CGExpr.cpp revision bda0b626e74513950405c27525af87e214e605e2
1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Support/MathExtras.h"
22using namespace clang;
23using namespace CodeGen;
24
25//===--------------------------------------------------------------------===//
26//                        Miscellaneous Helper Methods
27//===--------------------------------------------------------------------===//
28
29/// CreateTempAlloca - This creates a alloca and inserts it into the entry
30/// block.
31llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
32                                                    const char *Name) {
33  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
34}
35
36/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
37/// expression and compare the result against zero, returning an Int1Ty value.
38llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
39  QualType BoolTy = getContext().BoolTy;
40  if (!E->getType()->isComplexType())
41    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
42
43  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
44}
45
46/// EmitAnyExpr - Emit code to compute the specified expression which can have
47/// any type.  The result is returned as an RValue struct.  If this is an
48/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
49/// the result should be returned.
50RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
51                                    bool isAggLocVolatile) {
52  if (!hasAggregateLLVMType(E->getType()))
53    return RValue::get(EmitScalarExpr(E));
54  else if (E->getType()->isComplexType())
55    return RValue::getComplex(EmitComplexExpr(E));
56
57  EmitAggExpr(E, AggLoc, isAggLocVolatile);
58  return RValue::getAggregate(AggLoc);
59}
60
61
62//===----------------------------------------------------------------------===//
63//                         LValue Expression Emission
64//===----------------------------------------------------------------------===//
65
66/// EmitLValue - Emit code to compute a designator that specifies the location
67/// of the expression.
68///
69/// This can return one of two things: a simple address or a bitfield
70/// reference.  In either case, the LLVM Value* in the LValue structure is
71/// guaranteed to be an LLVM pointer type.
72///
73/// If this returns a bitfield reference, nothing about the pointee type of
74/// the LLVM value is known: For example, it may not be a pointer to an
75/// integer.
76///
77/// If this returns a normal address, and if the lvalue's C type is fixed
78/// size, this method guarantees that the returned pointer type will point to
79/// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
80/// variable length type, this is not possible.
81///
82LValue CodeGenFunction::EmitLValue(const Expr *E) {
83  switch (E->getStmtClass()) {
84  default: {
85    WarnUnsupported(E, "l-value expression");
86    llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
87    return LValue::MakeAddr(llvm::UndefValue::get(Ty));
88  }
89
90  case Expr::CallExprClass: return EmitCallExprLValue(cast<CallExpr>(E));
91  case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
92  case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
93  case Expr::PreDefinedExprClass:
94    return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
95  case Expr::StringLiteralClass:
96    return EmitStringLiteralLValue(cast<StringLiteral>(E));
97
98  case Expr::UnaryOperatorClass:
99    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
100  case Expr::ArraySubscriptExprClass:
101    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
102  case Expr::OCUVectorElementExprClass:
103    return EmitOCUVectorElementExpr(cast<OCUVectorElementExpr>(E));
104  case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E));
105  }
106}
107
108/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
109/// this method emits the address of the lvalue, then loads the result as an
110/// rvalue, returning the rvalue.
111RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
112  if (LV.isSimple()) {
113    llvm::Value *Ptr = LV.getAddress();
114    const llvm::Type *EltTy =
115      cast<llvm::PointerType>(Ptr->getType())->getElementType();
116
117    // Simple scalar l-value.
118    if (EltTy->isFirstClassType()) {
119      llvm::Value *V = Builder.CreateLoad(Ptr, "tmp");
120
121      // Bool can have different representation in memory than in registers.
122      if (ExprType->isBooleanType()) {
123        if (V->getType() != llvm::Type::Int1Ty)
124          V = Builder.CreateTrunc(V, llvm::Type::Int1Ty, "tobool");
125      }
126
127      return RValue::get(V);
128    }
129
130    assert(ExprType->isFunctionType() && "Unknown scalar value");
131    return RValue::get(Ptr);
132  }
133
134  if (LV.isVectorElt()) {
135    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
136    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
137                                                    "vecext"));
138  }
139
140  // If this is a reference to a subset of the elements of a vector, either
141  // shuffle the input or extract/insert them as appropriate.
142  if (LV.isOCUVectorElt())
143    return EmitLoadOfOCUElementLValue(LV, ExprType);
144
145  if (LV.isBitfield())
146    return EmitLoadOfBitfieldLValue(LV, ExprType);
147
148  assert(0 && "Unknown LValue type!");
149  //an invalid RValue, but the assert will
150  //ensure that this point is never reached
151  return RValue();
152}
153
154RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
155                                                 QualType ExprType) {
156  llvm::Value *Ptr = LV.getBitfieldAddr();
157  const llvm::Type *EltTy =
158    cast<llvm::PointerType>(Ptr->getType())->getElementType();
159  unsigned EltTySize = EltTy->getPrimitiveSizeInBits();
160  unsigned short BitfieldSize = LV.getBitfieldSize();
161  unsigned short EndBit = LV.getBitfieldStartBit() + BitfieldSize;
162
163  llvm::Value *V = Builder.CreateLoad(Ptr, "tmp");
164
165  llvm::Value *ShAmt = llvm::ConstantInt::get(EltTy, EltTySize - EndBit);
166  V = Builder.CreateShl(V, ShAmt, "tmp");
167
168  ShAmt = llvm::ConstantInt::get(EltTy, EltTySize - BitfieldSize);
169  V = LV.isBitfieldSigned() ?
170    Builder.CreateAShr(V, ShAmt, "tmp") :
171    Builder.CreateLShr(V, ShAmt, "tmp");
172  return RValue::get(V);
173}
174
175// If this is a reference to a subset of the elements of a vector, either
176// shuffle the input or extract/insert them as appropriate.
177RValue CodeGenFunction::EmitLoadOfOCUElementLValue(LValue LV,
178                                                   QualType ExprType) {
179  llvm::Value *Vec = Builder.CreateLoad(LV.getOCUVectorAddr(), "tmp");
180
181  unsigned EncFields = LV.getOCUVectorElts();
182
183  // If the result of the expression is a non-vector type, we must be
184  // extracting a single element.  Just codegen as an extractelement.
185  const VectorType *ExprVT = ExprType->getAsVectorType();
186  if (!ExprVT) {
187    unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
188    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
189    return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
190  }
191
192  // If the source and destination have the same number of elements, use a
193  // vector shuffle instead of insert/extracts.
194  unsigned NumResultElts = ExprVT->getNumElements();
195  unsigned NumSourceElts =
196    cast<llvm::VectorType>(Vec->getType())->getNumElements();
197
198  if (NumResultElts == NumSourceElts) {
199    llvm::SmallVector<llvm::Constant*, 4> Mask;
200    for (unsigned i = 0; i != NumResultElts; ++i) {
201      unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
202      Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
203    }
204
205    llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
206    Vec = Builder.CreateShuffleVector(Vec,
207                                      llvm::UndefValue::get(Vec->getType()),
208                                      MaskV, "tmp");
209    return RValue::get(Vec);
210  }
211
212  // Start out with an undef of the result type.
213  llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
214
215  // Extract/Insert each element of the result.
216  for (unsigned i = 0; i != NumResultElts; ++i) {
217    unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
218    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
219    Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
220
221    llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
222    Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
223  }
224
225  return RValue::get(Result);
226}
227
228
229
230/// EmitStoreThroughLValue - Store the specified rvalue into the specified
231/// lvalue, where both are guaranteed to the have the same type, and that type
232/// is 'Ty'.
233void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
234                                             QualType Ty) {
235  if (!Dst.isSimple()) {
236    if (Dst.isVectorElt()) {
237      // Read/modify/write the vector, inserting the new element.
238      // FIXME: Volatility.
239      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
240      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
241                                        Dst.getVectorIdx(), "vecins");
242      Builder.CreateStore(Vec, Dst.getVectorAddr());
243      return;
244    }
245
246    // If this is an update of elements of a vector, insert them as appropriate.
247    if (Dst.isOCUVectorElt())
248      return EmitStoreThroughOCUComponentLValue(Src, Dst, Ty);
249
250    if (Dst.isBitfield())
251      return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
252
253    assert(0 && "Unknown LValue type");
254  }
255
256  llvm::Value *DstAddr = Dst.getAddress();
257  assert(Src.isScalar() && "Can't emit an agg store with this method");
258  // FIXME: Handle volatility etc.
259  const llvm::Type *SrcTy = Src.getScalarVal()->getType();
260  const llvm::PointerType *DstPtr = cast<llvm::PointerType>(DstAddr->getType());
261  const llvm::Type *AddrTy = DstPtr->getElementType();
262  unsigned AS = DstPtr->getAddressSpace();
263
264  if (AddrTy != SrcTy)
265    DstAddr = Builder.CreateBitCast(DstAddr,
266                                    llvm::PointerType::get(SrcTy, AS),
267                                    "storetmp");
268  Builder.CreateStore(Src.getScalarVal(), DstAddr);
269}
270
271void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
272                                                     QualType Ty) {
273  unsigned short StartBit = Dst.getBitfieldStartBit();
274  unsigned short BitfieldSize = Dst.getBitfieldSize();
275  llvm::Value *Ptr = Dst.getBitfieldAddr();
276  const llvm::Type *EltTy =
277    cast<llvm::PointerType>(Ptr->getType())->getElementType();
278  unsigned EltTySize = EltTy->getPrimitiveSizeInBits();
279
280  llvm::Value *NewVal = Src.getScalarVal();
281  llvm::Value *OldVal = Builder.CreateLoad(Ptr, "tmp");
282
283  llvm::Value *ShAmt = llvm::ConstantInt::get(EltTy, StartBit);
284  NewVal = Builder.CreateShl(NewVal, ShAmt, "tmp");
285
286  llvm::Constant *Mask = llvm::ConstantInt::get(
287           llvm::APInt::getBitsSet(EltTySize, StartBit,
288                                   StartBit + BitfieldSize));
289
290  // Mask out any bits that shouldn't be set in the result.
291  NewVal = Builder.CreateAnd(NewVal, Mask, "tmp");
292
293  // Next, mask out the bits this bit-field should include from the old value.
294  Mask = llvm::ConstantExpr::getNot(Mask);
295  OldVal = Builder.CreateAnd(OldVal, Mask, "tmp");
296
297  // Finally, merge the two together and store it.
298  NewVal = Builder.CreateOr(OldVal, NewVal, "tmp");
299
300  Builder.CreateStore(NewVal, Ptr);
301}
302
303void CodeGenFunction::EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst,
304                                                         QualType Ty) {
305  // This access turns into a read/modify/write of the vector.  Load the input
306  // value now.
307  llvm::Value *Vec = Builder.CreateLoad(Dst.getOCUVectorAddr(), "tmp");
308  // FIXME: Volatility.
309  unsigned EncFields = Dst.getOCUVectorElts();
310
311  llvm::Value *SrcVal = Src.getScalarVal();
312
313  if (const VectorType *VTy = Ty->getAsVectorType()) {
314    unsigned NumSrcElts = VTy->getNumElements();
315
316    // Extract/Insert each element.
317    for (unsigned i = 0; i != NumSrcElts; ++i) {
318      llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
319      Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
320
321      unsigned Idx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
322      llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
323      Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
324    }
325  } else {
326    // If the Src is a scalar (not a vector) it must be updating one element.
327    unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
328    llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
329    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
330  }
331
332  Builder.CreateStore(Vec, Dst.getOCUVectorAddr());
333}
334
335
336LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
337  const ValueDecl *D = E->getDecl();
338  if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
339    const VarDecl *VD = cast<VarDecl>(D);
340    if (VD->getStorageClass() == VarDecl::Extern)
341      return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD, false));
342    else {
343      llvm::Value *V = LocalDeclMap[D];
344      assert(V && "BlockVarDecl not entered in LocalDeclMap?");
345      return LValue::MakeAddr(V);
346    }
347  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
348    return LValue::MakeAddr(CGM.GetAddrOfFunctionDecl(FD, false));
349  } else if (const FileVarDecl *FVD = dyn_cast<FileVarDecl>(D)) {
350    return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(FVD, false));
351  }
352  assert(0 && "Unimp declref");
353  //an invalid LValue, but the assert will
354  //ensure that this point is never reached.
355  return LValue();
356}
357
358LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
359  // __extension__ doesn't affect lvalue-ness.
360  if (E->getOpcode() == UnaryOperator::Extension)
361    return EmitLValue(E->getSubExpr());
362
363  switch (E->getOpcode()) {
364  default: assert(0 && "Unknown unary operator lvalue!");
365  case UnaryOperator::Deref:
366    return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()));
367  case UnaryOperator::Real:
368  case UnaryOperator::Imag:
369    LValue LV = EmitLValue(E->getSubExpr());
370
371    llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
372    llvm::Constant *Idx  = llvm::ConstantInt::get(llvm::Type::Int32Ty,
373                                        E->getOpcode() == UnaryOperator::Imag);
374    llvm::Value *Ops[] = {Zero, Idx};
375    return LValue::MakeAddr(Builder.CreateGEP(LV.getAddress(), Ops, Ops+2,
376                                              "idx"));
377  }
378}
379
380LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
381  assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
382  const char *StrData = E->getStrData();
383  unsigned Len = E->getByteLength();
384  std::string StringLiteral(StrData, StrData+Len);
385  return LValue::MakeAddr(CGM.GetAddrOfConstantString(StringLiteral));
386}
387
388LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
389  std::string FunctionName(CurFuncDecl->getName());
390  std::string GlobalVarName;
391
392  switch (E->getIdentType()) {
393    default:
394      assert(0 && "unknown pre-defined ident type");
395    case PreDefinedExpr::Func:
396      GlobalVarName = "__func__.";
397      break;
398    case PreDefinedExpr::Function:
399      GlobalVarName = "__FUNCTION__.";
400      break;
401    case PreDefinedExpr::PrettyFunction:
402      // FIXME:: Demangle C++ method names
403      GlobalVarName = "__PRETTY_FUNCTION__.";
404      break;
405  }
406
407  GlobalVarName += CurFuncDecl->getName();
408
409  // FIXME: Can cache/reuse these within the module.
410  llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
411
412  // Create a global variable for this.
413  C = new llvm::GlobalVariable(C->getType(), true,
414                               llvm::GlobalValue::InternalLinkage,
415                               C, GlobalVarName, CurFn->getParent());
416  return LValue::MakeAddr(C);
417}
418
419LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
420  // The index must always be an integer, which is not an aggregate.  Emit it.
421  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
422
423  // If the base is a vector type, then we are forming a vector element lvalue
424  // with this subscript.
425  if (E->getLHS()->getType()->isVectorType()) {
426    // Emit the vector as an lvalue to get its address.
427    LValue LHS = EmitLValue(E->getLHS());
428    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
429    // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
430    return LValue::MakeVectorElt(LHS.getAddress(), Idx);
431  }
432
433  // The base must be a pointer, which is not an aggregate.  Emit it.
434  llvm::Value *Base = EmitScalarExpr(E->getBase());
435
436  // Extend or truncate the index type to 32 or 64-bits.
437  QualType IdxTy  = E->getIdx()->getType();
438  bool IdxSigned = IdxTy->isSignedIntegerType();
439  unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
440  if (IdxBitwidth != LLVMPointerWidth)
441    Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
442                                IdxSigned, "idxprom");
443
444  // We know that the pointer points to a type of the correct size, unless the
445  // size is a VLA.
446  if (!E->getType()->isConstantSizeType())
447    assert(0 && "VLA idx not implemented");
448  return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
449}
450
451LValue CodeGenFunction::
452EmitOCUVectorElementExpr(const OCUVectorElementExpr *E) {
453  // Emit the base vector as an l-value.
454  LValue Base = EmitLValue(E->getBase());
455  assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
456
457  return LValue::MakeOCUVectorElt(Base.getAddress(),
458                                  E->getEncodedElementAccess());
459}
460
461LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
462  bool isUnion = false;
463  Expr *BaseExpr = E->getBase();
464  llvm::Value *BaseValue = NULL;
465
466  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
467  if (E->isArrow()) {
468    BaseValue = EmitScalarExpr(BaseExpr);
469    const PointerType *PTy =
470      cast<PointerType>(BaseExpr->getType().getCanonicalType());
471    if (PTy->getPointeeType()->isUnionType())
472      isUnion = true;
473  }
474  else {
475    LValue BaseLV = EmitLValue(BaseExpr);
476    // FIXME: this isn't right for bitfields.
477    BaseValue = BaseLV.getAddress();
478    if (BaseExpr->getType()->isUnionType())
479      isUnion = true;
480  }
481
482  FieldDecl *Field = E->getMemberDecl();
483  return EmitLValueForField(BaseValue, Field, isUnion);
484}
485
486LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
487                                           FieldDecl* Field,
488                                           bool isUnion)
489{
490  llvm::Value *V;
491  unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
492
493  if (Field->isBitField()) {
494    const llvm::Type * FieldTy = ConvertType(Field->getType());
495    const llvm::PointerType * BaseTy =
496      cast<llvm::PointerType>(BaseValue->getType());
497    unsigned AS = BaseTy->getAddressSpace();
498    BaseValue = Builder.CreateBitCast(BaseValue,
499                                      llvm::PointerType::get(FieldTy, AS),
500                                      "tmp");
501    V = Builder.CreateGEP(BaseValue,
502                          llvm::ConstantInt::get(llvm::Type::Int32Ty, idx),
503                          "tmp");
504  } else {
505    llvm::Value *Idxs[2] = { llvm::Constant::getNullValue(llvm::Type::Int32Ty),
506                             llvm::ConstantInt::get(llvm::Type::Int32Ty, idx) };
507    V = Builder.CreateGEP(BaseValue,Idxs, Idxs + 2, "tmp");
508  }
509  // Match union field type.
510  if (isUnion) {
511    const llvm::Type * FieldTy = ConvertType(Field->getType());
512    const llvm::PointerType * BaseTy =
513      cast<llvm::PointerType>(BaseValue->getType());
514    if (FieldTy != BaseTy->getElementType()) {
515      unsigned AS = BaseTy->getAddressSpace();
516      V = Builder.CreateBitCast(V,
517                                llvm::PointerType::get(FieldTy, AS),
518                                "tmp");
519    }
520  }
521
522  if (Field->isBitField()) {
523    CodeGenTypes::BitFieldInfo bitFieldInfo =
524      CGM.getTypes().getBitFieldInfo(Field);
525    return LValue::MakeBitfield(V, bitFieldInfo.Begin, bitFieldInfo.Size,
526                                Field->getType()->isSignedIntegerType());
527  } else
528    return LValue::MakeAddr(V);
529}
530
531//===--------------------------------------------------------------------===//
532//                             Expression Emission
533//===--------------------------------------------------------------------===//
534
535
536RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
537  if (const ImplicitCastExpr *IcExpr =
538      dyn_cast<const ImplicitCastExpr>(E->getCallee()))
539    if (const DeclRefExpr *DRExpr =
540        dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr()))
541      if (const FunctionDecl *FDecl =
542          dyn_cast<const FunctionDecl>(DRExpr->getDecl()))
543        if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID())
544          return EmitBuiltinExpr(builtinID, E);
545
546  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
547  return EmitCallExpr(Callee, E->getCallee()->getType(),
548                      E->arg_begin(), E->getNumArgs());
549}
550
551RValue CodeGenFunction::EmitCallExpr(Expr *FnExpr, Expr *const *Args,
552                                     unsigned NumArgs) {
553  llvm::Value *Callee = EmitScalarExpr(FnExpr);
554  return EmitCallExpr(Callee, FnExpr->getType(), Args, NumArgs);
555}
556
557LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
558  // Can only get l-value for call expression returning aggregate type
559  RValue RV = EmitCallExpr(E);
560  return LValue::MakeAddr(RV.getAggregateAddr());
561}
562
563RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, QualType FnType,
564                                     Expr *const *ArgExprs, unsigned NumArgs) {
565  // The callee type will always be a pointer to function type, get the function
566  // type.
567  FnType = cast<PointerType>(FnType.getCanonicalType())->getPointeeType();
568  QualType ResultType = cast<FunctionType>(FnType)->getResultType();
569
570  llvm::SmallVector<llvm::Value*, 16> Args;
571
572  // Handle struct-return functions by passing a pointer to the location that
573  // we would like to return into.
574  if (hasAggregateLLVMType(ResultType)) {
575    // Create a temporary alloca to hold the result of the call. :(
576    Args.push_back(CreateTempAlloca(ConvertType(ResultType)));
577    // FIXME: set the stret attribute on the argument.
578  }
579
580  for (unsigned i = 0, e = NumArgs; i != e; ++i) {
581    QualType ArgTy = ArgExprs[i]->getType();
582
583    if (!hasAggregateLLVMType(ArgTy)) {
584      // Scalar argument is passed by-value.
585      Args.push_back(EmitScalarExpr(ArgExprs[i]));
586    } else if (ArgTy->isComplexType()) {
587      // Make a temporary alloca to pass the argument.
588      llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
589      EmitComplexExprIntoAddr(ArgExprs[i], DestMem, false);
590      Args.push_back(DestMem);
591    } else {
592      llvm::Value *DestMem = CreateTempAlloca(ConvertType(ArgTy));
593      EmitAggExpr(ArgExprs[i], DestMem, false);
594      Args.push_back(DestMem);
595    }
596  }
597
598  llvm::CallInst *CI = Builder.CreateCall(Callee,&Args[0],&Args[0]+Args.size());
599  if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
600    CI->setCallingConv(F->getCallingConv());
601  if (CI->getType() != llvm::Type::VoidTy)
602    CI->setName("call");
603  else if (ResultType->isComplexType())
604    return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
605  else if (hasAggregateLLVMType(ResultType))
606    // Struct return.
607    return RValue::getAggregate(Args[0]);
608  else {
609    // void return.
610    assert(ResultType->isVoidType() && "Should only have a void expr here");
611    CI = 0;
612  }
613
614  return RValue::get(CI);
615}
616