ItaniumMangle.cpp revision 63c00d7f35fa060c0a446c9df3a4402d9c7757fe
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/ABI.h"
25#include "clang/Basic/SourceManager.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Support/ErrorHandling.h"
29
30#define MANGLE_CHECKER 0
31
32#if MANGLE_CHECKER
33#include <cxxabi.h>
34#endif
35
36using namespace clang;
37
38namespace {
39
40static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
41  const DeclContext *DC = dyn_cast<DeclContext>(ND);
42  if (!DC)
43    DC = ND->getDeclContext();
44  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
45    if (isa<FunctionDecl>(DC->getParent()))
46      return dyn_cast<CXXRecordDecl>(DC);
47    DC = DC->getParent();
48  }
49  return 0;
50}
51
52static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
53  assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
54         "Passed in decl is not a ctor or dtor!");
55
56  if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
57    MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
58
59    assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
60           "Templated decl is not a ctor or dtor!");
61  }
62
63  return MD;
64}
65
66static const unsigned UnknownArity = ~0U;
67
68class ItaniumMangleContext : public MangleContext {
69  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
70  unsigned Discriminator;
71  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
72
73public:
74  explicit ItaniumMangleContext(ASTContext &Context,
75                                Diagnostic &Diags)
76    : MangleContext(Context, Diags) { }
77
78  uint64_t getAnonymousStructId(const TagDecl *TD) {
79    std::pair<llvm::DenseMap<const TagDecl *,
80      uint64_t>::iterator, bool> Result =
81      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
82    return Result.first->second;
83  }
84
85  void startNewFunction() {
86    MangleContext::startNewFunction();
87    mangleInitDiscriminator();
88  }
89
90  /// @name Mangler Entry Points
91  /// @{
92
93  bool shouldMangleDeclName(const NamedDecl *D);
94  void mangleName(const NamedDecl *D, llvm::SmallVectorImpl<char> &);
95  void mangleThunk(const CXXMethodDecl *MD,
96                   const ThunkInfo &Thunk,
97                   llvm::SmallVectorImpl<char> &);
98  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
99                          const ThisAdjustment &ThisAdjustment,
100                          llvm::SmallVectorImpl<char> &);
101  void mangleReferenceTemporary(const VarDecl *D,
102                                llvm::SmallVectorImpl<char> &);
103  void mangleCXXVTable(const CXXRecordDecl *RD,
104                       llvm::SmallVectorImpl<char> &);
105  void mangleCXXVTT(const CXXRecordDecl *RD,
106                    llvm::SmallVectorImpl<char> &);
107  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
108                           const CXXRecordDecl *Type,
109                           llvm::SmallVectorImpl<char> &);
110  void mangleCXXRTTI(QualType T, llvm::SmallVectorImpl<char> &);
111  void mangleCXXRTTIName(QualType T, llvm::SmallVectorImpl<char> &);
112  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
113                     llvm::SmallVectorImpl<char> &);
114  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
115                     llvm::SmallVectorImpl<char> &);
116
117  void mangleItaniumGuardVariable(const VarDecl *D,
118                                  llvm::SmallVectorImpl<char> &);
119
120  void mangleInitDiscriminator() {
121    Discriminator = 0;
122  }
123
124  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
125    unsigned &discriminator = Uniquifier[ND];
126    if (!discriminator)
127      discriminator = ++Discriminator;
128    if (discriminator == 1)
129      return false;
130    disc = discriminator-2;
131    return true;
132  }
133  /// @}
134};
135
136/// CXXNameMangler - Manage the mangling of a single name.
137class CXXNameMangler {
138  ItaniumMangleContext &Context;
139  llvm::raw_svector_ostream Out;
140
141  const CXXMethodDecl *Structor;
142  unsigned StructorType;
143
144  /// SeqID - The next subsitution sequence number.
145  unsigned SeqID;
146
147  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
148
149  ASTContext &getASTContext() const { return Context.getASTContext(); }
150
151public:
152  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res)
153    : Context(C), Out(Res), Structor(0), StructorType(0), SeqID(0) { }
154  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res,
155                 const CXXConstructorDecl *D, CXXCtorType Type)
156    : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type),
157    SeqID(0) { }
158  CXXNameMangler(ItaniumMangleContext &C, llvm::SmallVectorImpl<char> &Res,
159                 const CXXDestructorDecl *D, CXXDtorType Type)
160    : Context(C), Out(Res), Structor(getStructor(D)), StructorType(Type),
161    SeqID(0) { }
162
163#if MANGLE_CHECKER
164  ~CXXNameMangler() {
165    if (Out.str()[0] == '\01')
166      return;
167
168    int status = 0;
169    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
170    assert(status == 0 && "Could not demangle mangled name!");
171    free(result);
172  }
173#endif
174  llvm::raw_svector_ostream &getStream() { return Out; }
175
176  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
177  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
178  void mangleNumber(const llvm::APSInt &I);
179  void mangleNumber(int64_t Number);
180  void mangleFloat(const llvm::APFloat &F);
181  void mangleFunctionEncoding(const FunctionDecl *FD);
182  void mangleName(const NamedDecl *ND);
183  void mangleType(QualType T);
184  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
185
186private:
187  bool mangleSubstitution(const NamedDecl *ND);
188  bool mangleSubstitution(QualType T);
189  bool mangleSubstitution(TemplateName Template);
190  bool mangleSubstitution(uintptr_t Ptr);
191
192  bool mangleStandardSubstitution(const NamedDecl *ND);
193
194  void addSubstitution(const NamedDecl *ND) {
195    ND = cast<NamedDecl>(ND->getCanonicalDecl());
196
197    addSubstitution(reinterpret_cast<uintptr_t>(ND));
198  }
199  void addSubstitution(QualType T);
200  void addSubstitution(TemplateName Template);
201  void addSubstitution(uintptr_t Ptr);
202
203  void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
204  void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
205                            DeclarationName Name,
206                            unsigned KnownArity = UnknownArity);
207
208  void mangleName(const TemplateDecl *TD,
209                  const TemplateArgument *TemplateArgs,
210                  unsigned NumTemplateArgs);
211  void mangleUnqualifiedName(const NamedDecl *ND) {
212    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
213  }
214  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
215                             unsigned KnownArity);
216  void mangleUnscopedName(const NamedDecl *ND);
217  void mangleUnscopedTemplateName(const TemplateDecl *ND);
218  void mangleUnscopedTemplateName(TemplateName);
219  void mangleSourceName(const IdentifierInfo *II);
220  void mangleLocalName(const NamedDecl *ND);
221  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
222                        bool NoFunction=false);
223  void mangleNestedName(const TemplateDecl *TD,
224                        const TemplateArgument *TemplateArgs,
225                        unsigned NumTemplateArgs);
226  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
227  void mangleTemplatePrefix(const TemplateDecl *ND);
228  void mangleTemplatePrefix(TemplateName Template);
229  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
230  void mangleQualifiers(Qualifiers Quals);
231  void mangleRefQualifier(RefQualifierKind RefQualifier);
232
233  void mangleObjCMethodName(const ObjCMethodDecl *MD);
234
235  // Declare manglers for every type class.
236#define ABSTRACT_TYPE(CLASS, PARENT)
237#define NON_CANONICAL_TYPE(CLASS, PARENT)
238#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
239#include "clang/AST/TypeNodes.def"
240
241  void mangleType(const TagType*);
242  void mangleType(TemplateName);
243  void mangleBareFunctionType(const FunctionType *T,
244                              bool MangleReturnType);
245  void mangleNeonVectorType(const VectorType *T);
246
247  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
248  void mangleMemberExpr(const Expr *Base, bool IsArrow,
249                        NestedNameSpecifier *Qualifier,
250                        DeclarationName Name,
251                        unsigned KnownArity);
252  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
253  void mangleCXXCtorType(CXXCtorType T);
254  void mangleCXXDtorType(CXXDtorType T);
255
256  void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
257  void mangleTemplateArgs(TemplateName Template,
258                          const TemplateArgument *TemplateArgs,
259                          unsigned NumTemplateArgs);
260  void mangleTemplateArgs(const TemplateParameterList &PL,
261                          const TemplateArgument *TemplateArgs,
262                          unsigned NumTemplateArgs);
263  void mangleTemplateArgs(const TemplateParameterList &PL,
264                          const TemplateArgumentList &AL);
265  void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
266
267  void mangleTemplateParameter(unsigned Index);
268};
269
270}
271
272static bool isInCLinkageSpecification(const Decl *D) {
273  D = D->getCanonicalDecl();
274  for (const DeclContext *DC = D->getDeclContext();
275       !DC->isTranslationUnit(); DC = DC->getParent()) {
276    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
277      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
278  }
279
280  return false;
281}
282
283bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
284  // In C, functions with no attributes never need to be mangled. Fastpath them.
285  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
286    return false;
287
288  // Any decl can be declared with __asm("foo") on it, and this takes precedence
289  // over all other naming in the .o file.
290  if (D->hasAttr<AsmLabelAttr>())
291    return true;
292
293  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
294  // (always) as does passing a C++ member function and a function
295  // whose name is not a simple identifier.
296  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
297  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
298             !FD->getDeclName().isIdentifier()))
299    return true;
300
301  // Otherwise, no mangling is done outside C++ mode.
302  if (!getASTContext().getLangOptions().CPlusPlus)
303    return false;
304
305  // Variables at global scope with non-internal linkage are not mangled
306  if (!FD) {
307    const DeclContext *DC = D->getDeclContext();
308    // Check for extern variable declared locally.
309    if (DC->isFunctionOrMethod() && D->hasLinkage())
310      while (!DC->isNamespace() && !DC->isTranslationUnit())
311        DC = DC->getParent();
312    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
313      return false;
314  }
315
316  // Class members are always mangled.
317  if (D->getDeclContext()->isRecord())
318    return true;
319
320  // C functions and "main" are not mangled.
321  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
322    return false;
323
324  return true;
325}
326
327void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
328  // Any decl can be declared with __asm("foo") on it, and this takes precedence
329  // over all other naming in the .o file.
330  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
331    // If we have an asm name, then we use it as the mangling.
332    Out << '\01';  // LLVM IR Marker for __asm("foo")
333    Out << ALA->getLabel();
334    return;
335  }
336
337  // <mangled-name> ::= _Z <encoding>
338  //            ::= <data name>
339  //            ::= <special-name>
340  Out << Prefix;
341  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
342    mangleFunctionEncoding(FD);
343  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
344    mangleName(VD);
345  else
346    mangleName(cast<FieldDecl>(D));
347}
348
349void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
350  // <encoding> ::= <function name> <bare-function-type>
351  mangleName(FD);
352
353  // Don't mangle in the type if this isn't a decl we should typically mangle.
354  if (!Context.shouldMangleDeclName(FD))
355    return;
356
357  // Whether the mangling of a function type includes the return type depends on
358  // the context and the nature of the function. The rules for deciding whether
359  // the return type is included are:
360  //
361  //   1. Template functions (names or types) have return types encoded, with
362  //   the exceptions listed below.
363  //   2. Function types not appearing as part of a function name mangling,
364  //   e.g. parameters, pointer types, etc., have return type encoded, with the
365  //   exceptions listed below.
366  //   3. Non-template function names do not have return types encoded.
367  //
368  // The exceptions mentioned in (1) and (2) above, for which the return type is
369  // never included, are
370  //   1. Constructors.
371  //   2. Destructors.
372  //   3. Conversion operator functions, e.g. operator int.
373  bool MangleReturnType = false;
374  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
375    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
376          isa<CXXConversionDecl>(FD)))
377      MangleReturnType = true;
378
379    // Mangle the type of the primary template.
380    FD = PrimaryTemplate->getTemplatedDecl();
381  }
382
383  // Do the canonicalization out here because parameter types can
384  // undergo additional canonicalization (e.g. array decay).
385  const FunctionType *FT
386    = cast<FunctionType>(Context.getASTContext()
387                                          .getCanonicalType(FD->getType()));
388
389  mangleBareFunctionType(FT, MangleReturnType);
390}
391
392static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
393  while (isa<LinkageSpecDecl>(DC)) {
394    DC = DC->getParent();
395  }
396
397  return DC;
398}
399
400/// isStd - Return whether a given namespace is the 'std' namespace.
401static bool isStd(const NamespaceDecl *NS) {
402  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
403    return false;
404
405  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
406  return II && II->isStr("std");
407}
408
409// isStdNamespace - Return whether a given decl context is a toplevel 'std'
410// namespace.
411static bool isStdNamespace(const DeclContext *DC) {
412  if (!DC->isNamespace())
413    return false;
414
415  return isStd(cast<NamespaceDecl>(DC));
416}
417
418static const TemplateDecl *
419isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
420  // Check if we have a function template.
421  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
422    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
423      TemplateArgs = FD->getTemplateSpecializationArgs();
424      return TD;
425    }
426  }
427
428  // Check if we have a class template.
429  if (const ClassTemplateSpecializationDecl *Spec =
430        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
431    TemplateArgs = &Spec->getTemplateArgs();
432    return Spec->getSpecializedTemplate();
433  }
434
435  return 0;
436}
437
438void CXXNameMangler::mangleName(const NamedDecl *ND) {
439  //  <name> ::= <nested-name>
440  //         ::= <unscoped-name>
441  //         ::= <unscoped-template-name> <template-args>
442  //         ::= <local-name>
443  //
444  const DeclContext *DC = ND->getDeclContext();
445
446  // If this is an extern variable declared locally, the relevant DeclContext
447  // is that of the containing namespace, or the translation unit.
448  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
449    while (!DC->isNamespace() && !DC->isTranslationUnit())
450      DC = DC->getParent();
451  else if (GetLocalClassDecl(ND)) {
452    mangleLocalName(ND);
453    return;
454  }
455
456  while (isa<LinkageSpecDecl>(DC))
457    DC = DC->getParent();
458
459  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
460    // Check if we have a template.
461    const TemplateArgumentList *TemplateArgs = 0;
462    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
463      mangleUnscopedTemplateName(TD);
464      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
465      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
466      return;
467    }
468
469    mangleUnscopedName(ND);
470    return;
471  }
472
473  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
474    mangleLocalName(ND);
475    return;
476  }
477
478  mangleNestedName(ND, DC);
479}
480void CXXNameMangler::mangleName(const TemplateDecl *TD,
481                                const TemplateArgument *TemplateArgs,
482                                unsigned NumTemplateArgs) {
483  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
484
485  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
486    mangleUnscopedTemplateName(TD);
487    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
488    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
489  } else {
490    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
491  }
492}
493
494void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
495  //  <unscoped-name> ::= <unqualified-name>
496  //                  ::= St <unqualified-name>   # ::std::
497  if (isStdNamespace(ND->getDeclContext()))
498    Out << "St";
499
500  mangleUnqualifiedName(ND);
501}
502
503void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
504  //     <unscoped-template-name> ::= <unscoped-name>
505  //                              ::= <substitution>
506  if (mangleSubstitution(ND))
507    return;
508
509  // <template-template-param> ::= <template-param>
510  if (const TemplateTemplateParmDecl *TTP
511                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
512    mangleTemplateParameter(TTP->getIndex());
513    return;
514  }
515
516  mangleUnscopedName(ND->getTemplatedDecl());
517  addSubstitution(ND);
518}
519
520void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
521  //     <unscoped-template-name> ::= <unscoped-name>
522  //                              ::= <substitution>
523  if (TemplateDecl *TD = Template.getAsTemplateDecl())
524    return mangleUnscopedTemplateName(TD);
525
526  if (mangleSubstitution(Template))
527    return;
528
529  // FIXME: How to cope with operators here?
530  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
531  assert(Dependent && "Not a dependent template name?");
532  if (!Dependent->isIdentifier()) {
533    // FIXME: We can't possibly know the arity of the operator here!
534    Diagnostic &Diags = Context.getDiags();
535    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
536                                      "cannot mangle dependent operator name");
537    Diags.Report(DiagID);
538    return;
539  }
540
541  mangleSourceName(Dependent->getIdentifier());
542  addSubstitution(Template);
543}
544
545void CXXNameMangler::mangleFloat(const llvm::APFloat &F) {
546  // TODO: avoid this copy with careful stream management.
547  llvm::SmallString<20> Buffer;
548  F.bitcastToAPInt().toString(Buffer, 16, false);
549  Out.write(Buffer.data(), Buffer.size());
550}
551
552void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
553  if (Value.isSigned() && Value.isNegative()) {
554    Out << 'n';
555    Value.abs().print(Out, true);
556  } else
557    Value.print(Out, Value.isSigned());
558}
559
560void CXXNameMangler::mangleNumber(int64_t Number) {
561  //  <number> ::= [n] <non-negative decimal integer>
562  if (Number < 0) {
563    Out << 'n';
564    Number = -Number;
565  }
566
567  Out << Number;
568}
569
570void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
571  //  <call-offset>  ::= h <nv-offset> _
572  //                 ::= v <v-offset> _
573  //  <nv-offset>    ::= <offset number>        # non-virtual base override
574  //  <v-offset>     ::= <offset number> _ <virtual offset number>
575  //                      # virtual base override, with vcall offset
576  if (!Virtual) {
577    Out << 'h';
578    mangleNumber(NonVirtual);
579    Out << '_';
580    return;
581  }
582
583  Out << 'v';
584  mangleNumber(NonVirtual);
585  Out << '_';
586  mangleNumber(Virtual);
587  Out << '_';
588}
589
590void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
591  Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
592  switch (Qualifier->getKind()) {
593  case NestedNameSpecifier::Global:
594    // nothing
595    break;
596  case NestedNameSpecifier::Namespace:
597    mangleName(Qualifier->getAsNamespace());
598    break;
599  case NestedNameSpecifier::TypeSpec:
600  case NestedNameSpecifier::TypeSpecWithTemplate: {
601    const Type *QTy = Qualifier->getAsType();
602
603    if (const TemplateSpecializationType *TST =
604        dyn_cast<TemplateSpecializationType>(QTy)) {
605      if (!mangleSubstitution(QualType(TST, 0))) {
606        mangleTemplatePrefix(TST->getTemplateName());
607
608        // FIXME: GCC does not appear to mangle the template arguments when
609        // the template in question is a dependent template name. Should we
610        // emulate that badness?
611        mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
612                           TST->getNumArgs());
613        addSubstitution(QualType(TST, 0));
614      }
615    } else {
616      // We use the QualType mangle type variant here because it handles
617      // substitutions.
618      mangleType(QualType(QTy, 0));
619    }
620  }
621    break;
622  case NestedNameSpecifier::Identifier:
623    // Member expressions can have these without prefixes.
624    if (Qualifier->getPrefix())
625      mangleUnresolvedScope(Qualifier->getPrefix());
626    mangleSourceName(Qualifier->getAsIdentifier());
627    break;
628  }
629}
630
631/// Mangles a name which was not resolved to a specific entity.
632void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
633                                          DeclarationName Name,
634                                          unsigned KnownArity) {
635  if (Qualifier)
636    mangleUnresolvedScope(Qualifier);
637  // FIXME: ambiguity of unqualified lookup with ::
638
639  mangleUnqualifiedName(0, Name, KnownArity);
640}
641
642static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
643  assert(RD->isAnonymousStructOrUnion() &&
644         "Expected anonymous struct or union!");
645
646  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
647       I != E; ++I) {
648    const FieldDecl *FD = *I;
649
650    if (FD->getIdentifier())
651      return FD;
652
653    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
654      if (const FieldDecl *NamedDataMember =
655          FindFirstNamedDataMember(RT->getDecl()))
656        return NamedDataMember;
657    }
658  }
659
660  // We didn't find a named data member.
661  return 0;
662}
663
664void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
665                                           DeclarationName Name,
666                                           unsigned KnownArity) {
667  //  <unqualified-name> ::= <operator-name>
668  //                     ::= <ctor-dtor-name>
669  //                     ::= <source-name>
670  switch (Name.getNameKind()) {
671  case DeclarationName::Identifier: {
672    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
673      // We must avoid conflicts between internally- and externally-
674      // linked variable declaration names in the same TU.
675      // This naming convention is the same as that followed by GCC, though it
676      // shouldn't actually matter.
677      if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
678          ND->getDeclContext()->isFileContext())
679        Out << 'L';
680
681      mangleSourceName(II);
682      break;
683    }
684
685    // Otherwise, an anonymous entity.  We must have a declaration.
686    assert(ND && "mangling empty name without declaration");
687
688    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
689      if (NS->isAnonymousNamespace()) {
690        // This is how gcc mangles these names.
691        Out << "12_GLOBAL__N_1";
692        break;
693      }
694    }
695
696    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
697      // We must have an anonymous union or struct declaration.
698      const RecordDecl *RD =
699        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
700
701      // Itanium C++ ABI 5.1.2:
702      //
703      //   For the purposes of mangling, the name of an anonymous union is
704      //   considered to be the name of the first named data member found by a
705      //   pre-order, depth-first, declaration-order walk of the data members of
706      //   the anonymous union. If there is no such data member (i.e., if all of
707      //   the data members in the union are unnamed), then there is no way for
708      //   a program to refer to the anonymous union, and there is therefore no
709      //   need to mangle its name.
710      const FieldDecl *FD = FindFirstNamedDataMember(RD);
711
712      // It's actually possible for various reasons for us to get here
713      // with an empty anonymous struct / union.  Fortunately, it
714      // doesn't really matter what name we generate.
715      if (!FD) break;
716      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
717
718      mangleSourceName(FD->getIdentifier());
719      break;
720    }
721
722    // We must have an anonymous struct.
723    const TagDecl *TD = cast<TagDecl>(ND);
724    if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
725      assert(TD->getDeclContext() == D->getDeclContext() &&
726             "Typedef should not be in another decl context!");
727      assert(D->getDeclName().getAsIdentifierInfo() &&
728             "Typedef was not named!");
729      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
730      break;
731    }
732
733    // Get a unique id for the anonymous struct.
734    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
735
736    // Mangle it as a source name in the form
737    // [n] $_<id>
738    // where n is the length of the string.
739    llvm::SmallString<8> Str;
740    Str += "$_";
741    Str += llvm::utostr(AnonStructId);
742
743    Out << Str.size();
744    Out << Str.str();
745    break;
746  }
747
748  case DeclarationName::ObjCZeroArgSelector:
749  case DeclarationName::ObjCOneArgSelector:
750  case DeclarationName::ObjCMultiArgSelector:
751    assert(false && "Can't mangle Objective-C selector names here!");
752    break;
753
754  case DeclarationName::CXXConstructorName:
755    if (ND == Structor)
756      // If the named decl is the C++ constructor we're mangling, use the type
757      // we were given.
758      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
759    else
760      // Otherwise, use the complete constructor name. This is relevant if a
761      // class with a constructor is declared within a constructor.
762      mangleCXXCtorType(Ctor_Complete);
763    break;
764
765  case DeclarationName::CXXDestructorName:
766    if (ND == Structor)
767      // If the named decl is the C++ destructor we're mangling, use the type we
768      // were given.
769      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
770    else
771      // Otherwise, use the complete destructor name. This is relevant if a
772      // class with a destructor is declared within a destructor.
773      mangleCXXDtorType(Dtor_Complete);
774    break;
775
776  case DeclarationName::CXXConversionFunctionName:
777    // <operator-name> ::= cv <type>    # (cast)
778    Out << "cv";
779    mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
780    break;
781
782  case DeclarationName::CXXOperatorName: {
783    unsigned Arity;
784    if (ND) {
785      Arity = cast<FunctionDecl>(ND)->getNumParams();
786
787      // If we have a C++ member function, we need to include the 'this' pointer.
788      // FIXME: This does not make sense for operators that are static, but their
789      // names stay the same regardless of the arity (operator new for instance).
790      if (isa<CXXMethodDecl>(ND))
791        Arity++;
792    } else
793      Arity = KnownArity;
794
795    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
796    break;
797  }
798
799  case DeclarationName::CXXLiteralOperatorName:
800    // FIXME: This mangling is not yet official.
801    Out << "li";
802    mangleSourceName(Name.getCXXLiteralIdentifier());
803    break;
804
805  case DeclarationName::CXXUsingDirective:
806    assert(false && "Can't mangle a using directive name!");
807    break;
808  }
809}
810
811void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
812  // <source-name> ::= <positive length number> <identifier>
813  // <number> ::= [n] <non-negative decimal integer>
814  // <identifier> ::= <unqualified source code identifier>
815  Out << II->getLength() << II->getName();
816}
817
818void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
819                                      const DeclContext *DC,
820                                      bool NoFunction) {
821  // <nested-name>
822  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
823  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
824  //       <template-args> E
825
826  Out << 'N';
827  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
828    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
829    mangleRefQualifier(Method->getRefQualifier());
830  }
831
832  // Check if we have a template.
833  const TemplateArgumentList *TemplateArgs = 0;
834  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
835    mangleTemplatePrefix(TD);
836    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
837    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
838  }
839  else {
840    manglePrefix(DC, NoFunction);
841    mangleUnqualifiedName(ND);
842  }
843
844  Out << 'E';
845}
846void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
847                                      const TemplateArgument *TemplateArgs,
848                                      unsigned NumTemplateArgs) {
849  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
850
851  Out << 'N';
852
853  mangleTemplatePrefix(TD);
854  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
855  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
856
857  Out << 'E';
858}
859
860void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
861  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
862  //              := Z <function encoding> E s [<discriminator>]
863  // <discriminator> := _ <non-negative number>
864  const DeclContext *DC = ND->getDeclContext();
865  Out << 'Z';
866
867  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
868   mangleObjCMethodName(MD);
869  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
870    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
871    Out << 'E';
872
873    // Mangle the name relative to the closest enclosing function.
874    if (ND == RD) // equality ok because RD derived from ND above
875      mangleUnqualifiedName(ND);
876    else
877      mangleNestedName(ND, DC, true /*NoFunction*/);
878
879    unsigned disc;
880    if (Context.getNextDiscriminator(RD, disc)) {
881      if (disc < 10)
882        Out << '_' << disc;
883      else
884        Out << "__" << disc << '_';
885    }
886
887    return;
888  }
889  else
890    mangleFunctionEncoding(cast<FunctionDecl>(DC));
891
892  Out << 'E';
893  mangleUnqualifiedName(ND);
894}
895
896void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
897  //  <prefix> ::= <prefix> <unqualified-name>
898  //           ::= <template-prefix> <template-args>
899  //           ::= <template-param>
900  //           ::= # empty
901  //           ::= <substitution>
902
903  while (isa<LinkageSpecDecl>(DC))
904    DC = DC->getParent();
905
906  if (DC->isTranslationUnit())
907    return;
908
909  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
910    manglePrefix(DC->getParent(), NoFunction);
911    llvm::SmallString<64> Name;
912    Context.mangleBlock(Block, Name);
913    Out << Name.size() << Name;
914    return;
915  }
916
917  if (mangleSubstitution(cast<NamedDecl>(DC)))
918    return;
919
920  // Check if we have a template.
921  const TemplateArgumentList *TemplateArgs = 0;
922  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
923    mangleTemplatePrefix(TD);
924    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
925    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
926  }
927  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
928    return;
929  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
930    mangleObjCMethodName(Method);
931  else {
932    manglePrefix(DC->getParent(), NoFunction);
933    mangleUnqualifiedName(cast<NamedDecl>(DC));
934  }
935
936  addSubstitution(cast<NamedDecl>(DC));
937}
938
939void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
940  // <template-prefix> ::= <prefix> <template unqualified-name>
941  //                   ::= <template-param>
942  //                   ::= <substitution>
943  if (TemplateDecl *TD = Template.getAsTemplateDecl())
944    return mangleTemplatePrefix(TD);
945
946  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
947    mangleUnresolvedScope(Qualified->getQualifier());
948
949  if (OverloadedTemplateStorage *Overloaded
950                                      = Template.getAsOverloadedTemplate()) {
951    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
952                          UnknownArity);
953    return;
954  }
955
956  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
957  assert(Dependent && "Unknown template name kind?");
958  mangleUnresolvedScope(Dependent->getQualifier());
959  mangleUnscopedTemplateName(Template);
960}
961
962void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
963  // <template-prefix> ::= <prefix> <template unqualified-name>
964  //                   ::= <template-param>
965  //                   ::= <substitution>
966  // <template-template-param> ::= <template-param>
967  //                               <substitution>
968
969  if (mangleSubstitution(ND))
970    return;
971
972  // <template-template-param> ::= <template-param>
973  if (const TemplateTemplateParmDecl *TTP
974                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
975    mangleTemplateParameter(TTP->getIndex());
976    return;
977  }
978
979  manglePrefix(ND->getDeclContext());
980  mangleUnqualifiedName(ND->getTemplatedDecl());
981  addSubstitution(ND);
982}
983
984/// Mangles a template name under the production <type>.  Required for
985/// template template arguments.
986///   <type> ::= <class-enum-type>
987///          ::= <template-param>
988///          ::= <substitution>
989void CXXNameMangler::mangleType(TemplateName TN) {
990  if (mangleSubstitution(TN))
991    return;
992
993  TemplateDecl *TD = 0;
994
995  switch (TN.getKind()) {
996  case TemplateName::QualifiedTemplate:
997    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
998    goto HaveDecl;
999
1000  case TemplateName::Template:
1001    TD = TN.getAsTemplateDecl();
1002    goto HaveDecl;
1003
1004  HaveDecl:
1005    if (isa<TemplateTemplateParmDecl>(TD))
1006      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1007    else
1008      mangleName(TD);
1009    break;
1010
1011  case TemplateName::OverloadedTemplate:
1012    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1013    break;
1014
1015  case TemplateName::DependentTemplate: {
1016    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1017    assert(Dependent->isIdentifier());
1018
1019    // <class-enum-type> ::= <name>
1020    // <name> ::= <nested-name>
1021    mangleUnresolvedScope(Dependent->getQualifier());
1022    mangleSourceName(Dependent->getIdentifier());
1023    break;
1024  }
1025
1026  case TemplateName::SubstTemplateTemplateParmPack: {
1027    SubstTemplateTemplateParmPackStorage *SubstPack
1028      = TN.getAsSubstTemplateTemplateParmPack();
1029    mangleTemplateParameter(SubstPack->getParameterPack()->getIndex());
1030    break;
1031  }
1032  }
1033
1034  addSubstitution(TN);
1035}
1036
1037void
1038CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1039  switch (OO) {
1040  // <operator-name> ::= nw     # new
1041  case OO_New: Out << "nw"; break;
1042  //              ::= na        # new[]
1043  case OO_Array_New: Out << "na"; break;
1044  //              ::= dl        # delete
1045  case OO_Delete: Out << "dl"; break;
1046  //              ::= da        # delete[]
1047  case OO_Array_Delete: Out << "da"; break;
1048  //              ::= ps        # + (unary)
1049  //              ::= pl        # + (binary or unknown)
1050  case OO_Plus:
1051    Out << (Arity == 1? "ps" : "pl"); break;
1052  //              ::= ng        # - (unary)
1053  //              ::= mi        # - (binary or unknown)
1054  case OO_Minus:
1055    Out << (Arity == 1? "ng" : "mi"); break;
1056  //              ::= ad        # & (unary)
1057  //              ::= an        # & (binary or unknown)
1058  case OO_Amp:
1059    Out << (Arity == 1? "ad" : "an"); break;
1060  //              ::= de        # * (unary)
1061  //              ::= ml        # * (binary or unknown)
1062  case OO_Star:
1063    // Use binary when unknown.
1064    Out << (Arity == 1? "de" : "ml"); break;
1065  //              ::= co        # ~
1066  case OO_Tilde: Out << "co"; break;
1067  //              ::= dv        # /
1068  case OO_Slash: Out << "dv"; break;
1069  //              ::= rm        # %
1070  case OO_Percent: Out << "rm"; break;
1071  //              ::= or        # |
1072  case OO_Pipe: Out << "or"; break;
1073  //              ::= eo        # ^
1074  case OO_Caret: Out << "eo"; break;
1075  //              ::= aS        # =
1076  case OO_Equal: Out << "aS"; break;
1077  //              ::= pL        # +=
1078  case OO_PlusEqual: Out << "pL"; break;
1079  //              ::= mI        # -=
1080  case OO_MinusEqual: Out << "mI"; break;
1081  //              ::= mL        # *=
1082  case OO_StarEqual: Out << "mL"; break;
1083  //              ::= dV        # /=
1084  case OO_SlashEqual: Out << "dV"; break;
1085  //              ::= rM        # %=
1086  case OO_PercentEqual: Out << "rM"; break;
1087  //              ::= aN        # &=
1088  case OO_AmpEqual: Out << "aN"; break;
1089  //              ::= oR        # |=
1090  case OO_PipeEqual: Out << "oR"; break;
1091  //              ::= eO        # ^=
1092  case OO_CaretEqual: Out << "eO"; break;
1093  //              ::= ls        # <<
1094  case OO_LessLess: Out << "ls"; break;
1095  //              ::= rs        # >>
1096  case OO_GreaterGreater: Out << "rs"; break;
1097  //              ::= lS        # <<=
1098  case OO_LessLessEqual: Out << "lS"; break;
1099  //              ::= rS        # >>=
1100  case OO_GreaterGreaterEqual: Out << "rS"; break;
1101  //              ::= eq        # ==
1102  case OO_EqualEqual: Out << "eq"; break;
1103  //              ::= ne        # !=
1104  case OO_ExclaimEqual: Out << "ne"; break;
1105  //              ::= lt        # <
1106  case OO_Less: Out << "lt"; break;
1107  //              ::= gt        # >
1108  case OO_Greater: Out << "gt"; break;
1109  //              ::= le        # <=
1110  case OO_LessEqual: Out << "le"; break;
1111  //              ::= ge        # >=
1112  case OO_GreaterEqual: Out << "ge"; break;
1113  //              ::= nt        # !
1114  case OO_Exclaim: Out << "nt"; break;
1115  //              ::= aa        # &&
1116  case OO_AmpAmp: Out << "aa"; break;
1117  //              ::= oo        # ||
1118  case OO_PipePipe: Out << "oo"; break;
1119  //              ::= pp        # ++
1120  case OO_PlusPlus: Out << "pp"; break;
1121  //              ::= mm        # --
1122  case OO_MinusMinus: Out << "mm"; break;
1123  //              ::= cm        # ,
1124  case OO_Comma: Out << "cm"; break;
1125  //              ::= pm        # ->*
1126  case OO_ArrowStar: Out << "pm"; break;
1127  //              ::= pt        # ->
1128  case OO_Arrow: Out << "pt"; break;
1129  //              ::= cl        # ()
1130  case OO_Call: Out << "cl"; break;
1131  //              ::= ix        # []
1132  case OO_Subscript: Out << "ix"; break;
1133
1134  //              ::= qu        # ?
1135  // The conditional operator can't be overloaded, but we still handle it when
1136  // mangling expressions.
1137  case OO_Conditional: Out << "qu"; break;
1138
1139  case OO_None:
1140  case NUM_OVERLOADED_OPERATORS:
1141    assert(false && "Not an overloaded operator");
1142    break;
1143  }
1144}
1145
1146void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1147  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1148  if (Quals.hasRestrict())
1149    Out << 'r';
1150  if (Quals.hasVolatile())
1151    Out << 'V';
1152  if (Quals.hasConst())
1153    Out << 'K';
1154
1155  if (Quals.hasAddressSpace()) {
1156    // Extension:
1157    //
1158    //   <type> ::= U <address-space-number>
1159    //
1160    // where <address-space-number> is a source name consisting of 'AS'
1161    // followed by the address space <number>.
1162    llvm::SmallString<64> ASString;
1163    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1164    Out << 'U' << ASString.size() << ASString;
1165  }
1166
1167  // FIXME: For now, just drop all extension qualifiers on the floor.
1168}
1169
1170void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1171  // <ref-qualifier> ::= R                # lvalue reference
1172  //                 ::= O                # rvalue-reference
1173  // Proposal to Itanium C++ ABI list on 1/26/11
1174  switch (RefQualifier) {
1175  case RQ_None:
1176    break;
1177
1178  case RQ_LValue:
1179    Out << 'R';
1180    break;
1181
1182  case RQ_RValue:
1183    Out << 'O';
1184    break;
1185  }
1186}
1187
1188void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1189  llvm::SmallString<64> Buffer;
1190  Context.mangleObjCMethodName(MD, Buffer);
1191  Out << Buffer;
1192}
1193
1194void CXXNameMangler::mangleType(QualType nonCanon) {
1195  // Only operate on the canonical type!
1196  QualType canon = nonCanon.getCanonicalType();
1197
1198  SplitQualType split = canon.split();
1199  Qualifiers quals = split.second;
1200  const Type *ty = split.first;
1201
1202  bool isSubstitutable = quals || !isa<BuiltinType>(ty);
1203  if (isSubstitutable && mangleSubstitution(canon))
1204    return;
1205
1206  // If we're mangling a qualified array type, push the qualifiers to
1207  // the element type.
1208  if (quals && isa<ArrayType>(ty)) {
1209    ty = Context.getASTContext().getAsArrayType(canon);
1210    quals = Qualifiers();
1211
1212    // Note that we don't update canon: we want to add the
1213    // substitution at the canonical type.
1214  }
1215
1216  if (quals) {
1217    mangleQualifiers(quals);
1218    // Recurse:  even if the qualified type isn't yet substitutable,
1219    // the unqualified type might be.
1220    mangleType(QualType(ty, 0));
1221  } else {
1222    switch (ty->getTypeClass()) {
1223#define ABSTRACT_TYPE(CLASS, PARENT)
1224#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1225    case Type::CLASS: \
1226      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1227      return;
1228#define TYPE(CLASS, PARENT) \
1229    case Type::CLASS: \
1230      mangleType(static_cast<const CLASS##Type*>(ty)); \
1231      break;
1232#include "clang/AST/TypeNodes.def"
1233    }
1234  }
1235
1236  // Add the substitution.
1237  if (isSubstitutable)
1238    addSubstitution(canon);
1239}
1240
1241void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1242  if (!mangleStandardSubstitution(ND))
1243    mangleName(ND);
1244}
1245
1246void CXXNameMangler::mangleType(const BuiltinType *T) {
1247  //  <type>         ::= <builtin-type>
1248  //  <builtin-type> ::= v  # void
1249  //                 ::= w  # wchar_t
1250  //                 ::= b  # bool
1251  //                 ::= c  # char
1252  //                 ::= a  # signed char
1253  //                 ::= h  # unsigned char
1254  //                 ::= s  # short
1255  //                 ::= t  # unsigned short
1256  //                 ::= i  # int
1257  //                 ::= j  # unsigned int
1258  //                 ::= l  # long
1259  //                 ::= m  # unsigned long
1260  //                 ::= x  # long long, __int64
1261  //                 ::= y  # unsigned long long, __int64
1262  //                 ::= n  # __int128
1263  // UNSUPPORTED:    ::= o  # unsigned __int128
1264  //                 ::= f  # float
1265  //                 ::= d  # double
1266  //                 ::= e  # long double, __float80
1267  // UNSUPPORTED:    ::= g  # __float128
1268  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1269  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1270  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1271  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
1272  //                 ::= Di # char32_t
1273  //                 ::= Ds # char16_t
1274  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1275  //                 ::= u <source-name>    # vendor extended type
1276  switch (T->getKind()) {
1277  case BuiltinType::Void: Out << 'v'; break;
1278  case BuiltinType::Bool: Out << 'b'; break;
1279  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1280  case BuiltinType::UChar: Out << 'h'; break;
1281  case BuiltinType::UShort: Out << 't'; break;
1282  case BuiltinType::UInt: Out << 'j'; break;
1283  case BuiltinType::ULong: Out << 'm'; break;
1284  case BuiltinType::ULongLong: Out << 'y'; break;
1285  case BuiltinType::UInt128: Out << 'o'; break;
1286  case BuiltinType::SChar: Out << 'a'; break;
1287  case BuiltinType::WChar_S:
1288  case BuiltinType::WChar_U: Out << 'w'; break;
1289  case BuiltinType::Char16: Out << "Ds"; break;
1290  case BuiltinType::Char32: Out << "Di"; break;
1291  case BuiltinType::Short: Out << 's'; break;
1292  case BuiltinType::Int: Out << 'i'; break;
1293  case BuiltinType::Long: Out << 'l'; break;
1294  case BuiltinType::LongLong: Out << 'x'; break;
1295  case BuiltinType::Int128: Out << 'n'; break;
1296  case BuiltinType::Float: Out << 'f'; break;
1297  case BuiltinType::Double: Out << 'd'; break;
1298  case BuiltinType::LongDouble: Out << 'e'; break;
1299  case BuiltinType::NullPtr: Out << "Dn"; break;
1300
1301  case BuiltinType::Overload:
1302  case BuiltinType::Dependent:
1303    assert(false &&
1304           "Overloaded and dependent types shouldn't get to name mangling");
1305    break;
1306  case BuiltinType::UndeducedAuto:
1307    assert(0 && "Should not see undeduced auto here");
1308    break;
1309  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1310  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1311  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1312  }
1313}
1314
1315// <type>          ::= <function-type>
1316// <function-type> ::= F [Y] <bare-function-type> E
1317void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1318  Out << 'F';
1319  // FIXME: We don't have enough information in the AST to produce the 'Y'
1320  // encoding for extern "C" function types.
1321  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1322  Out << 'E';
1323}
1324void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1325  llvm_unreachable("Can't mangle K&R function prototypes");
1326}
1327void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1328                                            bool MangleReturnType) {
1329  // We should never be mangling something without a prototype.
1330  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1331
1332  // <bare-function-type> ::= <signature type>+
1333  if (MangleReturnType)
1334    mangleType(Proto->getResultType());
1335
1336  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1337    //   <builtin-type> ::= v   # void
1338    Out << 'v';
1339    return;
1340  }
1341
1342  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1343                                         ArgEnd = Proto->arg_type_end();
1344       Arg != ArgEnd; ++Arg)
1345    mangleType(*Arg);
1346
1347  // <builtin-type>      ::= z  # ellipsis
1348  if (Proto->isVariadic())
1349    Out << 'z';
1350}
1351
1352// <type>            ::= <class-enum-type>
1353// <class-enum-type> ::= <name>
1354void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1355  mangleName(T->getDecl());
1356}
1357
1358// <type>            ::= <class-enum-type>
1359// <class-enum-type> ::= <name>
1360void CXXNameMangler::mangleType(const EnumType *T) {
1361  mangleType(static_cast<const TagType*>(T));
1362}
1363void CXXNameMangler::mangleType(const RecordType *T) {
1364  mangleType(static_cast<const TagType*>(T));
1365}
1366void CXXNameMangler::mangleType(const TagType *T) {
1367  mangleName(T->getDecl());
1368}
1369
1370// <type>       ::= <array-type>
1371// <array-type> ::= A <positive dimension number> _ <element type>
1372//              ::= A [<dimension expression>] _ <element type>
1373void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1374  Out << 'A' << T->getSize() << '_';
1375  mangleType(T->getElementType());
1376}
1377void CXXNameMangler::mangleType(const VariableArrayType *T) {
1378  Out << 'A';
1379  // decayed vla types (size 0) will just be skipped.
1380  if (T->getSizeExpr())
1381    mangleExpression(T->getSizeExpr());
1382  Out << '_';
1383  mangleType(T->getElementType());
1384}
1385void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1386  Out << 'A';
1387  mangleExpression(T->getSizeExpr());
1388  Out << '_';
1389  mangleType(T->getElementType());
1390}
1391void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1392  Out << "A_";
1393  mangleType(T->getElementType());
1394}
1395
1396// <type>                   ::= <pointer-to-member-type>
1397// <pointer-to-member-type> ::= M <class type> <member type>
1398void CXXNameMangler::mangleType(const MemberPointerType *T) {
1399  Out << 'M';
1400  mangleType(QualType(T->getClass(), 0));
1401  QualType PointeeType = T->getPointeeType();
1402  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1403    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1404    mangleRefQualifier(FPT->getRefQualifier());
1405    mangleType(FPT);
1406
1407    // Itanium C++ ABI 5.1.8:
1408    //
1409    //   The type of a non-static member function is considered to be different,
1410    //   for the purposes of substitution, from the type of a namespace-scope or
1411    //   static member function whose type appears similar. The types of two
1412    //   non-static member functions are considered to be different, for the
1413    //   purposes of substitution, if the functions are members of different
1414    //   classes. In other words, for the purposes of substitution, the class of
1415    //   which the function is a member is considered part of the type of
1416    //   function.
1417
1418    // We increment the SeqID here to emulate adding an entry to the
1419    // substitution table. We can't actually add it because we don't want this
1420    // particular function type to be substituted.
1421    ++SeqID;
1422  } else
1423    mangleType(PointeeType);
1424}
1425
1426// <type>           ::= <template-param>
1427void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1428  mangleTemplateParameter(T->getIndex());
1429}
1430
1431// <type>           ::= <template-param>
1432void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
1433  mangleTemplateParameter(T->getReplacedParameter()->getIndex());
1434}
1435
1436// <type> ::= P <type>   # pointer-to
1437void CXXNameMangler::mangleType(const PointerType *T) {
1438  Out << 'P';
1439  mangleType(T->getPointeeType());
1440}
1441void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1442  Out << 'P';
1443  mangleType(T->getPointeeType());
1444}
1445
1446// <type> ::= R <type>   # reference-to
1447void CXXNameMangler::mangleType(const LValueReferenceType *T) {
1448  Out << 'R';
1449  mangleType(T->getPointeeType());
1450}
1451
1452// <type> ::= O <type>   # rvalue reference-to (C++0x)
1453void CXXNameMangler::mangleType(const RValueReferenceType *T) {
1454  Out << 'O';
1455  mangleType(T->getPointeeType());
1456}
1457
1458// <type> ::= C <type>   # complex pair (C 2000)
1459void CXXNameMangler::mangleType(const ComplexType *T) {
1460  Out << 'C';
1461  mangleType(T->getElementType());
1462}
1463
1464// ARM's ABI for Neon vector types specifies that they should be mangled as
1465// if they are structs (to match ARM's initial implementation).  The
1466// vector type must be one of the special types predefined by ARM.
1467void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
1468  QualType EltType = T->getElementType();
1469  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
1470  const char *EltName = 0;
1471  if (T->getVectorKind() == VectorType::NeonPolyVector) {
1472    switch (cast<BuiltinType>(EltType)->getKind()) {
1473    case BuiltinType::SChar:     EltName = "poly8_t"; break;
1474    case BuiltinType::Short:     EltName = "poly16_t"; break;
1475    default: llvm_unreachable("unexpected Neon polynomial vector element type");
1476    }
1477  } else {
1478    switch (cast<BuiltinType>(EltType)->getKind()) {
1479    case BuiltinType::SChar:     EltName = "int8_t"; break;
1480    case BuiltinType::UChar:     EltName = "uint8_t"; break;
1481    case BuiltinType::Short:     EltName = "int16_t"; break;
1482    case BuiltinType::UShort:    EltName = "uint16_t"; break;
1483    case BuiltinType::Int:       EltName = "int32_t"; break;
1484    case BuiltinType::UInt:      EltName = "uint32_t"; break;
1485    case BuiltinType::LongLong:  EltName = "int64_t"; break;
1486    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
1487    case BuiltinType::Float:     EltName = "float32_t"; break;
1488    default: llvm_unreachable("unexpected Neon vector element type");
1489    }
1490  }
1491  const char *BaseName = 0;
1492  unsigned BitSize = (T->getNumElements() *
1493                      getASTContext().getTypeSize(EltType));
1494  if (BitSize == 64)
1495    BaseName = "__simd64_";
1496  else {
1497    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
1498    BaseName = "__simd128_";
1499  }
1500  Out << strlen(BaseName) + strlen(EltName);
1501  Out << BaseName << EltName;
1502}
1503
1504// GNU extension: vector types
1505// <type>                  ::= <vector-type>
1506// <vector-type>           ::= Dv <positive dimension number> _
1507//                                    <extended element type>
1508//                         ::= Dv [<dimension expression>] _ <element type>
1509// <extended element type> ::= <element type>
1510//                         ::= p # AltiVec vector pixel
1511void CXXNameMangler::mangleType(const VectorType *T) {
1512  if ((T->getVectorKind() == VectorType::NeonVector ||
1513       T->getVectorKind() == VectorType::NeonPolyVector)) {
1514    mangleNeonVectorType(T);
1515    return;
1516  }
1517  Out << "Dv" << T->getNumElements() << '_';
1518  if (T->getVectorKind() == VectorType::AltiVecPixel)
1519    Out << 'p';
1520  else if (T->getVectorKind() == VectorType::AltiVecBool)
1521    Out << 'b';
1522  else
1523    mangleType(T->getElementType());
1524}
1525void CXXNameMangler::mangleType(const ExtVectorType *T) {
1526  mangleType(static_cast<const VectorType*>(T));
1527}
1528void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1529  Out << "Dv";
1530  mangleExpression(T->getSizeExpr());
1531  Out << '_';
1532  mangleType(T->getElementType());
1533}
1534
1535void CXXNameMangler::mangleType(const PackExpansionType *T) {
1536  // <type>  ::= Dp <type>          # pack expansion (C++0x)
1537  Out << "Dp";
1538  mangleType(T->getPattern());
1539}
1540
1541void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1542  mangleSourceName(T->getDecl()->getIdentifier());
1543}
1544
1545void CXXNameMangler::mangleType(const ObjCObjectType *T) {
1546  // We don't allow overloading by different protocol qualification,
1547  // so mangling them isn't necessary.
1548  mangleType(T->getBaseType());
1549}
1550
1551void CXXNameMangler::mangleType(const BlockPointerType *T) {
1552  Out << "U13block_pointer";
1553  mangleType(T->getPointeeType());
1554}
1555
1556void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
1557  // Mangle injected class name types as if the user had written the
1558  // specialization out fully.  It may not actually be possible to see
1559  // this mangling, though.
1560  mangleType(T->getInjectedSpecializationType());
1561}
1562
1563void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1564  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
1565    mangleName(TD, T->getArgs(), T->getNumArgs());
1566  } else {
1567    if (mangleSubstitution(QualType(T, 0)))
1568      return;
1569
1570    mangleTemplatePrefix(T->getTemplateName());
1571
1572    // FIXME: GCC does not appear to mangle the template arguments when
1573    // the template in question is a dependent template name. Should we
1574    // emulate that badness?
1575    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
1576    addSubstitution(QualType(T, 0));
1577  }
1578}
1579
1580void CXXNameMangler::mangleType(const DependentNameType *T) {
1581  // Typename types are always nested
1582  Out << 'N';
1583  mangleUnresolvedScope(T->getQualifier());
1584  mangleSourceName(T->getIdentifier());
1585  Out << 'E';
1586}
1587
1588void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
1589  // Dependently-scoped template types are always nested
1590  Out << 'N';
1591
1592  // TODO: avoid making this TemplateName.
1593  TemplateName Prefix =
1594    getASTContext().getDependentTemplateName(T->getQualifier(),
1595                                             T->getIdentifier());
1596  mangleTemplatePrefix(Prefix);
1597
1598  // FIXME: GCC does not appear to mangle the template arguments when
1599  // the template in question is a dependent template name. Should we
1600  // emulate that badness?
1601  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
1602  Out << 'E';
1603}
1604
1605void CXXNameMangler::mangleType(const TypeOfType *T) {
1606  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1607  // "extension with parameters" mangling.
1608  Out << "u6typeof";
1609}
1610
1611void CXXNameMangler::mangleType(const TypeOfExprType *T) {
1612  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1613  // "extension with parameters" mangling.
1614  Out << "u6typeof";
1615}
1616
1617void CXXNameMangler::mangleType(const DecltypeType *T) {
1618  Expr *E = T->getUnderlyingExpr();
1619
1620  // type ::= Dt <expression> E  # decltype of an id-expression
1621  //                             #   or class member access
1622  //      ::= DT <expression> E  # decltype of an expression
1623
1624  // This purports to be an exhaustive list of id-expressions and
1625  // class member accesses.  Note that we do not ignore parentheses;
1626  // parentheses change the semantics of decltype for these
1627  // expressions (and cause the mangler to use the other form).
1628  if (isa<DeclRefExpr>(E) ||
1629      isa<MemberExpr>(E) ||
1630      isa<UnresolvedLookupExpr>(E) ||
1631      isa<DependentScopeDeclRefExpr>(E) ||
1632      isa<CXXDependentScopeMemberExpr>(E) ||
1633      isa<UnresolvedMemberExpr>(E))
1634    Out << "Dt";
1635  else
1636    Out << "DT";
1637  mangleExpression(E);
1638  Out << 'E';
1639}
1640
1641void CXXNameMangler::mangleIntegerLiteral(QualType T,
1642                                          const llvm::APSInt &Value) {
1643  //  <expr-primary> ::= L <type> <value number> E # integer literal
1644  Out << 'L';
1645
1646  mangleType(T);
1647  if (T->isBooleanType()) {
1648    // Boolean values are encoded as 0/1.
1649    Out << (Value.getBoolValue() ? '1' : '0');
1650  } else {
1651    mangleNumber(Value);
1652  }
1653  Out << 'E';
1654
1655}
1656
1657/// Mangles a member expression.  Implicit accesses are not handled,
1658/// but that should be okay, because you shouldn't be able to
1659/// make an implicit access in a function template declaration.
1660void CXXNameMangler::mangleMemberExpr(const Expr *Base,
1661                                      bool IsArrow,
1662                                      NestedNameSpecifier *Qualifier,
1663                                      DeclarationName Member,
1664                                      unsigned Arity) {
1665  // gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
1666  // OTOH, gcc also mangles the name as an expression.
1667  Out << (IsArrow ? "pt" : "dt");
1668  mangleExpression(Base);
1669  mangleUnresolvedName(Qualifier, Member, Arity);
1670}
1671
1672void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
1673  // <expression> ::= <unary operator-name> <expression>
1674  //              ::= <binary operator-name> <expression> <expression>
1675  //              ::= <trinary operator-name> <expression> <expression> <expression>
1676  //              ::= cl <expression>* E             # call
1677  //              ::= cv <type> expression           # conversion with one argument
1678  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
1679  //              ::= st <type>                      # sizeof (a type)
1680  //              ::= at <type>                      # alignof (a type)
1681  //              ::= <template-param>
1682  //              ::= <function-param>
1683  //              ::= sr <type> <unqualified-name>                   # dependent name
1684  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
1685  //              ::= sZ <template-param>                            # size of a parameter pack
1686  //              ::= sZ <function-param>    # size of a function parameter pack
1687  //              ::= <expr-primary>
1688  // <expr-primary> ::= L <type> <value number> E    # integer literal
1689  //                ::= L <type <value float> E      # floating literal
1690  //                ::= L <mangled-name> E           # external name
1691  switch (E->getStmtClass()) {
1692  case Expr::NoStmtClass:
1693#define ABSTRACT_STMT(Type)
1694#define EXPR(Type, Base)
1695#define STMT(Type, Base) \
1696  case Expr::Type##Class:
1697#include "clang/AST/StmtNodes.inc"
1698    // fallthrough
1699
1700  // These all can only appear in local or variable-initialization
1701  // contexts and so should never appear in a mangling.
1702  case Expr::AddrLabelExprClass:
1703  case Expr::BlockDeclRefExprClass:
1704  case Expr::CXXThisExprClass:
1705  case Expr::DesignatedInitExprClass:
1706  case Expr::ImplicitValueInitExprClass:
1707  case Expr::InitListExprClass:
1708  case Expr::ParenListExprClass:
1709  case Expr::CXXScalarValueInitExprClass:
1710    llvm_unreachable("unexpected statement kind");
1711    break;
1712
1713  // FIXME: invent manglings for all these.
1714  case Expr::BlockExprClass:
1715  case Expr::CXXPseudoDestructorExprClass:
1716  case Expr::ChooseExprClass:
1717  case Expr::CompoundLiteralExprClass:
1718  case Expr::ExtVectorElementExprClass:
1719  case Expr::ObjCEncodeExprClass:
1720  case Expr::ObjCIsaExprClass:
1721  case Expr::ObjCIvarRefExprClass:
1722  case Expr::ObjCMessageExprClass:
1723  case Expr::ObjCPropertyRefExprClass:
1724  case Expr::ObjCProtocolExprClass:
1725  case Expr::ObjCSelectorExprClass:
1726  case Expr::ObjCStringLiteralClass:
1727  case Expr::OffsetOfExprClass:
1728  case Expr::PredefinedExprClass:
1729  case Expr::ShuffleVectorExprClass:
1730  case Expr::StmtExprClass:
1731  case Expr::UnaryTypeTraitExprClass:
1732  case Expr::BinaryTypeTraitExprClass:
1733  case Expr::VAArgExprClass:
1734  case Expr::CXXUuidofExprClass:
1735  case Expr::CXXNoexceptExprClass: {
1736    // As bad as this diagnostic is, it's better than crashing.
1737    Diagnostic &Diags = Context.getDiags();
1738    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
1739                                     "cannot yet mangle expression type %0");
1740    Diags.Report(E->getExprLoc(), DiagID)
1741      << E->getStmtClassName() << E->getSourceRange();
1742    break;
1743  }
1744
1745  case Expr::OpaqueValueExprClass:
1746    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
1747
1748  case Expr::CXXDefaultArgExprClass:
1749    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
1750    break;
1751
1752  case Expr::CXXMemberCallExprClass: // fallthrough
1753  case Expr::CallExprClass: {
1754    const CallExpr *CE = cast<CallExpr>(E);
1755    Out << "cl";
1756    mangleExpression(CE->getCallee(), CE->getNumArgs());
1757    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
1758      mangleExpression(CE->getArg(I));
1759    Out << 'E';
1760    break;
1761  }
1762
1763  case Expr::CXXNewExprClass: {
1764    // Proposal from David Vandervoorde, 2010.06.30
1765    const CXXNewExpr *New = cast<CXXNewExpr>(E);
1766    if (New->isGlobalNew()) Out << "gs";
1767    Out << (New->isArray() ? "na" : "nw");
1768    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
1769           E = New->placement_arg_end(); I != E; ++I)
1770      mangleExpression(*I);
1771    Out << '_';
1772    mangleType(New->getAllocatedType());
1773    if (New->hasInitializer()) {
1774      Out << "pi";
1775      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
1776             E = New->constructor_arg_end(); I != E; ++I)
1777        mangleExpression(*I);
1778    }
1779    Out << 'E';
1780    break;
1781  }
1782
1783  case Expr::MemberExprClass: {
1784    const MemberExpr *ME = cast<MemberExpr>(E);
1785    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1786                     ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
1787                     Arity);
1788    break;
1789  }
1790
1791  case Expr::UnresolvedMemberExprClass: {
1792    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
1793    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1794                     ME->getQualifier(), ME->getMemberName(),
1795                     Arity);
1796    if (ME->hasExplicitTemplateArgs())
1797      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1798    break;
1799  }
1800
1801  case Expr::CXXDependentScopeMemberExprClass: {
1802    const CXXDependentScopeMemberExpr *ME
1803      = cast<CXXDependentScopeMemberExpr>(E);
1804    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1805                     ME->getQualifier(), ME->getMember(),
1806                     Arity);
1807    if (ME->hasExplicitTemplateArgs())
1808      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1809    break;
1810  }
1811
1812  case Expr::UnresolvedLookupExprClass: {
1813    // The ABI doesn't cover how to mangle overload sets, so we mangle
1814    // using something as close as possible to the original lookup
1815    // expression.
1816    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
1817    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
1818    if (ULE->hasExplicitTemplateArgs())
1819      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
1820    break;
1821  }
1822
1823  case Expr::CXXUnresolvedConstructExprClass: {
1824    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
1825    unsigned N = CE->arg_size();
1826
1827    Out << "cv";
1828    mangleType(CE->getType());
1829    if (N != 1) Out << '_';
1830    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1831    if (N != 1) Out << 'E';
1832    break;
1833  }
1834
1835  case Expr::CXXTemporaryObjectExprClass:
1836  case Expr::CXXConstructExprClass: {
1837    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
1838    unsigned N = CE->getNumArgs();
1839
1840    Out << "cv";
1841    mangleType(CE->getType());
1842    if (N != 1) Out << '_';
1843    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1844    if (N != 1) Out << 'E';
1845    break;
1846  }
1847
1848  case Expr::SizeOfAlignOfExprClass: {
1849    const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
1850    if (SAE->isSizeOf()) Out << 's';
1851    else Out << 'a';
1852    if (SAE->isArgumentType()) {
1853      Out << 't';
1854      mangleType(SAE->getArgumentType());
1855    } else {
1856      Out << 'z';
1857      mangleExpression(SAE->getArgumentExpr());
1858    }
1859    break;
1860  }
1861
1862  case Expr::CXXThrowExprClass: {
1863    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
1864
1865    // Proposal from David Vandervoorde, 2010.06.30
1866    if (TE->getSubExpr()) {
1867      Out << "tw";
1868      mangleExpression(TE->getSubExpr());
1869    } else {
1870      Out << "tr";
1871    }
1872    break;
1873  }
1874
1875  case Expr::CXXTypeidExprClass: {
1876    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
1877
1878    // Proposal from David Vandervoorde, 2010.06.30
1879    if (TIE->isTypeOperand()) {
1880      Out << "ti";
1881      mangleType(TIE->getTypeOperand());
1882    } else {
1883      Out << "te";
1884      mangleExpression(TIE->getExprOperand());
1885    }
1886    break;
1887  }
1888
1889  case Expr::CXXDeleteExprClass: {
1890    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
1891
1892    // Proposal from David Vandervoorde, 2010.06.30
1893    if (DE->isGlobalDelete()) Out << "gs";
1894    Out << (DE->isArrayForm() ? "da" : "dl");
1895    mangleExpression(DE->getArgument());
1896    break;
1897  }
1898
1899  case Expr::UnaryOperatorClass: {
1900    const UnaryOperator *UO = cast<UnaryOperator>(E);
1901    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
1902                       /*Arity=*/1);
1903    mangleExpression(UO->getSubExpr());
1904    break;
1905  }
1906
1907  case Expr::ArraySubscriptExprClass: {
1908    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
1909
1910    // Array subscript is treated as a syntactically wierd form of
1911    // binary operator.
1912    Out << "ix";
1913    mangleExpression(AE->getLHS());
1914    mangleExpression(AE->getRHS());
1915    break;
1916  }
1917
1918  case Expr::CompoundAssignOperatorClass: // fallthrough
1919  case Expr::BinaryOperatorClass: {
1920    const BinaryOperator *BO = cast<BinaryOperator>(E);
1921    mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
1922                       /*Arity=*/2);
1923    mangleExpression(BO->getLHS());
1924    mangleExpression(BO->getRHS());
1925    break;
1926  }
1927
1928  case Expr::ConditionalOperatorClass: {
1929    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
1930    mangleOperatorName(OO_Conditional, /*Arity=*/3);
1931    mangleExpression(CO->getCond());
1932    mangleExpression(CO->getLHS(), Arity);
1933    mangleExpression(CO->getRHS(), Arity);
1934    break;
1935  }
1936
1937  case Expr::ImplicitCastExprClass: {
1938    mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
1939    break;
1940  }
1941
1942  case Expr::CStyleCastExprClass:
1943  case Expr::CXXStaticCastExprClass:
1944  case Expr::CXXDynamicCastExprClass:
1945  case Expr::CXXReinterpretCastExprClass:
1946  case Expr::CXXConstCastExprClass:
1947  case Expr::CXXFunctionalCastExprClass: {
1948    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
1949    Out << "cv";
1950    mangleType(ECE->getType());
1951    mangleExpression(ECE->getSubExpr());
1952    break;
1953  }
1954
1955  case Expr::CXXOperatorCallExprClass: {
1956    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
1957    unsigned NumArgs = CE->getNumArgs();
1958    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
1959    // Mangle the arguments.
1960    for (unsigned i = 0; i != NumArgs; ++i)
1961      mangleExpression(CE->getArg(i));
1962    break;
1963  }
1964
1965  case Expr::ParenExprClass:
1966    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
1967    break;
1968
1969  case Expr::DeclRefExprClass: {
1970    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1971
1972    switch (D->getKind()) {
1973    default:
1974      //  <expr-primary> ::= L <mangled-name> E # external name
1975      Out << 'L';
1976      mangle(D, "_Z");
1977      Out << 'E';
1978      break;
1979
1980    case Decl::EnumConstant: {
1981      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
1982      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
1983      break;
1984    }
1985
1986    case Decl::NonTypeTemplateParm: {
1987      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
1988      mangleTemplateParameter(PD->getIndex());
1989      break;
1990    }
1991
1992    }
1993
1994    break;
1995  }
1996
1997  case Expr::SubstNonTypeTemplateParmPackExprClass:
1998    mangleTemplateParameter(
1999     cast<SubstNonTypeTemplateParmPackExpr>(E)->getParameterPack()->getIndex());
2000    break;
2001
2002  case Expr::DependentScopeDeclRefExprClass: {
2003    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2004    NestedNameSpecifier *NNS = DRE->getQualifier();
2005    const Type *QTy = NNS->getAsType();
2006
2007    // When we're dealing with a nested-name-specifier that has just a
2008    // dependent identifier in it, mangle that as a typename.  FIXME:
2009    // It isn't clear that we ever actually want to have such a
2010    // nested-name-specifier; why not just represent it as a typename type?
2011    if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
2012      QTy = getASTContext().getDependentNameType(ETK_Typename,
2013                                                 NNS->getPrefix(),
2014                                                 NNS->getAsIdentifier())
2015              .getTypePtr();
2016    }
2017    assert(QTy && "Qualifier was not type!");
2018
2019    // ::= sr <type> <unqualified-name>                  # dependent name
2020    // ::= sr <type> <unqualified-name> <template-args>  # dependent template-id
2021    Out << "sr";
2022    mangleType(QualType(QTy, 0));
2023    mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
2024    if (DRE->hasExplicitTemplateArgs())
2025      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2026
2027    break;
2028  }
2029
2030  case Expr::CXXBindTemporaryExprClass:
2031    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2032    break;
2033
2034  case Expr::ExprWithCleanupsClass:
2035    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2036    break;
2037
2038  case Expr::FloatingLiteralClass: {
2039    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2040    Out << 'L';
2041    mangleType(FL->getType());
2042    mangleFloat(FL->getValue());
2043    Out << 'E';
2044    break;
2045  }
2046
2047  case Expr::CharacterLiteralClass:
2048    Out << 'L';
2049    mangleType(E->getType());
2050    Out << cast<CharacterLiteral>(E)->getValue();
2051    Out << 'E';
2052    break;
2053
2054  case Expr::CXXBoolLiteralExprClass:
2055    Out << "Lb";
2056    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2057    Out << 'E';
2058    break;
2059
2060  case Expr::IntegerLiteralClass: {
2061    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2062    if (E->getType()->isSignedIntegerType())
2063      Value.setIsSigned(true);
2064    mangleIntegerLiteral(E->getType(), Value);
2065    break;
2066  }
2067
2068  case Expr::ImaginaryLiteralClass: {
2069    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2070    // Mangle as if a complex literal.
2071    // Proposal from David Vandevoorde, 2010.06.30.
2072    Out << 'L';
2073    mangleType(E->getType());
2074    if (const FloatingLiteral *Imag =
2075          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2076      // Mangle a floating-point zero of the appropriate type.
2077      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2078      Out << '_';
2079      mangleFloat(Imag->getValue());
2080    } else {
2081      Out << "0_";
2082      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2083      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2084        Value.setIsSigned(true);
2085      mangleNumber(Value);
2086    }
2087    Out << 'E';
2088    break;
2089  }
2090
2091  case Expr::StringLiteralClass: {
2092    // Revised proposal from David Vandervoorde, 2010.07.15.
2093    Out << 'L';
2094    assert(isa<ConstantArrayType>(E->getType()));
2095    mangleType(E->getType());
2096    Out << 'E';
2097    break;
2098  }
2099
2100  case Expr::GNUNullExprClass:
2101    // FIXME: should this really be mangled the same as nullptr?
2102    // fallthrough
2103
2104  case Expr::CXXNullPtrLiteralExprClass: {
2105    // Proposal from David Vandervoorde, 2010.06.30, as
2106    // modified by ABI list discussion.
2107    Out << "LDnE";
2108    break;
2109  }
2110
2111  case Expr::PackExpansionExprClass:
2112    Out << "sp";
2113    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2114    break;
2115
2116  case Expr::SizeOfPackExprClass: {
2117    Out << "sZ";
2118    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2119    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2120      mangleTemplateParameter(TTP->getIndex());
2121    else if (const NonTypeTemplateParmDecl *NTTP
2122                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2123      mangleTemplateParameter(NTTP->getIndex());
2124    else if (const TemplateTemplateParmDecl *TempTP
2125                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2126      mangleTemplateParameter(TempTP->getIndex());
2127    else {
2128      // Note: proposed by Mike Herrick on 11/30/10
2129      // <expression> ::= sZ <function-param>  # size of function parameter pack
2130      Diagnostic &Diags = Context.getDiags();
2131      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
2132                            "cannot mangle sizeof...(function parameter pack)");
2133      Diags.Report(DiagID);
2134      return;
2135    }
2136  }
2137  }
2138}
2139
2140void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2141  // <ctor-dtor-name> ::= C1  # complete object constructor
2142  //                  ::= C2  # base object constructor
2143  //                  ::= C3  # complete object allocating constructor
2144  //
2145  switch (T) {
2146  case Ctor_Complete:
2147    Out << "C1";
2148    break;
2149  case Ctor_Base:
2150    Out << "C2";
2151    break;
2152  case Ctor_CompleteAllocating:
2153    Out << "C3";
2154    break;
2155  }
2156}
2157
2158void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2159  // <ctor-dtor-name> ::= D0  # deleting destructor
2160  //                  ::= D1  # complete object destructor
2161  //                  ::= D2  # base object destructor
2162  //
2163  switch (T) {
2164  case Dtor_Deleting:
2165    Out << "D0";
2166    break;
2167  case Dtor_Complete:
2168    Out << "D1";
2169    break;
2170  case Dtor_Base:
2171    Out << "D2";
2172    break;
2173  }
2174}
2175
2176void CXXNameMangler::mangleTemplateArgs(
2177                          const ExplicitTemplateArgumentList &TemplateArgs) {
2178  // <template-args> ::= I <template-arg>+ E
2179  Out << 'I';
2180  for (unsigned I = 0, E = TemplateArgs.NumTemplateArgs; I != E; ++I)
2181    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[I].getArgument());
2182  Out << 'E';
2183}
2184
2185void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2186                                        const TemplateArgument *TemplateArgs,
2187                                        unsigned NumTemplateArgs) {
2188  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2189    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2190                              NumTemplateArgs);
2191
2192  // <template-args> ::= I <template-arg>+ E
2193  Out << 'I';
2194  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2195    mangleTemplateArg(0, TemplateArgs[i]);
2196  Out << 'E';
2197}
2198
2199void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2200                                        const TemplateArgumentList &AL) {
2201  // <template-args> ::= I <template-arg>+ E
2202  Out << 'I';
2203  for (unsigned i = 0, e = AL.size(); i != e; ++i)
2204    mangleTemplateArg(PL.getParam(i), AL[i]);
2205  Out << 'E';
2206}
2207
2208void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2209                                        const TemplateArgument *TemplateArgs,
2210                                        unsigned NumTemplateArgs) {
2211  // <template-args> ::= I <template-arg>+ E
2212  Out << 'I';
2213  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2214    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
2215  Out << 'E';
2216}
2217
2218void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
2219                                       const TemplateArgument &A) {
2220  // <template-arg> ::= <type>              # type or template
2221  //                ::= X <expression> E    # expression
2222  //                ::= <expr-primary>      # simple expressions
2223  //                ::= J <template-arg>* E # argument pack
2224  //                ::= sp <expression>     # pack expansion of (C++0x)
2225  switch (A.getKind()) {
2226  case TemplateArgument::Null:
2227    llvm_unreachable("Cannot mangle NULL template argument");
2228
2229  case TemplateArgument::Type:
2230    mangleType(A.getAsType());
2231    break;
2232  case TemplateArgument::Template:
2233    // This is mangled as <type>.
2234    mangleType(A.getAsTemplate());
2235    break;
2236  case TemplateArgument::TemplateExpansion:
2237    // <type>  ::= Dp <type>          # pack expansion (C++0x)
2238    Out << "Dp";
2239    mangleType(A.getAsTemplateOrTemplatePattern());
2240    break;
2241  case TemplateArgument::Expression:
2242    Out << 'X';
2243    mangleExpression(A.getAsExpr());
2244    Out << 'E';
2245    break;
2246  case TemplateArgument::Integral:
2247    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
2248    break;
2249  case TemplateArgument::Declaration: {
2250    assert(P && "Missing template parameter for declaration argument");
2251    //  <expr-primary> ::= L <mangled-name> E # external name
2252
2253    // Clang produces AST's where pointer-to-member-function expressions
2254    // and pointer-to-function expressions are represented as a declaration not
2255    // an expression. We compensate for it here to produce the correct mangling.
2256    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
2257    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
2258    bool compensateMangling = D->isCXXClassMember() &&
2259      !Parameter->getType()->isReferenceType();
2260    if (compensateMangling) {
2261      Out << 'X';
2262      mangleOperatorName(OO_Amp, 1);
2263    }
2264
2265    Out << 'L';
2266    // References to external entities use the mangled name; if the name would
2267    // not normally be manged then mangle it as unqualified.
2268    //
2269    // FIXME: The ABI specifies that external names here should have _Z, but
2270    // gcc leaves this off.
2271    if (compensateMangling)
2272      mangle(D, "_Z");
2273    else
2274      mangle(D, "Z");
2275    Out << 'E';
2276
2277    if (compensateMangling)
2278      Out << 'E';
2279
2280    break;
2281  }
2282
2283  case TemplateArgument::Pack: {
2284    // Note: proposal by Mike Herrick on 12/20/10
2285    Out << 'J';
2286    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
2287                                      PAEnd = A.pack_end();
2288         PA != PAEnd; ++PA)
2289      mangleTemplateArg(P, *PA);
2290    Out << 'E';
2291  }
2292  }
2293}
2294
2295void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
2296  // <template-param> ::= T_    # first template parameter
2297  //                  ::= T <parameter-2 non-negative number> _
2298  if (Index == 0)
2299    Out << "T_";
2300  else
2301    Out << 'T' << (Index - 1) << '_';
2302}
2303
2304// <substitution> ::= S <seq-id> _
2305//                ::= S_
2306bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
2307  // Try one of the standard substitutions first.
2308  if (mangleStandardSubstitution(ND))
2309    return true;
2310
2311  ND = cast<NamedDecl>(ND->getCanonicalDecl());
2312  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
2313}
2314
2315bool CXXNameMangler::mangleSubstitution(QualType T) {
2316  if (!T.getCVRQualifiers()) {
2317    if (const RecordType *RT = T->getAs<RecordType>())
2318      return mangleSubstitution(RT->getDecl());
2319  }
2320
2321  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2322
2323  return mangleSubstitution(TypePtr);
2324}
2325
2326bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
2327  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2328    return mangleSubstitution(TD);
2329
2330  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2331  return mangleSubstitution(
2332                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2333}
2334
2335bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
2336  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
2337  if (I == Substitutions.end())
2338    return false;
2339
2340  unsigned SeqID = I->second;
2341  if (SeqID == 0)
2342    Out << "S_";
2343  else {
2344    SeqID--;
2345
2346    // <seq-id> is encoded in base-36, using digits and upper case letters.
2347    char Buffer[10];
2348    char *BufferPtr = llvm::array_endof(Buffer);
2349
2350    if (SeqID == 0) *--BufferPtr = '0';
2351
2352    while (SeqID) {
2353      assert(BufferPtr > Buffer && "Buffer overflow!");
2354
2355      char c = static_cast<char>(SeqID % 36);
2356
2357      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
2358      SeqID /= 36;
2359    }
2360
2361    Out << 'S'
2362        << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
2363        << '_';
2364  }
2365
2366  return true;
2367}
2368
2369static bool isCharType(QualType T) {
2370  if (T.isNull())
2371    return false;
2372
2373  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
2374    T->isSpecificBuiltinType(BuiltinType::Char_U);
2375}
2376
2377/// isCharSpecialization - Returns whether a given type is a template
2378/// specialization of a given name with a single argument of type char.
2379static bool isCharSpecialization(QualType T, const char *Name) {
2380  if (T.isNull())
2381    return false;
2382
2383  const RecordType *RT = T->getAs<RecordType>();
2384  if (!RT)
2385    return false;
2386
2387  const ClassTemplateSpecializationDecl *SD =
2388    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
2389  if (!SD)
2390    return false;
2391
2392  if (!isStdNamespace(SD->getDeclContext()))
2393    return false;
2394
2395  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2396  if (TemplateArgs.size() != 1)
2397    return false;
2398
2399  if (!isCharType(TemplateArgs[0].getAsType()))
2400    return false;
2401
2402  return SD->getIdentifier()->getName() == Name;
2403}
2404
2405template <std::size_t StrLen>
2406static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
2407                                       const char (&Str)[StrLen]) {
2408  if (!SD->getIdentifier()->isStr(Str))
2409    return false;
2410
2411  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2412  if (TemplateArgs.size() != 2)
2413    return false;
2414
2415  if (!isCharType(TemplateArgs[0].getAsType()))
2416    return false;
2417
2418  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2419    return false;
2420
2421  return true;
2422}
2423
2424bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
2425  // <substitution> ::= St # ::std::
2426  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
2427    if (isStd(NS)) {
2428      Out << "St";
2429      return true;
2430    }
2431  }
2432
2433  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
2434    if (!isStdNamespace(TD->getDeclContext()))
2435      return false;
2436
2437    // <substitution> ::= Sa # ::std::allocator
2438    if (TD->getIdentifier()->isStr("allocator")) {
2439      Out << "Sa";
2440      return true;
2441    }
2442
2443    // <<substitution> ::= Sb # ::std::basic_string
2444    if (TD->getIdentifier()->isStr("basic_string")) {
2445      Out << "Sb";
2446      return true;
2447    }
2448  }
2449
2450  if (const ClassTemplateSpecializationDecl *SD =
2451        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
2452    if (!isStdNamespace(SD->getDeclContext()))
2453      return false;
2454
2455    //    <substitution> ::= Ss # ::std::basic_string<char,
2456    //                            ::std::char_traits<char>,
2457    //                            ::std::allocator<char> >
2458    if (SD->getIdentifier()->isStr("basic_string")) {
2459      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2460
2461      if (TemplateArgs.size() != 3)
2462        return false;
2463
2464      if (!isCharType(TemplateArgs[0].getAsType()))
2465        return false;
2466
2467      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2468        return false;
2469
2470      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
2471        return false;
2472
2473      Out << "Ss";
2474      return true;
2475    }
2476
2477    //    <substitution> ::= Si # ::std::basic_istream<char,
2478    //                            ::std::char_traits<char> >
2479    if (isStreamCharSpecialization(SD, "basic_istream")) {
2480      Out << "Si";
2481      return true;
2482    }
2483
2484    //    <substitution> ::= So # ::std::basic_ostream<char,
2485    //                            ::std::char_traits<char> >
2486    if (isStreamCharSpecialization(SD, "basic_ostream")) {
2487      Out << "So";
2488      return true;
2489    }
2490
2491    //    <substitution> ::= Sd # ::std::basic_iostream<char,
2492    //                            ::std::char_traits<char> >
2493    if (isStreamCharSpecialization(SD, "basic_iostream")) {
2494      Out << "Sd";
2495      return true;
2496    }
2497  }
2498  return false;
2499}
2500
2501void CXXNameMangler::addSubstitution(QualType T) {
2502  if (!T.getCVRQualifiers()) {
2503    if (const RecordType *RT = T->getAs<RecordType>()) {
2504      addSubstitution(RT->getDecl());
2505      return;
2506    }
2507  }
2508
2509  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2510  addSubstitution(TypePtr);
2511}
2512
2513void CXXNameMangler::addSubstitution(TemplateName Template) {
2514  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2515    return addSubstitution(TD);
2516
2517  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2518  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2519}
2520
2521void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
2522  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
2523  Substitutions[Ptr] = SeqID++;
2524}
2525
2526//
2527
2528/// \brief Mangles the name of the declaration D and emits that name to the
2529/// given output stream.
2530///
2531/// If the declaration D requires a mangled name, this routine will emit that
2532/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
2533/// and this routine will return false. In this case, the caller should just
2534/// emit the identifier of the declaration (\c D->getIdentifier()) as its
2535/// name.
2536void ItaniumMangleContext::mangleName(const NamedDecl *D,
2537                                      llvm::SmallVectorImpl<char> &Res) {
2538  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2539          "Invalid mangleName() call, argument is not a variable or function!");
2540  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2541         "Invalid mangleName() call on 'structor decl!");
2542
2543  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2544                                 getASTContext().getSourceManager(),
2545                                 "Mangling declaration");
2546
2547  CXXNameMangler Mangler(*this, Res);
2548  return Mangler.mangle(D);
2549}
2550
2551void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
2552                                         CXXCtorType Type,
2553                                         llvm::SmallVectorImpl<char> &Res) {
2554  CXXNameMangler Mangler(*this, Res, D, Type);
2555  Mangler.mangle(D);
2556}
2557
2558void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
2559                                         CXXDtorType Type,
2560                                         llvm::SmallVectorImpl<char> &Res) {
2561  CXXNameMangler Mangler(*this, Res, D, Type);
2562  Mangler.mangle(D);
2563}
2564
2565void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
2566                                       const ThunkInfo &Thunk,
2567                                       llvm::SmallVectorImpl<char> &Res) {
2568  //  <special-name> ::= T <call-offset> <base encoding>
2569  //                      # base is the nominal target function of thunk
2570  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
2571  //                      # base is the nominal target function of thunk
2572  //                      # first call-offset is 'this' adjustment
2573  //                      # second call-offset is result adjustment
2574
2575  assert(!isa<CXXDestructorDecl>(MD) &&
2576         "Use mangleCXXDtor for destructor decls!");
2577
2578  CXXNameMangler Mangler(*this, Res);
2579  Mangler.getStream() << "_ZT";
2580  if (!Thunk.Return.isEmpty())
2581    Mangler.getStream() << 'c';
2582
2583  // Mangle the 'this' pointer adjustment.
2584  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
2585
2586  // Mangle the return pointer adjustment if there is one.
2587  if (!Thunk.Return.isEmpty())
2588    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
2589                             Thunk.Return.VBaseOffsetOffset);
2590
2591  Mangler.mangleFunctionEncoding(MD);
2592}
2593
2594void
2595ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
2596                                         CXXDtorType Type,
2597                                         const ThisAdjustment &ThisAdjustment,
2598                                         llvm::SmallVectorImpl<char> &Res) {
2599  //  <special-name> ::= T <call-offset> <base encoding>
2600  //                      # base is the nominal target function of thunk
2601
2602  CXXNameMangler Mangler(*this, Res, DD, Type);
2603  Mangler.getStream() << "_ZT";
2604
2605  // Mangle the 'this' pointer adjustment.
2606  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
2607                           ThisAdjustment.VCallOffsetOffset);
2608
2609  Mangler.mangleFunctionEncoding(DD);
2610}
2611
2612/// mangleGuardVariable - Returns the mangled name for a guard variable
2613/// for the passed in VarDecl.
2614void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
2615                                             llvm::SmallVectorImpl<char> &Res) {
2616  //  <special-name> ::= GV <object name>       # Guard variable for one-time
2617  //                                            # initialization
2618  CXXNameMangler Mangler(*this, Res);
2619  Mangler.getStream() << "_ZGV";
2620  Mangler.mangleName(D);
2621}
2622
2623void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
2624                                             llvm::SmallVectorImpl<char> &Res) {
2625  // We match the GCC mangling here.
2626  //  <special-name> ::= GR <object name>
2627  CXXNameMangler Mangler(*this, Res);
2628  Mangler.getStream() << "_ZGR";
2629  Mangler.mangleName(D);
2630}
2631
2632void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
2633                                           llvm::SmallVectorImpl<char> &Res) {
2634  // <special-name> ::= TV <type>  # virtual table
2635  CXXNameMangler Mangler(*this, Res);
2636  Mangler.getStream() << "_ZTV";
2637  Mangler.mangleNameOrStandardSubstitution(RD);
2638}
2639
2640void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
2641                                        llvm::SmallVectorImpl<char> &Res) {
2642  // <special-name> ::= TT <type>  # VTT structure
2643  CXXNameMangler Mangler(*this, Res);
2644  Mangler.getStream() << "_ZTT";
2645  Mangler.mangleNameOrStandardSubstitution(RD);
2646}
2647
2648void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
2649                                               int64_t Offset,
2650                                               const CXXRecordDecl *Type,
2651                                             llvm::SmallVectorImpl<char> &Res) {
2652  // <special-name> ::= TC <type> <offset number> _ <base type>
2653  CXXNameMangler Mangler(*this, Res);
2654  Mangler.getStream() << "_ZTC";
2655  Mangler.mangleNameOrStandardSubstitution(RD);
2656  Mangler.getStream() << Offset;
2657  Mangler.getStream() << '_';
2658  Mangler.mangleNameOrStandardSubstitution(Type);
2659}
2660
2661void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
2662                                         llvm::SmallVectorImpl<char> &Res) {
2663  // <special-name> ::= TI <type>  # typeinfo structure
2664  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
2665  CXXNameMangler Mangler(*this, Res);
2666  Mangler.getStream() << "_ZTI";
2667  Mangler.mangleType(Ty);
2668}
2669
2670void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
2671                                             llvm::SmallVectorImpl<char> &Res) {
2672  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
2673  CXXNameMangler Mangler(*this, Res);
2674  Mangler.getStream() << "_ZTS";
2675  Mangler.mangleType(Ty);
2676}
2677
2678MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
2679                                                 Diagnostic &Diags) {
2680  return new ItaniumMangleContext(Context, Diags);
2681}
2682