CGStmt.cpp revision c2c90011a688c04a4e980282f08c267e081c4b00
1//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Stmt nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CodeGenModule.h"
16#include "CodeGenFunction.h"
17#include "TargetInfo.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/PrettyStackTrace.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Target/TargetData.h"
25using namespace clang;
26using namespace CodeGen;
27
28//===----------------------------------------------------------------------===//
29//                              Statement Emission
30//===----------------------------------------------------------------------===//
31
32void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33  if (CGDebugInfo *DI = getDebugInfo()) {
34    if (isa<DeclStmt>(S))
35      DI->setLocation(S->getLocEnd());
36    else
37      DI->setLocation(S->getLocStart());
38    DI->UpdateLineDirectiveRegion(Builder);
39    DI->EmitStopPoint(Builder);
40  }
41}
42
43void CodeGenFunction::EmitStmt(const Stmt *S) {
44  assert(S && "Null statement?");
45
46  // Check if we can handle this without bothering to generate an
47  // insert point or debug info.
48  if (EmitSimpleStmt(S))
49    return;
50
51  // Check if we are generating unreachable code.
52  if (!HaveInsertPoint()) {
53    // If so, and the statement doesn't contain a label, then we do not need to
54    // generate actual code. This is safe because (1) the current point is
55    // unreachable, so we don't need to execute the code, and (2) we've already
56    // handled the statements which update internal data structures (like the
57    // local variable map) which could be used by subsequent statements.
58    if (!ContainsLabel(S)) {
59      // Verify that any decl statements were handled as simple, they may be in
60      // scope of subsequent reachable statements.
61      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
62      return;
63    }
64
65    // Otherwise, make a new block to hold the code.
66    EnsureInsertPoint();
67  }
68
69  // Generate a stoppoint if we are emitting debug info.
70  EmitStopPoint(S);
71
72  switch (S->getStmtClass()) {
73  case Stmt::NoStmtClass:
74  case Stmt::CXXCatchStmtClass:
75    llvm_unreachable("invalid statement class to emit generically");
76  case Stmt::NullStmtClass:
77  case Stmt::CompoundStmtClass:
78  case Stmt::DeclStmtClass:
79  case Stmt::LabelStmtClass:
80  case Stmt::GotoStmtClass:
81  case Stmt::BreakStmtClass:
82  case Stmt::ContinueStmtClass:
83  case Stmt::DefaultStmtClass:
84  case Stmt::CaseStmtClass:
85    llvm_unreachable("should have emitted these statements as simple");
86
87#define STMT(Type, Base)
88#define ABSTRACT_STMT(Op)
89#define EXPR(Type, Base) \
90  case Stmt::Type##Class:
91#include "clang/AST/StmtNodes.inc"
92  {
93    // Remember the block we came in on.
94    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
95    assert(incoming && "expression emission must have an insertion point");
96
97    EmitIgnoredExpr(cast<Expr>(S));
98
99    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
100    assert(outgoing && "expression emission cleared block!");
101
102    // The expression emitters assume (reasonably!) that the insertion
103    // point is always set.  To maintain that, the call-emission code
104    // for noreturn functions has to enter a new block with no
105    // predecessors.  We want to kill that block and mark the current
106    // insertion point unreachable in the common case of a call like
107    // "exit();".  Since expression emission doesn't otherwise create
108    // blocks with no predecessors, we can just test for that.
109    // However, we must be careful not to do this to our incoming
110    // block, because *statement* emission does sometimes create
111    // reachable blocks which will have no predecessors until later in
112    // the function.  This occurs with, e.g., labels that are not
113    // reachable by fallthrough.
114    if (incoming != outgoing && outgoing->use_empty()) {
115      outgoing->eraseFromParent();
116      Builder.ClearInsertionPoint();
117    }
118    break;
119  }
120
121  case Stmt::IndirectGotoStmtClass:
122    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
123
124  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
125  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
126  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
127  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
128
129  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
130
131  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
132  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
133
134  case Stmt::ObjCAtTryStmtClass:
135    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
136    break;
137  case Stmt::ObjCAtCatchStmtClass:
138    assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
139    break;
140  case Stmt::ObjCAtFinallyStmtClass:
141    assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
142    break;
143  case Stmt::ObjCAtThrowStmtClass:
144    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
145    break;
146  case Stmt::ObjCAtSynchronizedStmtClass:
147    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
148    break;
149  case Stmt::ObjCForCollectionStmtClass:
150    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
151    break;
152
153  case Stmt::CXXTryStmtClass:
154    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
155    break;
156  }
157}
158
159bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
160  switch (S->getStmtClass()) {
161  default: return false;
162  case Stmt::NullStmtClass: break;
163  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
164  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
165  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
166  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
167  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
168  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
169  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
170  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
171  }
172
173  return true;
174}
175
176/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
177/// this captures the expression result of the last sub-statement and returns it
178/// (for use by the statement expression extension).
179RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
180                                         AggValueSlot AggSlot) {
181  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
182                             "LLVM IR generation of compound statement ('{}')");
183
184  CGDebugInfo *DI = getDebugInfo();
185  if (DI) {
186    DI->setLocation(S.getLBracLoc());
187    DI->EmitRegionStart(Builder);
188  }
189
190  // Keep track of the current cleanup stack depth.
191  RunCleanupsScope Scope(*this);
192
193  for (CompoundStmt::const_body_iterator I = S.body_begin(),
194       E = S.body_end()-GetLast; I != E; ++I)
195    EmitStmt(*I);
196
197  if (DI) {
198    DI->setLocation(S.getRBracLoc());
199    DI->EmitRegionEnd(Builder);
200  }
201
202  RValue RV;
203  if (!GetLast)
204    RV = RValue::get(0);
205  else {
206    // We have to special case labels here.  They are statements, but when put
207    // at the end of a statement expression, they yield the value of their
208    // subexpression.  Handle this by walking through all labels we encounter,
209    // emitting them before we evaluate the subexpr.
210    const Stmt *LastStmt = S.body_back();
211    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
212      EmitLabel(LS->getDecl());
213      LastStmt = LS->getSubStmt();
214    }
215
216    EnsureInsertPoint();
217
218    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
219  }
220
221  return RV;
222}
223
224void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
225  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
226
227  // If there is a cleanup stack, then we it isn't worth trying to
228  // simplify this block (we would need to remove it from the scope map
229  // and cleanup entry).
230  if (!EHStack.empty())
231    return;
232
233  // Can only simplify direct branches.
234  if (!BI || !BI->isUnconditional())
235    return;
236
237  BB->replaceAllUsesWith(BI->getSuccessor(0));
238  BI->eraseFromParent();
239  BB->eraseFromParent();
240}
241
242void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
243  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
244
245  // Fall out of the current block (if necessary).
246  EmitBranch(BB);
247
248  if (IsFinished && BB->use_empty()) {
249    delete BB;
250    return;
251  }
252
253  // Place the block after the current block, if possible, or else at
254  // the end of the function.
255  if (CurBB && CurBB->getParent())
256    CurFn->getBasicBlockList().insertAfter(CurBB, BB);
257  else
258    CurFn->getBasicBlockList().push_back(BB);
259  Builder.SetInsertPoint(BB);
260}
261
262void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
263  // Emit a branch from the current block to the target one if this
264  // was a real block.  If this was just a fall-through block after a
265  // terminator, don't emit it.
266  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
267
268  if (!CurBB || CurBB->getTerminator()) {
269    // If there is no insert point or the previous block is already
270    // terminated, don't touch it.
271  } else {
272    // Otherwise, create a fall-through branch.
273    Builder.CreateBr(Target);
274  }
275
276  Builder.ClearInsertionPoint();
277}
278
279CodeGenFunction::JumpDest
280CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
281  JumpDest &Dest = LabelMap[D];
282  if (Dest.isValid()) return Dest;
283
284  // Create, but don't insert, the new block.
285  Dest = JumpDest(createBasicBlock(D->getName()),
286                  EHScopeStack::stable_iterator::invalid(),
287                  NextCleanupDestIndex++);
288  return Dest;
289}
290
291void CodeGenFunction::EmitLabel(const LabelDecl *D) {
292  JumpDest &Dest = LabelMap[D];
293
294  // If we didn't need a forward reference to this label, just go
295  // ahead and create a destination at the current scope.
296  if (!Dest.isValid()) {
297    Dest = getJumpDestInCurrentScope(D->getName());
298
299  // Otherwise, we need to give this label a target depth and remove
300  // it from the branch-fixups list.
301  } else {
302    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
303    Dest = JumpDest(Dest.getBlock(),
304                    EHStack.stable_begin(),
305                    Dest.getDestIndex());
306
307    ResolveBranchFixups(Dest.getBlock());
308  }
309
310  EmitBlock(Dest.getBlock());
311}
312
313
314void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
315  EmitLabel(S.getDecl());
316  EmitStmt(S.getSubStmt());
317}
318
319void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
320  // If this code is reachable then emit a stop point (if generating
321  // debug info). We have to do this ourselves because we are on the
322  // "simple" statement path.
323  if (HaveInsertPoint())
324    EmitStopPoint(&S);
325
326  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
327}
328
329
330void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
331  if (const LabelDecl *Target = S.getConstantTarget()) {
332    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
333    return;
334  }
335
336  // Ensure that we have an i8* for our PHI node.
337  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
338                                         Int8PtrTy, "addr");
339  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
340
341
342  // Get the basic block for the indirect goto.
343  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
344
345  // The first instruction in the block has to be the PHI for the switch dest,
346  // add an entry for this branch.
347  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
348
349  EmitBranch(IndGotoBB);
350}
351
352void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
353  // C99 6.8.4.1: The first substatement is executed if the expression compares
354  // unequal to 0.  The condition must be a scalar type.
355  RunCleanupsScope ConditionScope(*this);
356
357  if (S.getConditionVariable())
358    EmitAutoVarDecl(*S.getConditionVariable());
359
360  // If the condition constant folds and can be elided, try to avoid emitting
361  // the condition and the dead arm of the if/else.
362  bool CondConstant;
363  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
364    // Figure out which block (then or else) is executed.
365    const Stmt *Executed = S.getThen();
366    const Stmt *Skipped  = S.getElse();
367    if (!CondConstant)  // Condition false?
368      std::swap(Executed, Skipped);
369
370    // If the skipped block has no labels in it, just emit the executed block.
371    // This avoids emitting dead code and simplifies the CFG substantially.
372    if (!ContainsLabel(Skipped)) {
373      if (Executed) {
374        RunCleanupsScope ExecutedScope(*this);
375        EmitStmt(Executed);
376      }
377      return;
378    }
379  }
380
381  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
382  // the conditional branch.
383  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
384  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
385  llvm::BasicBlock *ElseBlock = ContBlock;
386  if (S.getElse())
387    ElseBlock = createBasicBlock("if.else");
388  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
389
390  // Emit the 'then' code.
391  EmitBlock(ThenBlock);
392  {
393    RunCleanupsScope ThenScope(*this);
394    EmitStmt(S.getThen());
395  }
396  EmitBranch(ContBlock);
397
398  // Emit the 'else' code if present.
399  if (const Stmt *Else = S.getElse()) {
400    EmitBlock(ElseBlock);
401    {
402      RunCleanupsScope ElseScope(*this);
403      EmitStmt(Else);
404    }
405    EmitBranch(ContBlock);
406  }
407
408  // Emit the continuation block for code after the if.
409  EmitBlock(ContBlock, true);
410}
411
412void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
413  // Emit the header for the loop, which will also become
414  // the continue target.
415  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
416  EmitBlock(LoopHeader.getBlock());
417
418  // Create an exit block for when the condition fails, which will
419  // also become the break target.
420  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
421
422  // Store the blocks to use for break and continue.
423  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
424
425  // C++ [stmt.while]p2:
426  //   When the condition of a while statement is a declaration, the
427  //   scope of the variable that is declared extends from its point
428  //   of declaration (3.3.2) to the end of the while statement.
429  //   [...]
430  //   The object created in a condition is destroyed and created
431  //   with each iteration of the loop.
432  RunCleanupsScope ConditionScope(*this);
433
434  if (S.getConditionVariable())
435    EmitAutoVarDecl(*S.getConditionVariable());
436
437  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
438  // evaluation of the controlling expression takes place before each
439  // execution of the loop body.
440  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
441
442  // while(1) is common, avoid extra exit blocks.  Be sure
443  // to correctly handle break/continue though.
444  bool EmitBoolCondBranch = true;
445  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
446    if (C->isOne())
447      EmitBoolCondBranch = false;
448
449  // As long as the condition is true, go to the loop body.
450  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
451  if (EmitBoolCondBranch) {
452    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
453    if (ConditionScope.requiresCleanups())
454      ExitBlock = createBasicBlock("while.exit");
455
456    Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
457
458    if (ExitBlock != LoopExit.getBlock()) {
459      EmitBlock(ExitBlock);
460      EmitBranchThroughCleanup(LoopExit);
461    }
462  }
463
464  // Emit the loop body.  We have to emit this in a cleanup scope
465  // because it might be a singleton DeclStmt.
466  {
467    RunCleanupsScope BodyScope(*this);
468    EmitBlock(LoopBody);
469    EmitStmt(S.getBody());
470  }
471
472  BreakContinueStack.pop_back();
473
474  // Immediately force cleanup.
475  ConditionScope.ForceCleanup();
476
477  // Branch to the loop header again.
478  EmitBranch(LoopHeader.getBlock());
479
480  // Emit the exit block.
481  EmitBlock(LoopExit.getBlock(), true);
482
483  // The LoopHeader typically is just a branch if we skipped emitting
484  // a branch, try to erase it.
485  if (!EmitBoolCondBranch)
486    SimplifyForwardingBlocks(LoopHeader.getBlock());
487}
488
489void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
490  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
491  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
492
493  // Store the blocks to use for break and continue.
494  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
495
496  // Emit the body of the loop.
497  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
498  EmitBlock(LoopBody);
499  {
500    RunCleanupsScope BodyScope(*this);
501    EmitStmt(S.getBody());
502  }
503
504  BreakContinueStack.pop_back();
505
506  EmitBlock(LoopCond.getBlock());
507
508  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
509  // after each execution of the loop body."
510
511  // Evaluate the conditional in the while header.
512  // C99 6.8.5p2/p4: The first substatement is executed if the expression
513  // compares unequal to 0.  The condition must be a scalar type.
514  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
515
516  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
517  // to correctly handle break/continue though.
518  bool EmitBoolCondBranch = true;
519  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
520    if (C->isZero())
521      EmitBoolCondBranch = false;
522
523  // As long as the condition is true, iterate the loop.
524  if (EmitBoolCondBranch)
525    Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
526
527  // Emit the exit block.
528  EmitBlock(LoopExit.getBlock());
529
530  // The DoCond block typically is just a branch if we skipped
531  // emitting a branch, try to erase it.
532  if (!EmitBoolCondBranch)
533    SimplifyForwardingBlocks(LoopCond.getBlock());
534}
535
536void CodeGenFunction::EmitForStmt(const ForStmt &S) {
537  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
538
539  RunCleanupsScope ForScope(*this);
540
541  CGDebugInfo *DI = getDebugInfo();
542  if (DI) {
543    DI->setLocation(S.getSourceRange().getBegin());
544    DI->EmitRegionStart(Builder);
545  }
546
547  // Evaluate the first part before the loop.
548  if (S.getInit())
549    EmitStmt(S.getInit());
550
551  // Start the loop with a block that tests the condition.
552  // If there's an increment, the continue scope will be overwritten
553  // later.
554  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
555  llvm::BasicBlock *CondBlock = Continue.getBlock();
556  EmitBlock(CondBlock);
557
558  // Create a cleanup scope for the condition variable cleanups.
559  RunCleanupsScope ConditionScope(*this);
560
561  llvm::Value *BoolCondVal = 0;
562  if (S.getCond()) {
563    // If the for statement has a condition scope, emit the local variable
564    // declaration.
565    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
566    if (S.getConditionVariable()) {
567      EmitAutoVarDecl(*S.getConditionVariable());
568    }
569
570    // If there are any cleanups between here and the loop-exit scope,
571    // create a block to stage a loop exit along.
572    if (ForScope.requiresCleanups())
573      ExitBlock = createBasicBlock("for.cond.cleanup");
574
575    // As long as the condition is true, iterate the loop.
576    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
577
578    // C99 6.8.5p2/p4: The first substatement is executed if the expression
579    // compares unequal to 0.  The condition must be a scalar type.
580    BoolCondVal = EvaluateExprAsBool(S.getCond());
581    Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
582
583    if (ExitBlock != LoopExit.getBlock()) {
584      EmitBlock(ExitBlock);
585      EmitBranchThroughCleanup(LoopExit);
586    }
587
588    EmitBlock(ForBody);
589  } else {
590    // Treat it as a non-zero constant.  Don't even create a new block for the
591    // body, just fall into it.
592  }
593
594  // If the for loop doesn't have an increment we can just use the
595  // condition as the continue block.  Otherwise we'll need to create
596  // a block for it (in the current scope, i.e. in the scope of the
597  // condition), and that we will become our continue block.
598  if (S.getInc())
599    Continue = getJumpDestInCurrentScope("for.inc");
600
601  // Store the blocks to use for break and continue.
602  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
603
604  {
605    // Create a separate cleanup scope for the body, in case it is not
606    // a compound statement.
607    RunCleanupsScope BodyScope(*this);
608    EmitStmt(S.getBody());
609  }
610
611  // If there is an increment, emit it next.
612  if (S.getInc()) {
613    EmitBlock(Continue.getBlock());
614    EmitStmt(S.getInc());
615  }
616
617  BreakContinueStack.pop_back();
618
619  ConditionScope.ForceCleanup();
620  EmitBranch(CondBlock);
621
622  ForScope.ForceCleanup();
623
624  if (DI) {
625    DI->setLocation(S.getSourceRange().getEnd());
626    DI->EmitRegionEnd(Builder);
627  }
628
629  // Emit the fall-through block.
630  EmitBlock(LoopExit.getBlock(), true);
631}
632
633void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
634  if (RV.isScalar()) {
635    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
636  } else if (RV.isAggregate()) {
637    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
638  } else {
639    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
640  }
641  EmitBranchThroughCleanup(ReturnBlock);
642}
643
644/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
645/// if the function returns void, or may be missing one if the function returns
646/// non-void.  Fun stuff :).
647void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
648  // Emit the result value, even if unused, to evalute the side effects.
649  const Expr *RV = S.getRetValue();
650
651  // FIXME: Clean this up by using an LValue for ReturnTemp,
652  // EmitStoreThroughLValue, and EmitAnyExpr.
653  if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
654      !Target.useGlobalsForAutomaticVariables()) {
655    // Apply the named return value optimization for this return statement,
656    // which means doing nothing: the appropriate result has already been
657    // constructed into the NRVO variable.
658
659    // If there is an NRVO flag for this variable, set it to 1 into indicate
660    // that the cleanup code should not destroy the variable.
661    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
662      Builder.CreateStore(Builder.getTrue(), NRVOFlag);
663  } else if (!ReturnValue) {
664    // Make sure not to return anything, but evaluate the expression
665    // for side effects.
666    if (RV)
667      EmitAnyExpr(RV);
668  } else if (RV == 0) {
669    // Do nothing (return value is left uninitialized)
670  } else if (FnRetTy->isReferenceType()) {
671    // If this function returns a reference, take the address of the expression
672    // rather than the value.
673    RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
674    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
675  } else if (!hasAggregateLLVMType(RV->getType())) {
676    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
677  } else if (RV->getType()->isAnyComplexType()) {
678    EmitComplexExprIntoAddr(RV, ReturnValue, false);
679  } else {
680    EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, false, true));
681  }
682
683  EmitBranchThroughCleanup(ReturnBlock);
684}
685
686void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
687  // As long as debug info is modeled with instructions, we have to ensure we
688  // have a place to insert here and write the stop point here.
689  if (getDebugInfo()) {
690    EnsureInsertPoint();
691    EmitStopPoint(&S);
692  }
693
694  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
695       I != E; ++I)
696    EmitDecl(**I);
697}
698
699void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
700  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
701
702  // If this code is reachable then emit a stop point (if generating
703  // debug info). We have to do this ourselves because we are on the
704  // "simple" statement path.
705  if (HaveInsertPoint())
706    EmitStopPoint(&S);
707
708  JumpDest Block = BreakContinueStack.back().BreakBlock;
709  EmitBranchThroughCleanup(Block);
710}
711
712void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
713  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
714
715  // If this code is reachable then emit a stop point (if generating
716  // debug info). We have to do this ourselves because we are on the
717  // "simple" statement path.
718  if (HaveInsertPoint())
719    EmitStopPoint(&S);
720
721  JumpDest Block = BreakContinueStack.back().ContinueBlock;
722  EmitBranchThroughCleanup(Block);
723}
724
725/// EmitCaseStmtRange - If case statement range is not too big then
726/// add multiple cases to switch instruction, one for each value within
727/// the range. If range is too big then emit "if" condition check.
728void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
729  assert(S.getRHS() && "Expected RHS value in CaseStmt");
730
731  llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
732  llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
733
734  // Emit the code for this case. We do this first to make sure it is
735  // properly chained from our predecessor before generating the
736  // switch machinery to enter this block.
737  EmitBlock(createBasicBlock("sw.bb"));
738  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
739  EmitStmt(S.getSubStmt());
740
741  // If range is empty, do nothing.
742  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
743    return;
744
745  llvm::APInt Range = RHS - LHS;
746  // FIXME: parameters such as this should not be hardcoded.
747  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
748    // Range is small enough to add multiple switch instruction cases.
749    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
750      SwitchInsn->addCase(llvm::ConstantInt::get(getLLVMContext(), LHS),
751                          CaseDest);
752      LHS++;
753    }
754    return;
755  }
756
757  // The range is too big. Emit "if" condition into a new block,
758  // making sure to save and restore the current insertion point.
759  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
760
761  // Push this test onto the chain of range checks (which terminates
762  // in the default basic block). The switch's default will be changed
763  // to the top of this chain after switch emission is complete.
764  llvm::BasicBlock *FalseDest = CaseRangeBlock;
765  CaseRangeBlock = createBasicBlock("sw.caserange");
766
767  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
768  Builder.SetInsertPoint(CaseRangeBlock);
769
770  // Emit range check.
771  llvm::Value *Diff =
772    Builder.CreateSub(SwitchInsn->getCondition(),
773                      llvm::ConstantInt::get(getLLVMContext(), LHS),  "tmp");
774  llvm::Value *Cond =
775    Builder.CreateICmpULE(Diff, llvm::ConstantInt::get(getLLVMContext(), Range),
776                          "inbounds");
777  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
778
779  // Restore the appropriate insertion point.
780  if (RestoreBB)
781    Builder.SetInsertPoint(RestoreBB);
782  else
783    Builder.ClearInsertionPoint();
784}
785
786void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
787  if (S.getRHS()) {
788    EmitCaseStmtRange(S);
789    return;
790  }
791
792  EmitBlock(createBasicBlock("sw.bb"));
793  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
794  llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
795  SwitchInsn->addCase(llvm::ConstantInt::get(getLLVMContext(), CaseVal),
796                      CaseDest);
797
798  // Recursively emitting the statement is acceptable, but is not wonderful for
799  // code where we have many case statements nested together, i.e.:
800  //  case 1:
801  //    case 2:
802  //      case 3: etc.
803  // Handling this recursively will create a new block for each case statement
804  // that falls through to the next case which is IR intensive.  It also causes
805  // deep recursion which can run into stack depth limitations.  Handle
806  // sequential non-range case statements specially.
807  const CaseStmt *CurCase = &S;
808  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
809
810  // Otherwise, iteratively add consequtive cases to this switch stmt.
811  while (NextCase && NextCase->getRHS() == 0) {
812    CurCase = NextCase;
813    CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
814    SwitchInsn->addCase(llvm::ConstantInt::get(getLLVMContext(), CaseVal),
815                        CaseDest);
816
817    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
818  }
819
820  // Normal default recursion for non-cases.
821  EmitStmt(CurCase->getSubStmt());
822}
823
824void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
825  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
826  assert(DefaultBlock->empty() &&
827         "EmitDefaultStmt: Default block already defined?");
828  EmitBlock(DefaultBlock);
829  EmitStmt(S.getSubStmt());
830}
831
832void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
833  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
834
835  RunCleanupsScope ConditionScope(*this);
836
837  if (S.getConditionVariable())
838    EmitAutoVarDecl(*S.getConditionVariable());
839
840  llvm::Value *CondV = EmitScalarExpr(S.getCond());
841
842  // Handle nested switch statements.
843  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
844  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
845
846  // Create basic block to hold stuff that comes after switch
847  // statement. We also need to create a default block now so that
848  // explicit case ranges tests can have a place to jump to on
849  // failure.
850  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
851  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
852  CaseRangeBlock = DefaultBlock;
853
854  // Clear the insertion point to indicate we are in unreachable code.
855  Builder.ClearInsertionPoint();
856
857  // All break statements jump to NextBlock. If BreakContinueStack is non empty
858  // then reuse last ContinueBlock.
859  JumpDest OuterContinue;
860  if (!BreakContinueStack.empty())
861    OuterContinue = BreakContinueStack.back().ContinueBlock;
862
863  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
864
865  // Emit switch body.
866  EmitStmt(S.getBody());
867
868  BreakContinueStack.pop_back();
869
870  // Update the default block in case explicit case range tests have
871  // been chained on top.
872  SwitchInsn->setSuccessor(0, CaseRangeBlock);
873
874  // If a default was never emitted:
875  if (!DefaultBlock->getParent()) {
876    // If we have cleanups, emit the default block so that there's a
877    // place to jump through the cleanups from.
878    if (ConditionScope.requiresCleanups()) {
879      EmitBlock(DefaultBlock);
880
881    // Otherwise, just forward the default block to the switch end.
882    } else {
883      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
884      delete DefaultBlock;
885    }
886  }
887
888  ConditionScope.ForceCleanup();
889
890  // Emit continuation.
891  EmitBlock(SwitchExit.getBlock(), true);
892
893  SwitchInsn = SavedSwitchInsn;
894  CaseRangeBlock = SavedCRBlock;
895}
896
897static std::string
898SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
899                 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
900  std::string Result;
901
902  while (*Constraint) {
903    switch (*Constraint) {
904    default:
905      Result += Target.convertConstraint(*Constraint);
906      break;
907    // Ignore these
908    case '*':
909    case '?':
910    case '!':
911    case '=': // Will see this and the following in mult-alt constraints.
912    case '+':
913      break;
914    case ',':
915      Result += "|";
916      break;
917    case 'g':
918      Result += "imr";
919      break;
920    case '[': {
921      assert(OutCons &&
922             "Must pass output names to constraints with a symbolic name");
923      unsigned Index;
924      bool result = Target.resolveSymbolicName(Constraint,
925                                               &(*OutCons)[0],
926                                               OutCons->size(), Index);
927      assert(result && "Could not resolve symbolic name"); (void)result;
928      Result += llvm::utostr(Index);
929      break;
930    }
931    }
932
933    Constraint++;
934  }
935
936  return Result;
937}
938
939/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
940/// as using a particular register add that as a constraint that will be used
941/// in this asm stmt.
942static std::string
943AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
944                       const TargetInfo &Target, CodeGenModule &CGM,
945                       const AsmStmt &Stmt) {
946  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
947  if (!AsmDeclRef)
948    return Constraint;
949  const ValueDecl &Value = *AsmDeclRef->getDecl();
950  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
951  if (!Variable)
952    return Constraint;
953  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
954  if (!Attr)
955    return Constraint;
956  llvm::StringRef Register = Attr->getLabel();
957  assert(Target.isValidGCCRegisterName(Register));
958  // FIXME: We should check which registers are compatible with "r" or "x".
959  if (Constraint != "r" && Constraint != "x") {
960    CGM.ErrorUnsupported(&Stmt, "__asm__");
961    return Constraint;
962  }
963  return "{" + Register.str() + "}";
964}
965
966llvm::Value*
967CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
968                                    const TargetInfo::ConstraintInfo &Info,
969                                    LValue InputValue, QualType InputType,
970                                    std::string &ConstraintStr) {
971  llvm::Value *Arg;
972  if (Info.allowsRegister() || !Info.allowsMemory()) {
973    if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
974      Arg = EmitLoadOfLValue(InputValue, InputType).getScalarVal();
975    } else {
976      const llvm::Type *Ty = ConvertType(InputType);
977      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
978      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
979        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
980        Ty = llvm::PointerType::getUnqual(Ty);
981
982        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
983                                                       Ty));
984      } else {
985        Arg = InputValue.getAddress();
986        ConstraintStr += '*';
987      }
988    }
989  } else {
990    Arg = InputValue.getAddress();
991    ConstraintStr += '*';
992  }
993
994  return Arg;
995}
996
997llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
998                                         const TargetInfo::ConstraintInfo &Info,
999                                           const Expr *InputExpr,
1000                                           std::string &ConstraintStr) {
1001  if (Info.allowsRegister() || !Info.allowsMemory())
1002    if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1003      return EmitScalarExpr(InputExpr);
1004
1005  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1006  LValue Dest = EmitLValue(InputExpr);
1007  return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1008}
1009
1010/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1011/// asm call instruction.  The !srcloc MDNode contains a list of constant
1012/// integers which are the source locations of the start of each line in the
1013/// asm.
1014static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1015                                      CodeGenFunction &CGF) {
1016  llvm::SmallVector<llvm::Value *, 8> Locs;
1017  // Add the location of the first line to the MDNode.
1018  Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1019                                        Str->getLocStart().getRawEncoding()));
1020  llvm::StringRef StrVal = Str->getString();
1021  if (!StrVal.empty()) {
1022    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1023    const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1024
1025    // Add the location of the start of each subsequent line of the asm to the
1026    // MDNode.
1027    for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1028      if (StrVal[i] != '\n') continue;
1029      SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1030                                                      CGF.Target);
1031      Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1032                                            LineLoc.getRawEncoding()));
1033    }
1034  }
1035
1036  return llvm::MDNode::get(CGF.getLLVMContext(), Locs.data(), Locs.size());
1037}
1038
1039void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1040  // Analyze the asm string to decompose it into its pieces.  We know that Sema
1041  // has already done this, so it is guaranteed to be successful.
1042  llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1043  unsigned DiagOffs;
1044  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1045
1046  // Assemble the pieces into the final asm string.
1047  std::string AsmString;
1048  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1049    if (Pieces[i].isString())
1050      AsmString += Pieces[i].getString();
1051    else if (Pieces[i].getModifier() == '\0')
1052      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1053    else
1054      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1055                   Pieces[i].getModifier() + '}';
1056  }
1057
1058  // Get all the output and input constraints together.
1059  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1060  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1061
1062  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1063    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1064                                    S.getOutputName(i));
1065    bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1066    assert(IsValid && "Failed to parse output constraint");
1067    OutputConstraintInfos.push_back(Info);
1068  }
1069
1070  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1071    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1072                                    S.getInputName(i));
1073    bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1074                                                  S.getNumOutputs(), Info);
1075    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1076    InputConstraintInfos.push_back(Info);
1077  }
1078
1079  std::string Constraints;
1080
1081  std::vector<LValue> ResultRegDests;
1082  std::vector<QualType> ResultRegQualTys;
1083  std::vector<const llvm::Type *> ResultRegTypes;
1084  std::vector<const llvm::Type *> ResultTruncRegTypes;
1085  std::vector<const llvm::Type*> ArgTypes;
1086  std::vector<llvm::Value*> Args;
1087
1088  // Keep track of inout constraints.
1089  std::string InOutConstraints;
1090  std::vector<llvm::Value*> InOutArgs;
1091  std::vector<const llvm::Type*> InOutArgTypes;
1092
1093  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1094    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1095
1096    // Simplify the output constraint.
1097    std::string OutputConstraint(S.getOutputConstraint(i));
1098    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1099
1100    const Expr *OutExpr = S.getOutputExpr(i);
1101    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1102
1103    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, Target,
1104                                             CGM, S);
1105
1106    LValue Dest = EmitLValue(OutExpr);
1107    if (!Constraints.empty())
1108      Constraints += ',';
1109
1110    // If this is a register output, then make the inline asm return it
1111    // by-value.  If this is a memory result, return the value by-reference.
1112    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1113      Constraints += "=" + OutputConstraint;
1114      ResultRegQualTys.push_back(OutExpr->getType());
1115      ResultRegDests.push_back(Dest);
1116      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1117      ResultTruncRegTypes.push_back(ResultRegTypes.back());
1118
1119      // If this output is tied to an input, and if the input is larger, then
1120      // we need to set the actual result type of the inline asm node to be the
1121      // same as the input type.
1122      if (Info.hasMatchingInput()) {
1123        unsigned InputNo;
1124        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1125          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1126          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1127            break;
1128        }
1129        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1130
1131        QualType InputTy = S.getInputExpr(InputNo)->getType();
1132        QualType OutputType = OutExpr->getType();
1133
1134        uint64_t InputSize = getContext().getTypeSize(InputTy);
1135        if (getContext().getTypeSize(OutputType) < InputSize) {
1136          // Form the asm to return the value as a larger integer or fp type.
1137          ResultRegTypes.back() = ConvertType(InputTy);
1138        }
1139      }
1140      if (const llvm::Type* AdjTy =
1141            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1142                                                 ResultRegTypes.back()))
1143        ResultRegTypes.back() = AdjTy;
1144    } else {
1145      ArgTypes.push_back(Dest.getAddress()->getType());
1146      Args.push_back(Dest.getAddress());
1147      Constraints += "=*";
1148      Constraints += OutputConstraint;
1149    }
1150
1151    if (Info.isReadWrite()) {
1152      InOutConstraints += ',';
1153
1154      const Expr *InputExpr = S.getOutputExpr(i);
1155      llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1156                                            InOutConstraints);
1157
1158      if (Info.allowsRegister())
1159        InOutConstraints += llvm::utostr(i);
1160      else
1161        InOutConstraints += OutputConstraint;
1162
1163      InOutArgTypes.push_back(Arg->getType());
1164      InOutArgs.push_back(Arg);
1165    }
1166  }
1167
1168  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1169
1170  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1171    const Expr *InputExpr = S.getInputExpr(i);
1172
1173    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1174
1175    if (!Constraints.empty())
1176      Constraints += ',';
1177
1178    // Simplify the input constraint.
1179    std::string InputConstraint(S.getInputConstraint(i));
1180    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1181                                         &OutputConstraintInfos);
1182
1183    InputConstraint =
1184      AddVariableConstraints(InputConstraint,
1185                            *InputExpr->IgnoreParenNoopCasts(getContext()),
1186                            Target, CGM, S);
1187
1188    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1189
1190    // If this input argument is tied to a larger output result, extend the
1191    // input to be the same size as the output.  The LLVM backend wants to see
1192    // the input and output of a matching constraint be the same size.  Note
1193    // that GCC does not define what the top bits are here.  We use zext because
1194    // that is usually cheaper, but LLVM IR should really get an anyext someday.
1195    if (Info.hasTiedOperand()) {
1196      unsigned Output = Info.getTiedOperand();
1197      QualType OutputType = S.getOutputExpr(Output)->getType();
1198      QualType InputTy = InputExpr->getType();
1199
1200      if (getContext().getTypeSize(OutputType) >
1201          getContext().getTypeSize(InputTy)) {
1202        // Use ptrtoint as appropriate so that we can do our extension.
1203        if (isa<llvm::PointerType>(Arg->getType()))
1204          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1205        const llvm::Type *OutputTy = ConvertType(OutputType);
1206        if (isa<llvm::IntegerType>(OutputTy))
1207          Arg = Builder.CreateZExt(Arg, OutputTy);
1208        else
1209          Arg = Builder.CreateFPExt(Arg, OutputTy);
1210      }
1211    }
1212    if (const llvm::Type* AdjTy =
1213              getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1214                                                   Arg->getType()))
1215      Arg = Builder.CreateBitCast(Arg, AdjTy);
1216
1217    ArgTypes.push_back(Arg->getType());
1218    Args.push_back(Arg);
1219    Constraints += InputConstraint;
1220  }
1221
1222  // Append the "input" part of inout constraints last.
1223  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1224    ArgTypes.push_back(InOutArgTypes[i]);
1225    Args.push_back(InOutArgs[i]);
1226  }
1227  Constraints += InOutConstraints;
1228
1229  // Clobbers
1230  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1231    llvm::StringRef Clobber = S.getClobber(i)->getString();
1232
1233    Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1234
1235    if (i != 0 || NumConstraints != 0)
1236      Constraints += ',';
1237
1238    Constraints += "~{";
1239    Constraints += Clobber;
1240    Constraints += '}';
1241  }
1242
1243  // Add machine specific clobbers
1244  std::string MachineClobbers = Target.getClobbers();
1245  if (!MachineClobbers.empty()) {
1246    if (!Constraints.empty())
1247      Constraints += ',';
1248    Constraints += MachineClobbers;
1249  }
1250
1251  const llvm::Type *ResultType;
1252  if (ResultRegTypes.empty())
1253    ResultType = llvm::Type::getVoidTy(getLLVMContext());
1254  else if (ResultRegTypes.size() == 1)
1255    ResultType = ResultRegTypes[0];
1256  else
1257    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1258
1259  const llvm::FunctionType *FTy =
1260    llvm::FunctionType::get(ResultType, ArgTypes, false);
1261
1262  llvm::InlineAsm *IA =
1263    llvm::InlineAsm::get(FTy, AsmString, Constraints,
1264                         S.isVolatile() || S.getNumOutputs() == 0);
1265  llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
1266  Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1267
1268  // Slap the source location of the inline asm into a !srcloc metadata on the
1269  // call.
1270  Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1271
1272  // Extract all of the register value results from the asm.
1273  std::vector<llvm::Value*> RegResults;
1274  if (ResultRegTypes.size() == 1) {
1275    RegResults.push_back(Result);
1276  } else {
1277    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1278      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1279      RegResults.push_back(Tmp);
1280    }
1281  }
1282
1283  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1284    llvm::Value *Tmp = RegResults[i];
1285
1286    // If the result type of the LLVM IR asm doesn't match the result type of
1287    // the expression, do the conversion.
1288    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1289      const llvm::Type *TruncTy = ResultTruncRegTypes[i];
1290
1291      // Truncate the integer result to the right size, note that TruncTy can be
1292      // a pointer.
1293      if (TruncTy->isFloatingPointTy())
1294        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1295      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1296        uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1297        Tmp = Builder.CreateTrunc(Tmp,
1298                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1299        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1300      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1301        uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1302        Tmp = Builder.CreatePtrToInt(Tmp,
1303                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1304        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1305      } else if (TruncTy->isIntegerTy()) {
1306        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1307      } else if (TruncTy->isVectorTy()) {
1308        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1309      }
1310    }
1311
1312    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
1313                           ResultRegQualTys[i]);
1314  }
1315}
1316