1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/ABI.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34
35#define MANGLE_CHECKER 0
36
37#if MANGLE_CHECKER
38#include <cxxabi.h>
39#endif
40
41using namespace clang;
42
43namespace {
44
45/// \brief Retrieve the declaration context that should be used when mangling
46/// the given declaration.
47static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48  // The ABI assumes that lambda closure types that occur within
49  // default arguments live in the context of the function. However, due to
50  // the way in which Clang parses and creates function declarations, this is
51  // not the case: the lambda closure type ends up living in the context
52  // where the function itself resides, because the function declaration itself
53  // had not yet been created. Fix the context here.
54  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55    if (RD->isLambda())
56      if (ParmVarDecl *ContextParam
57            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58        return ContextParam->getDeclContext();
59  }
60
61  // Perform the same check for block literals.
62  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63    if (ParmVarDecl *ContextParam
64          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65      return ContextParam->getDeclContext();
66  }
67
68  const DeclContext *DC = D->getDeclContext();
69  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70    return getEffectiveDeclContext(CD);
71
72  return DC;
73}
74
75static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
76  return getEffectiveDeclContext(cast<Decl>(DC));
77}
78
79static bool isLocalContainerContext(const DeclContext *DC) {
80  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
81}
82
83static const RecordDecl *GetLocalClassDecl(const Decl *D) {
84  const DeclContext *DC = getEffectiveDeclContext(D);
85  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
86    if (isLocalContainerContext(DC))
87      return dyn_cast<RecordDecl>(D);
88    D = cast<Decl>(DC);
89    DC = getEffectiveDeclContext(D);
90  }
91  return nullptr;
92}
93
94static const FunctionDecl *getStructor(const FunctionDecl *fn) {
95  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
96    return ftd->getTemplatedDecl();
97
98  return fn;
99}
100
101static const NamedDecl *getStructor(const NamedDecl *decl) {
102  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
103  return (fn ? getStructor(fn) : decl);
104}
105
106static bool isLambda(const NamedDecl *ND) {
107  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
108  if (!Record)
109    return false;
110
111  return Record->isLambda();
112}
113
114static const unsigned UnknownArity = ~0U;
115
116class ItaniumMangleContextImpl : public ItaniumMangleContext {
117  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
118  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
119  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
120
121public:
122  explicit ItaniumMangleContextImpl(ASTContext &Context,
123                                    DiagnosticsEngine &Diags)
124      : ItaniumMangleContext(Context, Diags) {}
125
126  /// @name Mangler Entry Points
127  /// @{
128
129  bool shouldMangleCXXName(const NamedDecl *D) override;
130  bool shouldMangleStringLiteral(const StringLiteral *) override {
131    return false;
132  }
133  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
134  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
135                   raw_ostream &) override;
136  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
137                          const ThisAdjustment &ThisAdjustment,
138                          raw_ostream &) override;
139  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
140                                raw_ostream &) override;
141  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
142  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
143  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
144                           const CXXRecordDecl *Type, raw_ostream &) override;
145  void mangleCXXRTTI(QualType T, raw_ostream &) override;
146  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
147  void mangleTypeName(QualType T, raw_ostream &) override;
148  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
149                     raw_ostream &) override;
150  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
151                     raw_ostream &) override;
152
153  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
154  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
155  void mangleDynamicAtExitDestructor(const VarDecl *D,
156                                     raw_ostream &Out) override;
157  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
158  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
159                                       raw_ostream &) override;
160
161  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
162
163  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
164    // Lambda closure types are already numbered.
165    if (isLambda(ND))
166      return false;
167
168    // Anonymous tags are already numbered.
169    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
170      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
171        return false;
172    }
173
174    // Use the canonical number for externally visible decls.
175    if (ND->isExternallyVisible()) {
176      unsigned discriminator = getASTContext().getManglingNumber(ND);
177      if (discriminator == 1)
178        return false;
179      disc = discriminator - 2;
180      return true;
181    }
182
183    // Make up a reasonable number for internal decls.
184    unsigned &discriminator = Uniquifier[ND];
185    if (!discriminator) {
186      const DeclContext *DC = getEffectiveDeclContext(ND);
187      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
188    }
189    if (discriminator == 1)
190      return false;
191    disc = discriminator-2;
192    return true;
193  }
194  /// @}
195};
196
197/// CXXNameMangler - Manage the mangling of a single name.
198class CXXNameMangler {
199  ItaniumMangleContextImpl &Context;
200  raw_ostream &Out;
201
202  /// The "structor" is the top-level declaration being mangled, if
203  /// that's not a template specialization; otherwise it's the pattern
204  /// for that specialization.
205  const NamedDecl *Structor;
206  unsigned StructorType;
207
208  /// SeqID - The next subsitution sequence number.
209  unsigned SeqID;
210
211  class FunctionTypeDepthState {
212    unsigned Bits;
213
214    enum { InResultTypeMask = 1 };
215
216  public:
217    FunctionTypeDepthState() : Bits(0) {}
218
219    /// The number of function types we're inside.
220    unsigned getDepth() const {
221      return Bits >> 1;
222    }
223
224    /// True if we're in the return type of the innermost function type.
225    bool isInResultType() const {
226      return Bits & InResultTypeMask;
227    }
228
229    FunctionTypeDepthState push() {
230      FunctionTypeDepthState tmp = *this;
231      Bits = (Bits & ~InResultTypeMask) + 2;
232      return tmp;
233    }
234
235    void enterResultType() {
236      Bits |= InResultTypeMask;
237    }
238
239    void leaveResultType() {
240      Bits &= ~InResultTypeMask;
241    }
242
243    void pop(FunctionTypeDepthState saved) {
244      assert(getDepth() == saved.getDepth() + 1);
245      Bits = saved.Bits;
246    }
247
248  } FunctionTypeDepth;
249
250  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
251
252  ASTContext &getASTContext() const { return Context.getASTContext(); }
253
254public:
255  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
256                 const NamedDecl *D = nullptr)
257    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
258      SeqID(0) {
259    // These can't be mangled without a ctor type or dtor type.
260    assert(!D || (!isa<CXXDestructorDecl>(D) &&
261                  !isa<CXXConstructorDecl>(D)));
262  }
263  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
264                 const CXXConstructorDecl *D, CXXCtorType Type)
265    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
266      SeqID(0) { }
267  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
268                 const CXXDestructorDecl *D, CXXDtorType Type)
269    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
270      SeqID(0) { }
271
272#if MANGLE_CHECKER
273  ~CXXNameMangler() {
274    if (Out.str()[0] == '\01')
275      return;
276
277    int status = 0;
278    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
279    assert(status == 0 && "Could not demangle mangled name!");
280    free(result);
281  }
282#endif
283  raw_ostream &getStream() { return Out; }
284
285  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
286  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
287  void mangleNumber(const llvm::APSInt &I);
288  void mangleNumber(int64_t Number);
289  void mangleFloat(const llvm::APFloat &F);
290  void mangleFunctionEncoding(const FunctionDecl *FD);
291  void mangleSeqID(unsigned SeqID);
292  void mangleName(const NamedDecl *ND);
293  void mangleType(QualType T);
294  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
295
296private:
297
298  bool mangleSubstitution(const NamedDecl *ND);
299  bool mangleSubstitution(QualType T);
300  bool mangleSubstitution(TemplateName Template);
301  bool mangleSubstitution(uintptr_t Ptr);
302
303  void mangleExistingSubstitution(QualType type);
304  void mangleExistingSubstitution(TemplateName name);
305
306  bool mangleStandardSubstitution(const NamedDecl *ND);
307
308  void addSubstitution(const NamedDecl *ND) {
309    ND = cast<NamedDecl>(ND->getCanonicalDecl());
310
311    addSubstitution(reinterpret_cast<uintptr_t>(ND));
312  }
313  void addSubstitution(QualType T);
314  void addSubstitution(TemplateName Template);
315  void addSubstitution(uintptr_t Ptr);
316
317  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
318                              NamedDecl *firstQualifierLookup,
319                              bool recursive = false);
320  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
321                            NamedDecl *firstQualifierLookup,
322                            DeclarationName name,
323                            unsigned KnownArity = UnknownArity);
324
325  void mangleName(const TemplateDecl *TD,
326                  const TemplateArgument *TemplateArgs,
327                  unsigned NumTemplateArgs);
328  void mangleUnqualifiedName(const NamedDecl *ND) {
329    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
330  }
331  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
332                             unsigned KnownArity);
333  void mangleUnscopedName(const NamedDecl *ND);
334  void mangleUnscopedTemplateName(const TemplateDecl *ND);
335  void mangleUnscopedTemplateName(TemplateName);
336  void mangleSourceName(const IdentifierInfo *II);
337  void mangleLocalName(const Decl *D);
338  void mangleBlockForPrefix(const BlockDecl *Block);
339  void mangleUnqualifiedBlock(const BlockDecl *Block);
340  void mangleLambda(const CXXRecordDecl *Lambda);
341  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
342                        bool NoFunction=false);
343  void mangleNestedName(const TemplateDecl *TD,
344                        const TemplateArgument *TemplateArgs,
345                        unsigned NumTemplateArgs);
346  void manglePrefix(NestedNameSpecifier *qualifier);
347  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
348  void manglePrefix(QualType type);
349  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
350  void mangleTemplatePrefix(TemplateName Template);
351  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
352  void mangleQualifiers(Qualifiers Quals);
353  void mangleRefQualifier(RefQualifierKind RefQualifier);
354
355  void mangleObjCMethodName(const ObjCMethodDecl *MD);
356
357  // Declare manglers for every type class.
358#define ABSTRACT_TYPE(CLASS, PARENT)
359#define NON_CANONICAL_TYPE(CLASS, PARENT)
360#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
361#include "clang/AST/TypeNodes.def"
362
363  void mangleType(const TagType*);
364  void mangleType(TemplateName);
365  void mangleBareFunctionType(const FunctionType *T,
366                              bool MangleReturnType);
367  void mangleNeonVectorType(const VectorType *T);
368  void mangleAArch64NeonVectorType(const VectorType *T);
369
370  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
371  void mangleMemberExpr(const Expr *base, bool isArrow,
372                        NestedNameSpecifier *qualifier,
373                        NamedDecl *firstQualifierLookup,
374                        DeclarationName name,
375                        unsigned knownArity);
376  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
377  void mangleCXXCtorType(CXXCtorType T);
378  void mangleCXXDtorType(CXXDtorType T);
379
380  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
381  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
382                          unsigned NumTemplateArgs);
383  void mangleTemplateArgs(const TemplateArgumentList &AL);
384  void mangleTemplateArg(TemplateArgument A);
385
386  void mangleTemplateParameter(unsigned Index);
387
388  void mangleFunctionParam(const ParmVarDecl *parm);
389};
390
391}
392
393bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
394  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
395  if (FD) {
396    LanguageLinkage L = FD->getLanguageLinkage();
397    // Overloadable functions need mangling.
398    if (FD->hasAttr<OverloadableAttr>())
399      return true;
400
401    // "main" is not mangled.
402    if (FD->isMain())
403      return false;
404
405    // C++ functions and those whose names are not a simple identifier need
406    // mangling.
407    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
408      return true;
409
410    // C functions are not mangled.
411    if (L == CLanguageLinkage)
412      return false;
413  }
414
415  // Otherwise, no mangling is done outside C++ mode.
416  if (!getASTContext().getLangOpts().CPlusPlus)
417    return false;
418
419  const VarDecl *VD = dyn_cast<VarDecl>(D);
420  if (VD) {
421    // C variables are not mangled.
422    if (VD->isExternC())
423      return false;
424
425    // Variables at global scope with non-internal linkage are not mangled
426    const DeclContext *DC = getEffectiveDeclContext(D);
427    // Check for extern variable declared locally.
428    if (DC->isFunctionOrMethod() && D->hasLinkage())
429      while (!DC->isNamespace() && !DC->isTranslationUnit())
430        DC = getEffectiveParentContext(DC);
431    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
432        !isa<VarTemplateSpecializationDecl>(D))
433      return false;
434  }
435
436  return true;
437}
438
439void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
440  // <mangled-name> ::= _Z <encoding>
441  //            ::= <data name>
442  //            ::= <special-name>
443  Out << Prefix;
444  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
445    mangleFunctionEncoding(FD);
446  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
447    mangleName(VD);
448  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
449    mangleName(IFD->getAnonField());
450  else
451    mangleName(cast<FieldDecl>(D));
452}
453
454void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
455  // <encoding> ::= <function name> <bare-function-type>
456  mangleName(FD);
457
458  // Don't mangle in the type if this isn't a decl we should typically mangle.
459  if (!Context.shouldMangleDeclName(FD))
460    return;
461
462  if (FD->hasAttr<EnableIfAttr>()) {
463    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
464    Out << "Ua9enable_ifI";
465    // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
466    // it here.
467    for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
468                                         E = FD->getAttrs().rend();
469         I != E; ++I) {
470      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
471      if (!EIA)
472        continue;
473      Out << 'X';
474      mangleExpression(EIA->getCond());
475      Out << 'E';
476    }
477    Out << 'E';
478    FunctionTypeDepth.pop(Saved);
479  }
480
481  // Whether the mangling of a function type includes the return type depends on
482  // the context and the nature of the function. The rules for deciding whether
483  // the return type is included are:
484  //
485  //   1. Template functions (names or types) have return types encoded, with
486  //   the exceptions listed below.
487  //   2. Function types not appearing as part of a function name mangling,
488  //   e.g. parameters, pointer types, etc., have return type encoded, with the
489  //   exceptions listed below.
490  //   3. Non-template function names do not have return types encoded.
491  //
492  // The exceptions mentioned in (1) and (2) above, for which the return type is
493  // never included, are
494  //   1. Constructors.
495  //   2. Destructors.
496  //   3. Conversion operator functions, e.g. operator int.
497  bool MangleReturnType = false;
498  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
499    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
500          isa<CXXConversionDecl>(FD)))
501      MangleReturnType = true;
502
503    // Mangle the type of the primary template.
504    FD = PrimaryTemplate->getTemplatedDecl();
505  }
506
507  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
508                         MangleReturnType);
509}
510
511static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
512  while (isa<LinkageSpecDecl>(DC)) {
513    DC = getEffectiveParentContext(DC);
514  }
515
516  return DC;
517}
518
519/// isStd - Return whether a given namespace is the 'std' namespace.
520static bool isStd(const NamespaceDecl *NS) {
521  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
522                                ->isTranslationUnit())
523    return false;
524
525  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
526  return II && II->isStr("std");
527}
528
529// isStdNamespace - Return whether a given decl context is a toplevel 'std'
530// namespace.
531static bool isStdNamespace(const DeclContext *DC) {
532  if (!DC->isNamespace())
533    return false;
534
535  return isStd(cast<NamespaceDecl>(DC));
536}
537
538static const TemplateDecl *
539isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
540  // Check if we have a function template.
541  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
542    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
543      TemplateArgs = FD->getTemplateSpecializationArgs();
544      return TD;
545    }
546  }
547
548  // Check if we have a class template.
549  if (const ClassTemplateSpecializationDecl *Spec =
550        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
551    TemplateArgs = &Spec->getTemplateArgs();
552    return Spec->getSpecializedTemplate();
553  }
554
555  // Check if we have a variable template.
556  if (const VarTemplateSpecializationDecl *Spec =
557          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
558    TemplateArgs = &Spec->getTemplateArgs();
559    return Spec->getSpecializedTemplate();
560  }
561
562  return nullptr;
563}
564
565void CXXNameMangler::mangleName(const NamedDecl *ND) {
566  //  <name> ::= <nested-name>
567  //         ::= <unscoped-name>
568  //         ::= <unscoped-template-name> <template-args>
569  //         ::= <local-name>
570  //
571  const DeclContext *DC = getEffectiveDeclContext(ND);
572
573  // If this is an extern variable declared locally, the relevant DeclContext
574  // is that of the containing namespace, or the translation unit.
575  // FIXME: This is a hack; extern variables declared locally should have
576  // a proper semantic declaration context!
577  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
578    while (!DC->isNamespace() && !DC->isTranslationUnit())
579      DC = getEffectiveParentContext(DC);
580  else if (GetLocalClassDecl(ND)) {
581    mangleLocalName(ND);
582    return;
583  }
584
585  DC = IgnoreLinkageSpecDecls(DC);
586
587  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
588    // Check if we have a template.
589    const TemplateArgumentList *TemplateArgs = nullptr;
590    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
591      mangleUnscopedTemplateName(TD);
592      mangleTemplateArgs(*TemplateArgs);
593      return;
594    }
595
596    mangleUnscopedName(ND);
597    return;
598  }
599
600  if (isLocalContainerContext(DC)) {
601    mangleLocalName(ND);
602    return;
603  }
604
605  mangleNestedName(ND, DC);
606}
607void CXXNameMangler::mangleName(const TemplateDecl *TD,
608                                const TemplateArgument *TemplateArgs,
609                                unsigned NumTemplateArgs) {
610  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
611
612  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
613    mangleUnscopedTemplateName(TD);
614    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
615  } else {
616    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
617  }
618}
619
620void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
621  //  <unscoped-name> ::= <unqualified-name>
622  //                  ::= St <unqualified-name>   # ::std::
623
624  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
625    Out << "St";
626
627  mangleUnqualifiedName(ND);
628}
629
630void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
631  //     <unscoped-template-name> ::= <unscoped-name>
632  //                              ::= <substitution>
633  if (mangleSubstitution(ND))
634    return;
635
636  // <template-template-param> ::= <template-param>
637  if (const TemplateTemplateParmDecl *TTP
638                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
639    mangleTemplateParameter(TTP->getIndex());
640    return;
641  }
642
643  mangleUnscopedName(ND->getTemplatedDecl());
644  addSubstitution(ND);
645}
646
647void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
648  //     <unscoped-template-name> ::= <unscoped-name>
649  //                              ::= <substitution>
650  if (TemplateDecl *TD = Template.getAsTemplateDecl())
651    return mangleUnscopedTemplateName(TD);
652
653  if (mangleSubstitution(Template))
654    return;
655
656  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
657  assert(Dependent && "Not a dependent template name?");
658  if (const IdentifierInfo *Id = Dependent->getIdentifier())
659    mangleSourceName(Id);
660  else
661    mangleOperatorName(Dependent->getOperator(), UnknownArity);
662
663  addSubstitution(Template);
664}
665
666void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
667  // ABI:
668  //   Floating-point literals are encoded using a fixed-length
669  //   lowercase hexadecimal string corresponding to the internal
670  //   representation (IEEE on Itanium), high-order bytes first,
671  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
672  //   on Itanium.
673  // The 'without leading zeroes' thing seems to be an editorial
674  // mistake; see the discussion on cxx-abi-dev beginning on
675  // 2012-01-16.
676
677  // Our requirements here are just barely weird enough to justify
678  // using a custom algorithm instead of post-processing APInt::toString().
679
680  llvm::APInt valueBits = f.bitcastToAPInt();
681  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
682  assert(numCharacters != 0);
683
684  // Allocate a buffer of the right number of characters.
685  SmallVector<char, 20> buffer;
686  buffer.set_size(numCharacters);
687
688  // Fill the buffer left-to-right.
689  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
690    // The bit-index of the next hex digit.
691    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
692
693    // Project out 4 bits starting at 'digitIndex'.
694    llvm::integerPart hexDigit
695      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
696    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
697    hexDigit &= 0xF;
698
699    // Map that over to a lowercase hex digit.
700    static const char charForHex[16] = {
701      '0', '1', '2', '3', '4', '5', '6', '7',
702      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
703    };
704    buffer[stringIndex] = charForHex[hexDigit];
705  }
706
707  Out.write(buffer.data(), numCharacters);
708}
709
710void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
711  if (Value.isSigned() && Value.isNegative()) {
712    Out << 'n';
713    Value.abs().print(Out, /*signed*/ false);
714  } else {
715    Value.print(Out, /*signed*/ false);
716  }
717}
718
719void CXXNameMangler::mangleNumber(int64_t Number) {
720  //  <number> ::= [n] <non-negative decimal integer>
721  if (Number < 0) {
722    Out << 'n';
723    Number = -Number;
724  }
725
726  Out << Number;
727}
728
729void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
730  //  <call-offset>  ::= h <nv-offset> _
731  //                 ::= v <v-offset> _
732  //  <nv-offset>    ::= <offset number>        # non-virtual base override
733  //  <v-offset>     ::= <offset number> _ <virtual offset number>
734  //                      # virtual base override, with vcall offset
735  if (!Virtual) {
736    Out << 'h';
737    mangleNumber(NonVirtual);
738    Out << '_';
739    return;
740  }
741
742  Out << 'v';
743  mangleNumber(NonVirtual);
744  Out << '_';
745  mangleNumber(Virtual);
746  Out << '_';
747}
748
749void CXXNameMangler::manglePrefix(QualType type) {
750  if (const TemplateSpecializationType *TST =
751        type->getAs<TemplateSpecializationType>()) {
752    if (!mangleSubstitution(QualType(TST, 0))) {
753      mangleTemplatePrefix(TST->getTemplateName());
754
755      // FIXME: GCC does not appear to mangle the template arguments when
756      // the template in question is a dependent template name. Should we
757      // emulate that badness?
758      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
759      addSubstitution(QualType(TST, 0));
760    }
761  } else if (const DependentTemplateSpecializationType *DTST
762               = type->getAs<DependentTemplateSpecializationType>()) {
763    TemplateName Template
764      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
765                                                 DTST->getIdentifier());
766    mangleTemplatePrefix(Template);
767
768    // FIXME: GCC does not appear to mangle the template arguments when
769    // the template in question is a dependent template name. Should we
770    // emulate that badness?
771    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
772  } else {
773    // We use the QualType mangle type variant here because it handles
774    // substitutions.
775    mangleType(type);
776  }
777}
778
779/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
780///
781/// \param firstQualifierLookup - the entity found by unqualified lookup
782///   for the first name in the qualifier, if this is for a member expression
783/// \param recursive - true if this is being called recursively,
784///   i.e. if there is more prefix "to the right".
785void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
786                                            NamedDecl *firstQualifierLookup,
787                                            bool recursive) {
788
789  // x, ::x
790  // <unresolved-name> ::= [gs] <base-unresolved-name>
791
792  // T::x / decltype(p)::x
793  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
794
795  // T::N::x /decltype(p)::N::x
796  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
797  //                       <base-unresolved-name>
798
799  // A::x, N::y, A<T>::z; "gs" means leading "::"
800  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
801  //                       <base-unresolved-name>
802
803  switch (qualifier->getKind()) {
804  case NestedNameSpecifier::Global:
805    Out << "gs";
806
807    // We want an 'sr' unless this is the entire NNS.
808    if (recursive)
809      Out << "sr";
810
811    // We never want an 'E' here.
812    return;
813
814  case NestedNameSpecifier::Namespace:
815    if (qualifier->getPrefix())
816      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
817                             /*recursive*/ true);
818    else
819      Out << "sr";
820    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
821    break;
822  case NestedNameSpecifier::NamespaceAlias:
823    if (qualifier->getPrefix())
824      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
825                             /*recursive*/ true);
826    else
827      Out << "sr";
828    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
829    break;
830
831  case NestedNameSpecifier::TypeSpec:
832  case NestedNameSpecifier::TypeSpecWithTemplate: {
833    const Type *type = qualifier->getAsType();
834
835    // We only want to use an unresolved-type encoding if this is one of:
836    //   - a decltype
837    //   - a template type parameter
838    //   - a template template parameter with arguments
839    // In all of these cases, we should have no prefix.
840    if (qualifier->getPrefix()) {
841      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
842                             /*recursive*/ true);
843    } else {
844      // Otherwise, all the cases want this.
845      Out << "sr";
846    }
847
848    // Only certain other types are valid as prefixes;  enumerate them.
849    switch (type->getTypeClass()) {
850    case Type::Builtin:
851    case Type::Complex:
852    case Type::Adjusted:
853    case Type::Decayed:
854    case Type::Pointer:
855    case Type::BlockPointer:
856    case Type::LValueReference:
857    case Type::RValueReference:
858    case Type::MemberPointer:
859    case Type::ConstantArray:
860    case Type::IncompleteArray:
861    case Type::VariableArray:
862    case Type::DependentSizedArray:
863    case Type::DependentSizedExtVector:
864    case Type::Vector:
865    case Type::ExtVector:
866    case Type::FunctionProto:
867    case Type::FunctionNoProto:
868    case Type::Enum:
869    case Type::Paren:
870    case Type::Elaborated:
871    case Type::Attributed:
872    case Type::Auto:
873    case Type::PackExpansion:
874    case Type::ObjCObject:
875    case Type::ObjCInterface:
876    case Type::ObjCObjectPointer:
877    case Type::Atomic:
878      llvm_unreachable("type is illegal as a nested name specifier");
879
880    case Type::SubstTemplateTypeParmPack:
881      // FIXME: not clear how to mangle this!
882      // template <class T...> class A {
883      //   template <class U...> void foo(decltype(T::foo(U())) x...);
884      // };
885      Out << "_SUBSTPACK_";
886      break;
887
888    // <unresolved-type> ::= <template-param>
889    //                   ::= <decltype>
890    //                   ::= <template-template-param> <template-args>
891    // (this last is not official yet)
892    case Type::TypeOfExpr:
893    case Type::TypeOf:
894    case Type::Decltype:
895    case Type::TemplateTypeParm:
896    case Type::UnaryTransform:
897    case Type::SubstTemplateTypeParm:
898    unresolvedType:
899      assert(!qualifier->getPrefix());
900
901      // We only get here recursively if we're followed by identifiers.
902      if (recursive) Out << 'N';
903
904      // This seems to do everything we want.  It's not really
905      // sanctioned for a substituted template parameter, though.
906      mangleType(QualType(type, 0));
907
908      // We never want to print 'E' directly after an unresolved-type,
909      // so we return directly.
910      return;
911
912    case Type::Typedef:
913      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
914      break;
915
916    case Type::UnresolvedUsing:
917      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
918                         ->getIdentifier());
919      break;
920
921    case Type::Record:
922      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
923      break;
924
925    case Type::TemplateSpecialization: {
926      const TemplateSpecializationType *tst
927        = cast<TemplateSpecializationType>(type);
928      TemplateName name = tst->getTemplateName();
929      switch (name.getKind()) {
930      case TemplateName::Template:
931      case TemplateName::QualifiedTemplate: {
932        TemplateDecl *temp = name.getAsTemplateDecl();
933
934        // If the base is a template template parameter, this is an
935        // unresolved type.
936        assert(temp && "no template for template specialization type");
937        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
938
939        mangleSourceName(temp->getIdentifier());
940        break;
941      }
942
943      case TemplateName::OverloadedTemplate:
944      case TemplateName::DependentTemplate:
945        llvm_unreachable("invalid base for a template specialization type");
946
947      case TemplateName::SubstTemplateTemplateParm: {
948        SubstTemplateTemplateParmStorage *subst
949          = name.getAsSubstTemplateTemplateParm();
950        mangleExistingSubstitution(subst->getReplacement());
951        break;
952      }
953
954      case TemplateName::SubstTemplateTemplateParmPack: {
955        // FIXME: not clear how to mangle this!
956        // template <template <class U> class T...> class A {
957        //   template <class U...> void foo(decltype(T<U>::foo) x...);
958        // };
959        Out << "_SUBSTPACK_";
960        break;
961      }
962      }
963
964      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
965      break;
966    }
967
968    case Type::InjectedClassName:
969      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
970                         ->getIdentifier());
971      break;
972
973    case Type::DependentName:
974      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
975      break;
976
977    case Type::DependentTemplateSpecialization: {
978      const DependentTemplateSpecializationType *tst
979        = cast<DependentTemplateSpecializationType>(type);
980      mangleSourceName(tst->getIdentifier());
981      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
982      break;
983    }
984    }
985    break;
986  }
987
988  case NestedNameSpecifier::Identifier:
989    // Member expressions can have these without prefixes.
990    if (qualifier->getPrefix()) {
991      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
992                             /*recursive*/ true);
993    } else if (firstQualifierLookup) {
994
995      // Try to make a proper qualifier out of the lookup result, and
996      // then just recurse on that.
997      NestedNameSpecifier *newQualifier;
998      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
999        QualType type = getASTContext().getTypeDeclType(typeDecl);
1000
1001        // Pretend we had a different nested name specifier.
1002        newQualifier = NestedNameSpecifier::Create(getASTContext(),
1003                                                   /*prefix*/ nullptr,
1004                                                   /*template*/ false,
1005                                                   type.getTypePtr());
1006      } else if (NamespaceDecl *nspace =
1007                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1008        newQualifier = NestedNameSpecifier::Create(getASTContext(),
1009                                                   /*prefix*/ nullptr,
1010                                                   nspace);
1011      } else if (NamespaceAliasDecl *alias =
1012                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1013        newQualifier = NestedNameSpecifier::Create(getASTContext(),
1014                                                   /*prefix*/ nullptr,
1015                                                   alias);
1016      } else {
1017        // No sensible mangling to do here.
1018        newQualifier = nullptr;
1019      }
1020
1021      if (newQualifier)
1022        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ nullptr,
1023                                      recursive);
1024
1025    } else {
1026      Out << "sr";
1027    }
1028
1029    mangleSourceName(qualifier->getAsIdentifier());
1030    break;
1031  }
1032
1033  // If this was the innermost part of the NNS, and we fell out to
1034  // here, append an 'E'.
1035  if (!recursive)
1036    Out << 'E';
1037}
1038
1039/// Mangle an unresolved-name, which is generally used for names which
1040/// weren't resolved to specific entities.
1041void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1042                                          NamedDecl *firstQualifierLookup,
1043                                          DeclarationName name,
1044                                          unsigned knownArity) {
1045  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1046  mangleUnqualifiedName(nullptr, name, knownArity);
1047}
1048
1049static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1050  assert(RD->isAnonymousStructOrUnion() &&
1051         "Expected anonymous struct or union!");
1052
1053  for (const auto *I : RD->fields()) {
1054    if (I->getIdentifier())
1055      return I;
1056
1057    if (const RecordType *RT = I->getType()->getAs<RecordType>())
1058      if (const FieldDecl *NamedDataMember =
1059          FindFirstNamedDataMember(RT->getDecl()))
1060        return NamedDataMember;
1061  }
1062
1063  // We didn't find a named data member.
1064  return nullptr;
1065}
1066
1067void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1068                                           DeclarationName Name,
1069                                           unsigned KnownArity) {
1070  //  <unqualified-name> ::= <operator-name>
1071  //                     ::= <ctor-dtor-name>
1072  //                     ::= <source-name>
1073  switch (Name.getNameKind()) {
1074  case DeclarationName::Identifier: {
1075    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1076      // We must avoid conflicts between internally- and externally-
1077      // linked variable and function declaration names in the same TU:
1078      //   void test() { extern void foo(); }
1079      //   static void foo();
1080      // This naming convention is the same as that followed by GCC,
1081      // though it shouldn't actually matter.
1082      if (ND && ND->getFormalLinkage() == InternalLinkage &&
1083          getEffectiveDeclContext(ND)->isFileContext())
1084        Out << 'L';
1085
1086      mangleSourceName(II);
1087      break;
1088    }
1089
1090    // Otherwise, an anonymous entity.  We must have a declaration.
1091    assert(ND && "mangling empty name without declaration");
1092
1093    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1094      if (NS->isAnonymousNamespace()) {
1095        // This is how gcc mangles these names.
1096        Out << "12_GLOBAL__N_1";
1097        break;
1098      }
1099    }
1100
1101    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1102      // We must have an anonymous union or struct declaration.
1103      const RecordDecl *RD =
1104        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1105
1106      // Itanium C++ ABI 5.1.2:
1107      //
1108      //   For the purposes of mangling, the name of an anonymous union is
1109      //   considered to be the name of the first named data member found by a
1110      //   pre-order, depth-first, declaration-order walk of the data members of
1111      //   the anonymous union. If there is no such data member (i.e., if all of
1112      //   the data members in the union are unnamed), then there is no way for
1113      //   a program to refer to the anonymous union, and there is therefore no
1114      //   need to mangle its name.
1115      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1116
1117      // It's actually possible for various reasons for us to get here
1118      // with an empty anonymous struct / union.  Fortunately, it
1119      // doesn't really matter what name we generate.
1120      if (!FD) break;
1121      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1122
1123      mangleSourceName(FD->getIdentifier());
1124      break;
1125    }
1126
1127    // Class extensions have no name as a category, and it's possible
1128    // for them to be the semantic parent of certain declarations
1129    // (primarily, tag decls defined within declarations).  Such
1130    // declarations will always have internal linkage, so the name
1131    // doesn't really matter, but we shouldn't crash on them.  For
1132    // safety, just handle all ObjC containers here.
1133    if (isa<ObjCContainerDecl>(ND))
1134      break;
1135
1136    // We must have an anonymous struct.
1137    const TagDecl *TD = cast<TagDecl>(ND);
1138    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1139      assert(TD->getDeclContext() == D->getDeclContext() &&
1140             "Typedef should not be in another decl context!");
1141      assert(D->getDeclName().getAsIdentifierInfo() &&
1142             "Typedef was not named!");
1143      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1144      break;
1145    }
1146
1147    // <unnamed-type-name> ::= <closure-type-name>
1148    //
1149    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1150    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1151    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1152      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1153        mangleLambda(Record);
1154        break;
1155      }
1156    }
1157
1158    if (TD->isExternallyVisible()) {
1159      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1160      Out << "Ut";
1161      if (UnnamedMangle > 1)
1162        Out << llvm::utostr(UnnamedMangle - 2);
1163      Out << '_';
1164      break;
1165    }
1166
1167    // Get a unique id for the anonymous struct.
1168    unsigned AnonStructId = Context.getAnonymousStructId(TD);
1169
1170    // Mangle it as a source name in the form
1171    // [n] $_<id>
1172    // where n is the length of the string.
1173    SmallString<8> Str;
1174    Str += "$_";
1175    Str += llvm::utostr(AnonStructId);
1176
1177    Out << Str.size();
1178    Out << Str.str();
1179    break;
1180  }
1181
1182  case DeclarationName::ObjCZeroArgSelector:
1183  case DeclarationName::ObjCOneArgSelector:
1184  case DeclarationName::ObjCMultiArgSelector:
1185    llvm_unreachable("Can't mangle Objective-C selector names here!");
1186
1187  case DeclarationName::CXXConstructorName:
1188    if (ND == Structor)
1189      // If the named decl is the C++ constructor we're mangling, use the type
1190      // we were given.
1191      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1192    else
1193      // Otherwise, use the complete constructor name. This is relevant if a
1194      // class with a constructor is declared within a constructor.
1195      mangleCXXCtorType(Ctor_Complete);
1196    break;
1197
1198  case DeclarationName::CXXDestructorName:
1199    if (ND == Structor)
1200      // If the named decl is the C++ destructor we're mangling, use the type we
1201      // were given.
1202      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1203    else
1204      // Otherwise, use the complete destructor name. This is relevant if a
1205      // class with a destructor is declared within a destructor.
1206      mangleCXXDtorType(Dtor_Complete);
1207    break;
1208
1209  case DeclarationName::CXXConversionFunctionName:
1210    // <operator-name> ::= cv <type>    # (cast)
1211    Out << "cv";
1212    mangleType(Name.getCXXNameType());
1213    break;
1214
1215  case DeclarationName::CXXOperatorName: {
1216    unsigned Arity;
1217    if (ND) {
1218      Arity = cast<FunctionDecl>(ND)->getNumParams();
1219
1220      // If we have a C++ member function, we need to include the 'this' pointer.
1221      // FIXME: This does not make sense for operators that are static, but their
1222      // names stay the same regardless of the arity (operator new for instance).
1223      if (isa<CXXMethodDecl>(ND))
1224        Arity++;
1225    } else
1226      Arity = KnownArity;
1227
1228    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1229    break;
1230  }
1231
1232  case DeclarationName::CXXLiteralOperatorName:
1233    // FIXME: This mangling is not yet official.
1234    Out << "li";
1235    mangleSourceName(Name.getCXXLiteralIdentifier());
1236    break;
1237
1238  case DeclarationName::CXXUsingDirective:
1239    llvm_unreachable("Can't mangle a using directive name!");
1240  }
1241}
1242
1243void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1244  // <source-name> ::= <positive length number> <identifier>
1245  // <number> ::= [n] <non-negative decimal integer>
1246  // <identifier> ::= <unqualified source code identifier>
1247  Out << II->getLength() << II->getName();
1248}
1249
1250void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1251                                      const DeclContext *DC,
1252                                      bool NoFunction) {
1253  // <nested-name>
1254  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1255  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1256  //       <template-args> E
1257
1258  Out << 'N';
1259  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1260    Qualifiers MethodQuals =
1261        Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1262    // We do not consider restrict a distinguishing attribute for overloading
1263    // purposes so we must not mangle it.
1264    MethodQuals.removeRestrict();
1265    mangleQualifiers(MethodQuals);
1266    mangleRefQualifier(Method->getRefQualifier());
1267  }
1268
1269  // Check if we have a template.
1270  const TemplateArgumentList *TemplateArgs = nullptr;
1271  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1272    mangleTemplatePrefix(TD, NoFunction);
1273    mangleTemplateArgs(*TemplateArgs);
1274  }
1275  else {
1276    manglePrefix(DC, NoFunction);
1277    mangleUnqualifiedName(ND);
1278  }
1279
1280  Out << 'E';
1281}
1282void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1283                                      const TemplateArgument *TemplateArgs,
1284                                      unsigned NumTemplateArgs) {
1285  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1286
1287  Out << 'N';
1288
1289  mangleTemplatePrefix(TD);
1290  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1291
1292  Out << 'E';
1293}
1294
1295void CXXNameMangler::mangleLocalName(const Decl *D) {
1296  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1297  //              := Z <function encoding> E s [<discriminator>]
1298  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1299  //                 _ <entity name>
1300  // <discriminator> := _ <non-negative number>
1301  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1302  const RecordDecl *RD = GetLocalClassDecl(D);
1303  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1304
1305  Out << 'Z';
1306
1307  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1308    mangleObjCMethodName(MD);
1309  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1310    mangleBlockForPrefix(BD);
1311  else
1312    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1313
1314  Out << 'E';
1315
1316  if (RD) {
1317    // The parameter number is omitted for the last parameter, 0 for the
1318    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1319    // <entity name> will of course contain a <closure-type-name>: Its
1320    // numbering will be local to the particular argument in which it appears
1321    // -- other default arguments do not affect its encoding.
1322    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1323    if (CXXRD->isLambda()) {
1324      if (const ParmVarDecl *Parm
1325              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1326        if (const FunctionDecl *Func
1327              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1328          Out << 'd';
1329          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1330          if (Num > 1)
1331            mangleNumber(Num - 2);
1332          Out << '_';
1333        }
1334      }
1335    }
1336
1337    // Mangle the name relative to the closest enclosing function.
1338    // equality ok because RD derived from ND above
1339    if (D == RD)  {
1340      mangleUnqualifiedName(RD);
1341    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1342      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1343      mangleUnqualifiedBlock(BD);
1344    } else {
1345      const NamedDecl *ND = cast<NamedDecl>(D);
1346      mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1347    }
1348  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1349    // Mangle a block in a default parameter; see above explanation for
1350    // lambdas.
1351    if (const ParmVarDecl *Parm
1352            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1353      if (const FunctionDecl *Func
1354            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1355        Out << 'd';
1356        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1357        if (Num > 1)
1358          mangleNumber(Num - 2);
1359        Out << '_';
1360      }
1361    }
1362
1363    mangleUnqualifiedBlock(BD);
1364  } else {
1365    mangleUnqualifiedName(cast<NamedDecl>(D));
1366  }
1367
1368  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1369    unsigned disc;
1370    if (Context.getNextDiscriminator(ND, disc)) {
1371      if (disc < 10)
1372        Out << '_' << disc;
1373      else
1374        Out << "__" << disc << '_';
1375    }
1376  }
1377}
1378
1379void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1380  if (GetLocalClassDecl(Block)) {
1381    mangleLocalName(Block);
1382    return;
1383  }
1384  const DeclContext *DC = getEffectiveDeclContext(Block);
1385  if (isLocalContainerContext(DC)) {
1386    mangleLocalName(Block);
1387    return;
1388  }
1389  manglePrefix(getEffectiveDeclContext(Block));
1390  mangleUnqualifiedBlock(Block);
1391}
1392
1393void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1394  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1395    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1396        Context->getDeclContext()->isRecord()) {
1397      if (const IdentifierInfo *Name
1398            = cast<NamedDecl>(Context)->getIdentifier()) {
1399        mangleSourceName(Name);
1400        Out << 'M';
1401      }
1402    }
1403  }
1404
1405  // If we have a block mangling number, use it.
1406  unsigned Number = Block->getBlockManglingNumber();
1407  // Otherwise, just make up a number. It doesn't matter what it is because
1408  // the symbol in question isn't externally visible.
1409  if (!Number)
1410    Number = Context.getBlockId(Block, false);
1411  Out << "Ub";
1412  if (Number > 1)
1413    Out << Number - 2;
1414  Out << '_';
1415}
1416
1417void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1418  // If the context of a closure type is an initializer for a class member
1419  // (static or nonstatic), it is encoded in a qualified name with a final
1420  // <prefix> of the form:
1421  //
1422  //   <data-member-prefix> := <member source-name> M
1423  //
1424  // Technically, the data-member-prefix is part of the <prefix>. However,
1425  // since a closure type will always be mangled with a prefix, it's easier
1426  // to emit that last part of the prefix here.
1427  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1428    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1429        Context->getDeclContext()->isRecord()) {
1430      if (const IdentifierInfo *Name
1431            = cast<NamedDecl>(Context)->getIdentifier()) {
1432        mangleSourceName(Name);
1433        Out << 'M';
1434      }
1435    }
1436  }
1437
1438  Out << "Ul";
1439  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1440                                   getAs<FunctionProtoType>();
1441  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1442  Out << "E";
1443
1444  // The number is omitted for the first closure type with a given
1445  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1446  // (in lexical order) with that same <lambda-sig> and context.
1447  //
1448  // The AST keeps track of the number for us.
1449  unsigned Number = Lambda->getLambdaManglingNumber();
1450  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1451  if (Number > 1)
1452    mangleNumber(Number - 2);
1453  Out << '_';
1454}
1455
1456void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1457  switch (qualifier->getKind()) {
1458  case NestedNameSpecifier::Global:
1459    // nothing
1460    return;
1461
1462  case NestedNameSpecifier::Namespace:
1463    mangleName(qualifier->getAsNamespace());
1464    return;
1465
1466  case NestedNameSpecifier::NamespaceAlias:
1467    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1468    return;
1469
1470  case NestedNameSpecifier::TypeSpec:
1471  case NestedNameSpecifier::TypeSpecWithTemplate:
1472    manglePrefix(QualType(qualifier->getAsType(), 0));
1473    return;
1474
1475  case NestedNameSpecifier::Identifier:
1476    // Member expressions can have these without prefixes, but that
1477    // should end up in mangleUnresolvedPrefix instead.
1478    assert(qualifier->getPrefix());
1479    manglePrefix(qualifier->getPrefix());
1480
1481    mangleSourceName(qualifier->getAsIdentifier());
1482    return;
1483  }
1484
1485  llvm_unreachable("unexpected nested name specifier");
1486}
1487
1488void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1489  //  <prefix> ::= <prefix> <unqualified-name>
1490  //           ::= <template-prefix> <template-args>
1491  //           ::= <template-param>
1492  //           ::= # empty
1493  //           ::= <substitution>
1494
1495  DC = IgnoreLinkageSpecDecls(DC);
1496
1497  if (DC->isTranslationUnit())
1498    return;
1499
1500  if (NoFunction && isLocalContainerContext(DC))
1501    return;
1502
1503  assert(!isLocalContainerContext(DC));
1504
1505  const NamedDecl *ND = cast<NamedDecl>(DC);
1506  if (mangleSubstitution(ND))
1507    return;
1508
1509  // Check if we have a template.
1510  const TemplateArgumentList *TemplateArgs = nullptr;
1511  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1512    mangleTemplatePrefix(TD);
1513    mangleTemplateArgs(*TemplateArgs);
1514  } else {
1515    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1516    mangleUnqualifiedName(ND);
1517  }
1518
1519  addSubstitution(ND);
1520}
1521
1522void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1523  // <template-prefix> ::= <prefix> <template unqualified-name>
1524  //                   ::= <template-param>
1525  //                   ::= <substitution>
1526  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1527    return mangleTemplatePrefix(TD);
1528
1529  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1530    manglePrefix(Qualified->getQualifier());
1531
1532  if (OverloadedTemplateStorage *Overloaded
1533                                      = Template.getAsOverloadedTemplate()) {
1534    mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1535                          UnknownArity);
1536    return;
1537  }
1538
1539  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1540  assert(Dependent && "Unknown template name kind?");
1541  manglePrefix(Dependent->getQualifier());
1542  mangleUnscopedTemplateName(Template);
1543}
1544
1545void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1546                                          bool NoFunction) {
1547  // <template-prefix> ::= <prefix> <template unqualified-name>
1548  //                   ::= <template-param>
1549  //                   ::= <substitution>
1550  // <template-template-param> ::= <template-param>
1551  //                               <substitution>
1552
1553  if (mangleSubstitution(ND))
1554    return;
1555
1556  // <template-template-param> ::= <template-param>
1557  if (const TemplateTemplateParmDecl *TTP
1558                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1559    mangleTemplateParameter(TTP->getIndex());
1560    return;
1561  }
1562
1563  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1564  mangleUnqualifiedName(ND->getTemplatedDecl());
1565  addSubstitution(ND);
1566}
1567
1568/// Mangles a template name under the production <type>.  Required for
1569/// template template arguments.
1570///   <type> ::= <class-enum-type>
1571///          ::= <template-param>
1572///          ::= <substitution>
1573void CXXNameMangler::mangleType(TemplateName TN) {
1574  if (mangleSubstitution(TN))
1575    return;
1576
1577  TemplateDecl *TD = nullptr;
1578
1579  switch (TN.getKind()) {
1580  case TemplateName::QualifiedTemplate:
1581    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1582    goto HaveDecl;
1583
1584  case TemplateName::Template:
1585    TD = TN.getAsTemplateDecl();
1586    goto HaveDecl;
1587
1588  HaveDecl:
1589    if (isa<TemplateTemplateParmDecl>(TD))
1590      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1591    else
1592      mangleName(TD);
1593    break;
1594
1595  case TemplateName::OverloadedTemplate:
1596    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1597
1598  case TemplateName::DependentTemplate: {
1599    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1600    assert(Dependent->isIdentifier());
1601
1602    // <class-enum-type> ::= <name>
1603    // <name> ::= <nested-name>
1604    mangleUnresolvedPrefix(Dependent->getQualifier(), nullptr);
1605    mangleSourceName(Dependent->getIdentifier());
1606    break;
1607  }
1608
1609  case TemplateName::SubstTemplateTemplateParm: {
1610    // Substituted template parameters are mangled as the substituted
1611    // template.  This will check for the substitution twice, which is
1612    // fine, but we have to return early so that we don't try to *add*
1613    // the substitution twice.
1614    SubstTemplateTemplateParmStorage *subst
1615      = TN.getAsSubstTemplateTemplateParm();
1616    mangleType(subst->getReplacement());
1617    return;
1618  }
1619
1620  case TemplateName::SubstTemplateTemplateParmPack: {
1621    // FIXME: not clear how to mangle this!
1622    // template <template <class> class T...> class A {
1623    //   template <template <class> class U...> void foo(B<T,U> x...);
1624    // };
1625    Out << "_SUBSTPACK_";
1626    break;
1627  }
1628  }
1629
1630  addSubstitution(TN);
1631}
1632
1633void
1634CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1635  switch (OO) {
1636  // <operator-name> ::= nw     # new
1637  case OO_New: Out << "nw"; break;
1638  //              ::= na        # new[]
1639  case OO_Array_New: Out << "na"; break;
1640  //              ::= dl        # delete
1641  case OO_Delete: Out << "dl"; break;
1642  //              ::= da        # delete[]
1643  case OO_Array_Delete: Out << "da"; break;
1644  //              ::= ps        # + (unary)
1645  //              ::= pl        # + (binary or unknown)
1646  case OO_Plus:
1647    Out << (Arity == 1? "ps" : "pl"); break;
1648  //              ::= ng        # - (unary)
1649  //              ::= mi        # - (binary or unknown)
1650  case OO_Minus:
1651    Out << (Arity == 1? "ng" : "mi"); break;
1652  //              ::= ad        # & (unary)
1653  //              ::= an        # & (binary or unknown)
1654  case OO_Amp:
1655    Out << (Arity == 1? "ad" : "an"); break;
1656  //              ::= de        # * (unary)
1657  //              ::= ml        # * (binary or unknown)
1658  case OO_Star:
1659    // Use binary when unknown.
1660    Out << (Arity == 1? "de" : "ml"); break;
1661  //              ::= co        # ~
1662  case OO_Tilde: Out << "co"; break;
1663  //              ::= dv        # /
1664  case OO_Slash: Out << "dv"; break;
1665  //              ::= rm        # %
1666  case OO_Percent: Out << "rm"; break;
1667  //              ::= or        # |
1668  case OO_Pipe: Out << "or"; break;
1669  //              ::= eo        # ^
1670  case OO_Caret: Out << "eo"; break;
1671  //              ::= aS        # =
1672  case OO_Equal: Out << "aS"; break;
1673  //              ::= pL        # +=
1674  case OO_PlusEqual: Out << "pL"; break;
1675  //              ::= mI        # -=
1676  case OO_MinusEqual: Out << "mI"; break;
1677  //              ::= mL        # *=
1678  case OO_StarEqual: Out << "mL"; break;
1679  //              ::= dV        # /=
1680  case OO_SlashEqual: Out << "dV"; break;
1681  //              ::= rM        # %=
1682  case OO_PercentEqual: Out << "rM"; break;
1683  //              ::= aN        # &=
1684  case OO_AmpEqual: Out << "aN"; break;
1685  //              ::= oR        # |=
1686  case OO_PipeEqual: Out << "oR"; break;
1687  //              ::= eO        # ^=
1688  case OO_CaretEqual: Out << "eO"; break;
1689  //              ::= ls        # <<
1690  case OO_LessLess: Out << "ls"; break;
1691  //              ::= rs        # >>
1692  case OO_GreaterGreater: Out << "rs"; break;
1693  //              ::= lS        # <<=
1694  case OO_LessLessEqual: Out << "lS"; break;
1695  //              ::= rS        # >>=
1696  case OO_GreaterGreaterEqual: Out << "rS"; break;
1697  //              ::= eq        # ==
1698  case OO_EqualEqual: Out << "eq"; break;
1699  //              ::= ne        # !=
1700  case OO_ExclaimEqual: Out << "ne"; break;
1701  //              ::= lt        # <
1702  case OO_Less: Out << "lt"; break;
1703  //              ::= gt        # >
1704  case OO_Greater: Out << "gt"; break;
1705  //              ::= le        # <=
1706  case OO_LessEqual: Out << "le"; break;
1707  //              ::= ge        # >=
1708  case OO_GreaterEqual: Out << "ge"; break;
1709  //              ::= nt        # !
1710  case OO_Exclaim: Out << "nt"; break;
1711  //              ::= aa        # &&
1712  case OO_AmpAmp: Out << "aa"; break;
1713  //              ::= oo        # ||
1714  case OO_PipePipe: Out << "oo"; break;
1715  //              ::= pp        # ++
1716  case OO_PlusPlus: Out << "pp"; break;
1717  //              ::= mm        # --
1718  case OO_MinusMinus: Out << "mm"; break;
1719  //              ::= cm        # ,
1720  case OO_Comma: Out << "cm"; break;
1721  //              ::= pm        # ->*
1722  case OO_ArrowStar: Out << "pm"; break;
1723  //              ::= pt        # ->
1724  case OO_Arrow: Out << "pt"; break;
1725  //              ::= cl        # ()
1726  case OO_Call: Out << "cl"; break;
1727  //              ::= ix        # []
1728  case OO_Subscript: Out << "ix"; break;
1729
1730  //              ::= qu        # ?
1731  // The conditional operator can't be overloaded, but we still handle it when
1732  // mangling expressions.
1733  case OO_Conditional: Out << "qu"; break;
1734
1735  case OO_None:
1736  case NUM_OVERLOADED_OPERATORS:
1737    llvm_unreachable("Not an overloaded operator");
1738  }
1739}
1740
1741void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1742  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1743  if (Quals.hasRestrict())
1744    Out << 'r';
1745  if (Quals.hasVolatile())
1746    Out << 'V';
1747  if (Quals.hasConst())
1748    Out << 'K';
1749
1750  if (Quals.hasAddressSpace()) {
1751    // Address space extension:
1752    //
1753    //   <type> ::= U <target-addrspace>
1754    //   <type> ::= U <OpenCL-addrspace>
1755    //   <type> ::= U <CUDA-addrspace>
1756
1757    SmallString<64> ASString;
1758    unsigned AS = Quals.getAddressSpace();
1759
1760    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1761      //  <target-addrspace> ::= "AS" <address-space-number>
1762      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1763      ASString = "AS" + llvm::utostr_32(TargetAS);
1764    } else {
1765      switch (AS) {
1766      default: llvm_unreachable("Not a language specific address space");
1767      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1768      case LangAS::opencl_global:   ASString = "CLglobal";   break;
1769      case LangAS::opencl_local:    ASString = "CLlocal";    break;
1770      case LangAS::opencl_constant: ASString = "CLconstant"; break;
1771      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1772      case LangAS::cuda_device:     ASString = "CUdevice";   break;
1773      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
1774      case LangAS::cuda_shared:     ASString = "CUshared";   break;
1775      }
1776    }
1777    Out << 'U' << ASString.size() << ASString;
1778  }
1779
1780  StringRef LifetimeName;
1781  switch (Quals.getObjCLifetime()) {
1782  // Objective-C ARC Extension:
1783  //
1784  //   <type> ::= U "__strong"
1785  //   <type> ::= U "__weak"
1786  //   <type> ::= U "__autoreleasing"
1787  case Qualifiers::OCL_None:
1788    break;
1789
1790  case Qualifiers::OCL_Weak:
1791    LifetimeName = "__weak";
1792    break;
1793
1794  case Qualifiers::OCL_Strong:
1795    LifetimeName = "__strong";
1796    break;
1797
1798  case Qualifiers::OCL_Autoreleasing:
1799    LifetimeName = "__autoreleasing";
1800    break;
1801
1802  case Qualifiers::OCL_ExplicitNone:
1803    // The __unsafe_unretained qualifier is *not* mangled, so that
1804    // __unsafe_unretained types in ARC produce the same manglings as the
1805    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1806    // better ABI compatibility.
1807    //
1808    // It's safe to do this because unqualified 'id' won't show up
1809    // in any type signatures that need to be mangled.
1810    break;
1811  }
1812  if (!LifetimeName.empty())
1813    Out << 'U' << LifetimeName.size() << LifetimeName;
1814}
1815
1816void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1817  // <ref-qualifier> ::= R                # lvalue reference
1818  //                 ::= O                # rvalue-reference
1819  switch (RefQualifier) {
1820  case RQ_None:
1821    break;
1822
1823  case RQ_LValue:
1824    Out << 'R';
1825    break;
1826
1827  case RQ_RValue:
1828    Out << 'O';
1829    break;
1830  }
1831}
1832
1833void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1834  Context.mangleObjCMethodName(MD, Out);
1835}
1836
1837void CXXNameMangler::mangleType(QualType T) {
1838  // If our type is instantiation-dependent but not dependent, we mangle
1839  // it as it was written in the source, removing any top-level sugar.
1840  // Otherwise, use the canonical type.
1841  //
1842  // FIXME: This is an approximation of the instantiation-dependent name
1843  // mangling rules, since we should really be using the type as written and
1844  // augmented via semantic analysis (i.e., with implicit conversions and
1845  // default template arguments) for any instantiation-dependent type.
1846  // Unfortunately, that requires several changes to our AST:
1847  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1848  //     uniqued, so that we can handle substitutions properly
1849  //   - Default template arguments will need to be represented in the
1850  //     TemplateSpecializationType, since they need to be mangled even though
1851  //     they aren't written.
1852  //   - Conversions on non-type template arguments need to be expressed, since
1853  //     they can affect the mangling of sizeof/alignof.
1854  if (!T->isInstantiationDependentType() || T->isDependentType())
1855    T = T.getCanonicalType();
1856  else {
1857    // Desugar any types that are purely sugar.
1858    do {
1859      // Don't desugar through template specialization types that aren't
1860      // type aliases. We need to mangle the template arguments as written.
1861      if (const TemplateSpecializationType *TST
1862                                      = dyn_cast<TemplateSpecializationType>(T))
1863        if (!TST->isTypeAlias())
1864          break;
1865
1866      QualType Desugared
1867        = T.getSingleStepDesugaredType(Context.getASTContext());
1868      if (Desugared == T)
1869        break;
1870
1871      T = Desugared;
1872    } while (true);
1873  }
1874  SplitQualType split = T.split();
1875  Qualifiers quals = split.Quals;
1876  const Type *ty = split.Ty;
1877
1878  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1879  if (isSubstitutable && mangleSubstitution(T))
1880    return;
1881
1882  // If we're mangling a qualified array type, push the qualifiers to
1883  // the element type.
1884  if (quals && isa<ArrayType>(T)) {
1885    ty = Context.getASTContext().getAsArrayType(T);
1886    quals = Qualifiers();
1887
1888    // Note that we don't update T: we want to add the
1889    // substitution at the original type.
1890  }
1891
1892  if (quals) {
1893    mangleQualifiers(quals);
1894    // Recurse:  even if the qualified type isn't yet substitutable,
1895    // the unqualified type might be.
1896    mangleType(QualType(ty, 0));
1897  } else {
1898    switch (ty->getTypeClass()) {
1899#define ABSTRACT_TYPE(CLASS, PARENT)
1900#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1901    case Type::CLASS: \
1902      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1903      return;
1904#define TYPE(CLASS, PARENT) \
1905    case Type::CLASS: \
1906      mangleType(static_cast<const CLASS##Type*>(ty)); \
1907      break;
1908#include "clang/AST/TypeNodes.def"
1909    }
1910  }
1911
1912  // Add the substitution.
1913  if (isSubstitutable)
1914    addSubstitution(T);
1915}
1916
1917void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1918  if (!mangleStandardSubstitution(ND))
1919    mangleName(ND);
1920}
1921
1922void CXXNameMangler::mangleType(const BuiltinType *T) {
1923  //  <type>         ::= <builtin-type>
1924  //  <builtin-type> ::= v  # void
1925  //                 ::= w  # wchar_t
1926  //                 ::= b  # bool
1927  //                 ::= c  # char
1928  //                 ::= a  # signed char
1929  //                 ::= h  # unsigned char
1930  //                 ::= s  # short
1931  //                 ::= t  # unsigned short
1932  //                 ::= i  # int
1933  //                 ::= j  # unsigned int
1934  //                 ::= l  # long
1935  //                 ::= m  # unsigned long
1936  //                 ::= x  # long long, __int64
1937  //                 ::= y  # unsigned long long, __int64
1938  //                 ::= n  # __int128
1939  //                 ::= o  # unsigned __int128
1940  //                 ::= f  # float
1941  //                 ::= d  # double
1942  //                 ::= e  # long double, __float80
1943  // UNSUPPORTED:    ::= g  # __float128
1944  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1945  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1946  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1947  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1948  //                 ::= Di # char32_t
1949  //                 ::= Ds # char16_t
1950  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1951  //                 ::= u <source-name>    # vendor extended type
1952  switch (T->getKind()) {
1953  case BuiltinType::Void: Out << 'v'; break;
1954  case BuiltinType::Bool: Out << 'b'; break;
1955  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1956  case BuiltinType::UChar: Out << 'h'; break;
1957  case BuiltinType::UShort: Out << 't'; break;
1958  case BuiltinType::UInt: Out << 'j'; break;
1959  case BuiltinType::ULong: Out << 'm'; break;
1960  case BuiltinType::ULongLong: Out << 'y'; break;
1961  case BuiltinType::UInt128: Out << 'o'; break;
1962  case BuiltinType::SChar: Out << 'a'; break;
1963  case BuiltinType::WChar_S:
1964  case BuiltinType::WChar_U: Out << 'w'; break;
1965  case BuiltinType::Char16: Out << "Ds"; break;
1966  case BuiltinType::Char32: Out << "Di"; break;
1967  case BuiltinType::Short: Out << 's'; break;
1968  case BuiltinType::Int: Out << 'i'; break;
1969  case BuiltinType::Long: Out << 'l'; break;
1970  case BuiltinType::LongLong: Out << 'x'; break;
1971  case BuiltinType::Int128: Out << 'n'; break;
1972  case BuiltinType::Half: Out << "Dh"; break;
1973  case BuiltinType::Float: Out << 'f'; break;
1974  case BuiltinType::Double: Out << 'd'; break;
1975  case BuiltinType::LongDouble: Out << 'e'; break;
1976  case BuiltinType::NullPtr: Out << "Dn"; break;
1977
1978#define BUILTIN_TYPE(Id, SingletonId)
1979#define PLACEHOLDER_TYPE(Id, SingletonId) \
1980  case BuiltinType::Id:
1981#include "clang/AST/BuiltinTypes.def"
1982  case BuiltinType::Dependent:
1983    llvm_unreachable("mangling a placeholder type");
1984  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1985  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1986  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1987  case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1988  case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1989  case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1990  case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1991  case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1992  case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
1993  case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
1994  case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
1995  }
1996}
1997
1998// <type>          ::= <function-type>
1999// <function-type> ::= [<CV-qualifiers>] F [Y]
2000//                      <bare-function-type> [<ref-qualifier>] E
2001void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2002  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2003  // e.g. "const" in "int (A::*)() const".
2004  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2005
2006  Out << 'F';
2007
2008  // FIXME: We don't have enough information in the AST to produce the 'Y'
2009  // encoding for extern "C" function types.
2010  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2011
2012  // Mangle the ref-qualifier, if present.
2013  mangleRefQualifier(T->getRefQualifier());
2014
2015  Out << 'E';
2016}
2017void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2018  llvm_unreachable("Can't mangle K&R function prototypes");
2019}
2020void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2021                                            bool MangleReturnType) {
2022  // We should never be mangling something without a prototype.
2023  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2024
2025  // Record that we're in a function type.  See mangleFunctionParam
2026  // for details on what we're trying to achieve here.
2027  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2028
2029  // <bare-function-type> ::= <signature type>+
2030  if (MangleReturnType) {
2031    FunctionTypeDepth.enterResultType();
2032    mangleType(Proto->getReturnType());
2033    FunctionTypeDepth.leaveResultType();
2034  }
2035
2036  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2037    //   <builtin-type> ::= v   # void
2038    Out << 'v';
2039
2040    FunctionTypeDepth.pop(saved);
2041    return;
2042  }
2043
2044  for (const auto &Arg : Proto->param_types())
2045    mangleType(Context.getASTContext().getSignatureParameterType(Arg));
2046
2047  FunctionTypeDepth.pop(saved);
2048
2049  // <builtin-type>      ::= z  # ellipsis
2050  if (Proto->isVariadic())
2051    Out << 'z';
2052}
2053
2054// <type>            ::= <class-enum-type>
2055// <class-enum-type> ::= <name>
2056void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2057  mangleName(T->getDecl());
2058}
2059
2060// <type>            ::= <class-enum-type>
2061// <class-enum-type> ::= <name>
2062void CXXNameMangler::mangleType(const EnumType *T) {
2063  mangleType(static_cast<const TagType*>(T));
2064}
2065void CXXNameMangler::mangleType(const RecordType *T) {
2066  mangleType(static_cast<const TagType*>(T));
2067}
2068void CXXNameMangler::mangleType(const TagType *T) {
2069  mangleName(T->getDecl());
2070}
2071
2072// <type>       ::= <array-type>
2073// <array-type> ::= A <positive dimension number> _ <element type>
2074//              ::= A [<dimension expression>] _ <element type>
2075void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2076  Out << 'A' << T->getSize() << '_';
2077  mangleType(T->getElementType());
2078}
2079void CXXNameMangler::mangleType(const VariableArrayType *T) {
2080  Out << 'A';
2081  // decayed vla types (size 0) will just be skipped.
2082  if (T->getSizeExpr())
2083    mangleExpression(T->getSizeExpr());
2084  Out << '_';
2085  mangleType(T->getElementType());
2086}
2087void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2088  Out << 'A';
2089  mangleExpression(T->getSizeExpr());
2090  Out << '_';
2091  mangleType(T->getElementType());
2092}
2093void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2094  Out << "A_";
2095  mangleType(T->getElementType());
2096}
2097
2098// <type>                   ::= <pointer-to-member-type>
2099// <pointer-to-member-type> ::= M <class type> <member type>
2100void CXXNameMangler::mangleType(const MemberPointerType *T) {
2101  Out << 'M';
2102  mangleType(QualType(T->getClass(), 0));
2103  QualType PointeeType = T->getPointeeType();
2104  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2105    mangleType(FPT);
2106
2107    // Itanium C++ ABI 5.1.8:
2108    //
2109    //   The type of a non-static member function is considered to be different,
2110    //   for the purposes of substitution, from the type of a namespace-scope or
2111    //   static member function whose type appears similar. The types of two
2112    //   non-static member functions are considered to be different, for the
2113    //   purposes of substitution, if the functions are members of different
2114    //   classes. In other words, for the purposes of substitution, the class of
2115    //   which the function is a member is considered part of the type of
2116    //   function.
2117
2118    // Given that we already substitute member function pointers as a
2119    // whole, the net effect of this rule is just to unconditionally
2120    // suppress substitution on the function type in a member pointer.
2121    // We increment the SeqID here to emulate adding an entry to the
2122    // substitution table.
2123    ++SeqID;
2124  } else
2125    mangleType(PointeeType);
2126}
2127
2128// <type>           ::= <template-param>
2129void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2130  mangleTemplateParameter(T->getIndex());
2131}
2132
2133// <type>           ::= <template-param>
2134void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2135  // FIXME: not clear how to mangle this!
2136  // template <class T...> class A {
2137  //   template <class U...> void foo(T(*)(U) x...);
2138  // };
2139  Out << "_SUBSTPACK_";
2140}
2141
2142// <type> ::= P <type>   # pointer-to
2143void CXXNameMangler::mangleType(const PointerType *T) {
2144  Out << 'P';
2145  mangleType(T->getPointeeType());
2146}
2147void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2148  Out << 'P';
2149  mangleType(T->getPointeeType());
2150}
2151
2152// <type> ::= R <type>   # reference-to
2153void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2154  Out << 'R';
2155  mangleType(T->getPointeeType());
2156}
2157
2158// <type> ::= O <type>   # rvalue reference-to (C++0x)
2159void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2160  Out << 'O';
2161  mangleType(T->getPointeeType());
2162}
2163
2164// <type> ::= C <type>   # complex pair (C 2000)
2165void CXXNameMangler::mangleType(const ComplexType *T) {
2166  Out << 'C';
2167  mangleType(T->getElementType());
2168}
2169
2170// ARM's ABI for Neon vector types specifies that they should be mangled as
2171// if they are structs (to match ARM's initial implementation).  The
2172// vector type must be one of the special types predefined by ARM.
2173void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2174  QualType EltType = T->getElementType();
2175  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2176  const char *EltName = nullptr;
2177  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2178    switch (cast<BuiltinType>(EltType)->getKind()) {
2179    case BuiltinType::SChar:
2180    case BuiltinType::UChar:
2181      EltName = "poly8_t";
2182      break;
2183    case BuiltinType::Short:
2184    case BuiltinType::UShort:
2185      EltName = "poly16_t";
2186      break;
2187    case BuiltinType::ULongLong:
2188      EltName = "poly64_t";
2189      break;
2190    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2191    }
2192  } else {
2193    switch (cast<BuiltinType>(EltType)->getKind()) {
2194    case BuiltinType::SChar:     EltName = "int8_t"; break;
2195    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2196    case BuiltinType::Short:     EltName = "int16_t"; break;
2197    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2198    case BuiltinType::Int:       EltName = "int32_t"; break;
2199    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2200    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2201    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2202    case BuiltinType::Double:    EltName = "float64_t"; break;
2203    case BuiltinType::Float:     EltName = "float32_t"; break;
2204    case BuiltinType::Half:      EltName = "float16_t";break;
2205    default:
2206      llvm_unreachable("unexpected Neon vector element type");
2207    }
2208  }
2209  const char *BaseName = nullptr;
2210  unsigned BitSize = (T->getNumElements() *
2211                      getASTContext().getTypeSize(EltType));
2212  if (BitSize == 64)
2213    BaseName = "__simd64_";
2214  else {
2215    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2216    BaseName = "__simd128_";
2217  }
2218  Out << strlen(BaseName) + strlen(EltName);
2219  Out << BaseName << EltName;
2220}
2221
2222static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2223  switch (EltType->getKind()) {
2224  case BuiltinType::SChar:
2225    return "Int8";
2226  case BuiltinType::Short:
2227    return "Int16";
2228  case BuiltinType::Int:
2229    return "Int32";
2230  case BuiltinType::Long:
2231  case BuiltinType::LongLong:
2232    return "Int64";
2233  case BuiltinType::UChar:
2234    return "Uint8";
2235  case BuiltinType::UShort:
2236    return "Uint16";
2237  case BuiltinType::UInt:
2238    return "Uint32";
2239  case BuiltinType::ULong:
2240  case BuiltinType::ULongLong:
2241    return "Uint64";
2242  case BuiltinType::Half:
2243    return "Float16";
2244  case BuiltinType::Float:
2245    return "Float32";
2246  case BuiltinType::Double:
2247    return "Float64";
2248  default:
2249    llvm_unreachable("Unexpected vector element base type");
2250  }
2251}
2252
2253// AArch64's ABI for Neon vector types specifies that they should be mangled as
2254// the equivalent internal name. The vector type must be one of the special
2255// types predefined by ARM.
2256void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2257  QualType EltType = T->getElementType();
2258  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2259  unsigned BitSize =
2260      (T->getNumElements() * getASTContext().getTypeSize(EltType));
2261  (void)BitSize; // Silence warning.
2262
2263  assert((BitSize == 64 || BitSize == 128) &&
2264         "Neon vector type not 64 or 128 bits");
2265
2266  StringRef EltName;
2267  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2268    switch (cast<BuiltinType>(EltType)->getKind()) {
2269    case BuiltinType::UChar:
2270      EltName = "Poly8";
2271      break;
2272    case BuiltinType::UShort:
2273      EltName = "Poly16";
2274      break;
2275    case BuiltinType::ULong:
2276      EltName = "Poly64";
2277      break;
2278    default:
2279      llvm_unreachable("unexpected Neon polynomial vector element type");
2280    }
2281  } else
2282    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2283
2284  std::string TypeName =
2285      ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2286  Out << TypeName.length() << TypeName;
2287}
2288
2289// GNU extension: vector types
2290// <type>                  ::= <vector-type>
2291// <vector-type>           ::= Dv <positive dimension number> _
2292//                                    <extended element type>
2293//                         ::= Dv [<dimension expression>] _ <element type>
2294// <extended element type> ::= <element type>
2295//                         ::= p # AltiVec vector pixel
2296//                         ::= b # Altivec vector bool
2297void CXXNameMangler::mangleType(const VectorType *T) {
2298  if ((T->getVectorKind() == VectorType::NeonVector ||
2299       T->getVectorKind() == VectorType::NeonPolyVector)) {
2300    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2301    llvm::Triple::ArchType Arch =
2302        getASTContext().getTargetInfo().getTriple().getArch();
2303    if ((Arch == llvm::Triple::aarch64 ||
2304         Arch == llvm::Triple::aarch64_be ||
2305         Arch == llvm::Triple::arm64_be ||
2306         Arch == llvm::Triple::arm64) && !Target.isOSDarwin())
2307      mangleAArch64NeonVectorType(T);
2308    else
2309      mangleNeonVectorType(T);
2310    return;
2311  }
2312  Out << "Dv" << T->getNumElements() << '_';
2313  if (T->getVectorKind() == VectorType::AltiVecPixel)
2314    Out << 'p';
2315  else if (T->getVectorKind() == VectorType::AltiVecBool)
2316    Out << 'b';
2317  else
2318    mangleType(T->getElementType());
2319}
2320void CXXNameMangler::mangleType(const ExtVectorType *T) {
2321  mangleType(static_cast<const VectorType*>(T));
2322}
2323void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2324  Out << "Dv";
2325  mangleExpression(T->getSizeExpr());
2326  Out << '_';
2327  mangleType(T->getElementType());
2328}
2329
2330void CXXNameMangler::mangleType(const PackExpansionType *T) {
2331  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2332  Out << "Dp";
2333  mangleType(T->getPattern());
2334}
2335
2336void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2337  mangleSourceName(T->getDecl()->getIdentifier());
2338}
2339
2340void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2341  if (!T->qual_empty()) {
2342    // Mangle protocol qualifiers.
2343    SmallString<64> QualStr;
2344    llvm::raw_svector_ostream QualOS(QualStr);
2345    QualOS << "objcproto";
2346    for (const auto *I : T->quals()) {
2347      StringRef name = I->getName();
2348      QualOS << name.size() << name;
2349    }
2350    QualOS.flush();
2351    Out << 'U' << QualStr.size() << QualStr;
2352  }
2353  mangleType(T->getBaseType());
2354}
2355
2356void CXXNameMangler::mangleType(const BlockPointerType *T) {
2357  Out << "U13block_pointer";
2358  mangleType(T->getPointeeType());
2359}
2360
2361void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2362  // Mangle injected class name types as if the user had written the
2363  // specialization out fully.  It may not actually be possible to see
2364  // this mangling, though.
2365  mangleType(T->getInjectedSpecializationType());
2366}
2367
2368void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2369  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2370    mangleName(TD, T->getArgs(), T->getNumArgs());
2371  } else {
2372    if (mangleSubstitution(QualType(T, 0)))
2373      return;
2374
2375    mangleTemplatePrefix(T->getTemplateName());
2376
2377    // FIXME: GCC does not appear to mangle the template arguments when
2378    // the template in question is a dependent template name. Should we
2379    // emulate that badness?
2380    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2381    addSubstitution(QualType(T, 0));
2382  }
2383}
2384
2385void CXXNameMangler::mangleType(const DependentNameType *T) {
2386  // Proposal by cxx-abi-dev, 2014-03-26
2387  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
2388  //                                 # dependent elaborated type specifier using
2389  //                                 # 'typename'
2390  //                   ::= Ts <name> # dependent elaborated type specifier using
2391  //                                 # 'struct' or 'class'
2392  //                   ::= Tu <name> # dependent elaborated type specifier using
2393  //                                 # 'union'
2394  //                   ::= Te <name> # dependent elaborated type specifier using
2395  //                                 # 'enum'
2396  switch (T->getKeyword()) {
2397    case ETK_Typename:
2398      break;
2399    case ETK_Struct:
2400    case ETK_Class:
2401    case ETK_Interface:
2402      Out << "Ts";
2403      break;
2404    case ETK_Union:
2405      Out << "Tu";
2406      break;
2407    case ETK_Enum:
2408      Out << "Te";
2409      break;
2410    default:
2411      llvm_unreachable("unexpected keyword for dependent type name");
2412  }
2413  // Typename types are always nested
2414  Out << 'N';
2415  manglePrefix(T->getQualifier());
2416  mangleSourceName(T->getIdentifier());
2417  Out << 'E';
2418}
2419
2420void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2421  // Dependently-scoped template types are nested if they have a prefix.
2422  Out << 'N';
2423
2424  // TODO: avoid making this TemplateName.
2425  TemplateName Prefix =
2426    getASTContext().getDependentTemplateName(T->getQualifier(),
2427                                             T->getIdentifier());
2428  mangleTemplatePrefix(Prefix);
2429
2430  // FIXME: GCC does not appear to mangle the template arguments when
2431  // the template in question is a dependent template name. Should we
2432  // emulate that badness?
2433  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2434  Out << 'E';
2435}
2436
2437void CXXNameMangler::mangleType(const TypeOfType *T) {
2438  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2439  // "extension with parameters" mangling.
2440  Out << "u6typeof";
2441}
2442
2443void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2444  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2445  // "extension with parameters" mangling.
2446  Out << "u6typeof";
2447}
2448
2449void CXXNameMangler::mangleType(const DecltypeType *T) {
2450  Expr *E = T->getUnderlyingExpr();
2451
2452  // type ::= Dt <expression> E  # decltype of an id-expression
2453  //                             #   or class member access
2454  //      ::= DT <expression> E  # decltype of an expression
2455
2456  // This purports to be an exhaustive list of id-expressions and
2457  // class member accesses.  Note that we do not ignore parentheses;
2458  // parentheses change the semantics of decltype for these
2459  // expressions (and cause the mangler to use the other form).
2460  if (isa<DeclRefExpr>(E) ||
2461      isa<MemberExpr>(E) ||
2462      isa<UnresolvedLookupExpr>(E) ||
2463      isa<DependentScopeDeclRefExpr>(E) ||
2464      isa<CXXDependentScopeMemberExpr>(E) ||
2465      isa<UnresolvedMemberExpr>(E))
2466    Out << "Dt";
2467  else
2468    Out << "DT";
2469  mangleExpression(E);
2470  Out << 'E';
2471}
2472
2473void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2474  // If this is dependent, we need to record that. If not, we simply
2475  // mangle it as the underlying type since they are equivalent.
2476  if (T->isDependentType()) {
2477    Out << 'U';
2478
2479    switch (T->getUTTKind()) {
2480      case UnaryTransformType::EnumUnderlyingType:
2481        Out << "3eut";
2482        break;
2483    }
2484  }
2485
2486  mangleType(T->getUnderlyingType());
2487}
2488
2489void CXXNameMangler::mangleType(const AutoType *T) {
2490  QualType D = T->getDeducedType();
2491  // <builtin-type> ::= Da  # dependent auto
2492  if (D.isNull())
2493    Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2494  else
2495    mangleType(D);
2496}
2497
2498void CXXNameMangler::mangleType(const AtomicType *T) {
2499  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
2500  // (Until there's a standardized mangling...)
2501  Out << "U7_Atomic";
2502  mangleType(T->getValueType());
2503}
2504
2505void CXXNameMangler::mangleIntegerLiteral(QualType T,
2506                                          const llvm::APSInt &Value) {
2507  //  <expr-primary> ::= L <type> <value number> E # integer literal
2508  Out << 'L';
2509
2510  mangleType(T);
2511  if (T->isBooleanType()) {
2512    // Boolean values are encoded as 0/1.
2513    Out << (Value.getBoolValue() ? '1' : '0');
2514  } else {
2515    mangleNumber(Value);
2516  }
2517  Out << 'E';
2518
2519}
2520
2521/// Mangles a member expression.
2522void CXXNameMangler::mangleMemberExpr(const Expr *base,
2523                                      bool isArrow,
2524                                      NestedNameSpecifier *qualifier,
2525                                      NamedDecl *firstQualifierLookup,
2526                                      DeclarationName member,
2527                                      unsigned arity) {
2528  // <expression> ::= dt <expression> <unresolved-name>
2529  //              ::= pt <expression> <unresolved-name>
2530  if (base) {
2531    if (base->isImplicitCXXThis()) {
2532      // Note: GCC mangles member expressions to the implicit 'this' as
2533      // *this., whereas we represent them as this->. The Itanium C++ ABI
2534      // does not specify anything here, so we follow GCC.
2535      Out << "dtdefpT";
2536    } else {
2537      Out << (isArrow ? "pt" : "dt");
2538      mangleExpression(base);
2539    }
2540  }
2541  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2542}
2543
2544/// Look at the callee of the given call expression and determine if
2545/// it's a parenthesized id-expression which would have triggered ADL
2546/// otherwise.
2547static bool isParenthesizedADLCallee(const CallExpr *call) {
2548  const Expr *callee = call->getCallee();
2549  const Expr *fn = callee->IgnoreParens();
2550
2551  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2552  // too, but for those to appear in the callee, it would have to be
2553  // parenthesized.
2554  if (callee == fn) return false;
2555
2556  // Must be an unresolved lookup.
2557  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2558  if (!lookup) return false;
2559
2560  assert(!lookup->requiresADL());
2561
2562  // Must be an unqualified lookup.
2563  if (lookup->getQualifier()) return false;
2564
2565  // Must not have found a class member.  Note that if one is a class
2566  // member, they're all class members.
2567  if (lookup->getNumDecls() > 0 &&
2568      (*lookup->decls_begin())->isCXXClassMember())
2569    return false;
2570
2571  // Otherwise, ADL would have been triggered.
2572  return true;
2573}
2574
2575void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2576  // <expression> ::= <unary operator-name> <expression>
2577  //              ::= <binary operator-name> <expression> <expression>
2578  //              ::= <trinary operator-name> <expression> <expression> <expression>
2579  //              ::= cv <type> expression           # conversion with one argument
2580  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2581  //              ::= st <type>                      # sizeof (a type)
2582  //              ::= at <type>                      # alignof (a type)
2583  //              ::= <template-param>
2584  //              ::= <function-param>
2585  //              ::= sr <type> <unqualified-name>                   # dependent name
2586  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2587  //              ::= ds <expression> <expression>                   # expr.*expr
2588  //              ::= sZ <template-param>                            # size of a parameter pack
2589  //              ::= sZ <function-param>    # size of a function parameter pack
2590  //              ::= <expr-primary>
2591  // <expr-primary> ::= L <type> <value number> E    # integer literal
2592  //                ::= L <type <value float> E      # floating literal
2593  //                ::= L <mangled-name> E           # external name
2594  //                ::= fpT                          # 'this' expression
2595  QualType ImplicitlyConvertedToType;
2596
2597recurse:
2598  switch (E->getStmtClass()) {
2599  case Expr::NoStmtClass:
2600#define ABSTRACT_STMT(Type)
2601#define EXPR(Type, Base)
2602#define STMT(Type, Base) \
2603  case Expr::Type##Class:
2604#include "clang/AST/StmtNodes.inc"
2605    // fallthrough
2606
2607  // These all can only appear in local or variable-initialization
2608  // contexts and so should never appear in a mangling.
2609  case Expr::AddrLabelExprClass:
2610  case Expr::DesignatedInitExprClass:
2611  case Expr::ImplicitValueInitExprClass:
2612  case Expr::ParenListExprClass:
2613  case Expr::LambdaExprClass:
2614  case Expr::MSPropertyRefExprClass:
2615    llvm_unreachable("unexpected statement kind");
2616
2617  // FIXME: invent manglings for all these.
2618  case Expr::BlockExprClass:
2619  case Expr::CXXPseudoDestructorExprClass:
2620  case Expr::ChooseExprClass:
2621  case Expr::CompoundLiteralExprClass:
2622  case Expr::ExtVectorElementExprClass:
2623  case Expr::GenericSelectionExprClass:
2624  case Expr::ObjCEncodeExprClass:
2625  case Expr::ObjCIsaExprClass:
2626  case Expr::ObjCIvarRefExprClass:
2627  case Expr::ObjCMessageExprClass:
2628  case Expr::ObjCPropertyRefExprClass:
2629  case Expr::ObjCProtocolExprClass:
2630  case Expr::ObjCSelectorExprClass:
2631  case Expr::ObjCStringLiteralClass:
2632  case Expr::ObjCBoxedExprClass:
2633  case Expr::ObjCArrayLiteralClass:
2634  case Expr::ObjCDictionaryLiteralClass:
2635  case Expr::ObjCSubscriptRefExprClass:
2636  case Expr::ObjCIndirectCopyRestoreExprClass:
2637  case Expr::OffsetOfExprClass:
2638  case Expr::PredefinedExprClass:
2639  case Expr::ShuffleVectorExprClass:
2640  case Expr::ConvertVectorExprClass:
2641  case Expr::StmtExprClass:
2642  case Expr::TypeTraitExprClass:
2643  case Expr::ArrayTypeTraitExprClass:
2644  case Expr::ExpressionTraitExprClass:
2645  case Expr::VAArgExprClass:
2646  case Expr::CXXUuidofExprClass:
2647  case Expr::CUDAKernelCallExprClass:
2648  case Expr::AsTypeExprClass:
2649  case Expr::PseudoObjectExprClass:
2650  case Expr::AtomicExprClass:
2651  {
2652    // As bad as this diagnostic is, it's better than crashing.
2653    DiagnosticsEngine &Diags = Context.getDiags();
2654    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2655                                     "cannot yet mangle expression type %0");
2656    Diags.Report(E->getExprLoc(), DiagID)
2657      << E->getStmtClassName() << E->getSourceRange();
2658    break;
2659  }
2660
2661  // Even gcc-4.5 doesn't mangle this.
2662  case Expr::BinaryConditionalOperatorClass: {
2663    DiagnosticsEngine &Diags = Context.getDiags();
2664    unsigned DiagID =
2665      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2666                "?: operator with omitted middle operand cannot be mangled");
2667    Diags.Report(E->getExprLoc(), DiagID)
2668      << E->getStmtClassName() << E->getSourceRange();
2669    break;
2670  }
2671
2672  // These are used for internal purposes and cannot be meaningfully mangled.
2673  case Expr::OpaqueValueExprClass:
2674    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2675
2676  case Expr::InitListExprClass: {
2677    Out << "il";
2678    const InitListExpr *InitList = cast<InitListExpr>(E);
2679    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2680      mangleExpression(InitList->getInit(i));
2681    Out << "E";
2682    break;
2683  }
2684
2685  case Expr::CXXDefaultArgExprClass:
2686    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2687    break;
2688
2689  case Expr::CXXDefaultInitExprClass:
2690    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2691    break;
2692
2693  case Expr::CXXStdInitializerListExprClass:
2694    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2695    break;
2696
2697  case Expr::SubstNonTypeTemplateParmExprClass:
2698    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2699                     Arity);
2700    break;
2701
2702  case Expr::UserDefinedLiteralClass:
2703    // We follow g++'s approach of mangling a UDL as a call to the literal
2704    // operator.
2705  case Expr::CXXMemberCallExprClass: // fallthrough
2706  case Expr::CallExprClass: {
2707    const CallExpr *CE = cast<CallExpr>(E);
2708
2709    // <expression> ::= cp <simple-id> <expression>* E
2710    // We use this mangling only when the call would use ADL except
2711    // for being parenthesized.  Per discussion with David
2712    // Vandervoorde, 2011.04.25.
2713    if (isParenthesizedADLCallee(CE)) {
2714      Out << "cp";
2715      // The callee here is a parenthesized UnresolvedLookupExpr with
2716      // no qualifier and should always get mangled as a <simple-id>
2717      // anyway.
2718
2719    // <expression> ::= cl <expression>* E
2720    } else {
2721      Out << "cl";
2722    }
2723
2724    mangleExpression(CE->getCallee(), CE->getNumArgs());
2725    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2726      mangleExpression(CE->getArg(I));
2727    Out << 'E';
2728    break;
2729  }
2730
2731  case Expr::CXXNewExprClass: {
2732    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2733    if (New->isGlobalNew()) Out << "gs";
2734    Out << (New->isArray() ? "na" : "nw");
2735    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2736           E = New->placement_arg_end(); I != E; ++I)
2737      mangleExpression(*I);
2738    Out << '_';
2739    mangleType(New->getAllocatedType());
2740    if (New->hasInitializer()) {
2741      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2742        Out << "il";
2743      else
2744        Out << "pi";
2745      const Expr *Init = New->getInitializer();
2746      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2747        // Directly inline the initializers.
2748        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2749                                                  E = CCE->arg_end();
2750             I != E; ++I)
2751          mangleExpression(*I);
2752      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2753        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2754          mangleExpression(PLE->getExpr(i));
2755      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2756                 isa<InitListExpr>(Init)) {
2757        // Only take InitListExprs apart for list-initialization.
2758        const InitListExpr *InitList = cast<InitListExpr>(Init);
2759        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2760          mangleExpression(InitList->getInit(i));
2761      } else
2762        mangleExpression(Init);
2763    }
2764    Out << 'E';
2765    break;
2766  }
2767
2768  case Expr::MemberExprClass: {
2769    const MemberExpr *ME = cast<MemberExpr>(E);
2770    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2771                     ME->getQualifier(), nullptr,
2772                     ME->getMemberDecl()->getDeclName(), Arity);
2773    break;
2774  }
2775
2776  case Expr::UnresolvedMemberExprClass: {
2777    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2778    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2779                     ME->getQualifier(), nullptr, ME->getMemberName(),
2780                     Arity);
2781    if (ME->hasExplicitTemplateArgs())
2782      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2783    break;
2784  }
2785
2786  case Expr::CXXDependentScopeMemberExprClass: {
2787    const CXXDependentScopeMemberExpr *ME
2788      = cast<CXXDependentScopeMemberExpr>(E);
2789    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2790                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2791                     ME->getMember(), Arity);
2792    if (ME->hasExplicitTemplateArgs())
2793      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2794    break;
2795  }
2796
2797  case Expr::UnresolvedLookupExprClass: {
2798    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2799    mangleUnresolvedName(ULE->getQualifier(), nullptr, ULE->getName(), Arity);
2800
2801    // All the <unresolved-name> productions end in a
2802    // base-unresolved-name, where <template-args> are just tacked
2803    // onto the end.
2804    if (ULE->hasExplicitTemplateArgs())
2805      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2806    break;
2807  }
2808
2809  case Expr::CXXUnresolvedConstructExprClass: {
2810    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2811    unsigned N = CE->arg_size();
2812
2813    Out << "cv";
2814    mangleType(CE->getType());
2815    if (N != 1) Out << '_';
2816    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2817    if (N != 1) Out << 'E';
2818    break;
2819  }
2820
2821  case Expr::CXXTemporaryObjectExprClass:
2822  case Expr::CXXConstructExprClass: {
2823    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2824    unsigned N = CE->getNumArgs();
2825
2826    if (CE->isListInitialization())
2827      Out << "tl";
2828    else
2829      Out << "cv";
2830    mangleType(CE->getType());
2831    if (N != 1) Out << '_';
2832    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2833    if (N != 1) Out << 'E';
2834    break;
2835  }
2836
2837  case Expr::CXXScalarValueInitExprClass:
2838    Out <<"cv";
2839    mangleType(E->getType());
2840    Out <<"_E";
2841    break;
2842
2843  case Expr::CXXNoexceptExprClass:
2844    Out << "nx";
2845    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2846    break;
2847
2848  case Expr::UnaryExprOrTypeTraitExprClass: {
2849    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2850
2851    if (!SAE->isInstantiationDependent()) {
2852      // Itanium C++ ABI:
2853      //   If the operand of a sizeof or alignof operator is not
2854      //   instantiation-dependent it is encoded as an integer literal
2855      //   reflecting the result of the operator.
2856      //
2857      //   If the result of the operator is implicitly converted to a known
2858      //   integer type, that type is used for the literal; otherwise, the type
2859      //   of std::size_t or std::ptrdiff_t is used.
2860      QualType T = (ImplicitlyConvertedToType.isNull() ||
2861                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2862                                                    : ImplicitlyConvertedToType;
2863      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2864      mangleIntegerLiteral(T, V);
2865      break;
2866    }
2867
2868    switch(SAE->getKind()) {
2869    case UETT_SizeOf:
2870      Out << 's';
2871      break;
2872    case UETT_AlignOf:
2873      Out << 'a';
2874      break;
2875    case UETT_VecStep:
2876      DiagnosticsEngine &Diags = Context.getDiags();
2877      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2878                                     "cannot yet mangle vec_step expression");
2879      Diags.Report(DiagID);
2880      return;
2881    }
2882    if (SAE->isArgumentType()) {
2883      Out << 't';
2884      mangleType(SAE->getArgumentType());
2885    } else {
2886      Out << 'z';
2887      mangleExpression(SAE->getArgumentExpr());
2888    }
2889    break;
2890  }
2891
2892  case Expr::CXXThrowExprClass: {
2893    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2894    //  <expression> ::= tw <expression>  # throw expression
2895    //               ::= tr               # rethrow
2896    if (TE->getSubExpr()) {
2897      Out << "tw";
2898      mangleExpression(TE->getSubExpr());
2899    } else {
2900      Out << "tr";
2901    }
2902    break;
2903  }
2904
2905  case Expr::CXXTypeidExprClass: {
2906    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2907    //  <expression> ::= ti <type>        # typeid (type)
2908    //               ::= te <expression>  # typeid (expression)
2909    if (TIE->isTypeOperand()) {
2910      Out << "ti";
2911      mangleType(TIE->getTypeOperand(Context.getASTContext()));
2912    } else {
2913      Out << "te";
2914      mangleExpression(TIE->getExprOperand());
2915    }
2916    break;
2917  }
2918
2919  case Expr::CXXDeleteExprClass: {
2920    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2921    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
2922    //               ::= [gs] da <expression>  # [::] delete [] expr
2923    if (DE->isGlobalDelete()) Out << "gs";
2924    Out << (DE->isArrayForm() ? "da" : "dl");
2925    mangleExpression(DE->getArgument());
2926    break;
2927  }
2928
2929  case Expr::UnaryOperatorClass: {
2930    const UnaryOperator *UO = cast<UnaryOperator>(E);
2931    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2932                       /*Arity=*/1);
2933    mangleExpression(UO->getSubExpr());
2934    break;
2935  }
2936
2937  case Expr::ArraySubscriptExprClass: {
2938    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2939
2940    // Array subscript is treated as a syntactically weird form of
2941    // binary operator.
2942    Out << "ix";
2943    mangleExpression(AE->getLHS());
2944    mangleExpression(AE->getRHS());
2945    break;
2946  }
2947
2948  case Expr::CompoundAssignOperatorClass: // fallthrough
2949  case Expr::BinaryOperatorClass: {
2950    const BinaryOperator *BO = cast<BinaryOperator>(E);
2951    if (BO->getOpcode() == BO_PtrMemD)
2952      Out << "ds";
2953    else
2954      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2955                         /*Arity=*/2);
2956    mangleExpression(BO->getLHS());
2957    mangleExpression(BO->getRHS());
2958    break;
2959  }
2960
2961  case Expr::ConditionalOperatorClass: {
2962    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2963    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2964    mangleExpression(CO->getCond());
2965    mangleExpression(CO->getLHS(), Arity);
2966    mangleExpression(CO->getRHS(), Arity);
2967    break;
2968  }
2969
2970  case Expr::ImplicitCastExprClass: {
2971    ImplicitlyConvertedToType = E->getType();
2972    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2973    goto recurse;
2974  }
2975
2976  case Expr::ObjCBridgedCastExprClass: {
2977    // Mangle ownership casts as a vendor extended operator __bridge,
2978    // __bridge_transfer, or __bridge_retain.
2979    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2980    Out << "v1U" << Kind.size() << Kind;
2981  }
2982  // Fall through to mangle the cast itself.
2983
2984  case Expr::CStyleCastExprClass:
2985  case Expr::CXXStaticCastExprClass:
2986  case Expr::CXXDynamicCastExprClass:
2987  case Expr::CXXReinterpretCastExprClass:
2988  case Expr::CXXConstCastExprClass:
2989  case Expr::CXXFunctionalCastExprClass: {
2990    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2991    Out << "cv";
2992    mangleType(ECE->getType());
2993    mangleExpression(ECE->getSubExpr());
2994    break;
2995  }
2996
2997  case Expr::CXXOperatorCallExprClass: {
2998    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2999    unsigned NumArgs = CE->getNumArgs();
3000    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3001    // Mangle the arguments.
3002    for (unsigned i = 0; i != NumArgs; ++i)
3003      mangleExpression(CE->getArg(i));
3004    break;
3005  }
3006
3007  case Expr::ParenExprClass:
3008    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3009    break;
3010
3011  case Expr::DeclRefExprClass: {
3012    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3013
3014    switch (D->getKind()) {
3015    default:
3016      //  <expr-primary> ::= L <mangled-name> E # external name
3017      Out << 'L';
3018      mangle(D, "_Z");
3019      Out << 'E';
3020      break;
3021
3022    case Decl::ParmVar:
3023      mangleFunctionParam(cast<ParmVarDecl>(D));
3024      break;
3025
3026    case Decl::EnumConstant: {
3027      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3028      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3029      break;
3030    }
3031
3032    case Decl::NonTypeTemplateParm: {
3033      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3034      mangleTemplateParameter(PD->getIndex());
3035      break;
3036    }
3037
3038    }
3039
3040    break;
3041  }
3042
3043  case Expr::SubstNonTypeTemplateParmPackExprClass:
3044    // FIXME: not clear how to mangle this!
3045    // template <unsigned N...> class A {
3046    //   template <class U...> void foo(U (&x)[N]...);
3047    // };
3048    Out << "_SUBSTPACK_";
3049    break;
3050
3051  case Expr::FunctionParmPackExprClass: {
3052    // FIXME: not clear how to mangle this!
3053    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3054    Out << "v110_SUBSTPACK";
3055    mangleFunctionParam(FPPE->getParameterPack());
3056    break;
3057  }
3058
3059  case Expr::DependentScopeDeclRefExprClass: {
3060    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3061    mangleUnresolvedName(DRE->getQualifier(), nullptr, DRE->getDeclName(),
3062                         Arity);
3063
3064    // All the <unresolved-name> productions end in a
3065    // base-unresolved-name, where <template-args> are just tacked
3066    // onto the end.
3067    if (DRE->hasExplicitTemplateArgs())
3068      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3069    break;
3070  }
3071
3072  case Expr::CXXBindTemporaryExprClass:
3073    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3074    break;
3075
3076  case Expr::ExprWithCleanupsClass:
3077    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3078    break;
3079
3080  case Expr::FloatingLiteralClass: {
3081    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3082    Out << 'L';
3083    mangleType(FL->getType());
3084    mangleFloat(FL->getValue());
3085    Out << 'E';
3086    break;
3087  }
3088
3089  case Expr::CharacterLiteralClass:
3090    Out << 'L';
3091    mangleType(E->getType());
3092    Out << cast<CharacterLiteral>(E)->getValue();
3093    Out << 'E';
3094    break;
3095
3096  // FIXME. __objc_yes/__objc_no are mangled same as true/false
3097  case Expr::ObjCBoolLiteralExprClass:
3098    Out << "Lb";
3099    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3100    Out << 'E';
3101    break;
3102
3103  case Expr::CXXBoolLiteralExprClass:
3104    Out << "Lb";
3105    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3106    Out << 'E';
3107    break;
3108
3109  case Expr::IntegerLiteralClass: {
3110    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3111    if (E->getType()->isSignedIntegerType())
3112      Value.setIsSigned(true);
3113    mangleIntegerLiteral(E->getType(), Value);
3114    break;
3115  }
3116
3117  case Expr::ImaginaryLiteralClass: {
3118    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3119    // Mangle as if a complex literal.
3120    // Proposal from David Vandevoorde, 2010.06.30.
3121    Out << 'L';
3122    mangleType(E->getType());
3123    if (const FloatingLiteral *Imag =
3124          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3125      // Mangle a floating-point zero of the appropriate type.
3126      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3127      Out << '_';
3128      mangleFloat(Imag->getValue());
3129    } else {
3130      Out << "0_";
3131      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3132      if (IE->getSubExpr()->getType()->isSignedIntegerType())
3133        Value.setIsSigned(true);
3134      mangleNumber(Value);
3135    }
3136    Out << 'E';
3137    break;
3138  }
3139
3140  case Expr::StringLiteralClass: {
3141    // Revised proposal from David Vandervoorde, 2010.07.15.
3142    Out << 'L';
3143    assert(isa<ConstantArrayType>(E->getType()));
3144    mangleType(E->getType());
3145    Out << 'E';
3146    break;
3147  }
3148
3149  case Expr::GNUNullExprClass:
3150    // FIXME: should this really be mangled the same as nullptr?
3151    // fallthrough
3152
3153  case Expr::CXXNullPtrLiteralExprClass: {
3154    Out << "LDnE";
3155    break;
3156  }
3157
3158  case Expr::PackExpansionExprClass:
3159    Out << "sp";
3160    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3161    break;
3162
3163  case Expr::SizeOfPackExprClass: {
3164    Out << "sZ";
3165    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3166    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3167      mangleTemplateParameter(TTP->getIndex());
3168    else if (const NonTypeTemplateParmDecl *NTTP
3169                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3170      mangleTemplateParameter(NTTP->getIndex());
3171    else if (const TemplateTemplateParmDecl *TempTP
3172                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
3173      mangleTemplateParameter(TempTP->getIndex());
3174    else
3175      mangleFunctionParam(cast<ParmVarDecl>(Pack));
3176    break;
3177  }
3178
3179  case Expr::MaterializeTemporaryExprClass: {
3180    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3181    break;
3182  }
3183
3184  case Expr::CXXThisExprClass:
3185    Out << "fpT";
3186    break;
3187  }
3188}
3189
3190/// Mangle an expression which refers to a parameter variable.
3191///
3192/// <expression>     ::= <function-param>
3193/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3194/// <function-param> ::= fp <top-level CV-qualifiers>
3195///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3196/// <function-param> ::= fL <L-1 non-negative number>
3197///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3198/// <function-param> ::= fL <L-1 non-negative number>
3199///                      p <top-level CV-qualifiers>
3200///                      <I-1 non-negative number> _         # L > 0, I > 0
3201///
3202/// L is the nesting depth of the parameter, defined as 1 if the
3203/// parameter comes from the innermost function prototype scope
3204/// enclosing the current context, 2 if from the next enclosing
3205/// function prototype scope, and so on, with one special case: if
3206/// we've processed the full parameter clause for the innermost
3207/// function type, then L is one less.  This definition conveniently
3208/// makes it irrelevant whether a function's result type was written
3209/// trailing or leading, but is otherwise overly complicated; the
3210/// numbering was first designed without considering references to
3211/// parameter in locations other than return types, and then the
3212/// mangling had to be generalized without changing the existing
3213/// manglings.
3214///
3215/// I is the zero-based index of the parameter within its parameter
3216/// declaration clause.  Note that the original ABI document describes
3217/// this using 1-based ordinals.
3218void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3219  unsigned parmDepth = parm->getFunctionScopeDepth();
3220  unsigned parmIndex = parm->getFunctionScopeIndex();
3221
3222  // Compute 'L'.
3223  // parmDepth does not include the declaring function prototype.
3224  // FunctionTypeDepth does account for that.
3225  assert(parmDepth < FunctionTypeDepth.getDepth());
3226  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3227  if (FunctionTypeDepth.isInResultType())
3228    nestingDepth--;
3229
3230  if (nestingDepth == 0) {
3231    Out << "fp";
3232  } else {
3233    Out << "fL" << (nestingDepth - 1) << 'p';
3234  }
3235
3236  // Top-level qualifiers.  We don't have to worry about arrays here,
3237  // because parameters declared as arrays should already have been
3238  // transformed to have pointer type. FIXME: apparently these don't
3239  // get mangled if used as an rvalue of a known non-class type?
3240  assert(!parm->getType()->isArrayType()
3241         && "parameter's type is still an array type?");
3242  mangleQualifiers(parm->getType().getQualifiers());
3243
3244  // Parameter index.
3245  if (parmIndex != 0) {
3246    Out << (parmIndex - 1);
3247  }
3248  Out << '_';
3249}
3250
3251void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3252  // <ctor-dtor-name> ::= C1  # complete object constructor
3253  //                  ::= C2  # base object constructor
3254  //                  ::= C3  # complete object allocating constructor
3255  //
3256  switch (T) {
3257  case Ctor_Complete:
3258    Out << "C1";
3259    break;
3260  case Ctor_Base:
3261    Out << "C2";
3262    break;
3263  case Ctor_CompleteAllocating:
3264    Out << "C3";
3265    break;
3266  }
3267}
3268
3269void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3270  // <ctor-dtor-name> ::= D0  # deleting destructor
3271  //                  ::= D1  # complete object destructor
3272  //                  ::= D2  # base object destructor
3273  //
3274  switch (T) {
3275  case Dtor_Deleting:
3276    Out << "D0";
3277    break;
3278  case Dtor_Complete:
3279    Out << "D1";
3280    break;
3281  case Dtor_Base:
3282    Out << "D2";
3283    break;
3284  }
3285}
3286
3287void CXXNameMangler::mangleTemplateArgs(
3288                          const ASTTemplateArgumentListInfo &TemplateArgs) {
3289  // <template-args> ::= I <template-arg>+ E
3290  Out << 'I';
3291  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3292    mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3293  Out << 'E';
3294}
3295
3296void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3297  // <template-args> ::= I <template-arg>+ E
3298  Out << 'I';
3299  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3300    mangleTemplateArg(AL[i]);
3301  Out << 'E';
3302}
3303
3304void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3305                                        unsigned NumTemplateArgs) {
3306  // <template-args> ::= I <template-arg>+ E
3307  Out << 'I';
3308  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3309    mangleTemplateArg(TemplateArgs[i]);
3310  Out << 'E';
3311}
3312
3313void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3314  // <template-arg> ::= <type>              # type or template
3315  //                ::= X <expression> E    # expression
3316  //                ::= <expr-primary>      # simple expressions
3317  //                ::= J <template-arg>* E # argument pack
3318  if (!A.isInstantiationDependent() || A.isDependent())
3319    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3320
3321  switch (A.getKind()) {
3322  case TemplateArgument::Null:
3323    llvm_unreachable("Cannot mangle NULL template argument");
3324
3325  case TemplateArgument::Type:
3326    mangleType(A.getAsType());
3327    break;
3328  case TemplateArgument::Template:
3329    // This is mangled as <type>.
3330    mangleType(A.getAsTemplate());
3331    break;
3332  case TemplateArgument::TemplateExpansion:
3333    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3334    Out << "Dp";
3335    mangleType(A.getAsTemplateOrTemplatePattern());
3336    break;
3337  case TemplateArgument::Expression: {
3338    // It's possible to end up with a DeclRefExpr here in certain
3339    // dependent cases, in which case we should mangle as a
3340    // declaration.
3341    const Expr *E = A.getAsExpr()->IgnoreParens();
3342    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3343      const ValueDecl *D = DRE->getDecl();
3344      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3345        Out << "L";
3346        mangle(D, "_Z");
3347        Out << 'E';
3348        break;
3349      }
3350    }
3351
3352    Out << 'X';
3353    mangleExpression(E);
3354    Out << 'E';
3355    break;
3356  }
3357  case TemplateArgument::Integral:
3358    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3359    break;
3360  case TemplateArgument::Declaration: {
3361    //  <expr-primary> ::= L <mangled-name> E # external name
3362    // Clang produces AST's where pointer-to-member-function expressions
3363    // and pointer-to-function expressions are represented as a declaration not
3364    // an expression. We compensate for it here to produce the correct mangling.
3365    ValueDecl *D = A.getAsDecl();
3366    bool compensateMangling = !A.isDeclForReferenceParam();
3367    if (compensateMangling) {
3368      Out << 'X';
3369      mangleOperatorName(OO_Amp, 1);
3370    }
3371
3372    Out << 'L';
3373    // References to external entities use the mangled name; if the name would
3374    // not normally be manged then mangle it as unqualified.
3375    //
3376    // FIXME: The ABI specifies that external names here should have _Z, but
3377    // gcc leaves this off.
3378    if (compensateMangling)
3379      mangle(D, "_Z");
3380    else
3381      mangle(D, "Z");
3382    Out << 'E';
3383
3384    if (compensateMangling)
3385      Out << 'E';
3386
3387    break;
3388  }
3389  case TemplateArgument::NullPtr: {
3390    //  <expr-primary> ::= L <type> 0 E
3391    Out << 'L';
3392    mangleType(A.getNullPtrType());
3393    Out << "0E";
3394    break;
3395  }
3396  case TemplateArgument::Pack: {
3397    //  <template-arg> ::= J <template-arg>* E
3398    Out << 'J';
3399    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3400                                      PAEnd = A.pack_end();
3401         PA != PAEnd; ++PA)
3402      mangleTemplateArg(*PA);
3403    Out << 'E';
3404  }
3405  }
3406}
3407
3408void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3409  // <template-param> ::= T_    # first template parameter
3410  //                  ::= T <parameter-2 non-negative number> _
3411  if (Index == 0)
3412    Out << "T_";
3413  else
3414    Out << 'T' << (Index - 1) << '_';
3415}
3416
3417void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3418  if (SeqID == 1)
3419    Out << '0';
3420  else if (SeqID > 1) {
3421    SeqID--;
3422
3423    // <seq-id> is encoded in base-36, using digits and upper case letters.
3424    char Buffer[7]; // log(2**32) / log(36) ~= 7
3425    MutableArrayRef<char> BufferRef(Buffer);
3426    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3427
3428    for (; SeqID != 0; SeqID /= 36) {
3429      unsigned C = SeqID % 36;
3430      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3431    }
3432
3433    Out.write(I.base(), I - BufferRef.rbegin());
3434  }
3435  Out << '_';
3436}
3437
3438void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3439  bool result = mangleSubstitution(type);
3440  assert(result && "no existing substitution for type");
3441  (void) result;
3442}
3443
3444void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3445  bool result = mangleSubstitution(tname);
3446  assert(result && "no existing substitution for template name");
3447  (void) result;
3448}
3449
3450// <substitution> ::= S <seq-id> _
3451//                ::= S_
3452bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3453  // Try one of the standard substitutions first.
3454  if (mangleStandardSubstitution(ND))
3455    return true;
3456
3457  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3458  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3459}
3460
3461/// \brief Determine whether the given type has any qualifiers that are
3462/// relevant for substitutions.
3463static bool hasMangledSubstitutionQualifiers(QualType T) {
3464  Qualifiers Qs = T.getQualifiers();
3465  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3466}
3467
3468bool CXXNameMangler::mangleSubstitution(QualType T) {
3469  if (!hasMangledSubstitutionQualifiers(T)) {
3470    if (const RecordType *RT = T->getAs<RecordType>())
3471      return mangleSubstitution(RT->getDecl());
3472  }
3473
3474  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3475
3476  return mangleSubstitution(TypePtr);
3477}
3478
3479bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3480  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3481    return mangleSubstitution(TD);
3482
3483  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3484  return mangleSubstitution(
3485                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3486}
3487
3488bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3489  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3490  if (I == Substitutions.end())
3491    return false;
3492
3493  unsigned SeqID = I->second;
3494  Out << 'S';
3495  mangleSeqID(SeqID);
3496
3497  return true;
3498}
3499
3500static bool isCharType(QualType T) {
3501  if (T.isNull())
3502    return false;
3503
3504  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3505    T->isSpecificBuiltinType(BuiltinType::Char_U);
3506}
3507
3508/// isCharSpecialization - Returns whether a given type is a template
3509/// specialization of a given name with a single argument of type char.
3510static bool isCharSpecialization(QualType T, const char *Name) {
3511  if (T.isNull())
3512    return false;
3513
3514  const RecordType *RT = T->getAs<RecordType>();
3515  if (!RT)
3516    return false;
3517
3518  const ClassTemplateSpecializationDecl *SD =
3519    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3520  if (!SD)
3521    return false;
3522
3523  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3524    return false;
3525
3526  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3527  if (TemplateArgs.size() != 1)
3528    return false;
3529
3530  if (!isCharType(TemplateArgs[0].getAsType()))
3531    return false;
3532
3533  return SD->getIdentifier()->getName() == Name;
3534}
3535
3536template <std::size_t StrLen>
3537static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3538                                       const char (&Str)[StrLen]) {
3539  if (!SD->getIdentifier()->isStr(Str))
3540    return false;
3541
3542  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3543  if (TemplateArgs.size() != 2)
3544    return false;
3545
3546  if (!isCharType(TemplateArgs[0].getAsType()))
3547    return false;
3548
3549  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3550    return false;
3551
3552  return true;
3553}
3554
3555bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3556  // <substitution> ::= St # ::std::
3557  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3558    if (isStd(NS)) {
3559      Out << "St";
3560      return true;
3561    }
3562  }
3563
3564  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3565    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3566      return false;
3567
3568    // <substitution> ::= Sa # ::std::allocator
3569    if (TD->getIdentifier()->isStr("allocator")) {
3570      Out << "Sa";
3571      return true;
3572    }
3573
3574    // <<substitution> ::= Sb # ::std::basic_string
3575    if (TD->getIdentifier()->isStr("basic_string")) {
3576      Out << "Sb";
3577      return true;
3578    }
3579  }
3580
3581  if (const ClassTemplateSpecializationDecl *SD =
3582        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3583    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3584      return false;
3585
3586    //    <substitution> ::= Ss # ::std::basic_string<char,
3587    //                            ::std::char_traits<char>,
3588    //                            ::std::allocator<char> >
3589    if (SD->getIdentifier()->isStr("basic_string")) {
3590      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3591
3592      if (TemplateArgs.size() != 3)
3593        return false;
3594
3595      if (!isCharType(TemplateArgs[0].getAsType()))
3596        return false;
3597
3598      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3599        return false;
3600
3601      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3602        return false;
3603
3604      Out << "Ss";
3605      return true;
3606    }
3607
3608    //    <substitution> ::= Si # ::std::basic_istream<char,
3609    //                            ::std::char_traits<char> >
3610    if (isStreamCharSpecialization(SD, "basic_istream")) {
3611      Out << "Si";
3612      return true;
3613    }
3614
3615    //    <substitution> ::= So # ::std::basic_ostream<char,
3616    //                            ::std::char_traits<char> >
3617    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3618      Out << "So";
3619      return true;
3620    }
3621
3622    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3623    //                            ::std::char_traits<char> >
3624    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3625      Out << "Sd";
3626      return true;
3627    }
3628  }
3629  return false;
3630}
3631
3632void CXXNameMangler::addSubstitution(QualType T) {
3633  if (!hasMangledSubstitutionQualifiers(T)) {
3634    if (const RecordType *RT = T->getAs<RecordType>()) {
3635      addSubstitution(RT->getDecl());
3636      return;
3637    }
3638  }
3639
3640  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3641  addSubstitution(TypePtr);
3642}
3643
3644void CXXNameMangler::addSubstitution(TemplateName Template) {
3645  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3646    return addSubstitution(TD);
3647
3648  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3649  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3650}
3651
3652void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3653  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3654  Substitutions[Ptr] = SeqID++;
3655}
3656
3657//
3658
3659/// \brief Mangles the name of the declaration D and emits that name to the
3660/// given output stream.
3661///
3662/// If the declaration D requires a mangled name, this routine will emit that
3663/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3664/// and this routine will return false. In this case, the caller should just
3665/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3666/// name.
3667void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3668                                             raw_ostream &Out) {
3669  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3670          "Invalid mangleName() call, argument is not a variable or function!");
3671  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3672         "Invalid mangleName() call on 'structor decl!");
3673
3674  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3675                                 getASTContext().getSourceManager(),
3676                                 "Mangling declaration");
3677
3678  CXXNameMangler Mangler(*this, Out, D);
3679  return Mangler.mangle(D);
3680}
3681
3682void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3683                                             CXXCtorType Type,
3684                                             raw_ostream &Out) {
3685  CXXNameMangler Mangler(*this, Out, D, Type);
3686  Mangler.mangle(D);
3687}
3688
3689void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3690                                             CXXDtorType Type,
3691                                             raw_ostream &Out) {
3692  CXXNameMangler Mangler(*this, Out, D, Type);
3693  Mangler.mangle(D);
3694}
3695
3696void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3697                                           const ThunkInfo &Thunk,
3698                                           raw_ostream &Out) {
3699  //  <special-name> ::= T <call-offset> <base encoding>
3700  //                      # base is the nominal target function of thunk
3701  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3702  //                      # base is the nominal target function of thunk
3703  //                      # first call-offset is 'this' adjustment
3704  //                      # second call-offset is result adjustment
3705
3706  assert(!isa<CXXDestructorDecl>(MD) &&
3707         "Use mangleCXXDtor for destructor decls!");
3708  CXXNameMangler Mangler(*this, Out);
3709  Mangler.getStream() << "_ZT";
3710  if (!Thunk.Return.isEmpty())
3711    Mangler.getStream() << 'c';
3712
3713  // Mangle the 'this' pointer adjustment.
3714  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
3715                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
3716
3717  // Mangle the return pointer adjustment if there is one.
3718  if (!Thunk.Return.isEmpty())
3719    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3720                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3721
3722  Mangler.mangleFunctionEncoding(MD);
3723}
3724
3725void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3726    const CXXDestructorDecl *DD, CXXDtorType Type,
3727    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
3728  //  <special-name> ::= T <call-offset> <base encoding>
3729  //                      # base is the nominal target function of thunk
3730  CXXNameMangler Mangler(*this, Out, DD, Type);
3731  Mangler.getStream() << "_ZT";
3732
3733  // Mangle the 'this' pointer adjustment.
3734  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3735                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
3736
3737  Mangler.mangleFunctionEncoding(DD);
3738}
3739
3740/// mangleGuardVariable - Returns the mangled name for a guard variable
3741/// for the passed in VarDecl.
3742void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3743                                                         raw_ostream &Out) {
3744  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3745  //                                            # initialization
3746  CXXNameMangler Mangler(*this, Out);
3747  Mangler.getStream() << "_ZGV";
3748  Mangler.mangleName(D);
3749}
3750
3751void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3752                                                        raw_ostream &Out) {
3753  // These symbols are internal in the Itanium ABI, so the names don't matter.
3754  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3755  // avoid duplicate symbols.
3756  Out << "__cxx_global_var_init";
3757}
3758
3759void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3760                                                             raw_ostream &Out) {
3761  // Prefix the mangling of D with __dtor_.
3762  CXXNameMangler Mangler(*this, Out);
3763  Mangler.getStream() << "__dtor_";
3764  if (shouldMangleDeclName(D))
3765    Mangler.mangle(D);
3766  else
3767    Mangler.getStream() << D->getName();
3768}
3769
3770void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3771                                                            raw_ostream &Out) {
3772  //  <special-name> ::= TH <object name>
3773  CXXNameMangler Mangler(*this, Out);
3774  Mangler.getStream() << "_ZTH";
3775  Mangler.mangleName(D);
3776}
3777
3778void
3779ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3780                                                          raw_ostream &Out) {
3781  //  <special-name> ::= TW <object name>
3782  CXXNameMangler Mangler(*this, Out);
3783  Mangler.getStream() << "_ZTW";
3784  Mangler.mangleName(D);
3785}
3786
3787void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
3788                                                        unsigned ManglingNumber,
3789                                                        raw_ostream &Out) {
3790  // We match the GCC mangling here.
3791  //  <special-name> ::= GR <object name>
3792  CXXNameMangler Mangler(*this, Out);
3793  Mangler.getStream() << "_ZGR";
3794  Mangler.mangleName(D);
3795  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
3796  Mangler.mangleSeqID(ManglingNumber - 1);
3797}
3798
3799void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
3800                                               raw_ostream &Out) {
3801  // <special-name> ::= TV <type>  # virtual table
3802  CXXNameMangler Mangler(*this, Out);
3803  Mangler.getStream() << "_ZTV";
3804  Mangler.mangleNameOrStandardSubstitution(RD);
3805}
3806
3807void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
3808                                            raw_ostream &Out) {
3809  // <special-name> ::= TT <type>  # VTT structure
3810  CXXNameMangler Mangler(*this, Out);
3811  Mangler.getStream() << "_ZTT";
3812  Mangler.mangleNameOrStandardSubstitution(RD);
3813}
3814
3815void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3816                                                   int64_t Offset,
3817                                                   const CXXRecordDecl *Type,
3818                                                   raw_ostream &Out) {
3819  // <special-name> ::= TC <type> <offset number> _ <base type>
3820  CXXNameMangler Mangler(*this, Out);
3821  Mangler.getStream() << "_ZTC";
3822  Mangler.mangleNameOrStandardSubstitution(RD);
3823  Mangler.getStream() << Offset;
3824  Mangler.getStream() << '_';
3825  Mangler.mangleNameOrStandardSubstitution(Type);
3826}
3827
3828void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
3829  // <special-name> ::= TI <type>  # typeinfo structure
3830  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3831  CXXNameMangler Mangler(*this, Out);
3832  Mangler.getStream() << "_ZTI";
3833  Mangler.mangleType(Ty);
3834}
3835
3836void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
3837                                                 raw_ostream &Out) {
3838  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3839  CXXNameMangler Mangler(*this, Out);
3840  Mangler.getStream() << "_ZTS";
3841  Mangler.mangleType(Ty);
3842}
3843
3844void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
3845  mangleCXXRTTIName(Ty, Out);
3846}
3847
3848void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
3849  llvm_unreachable("Can't mangle string literals");
3850}
3851
3852ItaniumMangleContext *
3853ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3854  return new ItaniumMangleContextImpl(Context, Diags);
3855}
3856