ASTContext.cpp revision fbff0c4510c7f0e0f30a005960e434b973f5bd21
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
101    // When tag declaration (but not definition!) is part of the
102    // decl-specifier-seq of some other declaration, it doesn't get comment
103    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
104      return NULL;
105  }
106  // TODO: handle comments for function parameters properly.
107  if (isa<ParmVarDecl>(D))
108    return NULL;
109
110  // TODO: we could look up template parameter documentation in the template
111  // documentation.
112  if (isa<TemplateTypeParmDecl>(D) ||
113      isa<NonTypeTemplateParmDecl>(D) ||
114      isa<TemplateTemplateParmDecl>(D))
115    return NULL;
116
117  ArrayRef<RawComment *> RawComments = Comments.getComments();
118
119  // If there are no comments anywhere, we won't find anything.
120  if (RawComments.empty())
121    return NULL;
122
123  // Find declaration location.
124  // For Objective-C declarations we generally don't expect to have multiple
125  // declarators, thus use declaration starting location as the "declaration
126  // location".
127  // For all other declarations multiple declarators are used quite frequently,
128  // so we use the location of the identifier as the "declaration location".
129  SourceLocation DeclLoc;
130  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
131      isa<ObjCPropertyDecl>(D) ||
132      isa<RedeclarableTemplateDecl>(D) ||
133      isa<ClassTemplateSpecializationDecl>(D))
134    DeclLoc = D->getLocStart();
135  else
136    DeclLoc = D->getLocation();
137
138  // If the declaration doesn't map directly to a location in a file, we
139  // can't find the comment.
140  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
141    return NULL;
142
143  // Find the comment that occurs just after this declaration.
144  ArrayRef<RawComment *>::iterator Comment;
145  {
146    // When searching for comments during parsing, the comment we are looking
147    // for is usually among the last two comments we parsed -- check them
148    // first.
149    RawComment CommentAtDeclLoc(
150        SourceMgr, SourceRange(DeclLoc), false,
151        LangOpts.CommentOpts.ParseAllComments);
152    BeforeThanCompare<RawComment> Compare(SourceMgr);
153    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
154    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
155    if (!Found && RawComments.size() >= 2) {
156      MaybeBeforeDecl--;
157      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
158    }
159
160    if (Found) {
161      Comment = MaybeBeforeDecl + 1;
162      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
163                                         &CommentAtDeclLoc, Compare));
164    } else {
165      // Slow path.
166      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
167                                 &CommentAtDeclLoc, Compare);
168    }
169  }
170
171  // Decompose the location for the declaration and find the beginning of the
172  // file buffer.
173  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
174
175  // First check whether we have a trailing comment.
176  if (Comment != RawComments.end() &&
177      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
178      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
179    std::pair<FileID, unsigned> CommentBeginDecomp
180      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
181    // Check that Doxygen trailing comment comes after the declaration, starts
182    // on the same line and in the same file as the declaration.
183    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
184        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
185          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
186                                     CommentBeginDecomp.second)) {
187      return *Comment;
188    }
189  }
190
191  // The comment just after the declaration was not a trailing comment.
192  // Let's look at the previous comment.
193  if (Comment == RawComments.begin())
194    return NULL;
195  --Comment;
196
197  // Check that we actually have a non-member Doxygen comment.
198  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
199    return NULL;
200
201  // Decompose the end of the comment.
202  std::pair<FileID, unsigned> CommentEndDecomp
203    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
204
205  // If the comment and the declaration aren't in the same file, then they
206  // aren't related.
207  if (DeclLocDecomp.first != CommentEndDecomp.first)
208    return NULL;
209
210  // Get the corresponding buffer.
211  bool Invalid = false;
212  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
213                                               &Invalid).data();
214  if (Invalid)
215    return NULL;
216
217  // Extract text between the comment and declaration.
218  StringRef Text(Buffer + CommentEndDecomp.second,
219                 DeclLocDecomp.second - CommentEndDecomp.second);
220
221  // There should be no other declarations or preprocessor directives between
222  // comment and declaration.
223  if (Text.find_first_of(",;{}#@") != StringRef::npos)
224    return NULL;
225
226  return *Comment;
227}
228
229namespace {
230/// If we have a 'templated' declaration for a template, adjust 'D' to
231/// refer to the actual template.
232/// If we have an implicit instantiation, adjust 'D' to refer to template.
233const Decl *adjustDeclToTemplate(const Decl *D) {
234  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
235    // Is this function declaration part of a function template?
236    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
237      return FTD;
238
239    // Nothing to do if function is not an implicit instantiation.
240    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
241      return D;
242
243    // Function is an implicit instantiation of a function template?
244    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
245      return FTD;
246
247    // Function is instantiated from a member definition of a class template?
248    if (const FunctionDecl *MemberDecl =
249            FD->getInstantiatedFromMemberFunction())
250      return MemberDecl;
251
252    return D;
253  }
254  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
255    // Static data member is instantiated from a member definition of a class
256    // template?
257    if (VD->isStaticDataMember())
258      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
259        return MemberDecl;
260
261    return D;
262  }
263  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
264    // Is this class declaration part of a class template?
265    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
266      return CTD;
267
268    // Class is an implicit instantiation of a class template or partial
269    // specialization?
270    if (const ClassTemplateSpecializationDecl *CTSD =
271            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
272      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
273        return D;
274      llvm::PointerUnion<ClassTemplateDecl *,
275                         ClassTemplatePartialSpecializationDecl *>
276          PU = CTSD->getSpecializedTemplateOrPartial();
277      return PU.is<ClassTemplateDecl*>() ?
278          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
279          static_cast<const Decl*>(
280              PU.get<ClassTemplatePartialSpecializationDecl *>());
281    }
282
283    // Class is instantiated from a member definition of a class template?
284    if (const MemberSpecializationInfo *Info =
285                   CRD->getMemberSpecializationInfo())
286      return Info->getInstantiatedFrom();
287
288    return D;
289  }
290  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
291    // Enum is instantiated from a member definition of a class template?
292    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
293      return MemberDecl;
294
295    return D;
296  }
297  // FIXME: Adjust alias templates?
298  return D;
299}
300} // unnamed namespace
301
302const RawComment *ASTContext::getRawCommentForAnyRedecl(
303                                                const Decl *D,
304                                                const Decl **OriginalDecl) const {
305  D = adjustDeclToTemplate(D);
306
307  // Check whether we have cached a comment for this declaration already.
308  {
309    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
310        RedeclComments.find(D);
311    if (Pos != RedeclComments.end()) {
312      const RawCommentAndCacheFlags &Raw = Pos->second;
313      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
314        if (OriginalDecl)
315          *OriginalDecl = Raw.getOriginalDecl();
316        return Raw.getRaw();
317      }
318    }
319  }
320
321  // Search for comments attached to declarations in the redeclaration chain.
322  const RawComment *RC = NULL;
323  const Decl *OriginalDeclForRC = NULL;
324  for (Decl::redecl_iterator I = D->redecls_begin(),
325                             E = D->redecls_end();
326       I != E; ++I) {
327    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
328        RedeclComments.find(*I);
329    if (Pos != RedeclComments.end()) {
330      const RawCommentAndCacheFlags &Raw = Pos->second;
331      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
332        RC = Raw.getRaw();
333        OriginalDeclForRC = Raw.getOriginalDecl();
334        break;
335      }
336    } else {
337      RC = getRawCommentForDeclNoCache(*I);
338      OriginalDeclForRC = *I;
339      RawCommentAndCacheFlags Raw;
340      if (RC) {
341        Raw.setRaw(RC);
342        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
343      } else
344        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
345      Raw.setOriginalDecl(*I);
346      RedeclComments[*I] = Raw;
347      if (RC)
348        break;
349    }
350  }
351
352  // If we found a comment, it should be a documentation comment.
353  assert(!RC || RC->isDocumentation());
354
355  if (OriginalDecl)
356    *OriginalDecl = OriginalDeclForRC;
357
358  // Update cache for every declaration in the redeclaration chain.
359  RawCommentAndCacheFlags Raw;
360  Raw.setRaw(RC);
361  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
362  Raw.setOriginalDecl(OriginalDeclForRC);
363
364  for (Decl::redecl_iterator I = D->redecls_begin(),
365                             E = D->redecls_end();
366       I != E; ++I) {
367    RawCommentAndCacheFlags &R = RedeclComments[*I];
368    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
369      R = Raw;
370  }
371
372  return RC;
373}
374
375static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
376                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
377  const DeclContext *DC = ObjCMethod->getDeclContext();
378  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
379    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
380    if (!ID)
381      return;
382    // Add redeclared method here.
383    for (ObjCInterfaceDecl::known_extensions_iterator
384           Ext = ID->known_extensions_begin(),
385           ExtEnd = ID->known_extensions_end();
386         Ext != ExtEnd; ++Ext) {
387      if (ObjCMethodDecl *RedeclaredMethod =
388            Ext->getMethod(ObjCMethod->getSelector(),
389                                  ObjCMethod->isInstanceMethod()))
390        Redeclared.push_back(RedeclaredMethod);
391    }
392  }
393}
394
395comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
396                                                    const Decl *D) const {
397  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
398  ThisDeclInfo->CommentDecl = D;
399  ThisDeclInfo->IsFilled = false;
400  ThisDeclInfo->fill();
401  ThisDeclInfo->CommentDecl = FC->getDecl();
402  comments::FullComment *CFC =
403    new (*this) comments::FullComment(FC->getBlocks(),
404                                      ThisDeclInfo);
405  return CFC;
406
407}
408
409comments::FullComment *ASTContext::getCommentForDecl(
410                                              const Decl *D,
411                                              const Preprocessor *PP) const {
412  if (D->isInvalidDecl())
413    return NULL;
414  D = adjustDeclToTemplate(D);
415
416  const Decl *Canonical = D->getCanonicalDecl();
417  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
418      ParsedComments.find(Canonical);
419
420  if (Pos != ParsedComments.end()) {
421    if (Canonical != D) {
422      comments::FullComment *FC = Pos->second;
423      comments::FullComment *CFC = cloneFullComment(FC, D);
424      return CFC;
425    }
426    return Pos->second;
427  }
428
429  const Decl *OriginalDecl;
430
431  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
432  if (!RC) {
433    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
434      SmallVector<const NamedDecl*, 8> Overridden;
435      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
436      if (OMD && OMD->isPropertyAccessor())
437        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
438          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
439            return cloneFullComment(FC, D);
440      if (OMD)
441        addRedeclaredMethods(OMD, Overridden);
442      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
443      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
444        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
445          return cloneFullComment(FC, D);
446    }
447    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
448      // Attach any tag type's documentation to its typedef if latter
449      // does not have one of its own.
450      QualType QT = TD->getUnderlyingType();
451      if (const TagType *TT = QT->getAs<TagType>())
452        if (const Decl *TD = TT->getDecl())
453          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
454            return cloneFullComment(FC, D);
455    }
456    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
457      while (IC->getSuperClass()) {
458        IC = IC->getSuperClass();
459        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
460          return cloneFullComment(FC, D);
461      }
462    }
463    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
464      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
465        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
466          return cloneFullComment(FC, D);
467    }
468    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
469      if (!(RD = RD->getDefinition()))
470        return NULL;
471      // Check non-virtual bases.
472      for (CXXRecordDecl::base_class_const_iterator I =
473           RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
474        if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
475          continue;
476        QualType Ty = I->getType();
477        if (Ty.isNull())
478          continue;
479        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
480          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
481            continue;
482
483          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
484            return cloneFullComment(FC, D);
485        }
486      }
487      // Check virtual bases.
488      for (CXXRecordDecl::base_class_const_iterator I =
489           RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
490        if (I->getAccessSpecifier() != AS_public)
491          continue;
492        QualType Ty = I->getType();
493        if (Ty.isNull())
494          continue;
495        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
496          if (!(VirtualBase= VirtualBase->getDefinition()))
497            continue;
498          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
499            return cloneFullComment(FC, D);
500        }
501      }
502    }
503    return NULL;
504  }
505
506  // If the RawComment was attached to other redeclaration of this Decl, we
507  // should parse the comment in context of that other Decl.  This is important
508  // because comments can contain references to parameter names which can be
509  // different across redeclarations.
510  if (D != OriginalDecl)
511    return getCommentForDecl(OriginalDecl, PP);
512
513  comments::FullComment *FC = RC->parse(*this, PP, D);
514  ParsedComments[Canonical] = FC;
515  return FC;
516}
517
518void
519ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
520                                               TemplateTemplateParmDecl *Parm) {
521  ID.AddInteger(Parm->getDepth());
522  ID.AddInteger(Parm->getPosition());
523  ID.AddBoolean(Parm->isParameterPack());
524
525  TemplateParameterList *Params = Parm->getTemplateParameters();
526  ID.AddInteger(Params->size());
527  for (TemplateParameterList::const_iterator P = Params->begin(),
528                                          PEnd = Params->end();
529       P != PEnd; ++P) {
530    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
531      ID.AddInteger(0);
532      ID.AddBoolean(TTP->isParameterPack());
533      continue;
534    }
535
536    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
537      ID.AddInteger(1);
538      ID.AddBoolean(NTTP->isParameterPack());
539      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
540      if (NTTP->isExpandedParameterPack()) {
541        ID.AddBoolean(true);
542        ID.AddInteger(NTTP->getNumExpansionTypes());
543        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
544          QualType T = NTTP->getExpansionType(I);
545          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
546        }
547      } else
548        ID.AddBoolean(false);
549      continue;
550    }
551
552    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
553    ID.AddInteger(2);
554    Profile(ID, TTP);
555  }
556}
557
558TemplateTemplateParmDecl *
559ASTContext::getCanonicalTemplateTemplateParmDecl(
560                                          TemplateTemplateParmDecl *TTP) const {
561  // Check if we already have a canonical template template parameter.
562  llvm::FoldingSetNodeID ID;
563  CanonicalTemplateTemplateParm::Profile(ID, TTP);
564  void *InsertPos = 0;
565  CanonicalTemplateTemplateParm *Canonical
566    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
567  if (Canonical)
568    return Canonical->getParam();
569
570  // Build a canonical template parameter list.
571  TemplateParameterList *Params = TTP->getTemplateParameters();
572  SmallVector<NamedDecl *, 4> CanonParams;
573  CanonParams.reserve(Params->size());
574  for (TemplateParameterList::const_iterator P = Params->begin(),
575                                          PEnd = Params->end();
576       P != PEnd; ++P) {
577    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
578      CanonParams.push_back(
579                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
580                                               SourceLocation(),
581                                               SourceLocation(),
582                                               TTP->getDepth(),
583                                               TTP->getIndex(), 0, false,
584                                               TTP->isParameterPack()));
585    else if (NonTypeTemplateParmDecl *NTTP
586             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
587      QualType T = getCanonicalType(NTTP->getType());
588      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
589      NonTypeTemplateParmDecl *Param;
590      if (NTTP->isExpandedParameterPack()) {
591        SmallVector<QualType, 2> ExpandedTypes;
592        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
593        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
594          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
595          ExpandedTInfos.push_back(
596                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
597        }
598
599        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
600                                                SourceLocation(),
601                                                SourceLocation(),
602                                                NTTP->getDepth(),
603                                                NTTP->getPosition(), 0,
604                                                T,
605                                                TInfo,
606                                                ExpandedTypes.data(),
607                                                ExpandedTypes.size(),
608                                                ExpandedTInfos.data());
609      } else {
610        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
611                                                SourceLocation(),
612                                                SourceLocation(),
613                                                NTTP->getDepth(),
614                                                NTTP->getPosition(), 0,
615                                                T,
616                                                NTTP->isParameterPack(),
617                                                TInfo);
618      }
619      CanonParams.push_back(Param);
620
621    } else
622      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
623                                           cast<TemplateTemplateParmDecl>(*P)));
624  }
625
626  TemplateTemplateParmDecl *CanonTTP
627    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628                                       SourceLocation(), TTP->getDepth(),
629                                       TTP->getPosition(),
630                                       TTP->isParameterPack(),
631                                       0,
632                         TemplateParameterList::Create(*this, SourceLocation(),
633                                                       SourceLocation(),
634                                                       CanonParams.data(),
635                                                       CanonParams.size(),
636                                                       SourceLocation()));
637
638  // Get the new insert position for the node we care about.
639  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
640  assert(Canonical == 0 && "Shouldn't be in the map!");
641  (void)Canonical;
642
643  // Create the canonical template template parameter entry.
644  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
645  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
646  return CanonTTP;
647}
648
649CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
650  if (!LangOpts.CPlusPlus) return 0;
651
652  switch (T.getCXXABI().getKind()) {
653  case TargetCXXABI::GenericARM:
654  case TargetCXXABI::iOS:
655    return CreateARMCXXABI(*this);
656  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
657  case TargetCXXABI::GenericItanium:
658    return CreateItaniumCXXABI(*this);
659  case TargetCXXABI::Microsoft:
660    return CreateMicrosoftCXXABI(*this);
661  }
662  llvm_unreachable("Invalid CXXABI type!");
663}
664
665static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
666                                             const LangOptions &LOpts) {
667  if (LOpts.FakeAddressSpaceMap) {
668    // The fake address space map must have a distinct entry for each
669    // language-specific address space.
670    static const unsigned FakeAddrSpaceMap[] = {
671      1, // opencl_global
672      2, // opencl_local
673      3, // opencl_constant
674      4, // cuda_device
675      5, // cuda_constant
676      6  // cuda_shared
677    };
678    return &FakeAddrSpaceMap;
679  } else {
680    return &T.getAddressSpaceMap();
681  }
682}
683
684ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
685                       const TargetInfo *t,
686                       IdentifierTable &idents, SelectorTable &sels,
687                       Builtin::Context &builtins,
688                       unsigned size_reserve,
689                       bool DelayInitialization)
690  : FunctionProtoTypes(this_()),
691    TemplateSpecializationTypes(this_()),
692    DependentTemplateSpecializationTypes(this_()),
693    SubstTemplateTemplateParmPacks(this_()),
694    GlobalNestedNameSpecifier(0),
695    Int128Decl(0), UInt128Decl(0),
696    BuiltinVaListDecl(0),
697    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
698    BOOLDecl(0),
699    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
700    FILEDecl(0),
701    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
702    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
703    cudaConfigureCallDecl(0),
704    NullTypeSourceInfo(QualType()),
705    FirstLocalImport(), LastLocalImport(),
706    SourceMgr(SM), LangOpts(LOpts),
707    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
708    Idents(idents), Selectors(sels),
709    BuiltinInfo(builtins),
710    DeclarationNames(*this),
711    ExternalSource(0), Listener(0),
712    Comments(SM), CommentsLoaded(false),
713    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
714    LastSDM(0, 0),
715    UniqueBlockByRefTypeID(0)
716{
717  if (size_reserve > 0) Types.reserve(size_reserve);
718  TUDecl = TranslationUnitDecl::Create(*this);
719
720  if (!DelayInitialization) {
721    assert(t && "No target supplied for ASTContext initialization");
722    InitBuiltinTypes(*t);
723  }
724}
725
726ASTContext::~ASTContext() {
727  // Release the DenseMaps associated with DeclContext objects.
728  // FIXME: Is this the ideal solution?
729  ReleaseDeclContextMaps();
730
731  // Call all of the deallocation functions.
732  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
733    Deallocations[I].first(Deallocations[I].second);
734
735  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
736  // because they can contain DenseMaps.
737  for (llvm::DenseMap<const ObjCContainerDecl*,
738       const ASTRecordLayout*>::iterator
739       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
740    // Increment in loop to prevent using deallocated memory.
741    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
742      R->Destroy(*this);
743
744  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
745       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
746    // Increment in loop to prevent using deallocated memory.
747    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
748      R->Destroy(*this);
749  }
750
751  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
752                                                    AEnd = DeclAttrs.end();
753       A != AEnd; ++A)
754    A->second->~AttrVec();
755}
756
757void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
758  Deallocations.push_back(std::make_pair(Callback, Data));
759}
760
761void
762ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
763  ExternalSource.reset(Source.take());
764}
765
766void ASTContext::PrintStats() const {
767  llvm::errs() << "\n*** AST Context Stats:\n";
768  llvm::errs() << "  " << Types.size() << " types total.\n";
769
770  unsigned counts[] = {
771#define TYPE(Name, Parent) 0,
772#define ABSTRACT_TYPE(Name, Parent)
773#include "clang/AST/TypeNodes.def"
774    0 // Extra
775  };
776
777  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
778    Type *T = Types[i];
779    counts[(unsigned)T->getTypeClass()]++;
780  }
781
782  unsigned Idx = 0;
783  unsigned TotalBytes = 0;
784#define TYPE(Name, Parent)                                              \
785  if (counts[Idx])                                                      \
786    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
787                 << " types\n";                                         \
788  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
789  ++Idx;
790#define ABSTRACT_TYPE(Name, Parent)
791#include "clang/AST/TypeNodes.def"
792
793  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
794
795  // Implicit special member functions.
796  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
797               << NumImplicitDefaultConstructors
798               << " implicit default constructors created\n";
799  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
800               << NumImplicitCopyConstructors
801               << " implicit copy constructors created\n";
802  if (getLangOpts().CPlusPlus)
803    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
804                 << NumImplicitMoveConstructors
805                 << " implicit move constructors created\n";
806  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
807               << NumImplicitCopyAssignmentOperators
808               << " implicit copy assignment operators created\n";
809  if (getLangOpts().CPlusPlus)
810    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
811                 << NumImplicitMoveAssignmentOperators
812                 << " implicit move assignment operators created\n";
813  llvm::errs() << NumImplicitDestructorsDeclared << "/"
814               << NumImplicitDestructors
815               << " implicit destructors created\n";
816
817  if (ExternalSource.get()) {
818    llvm::errs() << "\n";
819    ExternalSource->PrintStats();
820  }
821
822  BumpAlloc.PrintStats();
823}
824
825TypedefDecl *ASTContext::getInt128Decl() const {
826  if (!Int128Decl) {
827    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
828    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
829                                     getTranslationUnitDecl(),
830                                     SourceLocation(),
831                                     SourceLocation(),
832                                     &Idents.get("__int128_t"),
833                                     TInfo);
834  }
835
836  return Int128Decl;
837}
838
839TypedefDecl *ASTContext::getUInt128Decl() const {
840  if (!UInt128Decl) {
841    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
842    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
843                                     getTranslationUnitDecl(),
844                                     SourceLocation(),
845                                     SourceLocation(),
846                                     &Idents.get("__uint128_t"),
847                                     TInfo);
848  }
849
850  return UInt128Decl;
851}
852
853void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
854  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
855  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
856  Types.push_back(Ty);
857}
858
859void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
860  assert((!this->Target || this->Target == &Target) &&
861         "Incorrect target reinitialization");
862  assert(VoidTy.isNull() && "Context reinitialized?");
863
864  this->Target = &Target;
865
866  ABI.reset(createCXXABI(Target));
867  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
868
869  // C99 6.2.5p19.
870  InitBuiltinType(VoidTy,              BuiltinType::Void);
871
872  // C99 6.2.5p2.
873  InitBuiltinType(BoolTy,              BuiltinType::Bool);
874  // C99 6.2.5p3.
875  if (LangOpts.CharIsSigned)
876    InitBuiltinType(CharTy,            BuiltinType::Char_S);
877  else
878    InitBuiltinType(CharTy,            BuiltinType::Char_U);
879  // C99 6.2.5p4.
880  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
881  InitBuiltinType(ShortTy,             BuiltinType::Short);
882  InitBuiltinType(IntTy,               BuiltinType::Int);
883  InitBuiltinType(LongTy,              BuiltinType::Long);
884  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
885
886  // C99 6.2.5p6.
887  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
888  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
889  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
890  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
891  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
892
893  // C99 6.2.5p10.
894  InitBuiltinType(FloatTy,             BuiltinType::Float);
895  InitBuiltinType(DoubleTy,            BuiltinType::Double);
896  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
897
898  // GNU extension, 128-bit integers.
899  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
900  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
901
902  // C++ 3.9.1p5
903  if (TargetInfo::isTypeSigned(Target.getWCharType()))
904    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
905  else  // -fshort-wchar makes wchar_t be unsigned.
906    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
907  if (LangOpts.CPlusPlus && LangOpts.WChar)
908    WideCharTy = WCharTy;
909  else {
910    // C99 (or C++ using -fno-wchar).
911    WideCharTy = getFromTargetType(Target.getWCharType());
912  }
913
914  WIntTy = getFromTargetType(Target.getWIntType());
915
916  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
917    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
918  else // C99
919    Char16Ty = getFromTargetType(Target.getChar16Type());
920
921  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
922    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
923  else // C99
924    Char32Ty = getFromTargetType(Target.getChar32Type());
925
926  // Placeholder type for type-dependent expressions whose type is
927  // completely unknown. No code should ever check a type against
928  // DependentTy and users should never see it; however, it is here to
929  // help diagnose failures to properly check for type-dependent
930  // expressions.
931  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
932
933  // Placeholder type for functions.
934  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
935
936  // Placeholder type for bound members.
937  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
938
939  // Placeholder type for pseudo-objects.
940  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
941
942  // "any" type; useful for debugger-like clients.
943  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
944
945  // Placeholder type for unbridged ARC casts.
946  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
947
948  // Placeholder type for builtin functions.
949  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
950
951  // C99 6.2.5p11.
952  FloatComplexTy      = getComplexType(FloatTy);
953  DoubleComplexTy     = getComplexType(DoubleTy);
954  LongDoubleComplexTy = getComplexType(LongDoubleTy);
955
956  // Builtin types for 'id', 'Class', and 'SEL'.
957  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
958  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
959  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
960
961  if (LangOpts.OpenCL) {
962    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
963    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
964    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
965    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
966    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
967    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
968
969    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
970    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
971  }
972
973  // Builtin type for __objc_yes and __objc_no
974  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
975                       SignedCharTy : BoolTy);
976
977  ObjCConstantStringType = QualType();
978
979  ObjCSuperType = QualType();
980
981  // void * type
982  VoidPtrTy = getPointerType(VoidTy);
983
984  // nullptr type (C++0x 2.14.7)
985  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
986
987  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
988  InitBuiltinType(HalfTy, BuiltinType::Half);
989
990  // Builtin type used to help define __builtin_va_list.
991  VaListTagTy = QualType();
992}
993
994DiagnosticsEngine &ASTContext::getDiagnostics() const {
995  return SourceMgr.getDiagnostics();
996}
997
998AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
999  AttrVec *&Result = DeclAttrs[D];
1000  if (!Result) {
1001    void *Mem = Allocate(sizeof(AttrVec));
1002    Result = new (Mem) AttrVec;
1003  }
1004
1005  return *Result;
1006}
1007
1008/// \brief Erase the attributes corresponding to the given declaration.
1009void ASTContext::eraseDeclAttrs(const Decl *D) {
1010  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1011  if (Pos != DeclAttrs.end()) {
1012    Pos->second->~AttrVec();
1013    DeclAttrs.erase(Pos);
1014  }
1015}
1016
1017MemberSpecializationInfo *
1018ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1019  assert(Var->isStaticDataMember() && "Not a static data member");
1020  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
1021    = InstantiatedFromStaticDataMember.find(Var);
1022  if (Pos == InstantiatedFromStaticDataMember.end())
1023    return 0;
1024
1025  return Pos->second;
1026}
1027
1028void
1029ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1030                                                TemplateSpecializationKind TSK,
1031                                          SourceLocation PointOfInstantiation) {
1032  assert(Inst->isStaticDataMember() && "Not a static data member");
1033  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1034  assert(!InstantiatedFromStaticDataMember[Inst] &&
1035         "Already noted what static data member was instantiated from");
1036  InstantiatedFromStaticDataMember[Inst]
1037    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
1038}
1039
1040FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1041                                                     const FunctionDecl *FD){
1042  assert(FD && "Specialization is 0");
1043  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1044    = ClassScopeSpecializationPattern.find(FD);
1045  if (Pos == ClassScopeSpecializationPattern.end())
1046    return 0;
1047
1048  return Pos->second;
1049}
1050
1051void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1052                                        FunctionDecl *Pattern) {
1053  assert(FD && "Specialization is 0");
1054  assert(Pattern && "Class scope specialization pattern is 0");
1055  ClassScopeSpecializationPattern[FD] = Pattern;
1056}
1057
1058NamedDecl *
1059ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1060  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1061    = InstantiatedFromUsingDecl.find(UUD);
1062  if (Pos == InstantiatedFromUsingDecl.end())
1063    return 0;
1064
1065  return Pos->second;
1066}
1067
1068void
1069ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1070  assert((isa<UsingDecl>(Pattern) ||
1071          isa<UnresolvedUsingValueDecl>(Pattern) ||
1072          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1073         "pattern decl is not a using decl");
1074  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1075  InstantiatedFromUsingDecl[Inst] = Pattern;
1076}
1077
1078UsingShadowDecl *
1079ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1080  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1081    = InstantiatedFromUsingShadowDecl.find(Inst);
1082  if (Pos == InstantiatedFromUsingShadowDecl.end())
1083    return 0;
1084
1085  return Pos->second;
1086}
1087
1088void
1089ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1090                                               UsingShadowDecl *Pattern) {
1091  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1092  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1093}
1094
1095FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1096  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1097    = InstantiatedFromUnnamedFieldDecl.find(Field);
1098  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1099    return 0;
1100
1101  return Pos->second;
1102}
1103
1104void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1105                                                     FieldDecl *Tmpl) {
1106  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1107  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1108  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1109         "Already noted what unnamed field was instantiated from");
1110
1111  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1112}
1113
1114bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1115                                    const FieldDecl *LastFD) const {
1116  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1117          FD->getBitWidthValue(*this) == 0);
1118}
1119
1120bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1121                                             const FieldDecl *LastFD) const {
1122  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1123          FD->getBitWidthValue(*this) == 0 &&
1124          LastFD->getBitWidthValue(*this) != 0);
1125}
1126
1127bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1128                                         const FieldDecl *LastFD) const {
1129  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1130          FD->getBitWidthValue(*this) &&
1131          LastFD->getBitWidthValue(*this));
1132}
1133
1134bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1135                                         const FieldDecl *LastFD) const {
1136  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1137          LastFD->getBitWidthValue(*this));
1138}
1139
1140bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1141                                             const FieldDecl *LastFD) const {
1142  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1143          FD->getBitWidthValue(*this));
1144}
1145
1146ASTContext::overridden_cxx_method_iterator
1147ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1148  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1149    = OverriddenMethods.find(Method->getCanonicalDecl());
1150  if (Pos == OverriddenMethods.end())
1151    return 0;
1152
1153  return Pos->second.begin();
1154}
1155
1156ASTContext::overridden_cxx_method_iterator
1157ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1158  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1159    = OverriddenMethods.find(Method->getCanonicalDecl());
1160  if (Pos == OverriddenMethods.end())
1161    return 0;
1162
1163  return Pos->second.end();
1164}
1165
1166unsigned
1167ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1168  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1169    = OverriddenMethods.find(Method->getCanonicalDecl());
1170  if (Pos == OverriddenMethods.end())
1171    return 0;
1172
1173  return Pos->second.size();
1174}
1175
1176void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1177                                     const CXXMethodDecl *Overridden) {
1178  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1179  OverriddenMethods[Method].push_back(Overridden);
1180}
1181
1182void ASTContext::getOverriddenMethods(
1183                      const NamedDecl *D,
1184                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1185  assert(D);
1186
1187  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1188    Overridden.append(overridden_methods_begin(CXXMethod),
1189                      overridden_methods_end(CXXMethod));
1190    return;
1191  }
1192
1193  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1194  if (!Method)
1195    return;
1196
1197  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1198  Method->getOverriddenMethods(OverDecls);
1199  Overridden.append(OverDecls.begin(), OverDecls.end());
1200}
1201
1202void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1203  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1204  assert(!Import->isFromASTFile() && "Non-local import declaration");
1205  if (!FirstLocalImport) {
1206    FirstLocalImport = Import;
1207    LastLocalImport = Import;
1208    return;
1209  }
1210
1211  LastLocalImport->NextLocalImport = Import;
1212  LastLocalImport = Import;
1213}
1214
1215//===----------------------------------------------------------------------===//
1216//                         Type Sizing and Analysis
1217//===----------------------------------------------------------------------===//
1218
1219/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1220/// scalar floating point type.
1221const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1222  const BuiltinType *BT = T->getAs<BuiltinType>();
1223  assert(BT && "Not a floating point type!");
1224  switch (BT->getKind()) {
1225  default: llvm_unreachable("Not a floating point type!");
1226  case BuiltinType::Half:       return Target->getHalfFormat();
1227  case BuiltinType::Float:      return Target->getFloatFormat();
1228  case BuiltinType::Double:     return Target->getDoubleFormat();
1229  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1230  }
1231}
1232
1233/// getDeclAlign - Return a conservative estimate of the alignment of the
1234/// specified decl.  Note that bitfields do not have a valid alignment, so
1235/// this method will assert on them.
1236/// If @p RefAsPointee, references are treated like their underlying type
1237/// (for alignof), else they're treated like pointers (for CodeGen).
1238CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1239  unsigned Align = Target->getCharWidth();
1240
1241  bool UseAlignAttrOnly = false;
1242  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1243    Align = AlignFromAttr;
1244
1245    // __attribute__((aligned)) can increase or decrease alignment
1246    // *except* on a struct or struct member, where it only increases
1247    // alignment unless 'packed' is also specified.
1248    //
1249    // It is an error for alignas to decrease alignment, so we can
1250    // ignore that possibility;  Sema should diagnose it.
1251    if (isa<FieldDecl>(D)) {
1252      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1253        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1254    } else {
1255      UseAlignAttrOnly = true;
1256    }
1257  }
1258  else if (isa<FieldDecl>(D))
1259      UseAlignAttrOnly =
1260        D->hasAttr<PackedAttr>() ||
1261        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1262
1263  // If we're using the align attribute only, just ignore everything
1264  // else about the declaration and its type.
1265  if (UseAlignAttrOnly) {
1266    // do nothing
1267
1268  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1269    QualType T = VD->getType();
1270    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1271      if (RefAsPointee)
1272        T = RT->getPointeeType();
1273      else
1274        T = getPointerType(RT->getPointeeType());
1275    }
1276    if (!T->isIncompleteType() && !T->isFunctionType()) {
1277      // Adjust alignments of declarations with array type by the
1278      // large-array alignment on the target.
1279      unsigned MinWidth = Target->getLargeArrayMinWidth();
1280      const ArrayType *arrayType;
1281      if (MinWidth && (arrayType = getAsArrayType(T))) {
1282        if (isa<VariableArrayType>(arrayType))
1283          Align = std::max(Align, Target->getLargeArrayAlign());
1284        else if (isa<ConstantArrayType>(arrayType) &&
1285                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1286          Align = std::max(Align, Target->getLargeArrayAlign());
1287
1288        // Walk through any array types while we're at it.
1289        T = getBaseElementType(arrayType);
1290      }
1291      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1292      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1293        if (VD->hasGlobalStorage())
1294          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1295      }
1296    }
1297
1298    // Fields can be subject to extra alignment constraints, like if
1299    // the field is packed, the struct is packed, or the struct has a
1300    // a max-field-alignment constraint (#pragma pack).  So calculate
1301    // the actual alignment of the field within the struct, and then
1302    // (as we're expected to) constrain that by the alignment of the type.
1303    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1304      // So calculate the alignment of the field.
1305      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1306
1307      // Start with the record's overall alignment.
1308      unsigned fieldAlign = toBits(layout.getAlignment());
1309
1310      // Use the GCD of that and the offset within the record.
1311      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1312      if (offset > 0) {
1313        // Alignment is always a power of 2, so the GCD will be a power of 2,
1314        // which means we get to do this crazy thing instead of Euclid's.
1315        uint64_t lowBitOfOffset = offset & (~offset + 1);
1316        if (lowBitOfOffset < fieldAlign)
1317          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1318      }
1319
1320      Align = std::min(Align, fieldAlign);
1321    }
1322  }
1323
1324  return toCharUnitsFromBits(Align);
1325}
1326
1327// getTypeInfoDataSizeInChars - Return the size of a type, in
1328// chars. If the type is a record, its data size is returned.  This is
1329// the size of the memcpy that's performed when assigning this type
1330// using a trivial copy/move assignment operator.
1331std::pair<CharUnits, CharUnits>
1332ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1333  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1334
1335  // In C++, objects can sometimes be allocated into the tail padding
1336  // of a base-class subobject.  We decide whether that's possible
1337  // during class layout, so here we can just trust the layout results.
1338  if (getLangOpts().CPlusPlus) {
1339    if (const RecordType *RT = T->getAs<RecordType>()) {
1340      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1341      sizeAndAlign.first = layout.getDataSize();
1342    }
1343  }
1344
1345  return sizeAndAlign;
1346}
1347
1348std::pair<CharUnits, CharUnits>
1349ASTContext::getTypeInfoInChars(const Type *T) const {
1350  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1351  return std::make_pair(toCharUnitsFromBits(Info.first),
1352                        toCharUnitsFromBits(Info.second));
1353}
1354
1355std::pair<CharUnits, CharUnits>
1356ASTContext::getTypeInfoInChars(QualType T) const {
1357  return getTypeInfoInChars(T.getTypePtr());
1358}
1359
1360std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1361  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1362  if (it != MemoizedTypeInfo.end())
1363    return it->second;
1364
1365  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1366  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1367  return Info;
1368}
1369
1370/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1371/// method does not work on incomplete types.
1372///
1373/// FIXME: Pointers into different addr spaces could have different sizes and
1374/// alignment requirements: getPointerInfo should take an AddrSpace, this
1375/// should take a QualType, &c.
1376std::pair<uint64_t, unsigned>
1377ASTContext::getTypeInfoImpl(const Type *T) const {
1378  uint64_t Width=0;
1379  unsigned Align=8;
1380  switch (T->getTypeClass()) {
1381#define TYPE(Class, Base)
1382#define ABSTRACT_TYPE(Class, Base)
1383#define NON_CANONICAL_TYPE(Class, Base)
1384#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1385#include "clang/AST/TypeNodes.def"
1386    llvm_unreachable("Should not see dependent types");
1387
1388  case Type::FunctionNoProto:
1389  case Type::FunctionProto:
1390    // GCC extension: alignof(function) = 32 bits
1391    Width = 0;
1392    Align = 32;
1393    break;
1394
1395  case Type::IncompleteArray:
1396  case Type::VariableArray:
1397    Width = 0;
1398    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1399    break;
1400
1401  case Type::ConstantArray: {
1402    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1403
1404    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1405    uint64_t Size = CAT->getSize().getZExtValue();
1406    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1407           "Overflow in array type bit size evaluation");
1408    Width = EltInfo.first*Size;
1409    Align = EltInfo.second;
1410    Width = llvm::RoundUpToAlignment(Width, Align);
1411    break;
1412  }
1413  case Type::ExtVector:
1414  case Type::Vector: {
1415    const VectorType *VT = cast<VectorType>(T);
1416    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1417    Width = EltInfo.first*VT->getNumElements();
1418    Align = Width;
1419    // If the alignment is not a power of 2, round up to the next power of 2.
1420    // This happens for non-power-of-2 length vectors.
1421    if (Align & (Align-1)) {
1422      Align = llvm::NextPowerOf2(Align);
1423      Width = llvm::RoundUpToAlignment(Width, Align);
1424    }
1425    // Adjust the alignment based on the target max.
1426    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1427    if (TargetVectorAlign && TargetVectorAlign < Align)
1428      Align = TargetVectorAlign;
1429    break;
1430  }
1431
1432  case Type::Builtin:
1433    switch (cast<BuiltinType>(T)->getKind()) {
1434    default: llvm_unreachable("Unknown builtin type!");
1435    case BuiltinType::Void:
1436      // GCC extension: alignof(void) = 8 bits.
1437      Width = 0;
1438      Align = 8;
1439      break;
1440
1441    case BuiltinType::Bool:
1442      Width = Target->getBoolWidth();
1443      Align = Target->getBoolAlign();
1444      break;
1445    case BuiltinType::Char_S:
1446    case BuiltinType::Char_U:
1447    case BuiltinType::UChar:
1448    case BuiltinType::SChar:
1449      Width = Target->getCharWidth();
1450      Align = Target->getCharAlign();
1451      break;
1452    case BuiltinType::WChar_S:
1453    case BuiltinType::WChar_U:
1454      Width = Target->getWCharWidth();
1455      Align = Target->getWCharAlign();
1456      break;
1457    case BuiltinType::Char16:
1458      Width = Target->getChar16Width();
1459      Align = Target->getChar16Align();
1460      break;
1461    case BuiltinType::Char32:
1462      Width = Target->getChar32Width();
1463      Align = Target->getChar32Align();
1464      break;
1465    case BuiltinType::UShort:
1466    case BuiltinType::Short:
1467      Width = Target->getShortWidth();
1468      Align = Target->getShortAlign();
1469      break;
1470    case BuiltinType::UInt:
1471    case BuiltinType::Int:
1472      Width = Target->getIntWidth();
1473      Align = Target->getIntAlign();
1474      break;
1475    case BuiltinType::ULong:
1476    case BuiltinType::Long:
1477      Width = Target->getLongWidth();
1478      Align = Target->getLongAlign();
1479      break;
1480    case BuiltinType::ULongLong:
1481    case BuiltinType::LongLong:
1482      Width = Target->getLongLongWidth();
1483      Align = Target->getLongLongAlign();
1484      break;
1485    case BuiltinType::Int128:
1486    case BuiltinType::UInt128:
1487      Width = 128;
1488      Align = 128; // int128_t is 128-bit aligned on all targets.
1489      break;
1490    case BuiltinType::Half:
1491      Width = Target->getHalfWidth();
1492      Align = Target->getHalfAlign();
1493      break;
1494    case BuiltinType::Float:
1495      Width = Target->getFloatWidth();
1496      Align = Target->getFloatAlign();
1497      break;
1498    case BuiltinType::Double:
1499      Width = Target->getDoubleWidth();
1500      Align = Target->getDoubleAlign();
1501      break;
1502    case BuiltinType::LongDouble:
1503      Width = Target->getLongDoubleWidth();
1504      Align = Target->getLongDoubleAlign();
1505      break;
1506    case BuiltinType::NullPtr:
1507      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1508      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1509      break;
1510    case BuiltinType::ObjCId:
1511    case BuiltinType::ObjCClass:
1512    case BuiltinType::ObjCSel:
1513      Width = Target->getPointerWidth(0);
1514      Align = Target->getPointerAlign(0);
1515      break;
1516    case BuiltinType::OCLSampler:
1517      // Samplers are modeled as integers.
1518      Width = Target->getIntWidth();
1519      Align = Target->getIntAlign();
1520      break;
1521    case BuiltinType::OCLEvent:
1522    case BuiltinType::OCLImage1d:
1523    case BuiltinType::OCLImage1dArray:
1524    case BuiltinType::OCLImage1dBuffer:
1525    case BuiltinType::OCLImage2d:
1526    case BuiltinType::OCLImage2dArray:
1527    case BuiltinType::OCLImage3d:
1528      // Currently these types are pointers to opaque types.
1529      Width = Target->getPointerWidth(0);
1530      Align = Target->getPointerAlign(0);
1531      break;
1532    }
1533    break;
1534  case Type::ObjCObjectPointer:
1535    Width = Target->getPointerWidth(0);
1536    Align = Target->getPointerAlign(0);
1537    break;
1538  case Type::BlockPointer: {
1539    unsigned AS = getTargetAddressSpace(
1540        cast<BlockPointerType>(T)->getPointeeType());
1541    Width = Target->getPointerWidth(AS);
1542    Align = Target->getPointerAlign(AS);
1543    break;
1544  }
1545  case Type::LValueReference:
1546  case Type::RValueReference: {
1547    // alignof and sizeof should never enter this code path here, so we go
1548    // the pointer route.
1549    unsigned AS = getTargetAddressSpace(
1550        cast<ReferenceType>(T)->getPointeeType());
1551    Width = Target->getPointerWidth(AS);
1552    Align = Target->getPointerAlign(AS);
1553    break;
1554  }
1555  case Type::Pointer: {
1556    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1557    Width = Target->getPointerWidth(AS);
1558    Align = Target->getPointerAlign(AS);
1559    break;
1560  }
1561  case Type::MemberPointer: {
1562    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1563    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1564    break;
1565  }
1566  case Type::Complex: {
1567    // Complex types have the same alignment as their elements, but twice the
1568    // size.
1569    std::pair<uint64_t, unsigned> EltInfo =
1570      getTypeInfo(cast<ComplexType>(T)->getElementType());
1571    Width = EltInfo.first*2;
1572    Align = EltInfo.second;
1573    break;
1574  }
1575  case Type::ObjCObject:
1576    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1577  case Type::ObjCInterface: {
1578    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1579    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1580    Width = toBits(Layout.getSize());
1581    Align = toBits(Layout.getAlignment());
1582    break;
1583  }
1584  case Type::Record:
1585  case Type::Enum: {
1586    const TagType *TT = cast<TagType>(T);
1587
1588    if (TT->getDecl()->isInvalidDecl()) {
1589      Width = 8;
1590      Align = 8;
1591      break;
1592    }
1593
1594    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1595      return getTypeInfo(ET->getDecl()->getIntegerType());
1596
1597    const RecordType *RT = cast<RecordType>(TT);
1598    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1599    Width = toBits(Layout.getSize());
1600    Align = toBits(Layout.getAlignment());
1601    break;
1602  }
1603
1604  case Type::SubstTemplateTypeParm:
1605    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1606                       getReplacementType().getTypePtr());
1607
1608  case Type::Auto: {
1609    const AutoType *A = cast<AutoType>(T);
1610    assert(!A->getDeducedType().isNull() &&
1611           "cannot request the size of an undeduced or dependent auto type");
1612    return getTypeInfo(A->getDeducedType().getTypePtr());
1613  }
1614
1615  case Type::Paren:
1616    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1617
1618  case Type::Typedef: {
1619    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1620    std::pair<uint64_t, unsigned> Info
1621      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1622    // If the typedef has an aligned attribute on it, it overrides any computed
1623    // alignment we have.  This violates the GCC documentation (which says that
1624    // attribute(aligned) can only round up) but matches its implementation.
1625    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1626      Align = AttrAlign;
1627    else
1628      Align = Info.second;
1629    Width = Info.first;
1630    break;
1631  }
1632
1633  case Type::TypeOfExpr:
1634    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1635                         .getTypePtr());
1636
1637  case Type::TypeOf:
1638    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1639
1640  case Type::Decltype:
1641    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1642                        .getTypePtr());
1643
1644  case Type::UnaryTransform:
1645    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1646
1647  case Type::Elaborated:
1648    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1649
1650  case Type::Attributed:
1651    return getTypeInfo(
1652                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1653
1654  case Type::TemplateSpecialization: {
1655    assert(getCanonicalType(T) != T &&
1656           "Cannot request the size of a dependent type");
1657    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1658    // A type alias template specialization may refer to a typedef with the
1659    // aligned attribute on it.
1660    if (TST->isTypeAlias())
1661      return getTypeInfo(TST->getAliasedType().getTypePtr());
1662    else
1663      return getTypeInfo(getCanonicalType(T));
1664  }
1665
1666  case Type::Atomic: {
1667    // Start with the base type information.
1668    std::pair<uint64_t, unsigned> Info
1669      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1670    Width = Info.first;
1671    Align = Info.second;
1672
1673    // If the size of the type doesn't exceed the platform's max
1674    // atomic promotion width, make the size and alignment more
1675    // favorable to atomic operations:
1676    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1677      // Round the size up to a power of 2.
1678      if (!llvm::isPowerOf2_64(Width))
1679        Width = llvm::NextPowerOf2(Width);
1680
1681      // Set the alignment equal to the size.
1682      Align = static_cast<unsigned>(Width);
1683    }
1684  }
1685
1686  }
1687
1688  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1689  return std::make_pair(Width, Align);
1690}
1691
1692/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1693CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1694  return CharUnits::fromQuantity(BitSize / getCharWidth());
1695}
1696
1697/// toBits - Convert a size in characters to a size in characters.
1698int64_t ASTContext::toBits(CharUnits CharSize) const {
1699  return CharSize.getQuantity() * getCharWidth();
1700}
1701
1702/// getTypeSizeInChars - Return the size of the specified type, in characters.
1703/// This method does not work on incomplete types.
1704CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1705  return toCharUnitsFromBits(getTypeSize(T));
1706}
1707CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1708  return toCharUnitsFromBits(getTypeSize(T));
1709}
1710
1711/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1712/// characters. This method does not work on incomplete types.
1713CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1714  return toCharUnitsFromBits(getTypeAlign(T));
1715}
1716CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1717  return toCharUnitsFromBits(getTypeAlign(T));
1718}
1719
1720/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1721/// type for the current target in bits.  This can be different than the ABI
1722/// alignment in cases where it is beneficial for performance to overalign
1723/// a data type.
1724unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1725  unsigned ABIAlign = getTypeAlign(T);
1726
1727  // Double and long long should be naturally aligned if possible.
1728  if (const ComplexType* CT = T->getAs<ComplexType>())
1729    T = CT->getElementType().getTypePtr();
1730  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1731      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1732      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1733    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1734
1735  return ABIAlign;
1736}
1737
1738/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1739/// to a global variable of the specified type.
1740unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1741  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1742}
1743
1744/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1745/// should be given to a global variable of the specified type.
1746CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1747  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1748}
1749
1750/// DeepCollectObjCIvars -
1751/// This routine first collects all declared, but not synthesized, ivars in
1752/// super class and then collects all ivars, including those synthesized for
1753/// current class. This routine is used for implementation of current class
1754/// when all ivars, declared and synthesized are known.
1755///
1756void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1757                                      bool leafClass,
1758                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1759  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1760    DeepCollectObjCIvars(SuperClass, false, Ivars);
1761  if (!leafClass) {
1762    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1763         E = OI->ivar_end(); I != E; ++I)
1764      Ivars.push_back(*I);
1765  } else {
1766    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1767    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1768         Iv= Iv->getNextIvar())
1769      Ivars.push_back(Iv);
1770  }
1771}
1772
1773/// CollectInheritedProtocols - Collect all protocols in current class and
1774/// those inherited by it.
1775void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1776                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1777  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1778    // We can use protocol_iterator here instead of
1779    // all_referenced_protocol_iterator since we are walking all categories.
1780    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1781         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1782      ObjCProtocolDecl *Proto = (*P);
1783      Protocols.insert(Proto->getCanonicalDecl());
1784      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1785           PE = Proto->protocol_end(); P != PE; ++P) {
1786        Protocols.insert((*P)->getCanonicalDecl());
1787        CollectInheritedProtocols(*P, Protocols);
1788      }
1789    }
1790
1791    // Categories of this Interface.
1792    for (ObjCInterfaceDecl::visible_categories_iterator
1793           Cat = OI->visible_categories_begin(),
1794           CatEnd = OI->visible_categories_end();
1795         Cat != CatEnd; ++Cat) {
1796      CollectInheritedProtocols(*Cat, Protocols);
1797    }
1798
1799    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1800      while (SD) {
1801        CollectInheritedProtocols(SD, Protocols);
1802        SD = SD->getSuperClass();
1803      }
1804  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1805    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1806         PE = OC->protocol_end(); P != PE; ++P) {
1807      ObjCProtocolDecl *Proto = (*P);
1808      Protocols.insert(Proto->getCanonicalDecl());
1809      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1810           PE = Proto->protocol_end(); P != PE; ++P)
1811        CollectInheritedProtocols(*P, Protocols);
1812    }
1813  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1814    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1815         PE = OP->protocol_end(); P != PE; ++P) {
1816      ObjCProtocolDecl *Proto = (*P);
1817      Protocols.insert(Proto->getCanonicalDecl());
1818      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1819           PE = Proto->protocol_end(); P != PE; ++P)
1820        CollectInheritedProtocols(*P, Protocols);
1821    }
1822  }
1823}
1824
1825unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1826  unsigned count = 0;
1827  // Count ivars declared in class extension.
1828  for (ObjCInterfaceDecl::known_extensions_iterator
1829         Ext = OI->known_extensions_begin(),
1830         ExtEnd = OI->known_extensions_end();
1831       Ext != ExtEnd; ++Ext) {
1832    count += Ext->ivar_size();
1833  }
1834
1835  // Count ivar defined in this class's implementation.  This
1836  // includes synthesized ivars.
1837  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1838    count += ImplDecl->ivar_size();
1839
1840  return count;
1841}
1842
1843bool ASTContext::isSentinelNullExpr(const Expr *E) {
1844  if (!E)
1845    return false;
1846
1847  // nullptr_t is always treated as null.
1848  if (E->getType()->isNullPtrType()) return true;
1849
1850  if (E->getType()->isAnyPointerType() &&
1851      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1852                                                Expr::NPC_ValueDependentIsNull))
1853    return true;
1854
1855  // Unfortunately, __null has type 'int'.
1856  if (isa<GNUNullExpr>(E)) return true;
1857
1858  return false;
1859}
1860
1861/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1862ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1863  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1864    I = ObjCImpls.find(D);
1865  if (I != ObjCImpls.end())
1866    return cast<ObjCImplementationDecl>(I->second);
1867  return 0;
1868}
1869/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1870ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1871  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1872    I = ObjCImpls.find(D);
1873  if (I != ObjCImpls.end())
1874    return cast<ObjCCategoryImplDecl>(I->second);
1875  return 0;
1876}
1877
1878/// \brief Set the implementation of ObjCInterfaceDecl.
1879void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1880                           ObjCImplementationDecl *ImplD) {
1881  assert(IFaceD && ImplD && "Passed null params");
1882  ObjCImpls[IFaceD] = ImplD;
1883}
1884/// \brief Set the implementation of ObjCCategoryDecl.
1885void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1886                           ObjCCategoryImplDecl *ImplD) {
1887  assert(CatD && ImplD && "Passed null params");
1888  ObjCImpls[CatD] = ImplD;
1889}
1890
1891const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1892                                              const NamedDecl *ND) const {
1893  if (const ObjCInterfaceDecl *ID =
1894          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1895    return ID;
1896  if (const ObjCCategoryDecl *CD =
1897          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1898    return CD->getClassInterface();
1899  if (const ObjCImplDecl *IMD =
1900          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1901    return IMD->getClassInterface();
1902
1903  return 0;
1904}
1905
1906/// \brief Get the copy initialization expression of VarDecl,or NULL if
1907/// none exists.
1908Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1909  assert(VD && "Passed null params");
1910  assert(VD->hasAttr<BlocksAttr>() &&
1911         "getBlockVarCopyInits - not __block var");
1912  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1913    I = BlockVarCopyInits.find(VD);
1914  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1915}
1916
1917/// \brief Set the copy inialization expression of a block var decl.
1918void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1919  assert(VD && Init && "Passed null params");
1920  assert(VD->hasAttr<BlocksAttr>() &&
1921         "setBlockVarCopyInits - not __block var");
1922  BlockVarCopyInits[VD] = Init;
1923}
1924
1925TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1926                                                 unsigned DataSize) const {
1927  if (!DataSize)
1928    DataSize = TypeLoc::getFullDataSizeForType(T);
1929  else
1930    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1931           "incorrect data size provided to CreateTypeSourceInfo!");
1932
1933  TypeSourceInfo *TInfo =
1934    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1935  new (TInfo) TypeSourceInfo(T);
1936  return TInfo;
1937}
1938
1939TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1940                                                     SourceLocation L) const {
1941  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1942  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1943  return DI;
1944}
1945
1946const ASTRecordLayout &
1947ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1948  return getObjCLayout(D, 0);
1949}
1950
1951const ASTRecordLayout &
1952ASTContext::getASTObjCImplementationLayout(
1953                                        const ObjCImplementationDecl *D) const {
1954  return getObjCLayout(D->getClassInterface(), D);
1955}
1956
1957//===----------------------------------------------------------------------===//
1958//                   Type creation/memoization methods
1959//===----------------------------------------------------------------------===//
1960
1961QualType
1962ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1963  unsigned fastQuals = quals.getFastQualifiers();
1964  quals.removeFastQualifiers();
1965
1966  // Check if we've already instantiated this type.
1967  llvm::FoldingSetNodeID ID;
1968  ExtQuals::Profile(ID, baseType, quals);
1969  void *insertPos = 0;
1970  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1971    assert(eq->getQualifiers() == quals);
1972    return QualType(eq, fastQuals);
1973  }
1974
1975  // If the base type is not canonical, make the appropriate canonical type.
1976  QualType canon;
1977  if (!baseType->isCanonicalUnqualified()) {
1978    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1979    canonSplit.Quals.addConsistentQualifiers(quals);
1980    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1981
1982    // Re-find the insert position.
1983    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1984  }
1985
1986  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1987  ExtQualNodes.InsertNode(eq, insertPos);
1988  return QualType(eq, fastQuals);
1989}
1990
1991QualType
1992ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1993  QualType CanT = getCanonicalType(T);
1994  if (CanT.getAddressSpace() == AddressSpace)
1995    return T;
1996
1997  // If we are composing extended qualifiers together, merge together
1998  // into one ExtQuals node.
1999  QualifierCollector Quals;
2000  const Type *TypeNode = Quals.strip(T);
2001
2002  // If this type already has an address space specified, it cannot get
2003  // another one.
2004  assert(!Quals.hasAddressSpace() &&
2005         "Type cannot be in multiple addr spaces!");
2006  Quals.addAddressSpace(AddressSpace);
2007
2008  return getExtQualType(TypeNode, Quals);
2009}
2010
2011QualType ASTContext::getObjCGCQualType(QualType T,
2012                                       Qualifiers::GC GCAttr) const {
2013  QualType CanT = getCanonicalType(T);
2014  if (CanT.getObjCGCAttr() == GCAttr)
2015    return T;
2016
2017  if (const PointerType *ptr = T->getAs<PointerType>()) {
2018    QualType Pointee = ptr->getPointeeType();
2019    if (Pointee->isAnyPointerType()) {
2020      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2021      return getPointerType(ResultType);
2022    }
2023  }
2024
2025  // If we are composing extended qualifiers together, merge together
2026  // into one ExtQuals node.
2027  QualifierCollector Quals;
2028  const Type *TypeNode = Quals.strip(T);
2029
2030  // If this type already has an ObjCGC specified, it cannot get
2031  // another one.
2032  assert(!Quals.hasObjCGCAttr() &&
2033         "Type cannot have multiple ObjCGCs!");
2034  Quals.addObjCGCAttr(GCAttr);
2035
2036  return getExtQualType(TypeNode, Quals);
2037}
2038
2039const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2040                                                   FunctionType::ExtInfo Info) {
2041  if (T->getExtInfo() == Info)
2042    return T;
2043
2044  QualType Result;
2045  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2046    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2047  } else {
2048    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2049    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2050    EPI.ExtInfo = Info;
2051    Result = getFunctionType(FPT->getResultType(),
2052                             ArrayRef<QualType>(FPT->arg_type_begin(),
2053                                                FPT->getNumArgs()),
2054                             EPI);
2055  }
2056
2057  return cast<FunctionType>(Result.getTypePtr());
2058}
2059
2060void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2061                                                 QualType ResultType) {
2062  FD = FD->getMostRecentDecl();
2063  while (true) {
2064    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2065    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2066    FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2067    if (FunctionDecl *Next = FD->getPreviousDecl())
2068      FD = Next;
2069    else
2070      break;
2071  }
2072  if (ASTMutationListener *L = getASTMutationListener())
2073    L->DeducedReturnType(FD, ResultType);
2074}
2075
2076/// getComplexType - Return the uniqued reference to the type for a complex
2077/// number with the specified element type.
2078QualType ASTContext::getComplexType(QualType T) const {
2079  // Unique pointers, to guarantee there is only one pointer of a particular
2080  // structure.
2081  llvm::FoldingSetNodeID ID;
2082  ComplexType::Profile(ID, T);
2083
2084  void *InsertPos = 0;
2085  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2086    return QualType(CT, 0);
2087
2088  // If the pointee type isn't canonical, this won't be a canonical type either,
2089  // so fill in the canonical type field.
2090  QualType Canonical;
2091  if (!T.isCanonical()) {
2092    Canonical = getComplexType(getCanonicalType(T));
2093
2094    // Get the new insert position for the node we care about.
2095    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2096    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2097  }
2098  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2099  Types.push_back(New);
2100  ComplexTypes.InsertNode(New, InsertPos);
2101  return QualType(New, 0);
2102}
2103
2104/// getPointerType - Return the uniqued reference to the type for a pointer to
2105/// the specified type.
2106QualType ASTContext::getPointerType(QualType T) const {
2107  // Unique pointers, to guarantee there is only one pointer of a particular
2108  // structure.
2109  llvm::FoldingSetNodeID ID;
2110  PointerType::Profile(ID, T);
2111
2112  void *InsertPos = 0;
2113  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2114    return QualType(PT, 0);
2115
2116  // If the pointee type isn't canonical, this won't be a canonical type either,
2117  // so fill in the canonical type field.
2118  QualType Canonical;
2119  if (!T.isCanonical()) {
2120    Canonical = getPointerType(getCanonicalType(T));
2121
2122    // Get the new insert position for the node we care about.
2123    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2124    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2125  }
2126  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2127  Types.push_back(New);
2128  PointerTypes.InsertNode(New, InsertPos);
2129  return QualType(New, 0);
2130}
2131
2132/// getBlockPointerType - Return the uniqued reference to the type for
2133/// a pointer to the specified block.
2134QualType ASTContext::getBlockPointerType(QualType T) const {
2135  assert(T->isFunctionType() && "block of function types only");
2136  // Unique pointers, to guarantee there is only one block of a particular
2137  // structure.
2138  llvm::FoldingSetNodeID ID;
2139  BlockPointerType::Profile(ID, T);
2140
2141  void *InsertPos = 0;
2142  if (BlockPointerType *PT =
2143        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2144    return QualType(PT, 0);
2145
2146  // If the block pointee type isn't canonical, this won't be a canonical
2147  // type either so fill in the canonical type field.
2148  QualType Canonical;
2149  if (!T.isCanonical()) {
2150    Canonical = getBlockPointerType(getCanonicalType(T));
2151
2152    // Get the new insert position for the node we care about.
2153    BlockPointerType *NewIP =
2154      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2155    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2156  }
2157  BlockPointerType *New
2158    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2159  Types.push_back(New);
2160  BlockPointerTypes.InsertNode(New, InsertPos);
2161  return QualType(New, 0);
2162}
2163
2164/// getLValueReferenceType - Return the uniqued reference to the type for an
2165/// lvalue reference to the specified type.
2166QualType
2167ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2168  assert(getCanonicalType(T) != OverloadTy &&
2169         "Unresolved overloaded function type");
2170
2171  // Unique pointers, to guarantee there is only one pointer of a particular
2172  // structure.
2173  llvm::FoldingSetNodeID ID;
2174  ReferenceType::Profile(ID, T, SpelledAsLValue);
2175
2176  void *InsertPos = 0;
2177  if (LValueReferenceType *RT =
2178        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2179    return QualType(RT, 0);
2180
2181  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2182
2183  // If the referencee type isn't canonical, this won't be a canonical type
2184  // either, so fill in the canonical type field.
2185  QualType Canonical;
2186  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2187    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2188    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2189
2190    // Get the new insert position for the node we care about.
2191    LValueReferenceType *NewIP =
2192      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2193    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2194  }
2195
2196  LValueReferenceType *New
2197    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2198                                                     SpelledAsLValue);
2199  Types.push_back(New);
2200  LValueReferenceTypes.InsertNode(New, InsertPos);
2201
2202  return QualType(New, 0);
2203}
2204
2205/// getRValueReferenceType - Return the uniqued reference to the type for an
2206/// rvalue reference to the specified type.
2207QualType ASTContext::getRValueReferenceType(QualType T) const {
2208  // Unique pointers, to guarantee there is only one pointer of a particular
2209  // structure.
2210  llvm::FoldingSetNodeID ID;
2211  ReferenceType::Profile(ID, T, false);
2212
2213  void *InsertPos = 0;
2214  if (RValueReferenceType *RT =
2215        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2216    return QualType(RT, 0);
2217
2218  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2219
2220  // If the referencee type isn't canonical, this won't be a canonical type
2221  // either, so fill in the canonical type field.
2222  QualType Canonical;
2223  if (InnerRef || !T.isCanonical()) {
2224    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2225    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2226
2227    // Get the new insert position for the node we care about.
2228    RValueReferenceType *NewIP =
2229      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2230    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2231  }
2232
2233  RValueReferenceType *New
2234    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2235  Types.push_back(New);
2236  RValueReferenceTypes.InsertNode(New, InsertPos);
2237  return QualType(New, 0);
2238}
2239
2240/// getMemberPointerType - Return the uniqued reference to the type for a
2241/// member pointer to the specified type, in the specified class.
2242QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2243  // Unique pointers, to guarantee there is only one pointer of a particular
2244  // structure.
2245  llvm::FoldingSetNodeID ID;
2246  MemberPointerType::Profile(ID, T, Cls);
2247
2248  void *InsertPos = 0;
2249  if (MemberPointerType *PT =
2250      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2251    return QualType(PT, 0);
2252
2253  // If the pointee or class type isn't canonical, this won't be a canonical
2254  // type either, so fill in the canonical type field.
2255  QualType Canonical;
2256  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2257    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2258
2259    // Get the new insert position for the node we care about.
2260    MemberPointerType *NewIP =
2261      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2262    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2263  }
2264  MemberPointerType *New
2265    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2266  Types.push_back(New);
2267  MemberPointerTypes.InsertNode(New, InsertPos);
2268  return QualType(New, 0);
2269}
2270
2271/// getConstantArrayType - Return the unique reference to the type for an
2272/// array of the specified element type.
2273QualType ASTContext::getConstantArrayType(QualType EltTy,
2274                                          const llvm::APInt &ArySizeIn,
2275                                          ArrayType::ArraySizeModifier ASM,
2276                                          unsigned IndexTypeQuals) const {
2277  assert((EltTy->isDependentType() ||
2278          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2279         "Constant array of VLAs is illegal!");
2280
2281  // Convert the array size into a canonical width matching the pointer size for
2282  // the target.
2283  llvm::APInt ArySize(ArySizeIn);
2284  ArySize =
2285    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2286
2287  llvm::FoldingSetNodeID ID;
2288  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2289
2290  void *InsertPos = 0;
2291  if (ConstantArrayType *ATP =
2292      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2293    return QualType(ATP, 0);
2294
2295  // If the element type isn't canonical or has qualifiers, this won't
2296  // be a canonical type either, so fill in the canonical type field.
2297  QualType Canon;
2298  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2299    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2300    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2301                                 ASM, IndexTypeQuals);
2302    Canon = getQualifiedType(Canon, canonSplit.Quals);
2303
2304    // Get the new insert position for the node we care about.
2305    ConstantArrayType *NewIP =
2306      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2307    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2308  }
2309
2310  ConstantArrayType *New = new(*this,TypeAlignment)
2311    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2312  ConstantArrayTypes.InsertNode(New, InsertPos);
2313  Types.push_back(New);
2314  return QualType(New, 0);
2315}
2316
2317/// getVariableArrayDecayedType - Turns the given type, which may be
2318/// variably-modified, into the corresponding type with all the known
2319/// sizes replaced with [*].
2320QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2321  // Vastly most common case.
2322  if (!type->isVariablyModifiedType()) return type;
2323
2324  QualType result;
2325
2326  SplitQualType split = type.getSplitDesugaredType();
2327  const Type *ty = split.Ty;
2328  switch (ty->getTypeClass()) {
2329#define TYPE(Class, Base)
2330#define ABSTRACT_TYPE(Class, Base)
2331#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2332#include "clang/AST/TypeNodes.def"
2333    llvm_unreachable("didn't desugar past all non-canonical types?");
2334
2335  // These types should never be variably-modified.
2336  case Type::Builtin:
2337  case Type::Complex:
2338  case Type::Vector:
2339  case Type::ExtVector:
2340  case Type::DependentSizedExtVector:
2341  case Type::ObjCObject:
2342  case Type::ObjCInterface:
2343  case Type::ObjCObjectPointer:
2344  case Type::Record:
2345  case Type::Enum:
2346  case Type::UnresolvedUsing:
2347  case Type::TypeOfExpr:
2348  case Type::TypeOf:
2349  case Type::Decltype:
2350  case Type::UnaryTransform:
2351  case Type::DependentName:
2352  case Type::InjectedClassName:
2353  case Type::TemplateSpecialization:
2354  case Type::DependentTemplateSpecialization:
2355  case Type::TemplateTypeParm:
2356  case Type::SubstTemplateTypeParmPack:
2357  case Type::Auto:
2358  case Type::PackExpansion:
2359    llvm_unreachable("type should never be variably-modified");
2360
2361  // These types can be variably-modified but should never need to
2362  // further decay.
2363  case Type::FunctionNoProto:
2364  case Type::FunctionProto:
2365  case Type::BlockPointer:
2366  case Type::MemberPointer:
2367    return type;
2368
2369  // These types can be variably-modified.  All these modifications
2370  // preserve structure except as noted by comments.
2371  // TODO: if we ever care about optimizing VLAs, there are no-op
2372  // optimizations available here.
2373  case Type::Pointer:
2374    result = getPointerType(getVariableArrayDecayedType(
2375                              cast<PointerType>(ty)->getPointeeType()));
2376    break;
2377
2378  case Type::LValueReference: {
2379    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2380    result = getLValueReferenceType(
2381                 getVariableArrayDecayedType(lv->getPointeeType()),
2382                                    lv->isSpelledAsLValue());
2383    break;
2384  }
2385
2386  case Type::RValueReference: {
2387    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2388    result = getRValueReferenceType(
2389                 getVariableArrayDecayedType(lv->getPointeeType()));
2390    break;
2391  }
2392
2393  case Type::Atomic: {
2394    const AtomicType *at = cast<AtomicType>(ty);
2395    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2396    break;
2397  }
2398
2399  case Type::ConstantArray: {
2400    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2401    result = getConstantArrayType(
2402                 getVariableArrayDecayedType(cat->getElementType()),
2403                                  cat->getSize(),
2404                                  cat->getSizeModifier(),
2405                                  cat->getIndexTypeCVRQualifiers());
2406    break;
2407  }
2408
2409  case Type::DependentSizedArray: {
2410    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2411    result = getDependentSizedArrayType(
2412                 getVariableArrayDecayedType(dat->getElementType()),
2413                                        dat->getSizeExpr(),
2414                                        dat->getSizeModifier(),
2415                                        dat->getIndexTypeCVRQualifiers(),
2416                                        dat->getBracketsRange());
2417    break;
2418  }
2419
2420  // Turn incomplete types into [*] types.
2421  case Type::IncompleteArray: {
2422    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2423    result = getVariableArrayType(
2424                 getVariableArrayDecayedType(iat->getElementType()),
2425                                  /*size*/ 0,
2426                                  ArrayType::Normal,
2427                                  iat->getIndexTypeCVRQualifiers(),
2428                                  SourceRange());
2429    break;
2430  }
2431
2432  // Turn VLA types into [*] types.
2433  case Type::VariableArray: {
2434    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2435    result = getVariableArrayType(
2436                 getVariableArrayDecayedType(vat->getElementType()),
2437                                  /*size*/ 0,
2438                                  ArrayType::Star,
2439                                  vat->getIndexTypeCVRQualifiers(),
2440                                  vat->getBracketsRange());
2441    break;
2442  }
2443  }
2444
2445  // Apply the top-level qualifiers from the original.
2446  return getQualifiedType(result, split.Quals);
2447}
2448
2449/// getVariableArrayType - Returns a non-unique reference to the type for a
2450/// variable array of the specified element type.
2451QualType ASTContext::getVariableArrayType(QualType EltTy,
2452                                          Expr *NumElts,
2453                                          ArrayType::ArraySizeModifier ASM,
2454                                          unsigned IndexTypeQuals,
2455                                          SourceRange Brackets) const {
2456  // Since we don't unique expressions, it isn't possible to unique VLA's
2457  // that have an expression provided for their size.
2458  QualType Canon;
2459
2460  // Be sure to pull qualifiers off the element type.
2461  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2462    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2463    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2464                                 IndexTypeQuals, Brackets);
2465    Canon = getQualifiedType(Canon, canonSplit.Quals);
2466  }
2467
2468  VariableArrayType *New = new(*this, TypeAlignment)
2469    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2470
2471  VariableArrayTypes.push_back(New);
2472  Types.push_back(New);
2473  return QualType(New, 0);
2474}
2475
2476/// getDependentSizedArrayType - Returns a non-unique reference to
2477/// the type for a dependently-sized array of the specified element
2478/// type.
2479QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2480                                                Expr *numElements,
2481                                                ArrayType::ArraySizeModifier ASM,
2482                                                unsigned elementTypeQuals,
2483                                                SourceRange brackets) const {
2484  assert((!numElements || numElements->isTypeDependent() ||
2485          numElements->isValueDependent()) &&
2486         "Size must be type- or value-dependent!");
2487
2488  // Dependently-sized array types that do not have a specified number
2489  // of elements will have their sizes deduced from a dependent
2490  // initializer.  We do no canonicalization here at all, which is okay
2491  // because they can't be used in most locations.
2492  if (!numElements) {
2493    DependentSizedArrayType *newType
2494      = new (*this, TypeAlignment)
2495          DependentSizedArrayType(*this, elementType, QualType(),
2496                                  numElements, ASM, elementTypeQuals,
2497                                  brackets);
2498    Types.push_back(newType);
2499    return QualType(newType, 0);
2500  }
2501
2502  // Otherwise, we actually build a new type every time, but we
2503  // also build a canonical type.
2504
2505  SplitQualType canonElementType = getCanonicalType(elementType).split();
2506
2507  void *insertPos = 0;
2508  llvm::FoldingSetNodeID ID;
2509  DependentSizedArrayType::Profile(ID, *this,
2510                                   QualType(canonElementType.Ty, 0),
2511                                   ASM, elementTypeQuals, numElements);
2512
2513  // Look for an existing type with these properties.
2514  DependentSizedArrayType *canonTy =
2515    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2516
2517  // If we don't have one, build one.
2518  if (!canonTy) {
2519    canonTy = new (*this, TypeAlignment)
2520      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2521                              QualType(), numElements, ASM, elementTypeQuals,
2522                              brackets);
2523    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2524    Types.push_back(canonTy);
2525  }
2526
2527  // Apply qualifiers from the element type to the array.
2528  QualType canon = getQualifiedType(QualType(canonTy,0),
2529                                    canonElementType.Quals);
2530
2531  // If we didn't need extra canonicalization for the element type,
2532  // then just use that as our result.
2533  if (QualType(canonElementType.Ty, 0) == elementType)
2534    return canon;
2535
2536  // Otherwise, we need to build a type which follows the spelling
2537  // of the element type.
2538  DependentSizedArrayType *sugaredType
2539    = new (*this, TypeAlignment)
2540        DependentSizedArrayType(*this, elementType, canon, numElements,
2541                                ASM, elementTypeQuals, brackets);
2542  Types.push_back(sugaredType);
2543  return QualType(sugaredType, 0);
2544}
2545
2546QualType ASTContext::getIncompleteArrayType(QualType elementType,
2547                                            ArrayType::ArraySizeModifier ASM,
2548                                            unsigned elementTypeQuals) const {
2549  llvm::FoldingSetNodeID ID;
2550  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2551
2552  void *insertPos = 0;
2553  if (IncompleteArrayType *iat =
2554       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2555    return QualType(iat, 0);
2556
2557  // If the element type isn't canonical, this won't be a canonical type
2558  // either, so fill in the canonical type field.  We also have to pull
2559  // qualifiers off the element type.
2560  QualType canon;
2561
2562  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2563    SplitQualType canonSplit = getCanonicalType(elementType).split();
2564    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2565                                   ASM, elementTypeQuals);
2566    canon = getQualifiedType(canon, canonSplit.Quals);
2567
2568    // Get the new insert position for the node we care about.
2569    IncompleteArrayType *existing =
2570      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2571    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2572  }
2573
2574  IncompleteArrayType *newType = new (*this, TypeAlignment)
2575    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2576
2577  IncompleteArrayTypes.InsertNode(newType, insertPos);
2578  Types.push_back(newType);
2579  return QualType(newType, 0);
2580}
2581
2582/// getVectorType - Return the unique reference to a vector type of
2583/// the specified element type and size. VectorType must be a built-in type.
2584QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2585                                   VectorType::VectorKind VecKind) const {
2586  assert(vecType->isBuiltinType());
2587
2588  // Check if we've already instantiated a vector of this type.
2589  llvm::FoldingSetNodeID ID;
2590  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2591
2592  void *InsertPos = 0;
2593  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2594    return QualType(VTP, 0);
2595
2596  // If the element type isn't canonical, this won't be a canonical type either,
2597  // so fill in the canonical type field.
2598  QualType Canonical;
2599  if (!vecType.isCanonical()) {
2600    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2601
2602    // Get the new insert position for the node we care about.
2603    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2604    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2605  }
2606  VectorType *New = new (*this, TypeAlignment)
2607    VectorType(vecType, NumElts, Canonical, VecKind);
2608  VectorTypes.InsertNode(New, InsertPos);
2609  Types.push_back(New);
2610  return QualType(New, 0);
2611}
2612
2613/// getExtVectorType - Return the unique reference to an extended vector type of
2614/// the specified element type and size. VectorType must be a built-in type.
2615QualType
2616ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2617  assert(vecType->isBuiltinType() || vecType->isDependentType());
2618
2619  // Check if we've already instantiated a vector of this type.
2620  llvm::FoldingSetNodeID ID;
2621  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2622                      VectorType::GenericVector);
2623  void *InsertPos = 0;
2624  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2625    return QualType(VTP, 0);
2626
2627  // If the element type isn't canonical, this won't be a canonical type either,
2628  // so fill in the canonical type field.
2629  QualType Canonical;
2630  if (!vecType.isCanonical()) {
2631    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2632
2633    // Get the new insert position for the node we care about.
2634    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2635    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2636  }
2637  ExtVectorType *New = new (*this, TypeAlignment)
2638    ExtVectorType(vecType, NumElts, Canonical);
2639  VectorTypes.InsertNode(New, InsertPos);
2640  Types.push_back(New);
2641  return QualType(New, 0);
2642}
2643
2644QualType
2645ASTContext::getDependentSizedExtVectorType(QualType vecType,
2646                                           Expr *SizeExpr,
2647                                           SourceLocation AttrLoc) const {
2648  llvm::FoldingSetNodeID ID;
2649  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2650                                       SizeExpr);
2651
2652  void *InsertPos = 0;
2653  DependentSizedExtVectorType *Canon
2654    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2655  DependentSizedExtVectorType *New;
2656  if (Canon) {
2657    // We already have a canonical version of this array type; use it as
2658    // the canonical type for a newly-built type.
2659    New = new (*this, TypeAlignment)
2660      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2661                                  SizeExpr, AttrLoc);
2662  } else {
2663    QualType CanonVecTy = getCanonicalType(vecType);
2664    if (CanonVecTy == vecType) {
2665      New = new (*this, TypeAlignment)
2666        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2667                                    AttrLoc);
2668
2669      DependentSizedExtVectorType *CanonCheck
2670        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2671      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2672      (void)CanonCheck;
2673      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2674    } else {
2675      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2676                                                      SourceLocation());
2677      New = new (*this, TypeAlignment)
2678        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2679    }
2680  }
2681
2682  Types.push_back(New);
2683  return QualType(New, 0);
2684}
2685
2686/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2687///
2688QualType
2689ASTContext::getFunctionNoProtoType(QualType ResultTy,
2690                                   const FunctionType::ExtInfo &Info) const {
2691  const CallingConv DefaultCC = Info.getCC();
2692  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2693                               CC_X86StdCall : DefaultCC;
2694  // Unique functions, to guarantee there is only one function of a particular
2695  // structure.
2696  llvm::FoldingSetNodeID ID;
2697  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2698
2699  void *InsertPos = 0;
2700  if (FunctionNoProtoType *FT =
2701        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2702    return QualType(FT, 0);
2703
2704  QualType Canonical;
2705  if (!ResultTy.isCanonical() ||
2706      getCanonicalCallConv(CallConv) != CallConv) {
2707    Canonical =
2708      getFunctionNoProtoType(getCanonicalType(ResultTy),
2709                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2710
2711    // Get the new insert position for the node we care about.
2712    FunctionNoProtoType *NewIP =
2713      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2714    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2715  }
2716
2717  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2718  FunctionNoProtoType *New = new (*this, TypeAlignment)
2719    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2720  Types.push_back(New);
2721  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2722  return QualType(New, 0);
2723}
2724
2725/// \brief Determine whether \p T is canonical as the result type of a function.
2726static bool isCanonicalResultType(QualType T) {
2727  return T.isCanonical() &&
2728         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2729          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2730}
2731
2732/// getFunctionType - Return a normal function type with a typed argument
2733/// list.  isVariadic indicates whether the argument list includes '...'.
2734QualType
2735ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2736                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2737  size_t NumArgs = ArgArray.size();
2738
2739  // Unique functions, to guarantee there is only one function of a particular
2740  // structure.
2741  llvm::FoldingSetNodeID ID;
2742  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2743                             *this);
2744
2745  void *InsertPos = 0;
2746  if (FunctionProtoType *FTP =
2747        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2748    return QualType(FTP, 0);
2749
2750  // Determine whether the type being created is already canonical or not.
2751  bool isCanonical =
2752    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2753    !EPI.HasTrailingReturn;
2754  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2755    if (!ArgArray[i].isCanonicalAsParam())
2756      isCanonical = false;
2757
2758  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2759  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2760                               CC_X86StdCall : DefaultCC;
2761
2762  // If this type isn't canonical, get the canonical version of it.
2763  // The exception spec is not part of the canonical type.
2764  QualType Canonical;
2765  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2766    SmallVector<QualType, 16> CanonicalArgs;
2767    CanonicalArgs.reserve(NumArgs);
2768    for (unsigned i = 0; i != NumArgs; ++i)
2769      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2770
2771    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2772    CanonicalEPI.HasTrailingReturn = false;
2773    CanonicalEPI.ExceptionSpecType = EST_None;
2774    CanonicalEPI.NumExceptions = 0;
2775    CanonicalEPI.ExtInfo
2776      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2777
2778    // Result types do not have ARC lifetime qualifiers.
2779    QualType CanResultTy = getCanonicalType(ResultTy);
2780    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2781      Qualifiers Qs = CanResultTy.getQualifiers();
2782      Qs.removeObjCLifetime();
2783      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2784    }
2785
2786    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2787
2788    // Get the new insert position for the node we care about.
2789    FunctionProtoType *NewIP =
2790      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2791    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2792  }
2793
2794  // FunctionProtoType objects are allocated with extra bytes after
2795  // them for three variable size arrays at the end:
2796  //  - parameter types
2797  //  - exception types
2798  //  - consumed-arguments flags
2799  // Instead of the exception types, there could be a noexcept
2800  // expression, or information used to resolve the exception
2801  // specification.
2802  size_t Size = sizeof(FunctionProtoType) +
2803                NumArgs * sizeof(QualType);
2804  if (EPI.ExceptionSpecType == EST_Dynamic) {
2805    Size += EPI.NumExceptions * sizeof(QualType);
2806  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2807    Size += sizeof(Expr*);
2808  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2809    Size += 2 * sizeof(FunctionDecl*);
2810  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2811    Size += sizeof(FunctionDecl*);
2812  }
2813  if (EPI.ConsumedArguments)
2814    Size += NumArgs * sizeof(bool);
2815
2816  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2817  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2818  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2819  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2820  Types.push_back(FTP);
2821  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2822  return QualType(FTP, 0);
2823}
2824
2825#ifndef NDEBUG
2826static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2827  if (!isa<CXXRecordDecl>(D)) return false;
2828  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2829  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2830    return true;
2831  if (RD->getDescribedClassTemplate() &&
2832      !isa<ClassTemplateSpecializationDecl>(RD))
2833    return true;
2834  return false;
2835}
2836#endif
2837
2838/// getInjectedClassNameType - Return the unique reference to the
2839/// injected class name type for the specified templated declaration.
2840QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2841                                              QualType TST) const {
2842  assert(NeedsInjectedClassNameType(Decl));
2843  if (Decl->TypeForDecl) {
2844    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2845  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2846    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2847    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2848    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2849  } else {
2850    Type *newType =
2851      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2852    Decl->TypeForDecl = newType;
2853    Types.push_back(newType);
2854  }
2855  return QualType(Decl->TypeForDecl, 0);
2856}
2857
2858/// getTypeDeclType - Return the unique reference to the type for the
2859/// specified type declaration.
2860QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2861  assert(Decl && "Passed null for Decl param");
2862  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2863
2864  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2865    return getTypedefType(Typedef);
2866
2867  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2868         "Template type parameter types are always available.");
2869
2870  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2871    assert(!Record->getPreviousDecl() &&
2872           "struct/union has previous declaration");
2873    assert(!NeedsInjectedClassNameType(Record));
2874    return getRecordType(Record);
2875  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2876    assert(!Enum->getPreviousDecl() &&
2877           "enum has previous declaration");
2878    return getEnumType(Enum);
2879  } else if (const UnresolvedUsingTypenameDecl *Using =
2880               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2881    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2882    Decl->TypeForDecl = newType;
2883    Types.push_back(newType);
2884  } else
2885    llvm_unreachable("TypeDecl without a type?");
2886
2887  return QualType(Decl->TypeForDecl, 0);
2888}
2889
2890/// getTypedefType - Return the unique reference to the type for the
2891/// specified typedef name decl.
2892QualType
2893ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2894                           QualType Canonical) const {
2895  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2896
2897  if (Canonical.isNull())
2898    Canonical = getCanonicalType(Decl->getUnderlyingType());
2899  TypedefType *newType = new(*this, TypeAlignment)
2900    TypedefType(Type::Typedef, Decl, Canonical);
2901  Decl->TypeForDecl = newType;
2902  Types.push_back(newType);
2903  return QualType(newType, 0);
2904}
2905
2906QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2907  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2908
2909  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2910    if (PrevDecl->TypeForDecl)
2911      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2912
2913  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2914  Decl->TypeForDecl = newType;
2915  Types.push_back(newType);
2916  return QualType(newType, 0);
2917}
2918
2919QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2920  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2921
2922  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2923    if (PrevDecl->TypeForDecl)
2924      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2925
2926  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2927  Decl->TypeForDecl = newType;
2928  Types.push_back(newType);
2929  return QualType(newType, 0);
2930}
2931
2932QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2933                                       QualType modifiedType,
2934                                       QualType equivalentType) {
2935  llvm::FoldingSetNodeID id;
2936  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2937
2938  void *insertPos = 0;
2939  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2940  if (type) return QualType(type, 0);
2941
2942  QualType canon = getCanonicalType(equivalentType);
2943  type = new (*this, TypeAlignment)
2944           AttributedType(canon, attrKind, modifiedType, equivalentType);
2945
2946  Types.push_back(type);
2947  AttributedTypes.InsertNode(type, insertPos);
2948
2949  return QualType(type, 0);
2950}
2951
2952
2953/// \brief Retrieve a substitution-result type.
2954QualType
2955ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2956                                         QualType Replacement) const {
2957  assert(Replacement.isCanonical()
2958         && "replacement types must always be canonical");
2959
2960  llvm::FoldingSetNodeID ID;
2961  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2962  void *InsertPos = 0;
2963  SubstTemplateTypeParmType *SubstParm
2964    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2965
2966  if (!SubstParm) {
2967    SubstParm = new (*this, TypeAlignment)
2968      SubstTemplateTypeParmType(Parm, Replacement);
2969    Types.push_back(SubstParm);
2970    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2971  }
2972
2973  return QualType(SubstParm, 0);
2974}
2975
2976/// \brief Retrieve a
2977QualType ASTContext::getSubstTemplateTypeParmPackType(
2978                                          const TemplateTypeParmType *Parm,
2979                                              const TemplateArgument &ArgPack) {
2980#ifndef NDEBUG
2981  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2982                                    PEnd = ArgPack.pack_end();
2983       P != PEnd; ++P) {
2984    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2985    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2986  }
2987#endif
2988
2989  llvm::FoldingSetNodeID ID;
2990  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2991  void *InsertPos = 0;
2992  if (SubstTemplateTypeParmPackType *SubstParm
2993        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2994    return QualType(SubstParm, 0);
2995
2996  QualType Canon;
2997  if (!Parm->isCanonicalUnqualified()) {
2998    Canon = getCanonicalType(QualType(Parm, 0));
2999    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3000                                             ArgPack);
3001    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3002  }
3003
3004  SubstTemplateTypeParmPackType *SubstParm
3005    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3006                                                               ArgPack);
3007  Types.push_back(SubstParm);
3008  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3009  return QualType(SubstParm, 0);
3010}
3011
3012/// \brief Retrieve the template type parameter type for a template
3013/// parameter or parameter pack with the given depth, index, and (optionally)
3014/// name.
3015QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3016                                             bool ParameterPack,
3017                                             TemplateTypeParmDecl *TTPDecl) const {
3018  llvm::FoldingSetNodeID ID;
3019  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3020  void *InsertPos = 0;
3021  TemplateTypeParmType *TypeParm
3022    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3023
3024  if (TypeParm)
3025    return QualType(TypeParm, 0);
3026
3027  if (TTPDecl) {
3028    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3029    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3030
3031    TemplateTypeParmType *TypeCheck
3032      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3033    assert(!TypeCheck && "Template type parameter canonical type broken");
3034    (void)TypeCheck;
3035  } else
3036    TypeParm = new (*this, TypeAlignment)
3037      TemplateTypeParmType(Depth, Index, ParameterPack);
3038
3039  Types.push_back(TypeParm);
3040  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3041
3042  return QualType(TypeParm, 0);
3043}
3044
3045TypeSourceInfo *
3046ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3047                                              SourceLocation NameLoc,
3048                                        const TemplateArgumentListInfo &Args,
3049                                              QualType Underlying) const {
3050  assert(!Name.getAsDependentTemplateName() &&
3051         "No dependent template names here!");
3052  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3053
3054  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3055  TemplateSpecializationTypeLoc TL =
3056      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3057  TL.setTemplateKeywordLoc(SourceLocation());
3058  TL.setTemplateNameLoc(NameLoc);
3059  TL.setLAngleLoc(Args.getLAngleLoc());
3060  TL.setRAngleLoc(Args.getRAngleLoc());
3061  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3062    TL.setArgLocInfo(i, Args[i].getLocInfo());
3063  return DI;
3064}
3065
3066QualType
3067ASTContext::getTemplateSpecializationType(TemplateName Template,
3068                                          const TemplateArgumentListInfo &Args,
3069                                          QualType Underlying) const {
3070  assert(!Template.getAsDependentTemplateName() &&
3071         "No dependent template names here!");
3072
3073  unsigned NumArgs = Args.size();
3074
3075  SmallVector<TemplateArgument, 4> ArgVec;
3076  ArgVec.reserve(NumArgs);
3077  for (unsigned i = 0; i != NumArgs; ++i)
3078    ArgVec.push_back(Args[i].getArgument());
3079
3080  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3081                                       Underlying);
3082}
3083
3084#ifndef NDEBUG
3085static bool hasAnyPackExpansions(const TemplateArgument *Args,
3086                                 unsigned NumArgs) {
3087  for (unsigned I = 0; I != NumArgs; ++I)
3088    if (Args[I].isPackExpansion())
3089      return true;
3090
3091  return true;
3092}
3093#endif
3094
3095QualType
3096ASTContext::getTemplateSpecializationType(TemplateName Template,
3097                                          const TemplateArgument *Args,
3098                                          unsigned NumArgs,
3099                                          QualType Underlying) const {
3100  assert(!Template.getAsDependentTemplateName() &&
3101         "No dependent template names here!");
3102  // Look through qualified template names.
3103  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3104    Template = TemplateName(QTN->getTemplateDecl());
3105
3106  bool IsTypeAlias =
3107    Template.getAsTemplateDecl() &&
3108    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3109  QualType CanonType;
3110  if (!Underlying.isNull())
3111    CanonType = getCanonicalType(Underlying);
3112  else {
3113    // We can get here with an alias template when the specialization contains
3114    // a pack expansion that does not match up with a parameter pack.
3115    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3116           "Caller must compute aliased type");
3117    IsTypeAlias = false;
3118    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3119                                                       NumArgs);
3120  }
3121
3122  // Allocate the (non-canonical) template specialization type, but don't
3123  // try to unique it: these types typically have location information that
3124  // we don't unique and don't want to lose.
3125  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3126                       sizeof(TemplateArgument) * NumArgs +
3127                       (IsTypeAlias? sizeof(QualType) : 0),
3128                       TypeAlignment);
3129  TemplateSpecializationType *Spec
3130    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3131                                         IsTypeAlias ? Underlying : QualType());
3132
3133  Types.push_back(Spec);
3134  return QualType(Spec, 0);
3135}
3136
3137QualType
3138ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3139                                                   const TemplateArgument *Args,
3140                                                   unsigned NumArgs) const {
3141  assert(!Template.getAsDependentTemplateName() &&
3142         "No dependent template names here!");
3143
3144  // Look through qualified template names.
3145  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3146    Template = TemplateName(QTN->getTemplateDecl());
3147
3148  // Build the canonical template specialization type.
3149  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3150  SmallVector<TemplateArgument, 4> CanonArgs;
3151  CanonArgs.reserve(NumArgs);
3152  for (unsigned I = 0; I != NumArgs; ++I)
3153    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3154
3155  // Determine whether this canonical template specialization type already
3156  // exists.
3157  llvm::FoldingSetNodeID ID;
3158  TemplateSpecializationType::Profile(ID, CanonTemplate,
3159                                      CanonArgs.data(), NumArgs, *this);
3160
3161  void *InsertPos = 0;
3162  TemplateSpecializationType *Spec
3163    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3164
3165  if (!Spec) {
3166    // Allocate a new canonical template specialization type.
3167    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3168                          sizeof(TemplateArgument) * NumArgs),
3169                         TypeAlignment);
3170    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3171                                                CanonArgs.data(), NumArgs,
3172                                                QualType(), QualType());
3173    Types.push_back(Spec);
3174    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3175  }
3176
3177  assert(Spec->isDependentType() &&
3178         "Non-dependent template-id type must have a canonical type");
3179  return QualType(Spec, 0);
3180}
3181
3182QualType
3183ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3184                              NestedNameSpecifier *NNS,
3185                              QualType NamedType) const {
3186  llvm::FoldingSetNodeID ID;
3187  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3188
3189  void *InsertPos = 0;
3190  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3191  if (T)
3192    return QualType(T, 0);
3193
3194  QualType Canon = NamedType;
3195  if (!Canon.isCanonical()) {
3196    Canon = getCanonicalType(NamedType);
3197    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3198    assert(!CheckT && "Elaborated canonical type broken");
3199    (void)CheckT;
3200  }
3201
3202  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3203  Types.push_back(T);
3204  ElaboratedTypes.InsertNode(T, InsertPos);
3205  return QualType(T, 0);
3206}
3207
3208QualType
3209ASTContext::getParenType(QualType InnerType) const {
3210  llvm::FoldingSetNodeID ID;
3211  ParenType::Profile(ID, InnerType);
3212
3213  void *InsertPos = 0;
3214  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3215  if (T)
3216    return QualType(T, 0);
3217
3218  QualType Canon = InnerType;
3219  if (!Canon.isCanonical()) {
3220    Canon = getCanonicalType(InnerType);
3221    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3222    assert(!CheckT && "Paren canonical type broken");
3223    (void)CheckT;
3224  }
3225
3226  T = new (*this) ParenType(InnerType, Canon);
3227  Types.push_back(T);
3228  ParenTypes.InsertNode(T, InsertPos);
3229  return QualType(T, 0);
3230}
3231
3232QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3233                                          NestedNameSpecifier *NNS,
3234                                          const IdentifierInfo *Name,
3235                                          QualType Canon) const {
3236  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3237
3238  if (Canon.isNull()) {
3239    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3240    ElaboratedTypeKeyword CanonKeyword = Keyword;
3241    if (Keyword == ETK_None)
3242      CanonKeyword = ETK_Typename;
3243
3244    if (CanonNNS != NNS || CanonKeyword != Keyword)
3245      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3246  }
3247
3248  llvm::FoldingSetNodeID ID;
3249  DependentNameType::Profile(ID, Keyword, NNS, Name);
3250
3251  void *InsertPos = 0;
3252  DependentNameType *T
3253    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3254  if (T)
3255    return QualType(T, 0);
3256
3257  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3258  Types.push_back(T);
3259  DependentNameTypes.InsertNode(T, InsertPos);
3260  return QualType(T, 0);
3261}
3262
3263QualType
3264ASTContext::getDependentTemplateSpecializationType(
3265                                 ElaboratedTypeKeyword Keyword,
3266                                 NestedNameSpecifier *NNS,
3267                                 const IdentifierInfo *Name,
3268                                 const TemplateArgumentListInfo &Args) const {
3269  // TODO: avoid this copy
3270  SmallVector<TemplateArgument, 16> ArgCopy;
3271  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3272    ArgCopy.push_back(Args[I].getArgument());
3273  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3274                                                ArgCopy.size(),
3275                                                ArgCopy.data());
3276}
3277
3278QualType
3279ASTContext::getDependentTemplateSpecializationType(
3280                                 ElaboratedTypeKeyword Keyword,
3281                                 NestedNameSpecifier *NNS,
3282                                 const IdentifierInfo *Name,
3283                                 unsigned NumArgs,
3284                                 const TemplateArgument *Args) const {
3285  assert((!NNS || NNS->isDependent()) &&
3286         "nested-name-specifier must be dependent");
3287
3288  llvm::FoldingSetNodeID ID;
3289  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3290                                               Name, NumArgs, Args);
3291
3292  void *InsertPos = 0;
3293  DependentTemplateSpecializationType *T
3294    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3295  if (T)
3296    return QualType(T, 0);
3297
3298  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3299
3300  ElaboratedTypeKeyword CanonKeyword = Keyword;
3301  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3302
3303  bool AnyNonCanonArgs = false;
3304  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3305  for (unsigned I = 0; I != NumArgs; ++I) {
3306    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3307    if (!CanonArgs[I].structurallyEquals(Args[I]))
3308      AnyNonCanonArgs = true;
3309  }
3310
3311  QualType Canon;
3312  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3313    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3314                                                   Name, NumArgs,
3315                                                   CanonArgs.data());
3316
3317    // Find the insert position again.
3318    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3319  }
3320
3321  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3322                        sizeof(TemplateArgument) * NumArgs),
3323                       TypeAlignment);
3324  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3325                                                    Name, NumArgs, Args, Canon);
3326  Types.push_back(T);
3327  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3328  return QualType(T, 0);
3329}
3330
3331QualType ASTContext::getPackExpansionType(QualType Pattern,
3332                                          Optional<unsigned> NumExpansions) {
3333  llvm::FoldingSetNodeID ID;
3334  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3335
3336  assert(Pattern->containsUnexpandedParameterPack() &&
3337         "Pack expansions must expand one or more parameter packs");
3338  void *InsertPos = 0;
3339  PackExpansionType *T
3340    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3341  if (T)
3342    return QualType(T, 0);
3343
3344  QualType Canon;
3345  if (!Pattern.isCanonical()) {
3346    Canon = getCanonicalType(Pattern);
3347    // The canonical type might not contain an unexpanded parameter pack, if it
3348    // contains an alias template specialization which ignores one of its
3349    // parameters.
3350    if (Canon->containsUnexpandedParameterPack()) {
3351      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3352
3353      // Find the insert position again, in case we inserted an element into
3354      // PackExpansionTypes and invalidated our insert position.
3355      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3356    }
3357  }
3358
3359  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3360  Types.push_back(T);
3361  PackExpansionTypes.InsertNode(T, InsertPos);
3362  return QualType(T, 0);
3363}
3364
3365/// CmpProtocolNames - Comparison predicate for sorting protocols
3366/// alphabetically.
3367static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3368                            const ObjCProtocolDecl *RHS) {
3369  return LHS->getDeclName() < RHS->getDeclName();
3370}
3371
3372static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3373                                unsigned NumProtocols) {
3374  if (NumProtocols == 0) return true;
3375
3376  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3377    return false;
3378
3379  for (unsigned i = 1; i != NumProtocols; ++i)
3380    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3381        Protocols[i]->getCanonicalDecl() != Protocols[i])
3382      return false;
3383  return true;
3384}
3385
3386static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3387                                   unsigned &NumProtocols) {
3388  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3389
3390  // Sort protocols, keyed by name.
3391  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3392
3393  // Canonicalize.
3394  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3395    Protocols[I] = Protocols[I]->getCanonicalDecl();
3396
3397  // Remove duplicates.
3398  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3399  NumProtocols = ProtocolsEnd-Protocols;
3400}
3401
3402QualType ASTContext::getObjCObjectType(QualType BaseType,
3403                                       ObjCProtocolDecl * const *Protocols,
3404                                       unsigned NumProtocols) const {
3405  // If the base type is an interface and there aren't any protocols
3406  // to add, then the interface type will do just fine.
3407  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3408    return BaseType;
3409
3410  // Look in the folding set for an existing type.
3411  llvm::FoldingSetNodeID ID;
3412  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3413  void *InsertPos = 0;
3414  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3415    return QualType(QT, 0);
3416
3417  // Build the canonical type, which has the canonical base type and
3418  // a sorted-and-uniqued list of protocols.
3419  QualType Canonical;
3420  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3421  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3422    if (!ProtocolsSorted) {
3423      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3424                                                     Protocols + NumProtocols);
3425      unsigned UniqueCount = NumProtocols;
3426
3427      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3428      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3429                                    &Sorted[0], UniqueCount);
3430    } else {
3431      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3432                                    Protocols, NumProtocols);
3433    }
3434
3435    // Regenerate InsertPos.
3436    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3437  }
3438
3439  unsigned Size = sizeof(ObjCObjectTypeImpl);
3440  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3441  void *Mem = Allocate(Size, TypeAlignment);
3442  ObjCObjectTypeImpl *T =
3443    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3444
3445  Types.push_back(T);
3446  ObjCObjectTypes.InsertNode(T, InsertPos);
3447  return QualType(T, 0);
3448}
3449
3450/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3451/// the given object type.
3452QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3453  llvm::FoldingSetNodeID ID;
3454  ObjCObjectPointerType::Profile(ID, ObjectT);
3455
3456  void *InsertPos = 0;
3457  if (ObjCObjectPointerType *QT =
3458              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3459    return QualType(QT, 0);
3460
3461  // Find the canonical object type.
3462  QualType Canonical;
3463  if (!ObjectT.isCanonical()) {
3464    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3465
3466    // Regenerate InsertPos.
3467    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3468  }
3469
3470  // No match.
3471  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3472  ObjCObjectPointerType *QType =
3473    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3474
3475  Types.push_back(QType);
3476  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3477  return QualType(QType, 0);
3478}
3479
3480/// getObjCInterfaceType - Return the unique reference to the type for the
3481/// specified ObjC interface decl. The list of protocols is optional.
3482QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3483                                          ObjCInterfaceDecl *PrevDecl) const {
3484  if (Decl->TypeForDecl)
3485    return QualType(Decl->TypeForDecl, 0);
3486
3487  if (PrevDecl) {
3488    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3489    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3490    return QualType(PrevDecl->TypeForDecl, 0);
3491  }
3492
3493  // Prefer the definition, if there is one.
3494  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3495    Decl = Def;
3496
3497  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3498  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3499  Decl->TypeForDecl = T;
3500  Types.push_back(T);
3501  return QualType(T, 0);
3502}
3503
3504/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3505/// TypeOfExprType AST's (since expression's are never shared). For example,
3506/// multiple declarations that refer to "typeof(x)" all contain different
3507/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3508/// on canonical type's (which are always unique).
3509QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3510  TypeOfExprType *toe;
3511  if (tofExpr->isTypeDependent()) {
3512    llvm::FoldingSetNodeID ID;
3513    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3514
3515    void *InsertPos = 0;
3516    DependentTypeOfExprType *Canon
3517      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3518    if (Canon) {
3519      // We already have a "canonical" version of an identical, dependent
3520      // typeof(expr) type. Use that as our canonical type.
3521      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3522                                          QualType((TypeOfExprType*)Canon, 0));
3523    } else {
3524      // Build a new, canonical typeof(expr) type.
3525      Canon
3526        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3527      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3528      toe = Canon;
3529    }
3530  } else {
3531    QualType Canonical = getCanonicalType(tofExpr->getType());
3532    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3533  }
3534  Types.push_back(toe);
3535  return QualType(toe, 0);
3536}
3537
3538/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3539/// TypeOfType AST's. The only motivation to unique these nodes would be
3540/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3541/// an issue. This doesn't effect the type checker, since it operates
3542/// on canonical type's (which are always unique).
3543QualType ASTContext::getTypeOfType(QualType tofType) const {
3544  QualType Canonical = getCanonicalType(tofType);
3545  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3546  Types.push_back(tot);
3547  return QualType(tot, 0);
3548}
3549
3550
3551/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3552/// DecltypeType AST's. The only motivation to unique these nodes would be
3553/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3554/// an issue. This doesn't effect the type checker, since it operates
3555/// on canonical types (which are always unique).
3556QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3557  DecltypeType *dt;
3558
3559  // C++0x [temp.type]p2:
3560  //   If an expression e involves a template parameter, decltype(e) denotes a
3561  //   unique dependent type. Two such decltype-specifiers refer to the same
3562  //   type only if their expressions are equivalent (14.5.6.1).
3563  if (e->isInstantiationDependent()) {
3564    llvm::FoldingSetNodeID ID;
3565    DependentDecltypeType::Profile(ID, *this, e);
3566
3567    void *InsertPos = 0;
3568    DependentDecltypeType *Canon
3569      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3570    if (Canon) {
3571      // We already have a "canonical" version of an equivalent, dependent
3572      // decltype type. Use that as our canonical type.
3573      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3574                                       QualType((DecltypeType*)Canon, 0));
3575    } else {
3576      // Build a new, canonical typeof(expr) type.
3577      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3578      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3579      dt = Canon;
3580    }
3581  } else {
3582    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3583                                      getCanonicalType(UnderlyingType));
3584  }
3585  Types.push_back(dt);
3586  return QualType(dt, 0);
3587}
3588
3589/// getUnaryTransformationType - We don't unique these, since the memory
3590/// savings are minimal and these are rare.
3591QualType ASTContext::getUnaryTransformType(QualType BaseType,
3592                                           QualType UnderlyingType,
3593                                           UnaryTransformType::UTTKind Kind)
3594    const {
3595  UnaryTransformType *Ty =
3596    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3597                                                   Kind,
3598                                 UnderlyingType->isDependentType() ?
3599                                 QualType() : getCanonicalType(UnderlyingType));
3600  Types.push_back(Ty);
3601  return QualType(Ty, 0);
3602}
3603
3604/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3605/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3606/// canonical deduced-but-dependent 'auto' type.
3607QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3608                                 bool IsDependent) const {
3609  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3610    return getAutoDeductType();
3611
3612  // Look in the folding set for an existing type.
3613  void *InsertPos = 0;
3614  llvm::FoldingSetNodeID ID;
3615  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3616  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3617    return QualType(AT, 0);
3618
3619  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3620                                                     IsDecltypeAuto,
3621                                                     IsDependent);
3622  Types.push_back(AT);
3623  if (InsertPos)
3624    AutoTypes.InsertNode(AT, InsertPos);
3625  return QualType(AT, 0);
3626}
3627
3628/// getAtomicType - Return the uniqued reference to the atomic type for
3629/// the given value type.
3630QualType ASTContext::getAtomicType(QualType T) const {
3631  // Unique pointers, to guarantee there is only one pointer of a particular
3632  // structure.
3633  llvm::FoldingSetNodeID ID;
3634  AtomicType::Profile(ID, T);
3635
3636  void *InsertPos = 0;
3637  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3638    return QualType(AT, 0);
3639
3640  // If the atomic value type isn't canonical, this won't be a canonical type
3641  // either, so fill in the canonical type field.
3642  QualType Canonical;
3643  if (!T.isCanonical()) {
3644    Canonical = getAtomicType(getCanonicalType(T));
3645
3646    // Get the new insert position for the node we care about.
3647    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3648    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3649  }
3650  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3651  Types.push_back(New);
3652  AtomicTypes.InsertNode(New, InsertPos);
3653  return QualType(New, 0);
3654}
3655
3656/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3657QualType ASTContext::getAutoDeductType() const {
3658  if (AutoDeductTy.isNull())
3659    AutoDeductTy = QualType(
3660      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3661                                          /*dependent*/false),
3662      0);
3663  return AutoDeductTy;
3664}
3665
3666/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3667QualType ASTContext::getAutoRRefDeductType() const {
3668  if (AutoRRefDeductTy.isNull())
3669    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3670  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3671  return AutoRRefDeductTy;
3672}
3673
3674/// getTagDeclType - Return the unique reference to the type for the
3675/// specified TagDecl (struct/union/class/enum) decl.
3676QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3677  assert (Decl);
3678  // FIXME: What is the design on getTagDeclType when it requires casting
3679  // away const?  mutable?
3680  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3681}
3682
3683/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3684/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3685/// needs to agree with the definition in <stddef.h>.
3686CanQualType ASTContext::getSizeType() const {
3687  return getFromTargetType(Target->getSizeType());
3688}
3689
3690/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3691CanQualType ASTContext::getIntMaxType() const {
3692  return getFromTargetType(Target->getIntMaxType());
3693}
3694
3695/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3696CanQualType ASTContext::getUIntMaxType() const {
3697  return getFromTargetType(Target->getUIntMaxType());
3698}
3699
3700/// getSignedWCharType - Return the type of "signed wchar_t".
3701/// Used when in C++, as a GCC extension.
3702QualType ASTContext::getSignedWCharType() const {
3703  // FIXME: derive from "Target" ?
3704  return WCharTy;
3705}
3706
3707/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3708/// Used when in C++, as a GCC extension.
3709QualType ASTContext::getUnsignedWCharType() const {
3710  // FIXME: derive from "Target" ?
3711  return UnsignedIntTy;
3712}
3713
3714QualType ASTContext::getIntPtrType() const {
3715  return getFromTargetType(Target->getIntPtrType());
3716}
3717
3718QualType ASTContext::getUIntPtrType() const {
3719  return getCorrespondingUnsignedType(getIntPtrType());
3720}
3721
3722/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3723/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3724QualType ASTContext::getPointerDiffType() const {
3725  return getFromTargetType(Target->getPtrDiffType(0));
3726}
3727
3728/// \brief Return the unique type for "pid_t" defined in
3729/// <sys/types.h>. We need this to compute the correct type for vfork().
3730QualType ASTContext::getProcessIDType() const {
3731  return getFromTargetType(Target->getProcessIDType());
3732}
3733
3734//===----------------------------------------------------------------------===//
3735//                              Type Operators
3736//===----------------------------------------------------------------------===//
3737
3738CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3739  // Push qualifiers into arrays, and then discard any remaining
3740  // qualifiers.
3741  T = getCanonicalType(T);
3742  T = getVariableArrayDecayedType(T);
3743  const Type *Ty = T.getTypePtr();
3744  QualType Result;
3745  if (isa<ArrayType>(Ty)) {
3746    Result = getArrayDecayedType(QualType(Ty,0));
3747  } else if (isa<FunctionType>(Ty)) {
3748    Result = getPointerType(QualType(Ty, 0));
3749  } else {
3750    Result = QualType(Ty, 0);
3751  }
3752
3753  return CanQualType::CreateUnsafe(Result);
3754}
3755
3756QualType ASTContext::getUnqualifiedArrayType(QualType type,
3757                                             Qualifiers &quals) {
3758  SplitQualType splitType = type.getSplitUnqualifiedType();
3759
3760  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3761  // the unqualified desugared type and then drops it on the floor.
3762  // We then have to strip that sugar back off with
3763  // getUnqualifiedDesugaredType(), which is silly.
3764  const ArrayType *AT =
3765    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3766
3767  // If we don't have an array, just use the results in splitType.
3768  if (!AT) {
3769    quals = splitType.Quals;
3770    return QualType(splitType.Ty, 0);
3771  }
3772
3773  // Otherwise, recurse on the array's element type.
3774  QualType elementType = AT->getElementType();
3775  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3776
3777  // If that didn't change the element type, AT has no qualifiers, so we
3778  // can just use the results in splitType.
3779  if (elementType == unqualElementType) {
3780    assert(quals.empty()); // from the recursive call
3781    quals = splitType.Quals;
3782    return QualType(splitType.Ty, 0);
3783  }
3784
3785  // Otherwise, add in the qualifiers from the outermost type, then
3786  // build the type back up.
3787  quals.addConsistentQualifiers(splitType.Quals);
3788
3789  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3790    return getConstantArrayType(unqualElementType, CAT->getSize(),
3791                                CAT->getSizeModifier(), 0);
3792  }
3793
3794  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3795    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3796  }
3797
3798  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3799    return getVariableArrayType(unqualElementType,
3800                                VAT->getSizeExpr(),
3801                                VAT->getSizeModifier(),
3802                                VAT->getIndexTypeCVRQualifiers(),
3803                                VAT->getBracketsRange());
3804  }
3805
3806  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3807  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3808                                    DSAT->getSizeModifier(), 0,
3809                                    SourceRange());
3810}
3811
3812/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3813/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3814/// they point to and return true. If T1 and T2 aren't pointer types
3815/// or pointer-to-member types, or if they are not similar at this
3816/// level, returns false and leaves T1 and T2 unchanged. Top-level
3817/// qualifiers on T1 and T2 are ignored. This function will typically
3818/// be called in a loop that successively "unwraps" pointer and
3819/// pointer-to-member types to compare them at each level.
3820bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3821  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3822                    *T2PtrType = T2->getAs<PointerType>();
3823  if (T1PtrType && T2PtrType) {
3824    T1 = T1PtrType->getPointeeType();
3825    T2 = T2PtrType->getPointeeType();
3826    return true;
3827  }
3828
3829  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3830                          *T2MPType = T2->getAs<MemberPointerType>();
3831  if (T1MPType && T2MPType &&
3832      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3833                             QualType(T2MPType->getClass(), 0))) {
3834    T1 = T1MPType->getPointeeType();
3835    T2 = T2MPType->getPointeeType();
3836    return true;
3837  }
3838
3839  if (getLangOpts().ObjC1) {
3840    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3841                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3842    if (T1OPType && T2OPType) {
3843      T1 = T1OPType->getPointeeType();
3844      T2 = T2OPType->getPointeeType();
3845      return true;
3846    }
3847  }
3848
3849  // FIXME: Block pointers, too?
3850
3851  return false;
3852}
3853
3854DeclarationNameInfo
3855ASTContext::getNameForTemplate(TemplateName Name,
3856                               SourceLocation NameLoc) const {
3857  switch (Name.getKind()) {
3858  case TemplateName::QualifiedTemplate:
3859  case TemplateName::Template:
3860    // DNInfo work in progress: CHECKME: what about DNLoc?
3861    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3862                               NameLoc);
3863
3864  case TemplateName::OverloadedTemplate: {
3865    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3866    // DNInfo work in progress: CHECKME: what about DNLoc?
3867    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3868  }
3869
3870  case TemplateName::DependentTemplate: {
3871    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3872    DeclarationName DName;
3873    if (DTN->isIdentifier()) {
3874      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3875      return DeclarationNameInfo(DName, NameLoc);
3876    } else {
3877      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3878      // DNInfo work in progress: FIXME: source locations?
3879      DeclarationNameLoc DNLoc;
3880      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3881      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3882      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3883    }
3884  }
3885
3886  case TemplateName::SubstTemplateTemplateParm: {
3887    SubstTemplateTemplateParmStorage *subst
3888      = Name.getAsSubstTemplateTemplateParm();
3889    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3890                               NameLoc);
3891  }
3892
3893  case TemplateName::SubstTemplateTemplateParmPack: {
3894    SubstTemplateTemplateParmPackStorage *subst
3895      = Name.getAsSubstTemplateTemplateParmPack();
3896    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3897                               NameLoc);
3898  }
3899  }
3900
3901  llvm_unreachable("bad template name kind!");
3902}
3903
3904TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3905  switch (Name.getKind()) {
3906  case TemplateName::QualifiedTemplate:
3907  case TemplateName::Template: {
3908    TemplateDecl *Template = Name.getAsTemplateDecl();
3909    if (TemplateTemplateParmDecl *TTP
3910          = dyn_cast<TemplateTemplateParmDecl>(Template))
3911      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3912
3913    // The canonical template name is the canonical template declaration.
3914    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3915  }
3916
3917  case TemplateName::OverloadedTemplate:
3918    llvm_unreachable("cannot canonicalize overloaded template");
3919
3920  case TemplateName::DependentTemplate: {
3921    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3922    assert(DTN && "Non-dependent template names must refer to template decls.");
3923    return DTN->CanonicalTemplateName;
3924  }
3925
3926  case TemplateName::SubstTemplateTemplateParm: {
3927    SubstTemplateTemplateParmStorage *subst
3928      = Name.getAsSubstTemplateTemplateParm();
3929    return getCanonicalTemplateName(subst->getReplacement());
3930  }
3931
3932  case TemplateName::SubstTemplateTemplateParmPack: {
3933    SubstTemplateTemplateParmPackStorage *subst
3934                                  = Name.getAsSubstTemplateTemplateParmPack();
3935    TemplateTemplateParmDecl *canonParameter
3936      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3937    TemplateArgument canonArgPack
3938      = getCanonicalTemplateArgument(subst->getArgumentPack());
3939    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3940  }
3941  }
3942
3943  llvm_unreachable("bad template name!");
3944}
3945
3946bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3947  X = getCanonicalTemplateName(X);
3948  Y = getCanonicalTemplateName(Y);
3949  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3950}
3951
3952TemplateArgument
3953ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3954  switch (Arg.getKind()) {
3955    case TemplateArgument::Null:
3956      return Arg;
3957
3958    case TemplateArgument::Expression:
3959      return Arg;
3960
3961    case TemplateArgument::Declaration: {
3962      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3963      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3964    }
3965
3966    case TemplateArgument::NullPtr:
3967      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3968                              /*isNullPtr*/true);
3969
3970    case TemplateArgument::Template:
3971      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3972
3973    case TemplateArgument::TemplateExpansion:
3974      return TemplateArgument(getCanonicalTemplateName(
3975                                         Arg.getAsTemplateOrTemplatePattern()),
3976                              Arg.getNumTemplateExpansions());
3977
3978    case TemplateArgument::Integral:
3979      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3980
3981    case TemplateArgument::Type:
3982      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3983
3984    case TemplateArgument::Pack: {
3985      if (Arg.pack_size() == 0)
3986        return Arg;
3987
3988      TemplateArgument *CanonArgs
3989        = new (*this) TemplateArgument[Arg.pack_size()];
3990      unsigned Idx = 0;
3991      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3992                                        AEnd = Arg.pack_end();
3993           A != AEnd; (void)++A, ++Idx)
3994        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3995
3996      return TemplateArgument(CanonArgs, Arg.pack_size());
3997    }
3998  }
3999
4000  // Silence GCC warning
4001  llvm_unreachable("Unhandled template argument kind");
4002}
4003
4004NestedNameSpecifier *
4005ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4006  if (!NNS)
4007    return 0;
4008
4009  switch (NNS->getKind()) {
4010  case NestedNameSpecifier::Identifier:
4011    // Canonicalize the prefix but keep the identifier the same.
4012    return NestedNameSpecifier::Create(*this,
4013                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4014                                       NNS->getAsIdentifier());
4015
4016  case NestedNameSpecifier::Namespace:
4017    // A namespace is canonical; build a nested-name-specifier with
4018    // this namespace and no prefix.
4019    return NestedNameSpecifier::Create(*this, 0,
4020                                 NNS->getAsNamespace()->getOriginalNamespace());
4021
4022  case NestedNameSpecifier::NamespaceAlias:
4023    // A namespace is canonical; build a nested-name-specifier with
4024    // this namespace and no prefix.
4025    return NestedNameSpecifier::Create(*this, 0,
4026                                    NNS->getAsNamespaceAlias()->getNamespace()
4027                                                      ->getOriginalNamespace());
4028
4029  case NestedNameSpecifier::TypeSpec:
4030  case NestedNameSpecifier::TypeSpecWithTemplate: {
4031    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4032
4033    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4034    // break it apart into its prefix and identifier, then reconsititute those
4035    // as the canonical nested-name-specifier. This is required to canonicalize
4036    // a dependent nested-name-specifier involving typedefs of dependent-name
4037    // types, e.g.,
4038    //   typedef typename T::type T1;
4039    //   typedef typename T1::type T2;
4040    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4041      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4042                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4043
4044    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4045    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4046    // first place?
4047    return NestedNameSpecifier::Create(*this, 0, false,
4048                                       const_cast<Type*>(T.getTypePtr()));
4049  }
4050
4051  case NestedNameSpecifier::Global:
4052    // The global specifier is canonical and unique.
4053    return NNS;
4054  }
4055
4056  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4057}
4058
4059
4060const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4061  // Handle the non-qualified case efficiently.
4062  if (!T.hasLocalQualifiers()) {
4063    // Handle the common positive case fast.
4064    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4065      return AT;
4066  }
4067
4068  // Handle the common negative case fast.
4069  if (!isa<ArrayType>(T.getCanonicalType()))
4070    return 0;
4071
4072  // Apply any qualifiers from the array type to the element type.  This
4073  // implements C99 6.7.3p8: "If the specification of an array type includes
4074  // any type qualifiers, the element type is so qualified, not the array type."
4075
4076  // If we get here, we either have type qualifiers on the type, or we have
4077  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4078  // we must propagate them down into the element type.
4079
4080  SplitQualType split = T.getSplitDesugaredType();
4081  Qualifiers qs = split.Quals;
4082
4083  // If we have a simple case, just return now.
4084  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4085  if (ATy == 0 || qs.empty())
4086    return ATy;
4087
4088  // Otherwise, we have an array and we have qualifiers on it.  Push the
4089  // qualifiers into the array element type and return a new array type.
4090  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4091
4092  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4093    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4094                                                CAT->getSizeModifier(),
4095                                           CAT->getIndexTypeCVRQualifiers()));
4096  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4097    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4098                                                  IAT->getSizeModifier(),
4099                                           IAT->getIndexTypeCVRQualifiers()));
4100
4101  if (const DependentSizedArrayType *DSAT
4102        = dyn_cast<DependentSizedArrayType>(ATy))
4103    return cast<ArrayType>(
4104                     getDependentSizedArrayType(NewEltTy,
4105                                                DSAT->getSizeExpr(),
4106                                                DSAT->getSizeModifier(),
4107                                              DSAT->getIndexTypeCVRQualifiers(),
4108                                                DSAT->getBracketsRange()));
4109
4110  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4111  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4112                                              VAT->getSizeExpr(),
4113                                              VAT->getSizeModifier(),
4114                                              VAT->getIndexTypeCVRQualifiers(),
4115                                              VAT->getBracketsRange()));
4116}
4117
4118QualType ASTContext::getAdjustedParameterType(QualType T) const {
4119  // C99 6.7.5.3p7:
4120  //   A declaration of a parameter as "array of type" shall be
4121  //   adjusted to "qualified pointer to type", where the type
4122  //   qualifiers (if any) are those specified within the [ and ] of
4123  //   the array type derivation.
4124  if (T->isArrayType())
4125    return getArrayDecayedType(T);
4126
4127  // C99 6.7.5.3p8:
4128  //   A declaration of a parameter as "function returning type"
4129  //   shall be adjusted to "pointer to function returning type", as
4130  //   in 6.3.2.1.
4131  if (T->isFunctionType())
4132    return getPointerType(T);
4133
4134  return T;
4135}
4136
4137QualType ASTContext::getSignatureParameterType(QualType T) const {
4138  T = getVariableArrayDecayedType(T);
4139  T = getAdjustedParameterType(T);
4140  return T.getUnqualifiedType();
4141}
4142
4143/// getArrayDecayedType - Return the properly qualified result of decaying the
4144/// specified array type to a pointer.  This operation is non-trivial when
4145/// handling typedefs etc.  The canonical type of "T" must be an array type,
4146/// this returns a pointer to a properly qualified element of the array.
4147///
4148/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4149QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4150  // Get the element type with 'getAsArrayType' so that we don't lose any
4151  // typedefs in the element type of the array.  This also handles propagation
4152  // of type qualifiers from the array type into the element type if present
4153  // (C99 6.7.3p8).
4154  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4155  assert(PrettyArrayType && "Not an array type!");
4156
4157  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4158
4159  // int x[restrict 4] ->  int *restrict
4160  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4161}
4162
4163QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4164  return getBaseElementType(array->getElementType());
4165}
4166
4167QualType ASTContext::getBaseElementType(QualType type) const {
4168  Qualifiers qs;
4169  while (true) {
4170    SplitQualType split = type.getSplitDesugaredType();
4171    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4172    if (!array) break;
4173
4174    type = array->getElementType();
4175    qs.addConsistentQualifiers(split.Quals);
4176  }
4177
4178  return getQualifiedType(type, qs);
4179}
4180
4181/// getConstantArrayElementCount - Returns number of constant array elements.
4182uint64_t
4183ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4184  uint64_t ElementCount = 1;
4185  do {
4186    ElementCount *= CA->getSize().getZExtValue();
4187    CA = dyn_cast_or_null<ConstantArrayType>(
4188      CA->getElementType()->getAsArrayTypeUnsafe());
4189  } while (CA);
4190  return ElementCount;
4191}
4192
4193/// getFloatingRank - Return a relative rank for floating point types.
4194/// This routine will assert if passed a built-in type that isn't a float.
4195static FloatingRank getFloatingRank(QualType T) {
4196  if (const ComplexType *CT = T->getAs<ComplexType>())
4197    return getFloatingRank(CT->getElementType());
4198
4199  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4200  switch (T->getAs<BuiltinType>()->getKind()) {
4201  default: llvm_unreachable("getFloatingRank(): not a floating type");
4202  case BuiltinType::Half:       return HalfRank;
4203  case BuiltinType::Float:      return FloatRank;
4204  case BuiltinType::Double:     return DoubleRank;
4205  case BuiltinType::LongDouble: return LongDoubleRank;
4206  }
4207}
4208
4209/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4210/// point or a complex type (based on typeDomain/typeSize).
4211/// 'typeDomain' is a real floating point or complex type.
4212/// 'typeSize' is a real floating point or complex type.
4213QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4214                                                       QualType Domain) const {
4215  FloatingRank EltRank = getFloatingRank(Size);
4216  if (Domain->isComplexType()) {
4217    switch (EltRank) {
4218    case HalfRank: llvm_unreachable("Complex half is not supported");
4219    case FloatRank:      return FloatComplexTy;
4220    case DoubleRank:     return DoubleComplexTy;
4221    case LongDoubleRank: return LongDoubleComplexTy;
4222    }
4223  }
4224
4225  assert(Domain->isRealFloatingType() && "Unknown domain!");
4226  switch (EltRank) {
4227  case HalfRank:       return HalfTy;
4228  case FloatRank:      return FloatTy;
4229  case DoubleRank:     return DoubleTy;
4230  case LongDoubleRank: return LongDoubleTy;
4231  }
4232  llvm_unreachable("getFloatingRank(): illegal value for rank");
4233}
4234
4235/// getFloatingTypeOrder - Compare the rank of the two specified floating
4236/// point types, ignoring the domain of the type (i.e. 'double' ==
4237/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4238/// LHS < RHS, return -1.
4239int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4240  FloatingRank LHSR = getFloatingRank(LHS);
4241  FloatingRank RHSR = getFloatingRank(RHS);
4242
4243  if (LHSR == RHSR)
4244    return 0;
4245  if (LHSR > RHSR)
4246    return 1;
4247  return -1;
4248}
4249
4250/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4251/// routine will assert if passed a built-in type that isn't an integer or enum,
4252/// or if it is not canonicalized.
4253unsigned ASTContext::getIntegerRank(const Type *T) const {
4254  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4255
4256  switch (cast<BuiltinType>(T)->getKind()) {
4257  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4258  case BuiltinType::Bool:
4259    return 1 + (getIntWidth(BoolTy) << 3);
4260  case BuiltinType::Char_S:
4261  case BuiltinType::Char_U:
4262  case BuiltinType::SChar:
4263  case BuiltinType::UChar:
4264    return 2 + (getIntWidth(CharTy) << 3);
4265  case BuiltinType::Short:
4266  case BuiltinType::UShort:
4267    return 3 + (getIntWidth(ShortTy) << 3);
4268  case BuiltinType::Int:
4269  case BuiltinType::UInt:
4270    return 4 + (getIntWidth(IntTy) << 3);
4271  case BuiltinType::Long:
4272  case BuiltinType::ULong:
4273    return 5 + (getIntWidth(LongTy) << 3);
4274  case BuiltinType::LongLong:
4275  case BuiltinType::ULongLong:
4276    return 6 + (getIntWidth(LongLongTy) << 3);
4277  case BuiltinType::Int128:
4278  case BuiltinType::UInt128:
4279    return 7 + (getIntWidth(Int128Ty) << 3);
4280  }
4281}
4282
4283/// \brief Whether this is a promotable bitfield reference according
4284/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4285///
4286/// \returns the type this bit-field will promote to, or NULL if no
4287/// promotion occurs.
4288QualType ASTContext::isPromotableBitField(Expr *E) const {
4289  if (E->isTypeDependent() || E->isValueDependent())
4290    return QualType();
4291
4292  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4293  if (!Field)
4294    return QualType();
4295
4296  QualType FT = Field->getType();
4297
4298  uint64_t BitWidth = Field->getBitWidthValue(*this);
4299  uint64_t IntSize = getTypeSize(IntTy);
4300  // GCC extension compatibility: if the bit-field size is less than or equal
4301  // to the size of int, it gets promoted no matter what its type is.
4302  // For instance, unsigned long bf : 4 gets promoted to signed int.
4303  if (BitWidth < IntSize)
4304    return IntTy;
4305
4306  if (BitWidth == IntSize)
4307    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4308
4309  // Types bigger than int are not subject to promotions, and therefore act
4310  // like the base type.
4311  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4312  // is ridiculous.
4313  return QualType();
4314}
4315
4316/// getPromotedIntegerType - Returns the type that Promotable will
4317/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4318/// integer type.
4319QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4320  assert(!Promotable.isNull());
4321  assert(Promotable->isPromotableIntegerType());
4322  if (const EnumType *ET = Promotable->getAs<EnumType>())
4323    return ET->getDecl()->getPromotionType();
4324
4325  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4326    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4327    // (3.9.1) can be converted to a prvalue of the first of the following
4328    // types that can represent all the values of its underlying type:
4329    // int, unsigned int, long int, unsigned long int, long long int, or
4330    // unsigned long long int [...]
4331    // FIXME: Is there some better way to compute this?
4332    if (BT->getKind() == BuiltinType::WChar_S ||
4333        BT->getKind() == BuiltinType::WChar_U ||
4334        BT->getKind() == BuiltinType::Char16 ||
4335        BT->getKind() == BuiltinType::Char32) {
4336      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4337      uint64_t FromSize = getTypeSize(BT);
4338      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4339                                  LongLongTy, UnsignedLongLongTy };
4340      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4341        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4342        if (FromSize < ToSize ||
4343            (FromSize == ToSize &&
4344             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4345          return PromoteTypes[Idx];
4346      }
4347      llvm_unreachable("char type should fit into long long");
4348    }
4349  }
4350
4351  // At this point, we should have a signed or unsigned integer type.
4352  if (Promotable->isSignedIntegerType())
4353    return IntTy;
4354  uint64_t PromotableSize = getIntWidth(Promotable);
4355  uint64_t IntSize = getIntWidth(IntTy);
4356  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4357  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4358}
4359
4360/// \brief Recurses in pointer/array types until it finds an objc retainable
4361/// type and returns its ownership.
4362Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4363  while (!T.isNull()) {
4364    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4365      return T.getObjCLifetime();
4366    if (T->isArrayType())
4367      T = getBaseElementType(T);
4368    else if (const PointerType *PT = T->getAs<PointerType>())
4369      T = PT->getPointeeType();
4370    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4371      T = RT->getPointeeType();
4372    else
4373      break;
4374  }
4375
4376  return Qualifiers::OCL_None;
4377}
4378
4379/// getIntegerTypeOrder - Returns the highest ranked integer type:
4380/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4381/// LHS < RHS, return -1.
4382int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4383  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4384  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4385  if (LHSC == RHSC) return 0;
4386
4387  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4388  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4389
4390  unsigned LHSRank = getIntegerRank(LHSC);
4391  unsigned RHSRank = getIntegerRank(RHSC);
4392
4393  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4394    if (LHSRank == RHSRank) return 0;
4395    return LHSRank > RHSRank ? 1 : -1;
4396  }
4397
4398  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4399  if (LHSUnsigned) {
4400    // If the unsigned [LHS] type is larger, return it.
4401    if (LHSRank >= RHSRank)
4402      return 1;
4403
4404    // If the signed type can represent all values of the unsigned type, it
4405    // wins.  Because we are dealing with 2's complement and types that are
4406    // powers of two larger than each other, this is always safe.
4407    return -1;
4408  }
4409
4410  // If the unsigned [RHS] type is larger, return it.
4411  if (RHSRank >= LHSRank)
4412    return -1;
4413
4414  // If the signed type can represent all values of the unsigned type, it
4415  // wins.  Because we are dealing with 2's complement and types that are
4416  // powers of two larger than each other, this is always safe.
4417  return 1;
4418}
4419
4420static RecordDecl *
4421CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4422                 DeclContext *DC, IdentifierInfo *Id) {
4423  SourceLocation Loc;
4424  if (Ctx.getLangOpts().CPlusPlus)
4425    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4426  else
4427    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4428}
4429
4430// getCFConstantStringType - Return the type used for constant CFStrings.
4431QualType ASTContext::getCFConstantStringType() const {
4432  if (!CFConstantStringTypeDecl) {
4433    CFConstantStringTypeDecl =
4434      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4435                       &Idents.get("NSConstantString"));
4436    CFConstantStringTypeDecl->startDefinition();
4437
4438    QualType FieldTypes[4];
4439
4440    // const int *isa;
4441    FieldTypes[0] = getPointerType(IntTy.withConst());
4442    // int flags;
4443    FieldTypes[1] = IntTy;
4444    // const char *str;
4445    FieldTypes[2] = getPointerType(CharTy.withConst());
4446    // long length;
4447    FieldTypes[3] = LongTy;
4448
4449    // Create fields
4450    for (unsigned i = 0; i < 4; ++i) {
4451      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4452                                           SourceLocation(),
4453                                           SourceLocation(), 0,
4454                                           FieldTypes[i], /*TInfo=*/0,
4455                                           /*BitWidth=*/0,
4456                                           /*Mutable=*/false,
4457                                           ICIS_NoInit);
4458      Field->setAccess(AS_public);
4459      CFConstantStringTypeDecl->addDecl(Field);
4460    }
4461
4462    CFConstantStringTypeDecl->completeDefinition();
4463  }
4464
4465  return getTagDeclType(CFConstantStringTypeDecl);
4466}
4467
4468QualType ASTContext::getObjCSuperType() const {
4469  if (ObjCSuperType.isNull()) {
4470    RecordDecl *ObjCSuperTypeDecl  =
4471      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4472    TUDecl->addDecl(ObjCSuperTypeDecl);
4473    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4474  }
4475  return ObjCSuperType;
4476}
4477
4478void ASTContext::setCFConstantStringType(QualType T) {
4479  const RecordType *Rec = T->getAs<RecordType>();
4480  assert(Rec && "Invalid CFConstantStringType");
4481  CFConstantStringTypeDecl = Rec->getDecl();
4482}
4483
4484QualType ASTContext::getBlockDescriptorType() const {
4485  if (BlockDescriptorType)
4486    return getTagDeclType(BlockDescriptorType);
4487
4488  RecordDecl *T;
4489  // FIXME: Needs the FlagAppleBlock bit.
4490  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4491                       &Idents.get("__block_descriptor"));
4492  T->startDefinition();
4493
4494  QualType FieldTypes[] = {
4495    UnsignedLongTy,
4496    UnsignedLongTy,
4497  };
4498
4499  const char *FieldNames[] = {
4500    "reserved",
4501    "Size"
4502  };
4503
4504  for (size_t i = 0; i < 2; ++i) {
4505    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4506                                         SourceLocation(),
4507                                         &Idents.get(FieldNames[i]),
4508                                         FieldTypes[i], /*TInfo=*/0,
4509                                         /*BitWidth=*/0,
4510                                         /*Mutable=*/false,
4511                                         ICIS_NoInit);
4512    Field->setAccess(AS_public);
4513    T->addDecl(Field);
4514  }
4515
4516  T->completeDefinition();
4517
4518  BlockDescriptorType = T;
4519
4520  return getTagDeclType(BlockDescriptorType);
4521}
4522
4523QualType ASTContext::getBlockDescriptorExtendedType() const {
4524  if (BlockDescriptorExtendedType)
4525    return getTagDeclType(BlockDescriptorExtendedType);
4526
4527  RecordDecl *T;
4528  // FIXME: Needs the FlagAppleBlock bit.
4529  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4530                       &Idents.get("__block_descriptor_withcopydispose"));
4531  T->startDefinition();
4532
4533  QualType FieldTypes[] = {
4534    UnsignedLongTy,
4535    UnsignedLongTy,
4536    getPointerType(VoidPtrTy),
4537    getPointerType(VoidPtrTy)
4538  };
4539
4540  const char *FieldNames[] = {
4541    "reserved",
4542    "Size",
4543    "CopyFuncPtr",
4544    "DestroyFuncPtr"
4545  };
4546
4547  for (size_t i = 0; i < 4; ++i) {
4548    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4549                                         SourceLocation(),
4550                                         &Idents.get(FieldNames[i]),
4551                                         FieldTypes[i], /*TInfo=*/0,
4552                                         /*BitWidth=*/0,
4553                                         /*Mutable=*/false,
4554                                         ICIS_NoInit);
4555    Field->setAccess(AS_public);
4556    T->addDecl(Field);
4557  }
4558
4559  T->completeDefinition();
4560
4561  BlockDescriptorExtendedType = T;
4562
4563  return getTagDeclType(BlockDescriptorExtendedType);
4564}
4565
4566/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4567/// requires copy/dispose. Note that this must match the logic
4568/// in buildByrefHelpers.
4569bool ASTContext::BlockRequiresCopying(QualType Ty,
4570                                      const VarDecl *D) {
4571  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4572    const Expr *copyExpr = getBlockVarCopyInits(D);
4573    if (!copyExpr && record->hasTrivialDestructor()) return false;
4574
4575    return true;
4576  }
4577
4578  if (!Ty->isObjCRetainableType()) return false;
4579
4580  Qualifiers qs = Ty.getQualifiers();
4581
4582  // If we have lifetime, that dominates.
4583  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4584    assert(getLangOpts().ObjCAutoRefCount);
4585
4586    switch (lifetime) {
4587      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4588
4589      // These are just bits as far as the runtime is concerned.
4590      case Qualifiers::OCL_ExplicitNone:
4591      case Qualifiers::OCL_Autoreleasing:
4592        return false;
4593
4594      // Tell the runtime that this is ARC __weak, called by the
4595      // byref routines.
4596      case Qualifiers::OCL_Weak:
4597      // ARC __strong __block variables need to be retained.
4598      case Qualifiers::OCL_Strong:
4599        return true;
4600    }
4601    llvm_unreachable("fell out of lifetime switch!");
4602  }
4603  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4604          Ty->isObjCObjectPointerType());
4605}
4606
4607bool ASTContext::getByrefLifetime(QualType Ty,
4608                              Qualifiers::ObjCLifetime &LifeTime,
4609                              bool &HasByrefExtendedLayout) const {
4610
4611  if (!getLangOpts().ObjC1 ||
4612      getLangOpts().getGC() != LangOptions::NonGC)
4613    return false;
4614
4615  HasByrefExtendedLayout = false;
4616  if (Ty->isRecordType()) {
4617    HasByrefExtendedLayout = true;
4618    LifeTime = Qualifiers::OCL_None;
4619  }
4620  else if (getLangOpts().ObjCAutoRefCount)
4621    LifeTime = Ty.getObjCLifetime();
4622  // MRR.
4623  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4624    LifeTime = Qualifiers::OCL_ExplicitNone;
4625  else
4626    LifeTime = Qualifiers::OCL_None;
4627  return true;
4628}
4629
4630TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4631  if (!ObjCInstanceTypeDecl)
4632    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4633                                               getTranslationUnitDecl(),
4634                                               SourceLocation(),
4635                                               SourceLocation(),
4636                                               &Idents.get("instancetype"),
4637                                     getTrivialTypeSourceInfo(getObjCIdType()));
4638  return ObjCInstanceTypeDecl;
4639}
4640
4641// This returns true if a type has been typedefed to BOOL:
4642// typedef <type> BOOL;
4643static bool isTypeTypedefedAsBOOL(QualType T) {
4644  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4645    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4646      return II->isStr("BOOL");
4647
4648  return false;
4649}
4650
4651/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4652/// purpose.
4653CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4654  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4655    return CharUnits::Zero();
4656
4657  CharUnits sz = getTypeSizeInChars(type);
4658
4659  // Make all integer and enum types at least as large as an int
4660  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4661    sz = std::max(sz, getTypeSizeInChars(IntTy));
4662  // Treat arrays as pointers, since that's how they're passed in.
4663  else if (type->isArrayType())
4664    sz = getTypeSizeInChars(VoidPtrTy);
4665  return sz;
4666}
4667
4668static inline
4669std::string charUnitsToString(const CharUnits &CU) {
4670  return llvm::itostr(CU.getQuantity());
4671}
4672
4673/// getObjCEncodingForBlock - Return the encoded type for this block
4674/// declaration.
4675std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4676  std::string S;
4677
4678  const BlockDecl *Decl = Expr->getBlockDecl();
4679  QualType BlockTy =
4680      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4681  // Encode result type.
4682  if (getLangOpts().EncodeExtendedBlockSig)
4683    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4684                            BlockTy->getAs<FunctionType>()->getResultType(),
4685                            S, true /*Extended*/);
4686  else
4687    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4688                           S);
4689  // Compute size of all parameters.
4690  // Start with computing size of a pointer in number of bytes.
4691  // FIXME: There might(should) be a better way of doing this computation!
4692  SourceLocation Loc;
4693  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4694  CharUnits ParmOffset = PtrSize;
4695  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4696       E = Decl->param_end(); PI != E; ++PI) {
4697    QualType PType = (*PI)->getType();
4698    CharUnits sz = getObjCEncodingTypeSize(PType);
4699    if (sz.isZero())
4700      continue;
4701    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4702    ParmOffset += sz;
4703  }
4704  // Size of the argument frame
4705  S += charUnitsToString(ParmOffset);
4706  // Block pointer and offset.
4707  S += "@?0";
4708
4709  // Argument types.
4710  ParmOffset = PtrSize;
4711  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4712       Decl->param_end(); PI != E; ++PI) {
4713    ParmVarDecl *PVDecl = *PI;
4714    QualType PType = PVDecl->getOriginalType();
4715    if (const ArrayType *AT =
4716          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4717      // Use array's original type only if it has known number of
4718      // elements.
4719      if (!isa<ConstantArrayType>(AT))
4720        PType = PVDecl->getType();
4721    } else if (PType->isFunctionType())
4722      PType = PVDecl->getType();
4723    if (getLangOpts().EncodeExtendedBlockSig)
4724      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4725                                      S, true /*Extended*/);
4726    else
4727      getObjCEncodingForType(PType, S);
4728    S += charUnitsToString(ParmOffset);
4729    ParmOffset += getObjCEncodingTypeSize(PType);
4730  }
4731
4732  return S;
4733}
4734
4735bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4736                                                std::string& S) {
4737  // Encode result type.
4738  getObjCEncodingForType(Decl->getResultType(), S);
4739  CharUnits ParmOffset;
4740  // Compute size of all parameters.
4741  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4742       E = Decl->param_end(); PI != E; ++PI) {
4743    QualType PType = (*PI)->getType();
4744    CharUnits sz = getObjCEncodingTypeSize(PType);
4745    if (sz.isZero())
4746      continue;
4747
4748    assert (sz.isPositive() &&
4749        "getObjCEncodingForFunctionDecl - Incomplete param type");
4750    ParmOffset += sz;
4751  }
4752  S += charUnitsToString(ParmOffset);
4753  ParmOffset = CharUnits::Zero();
4754
4755  // Argument types.
4756  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4757       E = Decl->param_end(); PI != E; ++PI) {
4758    ParmVarDecl *PVDecl = *PI;
4759    QualType PType = PVDecl->getOriginalType();
4760    if (const ArrayType *AT =
4761          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4762      // Use array's original type only if it has known number of
4763      // elements.
4764      if (!isa<ConstantArrayType>(AT))
4765        PType = PVDecl->getType();
4766    } else if (PType->isFunctionType())
4767      PType = PVDecl->getType();
4768    getObjCEncodingForType(PType, S);
4769    S += charUnitsToString(ParmOffset);
4770    ParmOffset += getObjCEncodingTypeSize(PType);
4771  }
4772
4773  return false;
4774}
4775
4776/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4777/// method parameter or return type. If Extended, include class names and
4778/// block object types.
4779void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4780                                                   QualType T, std::string& S,
4781                                                   bool Extended) const {
4782  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4783  getObjCEncodingForTypeQualifier(QT, S);
4784  // Encode parameter type.
4785  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4786                             true     /*OutermostType*/,
4787                             false    /*EncodingProperty*/,
4788                             false    /*StructField*/,
4789                             Extended /*EncodeBlockParameters*/,
4790                             Extended /*EncodeClassNames*/);
4791}
4792
4793/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4794/// declaration.
4795bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4796                                              std::string& S,
4797                                              bool Extended) const {
4798  // FIXME: This is not very efficient.
4799  // Encode return type.
4800  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4801                                    Decl->getResultType(), S, Extended);
4802  // Compute size of all parameters.
4803  // Start with computing size of a pointer in number of bytes.
4804  // FIXME: There might(should) be a better way of doing this computation!
4805  SourceLocation Loc;
4806  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4807  // The first two arguments (self and _cmd) are pointers; account for
4808  // their size.
4809  CharUnits ParmOffset = 2 * PtrSize;
4810  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4811       E = Decl->sel_param_end(); PI != E; ++PI) {
4812    QualType PType = (*PI)->getType();
4813    CharUnits sz = getObjCEncodingTypeSize(PType);
4814    if (sz.isZero())
4815      continue;
4816
4817    assert (sz.isPositive() &&
4818        "getObjCEncodingForMethodDecl - Incomplete param type");
4819    ParmOffset += sz;
4820  }
4821  S += charUnitsToString(ParmOffset);
4822  S += "@0:";
4823  S += charUnitsToString(PtrSize);
4824
4825  // Argument types.
4826  ParmOffset = 2 * PtrSize;
4827  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4828       E = Decl->sel_param_end(); PI != E; ++PI) {
4829    const ParmVarDecl *PVDecl = *PI;
4830    QualType PType = PVDecl->getOriginalType();
4831    if (const ArrayType *AT =
4832          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4833      // Use array's original type only if it has known number of
4834      // elements.
4835      if (!isa<ConstantArrayType>(AT))
4836        PType = PVDecl->getType();
4837    } else if (PType->isFunctionType())
4838      PType = PVDecl->getType();
4839    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4840                                      PType, S, Extended);
4841    S += charUnitsToString(ParmOffset);
4842    ParmOffset += getObjCEncodingTypeSize(PType);
4843  }
4844
4845  return false;
4846}
4847
4848/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4849/// property declaration. If non-NULL, Container must be either an
4850/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4851/// NULL when getting encodings for protocol properties.
4852/// Property attributes are stored as a comma-delimited C string. The simple
4853/// attributes readonly and bycopy are encoded as single characters. The
4854/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4855/// encoded as single characters, followed by an identifier. Property types
4856/// are also encoded as a parametrized attribute. The characters used to encode
4857/// these attributes are defined by the following enumeration:
4858/// @code
4859/// enum PropertyAttributes {
4860/// kPropertyReadOnly = 'R',   // property is read-only.
4861/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4862/// kPropertyByref = '&',  // property is a reference to the value last assigned
4863/// kPropertyDynamic = 'D',    // property is dynamic
4864/// kPropertyGetter = 'G',     // followed by getter selector name
4865/// kPropertySetter = 'S',     // followed by setter selector name
4866/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4867/// kPropertyType = 'T'              // followed by old-style type encoding.
4868/// kPropertyWeak = 'W'              // 'weak' property
4869/// kPropertyStrong = 'P'            // property GC'able
4870/// kPropertyNonAtomic = 'N'         // property non-atomic
4871/// };
4872/// @endcode
4873void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4874                                                const Decl *Container,
4875                                                std::string& S) const {
4876  // Collect information from the property implementation decl(s).
4877  bool Dynamic = false;
4878  ObjCPropertyImplDecl *SynthesizePID = 0;
4879
4880  // FIXME: Duplicated code due to poor abstraction.
4881  if (Container) {
4882    if (const ObjCCategoryImplDecl *CID =
4883        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4884      for (ObjCCategoryImplDecl::propimpl_iterator
4885             i = CID->propimpl_begin(), e = CID->propimpl_end();
4886           i != e; ++i) {
4887        ObjCPropertyImplDecl *PID = *i;
4888        if (PID->getPropertyDecl() == PD) {
4889          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4890            Dynamic = true;
4891          } else {
4892            SynthesizePID = PID;
4893          }
4894        }
4895      }
4896    } else {
4897      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4898      for (ObjCCategoryImplDecl::propimpl_iterator
4899             i = OID->propimpl_begin(), e = OID->propimpl_end();
4900           i != e; ++i) {
4901        ObjCPropertyImplDecl *PID = *i;
4902        if (PID->getPropertyDecl() == PD) {
4903          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4904            Dynamic = true;
4905          } else {
4906            SynthesizePID = PID;
4907          }
4908        }
4909      }
4910    }
4911  }
4912
4913  // FIXME: This is not very efficient.
4914  S = "T";
4915
4916  // Encode result type.
4917  // GCC has some special rules regarding encoding of properties which
4918  // closely resembles encoding of ivars.
4919  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4920                             true /* outermost type */,
4921                             true /* encoding for property */);
4922
4923  if (PD->isReadOnly()) {
4924    S += ",R";
4925    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
4926      S += ",C";
4927    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
4928      S += ",&";
4929  } else {
4930    switch (PD->getSetterKind()) {
4931    case ObjCPropertyDecl::Assign: break;
4932    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4933    case ObjCPropertyDecl::Retain: S += ",&"; break;
4934    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4935    }
4936  }
4937
4938  // It really isn't clear at all what this means, since properties
4939  // are "dynamic by default".
4940  if (Dynamic)
4941    S += ",D";
4942
4943  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4944    S += ",N";
4945
4946  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4947    S += ",G";
4948    S += PD->getGetterName().getAsString();
4949  }
4950
4951  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4952    S += ",S";
4953    S += PD->getSetterName().getAsString();
4954  }
4955
4956  if (SynthesizePID) {
4957    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4958    S += ",V";
4959    S += OID->getNameAsString();
4960  }
4961
4962  // FIXME: OBJCGC: weak & strong
4963}
4964
4965/// getLegacyIntegralTypeEncoding -
4966/// Another legacy compatibility encoding: 32-bit longs are encoded as
4967/// 'l' or 'L' , but not always.  For typedefs, we need to use
4968/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4969///
4970void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4971  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4972    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4973      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4974        PointeeTy = UnsignedIntTy;
4975      else
4976        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4977          PointeeTy = IntTy;
4978    }
4979  }
4980}
4981
4982void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4983                                        const FieldDecl *Field) const {
4984  // We follow the behavior of gcc, expanding structures which are
4985  // directly pointed to, and expanding embedded structures. Note that
4986  // these rules are sufficient to prevent recursive encoding of the
4987  // same type.
4988  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4989                             true /* outermost type */);
4990}
4991
4992static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4993                                            BuiltinType::Kind kind) {
4994    switch (kind) {
4995    case BuiltinType::Void:       return 'v';
4996    case BuiltinType::Bool:       return 'B';
4997    case BuiltinType::Char_U:
4998    case BuiltinType::UChar:      return 'C';
4999    case BuiltinType::Char16:
5000    case BuiltinType::UShort:     return 'S';
5001    case BuiltinType::Char32:
5002    case BuiltinType::UInt:       return 'I';
5003    case BuiltinType::ULong:
5004        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5005    case BuiltinType::UInt128:    return 'T';
5006    case BuiltinType::ULongLong:  return 'Q';
5007    case BuiltinType::Char_S:
5008    case BuiltinType::SChar:      return 'c';
5009    case BuiltinType::Short:      return 's';
5010    case BuiltinType::WChar_S:
5011    case BuiltinType::WChar_U:
5012    case BuiltinType::Int:        return 'i';
5013    case BuiltinType::Long:
5014      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5015    case BuiltinType::LongLong:   return 'q';
5016    case BuiltinType::Int128:     return 't';
5017    case BuiltinType::Float:      return 'f';
5018    case BuiltinType::Double:     return 'd';
5019    case BuiltinType::LongDouble: return 'D';
5020    case BuiltinType::NullPtr:    return '*'; // like char*
5021
5022    case BuiltinType::Half:
5023      // FIXME: potentially need @encodes for these!
5024      return ' ';
5025
5026    case BuiltinType::ObjCId:
5027    case BuiltinType::ObjCClass:
5028    case BuiltinType::ObjCSel:
5029      llvm_unreachable("@encoding ObjC primitive type");
5030
5031    // OpenCL and placeholder types don't need @encodings.
5032    case BuiltinType::OCLImage1d:
5033    case BuiltinType::OCLImage1dArray:
5034    case BuiltinType::OCLImage1dBuffer:
5035    case BuiltinType::OCLImage2d:
5036    case BuiltinType::OCLImage2dArray:
5037    case BuiltinType::OCLImage3d:
5038    case BuiltinType::OCLEvent:
5039    case BuiltinType::OCLSampler:
5040    case BuiltinType::Dependent:
5041#define BUILTIN_TYPE(KIND, ID)
5042#define PLACEHOLDER_TYPE(KIND, ID) \
5043    case BuiltinType::KIND:
5044#include "clang/AST/BuiltinTypes.def"
5045      llvm_unreachable("invalid builtin type for @encode");
5046    }
5047    llvm_unreachable("invalid BuiltinType::Kind value");
5048}
5049
5050static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5051  EnumDecl *Enum = ET->getDecl();
5052
5053  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5054  if (!Enum->isFixed())
5055    return 'i';
5056
5057  // The encoding of a fixed enum type matches its fixed underlying type.
5058  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5059  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5060}
5061
5062static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5063                           QualType T, const FieldDecl *FD) {
5064  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5065  S += 'b';
5066  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5067  // The GNU runtime requires more information; bitfields are encoded as b,
5068  // then the offset (in bits) of the first element, then the type of the
5069  // bitfield, then the size in bits.  For example, in this structure:
5070  //
5071  // struct
5072  // {
5073  //    int integer;
5074  //    int flags:2;
5075  // };
5076  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5077  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5078  // information is not especially sensible, but we're stuck with it for
5079  // compatibility with GCC, although providing it breaks anything that
5080  // actually uses runtime introspection and wants to work on both runtimes...
5081  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5082    const RecordDecl *RD = FD->getParent();
5083    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5084    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5085    if (const EnumType *ET = T->getAs<EnumType>())
5086      S += ObjCEncodingForEnumType(Ctx, ET);
5087    else {
5088      const BuiltinType *BT = T->castAs<BuiltinType>();
5089      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5090    }
5091  }
5092  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5093}
5094
5095// FIXME: Use SmallString for accumulating string.
5096void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5097                                            bool ExpandPointedToStructures,
5098                                            bool ExpandStructures,
5099                                            const FieldDecl *FD,
5100                                            bool OutermostType,
5101                                            bool EncodingProperty,
5102                                            bool StructField,
5103                                            bool EncodeBlockParameters,
5104                                            bool EncodeClassNames,
5105                                            bool EncodePointerToObjCTypedef) const {
5106  CanQualType CT = getCanonicalType(T);
5107  switch (CT->getTypeClass()) {
5108  case Type::Builtin:
5109  case Type::Enum:
5110    if (FD && FD->isBitField())
5111      return EncodeBitField(this, S, T, FD);
5112    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5113      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5114    else
5115      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5116    return;
5117
5118  case Type::Complex: {
5119    const ComplexType *CT = T->castAs<ComplexType>();
5120    S += 'j';
5121    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5122                               false);
5123    return;
5124  }
5125
5126  case Type::Atomic: {
5127    const AtomicType *AT = T->castAs<AtomicType>();
5128    S += 'A';
5129    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5130                               false, false);
5131    return;
5132  }
5133
5134  // encoding for pointer or reference types.
5135  case Type::Pointer:
5136  case Type::LValueReference:
5137  case Type::RValueReference: {
5138    QualType PointeeTy;
5139    if (isa<PointerType>(CT)) {
5140      const PointerType *PT = T->castAs<PointerType>();
5141      if (PT->isObjCSelType()) {
5142        S += ':';
5143        return;
5144      }
5145      PointeeTy = PT->getPointeeType();
5146    } else {
5147      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5148    }
5149
5150    bool isReadOnly = false;
5151    // For historical/compatibility reasons, the read-only qualifier of the
5152    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5153    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5154    // Also, do not emit the 'r' for anything but the outermost type!
5155    if (isa<TypedefType>(T.getTypePtr())) {
5156      if (OutermostType && T.isConstQualified()) {
5157        isReadOnly = true;
5158        S += 'r';
5159      }
5160    } else if (OutermostType) {
5161      QualType P = PointeeTy;
5162      while (P->getAs<PointerType>())
5163        P = P->getAs<PointerType>()->getPointeeType();
5164      if (P.isConstQualified()) {
5165        isReadOnly = true;
5166        S += 'r';
5167      }
5168    }
5169    if (isReadOnly) {
5170      // Another legacy compatibility encoding. Some ObjC qualifier and type
5171      // combinations need to be rearranged.
5172      // Rewrite "in const" from "nr" to "rn"
5173      if (StringRef(S).endswith("nr"))
5174        S.replace(S.end()-2, S.end(), "rn");
5175    }
5176
5177    if (PointeeTy->isCharType()) {
5178      // char pointer types should be encoded as '*' unless it is a
5179      // type that has been typedef'd to 'BOOL'.
5180      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5181        S += '*';
5182        return;
5183      }
5184    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5185      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5186      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5187        S += '#';
5188        return;
5189      }
5190      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5191      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5192        S += '@';
5193        return;
5194      }
5195      // fall through...
5196    }
5197    S += '^';
5198    getLegacyIntegralTypeEncoding(PointeeTy);
5199
5200    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5201                               NULL);
5202    return;
5203  }
5204
5205  case Type::ConstantArray:
5206  case Type::IncompleteArray:
5207  case Type::VariableArray: {
5208    const ArrayType *AT = cast<ArrayType>(CT);
5209
5210    if (isa<IncompleteArrayType>(AT) && !StructField) {
5211      // Incomplete arrays are encoded as a pointer to the array element.
5212      S += '^';
5213
5214      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5215                                 false, ExpandStructures, FD);
5216    } else {
5217      S += '[';
5218
5219      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5220        if (getTypeSize(CAT->getElementType()) == 0)
5221          S += '0';
5222        else
5223          S += llvm::utostr(CAT->getSize().getZExtValue());
5224      } else {
5225        //Variable length arrays are encoded as a regular array with 0 elements.
5226        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5227               "Unknown array type!");
5228        S += '0';
5229      }
5230
5231      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5232                                 false, ExpandStructures, FD);
5233      S += ']';
5234    }
5235    return;
5236  }
5237
5238  case Type::FunctionNoProto:
5239  case Type::FunctionProto:
5240    S += '?';
5241    return;
5242
5243  case Type::Record: {
5244    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5245    S += RDecl->isUnion() ? '(' : '{';
5246    // Anonymous structures print as '?'
5247    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5248      S += II->getName();
5249      if (ClassTemplateSpecializationDecl *Spec
5250          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5251        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5252        llvm::raw_string_ostream OS(S);
5253        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5254                                            TemplateArgs.data(),
5255                                            TemplateArgs.size(),
5256                                            (*this).getPrintingPolicy());
5257      }
5258    } else {
5259      S += '?';
5260    }
5261    if (ExpandStructures) {
5262      S += '=';
5263      if (!RDecl->isUnion()) {
5264        getObjCEncodingForStructureImpl(RDecl, S, FD);
5265      } else {
5266        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5267                                     FieldEnd = RDecl->field_end();
5268             Field != FieldEnd; ++Field) {
5269          if (FD) {
5270            S += '"';
5271            S += Field->getNameAsString();
5272            S += '"';
5273          }
5274
5275          // Special case bit-fields.
5276          if (Field->isBitField()) {
5277            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5278                                       *Field);
5279          } else {
5280            QualType qt = Field->getType();
5281            getLegacyIntegralTypeEncoding(qt);
5282            getObjCEncodingForTypeImpl(qt, S, false, true,
5283                                       FD, /*OutermostType*/false,
5284                                       /*EncodingProperty*/false,
5285                                       /*StructField*/true);
5286          }
5287        }
5288      }
5289    }
5290    S += RDecl->isUnion() ? ')' : '}';
5291    return;
5292  }
5293
5294  case Type::BlockPointer: {
5295    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5296    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5297    if (EncodeBlockParameters) {
5298      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5299
5300      S += '<';
5301      // Block return type
5302      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5303                                 ExpandPointedToStructures, ExpandStructures,
5304                                 FD,
5305                                 false /* OutermostType */,
5306                                 EncodingProperty,
5307                                 false /* StructField */,
5308                                 EncodeBlockParameters,
5309                                 EncodeClassNames);
5310      // Block self
5311      S += "@?";
5312      // Block parameters
5313      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5314        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5315               E = FPT->arg_type_end(); I && (I != E); ++I) {
5316          getObjCEncodingForTypeImpl(*I, S,
5317                                     ExpandPointedToStructures,
5318                                     ExpandStructures,
5319                                     FD,
5320                                     false /* OutermostType */,
5321                                     EncodingProperty,
5322                                     false /* StructField */,
5323                                     EncodeBlockParameters,
5324                                     EncodeClassNames);
5325        }
5326      }
5327      S += '>';
5328    }
5329    return;
5330  }
5331
5332  case Type::ObjCObject:
5333  case Type::ObjCInterface: {
5334    // Ignore protocol qualifiers when mangling at this level.
5335    T = T->castAs<ObjCObjectType>()->getBaseType();
5336
5337    // The assumption seems to be that this assert will succeed
5338    // because nested levels will have filtered out 'id' and 'Class'.
5339    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5340    // @encode(class_name)
5341    ObjCInterfaceDecl *OI = OIT->getDecl();
5342    S += '{';
5343    const IdentifierInfo *II = OI->getIdentifier();
5344    S += II->getName();
5345    S += '=';
5346    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5347    DeepCollectObjCIvars(OI, true, Ivars);
5348    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5349      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5350      if (Field->isBitField())
5351        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5352      else
5353        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5354                                   false, false, false, false, false,
5355                                   EncodePointerToObjCTypedef);
5356    }
5357    S += '}';
5358    return;
5359  }
5360
5361  case Type::ObjCObjectPointer: {
5362    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5363    if (OPT->isObjCIdType()) {
5364      S += '@';
5365      return;
5366    }
5367
5368    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5369      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5370      // Since this is a binary compatibility issue, need to consult with runtime
5371      // folks. Fortunately, this is a *very* obsure construct.
5372      S += '#';
5373      return;
5374    }
5375
5376    if (OPT->isObjCQualifiedIdType()) {
5377      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5378                                 ExpandPointedToStructures,
5379                                 ExpandStructures, FD);
5380      if (FD || EncodingProperty || EncodeClassNames) {
5381        // Note that we do extended encoding of protocol qualifer list
5382        // Only when doing ivar or property encoding.
5383        S += '"';
5384        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5385             E = OPT->qual_end(); I != E; ++I) {
5386          S += '<';
5387          S += (*I)->getNameAsString();
5388          S += '>';
5389        }
5390        S += '"';
5391      }
5392      return;
5393    }
5394
5395    QualType PointeeTy = OPT->getPointeeType();
5396    if (!EncodingProperty &&
5397        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5398        !EncodePointerToObjCTypedef) {
5399      // Another historical/compatibility reason.
5400      // We encode the underlying type which comes out as
5401      // {...};
5402      S += '^';
5403      getObjCEncodingForTypeImpl(PointeeTy, S,
5404                                 false, ExpandPointedToStructures,
5405                                 NULL,
5406                                 false, false, false, false, false,
5407                                 /*EncodePointerToObjCTypedef*/true);
5408      return;
5409    }
5410
5411    S += '@';
5412    if (OPT->getInterfaceDecl() &&
5413        (FD || EncodingProperty || EncodeClassNames)) {
5414      S += '"';
5415      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5416      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5417           E = OPT->qual_end(); I != E; ++I) {
5418        S += '<';
5419        S += (*I)->getNameAsString();
5420        S += '>';
5421      }
5422      S += '"';
5423    }
5424    return;
5425  }
5426
5427  // gcc just blithely ignores member pointers.
5428  // FIXME: we shoul do better than that.  'M' is available.
5429  case Type::MemberPointer:
5430    return;
5431
5432  case Type::Vector:
5433  case Type::ExtVector:
5434    // This matches gcc's encoding, even though technically it is
5435    // insufficient.
5436    // FIXME. We should do a better job than gcc.
5437    return;
5438
5439  case Type::Auto:
5440    // We could see an undeduced auto type here during error recovery.
5441    // Just ignore it.
5442    return;
5443
5444#define ABSTRACT_TYPE(KIND, BASE)
5445#define TYPE(KIND, BASE)
5446#define DEPENDENT_TYPE(KIND, BASE) \
5447  case Type::KIND:
5448#define NON_CANONICAL_TYPE(KIND, BASE) \
5449  case Type::KIND:
5450#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5451  case Type::KIND:
5452#include "clang/AST/TypeNodes.def"
5453    llvm_unreachable("@encode for dependent type!");
5454  }
5455  llvm_unreachable("bad type kind!");
5456}
5457
5458void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5459                                                 std::string &S,
5460                                                 const FieldDecl *FD,
5461                                                 bool includeVBases) const {
5462  assert(RDecl && "Expected non-null RecordDecl");
5463  assert(!RDecl->isUnion() && "Should not be called for unions");
5464  if (!RDecl->getDefinition())
5465    return;
5466
5467  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5468  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5469  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5470
5471  if (CXXRec) {
5472    for (CXXRecordDecl::base_class_iterator
5473           BI = CXXRec->bases_begin(),
5474           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5475      if (!BI->isVirtual()) {
5476        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5477        if (base->isEmpty())
5478          continue;
5479        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5480        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5481                                  std::make_pair(offs, base));
5482      }
5483    }
5484  }
5485
5486  unsigned i = 0;
5487  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5488                               FieldEnd = RDecl->field_end();
5489       Field != FieldEnd; ++Field, ++i) {
5490    uint64_t offs = layout.getFieldOffset(i);
5491    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5492                              std::make_pair(offs, *Field));
5493  }
5494
5495  if (CXXRec && includeVBases) {
5496    for (CXXRecordDecl::base_class_iterator
5497           BI = CXXRec->vbases_begin(),
5498           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5499      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5500      if (base->isEmpty())
5501        continue;
5502      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5503      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5504        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5505                                  std::make_pair(offs, base));
5506    }
5507  }
5508
5509  CharUnits size;
5510  if (CXXRec) {
5511    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5512  } else {
5513    size = layout.getSize();
5514  }
5515
5516  uint64_t CurOffs = 0;
5517  std::multimap<uint64_t, NamedDecl *>::iterator
5518    CurLayObj = FieldOrBaseOffsets.begin();
5519
5520  if (CXXRec && CXXRec->isDynamicClass() &&
5521      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5522    if (FD) {
5523      S += "\"_vptr$";
5524      std::string recname = CXXRec->getNameAsString();
5525      if (recname.empty()) recname = "?";
5526      S += recname;
5527      S += '"';
5528    }
5529    S += "^^?";
5530    CurOffs += getTypeSize(VoidPtrTy);
5531  }
5532
5533  if (!RDecl->hasFlexibleArrayMember()) {
5534    // Mark the end of the structure.
5535    uint64_t offs = toBits(size);
5536    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5537                              std::make_pair(offs, (NamedDecl*)0));
5538  }
5539
5540  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5541    assert(CurOffs <= CurLayObj->first);
5542
5543    if (CurOffs < CurLayObj->first) {
5544      uint64_t padding = CurLayObj->first - CurOffs;
5545      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5546      // packing/alignment of members is different that normal, in which case
5547      // the encoding will be out-of-sync with the real layout.
5548      // If the runtime switches to just consider the size of types without
5549      // taking into account alignment, we could make padding explicit in the
5550      // encoding (e.g. using arrays of chars). The encoding strings would be
5551      // longer then though.
5552      CurOffs += padding;
5553    }
5554
5555    NamedDecl *dcl = CurLayObj->second;
5556    if (dcl == 0)
5557      break; // reached end of structure.
5558
5559    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5560      // We expand the bases without their virtual bases since those are going
5561      // in the initial structure. Note that this differs from gcc which
5562      // expands virtual bases each time one is encountered in the hierarchy,
5563      // making the encoding type bigger than it really is.
5564      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5565      assert(!base->isEmpty());
5566      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5567    } else {
5568      FieldDecl *field = cast<FieldDecl>(dcl);
5569      if (FD) {
5570        S += '"';
5571        S += field->getNameAsString();
5572        S += '"';
5573      }
5574
5575      if (field->isBitField()) {
5576        EncodeBitField(this, S, field->getType(), field);
5577        CurOffs += field->getBitWidthValue(*this);
5578      } else {
5579        QualType qt = field->getType();
5580        getLegacyIntegralTypeEncoding(qt);
5581        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5582                                   /*OutermostType*/false,
5583                                   /*EncodingProperty*/false,
5584                                   /*StructField*/true);
5585        CurOffs += getTypeSize(field->getType());
5586      }
5587    }
5588  }
5589}
5590
5591void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5592                                                 std::string& S) const {
5593  if (QT & Decl::OBJC_TQ_In)
5594    S += 'n';
5595  if (QT & Decl::OBJC_TQ_Inout)
5596    S += 'N';
5597  if (QT & Decl::OBJC_TQ_Out)
5598    S += 'o';
5599  if (QT & Decl::OBJC_TQ_Bycopy)
5600    S += 'O';
5601  if (QT & Decl::OBJC_TQ_Byref)
5602    S += 'R';
5603  if (QT & Decl::OBJC_TQ_Oneway)
5604    S += 'V';
5605}
5606
5607TypedefDecl *ASTContext::getObjCIdDecl() const {
5608  if (!ObjCIdDecl) {
5609    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5610    T = getObjCObjectPointerType(T);
5611    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5612    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5613                                     getTranslationUnitDecl(),
5614                                     SourceLocation(), SourceLocation(),
5615                                     &Idents.get("id"), IdInfo);
5616  }
5617
5618  return ObjCIdDecl;
5619}
5620
5621TypedefDecl *ASTContext::getObjCSelDecl() const {
5622  if (!ObjCSelDecl) {
5623    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5624    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5625    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5626                                      getTranslationUnitDecl(),
5627                                      SourceLocation(), SourceLocation(),
5628                                      &Idents.get("SEL"), SelInfo);
5629  }
5630  return ObjCSelDecl;
5631}
5632
5633TypedefDecl *ASTContext::getObjCClassDecl() const {
5634  if (!ObjCClassDecl) {
5635    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5636    T = getObjCObjectPointerType(T);
5637    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5638    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5639                                        getTranslationUnitDecl(),
5640                                        SourceLocation(), SourceLocation(),
5641                                        &Idents.get("Class"), ClassInfo);
5642  }
5643
5644  return ObjCClassDecl;
5645}
5646
5647ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5648  if (!ObjCProtocolClassDecl) {
5649    ObjCProtocolClassDecl
5650      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5651                                  SourceLocation(),
5652                                  &Idents.get("Protocol"),
5653                                  /*PrevDecl=*/0,
5654                                  SourceLocation(), true);
5655  }
5656
5657  return ObjCProtocolClassDecl;
5658}
5659
5660//===----------------------------------------------------------------------===//
5661// __builtin_va_list Construction Functions
5662//===----------------------------------------------------------------------===//
5663
5664static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5665  // typedef char* __builtin_va_list;
5666  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5667  TypeSourceInfo *TInfo
5668    = Context->getTrivialTypeSourceInfo(CharPtrType);
5669
5670  TypedefDecl *VaListTypeDecl
5671    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5672                          Context->getTranslationUnitDecl(),
5673                          SourceLocation(), SourceLocation(),
5674                          &Context->Idents.get("__builtin_va_list"),
5675                          TInfo);
5676  return VaListTypeDecl;
5677}
5678
5679static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5680  // typedef void* __builtin_va_list;
5681  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5682  TypeSourceInfo *TInfo
5683    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5684
5685  TypedefDecl *VaListTypeDecl
5686    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5687                          Context->getTranslationUnitDecl(),
5688                          SourceLocation(), SourceLocation(),
5689                          &Context->Idents.get("__builtin_va_list"),
5690                          TInfo);
5691  return VaListTypeDecl;
5692}
5693
5694static TypedefDecl *
5695CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5696  RecordDecl *VaListTagDecl;
5697  if (Context->getLangOpts().CPlusPlus) {
5698    // namespace std { struct __va_list {
5699    NamespaceDecl *NS;
5700    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5701                               Context->getTranslationUnitDecl(),
5702                               /*Inline*/false, SourceLocation(),
5703                               SourceLocation(), &Context->Idents.get("std"),
5704                               /*PrevDecl*/0);
5705
5706    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5707                                          Context->getTranslationUnitDecl(),
5708                                          SourceLocation(), SourceLocation(),
5709                                          &Context->Idents.get("__va_list"));
5710    VaListTagDecl->setDeclContext(NS);
5711  } else {
5712    // struct __va_list
5713    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5714                                   Context->getTranslationUnitDecl(),
5715                                   &Context->Idents.get("__va_list"));
5716  }
5717
5718  VaListTagDecl->startDefinition();
5719
5720  const size_t NumFields = 5;
5721  QualType FieldTypes[NumFields];
5722  const char *FieldNames[NumFields];
5723
5724  // void *__stack;
5725  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5726  FieldNames[0] = "__stack";
5727
5728  // void *__gr_top;
5729  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5730  FieldNames[1] = "__gr_top";
5731
5732  // void *__vr_top;
5733  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5734  FieldNames[2] = "__vr_top";
5735
5736  // int __gr_offs;
5737  FieldTypes[3] = Context->IntTy;
5738  FieldNames[3] = "__gr_offs";
5739
5740  // int __vr_offs;
5741  FieldTypes[4] = Context->IntTy;
5742  FieldNames[4] = "__vr_offs";
5743
5744  // Create fields
5745  for (unsigned i = 0; i < NumFields; ++i) {
5746    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5747                                         VaListTagDecl,
5748                                         SourceLocation(),
5749                                         SourceLocation(),
5750                                         &Context->Idents.get(FieldNames[i]),
5751                                         FieldTypes[i], /*TInfo=*/0,
5752                                         /*BitWidth=*/0,
5753                                         /*Mutable=*/false,
5754                                         ICIS_NoInit);
5755    Field->setAccess(AS_public);
5756    VaListTagDecl->addDecl(Field);
5757  }
5758  VaListTagDecl->completeDefinition();
5759  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5760  Context->VaListTagTy = VaListTagType;
5761
5762  // } __builtin_va_list;
5763  TypedefDecl *VaListTypedefDecl
5764    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5765                          Context->getTranslationUnitDecl(),
5766                          SourceLocation(), SourceLocation(),
5767                          &Context->Idents.get("__builtin_va_list"),
5768                          Context->getTrivialTypeSourceInfo(VaListTagType));
5769
5770  return VaListTypedefDecl;
5771}
5772
5773static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5774  // typedef struct __va_list_tag {
5775  RecordDecl *VaListTagDecl;
5776
5777  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5778                                   Context->getTranslationUnitDecl(),
5779                                   &Context->Idents.get("__va_list_tag"));
5780  VaListTagDecl->startDefinition();
5781
5782  const size_t NumFields = 5;
5783  QualType FieldTypes[NumFields];
5784  const char *FieldNames[NumFields];
5785
5786  //   unsigned char gpr;
5787  FieldTypes[0] = Context->UnsignedCharTy;
5788  FieldNames[0] = "gpr";
5789
5790  //   unsigned char fpr;
5791  FieldTypes[1] = Context->UnsignedCharTy;
5792  FieldNames[1] = "fpr";
5793
5794  //   unsigned short reserved;
5795  FieldTypes[2] = Context->UnsignedShortTy;
5796  FieldNames[2] = "reserved";
5797
5798  //   void* overflow_arg_area;
5799  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5800  FieldNames[3] = "overflow_arg_area";
5801
5802  //   void* reg_save_area;
5803  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5804  FieldNames[4] = "reg_save_area";
5805
5806  // Create fields
5807  for (unsigned i = 0; i < NumFields; ++i) {
5808    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5809                                         SourceLocation(),
5810                                         SourceLocation(),
5811                                         &Context->Idents.get(FieldNames[i]),
5812                                         FieldTypes[i], /*TInfo=*/0,
5813                                         /*BitWidth=*/0,
5814                                         /*Mutable=*/false,
5815                                         ICIS_NoInit);
5816    Field->setAccess(AS_public);
5817    VaListTagDecl->addDecl(Field);
5818  }
5819  VaListTagDecl->completeDefinition();
5820  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5821  Context->VaListTagTy = VaListTagType;
5822
5823  // } __va_list_tag;
5824  TypedefDecl *VaListTagTypedefDecl
5825    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5826                          Context->getTranslationUnitDecl(),
5827                          SourceLocation(), SourceLocation(),
5828                          &Context->Idents.get("__va_list_tag"),
5829                          Context->getTrivialTypeSourceInfo(VaListTagType));
5830  QualType VaListTagTypedefType =
5831    Context->getTypedefType(VaListTagTypedefDecl);
5832
5833  // typedef __va_list_tag __builtin_va_list[1];
5834  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5835  QualType VaListTagArrayType
5836    = Context->getConstantArrayType(VaListTagTypedefType,
5837                                    Size, ArrayType::Normal, 0);
5838  TypeSourceInfo *TInfo
5839    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5840  TypedefDecl *VaListTypedefDecl
5841    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5842                          Context->getTranslationUnitDecl(),
5843                          SourceLocation(), SourceLocation(),
5844                          &Context->Idents.get("__builtin_va_list"),
5845                          TInfo);
5846
5847  return VaListTypedefDecl;
5848}
5849
5850static TypedefDecl *
5851CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5852  // typedef struct __va_list_tag {
5853  RecordDecl *VaListTagDecl;
5854  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5855                                   Context->getTranslationUnitDecl(),
5856                                   &Context->Idents.get("__va_list_tag"));
5857  VaListTagDecl->startDefinition();
5858
5859  const size_t NumFields = 4;
5860  QualType FieldTypes[NumFields];
5861  const char *FieldNames[NumFields];
5862
5863  //   unsigned gp_offset;
5864  FieldTypes[0] = Context->UnsignedIntTy;
5865  FieldNames[0] = "gp_offset";
5866
5867  //   unsigned fp_offset;
5868  FieldTypes[1] = Context->UnsignedIntTy;
5869  FieldNames[1] = "fp_offset";
5870
5871  //   void* overflow_arg_area;
5872  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5873  FieldNames[2] = "overflow_arg_area";
5874
5875  //   void* reg_save_area;
5876  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5877  FieldNames[3] = "reg_save_area";
5878
5879  // Create fields
5880  for (unsigned i = 0; i < NumFields; ++i) {
5881    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5882                                         VaListTagDecl,
5883                                         SourceLocation(),
5884                                         SourceLocation(),
5885                                         &Context->Idents.get(FieldNames[i]),
5886                                         FieldTypes[i], /*TInfo=*/0,
5887                                         /*BitWidth=*/0,
5888                                         /*Mutable=*/false,
5889                                         ICIS_NoInit);
5890    Field->setAccess(AS_public);
5891    VaListTagDecl->addDecl(Field);
5892  }
5893  VaListTagDecl->completeDefinition();
5894  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5895  Context->VaListTagTy = VaListTagType;
5896
5897  // } __va_list_tag;
5898  TypedefDecl *VaListTagTypedefDecl
5899    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5900                          Context->getTranslationUnitDecl(),
5901                          SourceLocation(), SourceLocation(),
5902                          &Context->Idents.get("__va_list_tag"),
5903                          Context->getTrivialTypeSourceInfo(VaListTagType));
5904  QualType VaListTagTypedefType =
5905    Context->getTypedefType(VaListTagTypedefDecl);
5906
5907  // typedef __va_list_tag __builtin_va_list[1];
5908  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5909  QualType VaListTagArrayType
5910    = Context->getConstantArrayType(VaListTagTypedefType,
5911                                      Size, ArrayType::Normal,0);
5912  TypeSourceInfo *TInfo
5913    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5914  TypedefDecl *VaListTypedefDecl
5915    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5916                          Context->getTranslationUnitDecl(),
5917                          SourceLocation(), SourceLocation(),
5918                          &Context->Idents.get("__builtin_va_list"),
5919                          TInfo);
5920
5921  return VaListTypedefDecl;
5922}
5923
5924static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5925  // typedef int __builtin_va_list[4];
5926  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5927  QualType IntArrayType
5928    = Context->getConstantArrayType(Context->IntTy,
5929				    Size, ArrayType::Normal, 0);
5930  TypedefDecl *VaListTypedefDecl
5931    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5932                          Context->getTranslationUnitDecl(),
5933                          SourceLocation(), SourceLocation(),
5934                          &Context->Idents.get("__builtin_va_list"),
5935                          Context->getTrivialTypeSourceInfo(IntArrayType));
5936
5937  return VaListTypedefDecl;
5938}
5939
5940static TypedefDecl *
5941CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5942  RecordDecl *VaListDecl;
5943  if (Context->getLangOpts().CPlusPlus) {
5944    // namespace std { struct __va_list {
5945    NamespaceDecl *NS;
5946    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5947                               Context->getTranslationUnitDecl(),
5948                               /*Inline*/false, SourceLocation(),
5949                               SourceLocation(), &Context->Idents.get("std"),
5950                               /*PrevDecl*/0);
5951
5952    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5953                                       Context->getTranslationUnitDecl(),
5954                                       SourceLocation(), SourceLocation(),
5955                                       &Context->Idents.get("__va_list"));
5956
5957    VaListDecl->setDeclContext(NS);
5958
5959  } else {
5960    // struct __va_list {
5961    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5962                                  Context->getTranslationUnitDecl(),
5963                                  &Context->Idents.get("__va_list"));
5964  }
5965
5966  VaListDecl->startDefinition();
5967
5968  // void * __ap;
5969  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5970                                       VaListDecl,
5971                                       SourceLocation(),
5972                                       SourceLocation(),
5973                                       &Context->Idents.get("__ap"),
5974                                       Context->getPointerType(Context->VoidTy),
5975                                       /*TInfo=*/0,
5976                                       /*BitWidth=*/0,
5977                                       /*Mutable=*/false,
5978                                       ICIS_NoInit);
5979  Field->setAccess(AS_public);
5980  VaListDecl->addDecl(Field);
5981
5982  // };
5983  VaListDecl->completeDefinition();
5984
5985  // typedef struct __va_list __builtin_va_list;
5986  TypeSourceInfo *TInfo
5987    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5988
5989  TypedefDecl *VaListTypeDecl
5990    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5991                          Context->getTranslationUnitDecl(),
5992                          SourceLocation(), SourceLocation(),
5993                          &Context->Idents.get("__builtin_va_list"),
5994                          TInfo);
5995
5996  return VaListTypeDecl;
5997}
5998
5999static TypedefDecl *
6000CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6001  // typedef struct __va_list_tag {
6002  RecordDecl *VaListTagDecl;
6003  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
6004                                   Context->getTranslationUnitDecl(),
6005                                   &Context->Idents.get("__va_list_tag"));
6006  VaListTagDecl->startDefinition();
6007
6008  const size_t NumFields = 4;
6009  QualType FieldTypes[NumFields];
6010  const char *FieldNames[NumFields];
6011
6012  //   long __gpr;
6013  FieldTypes[0] = Context->LongTy;
6014  FieldNames[0] = "__gpr";
6015
6016  //   long __fpr;
6017  FieldTypes[1] = Context->LongTy;
6018  FieldNames[1] = "__fpr";
6019
6020  //   void *__overflow_arg_area;
6021  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6022  FieldNames[2] = "__overflow_arg_area";
6023
6024  //   void *__reg_save_area;
6025  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6026  FieldNames[3] = "__reg_save_area";
6027
6028  // Create fields
6029  for (unsigned i = 0; i < NumFields; ++i) {
6030    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6031                                         VaListTagDecl,
6032                                         SourceLocation(),
6033                                         SourceLocation(),
6034                                         &Context->Idents.get(FieldNames[i]),
6035                                         FieldTypes[i], /*TInfo=*/0,
6036                                         /*BitWidth=*/0,
6037                                         /*Mutable=*/false,
6038                                         ICIS_NoInit);
6039    Field->setAccess(AS_public);
6040    VaListTagDecl->addDecl(Field);
6041  }
6042  VaListTagDecl->completeDefinition();
6043  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6044  Context->VaListTagTy = VaListTagType;
6045
6046  // } __va_list_tag;
6047  TypedefDecl *VaListTagTypedefDecl
6048    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6049                          Context->getTranslationUnitDecl(),
6050                          SourceLocation(), SourceLocation(),
6051                          &Context->Idents.get("__va_list_tag"),
6052                          Context->getTrivialTypeSourceInfo(VaListTagType));
6053  QualType VaListTagTypedefType =
6054    Context->getTypedefType(VaListTagTypedefDecl);
6055
6056  // typedef __va_list_tag __builtin_va_list[1];
6057  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6058  QualType VaListTagArrayType
6059    = Context->getConstantArrayType(VaListTagTypedefType,
6060                                      Size, ArrayType::Normal,0);
6061  TypeSourceInfo *TInfo
6062    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6063  TypedefDecl *VaListTypedefDecl
6064    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6065                          Context->getTranslationUnitDecl(),
6066                          SourceLocation(), SourceLocation(),
6067                          &Context->Idents.get("__builtin_va_list"),
6068                          TInfo);
6069
6070  return VaListTypedefDecl;
6071}
6072
6073static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6074                                     TargetInfo::BuiltinVaListKind Kind) {
6075  switch (Kind) {
6076  case TargetInfo::CharPtrBuiltinVaList:
6077    return CreateCharPtrBuiltinVaListDecl(Context);
6078  case TargetInfo::VoidPtrBuiltinVaList:
6079    return CreateVoidPtrBuiltinVaListDecl(Context);
6080  case TargetInfo::AArch64ABIBuiltinVaList:
6081    return CreateAArch64ABIBuiltinVaListDecl(Context);
6082  case TargetInfo::PowerABIBuiltinVaList:
6083    return CreatePowerABIBuiltinVaListDecl(Context);
6084  case TargetInfo::X86_64ABIBuiltinVaList:
6085    return CreateX86_64ABIBuiltinVaListDecl(Context);
6086  case TargetInfo::PNaClABIBuiltinVaList:
6087    return CreatePNaClABIBuiltinVaListDecl(Context);
6088  case TargetInfo::AAPCSABIBuiltinVaList:
6089    return CreateAAPCSABIBuiltinVaListDecl(Context);
6090  case TargetInfo::SystemZBuiltinVaList:
6091    return CreateSystemZBuiltinVaListDecl(Context);
6092  }
6093
6094  llvm_unreachable("Unhandled __builtin_va_list type kind");
6095}
6096
6097TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6098  if (!BuiltinVaListDecl)
6099    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6100
6101  return BuiltinVaListDecl;
6102}
6103
6104QualType ASTContext::getVaListTagType() const {
6105  // Force the creation of VaListTagTy by building the __builtin_va_list
6106  // declaration.
6107  if (VaListTagTy.isNull())
6108    (void) getBuiltinVaListDecl();
6109
6110  return VaListTagTy;
6111}
6112
6113void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6114  assert(ObjCConstantStringType.isNull() &&
6115         "'NSConstantString' type already set!");
6116
6117  ObjCConstantStringType = getObjCInterfaceType(Decl);
6118}
6119
6120/// \brief Retrieve the template name that corresponds to a non-empty
6121/// lookup.
6122TemplateName
6123ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6124                                      UnresolvedSetIterator End) const {
6125  unsigned size = End - Begin;
6126  assert(size > 1 && "set is not overloaded!");
6127
6128  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6129                          size * sizeof(FunctionTemplateDecl*));
6130  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6131
6132  NamedDecl **Storage = OT->getStorage();
6133  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6134    NamedDecl *D = *I;
6135    assert(isa<FunctionTemplateDecl>(D) ||
6136           (isa<UsingShadowDecl>(D) &&
6137            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6138    *Storage++ = D;
6139  }
6140
6141  return TemplateName(OT);
6142}
6143
6144/// \brief Retrieve the template name that represents a qualified
6145/// template name such as \c std::vector.
6146TemplateName
6147ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6148                                     bool TemplateKeyword,
6149                                     TemplateDecl *Template) const {
6150  assert(NNS && "Missing nested-name-specifier in qualified template name");
6151
6152  // FIXME: Canonicalization?
6153  llvm::FoldingSetNodeID ID;
6154  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6155
6156  void *InsertPos = 0;
6157  QualifiedTemplateName *QTN =
6158    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6159  if (!QTN) {
6160    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6161        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6162    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6163  }
6164
6165  return TemplateName(QTN);
6166}
6167
6168/// \brief Retrieve the template name that represents a dependent
6169/// template name such as \c MetaFun::template apply.
6170TemplateName
6171ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6172                                     const IdentifierInfo *Name) const {
6173  assert((!NNS || NNS->isDependent()) &&
6174         "Nested name specifier must be dependent");
6175
6176  llvm::FoldingSetNodeID ID;
6177  DependentTemplateName::Profile(ID, NNS, Name);
6178
6179  void *InsertPos = 0;
6180  DependentTemplateName *QTN =
6181    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6182
6183  if (QTN)
6184    return TemplateName(QTN);
6185
6186  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6187  if (CanonNNS == NNS) {
6188    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6189        DependentTemplateName(NNS, Name);
6190  } else {
6191    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6192    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6193        DependentTemplateName(NNS, Name, Canon);
6194    DependentTemplateName *CheckQTN =
6195      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6196    assert(!CheckQTN && "Dependent type name canonicalization broken");
6197    (void)CheckQTN;
6198  }
6199
6200  DependentTemplateNames.InsertNode(QTN, InsertPos);
6201  return TemplateName(QTN);
6202}
6203
6204/// \brief Retrieve the template name that represents a dependent
6205/// template name such as \c MetaFun::template operator+.
6206TemplateName
6207ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6208                                     OverloadedOperatorKind Operator) const {
6209  assert((!NNS || NNS->isDependent()) &&
6210         "Nested name specifier must be dependent");
6211
6212  llvm::FoldingSetNodeID ID;
6213  DependentTemplateName::Profile(ID, NNS, Operator);
6214
6215  void *InsertPos = 0;
6216  DependentTemplateName *QTN
6217    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6218
6219  if (QTN)
6220    return TemplateName(QTN);
6221
6222  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6223  if (CanonNNS == NNS) {
6224    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6225        DependentTemplateName(NNS, Operator);
6226  } else {
6227    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6228    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6229        DependentTemplateName(NNS, Operator, Canon);
6230
6231    DependentTemplateName *CheckQTN
6232      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6233    assert(!CheckQTN && "Dependent template name canonicalization broken");
6234    (void)CheckQTN;
6235  }
6236
6237  DependentTemplateNames.InsertNode(QTN, InsertPos);
6238  return TemplateName(QTN);
6239}
6240
6241TemplateName
6242ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6243                                         TemplateName replacement) const {
6244  llvm::FoldingSetNodeID ID;
6245  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6246
6247  void *insertPos = 0;
6248  SubstTemplateTemplateParmStorage *subst
6249    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6250
6251  if (!subst) {
6252    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6253    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6254  }
6255
6256  return TemplateName(subst);
6257}
6258
6259TemplateName
6260ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6261                                       const TemplateArgument &ArgPack) const {
6262  ASTContext &Self = const_cast<ASTContext &>(*this);
6263  llvm::FoldingSetNodeID ID;
6264  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6265
6266  void *InsertPos = 0;
6267  SubstTemplateTemplateParmPackStorage *Subst
6268    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6269
6270  if (!Subst) {
6271    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6272                                                           ArgPack.pack_size(),
6273                                                         ArgPack.pack_begin());
6274    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6275  }
6276
6277  return TemplateName(Subst);
6278}
6279
6280/// getFromTargetType - Given one of the integer types provided by
6281/// TargetInfo, produce the corresponding type. The unsigned @p Type
6282/// is actually a value of type @c TargetInfo::IntType.
6283CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6284  switch (Type) {
6285  case TargetInfo::NoInt: return CanQualType();
6286  case TargetInfo::SignedShort: return ShortTy;
6287  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6288  case TargetInfo::SignedInt: return IntTy;
6289  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6290  case TargetInfo::SignedLong: return LongTy;
6291  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6292  case TargetInfo::SignedLongLong: return LongLongTy;
6293  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6294  }
6295
6296  llvm_unreachable("Unhandled TargetInfo::IntType value");
6297}
6298
6299//===----------------------------------------------------------------------===//
6300//                        Type Predicates.
6301//===----------------------------------------------------------------------===//
6302
6303/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6304/// garbage collection attribute.
6305///
6306Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6307  if (getLangOpts().getGC() == LangOptions::NonGC)
6308    return Qualifiers::GCNone;
6309
6310  assert(getLangOpts().ObjC1);
6311  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6312
6313  // Default behaviour under objective-C's gc is for ObjC pointers
6314  // (or pointers to them) be treated as though they were declared
6315  // as __strong.
6316  if (GCAttrs == Qualifiers::GCNone) {
6317    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6318      return Qualifiers::Strong;
6319    else if (Ty->isPointerType())
6320      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6321  } else {
6322    // It's not valid to set GC attributes on anything that isn't a
6323    // pointer.
6324#ifndef NDEBUG
6325    QualType CT = Ty->getCanonicalTypeInternal();
6326    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6327      CT = AT->getElementType();
6328    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6329#endif
6330  }
6331  return GCAttrs;
6332}
6333
6334//===----------------------------------------------------------------------===//
6335//                        Type Compatibility Testing
6336//===----------------------------------------------------------------------===//
6337
6338/// areCompatVectorTypes - Return true if the two specified vector types are
6339/// compatible.
6340static bool areCompatVectorTypes(const VectorType *LHS,
6341                                 const VectorType *RHS) {
6342  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6343  return LHS->getElementType() == RHS->getElementType() &&
6344         LHS->getNumElements() == RHS->getNumElements();
6345}
6346
6347bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6348                                          QualType SecondVec) {
6349  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6350  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6351
6352  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6353    return true;
6354
6355  // Treat Neon vector types and most AltiVec vector types as if they are the
6356  // equivalent GCC vector types.
6357  const VectorType *First = FirstVec->getAs<VectorType>();
6358  const VectorType *Second = SecondVec->getAs<VectorType>();
6359  if (First->getNumElements() == Second->getNumElements() &&
6360      hasSameType(First->getElementType(), Second->getElementType()) &&
6361      First->getVectorKind() != VectorType::AltiVecPixel &&
6362      First->getVectorKind() != VectorType::AltiVecBool &&
6363      Second->getVectorKind() != VectorType::AltiVecPixel &&
6364      Second->getVectorKind() != VectorType::AltiVecBool)
6365    return true;
6366
6367  return false;
6368}
6369
6370//===----------------------------------------------------------------------===//
6371// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6372//===----------------------------------------------------------------------===//
6373
6374/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6375/// inheritance hierarchy of 'rProto'.
6376bool
6377ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6378                                           ObjCProtocolDecl *rProto) const {
6379  if (declaresSameEntity(lProto, rProto))
6380    return true;
6381  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6382       E = rProto->protocol_end(); PI != E; ++PI)
6383    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6384      return true;
6385  return false;
6386}
6387
6388/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6389/// return true if lhs's protocols conform to rhs's protocol; false
6390/// otherwise.
6391bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6392  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6393    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6394  return false;
6395}
6396
6397/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6398/// Class<pr1, ...>.
6399bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6400                                                      QualType rhs) {
6401  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6402  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6403  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6404
6405  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6406       E = lhsQID->qual_end(); I != E; ++I) {
6407    bool match = false;
6408    ObjCProtocolDecl *lhsProto = *I;
6409    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6410         E = rhsOPT->qual_end(); J != E; ++J) {
6411      ObjCProtocolDecl *rhsProto = *J;
6412      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6413        match = true;
6414        break;
6415      }
6416    }
6417    if (!match)
6418      return false;
6419  }
6420  return true;
6421}
6422
6423/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6424/// ObjCQualifiedIDType.
6425bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6426                                                   bool compare) {
6427  // Allow id<P..> and an 'id' or void* type in all cases.
6428  if (lhs->isVoidPointerType() ||
6429      lhs->isObjCIdType() || lhs->isObjCClassType())
6430    return true;
6431  else if (rhs->isVoidPointerType() ||
6432           rhs->isObjCIdType() || rhs->isObjCClassType())
6433    return true;
6434
6435  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6436    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6437
6438    if (!rhsOPT) return false;
6439
6440    if (rhsOPT->qual_empty()) {
6441      // If the RHS is a unqualified interface pointer "NSString*",
6442      // make sure we check the class hierarchy.
6443      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6444        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6445             E = lhsQID->qual_end(); I != E; ++I) {
6446          // when comparing an id<P> on lhs with a static type on rhs,
6447          // see if static class implements all of id's protocols, directly or
6448          // through its super class and categories.
6449          if (!rhsID->ClassImplementsProtocol(*I, true))
6450            return false;
6451        }
6452      }
6453      // If there are no qualifiers and no interface, we have an 'id'.
6454      return true;
6455    }
6456    // Both the right and left sides have qualifiers.
6457    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6458         E = lhsQID->qual_end(); I != E; ++I) {
6459      ObjCProtocolDecl *lhsProto = *I;
6460      bool match = false;
6461
6462      // when comparing an id<P> on lhs with a static type on rhs,
6463      // see if static class implements all of id's protocols, directly or
6464      // through its super class and categories.
6465      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6466           E = rhsOPT->qual_end(); J != E; ++J) {
6467        ObjCProtocolDecl *rhsProto = *J;
6468        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6469            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6470          match = true;
6471          break;
6472        }
6473      }
6474      // If the RHS is a qualified interface pointer "NSString<P>*",
6475      // make sure we check the class hierarchy.
6476      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6477        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6478             E = lhsQID->qual_end(); I != E; ++I) {
6479          // when comparing an id<P> on lhs with a static type on rhs,
6480          // see if static class implements all of id's protocols, directly or
6481          // through its super class and categories.
6482          if (rhsID->ClassImplementsProtocol(*I, true)) {
6483            match = true;
6484            break;
6485          }
6486        }
6487      }
6488      if (!match)
6489        return false;
6490    }
6491
6492    return true;
6493  }
6494
6495  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6496  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6497
6498  if (const ObjCObjectPointerType *lhsOPT =
6499        lhs->getAsObjCInterfacePointerType()) {
6500    // If both the right and left sides have qualifiers.
6501    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6502         E = lhsOPT->qual_end(); I != E; ++I) {
6503      ObjCProtocolDecl *lhsProto = *I;
6504      bool match = false;
6505
6506      // when comparing an id<P> on rhs with a static type on lhs,
6507      // see if static class implements all of id's protocols, directly or
6508      // through its super class and categories.
6509      // First, lhs protocols in the qualifier list must be found, direct
6510      // or indirect in rhs's qualifier list or it is a mismatch.
6511      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6512           E = rhsQID->qual_end(); J != E; ++J) {
6513        ObjCProtocolDecl *rhsProto = *J;
6514        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6515            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6516          match = true;
6517          break;
6518        }
6519      }
6520      if (!match)
6521        return false;
6522    }
6523
6524    // Static class's protocols, or its super class or category protocols
6525    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6526    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6527      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6528      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6529      // This is rather dubious but matches gcc's behavior. If lhs has
6530      // no type qualifier and its class has no static protocol(s)
6531      // assume that it is mismatch.
6532      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6533        return false;
6534      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6535           LHSInheritedProtocols.begin(),
6536           E = LHSInheritedProtocols.end(); I != E; ++I) {
6537        bool match = false;
6538        ObjCProtocolDecl *lhsProto = (*I);
6539        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6540             E = rhsQID->qual_end(); J != E; ++J) {
6541          ObjCProtocolDecl *rhsProto = *J;
6542          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6543              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6544            match = true;
6545            break;
6546          }
6547        }
6548        if (!match)
6549          return false;
6550      }
6551    }
6552    return true;
6553  }
6554  return false;
6555}
6556
6557/// canAssignObjCInterfaces - Return true if the two interface types are
6558/// compatible for assignment from RHS to LHS.  This handles validation of any
6559/// protocol qualifiers on the LHS or RHS.
6560///
6561bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6562                                         const ObjCObjectPointerType *RHSOPT) {
6563  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6564  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6565
6566  // If either type represents the built-in 'id' or 'Class' types, return true.
6567  if (LHS->isObjCUnqualifiedIdOrClass() ||
6568      RHS->isObjCUnqualifiedIdOrClass())
6569    return true;
6570
6571  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6572    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6573                                             QualType(RHSOPT,0),
6574                                             false);
6575
6576  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6577    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6578                                                QualType(RHSOPT,0));
6579
6580  // If we have 2 user-defined types, fall into that path.
6581  if (LHS->getInterface() && RHS->getInterface())
6582    return canAssignObjCInterfaces(LHS, RHS);
6583
6584  return false;
6585}
6586
6587/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6588/// for providing type-safety for objective-c pointers used to pass/return
6589/// arguments in block literals. When passed as arguments, passing 'A*' where
6590/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6591/// not OK. For the return type, the opposite is not OK.
6592bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6593                                         const ObjCObjectPointerType *LHSOPT,
6594                                         const ObjCObjectPointerType *RHSOPT,
6595                                         bool BlockReturnType) {
6596  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6597    return true;
6598
6599  if (LHSOPT->isObjCBuiltinType()) {
6600    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6601  }
6602
6603  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6604    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6605                                             QualType(RHSOPT,0),
6606                                             false);
6607
6608  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6609  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6610  if (LHS && RHS)  { // We have 2 user-defined types.
6611    if (LHS != RHS) {
6612      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6613        return BlockReturnType;
6614      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6615        return !BlockReturnType;
6616    }
6617    else
6618      return true;
6619  }
6620  return false;
6621}
6622
6623/// getIntersectionOfProtocols - This routine finds the intersection of set
6624/// of protocols inherited from two distinct objective-c pointer objects.
6625/// It is used to build composite qualifier list of the composite type of
6626/// the conditional expression involving two objective-c pointer objects.
6627static
6628void getIntersectionOfProtocols(ASTContext &Context,
6629                                const ObjCObjectPointerType *LHSOPT,
6630                                const ObjCObjectPointerType *RHSOPT,
6631      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6632
6633  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6634  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6635  assert(LHS->getInterface() && "LHS must have an interface base");
6636  assert(RHS->getInterface() && "RHS must have an interface base");
6637
6638  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6639  unsigned LHSNumProtocols = LHS->getNumProtocols();
6640  if (LHSNumProtocols > 0)
6641    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6642  else {
6643    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6644    Context.CollectInheritedProtocols(LHS->getInterface(),
6645                                      LHSInheritedProtocols);
6646    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6647                                LHSInheritedProtocols.end());
6648  }
6649
6650  unsigned RHSNumProtocols = RHS->getNumProtocols();
6651  if (RHSNumProtocols > 0) {
6652    ObjCProtocolDecl **RHSProtocols =
6653      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6654    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6655      if (InheritedProtocolSet.count(RHSProtocols[i]))
6656        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6657  } else {
6658    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6659    Context.CollectInheritedProtocols(RHS->getInterface(),
6660                                      RHSInheritedProtocols);
6661    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6662         RHSInheritedProtocols.begin(),
6663         E = RHSInheritedProtocols.end(); I != E; ++I)
6664      if (InheritedProtocolSet.count((*I)))
6665        IntersectionOfProtocols.push_back((*I));
6666  }
6667}
6668
6669/// areCommonBaseCompatible - Returns common base class of the two classes if
6670/// one found. Note that this is O'2 algorithm. But it will be called as the
6671/// last type comparison in a ?-exp of ObjC pointer types before a
6672/// warning is issued. So, its invokation is extremely rare.
6673QualType ASTContext::areCommonBaseCompatible(
6674                                          const ObjCObjectPointerType *Lptr,
6675                                          const ObjCObjectPointerType *Rptr) {
6676  const ObjCObjectType *LHS = Lptr->getObjectType();
6677  const ObjCObjectType *RHS = Rptr->getObjectType();
6678  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6679  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6680  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6681    return QualType();
6682
6683  do {
6684    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6685    if (canAssignObjCInterfaces(LHS, RHS)) {
6686      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6687      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6688
6689      QualType Result = QualType(LHS, 0);
6690      if (!Protocols.empty())
6691        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6692      Result = getObjCObjectPointerType(Result);
6693      return Result;
6694    }
6695  } while ((LDecl = LDecl->getSuperClass()));
6696
6697  return QualType();
6698}
6699
6700bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6701                                         const ObjCObjectType *RHS) {
6702  assert(LHS->getInterface() && "LHS is not an interface type");
6703  assert(RHS->getInterface() && "RHS is not an interface type");
6704
6705  // Verify that the base decls are compatible: the RHS must be a subclass of
6706  // the LHS.
6707  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6708    return false;
6709
6710  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6711  // protocol qualified at all, then we are good.
6712  if (LHS->getNumProtocols() == 0)
6713    return true;
6714
6715  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6716  // more detailed analysis is required.
6717  if (RHS->getNumProtocols() == 0) {
6718    // OK, if LHS is a superclass of RHS *and*
6719    // this superclass is assignment compatible with LHS.
6720    // false otherwise.
6721    bool IsSuperClass =
6722      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6723    if (IsSuperClass) {
6724      // OK if conversion of LHS to SuperClass results in narrowing of types
6725      // ; i.e., SuperClass may implement at least one of the protocols
6726      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6727      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6728      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6729      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6730      // If super class has no protocols, it is not a match.
6731      if (SuperClassInheritedProtocols.empty())
6732        return false;
6733
6734      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6735           LHSPE = LHS->qual_end();
6736           LHSPI != LHSPE; LHSPI++) {
6737        bool SuperImplementsProtocol = false;
6738        ObjCProtocolDecl *LHSProto = (*LHSPI);
6739
6740        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6741             SuperClassInheritedProtocols.begin(),
6742             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6743          ObjCProtocolDecl *SuperClassProto = (*I);
6744          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6745            SuperImplementsProtocol = true;
6746            break;
6747          }
6748        }
6749        if (!SuperImplementsProtocol)
6750          return false;
6751      }
6752      return true;
6753    }
6754    return false;
6755  }
6756
6757  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6758                                     LHSPE = LHS->qual_end();
6759       LHSPI != LHSPE; LHSPI++) {
6760    bool RHSImplementsProtocol = false;
6761
6762    // If the RHS doesn't implement the protocol on the left, the types
6763    // are incompatible.
6764    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6765                                       RHSPE = RHS->qual_end();
6766         RHSPI != RHSPE; RHSPI++) {
6767      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6768        RHSImplementsProtocol = true;
6769        break;
6770      }
6771    }
6772    // FIXME: For better diagnostics, consider passing back the protocol name.
6773    if (!RHSImplementsProtocol)
6774      return false;
6775  }
6776  // The RHS implements all protocols listed on the LHS.
6777  return true;
6778}
6779
6780bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6781  // get the "pointed to" types
6782  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6783  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6784
6785  if (!LHSOPT || !RHSOPT)
6786    return false;
6787
6788  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6789         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6790}
6791
6792bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6793  return canAssignObjCInterfaces(
6794                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6795                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6796}
6797
6798/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6799/// both shall have the identically qualified version of a compatible type.
6800/// C99 6.2.7p1: Two types have compatible types if their types are the
6801/// same. See 6.7.[2,3,5] for additional rules.
6802bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6803                                    bool CompareUnqualified) {
6804  if (getLangOpts().CPlusPlus)
6805    return hasSameType(LHS, RHS);
6806
6807  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6808}
6809
6810bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6811  return typesAreCompatible(LHS, RHS);
6812}
6813
6814bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6815  return !mergeTypes(LHS, RHS, true).isNull();
6816}
6817
6818/// mergeTransparentUnionType - if T is a transparent union type and a member
6819/// of T is compatible with SubType, return the merged type, else return
6820/// QualType()
6821QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6822                                               bool OfBlockPointer,
6823                                               bool Unqualified) {
6824  if (const RecordType *UT = T->getAsUnionType()) {
6825    RecordDecl *UD = UT->getDecl();
6826    if (UD->hasAttr<TransparentUnionAttr>()) {
6827      for (RecordDecl::field_iterator it = UD->field_begin(),
6828           itend = UD->field_end(); it != itend; ++it) {
6829        QualType ET = it->getType().getUnqualifiedType();
6830        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6831        if (!MT.isNull())
6832          return MT;
6833      }
6834    }
6835  }
6836
6837  return QualType();
6838}
6839
6840/// mergeFunctionArgumentTypes - merge two types which appear as function
6841/// argument types
6842QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6843                                                bool OfBlockPointer,
6844                                                bool Unqualified) {
6845  // GNU extension: two types are compatible if they appear as a function
6846  // argument, one of the types is a transparent union type and the other
6847  // type is compatible with a union member
6848  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6849                                              Unqualified);
6850  if (!lmerge.isNull())
6851    return lmerge;
6852
6853  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6854                                              Unqualified);
6855  if (!rmerge.isNull())
6856    return rmerge;
6857
6858  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6859}
6860
6861QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6862                                        bool OfBlockPointer,
6863                                        bool Unqualified) {
6864  const FunctionType *lbase = lhs->getAs<FunctionType>();
6865  const FunctionType *rbase = rhs->getAs<FunctionType>();
6866  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6867  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6868  bool allLTypes = true;
6869  bool allRTypes = true;
6870
6871  // Check return type
6872  QualType retType;
6873  if (OfBlockPointer) {
6874    QualType RHS = rbase->getResultType();
6875    QualType LHS = lbase->getResultType();
6876    bool UnqualifiedResult = Unqualified;
6877    if (!UnqualifiedResult)
6878      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6879    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6880  }
6881  else
6882    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6883                         Unqualified);
6884  if (retType.isNull()) return QualType();
6885
6886  if (Unqualified)
6887    retType = retType.getUnqualifiedType();
6888
6889  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6890  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6891  if (Unqualified) {
6892    LRetType = LRetType.getUnqualifiedType();
6893    RRetType = RRetType.getUnqualifiedType();
6894  }
6895
6896  if (getCanonicalType(retType) != LRetType)
6897    allLTypes = false;
6898  if (getCanonicalType(retType) != RRetType)
6899    allRTypes = false;
6900
6901  // FIXME: double check this
6902  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6903  //                           rbase->getRegParmAttr() != 0 &&
6904  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6905  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6906  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6907
6908  // Compatible functions must have compatible calling conventions
6909  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6910    return QualType();
6911
6912  // Regparm is part of the calling convention.
6913  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6914    return QualType();
6915  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6916    return QualType();
6917
6918  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6919    return QualType();
6920
6921  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6922  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6923
6924  if (lbaseInfo.getNoReturn() != NoReturn)
6925    allLTypes = false;
6926  if (rbaseInfo.getNoReturn() != NoReturn)
6927    allRTypes = false;
6928
6929  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6930
6931  if (lproto && rproto) { // two C99 style function prototypes
6932    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6933           "C++ shouldn't be here");
6934    unsigned lproto_nargs = lproto->getNumArgs();
6935    unsigned rproto_nargs = rproto->getNumArgs();
6936
6937    // Compatible functions must have the same number of arguments
6938    if (lproto_nargs != rproto_nargs)
6939      return QualType();
6940
6941    // Variadic and non-variadic functions aren't compatible
6942    if (lproto->isVariadic() != rproto->isVariadic())
6943      return QualType();
6944
6945    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6946      return QualType();
6947
6948    if (LangOpts.ObjCAutoRefCount &&
6949        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6950      return QualType();
6951
6952    // Check argument compatibility
6953    SmallVector<QualType, 10> types;
6954    for (unsigned i = 0; i < lproto_nargs; i++) {
6955      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6956      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6957      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6958                                                    OfBlockPointer,
6959                                                    Unqualified);
6960      if (argtype.isNull()) return QualType();
6961
6962      if (Unqualified)
6963        argtype = argtype.getUnqualifiedType();
6964
6965      types.push_back(argtype);
6966      if (Unqualified) {
6967        largtype = largtype.getUnqualifiedType();
6968        rargtype = rargtype.getUnqualifiedType();
6969      }
6970
6971      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6972        allLTypes = false;
6973      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6974        allRTypes = false;
6975    }
6976
6977    if (allLTypes) return lhs;
6978    if (allRTypes) return rhs;
6979
6980    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6981    EPI.ExtInfo = einfo;
6982    return getFunctionType(retType, types, EPI);
6983  }
6984
6985  if (lproto) allRTypes = false;
6986  if (rproto) allLTypes = false;
6987
6988  const FunctionProtoType *proto = lproto ? lproto : rproto;
6989  if (proto) {
6990    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6991    if (proto->isVariadic()) return QualType();
6992    // Check that the types are compatible with the types that
6993    // would result from default argument promotions (C99 6.7.5.3p15).
6994    // The only types actually affected are promotable integer
6995    // types and floats, which would be passed as a different
6996    // type depending on whether the prototype is visible.
6997    unsigned proto_nargs = proto->getNumArgs();
6998    for (unsigned i = 0; i < proto_nargs; ++i) {
6999      QualType argTy = proto->getArgType(i);
7000
7001      // Look at the converted type of enum types, since that is the type used
7002      // to pass enum values.
7003      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
7004        argTy = Enum->getDecl()->getIntegerType();
7005        if (argTy.isNull())
7006          return QualType();
7007      }
7008
7009      if (argTy->isPromotableIntegerType() ||
7010          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
7011        return QualType();
7012    }
7013
7014    if (allLTypes) return lhs;
7015    if (allRTypes) return rhs;
7016
7017    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7018    EPI.ExtInfo = einfo;
7019    return getFunctionType(retType,
7020                           ArrayRef<QualType>(proto->arg_type_begin(),
7021                                              proto->getNumArgs()),
7022                           EPI);
7023  }
7024
7025  if (allLTypes) return lhs;
7026  if (allRTypes) return rhs;
7027  return getFunctionNoProtoType(retType, einfo);
7028}
7029
7030/// Given that we have an enum type and a non-enum type, try to merge them.
7031static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7032                                     QualType other, bool isBlockReturnType) {
7033  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7034  // a signed integer type, or an unsigned integer type.
7035  // Compatibility is based on the underlying type, not the promotion
7036  // type.
7037  QualType underlyingType = ET->getDecl()->getIntegerType();
7038  if (underlyingType.isNull()) return QualType();
7039  if (Context.hasSameType(underlyingType, other))
7040    return other;
7041
7042  // In block return types, we're more permissive and accept any
7043  // integral type of the same size.
7044  if (isBlockReturnType && other->isIntegerType() &&
7045      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7046    return other;
7047
7048  return QualType();
7049}
7050
7051QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7052                                bool OfBlockPointer,
7053                                bool Unqualified, bool BlockReturnType) {
7054  // C++ [expr]: If an expression initially has the type "reference to T", the
7055  // type is adjusted to "T" prior to any further analysis, the expression
7056  // designates the object or function denoted by the reference, and the
7057  // expression is an lvalue unless the reference is an rvalue reference and
7058  // the expression is a function call (possibly inside parentheses).
7059  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7060  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7061
7062  if (Unqualified) {
7063    LHS = LHS.getUnqualifiedType();
7064    RHS = RHS.getUnqualifiedType();
7065  }
7066
7067  QualType LHSCan = getCanonicalType(LHS),
7068           RHSCan = getCanonicalType(RHS);
7069
7070  // If two types are identical, they are compatible.
7071  if (LHSCan == RHSCan)
7072    return LHS;
7073
7074  // If the qualifiers are different, the types aren't compatible... mostly.
7075  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7076  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7077  if (LQuals != RQuals) {
7078    // If any of these qualifiers are different, we have a type
7079    // mismatch.
7080    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7081        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7082        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7083      return QualType();
7084
7085    // Exactly one GC qualifier difference is allowed: __strong is
7086    // okay if the other type has no GC qualifier but is an Objective
7087    // C object pointer (i.e. implicitly strong by default).  We fix
7088    // this by pretending that the unqualified type was actually
7089    // qualified __strong.
7090    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7091    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7092    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7093
7094    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7095      return QualType();
7096
7097    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7098      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7099    }
7100    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7101      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7102    }
7103    return QualType();
7104  }
7105
7106  // Okay, qualifiers are equal.
7107
7108  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7109  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7110
7111  // We want to consider the two function types to be the same for these
7112  // comparisons, just force one to the other.
7113  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7114  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7115
7116  // Same as above for arrays
7117  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7118    LHSClass = Type::ConstantArray;
7119  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7120    RHSClass = Type::ConstantArray;
7121
7122  // ObjCInterfaces are just specialized ObjCObjects.
7123  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7124  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7125
7126  // Canonicalize ExtVector -> Vector.
7127  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7128  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7129
7130  // If the canonical type classes don't match.
7131  if (LHSClass != RHSClass) {
7132    // Note that we only have special rules for turning block enum
7133    // returns into block int returns, not vice-versa.
7134    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7135      return mergeEnumWithInteger(*this, ETy, RHS, false);
7136    }
7137    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7138      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7139    }
7140    // allow block pointer type to match an 'id' type.
7141    if (OfBlockPointer && !BlockReturnType) {
7142       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7143         return LHS;
7144      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7145        return RHS;
7146    }
7147
7148    return QualType();
7149  }
7150
7151  // The canonical type classes match.
7152  switch (LHSClass) {
7153#define TYPE(Class, Base)
7154#define ABSTRACT_TYPE(Class, Base)
7155#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7156#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7157#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7158#include "clang/AST/TypeNodes.def"
7159    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7160
7161  case Type::Auto:
7162  case Type::LValueReference:
7163  case Type::RValueReference:
7164  case Type::MemberPointer:
7165    llvm_unreachable("C++ should never be in mergeTypes");
7166
7167  case Type::ObjCInterface:
7168  case Type::IncompleteArray:
7169  case Type::VariableArray:
7170  case Type::FunctionProto:
7171  case Type::ExtVector:
7172    llvm_unreachable("Types are eliminated above");
7173
7174  case Type::Pointer:
7175  {
7176    // Merge two pointer types, while trying to preserve typedef info
7177    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7178    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7179    if (Unqualified) {
7180      LHSPointee = LHSPointee.getUnqualifiedType();
7181      RHSPointee = RHSPointee.getUnqualifiedType();
7182    }
7183    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7184                                     Unqualified);
7185    if (ResultType.isNull()) return QualType();
7186    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7187      return LHS;
7188    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7189      return RHS;
7190    return getPointerType(ResultType);
7191  }
7192  case Type::BlockPointer:
7193  {
7194    // Merge two block pointer types, while trying to preserve typedef info
7195    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7196    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7197    if (Unqualified) {
7198      LHSPointee = LHSPointee.getUnqualifiedType();
7199      RHSPointee = RHSPointee.getUnqualifiedType();
7200    }
7201    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7202                                     Unqualified);
7203    if (ResultType.isNull()) return QualType();
7204    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7205      return LHS;
7206    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7207      return RHS;
7208    return getBlockPointerType(ResultType);
7209  }
7210  case Type::Atomic:
7211  {
7212    // Merge two pointer types, while trying to preserve typedef info
7213    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7214    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7215    if (Unqualified) {
7216      LHSValue = LHSValue.getUnqualifiedType();
7217      RHSValue = RHSValue.getUnqualifiedType();
7218    }
7219    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7220                                     Unqualified);
7221    if (ResultType.isNull()) return QualType();
7222    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7223      return LHS;
7224    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7225      return RHS;
7226    return getAtomicType(ResultType);
7227  }
7228  case Type::ConstantArray:
7229  {
7230    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7231    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7232    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7233      return QualType();
7234
7235    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7236    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7237    if (Unqualified) {
7238      LHSElem = LHSElem.getUnqualifiedType();
7239      RHSElem = RHSElem.getUnqualifiedType();
7240    }
7241
7242    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7243    if (ResultType.isNull()) return QualType();
7244    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7245      return LHS;
7246    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7247      return RHS;
7248    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7249                                          ArrayType::ArraySizeModifier(), 0);
7250    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7251                                          ArrayType::ArraySizeModifier(), 0);
7252    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7253    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7254    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7255      return LHS;
7256    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7257      return RHS;
7258    if (LVAT) {
7259      // FIXME: This isn't correct! But tricky to implement because
7260      // the array's size has to be the size of LHS, but the type
7261      // has to be different.
7262      return LHS;
7263    }
7264    if (RVAT) {
7265      // FIXME: This isn't correct! But tricky to implement because
7266      // the array's size has to be the size of RHS, but the type
7267      // has to be different.
7268      return RHS;
7269    }
7270    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7271    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7272    return getIncompleteArrayType(ResultType,
7273                                  ArrayType::ArraySizeModifier(), 0);
7274  }
7275  case Type::FunctionNoProto:
7276    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7277  case Type::Record:
7278  case Type::Enum:
7279    return QualType();
7280  case Type::Builtin:
7281    // Only exactly equal builtin types are compatible, which is tested above.
7282    return QualType();
7283  case Type::Complex:
7284    // Distinct complex types are incompatible.
7285    return QualType();
7286  case Type::Vector:
7287    // FIXME: The merged type should be an ExtVector!
7288    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7289                             RHSCan->getAs<VectorType>()))
7290      return LHS;
7291    return QualType();
7292  case Type::ObjCObject: {
7293    // Check if the types are assignment compatible.
7294    // FIXME: This should be type compatibility, e.g. whether
7295    // "LHS x; RHS x;" at global scope is legal.
7296    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7297    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7298    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7299      return LHS;
7300
7301    return QualType();
7302  }
7303  case Type::ObjCObjectPointer: {
7304    if (OfBlockPointer) {
7305      if (canAssignObjCInterfacesInBlockPointer(
7306                                          LHS->getAs<ObjCObjectPointerType>(),
7307                                          RHS->getAs<ObjCObjectPointerType>(),
7308                                          BlockReturnType))
7309        return LHS;
7310      return QualType();
7311    }
7312    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7313                                RHS->getAs<ObjCObjectPointerType>()))
7314      return LHS;
7315
7316    return QualType();
7317  }
7318  }
7319
7320  llvm_unreachable("Invalid Type::Class!");
7321}
7322
7323bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7324                   const FunctionProtoType *FromFunctionType,
7325                   const FunctionProtoType *ToFunctionType) {
7326  if (FromFunctionType->hasAnyConsumedArgs() !=
7327      ToFunctionType->hasAnyConsumedArgs())
7328    return false;
7329  FunctionProtoType::ExtProtoInfo FromEPI =
7330    FromFunctionType->getExtProtoInfo();
7331  FunctionProtoType::ExtProtoInfo ToEPI =
7332    ToFunctionType->getExtProtoInfo();
7333  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7334    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7335         ArgIdx != NumArgs; ++ArgIdx)  {
7336      if (FromEPI.ConsumedArguments[ArgIdx] !=
7337          ToEPI.ConsumedArguments[ArgIdx])
7338        return false;
7339    }
7340  return true;
7341}
7342
7343/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7344/// 'RHS' attributes and returns the merged version; including for function
7345/// return types.
7346QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7347  QualType LHSCan = getCanonicalType(LHS),
7348  RHSCan = getCanonicalType(RHS);
7349  // If two types are identical, they are compatible.
7350  if (LHSCan == RHSCan)
7351    return LHS;
7352  if (RHSCan->isFunctionType()) {
7353    if (!LHSCan->isFunctionType())
7354      return QualType();
7355    QualType OldReturnType =
7356      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7357    QualType NewReturnType =
7358      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7359    QualType ResReturnType =
7360      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7361    if (ResReturnType.isNull())
7362      return QualType();
7363    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7364      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7365      // In either case, use OldReturnType to build the new function type.
7366      const FunctionType *F = LHS->getAs<FunctionType>();
7367      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7368        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7369        EPI.ExtInfo = getFunctionExtInfo(LHS);
7370        QualType ResultType
7371          = getFunctionType(OldReturnType,
7372                            ArrayRef<QualType>(FPT->arg_type_begin(),
7373                                               FPT->getNumArgs()),
7374                            EPI);
7375        return ResultType;
7376      }
7377    }
7378    return QualType();
7379  }
7380
7381  // If the qualifiers are different, the types can still be merged.
7382  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7383  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7384  if (LQuals != RQuals) {
7385    // If any of these qualifiers are different, we have a type mismatch.
7386    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7387        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7388      return QualType();
7389
7390    // Exactly one GC qualifier difference is allowed: __strong is
7391    // okay if the other type has no GC qualifier but is an Objective
7392    // C object pointer (i.e. implicitly strong by default).  We fix
7393    // this by pretending that the unqualified type was actually
7394    // qualified __strong.
7395    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7396    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7397    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7398
7399    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7400      return QualType();
7401
7402    if (GC_L == Qualifiers::Strong)
7403      return LHS;
7404    if (GC_R == Qualifiers::Strong)
7405      return RHS;
7406    return QualType();
7407  }
7408
7409  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7410    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7411    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7412    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7413    if (ResQT == LHSBaseQT)
7414      return LHS;
7415    if (ResQT == RHSBaseQT)
7416      return RHS;
7417  }
7418  return QualType();
7419}
7420
7421//===----------------------------------------------------------------------===//
7422//                         Integer Predicates
7423//===----------------------------------------------------------------------===//
7424
7425unsigned ASTContext::getIntWidth(QualType T) const {
7426  if (const EnumType *ET = dyn_cast<EnumType>(T))
7427    T = ET->getDecl()->getIntegerType();
7428  if (T->isBooleanType())
7429    return 1;
7430  // For builtin types, just use the standard type sizing method
7431  return (unsigned)getTypeSize(T);
7432}
7433
7434QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7435  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7436
7437  // Turn <4 x signed int> -> <4 x unsigned int>
7438  if (const VectorType *VTy = T->getAs<VectorType>())
7439    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7440                         VTy->getNumElements(), VTy->getVectorKind());
7441
7442  // For enums, we return the unsigned version of the base type.
7443  if (const EnumType *ETy = T->getAs<EnumType>())
7444    T = ETy->getDecl()->getIntegerType();
7445
7446  const BuiltinType *BTy = T->getAs<BuiltinType>();
7447  assert(BTy && "Unexpected signed integer type");
7448  switch (BTy->getKind()) {
7449  case BuiltinType::Char_S:
7450  case BuiltinType::SChar:
7451    return UnsignedCharTy;
7452  case BuiltinType::Short:
7453    return UnsignedShortTy;
7454  case BuiltinType::Int:
7455    return UnsignedIntTy;
7456  case BuiltinType::Long:
7457    return UnsignedLongTy;
7458  case BuiltinType::LongLong:
7459    return UnsignedLongLongTy;
7460  case BuiltinType::Int128:
7461    return UnsignedInt128Ty;
7462  default:
7463    llvm_unreachable("Unexpected signed integer type");
7464  }
7465}
7466
7467ASTMutationListener::~ASTMutationListener() { }
7468
7469void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7470                                            QualType ReturnType) {}
7471
7472//===----------------------------------------------------------------------===//
7473//                          Builtin Type Computation
7474//===----------------------------------------------------------------------===//
7475
7476/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7477/// pointer over the consumed characters.  This returns the resultant type.  If
7478/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7479/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7480/// a vector of "i*".
7481///
7482/// RequiresICE is filled in on return to indicate whether the value is required
7483/// to be an Integer Constant Expression.
7484static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7485                                  ASTContext::GetBuiltinTypeError &Error,
7486                                  bool &RequiresICE,
7487                                  bool AllowTypeModifiers) {
7488  // Modifiers.
7489  int HowLong = 0;
7490  bool Signed = false, Unsigned = false;
7491  RequiresICE = false;
7492
7493  // Read the prefixed modifiers first.
7494  bool Done = false;
7495  while (!Done) {
7496    switch (*Str++) {
7497    default: Done = true; --Str; break;
7498    case 'I':
7499      RequiresICE = true;
7500      break;
7501    case 'S':
7502      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7503      assert(!Signed && "Can't use 'S' modifier multiple times!");
7504      Signed = true;
7505      break;
7506    case 'U':
7507      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7508      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7509      Unsigned = true;
7510      break;
7511    case 'L':
7512      assert(HowLong <= 2 && "Can't have LLLL modifier");
7513      ++HowLong;
7514      break;
7515    }
7516  }
7517
7518  QualType Type;
7519
7520  // Read the base type.
7521  switch (*Str++) {
7522  default: llvm_unreachable("Unknown builtin type letter!");
7523  case 'v':
7524    assert(HowLong == 0 && !Signed && !Unsigned &&
7525           "Bad modifiers used with 'v'!");
7526    Type = Context.VoidTy;
7527    break;
7528  case 'f':
7529    assert(HowLong == 0 && !Signed && !Unsigned &&
7530           "Bad modifiers used with 'f'!");
7531    Type = Context.FloatTy;
7532    break;
7533  case 'd':
7534    assert(HowLong < 2 && !Signed && !Unsigned &&
7535           "Bad modifiers used with 'd'!");
7536    if (HowLong)
7537      Type = Context.LongDoubleTy;
7538    else
7539      Type = Context.DoubleTy;
7540    break;
7541  case 's':
7542    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7543    if (Unsigned)
7544      Type = Context.UnsignedShortTy;
7545    else
7546      Type = Context.ShortTy;
7547    break;
7548  case 'i':
7549    if (HowLong == 3)
7550      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7551    else if (HowLong == 2)
7552      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7553    else if (HowLong == 1)
7554      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7555    else
7556      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7557    break;
7558  case 'c':
7559    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7560    if (Signed)
7561      Type = Context.SignedCharTy;
7562    else if (Unsigned)
7563      Type = Context.UnsignedCharTy;
7564    else
7565      Type = Context.CharTy;
7566    break;
7567  case 'b': // boolean
7568    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7569    Type = Context.BoolTy;
7570    break;
7571  case 'z':  // size_t.
7572    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7573    Type = Context.getSizeType();
7574    break;
7575  case 'F':
7576    Type = Context.getCFConstantStringType();
7577    break;
7578  case 'G':
7579    Type = Context.getObjCIdType();
7580    break;
7581  case 'H':
7582    Type = Context.getObjCSelType();
7583    break;
7584  case 'M':
7585    Type = Context.getObjCSuperType();
7586    break;
7587  case 'a':
7588    Type = Context.getBuiltinVaListType();
7589    assert(!Type.isNull() && "builtin va list type not initialized!");
7590    break;
7591  case 'A':
7592    // This is a "reference" to a va_list; however, what exactly
7593    // this means depends on how va_list is defined. There are two
7594    // different kinds of va_list: ones passed by value, and ones
7595    // passed by reference.  An example of a by-value va_list is
7596    // x86, where va_list is a char*. An example of by-ref va_list
7597    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7598    // we want this argument to be a char*&; for x86-64, we want
7599    // it to be a __va_list_tag*.
7600    Type = Context.getBuiltinVaListType();
7601    assert(!Type.isNull() && "builtin va list type not initialized!");
7602    if (Type->isArrayType())
7603      Type = Context.getArrayDecayedType(Type);
7604    else
7605      Type = Context.getLValueReferenceType(Type);
7606    break;
7607  case 'V': {
7608    char *End;
7609    unsigned NumElements = strtoul(Str, &End, 10);
7610    assert(End != Str && "Missing vector size");
7611    Str = End;
7612
7613    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7614                                             RequiresICE, false);
7615    assert(!RequiresICE && "Can't require vector ICE");
7616
7617    // TODO: No way to make AltiVec vectors in builtins yet.
7618    Type = Context.getVectorType(ElementType, NumElements,
7619                                 VectorType::GenericVector);
7620    break;
7621  }
7622  case 'E': {
7623    char *End;
7624
7625    unsigned NumElements = strtoul(Str, &End, 10);
7626    assert(End != Str && "Missing vector size");
7627
7628    Str = End;
7629
7630    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7631                                             false);
7632    Type = Context.getExtVectorType(ElementType, NumElements);
7633    break;
7634  }
7635  case 'X': {
7636    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7637                                             false);
7638    assert(!RequiresICE && "Can't require complex ICE");
7639    Type = Context.getComplexType(ElementType);
7640    break;
7641  }
7642  case 'Y' : {
7643    Type = Context.getPointerDiffType();
7644    break;
7645  }
7646  case 'P':
7647    Type = Context.getFILEType();
7648    if (Type.isNull()) {
7649      Error = ASTContext::GE_Missing_stdio;
7650      return QualType();
7651    }
7652    break;
7653  case 'J':
7654    if (Signed)
7655      Type = Context.getsigjmp_bufType();
7656    else
7657      Type = Context.getjmp_bufType();
7658
7659    if (Type.isNull()) {
7660      Error = ASTContext::GE_Missing_setjmp;
7661      return QualType();
7662    }
7663    break;
7664  case 'K':
7665    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7666    Type = Context.getucontext_tType();
7667
7668    if (Type.isNull()) {
7669      Error = ASTContext::GE_Missing_ucontext;
7670      return QualType();
7671    }
7672    break;
7673  case 'p':
7674    Type = Context.getProcessIDType();
7675    break;
7676  }
7677
7678  // If there are modifiers and if we're allowed to parse them, go for it.
7679  Done = !AllowTypeModifiers;
7680  while (!Done) {
7681    switch (char c = *Str++) {
7682    default: Done = true; --Str; break;
7683    case '*':
7684    case '&': {
7685      // Both pointers and references can have their pointee types
7686      // qualified with an address space.
7687      char *End;
7688      unsigned AddrSpace = strtoul(Str, &End, 10);
7689      if (End != Str && AddrSpace != 0) {
7690        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7691        Str = End;
7692      }
7693      if (c == '*')
7694        Type = Context.getPointerType(Type);
7695      else
7696        Type = Context.getLValueReferenceType(Type);
7697      break;
7698    }
7699    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7700    case 'C':
7701      Type = Type.withConst();
7702      break;
7703    case 'D':
7704      Type = Context.getVolatileType(Type);
7705      break;
7706    case 'R':
7707      Type = Type.withRestrict();
7708      break;
7709    }
7710  }
7711
7712  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7713         "Integer constant 'I' type must be an integer");
7714
7715  return Type;
7716}
7717
7718/// GetBuiltinType - Return the type for the specified builtin.
7719QualType ASTContext::GetBuiltinType(unsigned Id,
7720                                    GetBuiltinTypeError &Error,
7721                                    unsigned *IntegerConstantArgs) const {
7722  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7723
7724  SmallVector<QualType, 8> ArgTypes;
7725
7726  bool RequiresICE = false;
7727  Error = GE_None;
7728  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7729                                       RequiresICE, true);
7730  if (Error != GE_None)
7731    return QualType();
7732
7733  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7734
7735  while (TypeStr[0] && TypeStr[0] != '.') {
7736    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7737    if (Error != GE_None)
7738      return QualType();
7739
7740    // If this argument is required to be an IntegerConstantExpression and the
7741    // caller cares, fill in the bitmask we return.
7742    if (RequiresICE && IntegerConstantArgs)
7743      *IntegerConstantArgs |= 1 << ArgTypes.size();
7744
7745    // Do array -> pointer decay.  The builtin should use the decayed type.
7746    if (Ty->isArrayType())
7747      Ty = getArrayDecayedType(Ty);
7748
7749    ArgTypes.push_back(Ty);
7750  }
7751
7752  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7753         "'.' should only occur at end of builtin type list!");
7754
7755  FunctionType::ExtInfo EI;
7756  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7757
7758  bool Variadic = (TypeStr[0] == '.');
7759
7760  // We really shouldn't be making a no-proto type here, especially in C++.
7761  if (ArgTypes.empty() && Variadic)
7762    return getFunctionNoProtoType(ResType, EI);
7763
7764  FunctionProtoType::ExtProtoInfo EPI;
7765  EPI.ExtInfo = EI;
7766  EPI.Variadic = Variadic;
7767
7768  return getFunctionType(ResType, ArgTypes, EPI);
7769}
7770
7771GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7772  if (!FD->isExternallyVisible())
7773    return GVA_Internal;
7774
7775  GVALinkage External = GVA_StrongExternal;
7776  switch (FD->getTemplateSpecializationKind()) {
7777  case TSK_Undeclared:
7778  case TSK_ExplicitSpecialization:
7779    External = GVA_StrongExternal;
7780    break;
7781
7782  case TSK_ExplicitInstantiationDefinition:
7783    return GVA_ExplicitTemplateInstantiation;
7784
7785  case TSK_ExplicitInstantiationDeclaration:
7786  case TSK_ImplicitInstantiation:
7787    External = GVA_TemplateInstantiation;
7788    break;
7789  }
7790
7791  if (!FD->isInlined())
7792    return External;
7793
7794  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7795    // GNU or C99 inline semantics. Determine whether this symbol should be
7796    // externally visible.
7797    if (FD->isInlineDefinitionExternallyVisible())
7798      return External;
7799
7800    // C99 inline semantics, where the symbol is not externally visible.
7801    return GVA_C99Inline;
7802  }
7803
7804  // C++0x [temp.explicit]p9:
7805  //   [ Note: The intent is that an inline function that is the subject of
7806  //   an explicit instantiation declaration will still be implicitly
7807  //   instantiated when used so that the body can be considered for
7808  //   inlining, but that no out-of-line copy of the inline function would be
7809  //   generated in the translation unit. -- end note ]
7810  if (FD->getTemplateSpecializationKind()
7811                                       == TSK_ExplicitInstantiationDeclaration)
7812    return GVA_C99Inline;
7813
7814  return GVA_CXXInline;
7815}
7816
7817GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7818  if (!VD->isExternallyVisible())
7819    return GVA_Internal;
7820
7821  // If this is a static data member, compute the kind of template
7822  // specialization. Otherwise, this variable is not part of a
7823  // template.
7824  TemplateSpecializationKind TSK = TSK_Undeclared;
7825  if (VD->isStaticDataMember())
7826    TSK = VD->getTemplateSpecializationKind();
7827
7828  switch (TSK) {
7829  case TSK_Undeclared:
7830  case TSK_ExplicitSpecialization:
7831    return GVA_StrongExternal;
7832
7833  case TSK_ExplicitInstantiationDeclaration:
7834    llvm_unreachable("Variable should not be instantiated");
7835  // Fall through to treat this like any other instantiation.
7836
7837  case TSK_ExplicitInstantiationDefinition:
7838    return GVA_ExplicitTemplateInstantiation;
7839
7840  case TSK_ImplicitInstantiation:
7841    return GVA_TemplateInstantiation;
7842  }
7843
7844  llvm_unreachable("Invalid Linkage!");
7845}
7846
7847bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7848  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7849    if (!VD->isFileVarDecl())
7850      return false;
7851  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7852    // We never need to emit an uninstantiated function template.
7853    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7854      return false;
7855  } else
7856    return false;
7857
7858  // If this is a member of a class template, we do not need to emit it.
7859  if (D->getDeclContext()->isDependentContext())
7860    return false;
7861
7862  // Weak references don't produce any output by themselves.
7863  if (D->hasAttr<WeakRefAttr>())
7864    return false;
7865
7866  // Aliases and used decls are required.
7867  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7868    return true;
7869
7870  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7871    // Forward declarations aren't required.
7872    if (!FD->doesThisDeclarationHaveABody())
7873      return FD->doesDeclarationForceExternallyVisibleDefinition();
7874
7875    // Constructors and destructors are required.
7876    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7877      return true;
7878
7879    // The key function for a class is required.  This rule only comes
7880    // into play when inline functions can be key functions, though.
7881    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7882      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7883        const CXXRecordDecl *RD = MD->getParent();
7884        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7885          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7886          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7887            return true;
7888        }
7889      }
7890    }
7891
7892    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7893
7894    // static, static inline, always_inline, and extern inline functions can
7895    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7896    // Implicit template instantiations can also be deferred in C++.
7897    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7898        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7899      return false;
7900    return true;
7901  }
7902
7903  const VarDecl *VD = cast<VarDecl>(D);
7904  assert(VD->isFileVarDecl() && "Expected file scoped var");
7905
7906  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7907    return false;
7908
7909  // Variables that can be needed in other TUs are required.
7910  GVALinkage L = GetGVALinkageForVariable(VD);
7911  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7912    return true;
7913
7914  // Variables that have destruction with side-effects are required.
7915  if (VD->getType().isDestructedType())
7916    return true;
7917
7918  // Variables that have initialization with side-effects are required.
7919  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7920    return true;
7921
7922  return false;
7923}
7924
7925CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7926  // Pass through to the C++ ABI object
7927  return ABI->getDefaultMethodCallConv(isVariadic);
7928}
7929
7930CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7931  if (CC == CC_C && !LangOpts.MRTD &&
7932      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7933    return CC_Default;
7934  return CC;
7935}
7936
7937bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7938  // Pass through to the C++ ABI object
7939  return ABI->isNearlyEmpty(RD);
7940}
7941
7942MangleContext *ASTContext::createMangleContext() {
7943  switch (Target->getCXXABI().getKind()) {
7944  case TargetCXXABI::GenericAArch64:
7945  case TargetCXXABI::GenericItanium:
7946  case TargetCXXABI::GenericARM:
7947  case TargetCXXABI::iOS:
7948    return createItaniumMangleContext(*this, getDiagnostics());
7949  case TargetCXXABI::Microsoft:
7950    return createMicrosoftMangleContext(*this, getDiagnostics());
7951  }
7952  llvm_unreachable("Unsupported ABI");
7953}
7954
7955CXXABI::~CXXABI() {}
7956
7957size_t ASTContext::getSideTableAllocatedMemory() const {
7958  return ASTRecordLayouts.getMemorySize()
7959    + llvm::capacity_in_bytes(ObjCLayouts)
7960    + llvm::capacity_in_bytes(KeyFunctions)
7961    + llvm::capacity_in_bytes(ObjCImpls)
7962    + llvm::capacity_in_bytes(BlockVarCopyInits)
7963    + llvm::capacity_in_bytes(DeclAttrs)
7964    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7965    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7966    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7967    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7968    + llvm::capacity_in_bytes(OverriddenMethods)
7969    + llvm::capacity_in_bytes(Types)
7970    + llvm::capacity_in_bytes(VariableArrayTypes)
7971    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7972}
7973
7974void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7975  // FIXME: This mangling should be applied to function local classes too
7976  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7977      !isa<CXXRecordDecl>(Tag->getParent()) ||
7978      !Tag->isExternallyVisible())
7979    return;
7980
7981  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7982    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7983  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7984}
7985
7986int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7987  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7988    UnnamedMangleNumbers.find(Tag);
7989  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7990}
7991
7992unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7993  CXXRecordDecl *Lambda = CallOperator->getParent();
7994  return LambdaMangleContexts[Lambda->getDeclContext()]
7995           .getManglingNumber(CallOperator);
7996}
7997
7998
7999void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8000  ParamIndices[D] = index;
8001}
8002
8003unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8004  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8005  assert(I != ParamIndices.end() &&
8006         "ParmIndices lacks entry set by ParmVarDecl");
8007  return I->second;
8008}
8009