can still be merged.
5840  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5841  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5842  if (LQuals != RQuals) {
5843    // If any of these qualifiers are different, we have a type mismatch.
5844    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5845        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5846      return QualType();
5847
5848    // Exactly one GC qualifier difference is allowed: __strong is
5849    // okay if the other type has no GC qualifier but is an Objective
5850    // C object pointer (i.e. implicitly strong by default).  We fix
5851    // this by pretending that the unqualified type was actually
5852    // qualified __strong.
5853    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5854    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5855    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5856
5857    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5858      return QualType();
5859
5860    if (GC_L == Qualifiers::Strong)
5861      return LHS;
5862    if (GC_R == Qualifiers::Strong)
5863      return RHS;
5864    return QualType();
5865  }
5866
5867  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5868    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5869    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5870    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5871    if (ResQT == LHSBaseQT)
5872      return LHS;
5873    if (ResQT == RHSBaseQT)
5874      return RHS;
5875  }
5876  return QualType();
5877}
5878
5879//===----------------------------------------------------------------------===//
5880//                         Integer Predicates
5881//===----------------------------------------------------------------------===//
5882
5883unsigned ASTContext::getIntWidth(QualType T) const {
5884  if (const EnumType *ET = dyn_cast<EnumType>(T))
5885    T = ET->getDecl()->getIntegerType();
5886  if (T->isBooleanType())
5887    return 1;
5888  // For builtin types, just use the standard type sizing method
5889  return (unsigned)getTypeSize(T);
5890}
5891
5892QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5893  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5894
5895  // Turn <4 x signed int> -> <4 x unsigned int>
5896  if (const VectorType *VTy = T->getAs<VectorType>())
5897    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5898                         VTy->getNumElements(), VTy->getVectorKind());
5899
5900  // For enums, we return the unsigned version of the base type.
5901  if (const EnumType *ETy = T->getAs<EnumType>())
5902    T = ETy->getDecl()->getIntegerType();
5903
5904  const BuiltinType *BTy = T->getAs<BuiltinType>();
5905  assert(BTy && "Unexpected signed integer type");
5906  switch (BTy->getKind()) {
5907  case BuiltinType::Char_S:
5908  case BuiltinType::SChar:
5909    return UnsignedCharTy;
5910  case BuiltinType::Short:
5911    return UnsignedShortTy;
5912  case BuiltinType::Int:
5913    return UnsignedIntTy;
5914  case BuiltinType::Long:
5915    return UnsignedLongTy;
5916  case BuiltinType::LongLong:
5917    return UnsignedLongLongTy;
5918  case BuiltinType::Int128:
5919    return UnsignedInt128Ty;
5920  default:
5921    assert(0 && "Unexpected signed integer type");
5922    return QualType();
5923  }
5924}
5925
5926ASTMutationListener::~ASTMutationListener() { }
5927
5928
5929//===----------------------------------------------------------------------===//
5930//                          Builtin Type Computation
5931//===----------------------------------------------------------------------===//
5932
5933/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5934/// pointer over the consumed characters.  This returns the resultant type.  If
5935/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5936/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5937/// a vector of "i*".
5938///
5939/// RequiresICE is filled in on return to indicate whether the value is required
5940/// to be an Integer Constant Expression.
5941static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5942                                  ASTContext::GetBuiltinTypeError &Error,
5943                                  bool &RequiresICE,
5944                                  bool AllowTypeModifiers) {
5945  // Modifiers.
5946  int HowLong = 0;
5947  bool Signed = false, Unsigned = false;
5948  RequiresICE = false;
5949
5950  // Read the prefixed modifiers first.
5951  bool Done = false;
5952  while (!Done) {
5953    switch (*Str++) {
5954    default: Done = true; --Str; break;
5955    case 'I':
5956      RequiresICE = true;
5957      break;
5958    case 'S':
5959      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5960      assert(!Signed && "Can't use 'S' modifier multiple times!");
5961      Signed = true;
5962      break;
5963    case 'U':
5964      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5965      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5966      Unsigned = true;
5967      break;
5968    case 'L':
5969      assert(HowLong <= 2 && "Can't have LLLL modifier");
5970      ++HowLong;
5971      break;
5972    }
5973  }
5974
5975  QualType Type;
5976
5977  // Read the base type.
5978  switch (*Str++) {
5979  default: assert(0 && "Unknown builtin type letter!");
5980  case 'v':
5981    assert(HowLong == 0 && !Signed && !Unsigned &&
5982           "Bad modifiers used with 'v'!");
5983    Type = Context.VoidTy;
5984    break;
5985  case 'f':
5986    assert(HowLong == 0 && !Signed && !Unsigned &&
5987           "Bad modifiers used with 'f'!");
5988    Type = Context.FloatTy;
5989    break;
5990  case 'd':
5991    assert(HowLong < 2 && !Signed && !Unsigned &&
5992           "Bad modifiers used with 'd'!");
5993    if (HowLong)
5994      Type = Context.LongDoubleTy;
5995    else
5996      Type = Context.DoubleTy;
5997    break;
5998  case 's':
5999    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6000    if (Unsigned)
6001      Type = Context.UnsignedShortTy;
6002    else
6003      Type = Context.ShortTy;
6004    break;
6005  case 'i':
6006    if (HowLong == 3)
6007      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6008    else if (HowLong == 2)
6009      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6010    else if (HowLong == 1)
6011      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6012    else
6013      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6014    break;
6015  case 'c':
6016    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6017    if (Signed)
6018      Type = Context.SignedCharTy;
6019    else if (Unsigned)
6020      Type = Context.UnsignedCharTy;
6021    else
6022      Type = Context.CharTy;
6023    break;
6024  case 'b': // boolean
6025    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6026    Type = Context.BoolTy;
6027    break;
6028  case 'z':  // size_t.
6029    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6030    Type = Context.getSizeType();
6031    break;
6032  case 'F':
6033    Type = Context.getCFConstantStringType();
6034    break;
6035  case 'G':
6036    Type = Context.getObjCIdType();
6037    break;
6038  case 'H':
6039    Type = Context.getObjCSelType();
6040    break;
6041  case 'a':
6042    Type = Context.getBuiltinVaListType();
6043    assert(!Type.isNull() && "builtin va list type not initialized!");
6044    break;
6045  case 'A':
6046    // This is a "reference" to a va_list; however, what exactly
6047    // this means depends on how va_list is defined. There are two
6048    // different kinds of va_list: ones passed by value, and ones
6049    // passed by reference.  An example of a by-value va_list is
6050    // x86, where va_list is a char*. An example of by-ref va_list
6051    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6052    // we want this argument to be a char*&; for x86-64, we want
6053    // it to be a __va_list_tag*.
6054    Type = Context.getBuiltinVaListType();
6055    assert(!Type.isNull() && "builtin va list type not initialized!");
6056    if (Type->isArrayType())
6057      Type = Context.getArrayDecayedType(Type);
6058    else
6059      Type = Context.getLValueReferenceType(Type);
6060    break;
6061  case 'V': {
6062    char *End;
6063    unsigned NumElements = strtoul(Str, &End, 10);
6064    assert(End != Str && "Missing vector size");
6065    Str = End;
6066
6067    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6068                                             RequiresICE, false);
6069    assert(!RequiresICE && "Can't require vector ICE");
6070
6071    // TODO: No way to make AltiVec vectors in builtins yet.
6072    Type = Context.getVectorType(ElementType, NumElements,
6073                                 VectorType::GenericVector);
6074    break;
6075  }
6076  case 'X': {
6077    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6078                                             false);
6079    assert(!RequiresICE && "Can't require complex ICE");
6080    Type = Context.getComplexType(ElementType);
6081    break;
6082  }
6083  case 'P':
6084    Type = Context.getFILEType();
6085    if (Type.isNull()) {
6086      Error = ASTContext::GE_Missing_stdio;
6087      return QualType();
6088    }
6089    break;
6090  case 'J':
6091    if (Signed)
6092      Type = Context.getsigjmp_bufType();
6093    else
6094      Type = Context.getjmp_bufType();
6095
6096    if (Type.isNull()) {
6097      Error = ASTContext::GE_Missing_setjmp;
6098      return QualType();
6099    }
6100    break;
6101  }
6102
6103  // If there are modifiers and if we're allowed to parse them, go for it.
6104  Done = !AllowTypeModifiers;
6105  while (!Done) {
6106    switch (char c = *Str++) {
6107    default: Done = true; --Str; break;
6108    case '*':
6109    case '&': {
6110      // Both pointers and references can have their pointee types
6111      // qualified with an address space.
6112      char *End;
6113      unsigned AddrSpace = strtoul(Str, &End, 10);
6114      if (End != Str && AddrSpace != 0) {
6115        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6116        Str = End;
6117      }
6118      if (c == '*')
6119        Type = Context.getPointerType(Type);
6120      else
6121        Type = Context.getLValueReferenceType(Type);
6122      break;
6123    }
6124    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6125    case 'C':
6126      Type = Type.withConst();
6127      break;
6128    case 'D':
6129      Type = Context.getVolatileType(Type);
6130      break;
6131    }
6132  }
6133
6134  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6135         "Integer constant 'I' type must be an integer");
6136
6137  return Type;
6138}
6139
6140/// GetBuiltinType - Return the type for the specified builtin.
6141QualType ASTContext::GetBuiltinType(unsigned Id,
6142                                    GetBuiltinTypeError &Error,
6143                                    unsigned *IntegerConstantArgs) const {
6144  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6145
6146  llvm::SmallVector<QualType, 8> ArgTypes;
6147
6148  bool RequiresICE = false;
6149  Error = GE_None;
6150  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6151                                       RequiresICE, true);
6152  if (Error != GE_None)
6153    return QualType();
6154
6155  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6156
6157  while (TypeStr[0] && TypeStr[0] != '.') {
6158    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6159    if (Error != GE_None)
6160      return QualType();
6161
6162    // If this argument is required to be an IntegerConstantExpression and the
6163    // caller cares, fill in the bitmask we return.
6164    if (RequiresICE && IntegerConstantArgs)
6165      *IntegerConstantArgs |= 1 << ArgTypes.size();
6166
6167    // Do array -> pointer decay.  The builtin should use the decayed type.
6168    if (Ty->isArrayType())
6169      Ty = getArrayDecayedType(Ty);
6170
6171    ArgTypes.push_back(Ty);
6172  }
6173
6174  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6175         "'.' should only occur at end of builtin type list!");
6176
6177  FunctionType::ExtInfo EI;
6178  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6179
6180  bool Variadic = (TypeStr[0] == '.');
6181
6182  // We really shouldn't be making a no-proto type here, especially in C++.
6183  if (ArgTypes.empty() && Variadic)
6184    return getFunctionNoProtoType(ResType, EI);
6185
6186  FunctionProtoType::ExtProtoInfo EPI;
6187  EPI.ExtInfo = EI;
6188  EPI.Variadic = Variadic;
6189
6190  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6191}
6192
6193GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6194  GVALinkage External = GVA_StrongExternal;
6195
6196  Linkage L = FD->getLinkage();
6197  switch (L) {
6198  case NoLinkage:
6199  case InternalLinkage:
6200  case UniqueExternalLinkage:
6201    return GVA_Internal;
6202
6203  case ExternalLinkage:
6204    switch (FD->getTemplateSpecializationKind()) {
6205    case TSK_Undeclared:
6206    case TSK_ExplicitSpecialization:
6207      External = GVA_StrongExternal;
6208      break;
6209
6210    case TSK_ExplicitInstantiationDefinition:
6211      return GVA_ExplicitTemplateInstantiation;
6212
6213    case TSK_ExplicitInstantiationDeclaration:
6214    case TSK_ImplicitInstantiation:
6215      External = GVA_TemplateInstantiation;
6216      break;
6217    }
6218  }
6219
6220  if (!FD->isInlined())
6221    return External;
6222
6223  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6224    // GNU or C99 inline semantics. Determine whether this symbol should be
6225    // externally visible.
6226    if (FD->isInlineDefinitionExternallyVisible())
6227      return External;
6228
6229    // C99 inline semantics, where the symbol is not externally visible.
6230    return GVA_C99Inline;
6231  }
6232
6233  // C++0x [temp.explicit]p9:
6234  //   [ Note: The intent is that an inline function that is the subject of
6235  //   an explicit instantiation declaration will still be implicitly
6236  //   instantiated when used so that the body can be considered for
6237  //   inlining, but that no out-of-line copy of the inline function would be
6238  //   generated in the translation unit. -- end note ]
6239  if (FD->getTemplateSpecializationKind()
6240                                       == TSK_ExplicitInstantiationDeclaration)
6241    return GVA_C99Inline;
6242
6243  return GVA_CXXInline;
6244}
6245
6246GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6247  // If this is a static data member, compute the kind of template
6248  // specialization. Otherwise, this variable is not part of a
6249  // template.
6250  TemplateSpecializationKind TSK = TSK_Undeclared;
6251  if (VD->isStaticDataMember())
6252    TSK = VD->getTemplateSpecializationKind();
6253
6254  Linkage L = VD->getLinkage();
6255  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6256      VD->getType()->getLinkage() == UniqueExternalLinkage)
6257    L = UniqueExternalLinkage;
6258
6259  switch (L) {
6260  case NoLinkage:
6261  case InternalLinkage:
6262  case UniqueExternalLinkage:
6263    return GVA_Internal;
6264
6265  case ExternalLinkage:
6266    switch (TSK) {
6267    case TSK_Undeclared:
6268    case TSK_ExplicitSpecialization:
6269      return GVA_StrongExternal;
6270
6271    case TSK_ExplicitInstantiationDeclaration:
6272      llvm_unreachable("Variable should not be instantiated");
6273      // Fall through to treat this like any other instantiation.
6274
6275    case TSK_ExplicitInstantiationDefinition:
6276      return GVA_ExplicitTemplateInstantiation;
6277
6278    case TSK_ImplicitInstantiation:
6279      return GVA_TemplateInstantiation;
6280    }
6281  }
6282
6283  return GVA_StrongExternal;
6284}
6285
6286bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6287  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6288    if (!VD->isFileVarDecl())
6289      return false;
6290  } else if (!isa<FunctionDecl>(D))
6291    return false;
6292
6293  // Weak references don't produce any output by themselves.
6294  if (D->hasAttr<WeakRefAttr>())
6295    return false;
6296
6297  // Aliases and used decls are required.
6298  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6299    return true;
6300
6301  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6302    // Forward declarations aren't required.
6303    if (!FD->doesThisDeclarationHaveABody())
6304      return false;
6305
6306    // Constructors and destructors are required.
6307    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6308      return true;
6309
6310    // The key function for a class is required.
6311    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6312      const CXXRecordDecl *RD = MD->getParent();
6313      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6314        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6315        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6316          return true;
6317      }
6318    }
6319
6320    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6321
6322    // static, static inline, always_inline, and extern inline functions can
6323    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6324    // Implicit template instantiations can also be deferred in C++.
6325    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6326        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6327      return false;
6328    return true;
6329  }
6330
6331  const VarDecl *VD = cast<VarDecl>(D);
6332  assert(VD->isFileVarDecl() && "Expected file scoped var");
6333
6334  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6335    return false;
6336
6337  // Structs that have non-trivial constructors or destructors are required.
6338
6339  // FIXME: Handle references.
6340  // FIXME: Be more selective about which constructors we care about.
6341  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6342    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6343      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6344                                   RD->hasTrivialCopyConstructor() &&
6345                                   RD->hasTrivialMoveConstructor() &&
6346                                   RD->hasTrivialDestructor()))
6347        return true;
6348    }
6349  }
6350
6351  GVALinkage L = GetGVALinkageForVariable(VD);
6352  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6353    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6354      return false;
6355  }
6356
6357  return true;
6358}
6359
6360CallingConv ASTContext::getDefaultMethodCallConv() {
6361  // Pass through to the C++ ABI object
6362  return ABI->getDefaultMethodCallConv();
6363}
6364
6365bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6366  // Pass through to the C++ ABI object
6367  return ABI->isNearlyEmpty(RD);
6368}
6369
6370MangleContext *ASTContext::createMangleContext() {
6371  switch (Target.getCXXABI()) {
6372  case CXXABI_ARM:
6373  case CXXABI_Itanium:
6374    return createItaniumMangleContext(*this, getDiagnostics());
6375  case CXXABI_Microsoft:
6376    return createMicrosoftMangleContext(*this, getDiagnostics());
6377  }
6378  assert(0 && "Unsupported ABI");
6379  return 0;
6380}
6381
6382CXXABI::~CXXABI() {}
6383
6384size_t ASTContext::getSideTableAllocatedMemory() const {
6385  size_t bytes = 0;
6386  bytes += ASTRecordLayouts.getMemorySize();
6387  bytes += ObjCLayouts.getMemorySize();
6388  bytes += KeyFunctions.getMemorySize();
6389  bytes += ObjCImpls.getMemorySize();
6390  bytes += BlockVarCopyInits.getMemorySize();
6391  bytes += DeclAttrs.getMemorySize();
6392  bytes += InstantiatedFromStaticDataMember.getMemorySize();
6393  bytes += InstantiatedFromUsingDecl.getMemorySize();
6394  bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6395  bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6396  return bytes;
6397}
6398
6399