ParseExpr.cpp revision 9ce5135c15b3dfd5ee666b843f5df8ffb3a5038f
1//===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Provides the Expression parsing implementation.
12///
13/// Expressions in C99 basically consist of a bunch of binary operators with
14/// unary operators and other random stuff at the leaves.
15///
16/// In the C99 grammar, these unary operators bind tightest and are represented
17/// as the 'cast-expression' production.  Everything else is either a binary
18/// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
19/// handled by ParseCastExpression, the higher level pieces are handled by
20/// ParseBinaryExpression.
21///
22//===----------------------------------------------------------------------===//
23
24#include "clang/Parse/Parser.h"
25#include "RAIIObjectsForParser.h"
26#include "clang/Basic/PrettyStackTrace.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/ParsedTemplate.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/TypoCorrection.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/SmallVector.h"
33using namespace clang;
34
35/// \brief Simple precedence-based parser for binary/ternary operators.
36///
37/// Note: we diverge from the C99 grammar when parsing the assignment-expression
38/// production.  C99 specifies that the LHS of an assignment operator should be
39/// parsed as a unary-expression, but consistency dictates that it be a
40/// conditional-expession.  In practice, the important thing here is that the
41/// LHS of an assignment has to be an l-value, which productions between
42/// unary-expression and conditional-expression don't produce.  Because we want
43/// consistency, we parse the LHS as a conditional-expression, then check for
44/// l-value-ness in semantic analysis stages.
45///
46/// \verbatim
47///       pm-expression: [C++ 5.5]
48///         cast-expression
49///         pm-expression '.*' cast-expression
50///         pm-expression '->*' cast-expression
51///
52///       multiplicative-expression: [C99 6.5.5]
53///     Note: in C++, apply pm-expression instead of cast-expression
54///         cast-expression
55///         multiplicative-expression '*' cast-expression
56///         multiplicative-expression '/' cast-expression
57///         multiplicative-expression '%' cast-expression
58///
59///       additive-expression: [C99 6.5.6]
60///         multiplicative-expression
61///         additive-expression '+' multiplicative-expression
62///         additive-expression '-' multiplicative-expression
63///
64///       shift-expression: [C99 6.5.7]
65///         additive-expression
66///         shift-expression '<<' additive-expression
67///         shift-expression '>>' additive-expression
68///
69///       relational-expression: [C99 6.5.8]
70///         shift-expression
71///         relational-expression '<' shift-expression
72///         relational-expression '>' shift-expression
73///         relational-expression '<=' shift-expression
74///         relational-expression '>=' shift-expression
75///
76///       equality-expression: [C99 6.5.9]
77///         relational-expression
78///         equality-expression '==' relational-expression
79///         equality-expression '!=' relational-expression
80///
81///       AND-expression: [C99 6.5.10]
82///         equality-expression
83///         AND-expression '&' equality-expression
84///
85///       exclusive-OR-expression: [C99 6.5.11]
86///         AND-expression
87///         exclusive-OR-expression '^' AND-expression
88///
89///       inclusive-OR-expression: [C99 6.5.12]
90///         exclusive-OR-expression
91///         inclusive-OR-expression '|' exclusive-OR-expression
92///
93///       logical-AND-expression: [C99 6.5.13]
94///         inclusive-OR-expression
95///         logical-AND-expression '&&' inclusive-OR-expression
96///
97///       logical-OR-expression: [C99 6.5.14]
98///         logical-AND-expression
99///         logical-OR-expression '||' logical-AND-expression
100///
101///       conditional-expression: [C99 6.5.15]
102///         logical-OR-expression
103///         logical-OR-expression '?' expression ':' conditional-expression
104/// [GNU]   logical-OR-expression '?' ':' conditional-expression
105/// [C++] the third operand is an assignment-expression
106///
107///       assignment-expression: [C99 6.5.16]
108///         conditional-expression
109///         unary-expression assignment-operator assignment-expression
110/// [C++]   throw-expression [C++ 15]
111///
112///       assignment-operator: one of
113///         = *= /= %= += -= <<= >>= &= ^= |=
114///
115///       expression: [C99 6.5.17]
116///         assignment-expression ...[opt]
117///         expression ',' assignment-expression ...[opt]
118/// \endverbatim
119ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
120  ExprResult LHS(ParseAssignmentExpression(isTypeCast));
121  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
122}
123
124/// This routine is called when the '@' is seen and consumed.
125/// Current token is an Identifier and is not a 'try'. This
126/// routine is necessary to disambiguate \@try-statement from,
127/// for example, \@encode-expression.
128///
129ExprResult
130Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
131  ExprResult LHS(ParseObjCAtExpression(AtLoc));
132  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
133}
134
135/// This routine is called when a leading '__extension__' is seen and
136/// consumed.  This is necessary because the token gets consumed in the
137/// process of disambiguating between an expression and a declaration.
138ExprResult
139Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
140  ExprResult LHS(true);
141  {
142    // Silence extension warnings in the sub-expression
143    ExtensionRAIIObject O(Diags);
144
145    LHS = ParseCastExpression(false);
146  }
147
148  if (!LHS.isInvalid())
149    LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
150                               LHS.take());
151
152  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
153}
154
155/// \brief Parse an expr that doesn't include (top-level) commas.
156ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
157  if (Tok.is(tok::code_completion)) {
158    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
159    cutOffParsing();
160    return ExprError();
161  }
162
163  if (Tok.is(tok::kw_throw))
164    return ParseThrowExpression();
165
166  ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
167                                       /*isAddressOfOperand=*/false,
168                                       isTypeCast);
169  return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
170}
171
172/// \brief Parse an assignment expression where part of an Objective-C message
173/// send has already been parsed.
174///
175/// In this case \p LBracLoc indicates the location of the '[' of the message
176/// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
177/// the receiver of the message.
178///
179/// Since this handles full assignment-expression's, it handles postfix
180/// expressions and other binary operators for these expressions as well.
181ExprResult
182Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
183                                                    SourceLocation SuperLoc,
184                                                    ParsedType ReceiverType,
185                                                    Expr *ReceiverExpr) {
186  ExprResult R
187    = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
188                                     ReceiverType, ReceiverExpr);
189  R = ParsePostfixExpressionSuffix(R);
190  return ParseRHSOfBinaryExpression(R, prec::Assignment);
191}
192
193
194ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
195  // C++03 [basic.def.odr]p2:
196  //   An expression is potentially evaluated unless it appears where an
197  //   integral constant expression is required (see 5.19) [...].
198  // C++98 and C++11 have no such rule, but this is only a defect in C++98.
199  EnterExpressionEvaluationContext Unevaluated(Actions,
200                                               Sema::ConstantEvaluated);
201
202  ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
203  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
204  return Actions.ActOnConstantExpression(Res);
205}
206
207bool Parser::isNotExpressionStart() {
208  tok::TokenKind K = Tok.getKind();
209  if (K == tok::l_brace || K == tok::r_brace  ||
210      K == tok::kw_for  || K == tok::kw_while ||
211      K == tok::kw_if   || K == tok::kw_else  ||
212      K == tok::kw_goto || K == tok::kw_try)
213    return true;
214  // If this is a decl-specifier, we can't be at the start of an expression.
215  return isKnownToBeDeclarationSpecifier();
216}
217
218/// \brief Parse a binary expression that starts with \p LHS and has a
219/// precedence of at least \p MinPrec.
220ExprResult
221Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
222  prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
223                                               GreaterThanIsOperator,
224                                               getLangOpts().CPlusPlus11);
225  SourceLocation ColonLoc;
226
227  while (1) {
228    // If this token has a lower precedence than we are allowed to parse (e.g.
229    // because we are called recursively, or because the token is not a binop),
230    // then we are done!
231    if (NextTokPrec < MinPrec)
232      return LHS;
233
234    // Consume the operator, saving the operator token for error reporting.
235    Token OpToken = Tok;
236    ConsumeToken();
237
238    // Bail out when encountering a comma followed by a token which can't
239    // possibly be the start of an expression. For instance:
240    //   int f() { return 1, }
241    // We can't do this before consuming the comma, because
242    // isNotExpressionStart() looks at the token stream.
243    if (OpToken.is(tok::comma) && isNotExpressionStart()) {
244      PP.EnterToken(Tok);
245      Tok = OpToken;
246      return LHS;
247    }
248
249    // Special case handling for the ternary operator.
250    ExprResult TernaryMiddle(true);
251    if (NextTokPrec == prec::Conditional) {
252      if (Tok.isNot(tok::colon)) {
253        // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
254        ColonProtectionRAIIObject X(*this);
255
256        // Handle this production specially:
257        //   logical-OR-expression '?' expression ':' conditional-expression
258        // In particular, the RHS of the '?' is 'expression', not
259        // 'logical-OR-expression' as we might expect.
260        TernaryMiddle = ParseExpression();
261        if (TernaryMiddle.isInvalid()) {
262          LHS = ExprError();
263          TernaryMiddle = 0;
264        }
265      } else {
266        // Special case handling of "X ? Y : Z" where Y is empty:
267        //   logical-OR-expression '?' ':' conditional-expression   [GNU]
268        TernaryMiddle = 0;
269        Diag(Tok, diag::ext_gnu_conditional_expr);
270      }
271
272      if (Tok.is(tok::colon)) {
273        // Eat the colon.
274        ColonLoc = ConsumeToken();
275      } else {
276        // Otherwise, we're missing a ':'.  Assume that this was a typo that
277        // the user forgot. If we're not in a macro expansion, we can suggest
278        // a fixit hint. If there were two spaces before the current token,
279        // suggest inserting the colon in between them, otherwise insert ": ".
280        SourceLocation FILoc = Tok.getLocation();
281        const char *FIText = ": ";
282        const SourceManager &SM = PP.getSourceManager();
283        if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
284          assert(FILoc.isFileID());
285          bool IsInvalid = false;
286          const char *SourcePtr =
287            SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
288          if (!IsInvalid && *SourcePtr == ' ') {
289            SourcePtr =
290              SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
291            if (!IsInvalid && *SourcePtr == ' ') {
292              FILoc = FILoc.getLocWithOffset(-1);
293              FIText = ":";
294            }
295          }
296        }
297
298        Diag(Tok, diag::err_expected_colon)
299          << FixItHint::CreateInsertion(FILoc, FIText);
300        Diag(OpToken, diag::note_matching) << "?";
301        ColonLoc = Tok.getLocation();
302      }
303    }
304
305    // Code completion for the right-hand side of an assignment expression
306    // goes through a special hook that takes the left-hand side into account.
307    if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
308      Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
309      cutOffParsing();
310      return ExprError();
311    }
312
313    // Parse another leaf here for the RHS of the operator.
314    // ParseCastExpression works here because all RHS expressions in C have it
315    // as a prefix, at least. However, in C++, an assignment-expression could
316    // be a throw-expression, which is not a valid cast-expression.
317    // Therefore we need some special-casing here.
318    // Also note that the third operand of the conditional operator is
319    // an assignment-expression in C++, and in C++11, we can have a
320    // braced-init-list on the RHS of an assignment. For better diagnostics,
321    // parse as if we were allowed braced-init-lists everywhere, and check that
322    // they only appear on the RHS of assignments later.
323    ExprResult RHS;
324    bool RHSIsInitList = false;
325    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
326      RHS = ParseBraceInitializer();
327      RHSIsInitList = true;
328    } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
329      RHS = ParseAssignmentExpression();
330    else
331      RHS = ParseCastExpression(false);
332
333    if (RHS.isInvalid())
334      LHS = ExprError();
335
336    // Remember the precedence of this operator and get the precedence of the
337    // operator immediately to the right of the RHS.
338    prec::Level ThisPrec = NextTokPrec;
339    NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
340                                     getLangOpts().CPlusPlus11);
341
342    // Assignment and conditional expressions are right-associative.
343    bool isRightAssoc = ThisPrec == prec::Conditional ||
344                        ThisPrec == prec::Assignment;
345
346    // Get the precedence of the operator to the right of the RHS.  If it binds
347    // more tightly with RHS than we do, evaluate it completely first.
348    if (ThisPrec < NextTokPrec ||
349        (ThisPrec == NextTokPrec && isRightAssoc)) {
350      if (!RHS.isInvalid() && RHSIsInitList) {
351        Diag(Tok, diag::err_init_list_bin_op)
352          << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
353        RHS = ExprError();
354      }
355      // If this is left-associative, only parse things on the RHS that bind
356      // more tightly than the current operator.  If it is left-associative, it
357      // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
358      // A=(B=(C=D)), where each paren is a level of recursion here.
359      // The function takes ownership of the RHS.
360      RHS = ParseRHSOfBinaryExpression(RHS,
361                            static_cast<prec::Level>(ThisPrec + !isRightAssoc));
362      RHSIsInitList = false;
363
364      if (RHS.isInvalid())
365        LHS = ExprError();
366
367      NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
368                                       getLangOpts().CPlusPlus11);
369    }
370    assert(NextTokPrec <= ThisPrec && "Recursion didn't work!");
371
372    if (!RHS.isInvalid() && RHSIsInitList) {
373      if (ThisPrec == prec::Assignment) {
374        Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
375          << Actions.getExprRange(RHS.get());
376      } else {
377        Diag(OpToken, diag::err_init_list_bin_op)
378          << /*RHS*/1 << PP.getSpelling(OpToken)
379          << Actions.getExprRange(RHS.get());
380        LHS = ExprError();
381      }
382    }
383
384    if (!LHS.isInvalid()) {
385      // Combine the LHS and RHS into the LHS (e.g. build AST).
386      if (TernaryMiddle.isInvalid()) {
387        // If we're using '>>' as an operator within a template
388        // argument list (in C++98), suggest the addition of
389        // parentheses so that the code remains well-formed in C++0x.
390        if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
391          SuggestParentheses(OpToken.getLocation(),
392                             diag::warn_cxx11_right_shift_in_template_arg,
393                         SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
394                                     Actions.getExprRange(RHS.get()).getEnd()));
395
396        LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
397                                 OpToken.getKind(), LHS.take(), RHS.take());
398      } else
399        LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
400                                         LHS.take(), TernaryMiddle.take(),
401                                         RHS.take());
402    }
403  }
404}
405
406/// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
407/// parse a unary-expression.
408///
409/// \p isAddressOfOperand exists because an id-expression that is the
410/// operand of address-of gets special treatment due to member pointers.
411///
412ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
413                                       bool isAddressOfOperand,
414                                       TypeCastState isTypeCast) {
415  bool NotCastExpr;
416  ExprResult Res = ParseCastExpression(isUnaryExpression,
417                                       isAddressOfOperand,
418                                       NotCastExpr,
419                                       isTypeCast);
420  if (NotCastExpr)
421    Diag(Tok, diag::err_expected_expression);
422  return Res;
423}
424
425namespace {
426class CastExpressionIdValidator : public CorrectionCandidateCallback {
427 public:
428  CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
429      : AllowNonTypes(AllowNonTypes) {
430    WantTypeSpecifiers = AllowTypes;
431  }
432
433  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
434    NamedDecl *ND = candidate.getCorrectionDecl();
435    if (!ND)
436      return candidate.isKeyword();
437
438    if (isa<TypeDecl>(ND))
439      return WantTypeSpecifiers;
440    return AllowNonTypes;
441  }
442
443 private:
444  bool AllowNonTypes;
445};
446}
447
448/// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
449/// a unary-expression.
450///
451/// \p isAddressOfOperand exists because an id-expression that is the operand
452/// of address-of gets special treatment due to member pointers. NotCastExpr
453/// is set to true if the token is not the start of a cast-expression, and no
454/// diagnostic is emitted in this case.
455///
456/// \verbatim
457///       cast-expression: [C99 6.5.4]
458///         unary-expression
459///         '(' type-name ')' cast-expression
460///
461///       unary-expression:  [C99 6.5.3]
462///         postfix-expression
463///         '++' unary-expression
464///         '--' unary-expression
465///         unary-operator cast-expression
466///         'sizeof' unary-expression
467///         'sizeof' '(' type-name ')'
468/// [C++11] 'sizeof' '...' '(' identifier ')'
469/// [GNU]   '__alignof' unary-expression
470/// [GNU]   '__alignof' '(' type-name ')'
471/// [C11]   '_Alignof' '(' type-name ')'
472/// [C++11] 'alignof' '(' type-id ')'
473/// [GNU]   '&&' identifier
474/// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
475/// [C++]   new-expression
476/// [C++]   delete-expression
477///
478///       unary-operator: one of
479///         '&'  '*'  '+'  '-'  '~'  '!'
480/// [GNU]   '__extension__'  '__real'  '__imag'
481///
482///       primary-expression: [C99 6.5.1]
483/// [C99]   identifier
484/// [C++]   id-expression
485///         constant
486///         string-literal
487/// [C++]   boolean-literal  [C++ 2.13.5]
488/// [C++11] 'nullptr'        [C++11 2.14.7]
489/// [C++11] user-defined-literal
490///         '(' expression ')'
491/// [C11]   generic-selection
492///         '__func__'        [C99 6.4.2.2]
493/// [GNU]   '__FUNCTION__'
494/// [GNU]   '__PRETTY_FUNCTION__'
495/// [GNU]   '(' compound-statement ')'
496/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
497/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
498/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
499///                                     assign-expr ')'
500/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
501/// [GNU]   '__null'
502/// [OBJC]  '[' objc-message-expr ']'
503/// [OBJC]  '\@selector' '(' objc-selector-arg ')'
504/// [OBJC]  '\@protocol' '(' identifier ')'
505/// [OBJC]  '\@encode' '(' type-name ')'
506/// [OBJC]  objc-string-literal
507/// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
508/// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
509/// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
510/// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
511/// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
512/// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
513/// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
514/// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
515/// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
516/// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
517/// [C++]   'this'          [C++ 9.3.2]
518/// [G++]   unary-type-trait '(' type-id ')'
519/// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
520/// [EMBT]  array-type-trait '(' type-id ',' integer ')'
521/// [clang] '^' block-literal
522///
523///       constant: [C99 6.4.4]
524///         integer-constant
525///         floating-constant
526///         enumeration-constant -> identifier
527///         character-constant
528///
529///       id-expression: [C++ 5.1]
530///                   unqualified-id
531///                   qualified-id
532///
533///       unqualified-id: [C++ 5.1]
534///                   identifier
535///                   operator-function-id
536///                   conversion-function-id
537///                   '~' class-name
538///                   template-id
539///
540///       new-expression: [C++ 5.3.4]
541///                   '::'[opt] 'new' new-placement[opt] new-type-id
542///                                     new-initializer[opt]
543///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
544///                                     new-initializer[opt]
545///
546///       delete-expression: [C++ 5.3.5]
547///                   '::'[opt] 'delete' cast-expression
548///                   '::'[opt] 'delete' '[' ']' cast-expression
549///
550/// [GNU/Embarcadero] unary-type-trait:
551///                   '__is_arithmetic'
552///                   '__is_floating_point'
553///                   '__is_integral'
554///                   '__is_lvalue_expr'
555///                   '__is_rvalue_expr'
556///                   '__is_complete_type'
557///                   '__is_void'
558///                   '__is_array'
559///                   '__is_function'
560///                   '__is_reference'
561///                   '__is_lvalue_reference'
562///                   '__is_rvalue_reference'
563///                   '__is_fundamental'
564///                   '__is_object'
565///                   '__is_scalar'
566///                   '__is_compound'
567///                   '__is_pointer'
568///                   '__is_member_object_pointer'
569///                   '__is_member_function_pointer'
570///                   '__is_member_pointer'
571///                   '__is_const'
572///                   '__is_volatile'
573///                   '__is_trivial'
574///                   '__is_standard_layout'
575///                   '__is_signed'
576///                   '__is_unsigned'
577///
578/// [GNU] unary-type-trait:
579///                   '__has_nothrow_assign'
580///                   '__has_nothrow_copy'
581///                   '__has_nothrow_constructor'
582///                   '__has_trivial_assign'                  [TODO]
583///                   '__has_trivial_copy'                    [TODO]
584///                   '__has_trivial_constructor'
585///                   '__has_trivial_destructor'
586///                   '__has_virtual_destructor'
587///                   '__is_abstract'                         [TODO]
588///                   '__is_class'
589///                   '__is_empty'                            [TODO]
590///                   '__is_enum'
591///                   '__is_final'
592///                   '__is_pod'
593///                   '__is_polymorphic'
594///                   '__is_sealed'                           [MS]
595///                   '__is_trivial'
596///                   '__is_union'
597///
598/// [Clang] unary-type-trait:
599///                   '__trivially_copyable'
600///
601///       binary-type-trait:
602/// [GNU]             '__is_base_of'
603/// [MS]              '__is_convertible_to'
604///                   '__is_convertible'
605///                   '__is_same'
606///
607/// [Embarcadero] array-type-trait:
608///                   '__array_rank'
609///                   '__array_extent'
610///
611/// [Embarcadero] expression-trait:
612///                   '__is_lvalue_expr'
613///                   '__is_rvalue_expr'
614/// \endverbatim
615///
616ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
617                                       bool isAddressOfOperand,
618                                       bool &NotCastExpr,
619                                       TypeCastState isTypeCast) {
620  ExprResult Res;
621  tok::TokenKind SavedKind = Tok.getKind();
622  NotCastExpr = false;
623
624  // This handles all of cast-expression, unary-expression, postfix-expression,
625  // and primary-expression.  We handle them together like this for efficiency
626  // and to simplify handling of an expression starting with a '(' token: which
627  // may be one of a parenthesized expression, cast-expression, compound literal
628  // expression, or statement expression.
629  //
630  // If the parsed tokens consist of a primary-expression, the cases below
631  // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
632  // to handle the postfix expression suffixes.  Cases that cannot be followed
633  // by postfix exprs should return without invoking
634  // ParsePostfixExpressionSuffix.
635  switch (SavedKind) {
636  case tok::l_paren: {
637    // If this expression is limited to being a unary-expression, the parent can
638    // not start a cast expression.
639    ParenParseOption ParenExprType =
640      (isUnaryExpression && !getLangOpts().CPlusPlus)? CompoundLiteral : CastExpr;
641    ParsedType CastTy;
642    SourceLocation RParenLoc;
643
644    {
645      // The inside of the parens don't need to be a colon protected scope, and
646      // isn't immediately a message send.
647      ColonProtectionRAIIObject X(*this, false);
648
649      Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
650                                 isTypeCast == IsTypeCast, CastTy, RParenLoc);
651    }
652
653    switch (ParenExprType) {
654    case SimpleExpr:   break;    // Nothing else to do.
655    case CompoundStmt: break;  // Nothing else to do.
656    case CompoundLiteral:
657      // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
658      // postfix-expression exist, parse them now.
659      break;
660    case CastExpr:
661      // We have parsed the cast-expression and no postfix-expr pieces are
662      // following.
663      return Res;
664    }
665
666    break;
667  }
668
669    // primary-expression
670  case tok::numeric_constant:
671    // constant: integer-constant
672    // constant: floating-constant
673
674    Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
675    ConsumeToken();
676    break;
677
678  case tok::kw_true:
679  case tok::kw_false:
680    return ParseCXXBoolLiteral();
681
682  case tok::kw___objc_yes:
683  case tok::kw___objc_no:
684      return ParseObjCBoolLiteral();
685
686  case tok::kw_nullptr:
687    Diag(Tok, diag::warn_cxx98_compat_nullptr);
688    return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
689
690  case tok::annot_primary_expr:
691    assert(Res.get() == 0 && "Stray primary-expression annotation?");
692    Res = getExprAnnotation(Tok);
693    ConsumeToken();
694    break;
695
696  case tok::kw_decltype:
697    // Annotate the token and tail recurse.
698    if (TryAnnotateTypeOrScopeToken())
699      return ExprError();
700    assert(Tok.isNot(tok::kw_decltype));
701    return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
702
703  case tok::identifier: {      // primary-expression: identifier
704                               // unqualified-id: identifier
705                               // constant: enumeration-constant
706    // Turn a potentially qualified name into a annot_typename or
707    // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
708    if (getLangOpts().CPlusPlus) {
709      // Avoid the unnecessary parse-time lookup in the common case
710      // where the syntax forbids a type.
711      const Token &Next = NextToken();
712
713      // If this identifier was reverted from a token ID, and the next token
714      // is a parenthesis, this is likely to be a use of a type trait. Check
715      // those tokens.
716      if (Next.is(tok::l_paren) &&
717          Tok.is(tok::identifier) &&
718          Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
719        IdentifierInfo *II = Tok.getIdentifierInfo();
720        // Build up the mapping of revertable type traits, for future use.
721        if (RevertableTypeTraits.empty()) {
722#define RTT_JOIN(X,Y) X##Y
723#define REVERTABLE_TYPE_TRAIT(Name)                         \
724          RevertableTypeTraits[PP.getIdentifierInfo(#Name)] \
725            = RTT_JOIN(tok::kw_,Name)
726
727          REVERTABLE_TYPE_TRAIT(__is_arithmetic);
728          REVERTABLE_TYPE_TRAIT(__is_convertible);
729          REVERTABLE_TYPE_TRAIT(__is_empty);
730          REVERTABLE_TYPE_TRAIT(__is_floating_point);
731          REVERTABLE_TYPE_TRAIT(__is_function);
732          REVERTABLE_TYPE_TRAIT(__is_fundamental);
733          REVERTABLE_TYPE_TRAIT(__is_integral);
734          REVERTABLE_TYPE_TRAIT(__is_member_function_pointer);
735          REVERTABLE_TYPE_TRAIT(__is_member_pointer);
736          REVERTABLE_TYPE_TRAIT(__is_pod);
737          REVERTABLE_TYPE_TRAIT(__is_pointer);
738          REVERTABLE_TYPE_TRAIT(__is_same);
739          REVERTABLE_TYPE_TRAIT(__is_scalar);
740          REVERTABLE_TYPE_TRAIT(__is_signed);
741          REVERTABLE_TYPE_TRAIT(__is_unsigned);
742          REVERTABLE_TYPE_TRAIT(__is_void);
743#undef REVERTABLE_TYPE_TRAIT
744#undef RTT_JOIN
745        }
746
747        // If we find that this is in fact the name of a type trait,
748        // update the token kind in place and parse again to treat it as
749        // the appropriate kind of type trait.
750        llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
751          = RevertableTypeTraits.find(II);
752        if (Known != RevertableTypeTraits.end()) {
753          Tok.setKind(Known->second);
754          return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
755                                     NotCastExpr, isTypeCast);
756        }
757      }
758
759      if (Next.is(tok::coloncolon) ||
760          (!ColonIsSacred && Next.is(tok::colon)) ||
761          Next.is(tok::less) ||
762          Next.is(tok::l_paren) ||
763          Next.is(tok::l_brace)) {
764        // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
765        if (TryAnnotateTypeOrScopeToken())
766          return ExprError();
767        if (!Tok.is(tok::identifier))
768          return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
769      }
770    }
771
772    // Consume the identifier so that we can see if it is followed by a '(' or
773    // '.'.
774    IdentifierInfo &II = *Tok.getIdentifierInfo();
775    SourceLocation ILoc = ConsumeToken();
776
777    // Support 'Class.property' and 'super.property' notation.
778    if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
779        (Actions.getTypeName(II, ILoc, getCurScope()) ||
780         // Allow the base to be 'super' if in an objc-method.
781         (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
782      ConsumeToken();
783
784      // Allow either an identifier or the keyword 'class' (in C++).
785      if (Tok.isNot(tok::identifier) &&
786          !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
787        Diag(Tok, diag::err_expected_property_name);
788        return ExprError();
789      }
790      IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
791      SourceLocation PropertyLoc = ConsumeToken();
792
793      Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
794                                              ILoc, PropertyLoc);
795      break;
796    }
797
798    // In an Objective-C method, if we have "super" followed by an identifier,
799    // the token sequence is ill-formed. However, if there's a ':' or ']' after
800    // that identifier, this is probably a message send with a missing open
801    // bracket. Treat it as such.
802    if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
803        getCurScope()->isInObjcMethodScope() &&
804        ((Tok.is(tok::identifier) &&
805         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
806         Tok.is(tok::code_completion))) {
807      Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
808                                           0);
809      break;
810    }
811
812    // If we have an Objective-C class name followed by an identifier
813    // and either ':' or ']', this is an Objective-C class message
814    // send that's missing the opening '['. Recovery
815    // appropriately. Also take this path if we're performing code
816    // completion after an Objective-C class name.
817    if (getLangOpts().ObjC1 &&
818        ((Tok.is(tok::identifier) && !InMessageExpression) ||
819         Tok.is(tok::code_completion))) {
820      const Token& Next = NextToken();
821      if (Tok.is(tok::code_completion) ||
822          Next.is(tok::colon) || Next.is(tok::r_square))
823        if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
824          if (Typ.get()->isObjCObjectOrInterfaceType()) {
825            // Fake up a Declarator to use with ActOnTypeName.
826            DeclSpec DS(AttrFactory);
827            DS.SetRangeStart(ILoc);
828            DS.SetRangeEnd(ILoc);
829            const char *PrevSpec = 0;
830            unsigned DiagID;
831            DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ);
832
833            Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
834            TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
835                                                  DeclaratorInfo);
836            if (Ty.isInvalid())
837              break;
838
839            Res = ParseObjCMessageExpressionBody(SourceLocation(),
840                                                 SourceLocation(),
841                                                 Ty.get(), 0);
842            break;
843          }
844    }
845
846    // Make sure to pass down the right value for isAddressOfOperand.
847    if (isAddressOfOperand && isPostfixExpressionSuffixStart())
848      isAddressOfOperand = false;
849
850    // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
851    // need to know whether or not this identifier is a function designator or
852    // not.
853    UnqualifiedId Name;
854    CXXScopeSpec ScopeSpec;
855    SourceLocation TemplateKWLoc;
856    CastExpressionIdValidator Validator(isTypeCast != NotTypeCast,
857                                        isTypeCast != IsTypeCast);
858    Name.setIdentifier(&II, ILoc);
859    Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
860                                    Name, Tok.is(tok::l_paren),
861                                    isAddressOfOperand, &Validator);
862    break;
863  }
864  case tok::char_constant:     // constant: character-constant
865  case tok::wide_char_constant:
866  case tok::utf16_char_constant:
867  case tok::utf32_char_constant:
868    Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
869    ConsumeToken();
870    break;
871  case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
872  case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
873  case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
874  case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
875    Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
876    ConsumeToken();
877    break;
878  case tok::string_literal:    // primary-expression: string-literal
879  case tok::wide_string_literal:
880  case tok::utf8_string_literal:
881  case tok::utf16_string_literal:
882  case tok::utf32_string_literal:
883    Res = ParseStringLiteralExpression(true);
884    break;
885  case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
886    Res = ParseGenericSelectionExpression();
887    break;
888  case tok::kw___builtin_va_arg:
889  case tok::kw___builtin_offsetof:
890  case tok::kw___builtin_choose_expr:
891  case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
892  case tok::kw___builtin_convertvector:
893    return ParseBuiltinPrimaryExpression();
894  case tok::kw___null:
895    return Actions.ActOnGNUNullExpr(ConsumeToken());
896
897  case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
898  case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
899    // C++ [expr.unary] has:
900    //   unary-expression:
901    //     ++ cast-expression
902    //     -- cast-expression
903    SourceLocation SavedLoc = ConsumeToken();
904    Res = ParseCastExpression(!getLangOpts().CPlusPlus);
905    if (!Res.isInvalid())
906      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
907    return Res;
908  }
909  case tok::amp: {         // unary-expression: '&' cast-expression
910    // Special treatment because of member pointers
911    SourceLocation SavedLoc = ConsumeToken();
912    Res = ParseCastExpression(false, true);
913    if (!Res.isInvalid())
914      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
915    return Res;
916  }
917
918  case tok::star:          // unary-expression: '*' cast-expression
919  case tok::plus:          // unary-expression: '+' cast-expression
920  case tok::minus:         // unary-expression: '-' cast-expression
921  case tok::tilde:         // unary-expression: '~' cast-expression
922  case tok::exclaim:       // unary-expression: '!' cast-expression
923  case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
924  case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
925    SourceLocation SavedLoc = ConsumeToken();
926    Res = ParseCastExpression(false);
927    if (!Res.isInvalid())
928      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
929    return Res;
930  }
931
932  case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
933    // __extension__ silences extension warnings in the subexpression.
934    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
935    SourceLocation SavedLoc = ConsumeToken();
936    Res = ParseCastExpression(false);
937    if (!Res.isInvalid())
938      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
939    return Res;
940  }
941  case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
942    if (!getLangOpts().C11)
943      Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
944    // fallthrough
945  case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
946  case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
947                           // unary-expression: '__alignof' '(' type-name ')'
948  case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
949                           // unary-expression: 'sizeof' '(' type-name ')'
950  case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
951    return ParseUnaryExprOrTypeTraitExpression();
952  case tok::ampamp: {      // unary-expression: '&&' identifier
953    SourceLocation AmpAmpLoc = ConsumeToken();
954    if (Tok.isNot(tok::identifier))
955      return ExprError(Diag(Tok, diag::err_expected_ident));
956
957    if (getCurScope()->getFnParent() == 0)
958      return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
959
960    Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
961    LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
962                                                Tok.getLocation());
963    Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
964    ConsumeToken();
965    return Res;
966  }
967  case tok::kw_const_cast:
968  case tok::kw_dynamic_cast:
969  case tok::kw_reinterpret_cast:
970  case tok::kw_static_cast:
971    Res = ParseCXXCasts();
972    break;
973  case tok::kw_typeid:
974    Res = ParseCXXTypeid();
975    break;
976  case tok::kw___uuidof:
977    Res = ParseCXXUuidof();
978    break;
979  case tok::kw_this:
980    Res = ParseCXXThis();
981    break;
982
983  case tok::annot_typename:
984    if (isStartOfObjCClassMessageMissingOpenBracket()) {
985      ParsedType Type = getTypeAnnotation(Tok);
986
987      // Fake up a Declarator to use with ActOnTypeName.
988      DeclSpec DS(AttrFactory);
989      DS.SetRangeStart(Tok.getLocation());
990      DS.SetRangeEnd(Tok.getLastLoc());
991
992      const char *PrevSpec = 0;
993      unsigned DiagID;
994      DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
995                         PrevSpec, DiagID, Type);
996
997      Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
998      TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
999      if (Ty.isInvalid())
1000        break;
1001
1002      ConsumeToken();
1003      Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1004                                           Ty.get(), 0);
1005      break;
1006    }
1007    // Fall through
1008
1009  case tok::annot_decltype:
1010  case tok::kw_char:
1011  case tok::kw_wchar_t:
1012  case tok::kw_char16_t:
1013  case tok::kw_char32_t:
1014  case tok::kw_bool:
1015  case tok::kw_short:
1016  case tok::kw_int:
1017  case tok::kw_long:
1018  case tok::kw___int64:
1019  case tok::kw___int128:
1020  case tok::kw_signed:
1021  case tok::kw_unsigned:
1022  case tok::kw_half:
1023  case tok::kw_float:
1024  case tok::kw_double:
1025  case tok::kw_void:
1026  case tok::kw_typename:
1027  case tok::kw_typeof:
1028  case tok::kw___vector:
1029  case tok::kw_image1d_t:
1030  case tok::kw_image1d_array_t:
1031  case tok::kw_image1d_buffer_t:
1032  case tok::kw_image2d_t:
1033  case tok::kw_image2d_array_t:
1034  case tok::kw_image3d_t:
1035  case tok::kw_sampler_t:
1036  case tok::kw_event_t: {
1037    if (!getLangOpts().CPlusPlus) {
1038      Diag(Tok, diag::err_expected_expression);
1039      return ExprError();
1040    }
1041
1042    if (SavedKind == tok::kw_typename) {
1043      // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1044      //                     typename-specifier braced-init-list
1045      if (TryAnnotateTypeOrScopeToken())
1046        return ExprError();
1047
1048      if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1049        // We are trying to parse a simple-type-specifier but might not get such
1050        // a token after error recovery.
1051        return ExprError();
1052    }
1053
1054    // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1055    //                     simple-type-specifier braced-init-list
1056    //
1057    DeclSpec DS(AttrFactory);
1058
1059    ParseCXXSimpleTypeSpecifier(DS);
1060    if (Tok.isNot(tok::l_paren) &&
1061        (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1062      return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1063                         << DS.getSourceRange());
1064
1065    if (Tok.is(tok::l_brace))
1066      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1067
1068    Res = ParseCXXTypeConstructExpression(DS);
1069    break;
1070  }
1071
1072  case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1073    // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1074    // (We can end up in this situation after tentative parsing.)
1075    if (TryAnnotateTypeOrScopeToken())
1076      return ExprError();
1077    if (!Tok.is(tok::annot_cxxscope))
1078      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1079                                 NotCastExpr, isTypeCast);
1080
1081    Token Next = NextToken();
1082    if (Next.is(tok::annot_template_id)) {
1083      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1084      if (TemplateId->Kind == TNK_Type_template) {
1085        // We have a qualified template-id that we know refers to a
1086        // type, translate it into a type and continue parsing as a
1087        // cast expression.
1088        CXXScopeSpec SS;
1089        ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1090                                       /*EnteringContext=*/false);
1091        AnnotateTemplateIdTokenAsType();
1092        return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1093                                   NotCastExpr, isTypeCast);
1094      }
1095    }
1096
1097    // Parse as an id-expression.
1098    Res = ParseCXXIdExpression(isAddressOfOperand);
1099    break;
1100  }
1101
1102  case tok::annot_template_id: { // [C++]          template-id
1103    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1104    if (TemplateId->Kind == TNK_Type_template) {
1105      // We have a template-id that we know refers to a type,
1106      // translate it into a type and continue parsing as a cast
1107      // expression.
1108      AnnotateTemplateIdTokenAsType();
1109      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1110                                 NotCastExpr, isTypeCast);
1111    }
1112
1113    // Fall through to treat the template-id as an id-expression.
1114  }
1115
1116  case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1117    Res = ParseCXXIdExpression(isAddressOfOperand);
1118    break;
1119
1120  case tok::coloncolon: {
1121    // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1122    // annotates the token, tail recurse.
1123    if (TryAnnotateTypeOrScopeToken())
1124      return ExprError();
1125    if (!Tok.is(tok::coloncolon))
1126      return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1127
1128    // ::new -> [C++] new-expression
1129    // ::delete -> [C++] delete-expression
1130    SourceLocation CCLoc = ConsumeToken();
1131    if (Tok.is(tok::kw_new))
1132      return ParseCXXNewExpression(true, CCLoc);
1133    if (Tok.is(tok::kw_delete))
1134      return ParseCXXDeleteExpression(true, CCLoc);
1135
1136    // This is not a type name or scope specifier, it is an invalid expression.
1137    Diag(CCLoc, diag::err_expected_expression);
1138    return ExprError();
1139  }
1140
1141  case tok::kw_new: // [C++] new-expression
1142    return ParseCXXNewExpression(false, Tok.getLocation());
1143
1144  case tok::kw_delete: // [C++] delete-expression
1145    return ParseCXXDeleteExpression(false, Tok.getLocation());
1146
1147  case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1148    Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1149    SourceLocation KeyLoc = ConsumeToken();
1150    BalancedDelimiterTracker T(*this, tok::l_paren);
1151
1152    if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1153      return ExprError();
1154    // C++11 [expr.unary.noexcept]p1:
1155    //   The noexcept operator determines whether the evaluation of its operand,
1156    //   which is an unevaluated operand, can throw an exception.
1157    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1158    ExprResult Result = ParseExpression();
1159
1160    T.consumeClose();
1161
1162    if (!Result.isInvalid())
1163      Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1164                                         Result.take(), T.getCloseLocation());
1165    return Result;
1166  }
1167
1168  case tok::kw___is_abstract: // [GNU] unary-type-trait
1169  case tok::kw___is_class:
1170  case tok::kw___is_empty:
1171  case tok::kw___is_enum:
1172  case tok::kw___is_interface_class:
1173  case tok::kw___is_literal:
1174  case tok::kw___is_arithmetic:
1175  case tok::kw___is_integral:
1176  case tok::kw___is_floating_point:
1177  case tok::kw___is_complete_type:
1178  case tok::kw___is_void:
1179  case tok::kw___is_array:
1180  case tok::kw___is_function:
1181  case tok::kw___is_reference:
1182  case tok::kw___is_lvalue_reference:
1183  case tok::kw___is_rvalue_reference:
1184  case tok::kw___is_fundamental:
1185  case tok::kw___is_object:
1186  case tok::kw___is_scalar:
1187  case tok::kw___is_compound:
1188  case tok::kw___is_pointer:
1189  case tok::kw___is_member_object_pointer:
1190  case tok::kw___is_member_function_pointer:
1191  case tok::kw___is_member_pointer:
1192  case tok::kw___is_const:
1193  case tok::kw___is_volatile:
1194  case tok::kw___is_standard_layout:
1195  case tok::kw___is_signed:
1196  case tok::kw___is_unsigned:
1197  case tok::kw___is_literal_type:
1198  case tok::kw___is_pod:
1199  case tok::kw___is_polymorphic:
1200  case tok::kw___is_trivial:
1201  case tok::kw___is_trivially_copyable:
1202  case tok::kw___is_union:
1203  case tok::kw___is_final:
1204  case tok::kw___is_sealed:
1205  case tok::kw___has_trivial_constructor:
1206  case tok::kw___has_trivial_move_constructor:
1207  case tok::kw___has_trivial_copy:
1208  case tok::kw___has_trivial_assign:
1209  case tok::kw___has_trivial_move_assign:
1210  case tok::kw___has_trivial_destructor:
1211  case tok::kw___has_nothrow_assign:
1212  case tok::kw___has_nothrow_move_assign:
1213  case tok::kw___has_nothrow_copy:
1214  case tok::kw___has_nothrow_constructor:
1215  case tok::kw___has_virtual_destructor:
1216    return ParseUnaryTypeTrait();
1217
1218  case tok::kw___builtin_types_compatible_p:
1219  case tok::kw___is_base_of:
1220  case tok::kw___is_same:
1221  case tok::kw___is_convertible:
1222  case tok::kw___is_convertible_to:
1223  case tok::kw___is_trivially_assignable:
1224    return ParseBinaryTypeTrait();
1225
1226  case tok::kw___is_trivially_constructible:
1227    return ParseTypeTrait();
1228
1229  case tok::kw___array_rank:
1230  case tok::kw___array_extent:
1231    return ParseArrayTypeTrait();
1232
1233  case tok::kw___is_lvalue_expr:
1234  case tok::kw___is_rvalue_expr:
1235    return ParseExpressionTrait();
1236
1237  case tok::at: {
1238    SourceLocation AtLoc = ConsumeToken();
1239    return ParseObjCAtExpression(AtLoc);
1240  }
1241  case tok::caret:
1242    Res = ParseBlockLiteralExpression();
1243    break;
1244  case tok::code_completion: {
1245    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1246    cutOffParsing();
1247    return ExprError();
1248  }
1249  case tok::l_square:
1250    if (getLangOpts().CPlusPlus11) {
1251      if (getLangOpts().ObjC1) {
1252        // C++11 lambda expressions and Objective-C message sends both start with a
1253        // square bracket.  There are three possibilities here:
1254        // we have a valid lambda expression, we have an invalid lambda
1255        // expression, or we have something that doesn't appear to be a lambda.
1256        // If we're in the last case, we fall back to ParseObjCMessageExpression.
1257        Res = TryParseLambdaExpression();
1258        if (!Res.isInvalid() && !Res.get())
1259          Res = ParseObjCMessageExpression();
1260        break;
1261      }
1262      Res = ParseLambdaExpression();
1263      break;
1264    }
1265    if (getLangOpts().ObjC1) {
1266      Res = ParseObjCMessageExpression();
1267      break;
1268    }
1269    // FALL THROUGH.
1270  default:
1271    NotCastExpr = true;
1272    return ExprError();
1273  }
1274
1275  // These can be followed by postfix-expr pieces.
1276  return ParsePostfixExpressionSuffix(Res);
1277}
1278
1279/// \brief Once the leading part of a postfix-expression is parsed, this
1280/// method parses any suffixes that apply.
1281///
1282/// \verbatim
1283///       postfix-expression: [C99 6.5.2]
1284///         primary-expression
1285///         postfix-expression '[' expression ']'
1286///         postfix-expression '[' braced-init-list ']'
1287///         postfix-expression '(' argument-expression-list[opt] ')'
1288///         postfix-expression '.' identifier
1289///         postfix-expression '->' identifier
1290///         postfix-expression '++'
1291///         postfix-expression '--'
1292///         '(' type-name ')' '{' initializer-list '}'
1293///         '(' type-name ')' '{' initializer-list ',' '}'
1294///
1295///       argument-expression-list: [C99 6.5.2]
1296///         argument-expression ...[opt]
1297///         argument-expression-list ',' assignment-expression ...[opt]
1298/// \endverbatim
1299ExprResult
1300Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1301  // Now that the primary-expression piece of the postfix-expression has been
1302  // parsed, see if there are any postfix-expression pieces here.
1303  SourceLocation Loc;
1304  while (1) {
1305    switch (Tok.getKind()) {
1306    case tok::code_completion:
1307      if (InMessageExpression)
1308        return LHS;
1309
1310      Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1311      cutOffParsing();
1312      return ExprError();
1313
1314    case tok::identifier:
1315      // If we see identifier: after an expression, and we're not already in a
1316      // message send, then this is probably a message send with a missing
1317      // opening bracket '['.
1318      if (getLangOpts().ObjC1 && !InMessageExpression &&
1319          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1320        LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1321                                             ParsedType(), LHS.get());
1322        break;
1323      }
1324
1325      // Fall through; this isn't a message send.
1326
1327    default:  // Not a postfix-expression suffix.
1328      return LHS;
1329    case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1330      // If we have a array postfix expression that starts on a new line and
1331      // Objective-C is enabled, it is highly likely that the user forgot a
1332      // semicolon after the base expression and that the array postfix-expr is
1333      // actually another message send.  In this case, do some look-ahead to see
1334      // if the contents of the square brackets are obviously not a valid
1335      // expression and recover by pretending there is no suffix.
1336      if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1337          isSimpleObjCMessageExpression())
1338        return LHS;
1339
1340      // Reject array indices starting with a lambda-expression. '[[' is
1341      // reserved for attributes.
1342      if (CheckProhibitedCXX11Attribute())
1343        return ExprError();
1344
1345      BalancedDelimiterTracker T(*this, tok::l_square);
1346      T.consumeOpen();
1347      Loc = T.getOpenLocation();
1348      ExprResult Idx;
1349      if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1350        Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1351        Idx = ParseBraceInitializer();
1352      } else
1353        Idx = ParseExpression();
1354
1355      SourceLocation RLoc = Tok.getLocation();
1356
1357      if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1358        LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.take(), Loc,
1359                                              Idx.take(), RLoc);
1360      } else
1361        LHS = ExprError();
1362
1363      // Match the ']'.
1364      T.consumeClose();
1365      break;
1366    }
1367
1368    case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1369    case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1370                               //   '(' argument-expression-list[opt] ')'
1371      tok::TokenKind OpKind = Tok.getKind();
1372      InMessageExpressionRAIIObject InMessage(*this, false);
1373
1374      Expr *ExecConfig = 0;
1375
1376      BalancedDelimiterTracker PT(*this, tok::l_paren);
1377
1378      if (OpKind == tok::lesslessless) {
1379        ExprVector ExecConfigExprs;
1380        CommaLocsTy ExecConfigCommaLocs;
1381        SourceLocation OpenLoc = ConsumeToken();
1382
1383        if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1384          LHS = ExprError();
1385        }
1386
1387        SourceLocation CloseLoc = Tok.getLocation();
1388        if (Tok.is(tok::greatergreatergreater)) {
1389          ConsumeToken();
1390        } else if (LHS.isInvalid()) {
1391          SkipUntil(tok::greatergreatergreater);
1392        } else {
1393          // There was an error closing the brackets
1394          Diag(Tok, diag::err_expected_ggg);
1395          Diag(OpenLoc, diag::note_matching) << "<<<";
1396          SkipUntil(tok::greatergreatergreater);
1397          LHS = ExprError();
1398        }
1399
1400        if (!LHS.isInvalid()) {
1401          if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen, ""))
1402            LHS = ExprError();
1403          else
1404            Loc = PrevTokLocation;
1405        }
1406
1407        if (!LHS.isInvalid()) {
1408          ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1409                                    OpenLoc,
1410                                    ExecConfigExprs,
1411                                    CloseLoc);
1412          if (ECResult.isInvalid())
1413            LHS = ExprError();
1414          else
1415            ExecConfig = ECResult.get();
1416        }
1417      } else {
1418        PT.consumeOpen();
1419        Loc = PT.getOpenLocation();
1420      }
1421
1422      ExprVector ArgExprs;
1423      CommaLocsTy CommaLocs;
1424
1425      if (Tok.is(tok::code_completion)) {
1426        Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1427        cutOffParsing();
1428        return ExprError();
1429      }
1430
1431      if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1432        if (Tok.isNot(tok::r_paren)) {
1433          if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
1434                                  LHS.get())) {
1435            LHS = ExprError();
1436          }
1437        }
1438      }
1439
1440      // Match the ')'.
1441      if (LHS.isInvalid()) {
1442        SkipUntil(tok::r_paren);
1443      } else if (Tok.isNot(tok::r_paren)) {
1444        PT.consumeClose();
1445        LHS = ExprError();
1446      } else {
1447        assert((ArgExprs.size() == 0 ||
1448                ArgExprs.size()-1 == CommaLocs.size())&&
1449               "Unexpected number of commas!");
1450        LHS = Actions.ActOnCallExpr(getCurScope(), LHS.take(), Loc,
1451                                    ArgExprs, Tok.getLocation(),
1452                                    ExecConfig);
1453        PT.consumeClose();
1454      }
1455
1456      break;
1457    }
1458    case tok::arrow:
1459    case tok::period: {
1460      // postfix-expression: p-e '->' template[opt] id-expression
1461      // postfix-expression: p-e '.' template[opt] id-expression
1462      tok::TokenKind OpKind = Tok.getKind();
1463      SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1464
1465      CXXScopeSpec SS;
1466      ParsedType ObjectType;
1467      bool MayBePseudoDestructor = false;
1468      if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1469        Expr *Base = LHS.take();
1470        const Type* BaseType = Base->getType().getTypePtrOrNull();
1471        if (BaseType && Tok.is(tok::l_paren) &&
1472            (BaseType->isFunctionType() ||
1473             BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1474          Diag(OpLoc, diag::err_function_is_not_record)
1475            << (OpKind == tok::arrow) << Base->getSourceRange()
1476            << FixItHint::CreateRemoval(OpLoc);
1477          return ParsePostfixExpressionSuffix(Base);
1478        }
1479
1480        LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1481                                                   OpLoc, OpKind, ObjectType,
1482                                                   MayBePseudoDestructor);
1483        if (LHS.isInvalid())
1484          break;
1485
1486        ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1487                                       /*EnteringContext=*/false,
1488                                       &MayBePseudoDestructor);
1489        if (SS.isNotEmpty())
1490          ObjectType = ParsedType();
1491      }
1492
1493      if (Tok.is(tok::code_completion)) {
1494        // Code completion for a member access expression.
1495        Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1496                                                OpLoc, OpKind == tok::arrow);
1497
1498        cutOffParsing();
1499        return ExprError();
1500      }
1501
1502      if (MayBePseudoDestructor && !LHS.isInvalid()) {
1503        LHS = ParseCXXPseudoDestructor(LHS.take(), OpLoc, OpKind, SS,
1504                                       ObjectType);
1505        break;
1506      }
1507
1508      // Either the action has told is that this cannot be a
1509      // pseudo-destructor expression (based on the type of base
1510      // expression), or we didn't see a '~' in the right place. We
1511      // can still parse a destructor name here, but in that case it
1512      // names a real destructor.
1513      // Allow explicit constructor calls in Microsoft mode.
1514      // FIXME: Add support for explicit call of template constructor.
1515      SourceLocation TemplateKWLoc;
1516      UnqualifiedId Name;
1517      if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
1518        // Objective-C++:
1519        //   After a '.' in a member access expression, treat the keyword
1520        //   'class' as if it were an identifier.
1521        //
1522        // This hack allows property access to the 'class' method because it is
1523        // such a common method name. For other C++ keywords that are
1524        // Objective-C method names, one must use the message send syntax.
1525        IdentifierInfo *Id = Tok.getIdentifierInfo();
1526        SourceLocation Loc = ConsumeToken();
1527        Name.setIdentifier(Id, Loc);
1528      } else if (ParseUnqualifiedId(SS,
1529                                    /*EnteringContext=*/false,
1530                                    /*AllowDestructorName=*/true,
1531                                    /*AllowConstructorName=*/
1532                                      getLangOpts().MicrosoftExt,
1533                                    ObjectType, TemplateKWLoc, Name))
1534        LHS = ExprError();
1535
1536      if (!LHS.isInvalid())
1537        LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.take(), OpLoc,
1538                                            OpKind, SS, TemplateKWLoc, Name,
1539                                 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl : 0,
1540                                            Tok.is(tok::l_paren));
1541      break;
1542    }
1543    case tok::plusplus:    // postfix-expression: postfix-expression '++'
1544    case tok::minusminus:  // postfix-expression: postfix-expression '--'
1545      if (!LHS.isInvalid()) {
1546        LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1547                                          Tok.getKind(), LHS.take());
1548      }
1549      ConsumeToken();
1550      break;
1551    }
1552  }
1553}
1554
1555/// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1556/// vec_step and we are at the start of an expression or a parenthesized
1557/// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1558/// expression (isCastExpr == false) or the type (isCastExpr == true).
1559///
1560/// \verbatim
1561///       unary-expression:  [C99 6.5.3]
1562///         'sizeof' unary-expression
1563///         'sizeof' '(' type-name ')'
1564/// [GNU]   '__alignof' unary-expression
1565/// [GNU]   '__alignof' '(' type-name ')'
1566/// [C11]   '_Alignof' '(' type-name ')'
1567/// [C++0x] 'alignof' '(' type-id ')'
1568///
1569/// [GNU]   typeof-specifier:
1570///           typeof ( expressions )
1571///           typeof ( type-name )
1572/// [GNU/C++] typeof unary-expression
1573///
1574/// [OpenCL 1.1 6.11.12] vec_step built-in function:
1575///           vec_step ( expressions )
1576///           vec_step ( type-name )
1577/// \endverbatim
1578ExprResult
1579Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1580                                           bool &isCastExpr,
1581                                           ParsedType &CastTy,
1582                                           SourceRange &CastRange) {
1583
1584  assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
1585          OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1586          OpTok.is(tok::kw__Alignof)  || OpTok.is(tok::kw_vec_step)) &&
1587          "Not a typeof/sizeof/alignof/vec_step expression!");
1588
1589  ExprResult Operand;
1590
1591  // If the operand doesn't start with an '(', it must be an expression.
1592  if (Tok.isNot(tok::l_paren)) {
1593    // If construct allows a form without parenthesis, user may forget to put
1594    // pathenthesis around type name.
1595    if (OpTok.is(tok::kw_sizeof)  || OpTok.is(tok::kw___alignof) ||
1596        OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
1597      bool isAmbiguousTypeId;
1598      if (isTypeIdInParens(isAmbiguousTypeId)) {
1599        DeclSpec DS(AttrFactory);
1600        ParseSpecifierQualifierList(DS);
1601        Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1602        ParseDeclarator(DeclaratorInfo);
1603
1604        SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1605        SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1606        Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1607          << OpTok.getName()
1608          << FixItHint::CreateInsertion(LParenLoc, "(")
1609          << FixItHint::CreateInsertion(RParenLoc, ")");
1610        isCastExpr = true;
1611        return ExprEmpty();
1612      }
1613    }
1614
1615    isCastExpr = false;
1616    if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1617      Diag(Tok,diag::err_expected_lparen_after_id) << OpTok.getIdentifierInfo();
1618      return ExprError();
1619    }
1620
1621    Operand = ParseCastExpression(true/*isUnaryExpression*/);
1622  } else {
1623    // If it starts with a '(', we know that it is either a parenthesized
1624    // type-name, or it is a unary-expression that starts with a compound
1625    // literal, or starts with a primary-expression that is a parenthesized
1626    // expression.
1627    ParenParseOption ExprType = CastExpr;
1628    SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1629
1630    Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1631                                   false, CastTy, RParenLoc);
1632    CastRange = SourceRange(LParenLoc, RParenLoc);
1633
1634    // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1635    // a type.
1636    if (ExprType == CastExpr) {
1637      isCastExpr = true;
1638      return ExprEmpty();
1639    }
1640
1641    if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1642      // GNU typeof in C requires the expression to be parenthesized. Not so for
1643      // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1644      // the start of a unary-expression, but doesn't include any postfix
1645      // pieces. Parse these now if present.
1646      if (!Operand.isInvalid())
1647        Operand = ParsePostfixExpressionSuffix(Operand.get());
1648    }
1649  }
1650
1651  // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1652  isCastExpr = false;
1653  return Operand;
1654}
1655
1656
1657/// \brief Parse a sizeof or alignof expression.
1658///
1659/// \verbatim
1660///       unary-expression:  [C99 6.5.3]
1661///         'sizeof' unary-expression
1662///         'sizeof' '(' type-name ')'
1663/// [C++11] 'sizeof' '...' '(' identifier ')'
1664/// [GNU]   '__alignof' unary-expression
1665/// [GNU]   '__alignof' '(' type-name ')'
1666/// [C11]   '_Alignof' '(' type-name ')'
1667/// [C++11] 'alignof' '(' type-id ')'
1668/// \endverbatim
1669ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1670  assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1671          Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1672          Tok.is(tok::kw_vec_step)) &&
1673         "Not a sizeof/alignof/vec_step expression!");
1674  Token OpTok = Tok;
1675  ConsumeToken();
1676
1677  // [C++11] 'sizeof' '...' '(' identifier ')'
1678  if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1679    SourceLocation EllipsisLoc = ConsumeToken();
1680    SourceLocation LParenLoc, RParenLoc;
1681    IdentifierInfo *Name = 0;
1682    SourceLocation NameLoc;
1683    if (Tok.is(tok::l_paren)) {
1684      BalancedDelimiterTracker T(*this, tok::l_paren);
1685      T.consumeOpen();
1686      LParenLoc = T.getOpenLocation();
1687      if (Tok.is(tok::identifier)) {
1688        Name = Tok.getIdentifierInfo();
1689        NameLoc = ConsumeToken();
1690        T.consumeClose();
1691        RParenLoc = T.getCloseLocation();
1692        if (RParenLoc.isInvalid())
1693          RParenLoc = PP.getLocForEndOfToken(NameLoc);
1694      } else {
1695        Diag(Tok, diag::err_expected_parameter_pack);
1696        SkipUntil(tok::r_paren);
1697      }
1698    } else if (Tok.is(tok::identifier)) {
1699      Name = Tok.getIdentifierInfo();
1700      NameLoc = ConsumeToken();
1701      LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1702      RParenLoc = PP.getLocForEndOfToken(NameLoc);
1703      Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1704        << Name
1705        << FixItHint::CreateInsertion(LParenLoc, "(")
1706        << FixItHint::CreateInsertion(RParenLoc, ")");
1707    } else {
1708      Diag(Tok, diag::err_sizeof_parameter_pack);
1709    }
1710
1711    if (!Name)
1712      return ExprError();
1713
1714    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1715                                                 Sema::ReuseLambdaContextDecl);
1716
1717    return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1718                                                OpTok.getLocation(),
1719                                                *Name, NameLoc,
1720                                                RParenLoc);
1721  }
1722
1723  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1724    Diag(OpTok, diag::warn_cxx98_compat_alignof);
1725
1726  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1727                                               Sema::ReuseLambdaContextDecl);
1728
1729  bool isCastExpr;
1730  ParsedType CastTy;
1731  SourceRange CastRange;
1732  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1733                                                          isCastExpr,
1734                                                          CastTy,
1735                                                          CastRange);
1736
1737  UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1738  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1739      OpTok.is(tok::kw__Alignof))
1740    ExprKind = UETT_AlignOf;
1741  else if (OpTok.is(tok::kw_vec_step))
1742    ExprKind = UETT_VecStep;
1743
1744  if (isCastExpr)
1745    return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1746                                                 ExprKind,
1747                                                 /*isType=*/true,
1748                                                 CastTy.getAsOpaquePtr(),
1749                                                 CastRange);
1750
1751  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1752    Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1753
1754  // If we get here, the operand to the sizeof/alignof was an expresion.
1755  if (!Operand.isInvalid())
1756    Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1757                                                    ExprKind,
1758                                                    /*isType=*/false,
1759                                                    Operand.release(),
1760                                                    CastRange);
1761  return Operand;
1762}
1763
1764/// ParseBuiltinPrimaryExpression
1765///
1766/// \verbatim
1767///       primary-expression: [C99 6.5.1]
1768/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1769/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1770/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1771///                                     assign-expr ')'
1772/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1773/// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
1774///
1775/// [GNU] offsetof-member-designator:
1776/// [GNU]   identifier
1777/// [GNU]   offsetof-member-designator '.' identifier
1778/// [GNU]   offsetof-member-designator '[' expression ']'
1779/// \endverbatim
1780ExprResult Parser::ParseBuiltinPrimaryExpression() {
1781  ExprResult Res;
1782  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1783
1784  tok::TokenKind T = Tok.getKind();
1785  SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
1786
1787  // All of these start with an open paren.
1788  if (Tok.isNot(tok::l_paren))
1789    return ExprError(Diag(Tok, diag::err_expected_lparen_after_id)
1790                       << BuiltinII);
1791
1792  BalancedDelimiterTracker PT(*this, tok::l_paren);
1793  PT.consumeOpen();
1794
1795  // TODO: Build AST.
1796
1797  switch (T) {
1798  default: llvm_unreachable("Not a builtin primary expression!");
1799  case tok::kw___builtin_va_arg: {
1800    ExprResult Expr(ParseAssignmentExpression());
1801
1802    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1803      Expr = ExprError();
1804
1805    TypeResult Ty = ParseTypeName();
1806
1807    if (Tok.isNot(tok::r_paren)) {
1808      Diag(Tok, diag::err_expected_rparen);
1809      Expr = ExprError();
1810    }
1811
1812    if (Expr.isInvalid() || Ty.isInvalid())
1813      Res = ExprError();
1814    else
1815      Res = Actions.ActOnVAArg(StartLoc, Expr.take(), Ty.get(), ConsumeParen());
1816    break;
1817  }
1818  case tok::kw___builtin_offsetof: {
1819    SourceLocation TypeLoc = Tok.getLocation();
1820    TypeResult Ty = ParseTypeName();
1821    if (Ty.isInvalid()) {
1822      SkipUntil(tok::r_paren);
1823      return ExprError();
1824    }
1825
1826    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1827      return ExprError();
1828
1829    // We must have at least one identifier here.
1830    if (Tok.isNot(tok::identifier)) {
1831      Diag(Tok, diag::err_expected_ident);
1832      SkipUntil(tok::r_paren);
1833      return ExprError();
1834    }
1835
1836    // Keep track of the various subcomponents we see.
1837    SmallVector<Sema::OffsetOfComponent, 4> Comps;
1838
1839    Comps.push_back(Sema::OffsetOfComponent());
1840    Comps.back().isBrackets = false;
1841    Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1842    Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1843
1844    // FIXME: This loop leaks the index expressions on error.
1845    while (1) {
1846      if (Tok.is(tok::period)) {
1847        // offsetof-member-designator: offsetof-member-designator '.' identifier
1848        Comps.push_back(Sema::OffsetOfComponent());
1849        Comps.back().isBrackets = false;
1850        Comps.back().LocStart = ConsumeToken();
1851
1852        if (Tok.isNot(tok::identifier)) {
1853          Diag(Tok, diag::err_expected_ident);
1854          SkipUntil(tok::r_paren);
1855          return ExprError();
1856        }
1857        Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1858        Comps.back().LocEnd = ConsumeToken();
1859
1860      } else if (Tok.is(tok::l_square)) {
1861        if (CheckProhibitedCXX11Attribute())
1862          return ExprError();
1863
1864        // offsetof-member-designator: offsetof-member-design '[' expression ']'
1865        Comps.push_back(Sema::OffsetOfComponent());
1866        Comps.back().isBrackets = true;
1867        BalancedDelimiterTracker ST(*this, tok::l_square);
1868        ST.consumeOpen();
1869        Comps.back().LocStart = ST.getOpenLocation();
1870        Res = ParseExpression();
1871        if (Res.isInvalid()) {
1872          SkipUntil(tok::r_paren);
1873          return Res;
1874        }
1875        Comps.back().U.E = Res.release();
1876
1877        ST.consumeClose();
1878        Comps.back().LocEnd = ST.getCloseLocation();
1879      } else {
1880        if (Tok.isNot(tok::r_paren)) {
1881          PT.consumeClose();
1882          Res = ExprError();
1883        } else if (Ty.isInvalid()) {
1884          Res = ExprError();
1885        } else {
1886          PT.consumeClose();
1887          Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1888                                             Ty.get(), &Comps[0], Comps.size(),
1889                                             PT.getCloseLocation());
1890        }
1891        break;
1892      }
1893    }
1894    break;
1895  }
1896  case tok::kw___builtin_choose_expr: {
1897    ExprResult Cond(ParseAssignmentExpression());
1898    if (Cond.isInvalid()) {
1899      SkipUntil(tok::r_paren);
1900      return Cond;
1901    }
1902    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1903      return ExprError();
1904
1905    ExprResult Expr1(ParseAssignmentExpression());
1906    if (Expr1.isInvalid()) {
1907      SkipUntil(tok::r_paren);
1908      return Expr1;
1909    }
1910    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1911      return ExprError();
1912
1913    ExprResult Expr2(ParseAssignmentExpression());
1914    if (Expr2.isInvalid()) {
1915      SkipUntil(tok::r_paren);
1916      return Expr2;
1917    }
1918    if (Tok.isNot(tok::r_paren)) {
1919      Diag(Tok, diag::err_expected_rparen);
1920      return ExprError();
1921    }
1922    Res = Actions.ActOnChooseExpr(StartLoc, Cond.take(), Expr1.take(),
1923                                  Expr2.take(), ConsumeParen());
1924    break;
1925  }
1926  case tok::kw___builtin_astype: {
1927    // The first argument is an expression to be converted, followed by a comma.
1928    ExprResult Expr(ParseAssignmentExpression());
1929    if (Expr.isInvalid()) {
1930      SkipUntil(tok::r_paren);
1931      return ExprError();
1932    }
1933
1934    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",
1935                         tok::r_paren))
1936      return ExprError();
1937
1938    // Second argument is the type to bitcast to.
1939    TypeResult DestTy = ParseTypeName();
1940    if (DestTy.isInvalid())
1941      return ExprError();
1942
1943    // Attempt to consume the r-paren.
1944    if (Tok.isNot(tok::r_paren)) {
1945      Diag(Tok, diag::err_expected_rparen);
1946      SkipUntil(tok::r_paren);
1947      return ExprError();
1948    }
1949
1950    Res = Actions.ActOnAsTypeExpr(Expr.take(), DestTy.get(), StartLoc,
1951                                  ConsumeParen());
1952    break;
1953  }
1954  case tok::kw___builtin_convertvector: {
1955    // The first argument is an expression to be converted, followed by a comma.
1956    ExprResult Expr(ParseAssignmentExpression());
1957    if (Expr.isInvalid()) {
1958      SkipUntil(tok::r_paren);
1959      return ExprError();
1960    }
1961
1962    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",
1963                         tok::r_paren))
1964      return ExprError();
1965
1966    // Second argument is the type to bitcast to.
1967    TypeResult DestTy = ParseTypeName();
1968    if (DestTy.isInvalid())
1969      return ExprError();
1970
1971    // Attempt to consume the r-paren.
1972    if (Tok.isNot(tok::r_paren)) {
1973      Diag(Tok, diag::err_expected_rparen);
1974      SkipUntil(tok::r_paren);
1975      return ExprError();
1976    }
1977
1978    Res = Actions.ActOnConvertVectorExpr(Expr.take(), DestTy.get(), StartLoc,
1979                                         ConsumeParen());
1980    break;
1981  }
1982  }
1983
1984  if (Res.isInvalid())
1985    return ExprError();
1986
1987  // These can be followed by postfix-expr pieces because they are
1988  // primary-expressions.
1989  return ParsePostfixExpressionSuffix(Res.take());
1990}
1991
1992/// ParseParenExpression - This parses the unit that starts with a '(' token,
1993/// based on what is allowed by ExprType.  The actual thing parsed is returned
1994/// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
1995/// not the parsed cast-expression.
1996///
1997/// \verbatim
1998///       primary-expression: [C99 6.5.1]
1999///         '(' expression ')'
2000/// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2001///       postfix-expression: [C99 6.5.2]
2002///         '(' type-name ')' '{' initializer-list '}'
2003///         '(' type-name ')' '{' initializer-list ',' '}'
2004///       cast-expression: [C99 6.5.4]
2005///         '(' type-name ')' cast-expression
2006/// [ARC]   bridged-cast-expression
2007///
2008/// [ARC] bridged-cast-expression:
2009///         (__bridge type-name) cast-expression
2010///         (__bridge_transfer type-name) cast-expression
2011///         (__bridge_retained type-name) cast-expression
2012/// \endverbatim
2013ExprResult
2014Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2015                             bool isTypeCast, ParsedType &CastTy,
2016                             SourceLocation &RParenLoc) {
2017  assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2018  BalancedDelimiterTracker T(*this, tok::l_paren);
2019  if (T.consumeOpen())
2020    return ExprError();
2021  SourceLocation OpenLoc = T.getOpenLocation();
2022
2023  ExprResult Result(true);
2024  bool isAmbiguousTypeId;
2025  CastTy = ParsedType();
2026
2027  if (Tok.is(tok::code_completion)) {
2028    Actions.CodeCompleteOrdinaryName(getCurScope(),
2029                 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2030                                            : Sema::PCC_Expression);
2031    cutOffParsing();
2032    return ExprError();
2033  }
2034
2035  // Diagnose use of bridge casts in non-arc mode.
2036  bool BridgeCast = (getLangOpts().ObjC2 &&
2037                     (Tok.is(tok::kw___bridge) ||
2038                      Tok.is(tok::kw___bridge_transfer) ||
2039                      Tok.is(tok::kw___bridge_retained) ||
2040                      Tok.is(tok::kw___bridge_retain)));
2041  if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2042    if (Tok.isNot(tok::kw___bridge)) {
2043      StringRef BridgeCastName = Tok.getName();
2044      SourceLocation BridgeKeywordLoc = ConsumeToken();
2045      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2046        Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2047          << BridgeCastName
2048          << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2049    }
2050    else
2051      ConsumeToken(); // consume __bridge
2052    BridgeCast = false;
2053  }
2054
2055  // None of these cases should fall through with an invalid Result
2056  // unless they've already reported an error.
2057  if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2058    Diag(Tok, diag::ext_gnu_statement_expr);
2059    Actions.ActOnStartStmtExpr();
2060
2061    StmtResult Stmt(ParseCompoundStatement(true));
2062    ExprType = CompoundStmt;
2063
2064    // If the substmt parsed correctly, build the AST node.
2065    if (!Stmt.isInvalid()) {
2066      Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.take(), Tok.getLocation());
2067    } else {
2068      Actions.ActOnStmtExprError();
2069    }
2070  } else if (ExprType >= CompoundLiteral && BridgeCast) {
2071    tok::TokenKind tokenKind = Tok.getKind();
2072    SourceLocation BridgeKeywordLoc = ConsumeToken();
2073
2074    // Parse an Objective-C ARC ownership cast expression.
2075    ObjCBridgeCastKind Kind;
2076    if (tokenKind == tok::kw___bridge)
2077      Kind = OBC_Bridge;
2078    else if (tokenKind == tok::kw___bridge_transfer)
2079      Kind = OBC_BridgeTransfer;
2080    else if (tokenKind == tok::kw___bridge_retained)
2081      Kind = OBC_BridgeRetained;
2082    else {
2083      // As a hopefully temporary workaround, allow __bridge_retain as
2084      // a synonym for __bridge_retained, but only in system headers.
2085      assert(tokenKind == tok::kw___bridge_retain);
2086      Kind = OBC_BridgeRetained;
2087      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2088        Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2089          << FixItHint::CreateReplacement(BridgeKeywordLoc,
2090                                          "__bridge_retained");
2091    }
2092
2093    TypeResult Ty = ParseTypeName();
2094    T.consumeClose();
2095    RParenLoc = T.getCloseLocation();
2096    ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2097
2098    if (Ty.isInvalid() || SubExpr.isInvalid())
2099      return ExprError();
2100
2101    return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2102                                        BridgeKeywordLoc, Ty.get(),
2103                                        RParenLoc, SubExpr.get());
2104  } else if (ExprType >= CompoundLiteral &&
2105             isTypeIdInParens(isAmbiguousTypeId)) {
2106
2107    // Otherwise, this is a compound literal expression or cast expression.
2108
2109    // In C++, if the type-id is ambiguous we disambiguate based on context.
2110    // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2111    // in which case we should treat it as type-id.
2112    // if stopIfCastExpr is false, we need to determine the context past the
2113    // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2114    if (isAmbiguousTypeId && !stopIfCastExpr) {
2115      ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T);
2116      RParenLoc = T.getCloseLocation();
2117      return res;
2118    }
2119
2120    // Parse the type declarator.
2121    DeclSpec DS(AttrFactory);
2122    ParseSpecifierQualifierList(DS);
2123    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2124    ParseDeclarator(DeclaratorInfo);
2125
2126    // If our type is followed by an identifier and either ':' or ']', then
2127    // this is probably an Objective-C message send where the leading '[' is
2128    // missing. Recover as if that were the case.
2129    if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2130        !InMessageExpression && getLangOpts().ObjC1 &&
2131        (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2132      TypeResult Ty;
2133      {
2134        InMessageExpressionRAIIObject InMessage(*this, false);
2135        Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2136      }
2137      Result = ParseObjCMessageExpressionBody(SourceLocation(),
2138                                              SourceLocation(),
2139                                              Ty.get(), 0);
2140    } else {
2141      // Match the ')'.
2142      T.consumeClose();
2143      RParenLoc = T.getCloseLocation();
2144      if (Tok.is(tok::l_brace)) {
2145        ExprType = CompoundLiteral;
2146        TypeResult Ty;
2147        {
2148          InMessageExpressionRAIIObject InMessage(*this, false);
2149          Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2150        }
2151        return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2152      }
2153
2154      if (ExprType == CastExpr) {
2155        // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2156
2157        if (DeclaratorInfo.isInvalidType())
2158          return ExprError();
2159
2160        // Note that this doesn't parse the subsequent cast-expression, it just
2161        // returns the parsed type to the callee.
2162        if (stopIfCastExpr) {
2163          TypeResult Ty;
2164          {
2165            InMessageExpressionRAIIObject InMessage(*this, false);
2166            Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2167          }
2168          CastTy = Ty.get();
2169          return ExprResult();
2170        }
2171
2172        // Reject the cast of super idiom in ObjC.
2173        if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2174            Tok.getIdentifierInfo() == Ident_super &&
2175            getCurScope()->isInObjcMethodScope() &&
2176            GetLookAheadToken(1).isNot(tok::period)) {
2177          Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2178            << SourceRange(OpenLoc, RParenLoc);
2179          return ExprError();
2180        }
2181
2182        // Parse the cast-expression that follows it next.
2183        // TODO: For cast expression with CastTy.
2184        Result = ParseCastExpression(/*isUnaryExpression=*/false,
2185                                     /*isAddressOfOperand=*/false,
2186                                     /*isTypeCast=*/IsTypeCast);
2187        if (!Result.isInvalid()) {
2188          Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2189                                         DeclaratorInfo, CastTy,
2190                                         RParenLoc, Result.take());
2191        }
2192        return Result;
2193      }
2194
2195      Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2196      return ExprError();
2197    }
2198  } else if (isTypeCast) {
2199    // Parse the expression-list.
2200    InMessageExpressionRAIIObject InMessage(*this, false);
2201
2202    ExprVector ArgExprs;
2203    CommaLocsTy CommaLocs;
2204
2205    if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2206      ExprType = SimpleExpr;
2207      Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2208                                          ArgExprs);
2209    }
2210  } else {
2211    InMessageExpressionRAIIObject InMessage(*this, false);
2212
2213    Result = ParseExpression(MaybeTypeCast);
2214    ExprType = SimpleExpr;
2215
2216    // Don't build a paren expression unless we actually match a ')'.
2217    if (!Result.isInvalid() && Tok.is(tok::r_paren))
2218      Result = Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.take());
2219  }
2220
2221  // Match the ')'.
2222  if (Result.isInvalid()) {
2223    SkipUntil(tok::r_paren);
2224    return ExprError();
2225  }
2226
2227  T.consumeClose();
2228  RParenLoc = T.getCloseLocation();
2229  return Result;
2230}
2231
2232/// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2233/// and we are at the left brace.
2234///
2235/// \verbatim
2236///       postfix-expression: [C99 6.5.2]
2237///         '(' type-name ')' '{' initializer-list '}'
2238///         '(' type-name ')' '{' initializer-list ',' '}'
2239/// \endverbatim
2240ExprResult
2241Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2242                                       SourceLocation LParenLoc,
2243                                       SourceLocation RParenLoc) {
2244  assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2245  if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2246    Diag(LParenLoc, diag::ext_c99_compound_literal);
2247  ExprResult Result = ParseInitializer();
2248  if (!Result.isInvalid() && Ty)
2249    return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.take());
2250  return Result;
2251}
2252
2253/// ParseStringLiteralExpression - This handles the various token types that
2254/// form string literals, and also handles string concatenation [C99 5.1.1.2,
2255/// translation phase #6].
2256///
2257/// \verbatim
2258///       primary-expression: [C99 6.5.1]
2259///         string-literal
2260/// \verbatim
2261ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2262  assert(isTokenStringLiteral() && "Not a string literal!");
2263
2264  // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2265  // considered to be strings for concatenation purposes.
2266  SmallVector<Token, 4> StringToks;
2267
2268  do {
2269    StringToks.push_back(Tok);
2270    ConsumeStringToken();
2271  } while (isTokenStringLiteral());
2272
2273  // Pass the set of string tokens, ready for concatenation, to the actions.
2274  return Actions.ActOnStringLiteral(&StringToks[0], StringToks.size(),
2275                                   AllowUserDefinedLiteral ? getCurScope() : 0);
2276}
2277
2278/// ParseGenericSelectionExpression - Parse a C11 generic-selection
2279/// [C11 6.5.1.1].
2280///
2281/// \verbatim
2282///    generic-selection:
2283///           _Generic ( assignment-expression , generic-assoc-list )
2284///    generic-assoc-list:
2285///           generic-association
2286///           generic-assoc-list , generic-association
2287///    generic-association:
2288///           type-name : assignment-expression
2289///           default : assignment-expression
2290/// \endverbatim
2291ExprResult Parser::ParseGenericSelectionExpression() {
2292  assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2293  SourceLocation KeyLoc = ConsumeToken();
2294
2295  if (!getLangOpts().C11)
2296    Diag(KeyLoc, diag::ext_c11_generic_selection);
2297
2298  BalancedDelimiterTracker T(*this, tok::l_paren);
2299  if (T.expectAndConsume(diag::err_expected_lparen))
2300    return ExprError();
2301
2302  ExprResult ControllingExpr;
2303  {
2304    // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2305    // not evaluated."
2306    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2307    ControllingExpr = ParseAssignmentExpression();
2308    if (ControllingExpr.isInvalid()) {
2309      SkipUntil(tok::r_paren);
2310      return ExprError();
2311    }
2312  }
2313
2314  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "")) {
2315    SkipUntil(tok::r_paren);
2316    return ExprError();
2317  }
2318
2319  SourceLocation DefaultLoc;
2320  TypeVector Types;
2321  ExprVector Exprs;
2322  while (1) {
2323    ParsedType Ty;
2324    if (Tok.is(tok::kw_default)) {
2325      // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2326      // generic association."
2327      if (!DefaultLoc.isInvalid()) {
2328        Diag(Tok, diag::err_duplicate_default_assoc);
2329        Diag(DefaultLoc, diag::note_previous_default_assoc);
2330        SkipUntil(tok::r_paren);
2331        return ExprError();
2332      }
2333      DefaultLoc = ConsumeToken();
2334      Ty = ParsedType();
2335    } else {
2336      ColonProtectionRAIIObject X(*this);
2337      TypeResult TR = ParseTypeName();
2338      if (TR.isInvalid()) {
2339        SkipUntil(tok::r_paren);
2340        return ExprError();
2341      }
2342      Ty = TR.release();
2343    }
2344    Types.push_back(Ty);
2345
2346    if (ExpectAndConsume(tok::colon, diag::err_expected_colon, "")) {
2347      SkipUntil(tok::r_paren);
2348      return ExprError();
2349    }
2350
2351    // FIXME: These expressions should be parsed in a potentially potentially
2352    // evaluated context.
2353    ExprResult ER(ParseAssignmentExpression());
2354    if (ER.isInvalid()) {
2355      SkipUntil(tok::r_paren);
2356      return ExprError();
2357    }
2358    Exprs.push_back(ER.release());
2359
2360    if (Tok.isNot(tok::comma))
2361      break;
2362    ConsumeToken();
2363  }
2364
2365  T.consumeClose();
2366  if (T.getCloseLocation().isInvalid())
2367    return ExprError();
2368
2369  return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2370                                           T.getCloseLocation(),
2371                                           ControllingExpr.release(),
2372                                           Types, Exprs);
2373}
2374
2375/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2376///
2377/// \verbatim
2378///       argument-expression-list:
2379///         assignment-expression
2380///         argument-expression-list , assignment-expression
2381///
2382/// [C++] expression-list:
2383/// [C++]   assignment-expression
2384/// [C++]   expression-list , assignment-expression
2385///
2386/// [C++0x] expression-list:
2387/// [C++0x]   initializer-list
2388///
2389/// [C++0x] initializer-list
2390/// [C++0x]   initializer-clause ...[opt]
2391/// [C++0x]   initializer-list , initializer-clause ...[opt]
2392///
2393/// [C++0x] initializer-clause:
2394/// [C++0x]   assignment-expression
2395/// [C++0x]   braced-init-list
2396/// \endverbatim
2397bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
2398                                 SmallVectorImpl<SourceLocation> &CommaLocs,
2399                                 void (Sema::*Completer)(Scope *S,
2400                                                         Expr *Data,
2401                                                         ArrayRef<Expr *> Args),
2402                                 Expr *Data) {
2403  while (1) {
2404    if (Tok.is(tok::code_completion)) {
2405      if (Completer)
2406        (Actions.*Completer)(getCurScope(), Data, Exprs);
2407      else
2408        Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2409      cutOffParsing();
2410      return true;
2411    }
2412
2413    ExprResult Expr;
2414    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2415      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2416      Expr = ParseBraceInitializer();
2417    } else
2418      Expr = ParseAssignmentExpression();
2419
2420    if (Tok.is(tok::ellipsis))
2421      Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2422    if (Expr.isInvalid())
2423      return true;
2424
2425    Exprs.push_back(Expr.release());
2426
2427    if (Tok.isNot(tok::comma))
2428      return false;
2429    // Move to the next argument, remember where the comma was.
2430    CommaLocs.push_back(ConsumeToken());
2431  }
2432}
2433
2434/// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2435/// used for misc language extensions.
2436///
2437/// \verbatim
2438///       simple-expression-list:
2439///         assignment-expression
2440///         simple-expression-list , assignment-expression
2441/// \endverbatim
2442bool
2443Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2444                                  SmallVectorImpl<SourceLocation> &CommaLocs) {
2445  while (1) {
2446    ExprResult Expr = ParseAssignmentExpression();
2447    if (Expr.isInvalid())
2448      return true;
2449
2450    Exprs.push_back(Expr.release());
2451
2452    if (Tok.isNot(tok::comma))
2453      return false;
2454
2455    // Move to the next argument, remember where the comma was.
2456    CommaLocs.push_back(ConsumeToken());
2457  }
2458}
2459
2460/// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2461///
2462/// \verbatim
2463/// [clang] block-id:
2464/// [clang]   specifier-qualifier-list block-declarator
2465/// \endverbatim
2466void Parser::ParseBlockId(SourceLocation CaretLoc) {
2467  if (Tok.is(tok::code_completion)) {
2468    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2469    return cutOffParsing();
2470  }
2471
2472  // Parse the specifier-qualifier-list piece.
2473  DeclSpec DS(AttrFactory);
2474  ParseSpecifierQualifierList(DS);
2475
2476  // Parse the block-declarator.
2477  Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2478  ParseDeclarator(DeclaratorInfo);
2479
2480  // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2481  DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2482
2483  MaybeParseGNUAttributes(DeclaratorInfo);
2484
2485  // Inform sema that we are starting a block.
2486  Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2487}
2488
2489/// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2490/// like ^(int x){ return x+1; }
2491///
2492/// \verbatim
2493///         block-literal:
2494/// [clang]   '^' block-args[opt] compound-statement
2495/// [clang]   '^' block-id compound-statement
2496/// [clang] block-args:
2497/// [clang]   '(' parameter-list ')'
2498/// \endverbatim
2499ExprResult Parser::ParseBlockLiteralExpression() {
2500  assert(Tok.is(tok::caret) && "block literal starts with ^");
2501  SourceLocation CaretLoc = ConsumeToken();
2502
2503  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2504                                "block literal parsing");
2505
2506  // Enter a scope to hold everything within the block.  This includes the
2507  // argument decls, decls within the compound expression, etc.  This also
2508  // allows determining whether a variable reference inside the block is
2509  // within or outside of the block.
2510  ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2511                              Scope::DeclScope);
2512
2513  // Inform sema that we are starting a block.
2514  Actions.ActOnBlockStart(CaretLoc, getCurScope());
2515
2516  // Parse the return type if present.
2517  DeclSpec DS(AttrFactory);
2518  Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2519  // FIXME: Since the return type isn't actually parsed, it can't be used to
2520  // fill ParamInfo with an initial valid range, so do it manually.
2521  ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2522
2523  // If this block has arguments, parse them.  There is no ambiguity here with
2524  // the expression case, because the expression case requires a parameter list.
2525  if (Tok.is(tok::l_paren)) {
2526    ParseParenDeclarator(ParamInfo);
2527    // Parse the pieces after the identifier as if we had "int(...)".
2528    // SetIdentifier sets the source range end, but in this case we're past
2529    // that location.
2530    SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2531    ParamInfo.SetIdentifier(0, CaretLoc);
2532    ParamInfo.SetRangeEnd(Tmp);
2533    if (ParamInfo.isInvalidType()) {
2534      // If there was an error parsing the arguments, they may have
2535      // tried to use ^(x+y) which requires an argument list.  Just
2536      // skip the whole block literal.
2537      Actions.ActOnBlockError(CaretLoc, getCurScope());
2538      return ExprError();
2539    }
2540
2541    MaybeParseGNUAttributes(ParamInfo);
2542
2543    // Inform sema that we are starting a block.
2544    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2545  } else if (!Tok.is(tok::l_brace)) {
2546    ParseBlockId(CaretLoc);
2547  } else {
2548    // Otherwise, pretend we saw (void).
2549    ParsedAttributes attrs(AttrFactory);
2550    SourceLocation NoLoc;
2551    ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2552                                             /*IsAmbiguous=*/false,
2553                                             /*RParenLoc=*/NoLoc,
2554                                             /*ArgInfo=*/0,
2555                                             /*NumArgs=*/0,
2556                                             /*EllipsisLoc=*/NoLoc,
2557                                             /*RParenLoc=*/NoLoc,
2558                                             /*TypeQuals=*/0,
2559                                             /*RefQualifierIsLvalueRef=*/true,
2560                                             /*RefQualifierLoc=*/NoLoc,
2561                                             /*ConstQualifierLoc=*/NoLoc,
2562                                             /*VolatileQualifierLoc=*/NoLoc,
2563                                             /*MutableLoc=*/NoLoc,
2564                                             EST_None,
2565                                             /*ESpecLoc=*/NoLoc,
2566                                             /*Exceptions=*/0,
2567                                             /*ExceptionRanges=*/0,
2568                                             /*NumExceptions=*/0,
2569                                             /*NoexceptExpr=*/0,
2570                                             CaretLoc, CaretLoc,
2571                                             ParamInfo),
2572                          attrs, CaretLoc);
2573
2574    MaybeParseGNUAttributes(ParamInfo);
2575
2576    // Inform sema that we are starting a block.
2577    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2578  }
2579
2580
2581  ExprResult Result(true);
2582  if (!Tok.is(tok::l_brace)) {
2583    // Saw something like: ^expr
2584    Diag(Tok, diag::err_expected_expression);
2585    Actions.ActOnBlockError(CaretLoc, getCurScope());
2586    return ExprError();
2587  }
2588
2589  StmtResult Stmt(ParseCompoundStatementBody());
2590  BlockScope.Exit();
2591  if (!Stmt.isInvalid())
2592    Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.take(), getCurScope());
2593  else
2594    Actions.ActOnBlockError(CaretLoc, getCurScope());
2595  return Result;
2596}
2597
2598/// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2599///
2600///         '__objc_yes'
2601///         '__objc_no'
2602ExprResult Parser::ParseObjCBoolLiteral() {
2603  tok::TokenKind Kind = Tok.getKind();
2604  return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2605}
2606