SemaDecl.cpp revision 04ca19b97e85381920df7214f2c31b6833b314ce
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
353/// where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Union:  return DeclSpec::TST_union;
364      case TTK_Class:  return DeclSpec::TST_class;
365      case TTK_Enum:   return DeclSpec::TST_enum;
366      }
367    }
368
369  return DeclSpec::TST_unspecified;
370}
371
372/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
373/// if a CXXScopeSpec's type is equal to the type of one of the base classes
374/// then downgrade the missing typename error to a warning.
375/// This is needed for MSVC compatibility; Example:
376/// @code
377/// template<class T> class A {
378/// public:
379///   typedef int TYPE;
380/// };
381/// template<class T> class B : public A<T> {
382/// public:
383///   A<T>::TYPE a; // no typename required because A<T> is a base class.
384/// };
385/// @endcode
386bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
387  if (CurContext->isRecord()) {
388    const Type *Ty = SS->getScopeRep()->getAsType();
389
390    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
391    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
392          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
393      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
394        return true;
395    return S->isFunctionPrototypeScope();
396  }
397  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
398}
399
400bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
401                                   SourceLocation IILoc,
402                                   Scope *S,
403                                   CXXScopeSpec *SS,
404                                   ParsedType &SuggestedType) {
405  // We don't have anything to suggest (yet).
406  SuggestedType = ParsedType();
407
408  // There may have been a typo in the name of the type. Look up typo
409  // results, in case we have something that we can suggest.
410  TypeNameValidatorCCC Validator(false);
411  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
412                                             LookupOrdinaryName, S, SS,
413                                             Validator)) {
414    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
415    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
416
417    if (Corrected.isKeyword()) {
418      // We corrected to a keyword.
419      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
420      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
421        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
422      Diag(IILoc, diag::err_unknown_typename_suggest)
423        << II << CorrectedQuotedStr
424        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
425      II = NewII;
426    } else {
427      NamedDecl *Result = Corrected.getCorrectionDecl();
428      // We found a similarly-named type or interface; suggest that.
429      if (!SS || !SS->isSet())
430        Diag(IILoc, diag::err_unknown_typename_suggest)
431          << II << CorrectedQuotedStr
432          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
433      else if (DeclContext *DC = computeDeclContext(*SS, false))
434        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
435          << II << DC << CorrectedQuotedStr << SS->getRange()
436          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
437      else
438        llvm_unreachable("could not have corrected a typo here");
439
440      Diag(Result->getLocation(), diag::note_previous_decl)
441        << CorrectedQuotedStr;
442
443      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
444                                  false, false, ParsedType(),
445                                  /*IsCtorOrDtorName=*/false,
446                                  /*NonTrivialTypeSourceInfo=*/true);
447    }
448    return true;
449  }
450
451  if (getLangOpts().CPlusPlus) {
452    // See if II is a class template that the user forgot to pass arguments to.
453    UnqualifiedId Name;
454    Name.setIdentifier(II, IILoc);
455    CXXScopeSpec EmptySS;
456    TemplateTy TemplateResult;
457    bool MemberOfUnknownSpecialization;
458    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
459                       Name, ParsedType(), true, TemplateResult,
460                       MemberOfUnknownSpecialization) == TNK_Type_template) {
461      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
462      Diag(IILoc, diag::err_template_missing_args) << TplName;
463      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
464        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
465          << TplDecl->getTemplateParameters()->getSourceRange();
466      }
467      return true;
468    }
469  }
470
471  // FIXME: Should we move the logic that tries to recover from a missing tag
472  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
473
474  if (!SS || (!SS->isSet() && !SS->isInvalid()))
475    Diag(IILoc, diag::err_unknown_typename) << II;
476  else if (DeclContext *DC = computeDeclContext(*SS, false))
477    Diag(IILoc, diag::err_typename_nested_not_found)
478      << II << DC << SS->getRange();
479  else if (isDependentScopeSpecifier(*SS)) {
480    unsigned DiagID = diag::err_typename_missing;
481    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
482      DiagID = diag::warn_typename_missing;
483
484    Diag(SS->getRange().getBegin(), DiagID)
485      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
486      << SourceRange(SS->getRange().getBegin(), IILoc)
487      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
488    SuggestedType = ActOnTypenameType(S, SourceLocation(),
489                                      *SS, *II, IILoc).get();
490  } else {
491    assert(SS && SS->isInvalid() &&
492           "Invalid scope specifier has already been diagnosed");
493  }
494
495  return true;
496}
497
498/// \brief Determine whether the given result set contains either a type name
499/// or
500static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
501  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
502                       NextToken.is(tok::less);
503
504  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
505    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
506      return true;
507
508    if (CheckTemplate && isa<TemplateDecl>(*I))
509      return true;
510  }
511
512  return false;
513}
514
515static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
516                                    Scope *S, CXXScopeSpec &SS,
517                                    IdentifierInfo *&Name,
518                                    SourceLocation NameLoc) {
519  Result.clear(Sema::LookupTagName);
520  SemaRef.LookupParsedName(Result, S, &SS);
521  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
522    const char *TagName = 0;
523    const char *FixItTagName = 0;
524    switch (Tag->getTagKind()) {
525      case TTK_Class:
526        TagName = "class";
527        FixItTagName = "class ";
528        break;
529
530      case TTK_Enum:
531        TagName = "enum";
532        FixItTagName = "enum ";
533        break;
534
535      case TTK_Struct:
536        TagName = "struct";
537        FixItTagName = "struct ";
538        break;
539
540      case TTK_Union:
541        TagName = "union";
542        FixItTagName = "union ";
543        break;
544    }
545
546    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
547      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
548      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
549
550    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
551    if (SemaRef.LookupParsedName(R, S, &SS)) {
552      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
553           I != IEnd; ++I)
554        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
555          << Name << TagName;
556    }
557    return true;
558  }
559
560  Result.clear(Sema::LookupOrdinaryName);
561  return false;
562}
563
564Sema::NameClassification Sema::ClassifyName(Scope *S,
565                                            CXXScopeSpec &SS,
566                                            IdentifierInfo *&Name,
567                                            SourceLocation NameLoc,
568                                            const Token &NextToken) {
569  DeclarationNameInfo NameInfo(Name, NameLoc);
570  ObjCMethodDecl *CurMethod = getCurMethodDecl();
571
572  if (NextToken.is(tok::coloncolon)) {
573    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
574                                QualType(), false, SS, 0, false);
575
576  }
577
578  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
579  LookupParsedName(Result, S, &SS, !CurMethod);
580
581  // Perform lookup for Objective-C instance variables (including automatically
582  // synthesized instance variables), if we're in an Objective-C method.
583  // FIXME: This lookup really, really needs to be folded in to the normal
584  // unqualified lookup mechanism.
585  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
586    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
587    if (E.get() || E.isInvalid())
588      return E;
589  }
590
591  bool SecondTry = false;
592  bool IsFilteredTemplateName = false;
593
594Corrected:
595  switch (Result.getResultKind()) {
596  case LookupResult::NotFound:
597    // If an unqualified-id is followed by a '(', then we have a function
598    // call.
599    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
600      // In C++, this is an ADL-only call.
601      // FIXME: Reference?
602      if (getLangOpts().CPlusPlus)
603        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
604
605      // C90 6.3.2.2:
606      //   If the expression that precedes the parenthesized argument list in a
607      //   function call consists solely of an identifier, and if no
608      //   declaration is visible for this identifier, the identifier is
609      //   implicitly declared exactly as if, in the innermost block containing
610      //   the function call, the declaration
611      //
612      //     extern int identifier ();
613      //
614      //   appeared.
615      //
616      // We also allow this in C99 as an extension.
617      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
618        Result.addDecl(D);
619        Result.resolveKind();
620        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
621      }
622    }
623
624    // In C, we first see whether there is a tag type by the same name, in
625    // which case it's likely that the user just forget to write "enum",
626    // "struct", or "union".
627    if (!getLangOpts().CPlusPlus && !SecondTry &&
628        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
629      break;
630    }
631
632    // Perform typo correction to determine if there is another name that is
633    // close to this name.
634    if (!SecondTry) {
635      SecondTry = true;
636      CorrectionCandidateCallback DefaultValidator;
637      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
638                                                 Result.getLookupKind(), S,
639                                                 &SS, DefaultValidator)) {
640        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
641        unsigned QualifiedDiag = diag::err_no_member_suggest;
642        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
643        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
644
645        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
646        NamedDecl *UnderlyingFirstDecl
647          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
648        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
649            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
650          UnqualifiedDiag = diag::err_no_template_suggest;
651          QualifiedDiag = diag::err_no_member_template_suggest;
652        } else if (UnderlyingFirstDecl &&
653                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
654                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
655                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
656           UnqualifiedDiag = diag::err_unknown_typename_suggest;
657           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
658         }
659
660        if (SS.isEmpty())
661          Diag(NameLoc, UnqualifiedDiag)
662            << Name << CorrectedQuotedStr
663            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
664        else
665          Diag(NameLoc, QualifiedDiag)
666            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
667            << SS.getRange()
668            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
669
670        // Update the name, so that the caller has the new name.
671        Name = Corrected.getCorrectionAsIdentifierInfo();
672
673        // Typo correction corrected to a keyword.
674        if (Corrected.isKeyword())
675          return Corrected.getCorrectionAsIdentifierInfo();
676
677        // Also update the LookupResult...
678        // FIXME: This should probably go away at some point
679        Result.clear();
680        Result.setLookupName(Corrected.getCorrection());
681        if (FirstDecl) {
682          Result.addDecl(FirstDecl);
683          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
684            << CorrectedQuotedStr;
685        }
686
687        // If we found an Objective-C instance variable, let
688        // LookupInObjCMethod build the appropriate expression to
689        // reference the ivar.
690        // FIXME: This is a gross hack.
691        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
692          Result.clear();
693          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
694          return move(E);
695        }
696
697        goto Corrected;
698      }
699    }
700
701    // We failed to correct; just fall through and let the parser deal with it.
702    Result.suppressDiagnostics();
703    return NameClassification::Unknown();
704
705  case LookupResult::NotFoundInCurrentInstantiation: {
706    // We performed name lookup into the current instantiation, and there were
707    // dependent bases, so we treat this result the same way as any other
708    // dependent nested-name-specifier.
709
710    // C++ [temp.res]p2:
711    //   A name used in a template declaration or definition and that is
712    //   dependent on a template-parameter is assumed not to name a type
713    //   unless the applicable name lookup finds a type name or the name is
714    //   qualified by the keyword typename.
715    //
716    // FIXME: If the next token is '<', we might want to ask the parser to
717    // perform some heroics to see if we actually have a
718    // template-argument-list, which would indicate a missing 'template'
719    // keyword here.
720    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
721                                     NameInfo, /*TemplateArgs=*/0);
722  }
723
724  case LookupResult::Found:
725  case LookupResult::FoundOverloaded:
726  case LookupResult::FoundUnresolvedValue:
727    break;
728
729  case LookupResult::Ambiguous:
730    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
731        hasAnyAcceptableTemplateNames(Result)) {
732      // C++ [temp.local]p3:
733      //   A lookup that finds an injected-class-name (10.2) can result in an
734      //   ambiguity in certain cases (for example, if it is found in more than
735      //   one base class). If all of the injected-class-names that are found
736      //   refer to specializations of the same class template, and if the name
737      //   is followed by a template-argument-list, the reference refers to the
738      //   class template itself and not a specialization thereof, and is not
739      //   ambiguous.
740      //
741      // This filtering can make an ambiguous result into an unambiguous one,
742      // so try again after filtering out template names.
743      FilterAcceptableTemplateNames(Result);
744      if (!Result.isAmbiguous()) {
745        IsFilteredTemplateName = true;
746        break;
747      }
748    }
749
750    // Diagnose the ambiguity and return an error.
751    return NameClassification::Error();
752  }
753
754  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
755      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
756    // C++ [temp.names]p3:
757    //   After name lookup (3.4) finds that a name is a template-name or that
758    //   an operator-function-id or a literal- operator-id refers to a set of
759    //   overloaded functions any member of which is a function template if
760    //   this is followed by a <, the < is always taken as the delimiter of a
761    //   template-argument-list and never as the less-than operator.
762    if (!IsFilteredTemplateName)
763      FilterAcceptableTemplateNames(Result);
764
765    if (!Result.empty()) {
766      bool IsFunctionTemplate;
767      TemplateName Template;
768      if (Result.end() - Result.begin() > 1) {
769        IsFunctionTemplate = true;
770        Template = Context.getOverloadedTemplateName(Result.begin(),
771                                                     Result.end());
772      } else {
773        TemplateDecl *TD
774          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
775        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
776
777        if (SS.isSet() && !SS.isInvalid())
778          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
779                                                    /*TemplateKeyword=*/false,
780                                                      TD);
781        else
782          Template = TemplateName(TD);
783      }
784
785      if (IsFunctionTemplate) {
786        // Function templates always go through overload resolution, at which
787        // point we'll perform the various checks (e.g., accessibility) we need
788        // to based on which function we selected.
789        Result.suppressDiagnostics();
790
791        return NameClassification::FunctionTemplate(Template);
792      }
793
794      return NameClassification::TypeTemplate(Template);
795    }
796  }
797
798  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
799  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
800    DiagnoseUseOfDecl(Type, NameLoc);
801    QualType T = Context.getTypeDeclType(Type);
802    return ParsedType::make(T);
803  }
804
805  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
806  if (!Class) {
807    // FIXME: It's unfortunate that we don't have a Type node for handling this.
808    if (ObjCCompatibleAliasDecl *Alias
809                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
810      Class = Alias->getClassInterface();
811  }
812
813  if (Class) {
814    DiagnoseUseOfDecl(Class, NameLoc);
815
816    if (NextToken.is(tok::period)) {
817      // Interface. <something> is parsed as a property reference expression.
818      // Just return "unknown" as a fall-through for now.
819      Result.suppressDiagnostics();
820      return NameClassification::Unknown();
821    }
822
823    QualType T = Context.getObjCInterfaceType(Class);
824    return ParsedType::make(T);
825  }
826
827  // Check for a tag type hidden by a non-type decl in a few cases where it
828  // seems likely a type is wanted instead of the non-type that was found.
829  if (!getLangOpts().ObjC1 && FirstDecl && !isa<ClassTemplateDecl>(FirstDecl) &&
830      !isa<TypeAliasTemplateDecl>(FirstDecl)) {
831    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
832    if ((NextToken.is(tok::identifier) ||
833         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
834        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
835      FirstDecl = (*Result.begin())->getUnderlyingDecl();
836      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
837        DiagnoseUseOfDecl(Type, NameLoc);
838        QualType T = Context.getTypeDeclType(Type);
839        return ParsedType::make(T);
840      }
841    }
842  }
843
844  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
845    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
846
847  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
848  return BuildDeclarationNameExpr(SS, Result, ADL);
849}
850
851// Determines the context to return to after temporarily entering a
852// context.  This depends in an unnecessarily complicated way on the
853// exact ordering of callbacks from the parser.
854DeclContext *Sema::getContainingDC(DeclContext *DC) {
855
856  // Functions defined inline within classes aren't parsed until we've
857  // finished parsing the top-level class, so the top-level class is
858  // the context we'll need to return to.
859  if (isa<FunctionDecl>(DC)) {
860    DC = DC->getLexicalParent();
861
862    // A function not defined within a class will always return to its
863    // lexical context.
864    if (!isa<CXXRecordDecl>(DC))
865      return DC;
866
867    // A C++ inline method/friend is parsed *after* the topmost class
868    // it was declared in is fully parsed ("complete");  the topmost
869    // class is the context we need to return to.
870    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
871      DC = RD;
872
873    // Return the declaration context of the topmost class the inline method is
874    // declared in.
875    return DC;
876  }
877
878  return DC->getLexicalParent();
879}
880
881void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
882  assert(getContainingDC(DC) == CurContext &&
883      "The next DeclContext should be lexically contained in the current one.");
884  CurContext = DC;
885  S->setEntity(DC);
886}
887
888void Sema::PopDeclContext() {
889  assert(CurContext && "DeclContext imbalance!");
890
891  CurContext = getContainingDC(CurContext);
892  assert(CurContext && "Popped translation unit!");
893}
894
895/// EnterDeclaratorContext - Used when we must lookup names in the context
896/// of a declarator's nested name specifier.
897///
898void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
899  // C++0x [basic.lookup.unqual]p13:
900  //   A name used in the definition of a static data member of class
901  //   X (after the qualified-id of the static member) is looked up as
902  //   if the name was used in a member function of X.
903  // C++0x [basic.lookup.unqual]p14:
904  //   If a variable member of a namespace is defined outside of the
905  //   scope of its namespace then any name used in the definition of
906  //   the variable member (after the declarator-id) is looked up as
907  //   if the definition of the variable member occurred in its
908  //   namespace.
909  // Both of these imply that we should push a scope whose context
910  // is the semantic context of the declaration.  We can't use
911  // PushDeclContext here because that context is not necessarily
912  // lexically contained in the current context.  Fortunately,
913  // the containing scope should have the appropriate information.
914
915  assert(!S->getEntity() && "scope already has entity");
916
917#ifndef NDEBUG
918  Scope *Ancestor = S->getParent();
919  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
920  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
921#endif
922
923  CurContext = DC;
924  S->setEntity(DC);
925}
926
927void Sema::ExitDeclaratorContext(Scope *S) {
928  assert(S->getEntity() == CurContext && "Context imbalance!");
929
930  // Switch back to the lexical context.  The safety of this is
931  // enforced by an assert in EnterDeclaratorContext.
932  Scope *Ancestor = S->getParent();
933  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
934  CurContext = (DeclContext*) Ancestor->getEntity();
935
936  // We don't need to do anything with the scope, which is going to
937  // disappear.
938}
939
940
941void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
942  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
943  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
944    // We assume that the caller has already called
945    // ActOnReenterTemplateScope
946    FD = TFD->getTemplatedDecl();
947  }
948  if (!FD)
949    return;
950
951  // Same implementation as PushDeclContext, but enters the context
952  // from the lexical parent, rather than the top-level class.
953  assert(CurContext == FD->getLexicalParent() &&
954    "The next DeclContext should be lexically contained in the current one.");
955  CurContext = FD;
956  S->setEntity(CurContext);
957
958  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
959    ParmVarDecl *Param = FD->getParamDecl(P);
960    // If the parameter has an identifier, then add it to the scope
961    if (Param->getIdentifier()) {
962      S->AddDecl(Param);
963      IdResolver.AddDecl(Param);
964    }
965  }
966}
967
968
969void Sema::ActOnExitFunctionContext() {
970  // Same implementation as PopDeclContext, but returns to the lexical parent,
971  // rather than the top-level class.
972  assert(CurContext && "DeclContext imbalance!");
973  CurContext = CurContext->getLexicalParent();
974  assert(CurContext && "Popped translation unit!");
975}
976
977
978/// \brief Determine whether we allow overloading of the function
979/// PrevDecl with another declaration.
980///
981/// This routine determines whether overloading is possible, not
982/// whether some new function is actually an overload. It will return
983/// true in C++ (where we can always provide overloads) or, as an
984/// extension, in C when the previous function is already an
985/// overloaded function declaration or has the "overloadable"
986/// attribute.
987static bool AllowOverloadingOfFunction(LookupResult &Previous,
988                                       ASTContext &Context) {
989  if (Context.getLangOpts().CPlusPlus)
990    return true;
991
992  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
993    return true;
994
995  return (Previous.getResultKind() == LookupResult::Found
996          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
997}
998
999/// Add this decl to the scope shadowed decl chains.
1000void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1001  // Move up the scope chain until we find the nearest enclosing
1002  // non-transparent context. The declaration will be introduced into this
1003  // scope.
1004  while (S->getEntity() &&
1005         ((DeclContext *)S->getEntity())->isTransparentContext())
1006    S = S->getParent();
1007
1008  // Add scoped declarations into their context, so that they can be
1009  // found later. Declarations without a context won't be inserted
1010  // into any context.
1011  if (AddToContext)
1012    CurContext->addDecl(D);
1013
1014  // Out-of-line definitions shouldn't be pushed into scope in C++.
1015  // Out-of-line variable and function definitions shouldn't even in C.
1016  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1017      D->isOutOfLine() &&
1018      !D->getDeclContext()->getRedeclContext()->Equals(
1019        D->getLexicalDeclContext()->getRedeclContext()))
1020    return;
1021
1022  // Template instantiations should also not be pushed into scope.
1023  if (isa<FunctionDecl>(D) &&
1024      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1025    return;
1026
1027  // If this replaces anything in the current scope,
1028  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1029                               IEnd = IdResolver.end();
1030  for (; I != IEnd; ++I) {
1031    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1032      S->RemoveDecl(*I);
1033      IdResolver.RemoveDecl(*I);
1034
1035      // Should only need to replace one decl.
1036      break;
1037    }
1038  }
1039
1040  S->AddDecl(D);
1041
1042  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1043    // Implicitly-generated labels may end up getting generated in an order that
1044    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1045    // the label at the appropriate place in the identifier chain.
1046    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1047      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1048      if (IDC == CurContext) {
1049        if (!S->isDeclScope(*I))
1050          continue;
1051      } else if (IDC->Encloses(CurContext))
1052        break;
1053    }
1054
1055    IdResolver.InsertDeclAfter(I, D);
1056  } else {
1057    IdResolver.AddDecl(D);
1058  }
1059}
1060
1061void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1062  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1063    TUScope->AddDecl(D);
1064}
1065
1066bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1067                         bool ExplicitInstantiationOrSpecialization) {
1068  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1069                                  ExplicitInstantiationOrSpecialization);
1070}
1071
1072Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1073  DeclContext *TargetDC = DC->getPrimaryContext();
1074  do {
1075    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1076      if (ScopeDC->getPrimaryContext() == TargetDC)
1077        return S;
1078  } while ((S = S->getParent()));
1079
1080  return 0;
1081}
1082
1083static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1084                                            DeclContext*,
1085                                            ASTContext&);
1086
1087/// Filters out lookup results that don't fall within the given scope
1088/// as determined by isDeclInScope.
1089void Sema::FilterLookupForScope(LookupResult &R,
1090                                DeclContext *Ctx, Scope *S,
1091                                bool ConsiderLinkage,
1092                                bool ExplicitInstantiationOrSpecialization) {
1093  LookupResult::Filter F = R.makeFilter();
1094  while (F.hasNext()) {
1095    NamedDecl *D = F.next();
1096
1097    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1098      continue;
1099
1100    if (ConsiderLinkage &&
1101        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1102      continue;
1103
1104    F.erase();
1105  }
1106
1107  F.done();
1108}
1109
1110static bool isUsingDecl(NamedDecl *D) {
1111  return isa<UsingShadowDecl>(D) ||
1112         isa<UnresolvedUsingTypenameDecl>(D) ||
1113         isa<UnresolvedUsingValueDecl>(D);
1114}
1115
1116/// Removes using shadow declarations from the lookup results.
1117static void RemoveUsingDecls(LookupResult &R) {
1118  LookupResult::Filter F = R.makeFilter();
1119  while (F.hasNext())
1120    if (isUsingDecl(F.next()))
1121      F.erase();
1122
1123  F.done();
1124}
1125
1126/// \brief Check for this common pattern:
1127/// @code
1128/// class S {
1129///   S(const S&); // DO NOT IMPLEMENT
1130///   void operator=(const S&); // DO NOT IMPLEMENT
1131/// };
1132/// @endcode
1133static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1134  // FIXME: Should check for private access too but access is set after we get
1135  // the decl here.
1136  if (D->doesThisDeclarationHaveABody())
1137    return false;
1138
1139  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1140    return CD->isCopyConstructor();
1141  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1142    return Method->isCopyAssignmentOperator();
1143  return false;
1144}
1145
1146bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1147  assert(D);
1148
1149  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1150    return false;
1151
1152  // Ignore class templates.
1153  if (D->getDeclContext()->isDependentContext() ||
1154      D->getLexicalDeclContext()->isDependentContext())
1155    return false;
1156
1157  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1158    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1159      return false;
1160
1161    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1162      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1163        return false;
1164    } else {
1165      // 'static inline' functions are used in headers; don't warn.
1166      if (FD->getStorageClass() == SC_Static &&
1167          FD->isInlineSpecified())
1168        return false;
1169    }
1170
1171    if (FD->doesThisDeclarationHaveABody() &&
1172        Context.DeclMustBeEmitted(FD))
1173      return false;
1174  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1175    if (!VD->isFileVarDecl() ||
1176        VD->getType().isConstant(Context) ||
1177        Context.DeclMustBeEmitted(VD))
1178      return false;
1179
1180    if (VD->isStaticDataMember() &&
1181        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1182      return false;
1183
1184  } else {
1185    return false;
1186  }
1187
1188  // Only warn for unused decls internal to the translation unit.
1189  if (D->getLinkage() == ExternalLinkage)
1190    return false;
1191
1192  return true;
1193}
1194
1195void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1196  if (!D)
1197    return;
1198
1199  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1200    const FunctionDecl *First = FD->getFirstDeclaration();
1201    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1202      return; // First should already be in the vector.
1203  }
1204
1205  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    const VarDecl *First = VD->getFirstDeclaration();
1207    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1208      return; // First should already be in the vector.
1209  }
1210
1211  if (ShouldWarnIfUnusedFileScopedDecl(D))
1212    UnusedFileScopedDecls.push_back(D);
1213}
1214
1215static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1216  if (D->isInvalidDecl())
1217    return false;
1218
1219  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1220    return false;
1221
1222  if (isa<LabelDecl>(D))
1223    return true;
1224
1225  // White-list anything that isn't a local variable.
1226  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1227      !D->getDeclContext()->isFunctionOrMethod())
1228    return false;
1229
1230  // Types of valid local variables should be complete, so this should succeed.
1231  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1232
1233    // White-list anything with an __attribute__((unused)) type.
1234    QualType Ty = VD->getType();
1235
1236    // Only look at the outermost level of typedef.
1237    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1238      if (TT->getDecl()->hasAttr<UnusedAttr>())
1239        return false;
1240    }
1241
1242    // If we failed to complete the type for some reason, or if the type is
1243    // dependent, don't diagnose the variable.
1244    if (Ty->isIncompleteType() || Ty->isDependentType())
1245      return false;
1246
1247    if (const TagType *TT = Ty->getAs<TagType>()) {
1248      const TagDecl *Tag = TT->getDecl();
1249      if (Tag->hasAttr<UnusedAttr>())
1250        return false;
1251
1252      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1253        if (!RD->hasTrivialDestructor())
1254          return false;
1255
1256        if (const Expr *Init = VD->getInit()) {
1257          const CXXConstructExpr *Construct =
1258            dyn_cast<CXXConstructExpr>(Init);
1259          if (Construct && !Construct->isElidable()) {
1260            CXXConstructorDecl *CD = Construct->getConstructor();
1261            if (!CD->isTrivial())
1262              return false;
1263          }
1264        }
1265      }
1266    }
1267
1268    // TODO: __attribute__((unused)) templates?
1269  }
1270
1271  return true;
1272}
1273
1274static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1275                                     FixItHint &Hint) {
1276  if (isa<LabelDecl>(D)) {
1277    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1278                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1279    if (AfterColon.isInvalid())
1280      return;
1281    Hint = FixItHint::CreateRemoval(CharSourceRange::
1282                                    getCharRange(D->getLocStart(), AfterColon));
1283  }
1284  return;
1285}
1286
1287/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1288/// unless they are marked attr(unused).
1289void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1290  FixItHint Hint;
1291  if (!ShouldDiagnoseUnusedDecl(D))
1292    return;
1293
1294  GenerateFixForUnusedDecl(D, Context, Hint);
1295
1296  unsigned DiagID;
1297  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1298    DiagID = diag::warn_unused_exception_param;
1299  else if (isa<LabelDecl>(D))
1300    DiagID = diag::warn_unused_label;
1301  else
1302    DiagID = diag::warn_unused_variable;
1303
1304  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1305}
1306
1307static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1308  // Verify that we have no forward references left.  If so, there was a goto
1309  // or address of a label taken, but no definition of it.  Label fwd
1310  // definitions are indicated with a null substmt.
1311  if (L->getStmt() == 0)
1312    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1313}
1314
1315void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1316  if (S->decl_empty()) return;
1317  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1318         "Scope shouldn't contain decls!");
1319
1320  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1321       I != E; ++I) {
1322    Decl *TmpD = (*I);
1323    assert(TmpD && "This decl didn't get pushed??");
1324
1325    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1326    NamedDecl *D = cast<NamedDecl>(TmpD);
1327
1328    if (!D->getDeclName()) continue;
1329
1330    // Diagnose unused variables in this scope.
1331    if (!S->hasErrorOccurred())
1332      DiagnoseUnusedDecl(D);
1333
1334    // If this was a forward reference to a label, verify it was defined.
1335    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1336      CheckPoppedLabel(LD, *this);
1337
1338    // Remove this name from our lexical scope.
1339    IdResolver.RemoveDecl(D);
1340  }
1341}
1342
1343void Sema::ActOnStartFunctionDeclarator() {
1344  ++InFunctionDeclarator;
1345}
1346
1347void Sema::ActOnEndFunctionDeclarator() {
1348  assert(InFunctionDeclarator);
1349  --InFunctionDeclarator;
1350}
1351
1352/// \brief Look for an Objective-C class in the translation unit.
1353///
1354/// \param Id The name of the Objective-C class we're looking for. If
1355/// typo-correction fixes this name, the Id will be updated
1356/// to the fixed name.
1357///
1358/// \param IdLoc The location of the name in the translation unit.
1359///
1360/// \param DoTypoCorrection If true, this routine will attempt typo correction
1361/// if there is no class with the given name.
1362///
1363/// \returns The declaration of the named Objective-C class, or NULL if the
1364/// class could not be found.
1365ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1366                                              SourceLocation IdLoc,
1367                                              bool DoTypoCorrection) {
1368  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1369  // creation from this context.
1370  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1371
1372  if (!IDecl && DoTypoCorrection) {
1373    // Perform typo correction at the given location, but only if we
1374    // find an Objective-C class name.
1375    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1376    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1377                                       LookupOrdinaryName, TUScope, NULL,
1378                                       Validator)) {
1379      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1380      Diag(IdLoc, diag::err_undef_interface_suggest)
1381        << Id << IDecl->getDeclName()
1382        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1383      Diag(IDecl->getLocation(), diag::note_previous_decl)
1384        << IDecl->getDeclName();
1385
1386      Id = IDecl->getIdentifier();
1387    }
1388  }
1389  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1390  // This routine must always return a class definition, if any.
1391  if (Def && Def->getDefinition())
1392      Def = Def->getDefinition();
1393  return Def;
1394}
1395
1396/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1397/// from S, where a non-field would be declared. This routine copes
1398/// with the difference between C and C++ scoping rules in structs and
1399/// unions. For example, the following code is well-formed in C but
1400/// ill-formed in C++:
1401/// @code
1402/// struct S6 {
1403///   enum { BAR } e;
1404/// };
1405///
1406/// void test_S6() {
1407///   struct S6 a;
1408///   a.e = BAR;
1409/// }
1410/// @endcode
1411/// For the declaration of BAR, this routine will return a different
1412/// scope. The scope S will be the scope of the unnamed enumeration
1413/// within S6. In C++, this routine will return the scope associated
1414/// with S6, because the enumeration's scope is a transparent
1415/// context but structures can contain non-field names. In C, this
1416/// routine will return the translation unit scope, since the
1417/// enumeration's scope is a transparent context and structures cannot
1418/// contain non-field names.
1419Scope *Sema::getNonFieldDeclScope(Scope *S) {
1420  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1421         (S->getEntity() &&
1422          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1423         (S->isClassScope() && !getLangOpts().CPlusPlus))
1424    S = S->getParent();
1425  return S;
1426}
1427
1428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1429/// file scope.  lazily create a decl for it. ForRedeclaration is true
1430/// if we're creating this built-in in anticipation of redeclaring the
1431/// built-in.
1432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1433                                     Scope *S, bool ForRedeclaration,
1434                                     SourceLocation Loc) {
1435  Builtin::ID BID = (Builtin::ID)bid;
1436
1437  ASTContext::GetBuiltinTypeError Error;
1438  QualType R = Context.GetBuiltinType(BID, Error);
1439  switch (Error) {
1440  case ASTContext::GE_None:
1441    // Okay
1442    break;
1443
1444  case ASTContext::GE_Missing_stdio:
1445    if (ForRedeclaration)
1446      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1447        << Context.BuiltinInfo.GetName(BID);
1448    return 0;
1449
1450  case ASTContext::GE_Missing_setjmp:
1451    if (ForRedeclaration)
1452      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1453        << Context.BuiltinInfo.GetName(BID);
1454    return 0;
1455
1456  case ASTContext::GE_Missing_ucontext:
1457    if (ForRedeclaration)
1458      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1459        << Context.BuiltinInfo.GetName(BID);
1460    return 0;
1461  }
1462
1463  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1464    Diag(Loc, diag::ext_implicit_lib_function_decl)
1465      << Context.BuiltinInfo.GetName(BID)
1466      << R;
1467    if (Context.BuiltinInfo.getHeaderName(BID) &&
1468        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1469          != DiagnosticsEngine::Ignored)
1470      Diag(Loc, diag::note_please_include_header)
1471        << Context.BuiltinInfo.getHeaderName(BID)
1472        << Context.BuiltinInfo.GetName(BID);
1473  }
1474
1475  FunctionDecl *New = FunctionDecl::Create(Context,
1476                                           Context.getTranslationUnitDecl(),
1477                                           Loc, Loc, II, R, /*TInfo=*/0,
1478                                           SC_Extern,
1479                                           SC_None, false,
1480                                           /*hasPrototype=*/true);
1481  New->setImplicit();
1482
1483  // Create Decl objects for each parameter, adding them to the
1484  // FunctionDecl.
1485  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1486    SmallVector<ParmVarDecl*, 16> Params;
1487    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1488      ParmVarDecl *parm =
1489        ParmVarDecl::Create(Context, New, SourceLocation(),
1490                            SourceLocation(), 0,
1491                            FT->getArgType(i), /*TInfo=*/0,
1492                            SC_None, SC_None, 0);
1493      parm->setScopeInfo(0, i);
1494      Params.push_back(parm);
1495    }
1496    New->setParams(Params);
1497  }
1498
1499  AddKnownFunctionAttributes(New);
1500
1501  // TUScope is the translation-unit scope to insert this function into.
1502  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1503  // relate Scopes to DeclContexts, and probably eliminate CurContext
1504  // entirely, but we're not there yet.
1505  DeclContext *SavedContext = CurContext;
1506  CurContext = Context.getTranslationUnitDecl();
1507  PushOnScopeChains(New, TUScope);
1508  CurContext = SavedContext;
1509  return New;
1510}
1511
1512bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1513  QualType OldType;
1514  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1515    OldType = OldTypedef->getUnderlyingType();
1516  else
1517    OldType = Context.getTypeDeclType(Old);
1518  QualType NewType = New->getUnderlyingType();
1519
1520  if (NewType->isVariablyModifiedType()) {
1521    // Must not redefine a typedef with a variably-modified type.
1522    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1523    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1524      << Kind << NewType;
1525    if (Old->getLocation().isValid())
1526      Diag(Old->getLocation(), diag::note_previous_definition);
1527    New->setInvalidDecl();
1528    return true;
1529  }
1530
1531  if (OldType != NewType &&
1532      !OldType->isDependentType() &&
1533      !NewType->isDependentType() &&
1534      !Context.hasSameType(OldType, NewType)) {
1535    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1536    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1537      << Kind << NewType << OldType;
1538    if (Old->getLocation().isValid())
1539      Diag(Old->getLocation(), diag::note_previous_definition);
1540    New->setInvalidDecl();
1541    return true;
1542  }
1543  return false;
1544}
1545
1546/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1547/// same name and scope as a previous declaration 'Old'.  Figure out
1548/// how to resolve this situation, merging decls or emitting
1549/// diagnostics as appropriate. If there was an error, set New to be invalid.
1550///
1551void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1552  // If the new decl is known invalid already, don't bother doing any
1553  // merging checks.
1554  if (New->isInvalidDecl()) return;
1555
1556  // Allow multiple definitions for ObjC built-in typedefs.
1557  // FIXME: Verify the underlying types are equivalent!
1558  if (getLangOpts().ObjC1) {
1559    const IdentifierInfo *TypeID = New->getIdentifier();
1560    switch (TypeID->getLength()) {
1561    default: break;
1562    case 2:
1563      {
1564        if (!TypeID->isStr("id"))
1565          break;
1566        QualType T = New->getUnderlyingType();
1567        if (!T->isPointerType())
1568          break;
1569        if (!T->isVoidPointerType()) {
1570          QualType PT = T->getAs<PointerType>()->getPointeeType();
1571          if (!PT->isStructureType())
1572            break;
1573        }
1574        Context.setObjCIdRedefinitionType(T);
1575        // Install the built-in type for 'id', ignoring the current definition.
1576        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1577        return;
1578      }
1579    case 5:
1580      if (!TypeID->isStr("Class"))
1581        break;
1582      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1583      // Install the built-in type for 'Class', ignoring the current definition.
1584      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1585      return;
1586    case 3:
1587      if (!TypeID->isStr("SEL"))
1588        break;
1589      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1590      // Install the built-in type for 'SEL', ignoring the current definition.
1591      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1592      return;
1593    }
1594    // Fall through - the typedef name was not a builtin type.
1595  }
1596
1597  // Verify the old decl was also a type.
1598  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1599  if (!Old) {
1600    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1601      << New->getDeclName();
1602
1603    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1604    if (OldD->getLocation().isValid())
1605      Diag(OldD->getLocation(), diag::note_previous_definition);
1606
1607    return New->setInvalidDecl();
1608  }
1609
1610  // If the old declaration is invalid, just give up here.
1611  if (Old->isInvalidDecl())
1612    return New->setInvalidDecl();
1613
1614  // If the typedef types are not identical, reject them in all languages and
1615  // with any extensions enabled.
1616  if (isIncompatibleTypedef(Old, New))
1617    return;
1618
1619  // The types match.  Link up the redeclaration chain if the old
1620  // declaration was a typedef.
1621  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1622    New->setPreviousDeclaration(Typedef);
1623
1624  if (getLangOpts().MicrosoftExt)
1625    return;
1626
1627  if (getLangOpts().CPlusPlus) {
1628    // C++ [dcl.typedef]p2:
1629    //   In a given non-class scope, a typedef specifier can be used to
1630    //   redefine the name of any type declared in that scope to refer
1631    //   to the type to which it already refers.
1632    if (!isa<CXXRecordDecl>(CurContext))
1633      return;
1634
1635    // C++0x [dcl.typedef]p4:
1636    //   In a given class scope, a typedef specifier can be used to redefine
1637    //   any class-name declared in that scope that is not also a typedef-name
1638    //   to refer to the type to which it already refers.
1639    //
1640    // This wording came in via DR424, which was a correction to the
1641    // wording in DR56, which accidentally banned code like:
1642    //
1643    //   struct S {
1644    //     typedef struct A { } A;
1645    //   };
1646    //
1647    // in the C++03 standard. We implement the C++0x semantics, which
1648    // allow the above but disallow
1649    //
1650    //   struct S {
1651    //     typedef int I;
1652    //     typedef int I;
1653    //   };
1654    //
1655    // since that was the intent of DR56.
1656    if (!isa<TypedefNameDecl>(Old))
1657      return;
1658
1659    Diag(New->getLocation(), diag::err_redefinition)
1660      << New->getDeclName();
1661    Diag(Old->getLocation(), diag::note_previous_definition);
1662    return New->setInvalidDecl();
1663  }
1664
1665  // Modules always permit redefinition of typedefs, as does C11.
1666  if (getLangOpts().Modules || getLangOpts().C11)
1667    return;
1668
1669  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1670  // is normally mapped to an error, but can be controlled with
1671  // -Wtypedef-redefinition.  If either the original or the redefinition is
1672  // in a system header, don't emit this for compatibility with GCC.
1673  if (getDiagnostics().getSuppressSystemWarnings() &&
1674      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1675       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1676    return;
1677
1678  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1679    << New->getDeclName();
1680  Diag(Old->getLocation(), diag::note_previous_definition);
1681  return;
1682}
1683
1684/// DeclhasAttr - returns true if decl Declaration already has the target
1685/// attribute.
1686static bool
1687DeclHasAttr(const Decl *D, const Attr *A) {
1688  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1689  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1690  // responsible for making sure they are consistent.
1691  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1692  if (AA)
1693    return false;
1694
1695  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1696  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1697  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1698    if ((*i)->getKind() == A->getKind()) {
1699      if (Ann) {
1700        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1701          return true;
1702        continue;
1703      }
1704      // FIXME: Don't hardcode this check
1705      if (OA && isa<OwnershipAttr>(*i))
1706        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1707      return true;
1708    }
1709
1710  return false;
1711}
1712
1713bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1714  InheritableAttr *NewAttr = NULL;
1715  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1716    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1717                                    AA->getIntroduced(), AA->getDeprecated(),
1718                                    AA->getObsoleted(), AA->getUnavailable(),
1719                                    AA->getMessage());
1720  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1721    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1722  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1723    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1724  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1725    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1726  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1727    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1728                              FA->getFormatIdx(), FA->getFirstArg());
1729  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1730    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1731  else if (!DeclHasAttr(D, Attr))
1732    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1733
1734  if (NewAttr) {
1735    NewAttr->setInherited(true);
1736    D->addAttr(NewAttr);
1737    return true;
1738  }
1739
1740  return false;
1741}
1742
1743static const Decl *getDefinition(Decl *D) {
1744  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1745    return TD->getDefinition();
1746  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1747    return VD->getDefinition();
1748  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1749    const FunctionDecl* Def;
1750    if (FD->hasBody(Def))
1751      return Def;
1752  }
1753  return NULL;
1754}
1755
1756/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1757void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1758                               bool MergeDeprecation) {
1759  // attributes declared post-definition are currently ignored
1760  const Decl *Def = getDefinition(Old);
1761  if (Def && Def != New && New->hasAttrs()) {
1762    Diag(New->getLocation(), diag::warn_attribute_precede_definition);
1763    Diag(Def->getLocation(), diag::note_previous_definition);
1764    New->dropAttrs();
1765  }
1766
1767  if (!Old->hasAttrs())
1768    return;
1769
1770  bool foundAny = New->hasAttrs();
1771
1772  // Ensure that any moving of objects within the allocated map is done before
1773  // we process them.
1774  if (!foundAny) New->setAttrs(AttrVec());
1775
1776  for (specific_attr_iterator<InheritableAttr>
1777         i = Old->specific_attr_begin<InheritableAttr>(),
1778         e = Old->specific_attr_end<InheritableAttr>();
1779       i != e; ++i) {
1780    // Ignore deprecated/unavailable/availability attributes if requested.
1781    if (!MergeDeprecation &&
1782        (isa<DeprecatedAttr>(*i) ||
1783         isa<UnavailableAttr>(*i) ||
1784         isa<AvailabilityAttr>(*i)))
1785      continue;
1786
1787    if (mergeDeclAttribute(New, *i))
1788      foundAny = true;
1789  }
1790
1791  if (!foundAny) New->dropAttrs();
1792}
1793
1794/// mergeParamDeclAttributes - Copy attributes from the old parameter
1795/// to the new one.
1796static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1797                                     const ParmVarDecl *oldDecl,
1798                                     ASTContext &C) {
1799  if (!oldDecl->hasAttrs())
1800    return;
1801
1802  bool foundAny = newDecl->hasAttrs();
1803
1804  // Ensure that any moving of objects within the allocated map is
1805  // done before we process them.
1806  if (!foundAny) newDecl->setAttrs(AttrVec());
1807
1808  for (specific_attr_iterator<InheritableParamAttr>
1809       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1810       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1811    if (!DeclHasAttr(newDecl, *i)) {
1812      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1813      newAttr->setInherited(true);
1814      newDecl->addAttr(newAttr);
1815      foundAny = true;
1816    }
1817  }
1818
1819  if (!foundAny) newDecl->dropAttrs();
1820}
1821
1822namespace {
1823
1824/// Used in MergeFunctionDecl to keep track of function parameters in
1825/// C.
1826struct GNUCompatibleParamWarning {
1827  ParmVarDecl *OldParm;
1828  ParmVarDecl *NewParm;
1829  QualType PromotedType;
1830};
1831
1832}
1833
1834/// getSpecialMember - get the special member enum for a method.
1835Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1836  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1837    if (Ctor->isDefaultConstructor())
1838      return Sema::CXXDefaultConstructor;
1839
1840    if (Ctor->isCopyConstructor())
1841      return Sema::CXXCopyConstructor;
1842
1843    if (Ctor->isMoveConstructor())
1844      return Sema::CXXMoveConstructor;
1845  } else if (isa<CXXDestructorDecl>(MD)) {
1846    return Sema::CXXDestructor;
1847  } else if (MD->isCopyAssignmentOperator()) {
1848    return Sema::CXXCopyAssignment;
1849  } else if (MD->isMoveAssignmentOperator()) {
1850    return Sema::CXXMoveAssignment;
1851  }
1852
1853  return Sema::CXXInvalid;
1854}
1855
1856/// canRedefineFunction - checks if a function can be redefined. Currently,
1857/// only extern inline functions can be redefined, and even then only in
1858/// GNU89 mode.
1859static bool canRedefineFunction(const FunctionDecl *FD,
1860                                const LangOptions& LangOpts) {
1861  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1862          !LangOpts.CPlusPlus &&
1863          FD->isInlineSpecified() &&
1864          FD->getStorageClass() == SC_Extern);
1865}
1866
1867/// MergeFunctionDecl - We just parsed a function 'New' from
1868/// declarator D which has the same name and scope as a previous
1869/// declaration 'Old'.  Figure out how to resolve this situation,
1870/// merging decls or emitting diagnostics as appropriate.
1871///
1872/// In C++, New and Old must be declarations that are not
1873/// overloaded. Use IsOverload to determine whether New and Old are
1874/// overloaded, and to select the Old declaration that New should be
1875/// merged with.
1876///
1877/// Returns true if there was an error, false otherwise.
1878bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1879  // Verify the old decl was also a function.
1880  FunctionDecl *Old = 0;
1881  if (FunctionTemplateDecl *OldFunctionTemplate
1882        = dyn_cast<FunctionTemplateDecl>(OldD))
1883    Old = OldFunctionTemplate->getTemplatedDecl();
1884  else
1885    Old = dyn_cast<FunctionDecl>(OldD);
1886  if (!Old) {
1887    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1888      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1889      Diag(Shadow->getTargetDecl()->getLocation(),
1890           diag::note_using_decl_target);
1891      Diag(Shadow->getUsingDecl()->getLocation(),
1892           diag::note_using_decl) << 0;
1893      return true;
1894    }
1895
1896    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1897      << New->getDeclName();
1898    Diag(OldD->getLocation(), diag::note_previous_definition);
1899    return true;
1900  }
1901
1902  // Determine whether the previous declaration was a definition,
1903  // implicit declaration, or a declaration.
1904  diag::kind PrevDiag;
1905  if (Old->isThisDeclarationADefinition())
1906    PrevDiag = diag::note_previous_definition;
1907  else if (Old->isImplicit())
1908    PrevDiag = diag::note_previous_implicit_declaration;
1909  else
1910    PrevDiag = diag::note_previous_declaration;
1911
1912  QualType OldQType = Context.getCanonicalType(Old->getType());
1913  QualType NewQType = Context.getCanonicalType(New->getType());
1914
1915  // Don't complain about this if we're in GNU89 mode and the old function
1916  // is an extern inline function.
1917  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1918      New->getStorageClass() == SC_Static &&
1919      Old->getStorageClass() != SC_Static &&
1920      !canRedefineFunction(Old, getLangOpts())) {
1921    if (getLangOpts().MicrosoftExt) {
1922      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1923      Diag(Old->getLocation(), PrevDiag);
1924    } else {
1925      Diag(New->getLocation(), diag::err_static_non_static) << New;
1926      Diag(Old->getLocation(), PrevDiag);
1927      return true;
1928    }
1929  }
1930
1931  // If a function is first declared with a calling convention, but is
1932  // later declared or defined without one, the second decl assumes the
1933  // calling convention of the first.
1934  //
1935  // For the new decl, we have to look at the NON-canonical type to tell the
1936  // difference between a function that really doesn't have a calling
1937  // convention and one that is declared cdecl. That's because in
1938  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1939  // because it is the default calling convention.
1940  //
1941  // Note also that we DO NOT return at this point, because we still have
1942  // other tests to run.
1943  const FunctionType *OldType = cast<FunctionType>(OldQType);
1944  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1945  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1946  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1947  bool RequiresAdjustment = false;
1948  if (OldTypeInfo.getCC() != CC_Default &&
1949      NewTypeInfo.getCC() == CC_Default) {
1950    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1951    RequiresAdjustment = true;
1952  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1953                                     NewTypeInfo.getCC())) {
1954    // Calling conventions really aren't compatible, so complain.
1955    Diag(New->getLocation(), diag::err_cconv_change)
1956      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1957      << (OldTypeInfo.getCC() == CC_Default)
1958      << (OldTypeInfo.getCC() == CC_Default ? "" :
1959          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1960    Diag(Old->getLocation(), diag::note_previous_declaration);
1961    return true;
1962  }
1963
1964  // FIXME: diagnose the other way around?
1965  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1966    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1967    RequiresAdjustment = true;
1968  }
1969
1970  // Merge regparm attribute.
1971  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1972      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1973    if (NewTypeInfo.getHasRegParm()) {
1974      Diag(New->getLocation(), diag::err_regparm_mismatch)
1975        << NewType->getRegParmType()
1976        << OldType->getRegParmType();
1977      Diag(Old->getLocation(), diag::note_previous_declaration);
1978      return true;
1979    }
1980
1981    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1982    RequiresAdjustment = true;
1983  }
1984
1985  // Merge ns_returns_retained attribute.
1986  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1987    if (NewTypeInfo.getProducesResult()) {
1988      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1989      Diag(Old->getLocation(), diag::note_previous_declaration);
1990      return true;
1991    }
1992
1993    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1994    RequiresAdjustment = true;
1995  }
1996
1997  if (RequiresAdjustment) {
1998    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1999    New->setType(QualType(NewType, 0));
2000    NewQType = Context.getCanonicalType(New->getType());
2001  }
2002
2003  if (getLangOpts().CPlusPlus) {
2004    // (C++98 13.1p2):
2005    //   Certain function declarations cannot be overloaded:
2006    //     -- Function declarations that differ only in the return type
2007    //        cannot be overloaded.
2008    QualType OldReturnType = OldType->getResultType();
2009    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2010    QualType ResQT;
2011    if (OldReturnType != NewReturnType) {
2012      if (NewReturnType->isObjCObjectPointerType()
2013          && OldReturnType->isObjCObjectPointerType())
2014        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2015      if (ResQT.isNull()) {
2016        if (New->isCXXClassMember() && New->isOutOfLine())
2017          Diag(New->getLocation(),
2018               diag::err_member_def_does_not_match_ret_type) << New;
2019        else
2020          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2021        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2022        return true;
2023      }
2024      else
2025        NewQType = ResQT;
2026    }
2027
2028    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2029    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2030    if (OldMethod && NewMethod) {
2031      // Preserve triviality.
2032      NewMethod->setTrivial(OldMethod->isTrivial());
2033
2034      // MSVC allows explicit template specialization at class scope:
2035      // 2 CXMethodDecls referring to the same function will be injected.
2036      // We don't want a redeclartion error.
2037      bool IsClassScopeExplicitSpecialization =
2038                              OldMethod->isFunctionTemplateSpecialization() &&
2039                              NewMethod->isFunctionTemplateSpecialization();
2040      bool isFriend = NewMethod->getFriendObjectKind();
2041
2042      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2043          !IsClassScopeExplicitSpecialization) {
2044        //    -- Member function declarations with the same name and the
2045        //       same parameter types cannot be overloaded if any of them
2046        //       is a static member function declaration.
2047        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2048          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2049          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2050          return true;
2051        }
2052
2053        // C++ [class.mem]p1:
2054        //   [...] A member shall not be declared twice in the
2055        //   member-specification, except that a nested class or member
2056        //   class template can be declared and then later defined.
2057        unsigned NewDiag;
2058        if (isa<CXXConstructorDecl>(OldMethod))
2059          NewDiag = diag::err_constructor_redeclared;
2060        else if (isa<CXXDestructorDecl>(NewMethod))
2061          NewDiag = diag::err_destructor_redeclared;
2062        else if (isa<CXXConversionDecl>(NewMethod))
2063          NewDiag = diag::err_conv_function_redeclared;
2064        else
2065          NewDiag = diag::err_member_redeclared;
2066
2067        Diag(New->getLocation(), NewDiag);
2068        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2069
2070      // Complain if this is an explicit declaration of a special
2071      // member that was initially declared implicitly.
2072      //
2073      // As an exception, it's okay to befriend such methods in order
2074      // to permit the implicit constructor/destructor/operator calls.
2075      } else if (OldMethod->isImplicit()) {
2076        if (isFriend) {
2077          NewMethod->setImplicit();
2078        } else {
2079          Diag(NewMethod->getLocation(),
2080               diag::err_definition_of_implicitly_declared_member)
2081            << New << getSpecialMember(OldMethod);
2082          return true;
2083        }
2084      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2085        Diag(NewMethod->getLocation(),
2086             diag::err_definition_of_explicitly_defaulted_member)
2087          << getSpecialMember(OldMethod);
2088        return true;
2089      }
2090    }
2091
2092    // (C++98 8.3.5p3):
2093    //   All declarations for a function shall agree exactly in both the
2094    //   return type and the parameter-type-list.
2095    // We also want to respect all the extended bits except noreturn.
2096
2097    // noreturn should now match unless the old type info didn't have it.
2098    QualType OldQTypeForComparison = OldQType;
2099    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2100      assert(OldQType == QualType(OldType, 0));
2101      const FunctionType *OldTypeForComparison
2102        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2103      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2104      assert(OldQTypeForComparison.isCanonical());
2105    }
2106
2107    if (OldQTypeForComparison == NewQType)
2108      return MergeCompatibleFunctionDecls(New, Old, S);
2109
2110    // Fall through for conflicting redeclarations and redefinitions.
2111  }
2112
2113  // C: Function types need to be compatible, not identical. This handles
2114  // duplicate function decls like "void f(int); void f(enum X);" properly.
2115  if (!getLangOpts().CPlusPlus &&
2116      Context.typesAreCompatible(OldQType, NewQType)) {
2117    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2118    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2119    const FunctionProtoType *OldProto = 0;
2120    if (isa<FunctionNoProtoType>(NewFuncType) &&
2121        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2122      // The old declaration provided a function prototype, but the
2123      // new declaration does not. Merge in the prototype.
2124      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2125      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2126                                                 OldProto->arg_type_end());
2127      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2128                                         ParamTypes.data(), ParamTypes.size(),
2129                                         OldProto->getExtProtoInfo());
2130      New->setType(NewQType);
2131      New->setHasInheritedPrototype();
2132
2133      // Synthesize a parameter for each argument type.
2134      SmallVector<ParmVarDecl*, 16> Params;
2135      for (FunctionProtoType::arg_type_iterator
2136             ParamType = OldProto->arg_type_begin(),
2137             ParamEnd = OldProto->arg_type_end();
2138           ParamType != ParamEnd; ++ParamType) {
2139        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2140                                                 SourceLocation(),
2141                                                 SourceLocation(), 0,
2142                                                 *ParamType, /*TInfo=*/0,
2143                                                 SC_None, SC_None,
2144                                                 0);
2145        Param->setScopeInfo(0, Params.size());
2146        Param->setImplicit();
2147        Params.push_back(Param);
2148      }
2149
2150      New->setParams(Params);
2151    }
2152
2153    return MergeCompatibleFunctionDecls(New, Old, S);
2154  }
2155
2156  // GNU C permits a K&R definition to follow a prototype declaration
2157  // if the declared types of the parameters in the K&R definition
2158  // match the types in the prototype declaration, even when the
2159  // promoted types of the parameters from the K&R definition differ
2160  // from the types in the prototype. GCC then keeps the types from
2161  // the prototype.
2162  //
2163  // If a variadic prototype is followed by a non-variadic K&R definition,
2164  // the K&R definition becomes variadic.  This is sort of an edge case, but
2165  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2166  // C99 6.9.1p8.
2167  if (!getLangOpts().CPlusPlus &&
2168      Old->hasPrototype() && !New->hasPrototype() &&
2169      New->getType()->getAs<FunctionProtoType>() &&
2170      Old->getNumParams() == New->getNumParams()) {
2171    SmallVector<QualType, 16> ArgTypes;
2172    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2173    const FunctionProtoType *OldProto
2174      = Old->getType()->getAs<FunctionProtoType>();
2175    const FunctionProtoType *NewProto
2176      = New->getType()->getAs<FunctionProtoType>();
2177
2178    // Determine whether this is the GNU C extension.
2179    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2180                                               NewProto->getResultType());
2181    bool LooseCompatible = !MergedReturn.isNull();
2182    for (unsigned Idx = 0, End = Old->getNumParams();
2183         LooseCompatible && Idx != End; ++Idx) {
2184      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2185      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2186      if (Context.typesAreCompatible(OldParm->getType(),
2187                                     NewProto->getArgType(Idx))) {
2188        ArgTypes.push_back(NewParm->getType());
2189      } else if (Context.typesAreCompatible(OldParm->getType(),
2190                                            NewParm->getType(),
2191                                            /*CompareUnqualified=*/true)) {
2192        GNUCompatibleParamWarning Warn
2193          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2194        Warnings.push_back(Warn);
2195        ArgTypes.push_back(NewParm->getType());
2196      } else
2197        LooseCompatible = false;
2198    }
2199
2200    if (LooseCompatible) {
2201      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2202        Diag(Warnings[Warn].NewParm->getLocation(),
2203             diag::ext_param_promoted_not_compatible_with_prototype)
2204          << Warnings[Warn].PromotedType
2205          << Warnings[Warn].OldParm->getType();
2206        if (Warnings[Warn].OldParm->getLocation().isValid())
2207          Diag(Warnings[Warn].OldParm->getLocation(),
2208               diag::note_previous_declaration);
2209      }
2210
2211      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2212                                           ArgTypes.size(),
2213                                           OldProto->getExtProtoInfo()));
2214      return MergeCompatibleFunctionDecls(New, Old, S);
2215    }
2216
2217    // Fall through to diagnose conflicting types.
2218  }
2219
2220  // A function that has already been declared has been redeclared or defined
2221  // with a different type- show appropriate diagnostic
2222  if (unsigned BuiltinID = Old->getBuiltinID()) {
2223    // The user has declared a builtin function with an incompatible
2224    // signature.
2225    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2226      // The function the user is redeclaring is a library-defined
2227      // function like 'malloc' or 'printf'. Warn about the
2228      // redeclaration, then pretend that we don't know about this
2229      // library built-in.
2230      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2231      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2232        << Old << Old->getType();
2233      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2234      Old->setInvalidDecl();
2235      return false;
2236    }
2237
2238    PrevDiag = diag::note_previous_builtin_declaration;
2239  }
2240
2241  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2242  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2243  return true;
2244}
2245
2246/// \brief Completes the merge of two function declarations that are
2247/// known to be compatible.
2248///
2249/// This routine handles the merging of attributes and other
2250/// properties of function declarations form the old declaration to
2251/// the new declaration, once we know that New is in fact a
2252/// redeclaration of Old.
2253///
2254/// \returns false
2255bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2256                                        Scope *S) {
2257  // Merge the attributes
2258  mergeDeclAttributes(New, Old);
2259
2260  // Merge the storage class.
2261  if (Old->getStorageClass() != SC_Extern &&
2262      Old->getStorageClass() != SC_None)
2263    New->setStorageClass(Old->getStorageClass());
2264
2265  // Merge "pure" flag.
2266  if (Old->isPure())
2267    New->setPure();
2268
2269  // Merge attributes from the parameters.  These can mismatch with K&R
2270  // declarations.
2271  if (New->getNumParams() == Old->getNumParams())
2272    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2273      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2274                               Context);
2275
2276  if (getLangOpts().CPlusPlus)
2277    return MergeCXXFunctionDecl(New, Old, S);
2278
2279  return false;
2280}
2281
2282
2283void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2284                                ObjCMethodDecl *oldMethod) {
2285
2286  // Merge the attributes, including deprecated/unavailable
2287  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2288
2289  // Merge attributes from the parameters.
2290  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2291                                       oe = oldMethod->param_end();
2292  for (ObjCMethodDecl::param_iterator
2293         ni = newMethod->param_begin(), ne = newMethod->param_end();
2294       ni != ne && oi != oe; ++ni, ++oi)
2295    mergeParamDeclAttributes(*ni, *oi, Context);
2296
2297  CheckObjCMethodOverride(newMethod, oldMethod, true);
2298}
2299
2300/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2301/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2302/// emitting diagnostics as appropriate.
2303///
2304/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2305/// to here in AddInitializerToDecl. We can't check them before the initializer
2306/// is attached.
2307void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2308  if (New->isInvalidDecl() || Old->isInvalidDecl())
2309    return;
2310
2311  QualType MergedT;
2312  if (getLangOpts().CPlusPlus) {
2313    AutoType *AT = New->getType()->getContainedAutoType();
2314    if (AT && !AT->isDeduced()) {
2315      // We don't know what the new type is until the initializer is attached.
2316      return;
2317    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2318      // These could still be something that needs exception specs checked.
2319      return MergeVarDeclExceptionSpecs(New, Old);
2320    }
2321    // C++ [basic.link]p10:
2322    //   [...] the types specified by all declarations referring to a given
2323    //   object or function shall be identical, except that declarations for an
2324    //   array object can specify array types that differ by the presence or
2325    //   absence of a major array bound (8.3.4).
2326    else if (Old->getType()->isIncompleteArrayType() &&
2327             New->getType()->isArrayType()) {
2328      CanQual<ArrayType> OldArray
2329        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2330      CanQual<ArrayType> NewArray
2331        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2332      if (OldArray->getElementType() == NewArray->getElementType())
2333        MergedT = New->getType();
2334    } else if (Old->getType()->isArrayType() &&
2335             New->getType()->isIncompleteArrayType()) {
2336      CanQual<ArrayType> OldArray
2337        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2338      CanQual<ArrayType> NewArray
2339        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2340      if (OldArray->getElementType() == NewArray->getElementType())
2341        MergedT = Old->getType();
2342    } else if (New->getType()->isObjCObjectPointerType()
2343               && Old->getType()->isObjCObjectPointerType()) {
2344        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2345                                                        Old->getType());
2346    }
2347  } else {
2348    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2349  }
2350  if (MergedT.isNull()) {
2351    Diag(New->getLocation(), diag::err_redefinition_different_type)
2352      << New->getDeclName();
2353    Diag(Old->getLocation(), diag::note_previous_definition);
2354    return New->setInvalidDecl();
2355  }
2356  New->setType(MergedT);
2357}
2358
2359/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2360/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2361/// situation, merging decls or emitting diagnostics as appropriate.
2362///
2363/// Tentative definition rules (C99 6.9.2p2) are checked by
2364/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2365/// definitions here, since the initializer hasn't been attached.
2366///
2367void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2368  // If the new decl is already invalid, don't do any other checking.
2369  if (New->isInvalidDecl())
2370    return;
2371
2372  // Verify the old decl was also a variable.
2373  VarDecl *Old = 0;
2374  if (!Previous.isSingleResult() ||
2375      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2376    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2377      << New->getDeclName();
2378    Diag(Previous.getRepresentativeDecl()->getLocation(),
2379         diag::note_previous_definition);
2380    return New->setInvalidDecl();
2381  }
2382
2383  // C++ [class.mem]p1:
2384  //   A member shall not be declared twice in the member-specification [...]
2385  //
2386  // Here, we need only consider static data members.
2387  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2388    Diag(New->getLocation(), diag::err_duplicate_member)
2389      << New->getIdentifier();
2390    Diag(Old->getLocation(), diag::note_previous_declaration);
2391    New->setInvalidDecl();
2392  }
2393
2394  mergeDeclAttributes(New, Old);
2395  // Warn if an already-declared variable is made a weak_import in a subsequent
2396  // declaration
2397  if (New->getAttr<WeakImportAttr>() &&
2398      Old->getStorageClass() == SC_None &&
2399      !Old->getAttr<WeakImportAttr>()) {
2400    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2401    Diag(Old->getLocation(), diag::note_previous_definition);
2402    // Remove weak_import attribute on new declaration.
2403    New->dropAttr<WeakImportAttr>();
2404  }
2405
2406  // Merge the types.
2407  MergeVarDeclTypes(New, Old);
2408  if (New->isInvalidDecl())
2409    return;
2410
2411  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2412  if (New->getStorageClass() == SC_Static &&
2413      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2414    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2415    Diag(Old->getLocation(), diag::note_previous_definition);
2416    return New->setInvalidDecl();
2417  }
2418  // C99 6.2.2p4:
2419  //   For an identifier declared with the storage-class specifier
2420  //   extern in a scope in which a prior declaration of that
2421  //   identifier is visible,23) if the prior declaration specifies
2422  //   internal or external linkage, the linkage of the identifier at
2423  //   the later declaration is the same as the linkage specified at
2424  //   the prior declaration. If no prior declaration is visible, or
2425  //   if the prior declaration specifies no linkage, then the
2426  //   identifier has external linkage.
2427  if (New->hasExternalStorage() && Old->hasLinkage())
2428    /* Okay */;
2429  else if (New->getStorageClass() != SC_Static &&
2430           Old->getStorageClass() == SC_Static) {
2431    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2432    Diag(Old->getLocation(), diag::note_previous_definition);
2433    return New->setInvalidDecl();
2434  }
2435
2436  // Check if extern is followed by non-extern and vice-versa.
2437  if (New->hasExternalStorage() &&
2438      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2439    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2440    Diag(Old->getLocation(), diag::note_previous_definition);
2441    return New->setInvalidDecl();
2442  }
2443  if (Old->hasExternalStorage() &&
2444      !New->hasLinkage() && New->isLocalVarDecl()) {
2445    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2446    Diag(Old->getLocation(), diag::note_previous_definition);
2447    return New->setInvalidDecl();
2448  }
2449
2450  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2451
2452  // FIXME: The test for external storage here seems wrong? We still
2453  // need to check for mismatches.
2454  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2455      // Don't complain about out-of-line definitions of static members.
2456      !(Old->getLexicalDeclContext()->isRecord() &&
2457        !New->getLexicalDeclContext()->isRecord())) {
2458    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2459    Diag(Old->getLocation(), diag::note_previous_definition);
2460    return New->setInvalidDecl();
2461  }
2462
2463  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2464    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2465    Diag(Old->getLocation(), diag::note_previous_definition);
2466  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2467    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2468    Diag(Old->getLocation(), diag::note_previous_definition);
2469  }
2470
2471  // C++ doesn't have tentative definitions, so go right ahead and check here.
2472  const VarDecl *Def;
2473  if (getLangOpts().CPlusPlus &&
2474      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2475      (Def = Old->getDefinition())) {
2476    Diag(New->getLocation(), diag::err_redefinition)
2477      << New->getDeclName();
2478    Diag(Def->getLocation(), diag::note_previous_definition);
2479    New->setInvalidDecl();
2480    return;
2481  }
2482  // c99 6.2.2 P4.
2483  // For an identifier declared with the storage-class specifier extern in a
2484  // scope in which a prior declaration of that identifier is visible, if
2485  // the prior declaration specifies internal or external linkage, the linkage
2486  // of the identifier at the later declaration is the same as the linkage
2487  // specified at the prior declaration.
2488  // FIXME. revisit this code.
2489  if (New->hasExternalStorage() &&
2490      Old->getLinkage() == InternalLinkage &&
2491      New->getDeclContext() == Old->getDeclContext())
2492    New->setStorageClass(Old->getStorageClass());
2493
2494  // Keep a chain of previous declarations.
2495  New->setPreviousDeclaration(Old);
2496
2497  // Inherit access appropriately.
2498  New->setAccess(Old->getAccess());
2499}
2500
2501/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2502/// no declarator (e.g. "struct foo;") is parsed.
2503Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2504                                       DeclSpec &DS) {
2505  return ParsedFreeStandingDeclSpec(S, AS, DS,
2506                                    MultiTemplateParamsArg(*this, 0, 0));
2507}
2508
2509/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2510/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2511/// parameters to cope with template friend declarations.
2512Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2513                                       DeclSpec &DS,
2514                                       MultiTemplateParamsArg TemplateParams) {
2515  Decl *TagD = 0;
2516  TagDecl *Tag = 0;
2517  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2518      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2519      DS.getTypeSpecType() == DeclSpec::TST_union ||
2520      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2521    TagD = DS.getRepAsDecl();
2522
2523    if (!TagD) // We probably had an error
2524      return 0;
2525
2526    // Note that the above type specs guarantee that the
2527    // type rep is a Decl, whereas in many of the others
2528    // it's a Type.
2529    if (isa<TagDecl>(TagD))
2530      Tag = cast<TagDecl>(TagD);
2531    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2532      Tag = CTD->getTemplatedDecl();
2533  }
2534
2535  if (Tag) {
2536    Tag->setFreeStanding();
2537    if (Tag->isInvalidDecl())
2538      return Tag;
2539  }
2540
2541  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2542    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2543    // or incomplete types shall not be restrict-qualified."
2544    if (TypeQuals & DeclSpec::TQ_restrict)
2545      Diag(DS.getRestrictSpecLoc(),
2546           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2547           << DS.getSourceRange();
2548  }
2549
2550  if (DS.isConstexprSpecified()) {
2551    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2552    // and definitions of functions and variables.
2553    if (Tag)
2554      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2555        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2556            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2557            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2558    else
2559      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2560    // Don't emit warnings after this error.
2561    return TagD;
2562  }
2563
2564  if (DS.isFriendSpecified()) {
2565    // If we're dealing with a decl but not a TagDecl, assume that
2566    // whatever routines created it handled the friendship aspect.
2567    if (TagD && !Tag)
2568      return 0;
2569    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2570  }
2571
2572  // Track whether we warned about the fact that there aren't any
2573  // declarators.
2574  bool emittedWarning = false;
2575
2576  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2577    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2578        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2579      if (getLangOpts().CPlusPlus ||
2580          Record->getDeclContext()->isRecord())
2581        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2582
2583      Diag(DS.getLocStart(), diag::ext_no_declarators)
2584        << DS.getSourceRange();
2585      emittedWarning = true;
2586    }
2587  }
2588
2589  // Check for Microsoft C extension: anonymous struct.
2590  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2591      CurContext->isRecord() &&
2592      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2593    // Handle 2 kinds of anonymous struct:
2594    //   struct STRUCT;
2595    // and
2596    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2597    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2598    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2599        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2600         DS.getRepAsType().get()->isStructureType())) {
2601      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2602        << DS.getSourceRange();
2603      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2604    }
2605  }
2606
2607  if (getLangOpts().CPlusPlus &&
2608      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2609    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2610      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2611          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2612        Diag(Enum->getLocation(), diag::ext_no_declarators)
2613          << DS.getSourceRange();
2614        emittedWarning = true;
2615      }
2616
2617  // Skip all the checks below if we have a type error.
2618  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2619
2620  if (!DS.isMissingDeclaratorOk()) {
2621    // Warn about typedefs of enums without names, since this is an
2622    // extension in both Microsoft and GNU.
2623    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2624        Tag && isa<EnumDecl>(Tag)) {
2625      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2626        << DS.getSourceRange();
2627      return Tag;
2628    }
2629
2630    Diag(DS.getLocStart(), diag::ext_no_declarators)
2631      << DS.getSourceRange();
2632    emittedWarning = true;
2633  }
2634
2635  // We're going to complain about a bunch of spurious specifiers;
2636  // only do this if we're declaring a tag, because otherwise we
2637  // should be getting diag::ext_no_declarators.
2638  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2639    return TagD;
2640
2641  // Note that a linkage-specification sets a storage class, but
2642  // 'extern "C" struct foo;' is actually valid and not theoretically
2643  // useless.
2644  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2645    if (!DS.isExternInLinkageSpec())
2646      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2647        << DeclSpec::getSpecifierName(scs);
2648
2649  if (DS.isThreadSpecified())
2650    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2651  if (DS.getTypeQualifiers()) {
2652    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2653      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2654    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2655      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2656    // Restrict is covered above.
2657  }
2658  if (DS.isInlineSpecified())
2659    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2660  if (DS.isVirtualSpecified())
2661    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2662  if (DS.isExplicitSpecified())
2663    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2664
2665  if (DS.isModulePrivateSpecified() &&
2666      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2667    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2668      << Tag->getTagKind()
2669      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2670
2671  // Warn about ignored type attributes, for example:
2672  // __attribute__((aligned)) struct A;
2673  // Attributes should be placed after tag to apply to type declaration.
2674  if (!DS.getAttributes().empty()) {
2675    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2676    if (TypeSpecType == DeclSpec::TST_class ||
2677        TypeSpecType == DeclSpec::TST_struct ||
2678        TypeSpecType == DeclSpec::TST_union ||
2679        TypeSpecType == DeclSpec::TST_enum) {
2680      AttributeList* attrs = DS.getAttributes().getList();
2681      while (attrs) {
2682        Diag(attrs->getScopeLoc(),
2683             diag::warn_declspec_attribute_ignored)
2684        << attrs->getName()
2685        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2686            TypeSpecType == DeclSpec::TST_struct ? 1 :
2687            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2688        attrs = attrs->getNext();
2689      }
2690    }
2691  }
2692
2693  return TagD;
2694}
2695
2696/// We are trying to inject an anonymous member into the given scope;
2697/// check if there's an existing declaration that can't be overloaded.
2698///
2699/// \return true if this is a forbidden redeclaration
2700static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2701                                         Scope *S,
2702                                         DeclContext *Owner,
2703                                         DeclarationName Name,
2704                                         SourceLocation NameLoc,
2705                                         unsigned diagnostic) {
2706  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2707                 Sema::ForRedeclaration);
2708  if (!SemaRef.LookupName(R, S)) return false;
2709
2710  if (R.getAsSingle<TagDecl>())
2711    return false;
2712
2713  // Pick a representative declaration.
2714  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2715  assert(PrevDecl && "Expected a non-null Decl");
2716
2717  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2718    return false;
2719
2720  SemaRef.Diag(NameLoc, diagnostic) << Name;
2721  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2722
2723  return true;
2724}
2725
2726/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2727/// anonymous struct or union AnonRecord into the owning context Owner
2728/// and scope S. This routine will be invoked just after we realize
2729/// that an unnamed union or struct is actually an anonymous union or
2730/// struct, e.g.,
2731///
2732/// @code
2733/// union {
2734///   int i;
2735///   float f;
2736/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2737///    // f into the surrounding scope.x
2738/// @endcode
2739///
2740/// This routine is recursive, injecting the names of nested anonymous
2741/// structs/unions into the owning context and scope as well.
2742static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2743                                                DeclContext *Owner,
2744                                                RecordDecl *AnonRecord,
2745                                                AccessSpecifier AS,
2746                              SmallVector<NamedDecl*, 2> &Chaining,
2747                                                      bool MSAnonStruct) {
2748  unsigned diagKind
2749    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2750                            : diag::err_anonymous_struct_member_redecl;
2751
2752  bool Invalid = false;
2753
2754  // Look every FieldDecl and IndirectFieldDecl with a name.
2755  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2756                               DEnd = AnonRecord->decls_end();
2757       D != DEnd; ++D) {
2758    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2759        cast<NamedDecl>(*D)->getDeclName()) {
2760      ValueDecl *VD = cast<ValueDecl>(*D);
2761      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2762                                       VD->getLocation(), diagKind)) {
2763        // C++ [class.union]p2:
2764        //   The names of the members of an anonymous union shall be
2765        //   distinct from the names of any other entity in the
2766        //   scope in which the anonymous union is declared.
2767        Invalid = true;
2768      } else {
2769        // C++ [class.union]p2:
2770        //   For the purpose of name lookup, after the anonymous union
2771        //   definition, the members of the anonymous union are
2772        //   considered to have been defined in the scope in which the
2773        //   anonymous union is declared.
2774        unsigned OldChainingSize = Chaining.size();
2775        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2776          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2777               PE = IF->chain_end(); PI != PE; ++PI)
2778            Chaining.push_back(*PI);
2779        else
2780          Chaining.push_back(VD);
2781
2782        assert(Chaining.size() >= 2);
2783        NamedDecl **NamedChain =
2784          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2785        for (unsigned i = 0; i < Chaining.size(); i++)
2786          NamedChain[i] = Chaining[i];
2787
2788        IndirectFieldDecl* IndirectField =
2789          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2790                                    VD->getIdentifier(), VD->getType(),
2791                                    NamedChain, Chaining.size());
2792
2793        IndirectField->setAccess(AS);
2794        IndirectField->setImplicit();
2795        SemaRef.PushOnScopeChains(IndirectField, S);
2796
2797        // That includes picking up the appropriate access specifier.
2798        if (AS != AS_none) IndirectField->setAccess(AS);
2799
2800        Chaining.resize(OldChainingSize);
2801      }
2802    }
2803  }
2804
2805  return Invalid;
2806}
2807
2808/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2809/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2810/// illegal input values are mapped to SC_None.
2811static StorageClass
2812StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2813  switch (StorageClassSpec) {
2814  case DeclSpec::SCS_unspecified:    return SC_None;
2815  case DeclSpec::SCS_extern:         return SC_Extern;
2816  case DeclSpec::SCS_static:         return SC_Static;
2817  case DeclSpec::SCS_auto:           return SC_Auto;
2818  case DeclSpec::SCS_register:       return SC_Register;
2819  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2820    // Illegal SCSs map to None: error reporting is up to the caller.
2821  case DeclSpec::SCS_mutable:        // Fall through.
2822  case DeclSpec::SCS_typedef:        return SC_None;
2823  }
2824  llvm_unreachable("unknown storage class specifier");
2825}
2826
2827/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2828/// a StorageClass. Any error reporting is up to the caller:
2829/// illegal input values are mapped to SC_None.
2830static StorageClass
2831StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2832  switch (StorageClassSpec) {
2833  case DeclSpec::SCS_unspecified:    return SC_None;
2834  case DeclSpec::SCS_extern:         return SC_Extern;
2835  case DeclSpec::SCS_static:         return SC_Static;
2836  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2837    // Illegal SCSs map to None: error reporting is up to the caller.
2838  case DeclSpec::SCS_auto:           // Fall through.
2839  case DeclSpec::SCS_mutable:        // Fall through.
2840  case DeclSpec::SCS_register:       // Fall through.
2841  case DeclSpec::SCS_typedef:        return SC_None;
2842  }
2843  llvm_unreachable("unknown storage class specifier");
2844}
2845
2846/// BuildAnonymousStructOrUnion - Handle the declaration of an
2847/// anonymous structure or union. Anonymous unions are a C++ feature
2848/// (C++ [class.union]) and a C11 feature; anonymous structures
2849/// are a C11 feature and GNU C++ extension.
2850Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2851                                             AccessSpecifier AS,
2852                                             RecordDecl *Record) {
2853  DeclContext *Owner = Record->getDeclContext();
2854
2855  // Diagnose whether this anonymous struct/union is an extension.
2856  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2857    Diag(Record->getLocation(), diag::ext_anonymous_union);
2858  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2859    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2860  else if (!Record->isUnion() && !getLangOpts().C11)
2861    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2862
2863  // C and C++ require different kinds of checks for anonymous
2864  // structs/unions.
2865  bool Invalid = false;
2866  if (getLangOpts().CPlusPlus) {
2867    const char* PrevSpec = 0;
2868    unsigned DiagID;
2869    if (Record->isUnion()) {
2870      // C++ [class.union]p6:
2871      //   Anonymous unions declared in a named namespace or in the
2872      //   global namespace shall be declared static.
2873      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2874          (isa<TranslationUnitDecl>(Owner) ||
2875           (isa<NamespaceDecl>(Owner) &&
2876            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2877        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2878          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2879
2880        // Recover by adding 'static'.
2881        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2882                               PrevSpec, DiagID);
2883      }
2884      // C++ [class.union]p6:
2885      //   A storage class is not allowed in a declaration of an
2886      //   anonymous union in a class scope.
2887      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2888               isa<RecordDecl>(Owner)) {
2889        Diag(DS.getStorageClassSpecLoc(),
2890             diag::err_anonymous_union_with_storage_spec)
2891          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2892
2893        // Recover by removing the storage specifier.
2894        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2895                               SourceLocation(),
2896                               PrevSpec, DiagID);
2897      }
2898    }
2899
2900    // Ignore const/volatile/restrict qualifiers.
2901    if (DS.getTypeQualifiers()) {
2902      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2903        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2904          << Record->isUnion() << 0
2905          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2906      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2907        Diag(DS.getVolatileSpecLoc(),
2908             diag::ext_anonymous_struct_union_qualified)
2909          << Record->isUnion() << 1
2910          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2911      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2912        Diag(DS.getRestrictSpecLoc(),
2913             diag::ext_anonymous_struct_union_qualified)
2914          << Record->isUnion() << 2
2915          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2916
2917      DS.ClearTypeQualifiers();
2918    }
2919
2920    // C++ [class.union]p2:
2921    //   The member-specification of an anonymous union shall only
2922    //   define non-static data members. [Note: nested types and
2923    //   functions cannot be declared within an anonymous union. ]
2924    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2925                                 MemEnd = Record->decls_end();
2926         Mem != MemEnd; ++Mem) {
2927      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2928        // C++ [class.union]p3:
2929        //   An anonymous union shall not have private or protected
2930        //   members (clause 11).
2931        assert(FD->getAccess() != AS_none);
2932        if (FD->getAccess() != AS_public) {
2933          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2934            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2935          Invalid = true;
2936        }
2937
2938        // C++ [class.union]p1
2939        //   An object of a class with a non-trivial constructor, a non-trivial
2940        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2941        //   assignment operator cannot be a member of a union, nor can an
2942        //   array of such objects.
2943        if (CheckNontrivialField(FD))
2944          Invalid = true;
2945      } else if ((*Mem)->isImplicit()) {
2946        // Any implicit members are fine.
2947      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2948        // This is a type that showed up in an
2949        // elaborated-type-specifier inside the anonymous struct or
2950        // union, but which actually declares a type outside of the
2951        // anonymous struct or union. It's okay.
2952      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2953        if (!MemRecord->isAnonymousStructOrUnion() &&
2954            MemRecord->getDeclName()) {
2955          // Visual C++ allows type definition in anonymous struct or union.
2956          if (getLangOpts().MicrosoftExt)
2957            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2958              << (int)Record->isUnion();
2959          else {
2960            // This is a nested type declaration.
2961            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2962              << (int)Record->isUnion();
2963            Invalid = true;
2964          }
2965        }
2966      } else if (isa<AccessSpecDecl>(*Mem)) {
2967        // Any access specifier is fine.
2968      } else {
2969        // We have something that isn't a non-static data
2970        // member. Complain about it.
2971        unsigned DK = diag::err_anonymous_record_bad_member;
2972        if (isa<TypeDecl>(*Mem))
2973          DK = diag::err_anonymous_record_with_type;
2974        else if (isa<FunctionDecl>(*Mem))
2975          DK = diag::err_anonymous_record_with_function;
2976        else if (isa<VarDecl>(*Mem))
2977          DK = diag::err_anonymous_record_with_static;
2978
2979        // Visual C++ allows type definition in anonymous struct or union.
2980        if (getLangOpts().MicrosoftExt &&
2981            DK == diag::err_anonymous_record_with_type)
2982          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2983            << (int)Record->isUnion();
2984        else {
2985          Diag((*Mem)->getLocation(), DK)
2986              << (int)Record->isUnion();
2987          Invalid = true;
2988        }
2989      }
2990    }
2991  }
2992
2993  if (!Record->isUnion() && !Owner->isRecord()) {
2994    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2995      << (int)getLangOpts().CPlusPlus;
2996    Invalid = true;
2997  }
2998
2999  // Mock up a declarator.
3000  Declarator Dc(DS, Declarator::MemberContext);
3001  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3002  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3003
3004  // Create a declaration for this anonymous struct/union.
3005  NamedDecl *Anon = 0;
3006  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3007    Anon = FieldDecl::Create(Context, OwningClass,
3008                             DS.getLocStart(),
3009                             Record->getLocation(),
3010                             /*IdentifierInfo=*/0,
3011                             Context.getTypeDeclType(Record),
3012                             TInfo,
3013                             /*BitWidth=*/0, /*Mutable=*/false,
3014                             /*InitStyle=*/ICIS_NoInit);
3015    Anon->setAccess(AS);
3016    if (getLangOpts().CPlusPlus)
3017      FieldCollector->Add(cast<FieldDecl>(Anon));
3018  } else {
3019    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3020    assert(SCSpec != DeclSpec::SCS_typedef &&
3021           "Parser allowed 'typedef' as storage class VarDecl.");
3022    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3023    if (SCSpec == DeclSpec::SCS_mutable) {
3024      // mutable can only appear on non-static class members, so it's always
3025      // an error here
3026      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3027      Invalid = true;
3028      SC = SC_None;
3029    }
3030    SCSpec = DS.getStorageClassSpecAsWritten();
3031    VarDecl::StorageClass SCAsWritten
3032      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3033
3034    Anon = VarDecl::Create(Context, Owner,
3035                           DS.getLocStart(),
3036                           Record->getLocation(), /*IdentifierInfo=*/0,
3037                           Context.getTypeDeclType(Record),
3038                           TInfo, SC, SCAsWritten);
3039
3040    // Default-initialize the implicit variable. This initialization will be
3041    // trivial in almost all cases, except if a union member has an in-class
3042    // initializer:
3043    //   union { int n = 0; };
3044    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3045  }
3046  Anon->setImplicit();
3047
3048  // Add the anonymous struct/union object to the current
3049  // context. We'll be referencing this object when we refer to one of
3050  // its members.
3051  Owner->addDecl(Anon);
3052
3053  // Inject the members of the anonymous struct/union into the owning
3054  // context and into the identifier resolver chain for name lookup
3055  // purposes.
3056  SmallVector<NamedDecl*, 2> Chain;
3057  Chain.push_back(Anon);
3058
3059  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3060                                          Chain, false))
3061    Invalid = true;
3062
3063  // Mark this as an anonymous struct/union type. Note that we do not
3064  // do this until after we have already checked and injected the
3065  // members of this anonymous struct/union type, because otherwise
3066  // the members could be injected twice: once by DeclContext when it
3067  // builds its lookup table, and once by
3068  // InjectAnonymousStructOrUnionMembers.
3069  Record->setAnonymousStructOrUnion(true);
3070
3071  if (Invalid)
3072    Anon->setInvalidDecl();
3073
3074  return Anon;
3075}
3076
3077/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3078/// Microsoft C anonymous structure.
3079/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3080/// Example:
3081///
3082/// struct A { int a; };
3083/// struct B { struct A; int b; };
3084///
3085/// void foo() {
3086///   B var;
3087///   var.a = 3;
3088/// }
3089///
3090Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3091                                           RecordDecl *Record) {
3092
3093  // If there is no Record, get the record via the typedef.
3094  if (!Record)
3095    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3096
3097  // Mock up a declarator.
3098  Declarator Dc(DS, Declarator::TypeNameContext);
3099  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3100  assert(TInfo && "couldn't build declarator info for anonymous struct");
3101
3102  // Create a declaration for this anonymous struct.
3103  NamedDecl* Anon = FieldDecl::Create(Context,
3104                             cast<RecordDecl>(CurContext),
3105                             DS.getLocStart(),
3106                             DS.getLocStart(),
3107                             /*IdentifierInfo=*/0,
3108                             Context.getTypeDeclType(Record),
3109                             TInfo,
3110                             /*BitWidth=*/0, /*Mutable=*/false,
3111                             /*InitStyle=*/ICIS_NoInit);
3112  Anon->setImplicit();
3113
3114  // Add the anonymous struct object to the current context.
3115  CurContext->addDecl(Anon);
3116
3117  // Inject the members of the anonymous struct into the current
3118  // context and into the identifier resolver chain for name lookup
3119  // purposes.
3120  SmallVector<NamedDecl*, 2> Chain;
3121  Chain.push_back(Anon);
3122
3123  RecordDecl *RecordDef = Record->getDefinition();
3124  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3125                                                        RecordDef, AS_none,
3126                                                        Chain, true))
3127    Anon->setInvalidDecl();
3128
3129  return Anon;
3130}
3131
3132/// GetNameForDeclarator - Determine the full declaration name for the
3133/// given Declarator.
3134DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3135  return GetNameFromUnqualifiedId(D.getName());
3136}
3137
3138/// \brief Retrieves the declaration name from a parsed unqualified-id.
3139DeclarationNameInfo
3140Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3141  DeclarationNameInfo NameInfo;
3142  NameInfo.setLoc(Name.StartLocation);
3143
3144  switch (Name.getKind()) {
3145
3146  case UnqualifiedId::IK_ImplicitSelfParam:
3147  case UnqualifiedId::IK_Identifier:
3148    NameInfo.setName(Name.Identifier);
3149    NameInfo.setLoc(Name.StartLocation);
3150    return NameInfo;
3151
3152  case UnqualifiedId::IK_OperatorFunctionId:
3153    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3154                                           Name.OperatorFunctionId.Operator));
3155    NameInfo.setLoc(Name.StartLocation);
3156    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3157      = Name.OperatorFunctionId.SymbolLocations[0];
3158    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3159      = Name.EndLocation.getRawEncoding();
3160    return NameInfo;
3161
3162  case UnqualifiedId::IK_LiteralOperatorId:
3163    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3164                                                           Name.Identifier));
3165    NameInfo.setLoc(Name.StartLocation);
3166    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3167    return NameInfo;
3168
3169  case UnqualifiedId::IK_ConversionFunctionId: {
3170    TypeSourceInfo *TInfo;
3171    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3172    if (Ty.isNull())
3173      return DeclarationNameInfo();
3174    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3175                                               Context.getCanonicalType(Ty)));
3176    NameInfo.setLoc(Name.StartLocation);
3177    NameInfo.setNamedTypeInfo(TInfo);
3178    return NameInfo;
3179  }
3180
3181  case UnqualifiedId::IK_ConstructorName: {
3182    TypeSourceInfo *TInfo;
3183    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3184    if (Ty.isNull())
3185      return DeclarationNameInfo();
3186    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3187                                              Context.getCanonicalType(Ty)));
3188    NameInfo.setLoc(Name.StartLocation);
3189    NameInfo.setNamedTypeInfo(TInfo);
3190    return NameInfo;
3191  }
3192
3193  case UnqualifiedId::IK_ConstructorTemplateId: {
3194    // In well-formed code, we can only have a constructor
3195    // template-id that refers to the current context, so go there
3196    // to find the actual type being constructed.
3197    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3198    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3199      return DeclarationNameInfo();
3200
3201    // Determine the type of the class being constructed.
3202    QualType CurClassType = Context.getTypeDeclType(CurClass);
3203
3204    // FIXME: Check two things: that the template-id names the same type as
3205    // CurClassType, and that the template-id does not occur when the name
3206    // was qualified.
3207
3208    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3209                                    Context.getCanonicalType(CurClassType)));
3210    NameInfo.setLoc(Name.StartLocation);
3211    // FIXME: should we retrieve TypeSourceInfo?
3212    NameInfo.setNamedTypeInfo(0);
3213    return NameInfo;
3214  }
3215
3216  case UnqualifiedId::IK_DestructorName: {
3217    TypeSourceInfo *TInfo;
3218    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3219    if (Ty.isNull())
3220      return DeclarationNameInfo();
3221    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3222                                              Context.getCanonicalType(Ty)));
3223    NameInfo.setLoc(Name.StartLocation);
3224    NameInfo.setNamedTypeInfo(TInfo);
3225    return NameInfo;
3226  }
3227
3228  case UnqualifiedId::IK_TemplateId: {
3229    TemplateName TName = Name.TemplateId->Template.get();
3230    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3231    return Context.getNameForTemplate(TName, TNameLoc);
3232  }
3233
3234  } // switch (Name.getKind())
3235
3236  llvm_unreachable("Unknown name kind");
3237}
3238
3239static QualType getCoreType(QualType Ty) {
3240  do {
3241    if (Ty->isPointerType() || Ty->isReferenceType())
3242      Ty = Ty->getPointeeType();
3243    else if (Ty->isArrayType())
3244      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3245    else
3246      return Ty.withoutLocalFastQualifiers();
3247  } while (true);
3248}
3249
3250/// hasSimilarParameters - Determine whether the C++ functions Declaration
3251/// and Definition have "nearly" matching parameters. This heuristic is
3252/// used to improve diagnostics in the case where an out-of-line function
3253/// definition doesn't match any declaration within the class or namespace.
3254/// Also sets Params to the list of indices to the parameters that differ
3255/// between the declaration and the definition. If hasSimilarParameters
3256/// returns true and Params is empty, then all of the parameters match.
3257static bool hasSimilarParameters(ASTContext &Context,
3258                                     FunctionDecl *Declaration,
3259                                     FunctionDecl *Definition,
3260                                     llvm::SmallVectorImpl<unsigned> &Params) {
3261  Params.clear();
3262  if (Declaration->param_size() != Definition->param_size())
3263    return false;
3264  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3265    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3266    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3267
3268    // The parameter types are identical
3269    if (Context.hasSameType(DefParamTy, DeclParamTy))
3270      continue;
3271
3272    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3273    QualType DefParamBaseTy = getCoreType(DefParamTy);
3274    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3275    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3276
3277    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3278        (DeclTyName && DeclTyName == DefTyName))
3279      Params.push_back(Idx);
3280    else  // The two parameters aren't even close
3281      return false;
3282  }
3283
3284  return true;
3285}
3286
3287/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3288/// declarator needs to be rebuilt in the current instantiation.
3289/// Any bits of declarator which appear before the name are valid for
3290/// consideration here.  That's specifically the type in the decl spec
3291/// and the base type in any member-pointer chunks.
3292static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3293                                                    DeclarationName Name) {
3294  // The types we specifically need to rebuild are:
3295  //   - typenames, typeofs, and decltypes
3296  //   - types which will become injected class names
3297  // Of course, we also need to rebuild any type referencing such a
3298  // type.  It's safest to just say "dependent", but we call out a
3299  // few cases here.
3300
3301  DeclSpec &DS = D.getMutableDeclSpec();
3302  switch (DS.getTypeSpecType()) {
3303  case DeclSpec::TST_typename:
3304  case DeclSpec::TST_typeofType:
3305  case DeclSpec::TST_decltype:
3306  case DeclSpec::TST_underlyingType:
3307  case DeclSpec::TST_atomic: {
3308    // Grab the type from the parser.
3309    TypeSourceInfo *TSI = 0;
3310    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3311    if (T.isNull() || !T->isDependentType()) break;
3312
3313    // Make sure there's a type source info.  This isn't really much
3314    // of a waste; most dependent types should have type source info
3315    // attached already.
3316    if (!TSI)
3317      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3318
3319    // Rebuild the type in the current instantiation.
3320    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3321    if (!TSI) return true;
3322
3323    // Store the new type back in the decl spec.
3324    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3325    DS.UpdateTypeRep(LocType);
3326    break;
3327  }
3328
3329  case DeclSpec::TST_typeofExpr: {
3330    Expr *E = DS.getRepAsExpr();
3331    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3332    if (Result.isInvalid()) return true;
3333    DS.UpdateExprRep(Result.get());
3334    break;
3335  }
3336
3337  default:
3338    // Nothing to do for these decl specs.
3339    break;
3340  }
3341
3342  // It doesn't matter what order we do this in.
3343  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3344    DeclaratorChunk &Chunk = D.getTypeObject(I);
3345
3346    // The only type information in the declarator which can come
3347    // before the declaration name is the base type of a member
3348    // pointer.
3349    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3350      continue;
3351
3352    // Rebuild the scope specifier in-place.
3353    CXXScopeSpec &SS = Chunk.Mem.Scope();
3354    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3355      return true;
3356  }
3357
3358  return false;
3359}
3360
3361Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3362  D.setFunctionDefinitionKind(FDK_Declaration);
3363  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3364
3365  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3366      Dcl && Dcl->getDeclContext()->isFileContext())
3367    Dcl->setTopLevelDeclInObjCContainer();
3368
3369  return Dcl;
3370}
3371
3372/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3373///   If T is the name of a class, then each of the following shall have a
3374///   name different from T:
3375///     - every static data member of class T;
3376///     - every member function of class T
3377///     - every member of class T that is itself a type;
3378/// \returns true if the declaration name violates these rules.
3379bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3380                                   DeclarationNameInfo NameInfo) {
3381  DeclarationName Name = NameInfo.getName();
3382
3383  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3384    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3385      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3386      return true;
3387    }
3388
3389  return false;
3390}
3391
3392/// \brief Diagnose a declaration whose declarator-id has the given
3393/// nested-name-specifier.
3394///
3395/// \param SS The nested-name-specifier of the declarator-id.
3396///
3397/// \param DC The declaration context to which the nested-name-specifier
3398/// resolves.
3399///
3400/// \param Name The name of the entity being declared.
3401///
3402/// \param Loc The location of the name of the entity being declared.
3403///
3404/// \returns true if we cannot safely recover from this error, false otherwise.
3405bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3406                                        DeclarationName Name,
3407                                      SourceLocation Loc) {
3408  DeclContext *Cur = CurContext;
3409  while (isa<LinkageSpecDecl>(Cur))
3410    Cur = Cur->getParent();
3411
3412  // C++ [dcl.meaning]p1:
3413  //   A declarator-id shall not be qualified except for the definition
3414  //   of a member function (9.3) or static data member (9.4) outside of
3415  //   its class, the definition or explicit instantiation of a function
3416  //   or variable member of a namespace outside of its namespace, or the
3417  //   definition of an explicit specialization outside of its namespace,
3418  //   or the declaration of a friend function that is a member of
3419  //   another class or namespace (11.3). [...]
3420
3421  // The user provided a superfluous scope specifier that refers back to the
3422  // class or namespaces in which the entity is already declared.
3423  //
3424  // class X {
3425  //   void X::f();
3426  // };
3427  if (Cur->Equals(DC)) {
3428    Diag(Loc, diag::warn_member_extra_qualification)
3429      << Name << FixItHint::CreateRemoval(SS.getRange());
3430    SS.clear();
3431    return false;
3432  }
3433
3434  // Check whether the qualifying scope encloses the scope of the original
3435  // declaration.
3436  if (!Cur->Encloses(DC)) {
3437    if (Cur->isRecord())
3438      Diag(Loc, diag::err_member_qualification)
3439        << Name << SS.getRange();
3440    else if (isa<TranslationUnitDecl>(DC))
3441      Diag(Loc, diag::err_invalid_declarator_global_scope)
3442        << Name << SS.getRange();
3443    else if (isa<FunctionDecl>(Cur))
3444      Diag(Loc, diag::err_invalid_declarator_in_function)
3445        << Name << SS.getRange();
3446    else
3447      Diag(Loc, diag::err_invalid_declarator_scope)
3448      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3449
3450    return true;
3451  }
3452
3453  if (Cur->isRecord()) {
3454    // Cannot qualify members within a class.
3455    Diag(Loc, diag::err_member_qualification)
3456      << Name << SS.getRange();
3457    SS.clear();
3458
3459    // C++ constructors and destructors with incorrect scopes can break
3460    // our AST invariants by having the wrong underlying types. If
3461    // that's the case, then drop this declaration entirely.
3462    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3463         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3464        !Context.hasSameType(Name.getCXXNameType(),
3465                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3466      return true;
3467
3468    return false;
3469  }
3470
3471  // C++11 [dcl.meaning]p1:
3472  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3473  //   not begin with a decltype-specifer"
3474  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3475  while (SpecLoc.getPrefix())
3476    SpecLoc = SpecLoc.getPrefix();
3477  if (dyn_cast_or_null<DecltypeType>(
3478        SpecLoc.getNestedNameSpecifier()->getAsType()))
3479    Diag(Loc, diag::err_decltype_in_declarator)
3480      << SpecLoc.getTypeLoc().getSourceRange();
3481
3482  return false;
3483}
3484
3485Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3486                             MultiTemplateParamsArg TemplateParamLists) {
3487  // TODO: consider using NameInfo for diagnostic.
3488  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3489  DeclarationName Name = NameInfo.getName();
3490
3491  // All of these full declarators require an identifier.  If it doesn't have
3492  // one, the ParsedFreeStandingDeclSpec action should be used.
3493  if (!Name) {
3494    if (!D.isInvalidType())  // Reject this if we think it is valid.
3495      Diag(D.getDeclSpec().getLocStart(),
3496           diag::err_declarator_need_ident)
3497        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3498    return 0;
3499  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3500    return 0;
3501
3502  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3503  // we find one that is.
3504  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3505         (S->getFlags() & Scope::TemplateParamScope) != 0)
3506    S = S->getParent();
3507
3508  DeclContext *DC = CurContext;
3509  if (D.getCXXScopeSpec().isInvalid())
3510    D.setInvalidType();
3511  else if (D.getCXXScopeSpec().isSet()) {
3512    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3513                                        UPPC_DeclarationQualifier))
3514      return 0;
3515
3516    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3517    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3518    if (!DC) {
3519      // If we could not compute the declaration context, it's because the
3520      // declaration context is dependent but does not refer to a class,
3521      // class template, or class template partial specialization. Complain
3522      // and return early, to avoid the coming semantic disaster.
3523      Diag(D.getIdentifierLoc(),
3524           diag::err_template_qualified_declarator_no_match)
3525        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3526        << D.getCXXScopeSpec().getRange();
3527      return 0;
3528    }
3529    bool IsDependentContext = DC->isDependentContext();
3530
3531    if (!IsDependentContext &&
3532        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3533      return 0;
3534
3535    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3536      Diag(D.getIdentifierLoc(),
3537           diag::err_member_def_undefined_record)
3538        << Name << DC << D.getCXXScopeSpec().getRange();
3539      D.setInvalidType();
3540    } else if (!D.getDeclSpec().isFriendSpecified()) {
3541      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3542                                      Name, D.getIdentifierLoc())) {
3543        if (DC->isRecord())
3544          return 0;
3545
3546        D.setInvalidType();
3547      }
3548    }
3549
3550    // Check whether we need to rebuild the type of the given
3551    // declaration in the current instantiation.
3552    if (EnteringContext && IsDependentContext &&
3553        TemplateParamLists.size() != 0) {
3554      ContextRAII SavedContext(*this, DC);
3555      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3556        D.setInvalidType();
3557    }
3558  }
3559
3560  if (DiagnoseClassNameShadow(DC, NameInfo))
3561    // If this is a typedef, we'll end up spewing multiple diagnostics.
3562    // Just return early; it's safer.
3563    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3564      return 0;
3565
3566  NamedDecl *New;
3567
3568  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3569  QualType R = TInfo->getType();
3570
3571  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3572                                      UPPC_DeclarationType))
3573    D.setInvalidType();
3574
3575  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3576                        ForRedeclaration);
3577
3578  // See if this is a redefinition of a variable in the same scope.
3579  if (!D.getCXXScopeSpec().isSet()) {
3580    bool IsLinkageLookup = false;
3581
3582    // If the declaration we're planning to build will be a function
3583    // or object with linkage, then look for another declaration with
3584    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3585    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3586      /* Do nothing*/;
3587    else if (R->isFunctionType()) {
3588      if (CurContext->isFunctionOrMethod() ||
3589          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3590        IsLinkageLookup = true;
3591    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3592      IsLinkageLookup = true;
3593    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3594             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3595      IsLinkageLookup = true;
3596
3597    if (IsLinkageLookup)
3598      Previous.clear(LookupRedeclarationWithLinkage);
3599
3600    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3601  } else { // Something like "int foo::x;"
3602    LookupQualifiedName(Previous, DC);
3603
3604    // C++ [dcl.meaning]p1:
3605    //   When the declarator-id is qualified, the declaration shall refer to a
3606    //  previously declared member of the class or namespace to which the
3607    //  qualifier refers (or, in the case of a namespace, of an element of the
3608    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3609    //  thereof; [...]
3610    //
3611    // Note that we already checked the context above, and that we do not have
3612    // enough information to make sure that Previous contains the declaration
3613    // we want to match. For example, given:
3614    //
3615    //   class X {
3616    //     void f();
3617    //     void f(float);
3618    //   };
3619    //
3620    //   void X::f(int) { } // ill-formed
3621    //
3622    // In this case, Previous will point to the overload set
3623    // containing the two f's declared in X, but neither of them
3624    // matches.
3625
3626    // C++ [dcl.meaning]p1:
3627    //   [...] the member shall not merely have been introduced by a
3628    //   using-declaration in the scope of the class or namespace nominated by
3629    //   the nested-name-specifier of the declarator-id.
3630    RemoveUsingDecls(Previous);
3631  }
3632
3633  if (Previous.isSingleResult() &&
3634      Previous.getFoundDecl()->isTemplateParameter()) {
3635    // Maybe we will complain about the shadowed template parameter.
3636    if (!D.isInvalidType())
3637      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3638                                      Previous.getFoundDecl());
3639
3640    // Just pretend that we didn't see the previous declaration.
3641    Previous.clear();
3642  }
3643
3644  // In C++, the previous declaration we find might be a tag type
3645  // (class or enum). In this case, the new declaration will hide the
3646  // tag type. Note that this does does not apply if we're declaring a
3647  // typedef (C++ [dcl.typedef]p4).
3648  if (Previous.isSingleTagDecl() &&
3649      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3650    Previous.clear();
3651
3652  bool AddToScope = true;
3653  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3654    if (TemplateParamLists.size()) {
3655      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3656      return 0;
3657    }
3658
3659    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3660  } else if (R->isFunctionType()) {
3661    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3662                                  move(TemplateParamLists),
3663                                  AddToScope);
3664  } else {
3665    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3666                                  move(TemplateParamLists));
3667  }
3668
3669  if (New == 0)
3670    return 0;
3671
3672  // If this has an identifier and is not an invalid redeclaration or
3673  // function template specialization, add it to the scope stack.
3674  if (New->getDeclName() && AddToScope &&
3675       !(D.isRedeclaration() && New->isInvalidDecl()))
3676    PushOnScopeChains(New, S);
3677
3678  return New;
3679}
3680
3681/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3682/// types into constant array types in certain situations which would otherwise
3683/// be errors (for GCC compatibility).
3684static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3685                                                    ASTContext &Context,
3686                                                    bool &SizeIsNegative,
3687                                                    llvm::APSInt &Oversized) {
3688  // This method tries to turn a variable array into a constant
3689  // array even when the size isn't an ICE.  This is necessary
3690  // for compatibility with code that depends on gcc's buggy
3691  // constant expression folding, like struct {char x[(int)(char*)2];}
3692  SizeIsNegative = false;
3693  Oversized = 0;
3694
3695  if (T->isDependentType())
3696    return QualType();
3697
3698  QualifierCollector Qs;
3699  const Type *Ty = Qs.strip(T);
3700
3701  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3702    QualType Pointee = PTy->getPointeeType();
3703    QualType FixedType =
3704        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3705                                            Oversized);
3706    if (FixedType.isNull()) return FixedType;
3707    FixedType = Context.getPointerType(FixedType);
3708    return Qs.apply(Context, FixedType);
3709  }
3710  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3711    QualType Inner = PTy->getInnerType();
3712    QualType FixedType =
3713        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3714                                            Oversized);
3715    if (FixedType.isNull()) return FixedType;
3716    FixedType = Context.getParenType(FixedType);
3717    return Qs.apply(Context, FixedType);
3718  }
3719
3720  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3721  if (!VLATy)
3722    return QualType();
3723  // FIXME: We should probably handle this case
3724  if (VLATy->getElementType()->isVariablyModifiedType())
3725    return QualType();
3726
3727  llvm::APSInt Res;
3728  if (!VLATy->getSizeExpr() ||
3729      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3730    return QualType();
3731
3732  // Check whether the array size is negative.
3733  if (Res.isSigned() && Res.isNegative()) {
3734    SizeIsNegative = true;
3735    return QualType();
3736  }
3737
3738  // Check whether the array is too large to be addressed.
3739  unsigned ActiveSizeBits
3740    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3741                                              Res);
3742  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3743    Oversized = Res;
3744    return QualType();
3745  }
3746
3747  return Context.getConstantArrayType(VLATy->getElementType(),
3748                                      Res, ArrayType::Normal, 0);
3749}
3750
3751/// \brief Register the given locally-scoped external C declaration so
3752/// that it can be found later for redeclarations
3753void
3754Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3755                                       const LookupResult &Previous,
3756                                       Scope *S) {
3757  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3758         "Decl is not a locally-scoped decl!");
3759  // Note that we have a locally-scoped external with this name.
3760  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3761
3762  if (!Previous.isSingleResult())
3763    return;
3764
3765  NamedDecl *PrevDecl = Previous.getFoundDecl();
3766
3767  // If there was a previous declaration of this variable, it may be
3768  // in our identifier chain. Update the identifier chain with the new
3769  // declaration.
3770  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3771    // The previous declaration was found on the identifer resolver
3772    // chain, so remove it from its scope.
3773
3774    if (S->isDeclScope(PrevDecl)) {
3775      // Special case for redeclarations in the SAME scope.
3776      // Because this declaration is going to be added to the identifier chain
3777      // later, we should temporarily take it OFF the chain.
3778      IdResolver.RemoveDecl(ND);
3779
3780    } else {
3781      // Find the scope for the original declaration.
3782      while (S && !S->isDeclScope(PrevDecl))
3783        S = S->getParent();
3784    }
3785
3786    if (S)
3787      S->RemoveDecl(PrevDecl);
3788  }
3789}
3790
3791llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3792Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3793  if (ExternalSource) {
3794    // Load locally-scoped external decls from the external source.
3795    SmallVector<NamedDecl *, 4> Decls;
3796    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3797    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3798      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3799        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3800      if (Pos == LocallyScopedExternalDecls.end())
3801        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3802    }
3803  }
3804
3805  return LocallyScopedExternalDecls.find(Name);
3806}
3807
3808/// \brief Diagnose function specifiers on a declaration of an identifier that
3809/// does not identify a function.
3810void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3811  // FIXME: We should probably indicate the identifier in question to avoid
3812  // confusion for constructs like "inline int a(), b;"
3813  if (D.getDeclSpec().isInlineSpecified())
3814    Diag(D.getDeclSpec().getInlineSpecLoc(),
3815         diag::err_inline_non_function);
3816
3817  if (D.getDeclSpec().isVirtualSpecified())
3818    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3819         diag::err_virtual_non_function);
3820
3821  if (D.getDeclSpec().isExplicitSpecified())
3822    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3823         diag::err_explicit_non_function);
3824}
3825
3826NamedDecl*
3827Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3828                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3829  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3830  if (D.getCXXScopeSpec().isSet()) {
3831    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3832      << D.getCXXScopeSpec().getRange();
3833    D.setInvalidType();
3834    // Pretend we didn't see the scope specifier.
3835    DC = CurContext;
3836    Previous.clear();
3837  }
3838
3839  if (getLangOpts().CPlusPlus) {
3840    // Check that there are no default arguments (C++ only).
3841    CheckExtraCXXDefaultArguments(D);
3842  }
3843
3844  DiagnoseFunctionSpecifiers(D);
3845
3846  if (D.getDeclSpec().isThreadSpecified())
3847    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3848  if (D.getDeclSpec().isConstexprSpecified())
3849    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3850      << 1;
3851
3852  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3853    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3854      << D.getName().getSourceRange();
3855    return 0;
3856  }
3857
3858  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3859  if (!NewTD) return 0;
3860
3861  // Handle attributes prior to checking for duplicates in MergeVarDecl
3862  ProcessDeclAttributes(S, NewTD, D);
3863
3864  CheckTypedefForVariablyModifiedType(S, NewTD);
3865
3866  bool Redeclaration = D.isRedeclaration();
3867  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3868  D.setRedeclaration(Redeclaration);
3869  return ND;
3870}
3871
3872void
3873Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3874  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3875  // then it shall have block scope.
3876  // Note that variably modified types must be fixed before merging the decl so
3877  // that redeclarations will match.
3878  QualType T = NewTD->getUnderlyingType();
3879  if (T->isVariablyModifiedType()) {
3880    getCurFunction()->setHasBranchProtectedScope();
3881
3882    if (S->getFnParent() == 0) {
3883      bool SizeIsNegative;
3884      llvm::APSInt Oversized;
3885      QualType FixedTy =
3886          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3887                                              Oversized);
3888      if (!FixedTy.isNull()) {
3889        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3890        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3891      } else {
3892        if (SizeIsNegative)
3893          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3894        else if (T->isVariableArrayType())
3895          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3896        else if (Oversized.getBoolValue())
3897          Diag(NewTD->getLocation(), diag::err_array_too_large)
3898            << Oversized.toString(10);
3899        else
3900          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3901        NewTD->setInvalidDecl();
3902      }
3903    }
3904  }
3905}
3906
3907
3908/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3909/// declares a typedef-name, either using the 'typedef' type specifier or via
3910/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3911NamedDecl*
3912Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3913                           LookupResult &Previous, bool &Redeclaration) {
3914  // Merge the decl with the existing one if appropriate. If the decl is
3915  // in an outer scope, it isn't the same thing.
3916  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3917                       /*ExplicitInstantiationOrSpecialization=*/false);
3918  if (!Previous.empty()) {
3919    Redeclaration = true;
3920    MergeTypedefNameDecl(NewTD, Previous);
3921  }
3922
3923  // If this is the C FILE type, notify the AST context.
3924  if (IdentifierInfo *II = NewTD->getIdentifier())
3925    if (!NewTD->isInvalidDecl() &&
3926        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3927      if (II->isStr("FILE"))
3928        Context.setFILEDecl(NewTD);
3929      else if (II->isStr("jmp_buf"))
3930        Context.setjmp_bufDecl(NewTD);
3931      else if (II->isStr("sigjmp_buf"))
3932        Context.setsigjmp_bufDecl(NewTD);
3933      else if (II->isStr("ucontext_t"))
3934        Context.setucontext_tDecl(NewTD);
3935    }
3936
3937  return NewTD;
3938}
3939
3940/// \brief Determines whether the given declaration is an out-of-scope
3941/// previous declaration.
3942///
3943/// This routine should be invoked when name lookup has found a
3944/// previous declaration (PrevDecl) that is not in the scope where a
3945/// new declaration by the same name is being introduced. If the new
3946/// declaration occurs in a local scope, previous declarations with
3947/// linkage may still be considered previous declarations (C99
3948/// 6.2.2p4-5, C++ [basic.link]p6).
3949///
3950/// \param PrevDecl the previous declaration found by name
3951/// lookup
3952///
3953/// \param DC the context in which the new declaration is being
3954/// declared.
3955///
3956/// \returns true if PrevDecl is an out-of-scope previous declaration
3957/// for a new delcaration with the same name.
3958static bool
3959isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3960                                ASTContext &Context) {
3961  if (!PrevDecl)
3962    return false;
3963
3964  if (!PrevDecl->hasLinkage())
3965    return false;
3966
3967  if (Context.getLangOpts().CPlusPlus) {
3968    // C++ [basic.link]p6:
3969    //   If there is a visible declaration of an entity with linkage
3970    //   having the same name and type, ignoring entities declared
3971    //   outside the innermost enclosing namespace scope, the block
3972    //   scope declaration declares that same entity and receives the
3973    //   linkage of the previous declaration.
3974    DeclContext *OuterContext = DC->getRedeclContext();
3975    if (!OuterContext->isFunctionOrMethod())
3976      // This rule only applies to block-scope declarations.
3977      return false;
3978
3979    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3980    if (PrevOuterContext->isRecord())
3981      // We found a member function: ignore it.
3982      return false;
3983
3984    // Find the innermost enclosing namespace for the new and
3985    // previous declarations.
3986    OuterContext = OuterContext->getEnclosingNamespaceContext();
3987    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3988
3989    // The previous declaration is in a different namespace, so it
3990    // isn't the same function.
3991    if (!OuterContext->Equals(PrevOuterContext))
3992      return false;
3993  }
3994
3995  return true;
3996}
3997
3998static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3999  CXXScopeSpec &SS = D.getCXXScopeSpec();
4000  if (!SS.isSet()) return;
4001  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4002}
4003
4004bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4005  QualType type = decl->getType();
4006  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4007  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4008    // Various kinds of declaration aren't allowed to be __autoreleasing.
4009    unsigned kind = -1U;
4010    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4011      if (var->hasAttr<BlocksAttr>())
4012        kind = 0; // __block
4013      else if (!var->hasLocalStorage())
4014        kind = 1; // global
4015    } else if (isa<ObjCIvarDecl>(decl)) {
4016      kind = 3; // ivar
4017    } else if (isa<FieldDecl>(decl)) {
4018      kind = 2; // field
4019    }
4020
4021    if (kind != -1U) {
4022      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4023        << kind;
4024    }
4025  } else if (lifetime == Qualifiers::OCL_None) {
4026    // Try to infer lifetime.
4027    if (!type->isObjCLifetimeType())
4028      return false;
4029
4030    lifetime = type->getObjCARCImplicitLifetime();
4031    type = Context.getLifetimeQualifiedType(type, lifetime);
4032    decl->setType(type);
4033  }
4034
4035  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4036    // Thread-local variables cannot have lifetime.
4037    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4038        var->isThreadSpecified()) {
4039      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4040        << var->getType();
4041      return true;
4042    }
4043  }
4044
4045  return false;
4046}
4047
4048NamedDecl*
4049Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4050                              TypeSourceInfo *TInfo, LookupResult &Previous,
4051                              MultiTemplateParamsArg TemplateParamLists) {
4052  QualType R = TInfo->getType();
4053  DeclarationName Name = GetNameForDeclarator(D).getName();
4054
4055  // Check that there are no default arguments (C++ only).
4056  if (getLangOpts().CPlusPlus)
4057    CheckExtraCXXDefaultArguments(D);
4058
4059  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4060  assert(SCSpec != DeclSpec::SCS_typedef &&
4061         "Parser allowed 'typedef' as storage class VarDecl.");
4062  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4063  if (SCSpec == DeclSpec::SCS_mutable) {
4064    // mutable can only appear on non-static class members, so it's always
4065    // an error here
4066    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4067    D.setInvalidType();
4068    SC = SC_None;
4069  }
4070  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4071  VarDecl::StorageClass SCAsWritten
4072    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4073
4074  IdentifierInfo *II = Name.getAsIdentifierInfo();
4075  if (!II) {
4076    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4077      << Name;
4078    return 0;
4079  }
4080
4081  DiagnoseFunctionSpecifiers(D);
4082
4083  if (!DC->isRecord() && S->getFnParent() == 0) {
4084    // C99 6.9p2: The storage-class specifiers auto and register shall not
4085    // appear in the declaration specifiers in an external declaration.
4086    if (SC == SC_Auto || SC == SC_Register) {
4087
4088      // If this is a register variable with an asm label specified, then this
4089      // is a GNU extension.
4090      if (SC == SC_Register && D.getAsmLabel())
4091        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4092      else
4093        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4094      D.setInvalidType();
4095    }
4096  }
4097
4098  if (getLangOpts().OpenCL) {
4099    // Set up the special work-group-local storage class for variables in the
4100    // OpenCL __local address space.
4101    if (R.getAddressSpace() == LangAS::opencl_local)
4102      SC = SC_OpenCLWorkGroupLocal;
4103  }
4104
4105  bool isExplicitSpecialization = false;
4106  VarDecl *NewVD;
4107  if (!getLangOpts().CPlusPlus) {
4108    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4109                            D.getIdentifierLoc(), II,
4110                            R, TInfo, SC, SCAsWritten);
4111
4112    if (D.isInvalidType())
4113      NewVD->setInvalidDecl();
4114  } else {
4115    if (DC->isRecord() && !CurContext->isRecord()) {
4116      // This is an out-of-line definition of a static data member.
4117      if (SC == SC_Static) {
4118        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4119             diag::err_static_out_of_line)
4120          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4121      } else if (SC == SC_None)
4122        SC = SC_Static;
4123    }
4124    if (SC == SC_Static && CurContext->isRecord()) {
4125      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4126        if (RD->isLocalClass())
4127          Diag(D.getIdentifierLoc(),
4128               diag::err_static_data_member_not_allowed_in_local_class)
4129            << Name << RD->getDeclName();
4130
4131        // C++98 [class.union]p1: If a union contains a static data member,
4132        // the program is ill-formed. C++11 drops this restriction.
4133        if (RD->isUnion())
4134          Diag(D.getIdentifierLoc(),
4135               getLangOpts().CPlusPlus0x
4136                 ? diag::warn_cxx98_compat_static_data_member_in_union
4137                 : diag::ext_static_data_member_in_union) << Name;
4138        // We conservatively disallow static data members in anonymous structs.
4139        else if (!RD->getDeclName())
4140          Diag(D.getIdentifierLoc(),
4141               diag::err_static_data_member_not_allowed_in_anon_struct)
4142            << Name << RD->isUnion();
4143      }
4144    }
4145
4146    // Match up the template parameter lists with the scope specifier, then
4147    // determine whether we have a template or a template specialization.
4148    isExplicitSpecialization = false;
4149    bool Invalid = false;
4150    if (TemplateParameterList *TemplateParams
4151        = MatchTemplateParametersToScopeSpecifier(
4152                                  D.getDeclSpec().getLocStart(),
4153                                                  D.getIdentifierLoc(),
4154                                                  D.getCXXScopeSpec(),
4155                                                  TemplateParamLists.get(),
4156                                                  TemplateParamLists.size(),
4157                                                  /*never a friend*/ false,
4158                                                  isExplicitSpecialization,
4159                                                  Invalid)) {
4160      if (TemplateParams->size() > 0) {
4161        // There is no such thing as a variable template.
4162        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4163          << II
4164          << SourceRange(TemplateParams->getTemplateLoc(),
4165                         TemplateParams->getRAngleLoc());
4166        return 0;
4167      } else {
4168        // There is an extraneous 'template<>' for this variable. Complain
4169        // about it, but allow the declaration of the variable.
4170        Diag(TemplateParams->getTemplateLoc(),
4171             diag::err_template_variable_noparams)
4172          << II
4173          << SourceRange(TemplateParams->getTemplateLoc(),
4174                         TemplateParams->getRAngleLoc());
4175      }
4176    }
4177
4178    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4179                            D.getIdentifierLoc(), II,
4180                            R, TInfo, SC, SCAsWritten);
4181
4182    // If this decl has an auto type in need of deduction, make a note of the
4183    // Decl so we can diagnose uses of it in its own initializer.
4184    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4185        R->getContainedAutoType())
4186      ParsingInitForAutoVars.insert(NewVD);
4187
4188    if (D.isInvalidType() || Invalid)
4189      NewVD->setInvalidDecl();
4190
4191    SetNestedNameSpecifier(NewVD, D);
4192
4193    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4194      NewVD->setTemplateParameterListsInfo(Context,
4195                                           TemplateParamLists.size(),
4196                                           TemplateParamLists.release());
4197    }
4198
4199    if (D.getDeclSpec().isConstexprSpecified())
4200      NewVD->setConstexpr(true);
4201  }
4202
4203  // Set the lexical context. If the declarator has a C++ scope specifier, the
4204  // lexical context will be different from the semantic context.
4205  NewVD->setLexicalDeclContext(CurContext);
4206
4207  if (D.getDeclSpec().isThreadSpecified()) {
4208    if (NewVD->hasLocalStorage())
4209      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4210    else if (!Context.getTargetInfo().isTLSSupported())
4211      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4212    else
4213      NewVD->setThreadSpecified(true);
4214  }
4215
4216  if (D.getDeclSpec().isModulePrivateSpecified()) {
4217    if (isExplicitSpecialization)
4218      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4219        << 2
4220        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4221    else if (NewVD->hasLocalStorage())
4222      Diag(NewVD->getLocation(), diag::err_module_private_local)
4223        << 0 << NewVD->getDeclName()
4224        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4225        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4226    else
4227      NewVD->setModulePrivate();
4228  }
4229
4230  // Handle attributes prior to checking for duplicates in MergeVarDecl
4231  ProcessDeclAttributes(S, NewVD, D);
4232
4233  // In auto-retain/release, infer strong retension for variables of
4234  // retainable type.
4235  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4236    NewVD->setInvalidDecl();
4237
4238  // Handle GNU asm-label extension (encoded as an attribute).
4239  if (Expr *E = (Expr*)D.getAsmLabel()) {
4240    // The parser guarantees this is a string.
4241    StringLiteral *SE = cast<StringLiteral>(E);
4242    StringRef Label = SE->getString();
4243    if (S->getFnParent() != 0) {
4244      switch (SC) {
4245      case SC_None:
4246      case SC_Auto:
4247        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4248        break;
4249      case SC_Register:
4250        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4251          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4252        break;
4253      case SC_Static:
4254      case SC_Extern:
4255      case SC_PrivateExtern:
4256      case SC_OpenCLWorkGroupLocal:
4257        break;
4258      }
4259    }
4260
4261    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4262                                                Context, Label));
4263  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4264    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4265      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4266    if (I != ExtnameUndeclaredIdentifiers.end()) {
4267      NewVD->addAttr(I->second);
4268      ExtnameUndeclaredIdentifiers.erase(I);
4269    }
4270  }
4271
4272  // Diagnose shadowed variables before filtering for scope.
4273  if (!D.getCXXScopeSpec().isSet())
4274    CheckShadow(S, NewVD, Previous);
4275
4276  // Don't consider existing declarations that are in a different
4277  // scope and are out-of-semantic-context declarations (if the new
4278  // declaration has linkage).
4279  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4280                       isExplicitSpecialization);
4281
4282  if (!getLangOpts().CPlusPlus) {
4283    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4284  } else {
4285    // Merge the decl with the existing one if appropriate.
4286    if (!Previous.empty()) {
4287      if (Previous.isSingleResult() &&
4288          isa<FieldDecl>(Previous.getFoundDecl()) &&
4289          D.getCXXScopeSpec().isSet()) {
4290        // The user tried to define a non-static data member
4291        // out-of-line (C++ [dcl.meaning]p1).
4292        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4293          << D.getCXXScopeSpec().getRange();
4294        Previous.clear();
4295        NewVD->setInvalidDecl();
4296      }
4297    } else if (D.getCXXScopeSpec().isSet()) {
4298      // No previous declaration in the qualifying scope.
4299      Diag(D.getIdentifierLoc(), diag::err_no_member)
4300        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4301        << D.getCXXScopeSpec().getRange();
4302      NewVD->setInvalidDecl();
4303    }
4304
4305    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4306
4307    // This is an explicit specialization of a static data member. Check it.
4308    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4309        CheckMemberSpecialization(NewVD, Previous))
4310      NewVD->setInvalidDecl();
4311  }
4312
4313  // If this is a locally-scoped extern C variable, update the map of
4314  // such variables.
4315  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4316      !NewVD->isInvalidDecl())
4317    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4318
4319  // If there's a #pragma GCC visibility in scope, and this isn't a class
4320  // member, set the visibility of this variable.
4321  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4322    AddPushedVisibilityAttribute(NewVD);
4323
4324  MarkUnusedFileScopedDecl(NewVD);
4325
4326  return NewVD;
4327}
4328
4329/// \brief Diagnose variable or built-in function shadowing.  Implements
4330/// -Wshadow.
4331///
4332/// This method is called whenever a VarDecl is added to a "useful"
4333/// scope.
4334///
4335/// \param S the scope in which the shadowing name is being declared
4336/// \param R the lookup of the name
4337///
4338void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4339  // Return if warning is ignored.
4340  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4341        DiagnosticsEngine::Ignored)
4342    return;
4343
4344  // Don't diagnose declarations at file scope.
4345  if (D->hasGlobalStorage())
4346    return;
4347
4348  DeclContext *NewDC = D->getDeclContext();
4349
4350  // Only diagnose if we're shadowing an unambiguous field or variable.
4351  if (R.getResultKind() != LookupResult::Found)
4352    return;
4353
4354  NamedDecl* ShadowedDecl = R.getFoundDecl();
4355  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4356    return;
4357
4358  // Fields are not shadowed by variables in C++ static methods.
4359  if (isa<FieldDecl>(ShadowedDecl))
4360    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4361      if (MD->isStatic())
4362        return;
4363
4364  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4365    if (shadowedVar->isExternC()) {
4366      // For shadowing external vars, make sure that we point to the global
4367      // declaration, not a locally scoped extern declaration.
4368      for (VarDecl::redecl_iterator
4369             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4370           I != E; ++I)
4371        if (I->isFileVarDecl()) {
4372          ShadowedDecl = *I;
4373          break;
4374        }
4375    }
4376
4377  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4378
4379  // Only warn about certain kinds of shadowing for class members.
4380  if (NewDC && NewDC->isRecord()) {
4381    // In particular, don't warn about shadowing non-class members.
4382    if (!OldDC->isRecord())
4383      return;
4384
4385    // TODO: should we warn about static data members shadowing
4386    // static data members from base classes?
4387
4388    // TODO: don't diagnose for inaccessible shadowed members.
4389    // This is hard to do perfectly because we might friend the
4390    // shadowing context, but that's just a false negative.
4391  }
4392
4393  // Determine what kind of declaration we're shadowing.
4394  unsigned Kind;
4395  if (isa<RecordDecl>(OldDC)) {
4396    if (isa<FieldDecl>(ShadowedDecl))
4397      Kind = 3; // field
4398    else
4399      Kind = 2; // static data member
4400  } else if (OldDC->isFileContext())
4401    Kind = 1; // global
4402  else
4403    Kind = 0; // local
4404
4405  DeclarationName Name = R.getLookupName();
4406
4407  // Emit warning and note.
4408  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4409  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4410}
4411
4412/// \brief Check -Wshadow without the advantage of a previous lookup.
4413void Sema::CheckShadow(Scope *S, VarDecl *D) {
4414  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4415        DiagnosticsEngine::Ignored)
4416    return;
4417
4418  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4419                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4420  LookupName(R, S);
4421  CheckShadow(S, D, R);
4422}
4423
4424/// \brief Perform semantic checking on a newly-created variable
4425/// declaration.
4426///
4427/// This routine performs all of the type-checking required for a
4428/// variable declaration once it has been built. It is used both to
4429/// check variables after they have been parsed and their declarators
4430/// have been translated into a declaration, and to check variables
4431/// that have been instantiated from a template.
4432///
4433/// Sets NewVD->isInvalidDecl() if an error was encountered.
4434///
4435/// Returns true if the variable declaration is a redeclaration.
4436bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4437                                    LookupResult &Previous) {
4438  // If the decl is already known invalid, don't check it.
4439  if (NewVD->isInvalidDecl())
4440    return false;
4441
4442  QualType T = NewVD->getType();
4443
4444  if (T->isObjCObjectType()) {
4445    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4446      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4447    T = Context.getObjCObjectPointerType(T);
4448    NewVD->setType(T);
4449  }
4450
4451  // Emit an error if an address space was applied to decl with local storage.
4452  // This includes arrays of objects with address space qualifiers, but not
4453  // automatic variables that point to other address spaces.
4454  // ISO/IEC TR 18037 S5.1.2
4455  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4456    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4457    NewVD->setInvalidDecl();
4458    return false;
4459  }
4460
4461  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4462  // scope.
4463  if ((getLangOpts().OpenCLVersion >= 120)
4464      && NewVD->isStaticLocal()) {
4465    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4466    NewVD->setInvalidDecl();
4467    return false;
4468  }
4469
4470  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4471      && !NewVD->hasAttr<BlocksAttr>()) {
4472    if (getLangOpts().getGC() != LangOptions::NonGC)
4473      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4474    else
4475      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4476  }
4477
4478  bool isVM = T->isVariablyModifiedType();
4479  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4480      NewVD->hasAttr<BlocksAttr>())
4481    getCurFunction()->setHasBranchProtectedScope();
4482
4483  if ((isVM && NewVD->hasLinkage()) ||
4484      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4485    bool SizeIsNegative;
4486    llvm::APSInt Oversized;
4487    QualType FixedTy =
4488        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4489                                            Oversized);
4490
4491    if (FixedTy.isNull() && T->isVariableArrayType()) {
4492      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4493      // FIXME: This won't give the correct result for
4494      // int a[10][n];
4495      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4496
4497      if (NewVD->isFileVarDecl())
4498        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4499        << SizeRange;
4500      else if (NewVD->getStorageClass() == SC_Static)
4501        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4502        << SizeRange;
4503      else
4504        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4505        << SizeRange;
4506      NewVD->setInvalidDecl();
4507      return false;
4508    }
4509
4510    if (FixedTy.isNull()) {
4511      if (NewVD->isFileVarDecl())
4512        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4513      else
4514        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4515      NewVD->setInvalidDecl();
4516      return false;
4517    }
4518
4519    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4520    NewVD->setType(FixedTy);
4521  }
4522
4523  if (Previous.empty() && NewVD->isExternC()) {
4524    // Since we did not find anything by this name and we're declaring
4525    // an extern "C" variable, look for a non-visible extern "C"
4526    // declaration with the same name.
4527    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4528      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4529    if (Pos != LocallyScopedExternalDecls.end())
4530      Previous.addDecl(Pos->second);
4531  }
4532
4533  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4534    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4535      << T;
4536    NewVD->setInvalidDecl();
4537    return false;
4538  }
4539
4540  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4541    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4542    NewVD->setInvalidDecl();
4543    return false;
4544  }
4545
4546  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4547    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4548    NewVD->setInvalidDecl();
4549    return false;
4550  }
4551
4552  if (NewVD->isConstexpr() && !T->isDependentType() &&
4553      RequireLiteralType(NewVD->getLocation(), T,
4554                         diag::err_constexpr_var_non_literal)) {
4555    NewVD->setInvalidDecl();
4556    return false;
4557  }
4558
4559  if (!Previous.empty()) {
4560    MergeVarDecl(NewVD, Previous);
4561    return true;
4562  }
4563  return false;
4564}
4565
4566/// \brief Data used with FindOverriddenMethod
4567struct FindOverriddenMethodData {
4568  Sema *S;
4569  CXXMethodDecl *Method;
4570};
4571
4572/// \brief Member lookup function that determines whether a given C++
4573/// method overrides a method in a base class, to be used with
4574/// CXXRecordDecl::lookupInBases().
4575static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4576                                 CXXBasePath &Path,
4577                                 void *UserData) {
4578  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4579
4580  FindOverriddenMethodData *Data
4581    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4582
4583  DeclarationName Name = Data->Method->getDeclName();
4584
4585  // FIXME: Do we care about other names here too?
4586  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4587    // We really want to find the base class destructor here.
4588    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4589    CanQualType CT = Data->S->Context.getCanonicalType(T);
4590
4591    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4592  }
4593
4594  for (Path.Decls = BaseRecord->lookup(Name);
4595       Path.Decls.first != Path.Decls.second;
4596       ++Path.Decls.first) {
4597    NamedDecl *D = *Path.Decls.first;
4598    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4599      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4600        return true;
4601    }
4602  }
4603
4604  return false;
4605}
4606
4607static bool hasDelayedExceptionSpec(CXXMethodDecl *Method) {
4608  const FunctionProtoType *Proto =Method->getType()->getAs<FunctionProtoType>();
4609  return Proto && Proto->getExceptionSpecType() == EST_Delayed;
4610}
4611
4612/// AddOverriddenMethods - See if a method overrides any in the base classes,
4613/// and if so, check that it's a valid override and remember it.
4614bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4615  // Look for virtual methods in base classes that this method might override.
4616  CXXBasePaths Paths;
4617  FindOverriddenMethodData Data;
4618  Data.Method = MD;
4619  Data.S = this;
4620  bool AddedAny = false;
4621  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4622    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4623         E = Paths.found_decls_end(); I != E; ++I) {
4624      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4625        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4626        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4627            (hasDelayedExceptionSpec(MD) ||
4628             !CheckOverridingFunctionExceptionSpec(MD, OldMD)) &&
4629            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4630          AddedAny = true;
4631        }
4632      }
4633    }
4634  }
4635
4636  return AddedAny;
4637}
4638
4639namespace {
4640  // Struct for holding all of the extra arguments needed by
4641  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4642  struct ActOnFDArgs {
4643    Scope *S;
4644    Declarator &D;
4645    MultiTemplateParamsArg TemplateParamLists;
4646    bool AddToScope;
4647  };
4648}
4649
4650namespace {
4651
4652// Callback to only accept typo corrections that have a non-zero edit distance.
4653// Also only accept corrections that have the same parent decl.
4654class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4655 public:
4656  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4657                            CXXRecordDecl *Parent)
4658      : Context(Context), OriginalFD(TypoFD),
4659        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4660
4661  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4662    if (candidate.getEditDistance() == 0)
4663      return false;
4664
4665    llvm::SmallVector<unsigned, 1> MismatchedParams;
4666    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4667                                          CDeclEnd = candidate.end();
4668         CDecl != CDeclEnd; ++CDecl) {
4669      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4670
4671      if (FD && !FD->hasBody() &&
4672          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4673        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4674          CXXRecordDecl *Parent = MD->getParent();
4675          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4676            return true;
4677        } else if (!ExpectedParent) {
4678          return true;
4679        }
4680      }
4681    }
4682
4683    return false;
4684  }
4685
4686 private:
4687  ASTContext &Context;
4688  FunctionDecl *OriginalFD;
4689  CXXRecordDecl *ExpectedParent;
4690};
4691
4692}
4693
4694/// \brief Generate diagnostics for an invalid function redeclaration.
4695///
4696/// This routine handles generating the diagnostic messages for an invalid
4697/// function redeclaration, including finding possible similar declarations
4698/// or performing typo correction if there are no previous declarations with
4699/// the same name.
4700///
4701/// Returns a NamedDecl iff typo correction was performed and substituting in
4702/// the new declaration name does not cause new errors.
4703static NamedDecl* DiagnoseInvalidRedeclaration(
4704    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4705    ActOnFDArgs &ExtraArgs) {
4706  NamedDecl *Result = NULL;
4707  DeclarationName Name = NewFD->getDeclName();
4708  DeclContext *NewDC = NewFD->getDeclContext();
4709  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4710                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4711  llvm::SmallVector<unsigned, 1> MismatchedParams;
4712  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4713  TypoCorrection Correction;
4714  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4715                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4716  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4717                                  : diag::err_member_def_does_not_match;
4718
4719  NewFD->setInvalidDecl();
4720  SemaRef.LookupQualifiedName(Prev, NewDC);
4721  assert(!Prev.isAmbiguous() &&
4722         "Cannot have an ambiguity in previous-declaration lookup");
4723  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4724  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4725                                      MD ? MD->getParent() : 0);
4726  if (!Prev.empty()) {
4727    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4728         Func != FuncEnd; ++Func) {
4729      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4730      if (FD &&
4731          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4732        // Add 1 to the index so that 0 can mean the mismatch didn't
4733        // involve a parameter
4734        unsigned ParamNum =
4735            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4736        NearMatches.push_back(std::make_pair(FD, ParamNum));
4737      }
4738    }
4739  // If the qualified name lookup yielded nothing, try typo correction
4740  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4741                                         Prev.getLookupKind(), 0, 0,
4742                                         Validator, NewDC))) {
4743    // Trap errors.
4744    Sema::SFINAETrap Trap(SemaRef);
4745
4746    // Set up everything for the call to ActOnFunctionDeclarator
4747    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4748                              ExtraArgs.D.getIdentifierLoc());
4749    Previous.clear();
4750    Previous.setLookupName(Correction.getCorrection());
4751    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4752                                    CDeclEnd = Correction.end();
4753         CDecl != CDeclEnd; ++CDecl) {
4754      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4755      if (FD && !FD->hasBody() &&
4756          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4757        Previous.addDecl(FD);
4758      }
4759    }
4760    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4761    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4762    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4763    // eliminate the need for the parameter pack ExtraArgs.
4764    Result = SemaRef.ActOnFunctionDeclarator(
4765        ExtraArgs.S, ExtraArgs.D,
4766        Correction.getCorrectionDecl()->getDeclContext(),
4767        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4768        ExtraArgs.AddToScope);
4769    if (Trap.hasErrorOccurred()) {
4770      // Pretend the typo correction never occurred
4771      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4772                                ExtraArgs.D.getIdentifierLoc());
4773      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4774      Previous.clear();
4775      Previous.setLookupName(Name);
4776      Result = NULL;
4777    } else {
4778      for (LookupResult::iterator Func = Previous.begin(),
4779                               FuncEnd = Previous.end();
4780           Func != FuncEnd; ++Func) {
4781        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4782          NearMatches.push_back(std::make_pair(FD, 0));
4783      }
4784    }
4785    if (NearMatches.empty()) {
4786      // Ignore the correction if it didn't yield any close FunctionDecl matches
4787      Correction = TypoCorrection();
4788    } else {
4789      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4790                             : diag::err_member_def_does_not_match_suggest;
4791    }
4792  }
4793
4794  if (Correction) {
4795    SourceRange FixItLoc(NewFD->getLocation());
4796    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4797    if (Correction.getCorrectionSpecifier() && SS.isValid())
4798      FixItLoc.setBegin(SS.getBeginLoc());
4799    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4800        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4801        << FixItHint::CreateReplacement(
4802            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4803  } else {
4804    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4805        << Name << NewDC << NewFD->getLocation();
4806  }
4807
4808  bool NewFDisConst = false;
4809  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4810    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4811
4812  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4813       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4814       NearMatch != NearMatchEnd; ++NearMatch) {
4815    FunctionDecl *FD = NearMatch->first;
4816    bool FDisConst = false;
4817    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4818      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4819
4820    if (unsigned Idx = NearMatch->second) {
4821      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4822      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4823      if (Loc.isInvalid()) Loc = FD->getLocation();
4824      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4825          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4826    } else if (Correction) {
4827      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4828          << Correction.getQuoted(SemaRef.getLangOpts());
4829    } else if (FDisConst != NewFDisConst) {
4830      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4831          << NewFDisConst << FD->getSourceRange().getEnd();
4832    } else
4833      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4834  }
4835  return Result;
4836}
4837
4838static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4839                                                          Declarator &D) {
4840  switch (D.getDeclSpec().getStorageClassSpec()) {
4841  default: llvm_unreachable("Unknown storage class!");
4842  case DeclSpec::SCS_auto:
4843  case DeclSpec::SCS_register:
4844  case DeclSpec::SCS_mutable:
4845    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4846                 diag::err_typecheck_sclass_func);
4847    D.setInvalidType();
4848    break;
4849  case DeclSpec::SCS_unspecified: break;
4850  case DeclSpec::SCS_extern: return SC_Extern;
4851  case DeclSpec::SCS_static: {
4852    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4853      // C99 6.7.1p5:
4854      //   The declaration of an identifier for a function that has
4855      //   block scope shall have no explicit storage-class specifier
4856      //   other than extern
4857      // See also (C++ [dcl.stc]p4).
4858      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4859                   diag::err_static_block_func);
4860      break;
4861    } else
4862      return SC_Static;
4863  }
4864  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4865  }
4866
4867  // No explicit storage class has already been returned
4868  return SC_None;
4869}
4870
4871static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4872                                           DeclContext *DC, QualType &R,
4873                                           TypeSourceInfo *TInfo,
4874                                           FunctionDecl::StorageClass SC,
4875                                           bool &IsVirtualOkay) {
4876  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4877  DeclarationName Name = NameInfo.getName();
4878
4879  FunctionDecl *NewFD = 0;
4880  bool isInline = D.getDeclSpec().isInlineSpecified();
4881  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4882  FunctionDecl::StorageClass SCAsWritten
4883    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4884
4885  if (!SemaRef.getLangOpts().CPlusPlus) {
4886    // Determine whether the function was written with a
4887    // prototype. This true when:
4888    //   - there is a prototype in the declarator, or
4889    //   - the type R of the function is some kind of typedef or other reference
4890    //     to a type name (which eventually refers to a function type).
4891    bool HasPrototype =
4892      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4893      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4894
4895    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4896                                 D.getLocStart(), NameInfo, R,
4897                                 TInfo, SC, SCAsWritten, isInline,
4898                                 HasPrototype);
4899    if (D.isInvalidType())
4900      NewFD->setInvalidDecl();
4901
4902    // Set the lexical context.
4903    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4904
4905    return NewFD;
4906  }
4907
4908  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4909  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4910
4911  // Check that the return type is not an abstract class type.
4912  // For record types, this is done by the AbstractClassUsageDiagnoser once
4913  // the class has been completely parsed.
4914  if (!DC->isRecord() &&
4915      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4916                                     R->getAs<FunctionType>()->getResultType(),
4917                                     diag::err_abstract_type_in_decl,
4918                                     SemaRef.AbstractReturnType))
4919    D.setInvalidType();
4920
4921  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4922    // This is a C++ constructor declaration.
4923    assert(DC->isRecord() &&
4924           "Constructors can only be declared in a member context");
4925
4926    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4927    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4928                                      D.getLocStart(), NameInfo,
4929                                      R, TInfo, isExplicit, isInline,
4930                                      /*isImplicitlyDeclared=*/false,
4931                                      isConstexpr);
4932
4933  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4934    // This is a C++ destructor declaration.
4935    if (DC->isRecord()) {
4936      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4937      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4938      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4939                                        SemaRef.Context, Record,
4940                                        D.getLocStart(),
4941                                        NameInfo, R, TInfo, isInline,
4942                                        /*isImplicitlyDeclared=*/false);
4943
4944      // If the class is complete, then we now create the implicit exception
4945      // specification. If the class is incomplete or dependent, we can't do
4946      // it yet.
4947      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4948          Record->getDefinition() && !Record->isBeingDefined() &&
4949          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4950        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4951      }
4952
4953      IsVirtualOkay = true;
4954      return NewDD;
4955
4956    } else {
4957      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4958      D.setInvalidType();
4959
4960      // Create a FunctionDecl to satisfy the function definition parsing
4961      // code path.
4962      return FunctionDecl::Create(SemaRef.Context, DC,
4963                                  D.getLocStart(),
4964                                  D.getIdentifierLoc(), Name, R, TInfo,
4965                                  SC, SCAsWritten, isInline,
4966                                  /*hasPrototype=*/true, isConstexpr);
4967    }
4968
4969  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4970    if (!DC->isRecord()) {
4971      SemaRef.Diag(D.getIdentifierLoc(),
4972           diag::err_conv_function_not_member);
4973      return 0;
4974    }
4975
4976    SemaRef.CheckConversionDeclarator(D, R, SC);
4977    IsVirtualOkay = true;
4978    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4979                                     D.getLocStart(), NameInfo,
4980                                     R, TInfo, isInline, isExplicit,
4981                                     isConstexpr, SourceLocation());
4982
4983  } else if (DC->isRecord()) {
4984    // If the name of the function is the same as the name of the record,
4985    // then this must be an invalid constructor that has a return type.
4986    // (The parser checks for a return type and makes the declarator a
4987    // constructor if it has no return type).
4988    if (Name.getAsIdentifierInfo() &&
4989        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4990      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4991        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4992        << SourceRange(D.getIdentifierLoc());
4993      return 0;
4994    }
4995
4996    bool isStatic = SC == SC_Static;
4997
4998    // [class.free]p1:
4999    // Any allocation function for a class T is a static member
5000    // (even if not explicitly declared static).
5001    if (Name.getCXXOverloadedOperator() == OO_New ||
5002        Name.getCXXOverloadedOperator() == OO_Array_New)
5003      isStatic = true;
5004
5005    // [class.free]p6 Any deallocation function for a class X is a static member
5006    // (even if not explicitly declared static).
5007    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5008        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5009      isStatic = true;
5010
5011    IsVirtualOkay = !isStatic;
5012
5013    // This is a C++ method declaration.
5014    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5015                                 D.getLocStart(), NameInfo, R,
5016                                 TInfo, isStatic, SCAsWritten, isInline,
5017                                 isConstexpr, SourceLocation());
5018
5019  } else {
5020    // Determine whether the function was written with a
5021    // prototype. This true when:
5022    //   - we're in C++ (where every function has a prototype),
5023    return FunctionDecl::Create(SemaRef.Context, DC,
5024                                D.getLocStart(),
5025                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5026                                true/*HasPrototype*/, isConstexpr);
5027  }
5028}
5029
5030NamedDecl*
5031Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5032                              TypeSourceInfo *TInfo, LookupResult &Previous,
5033                              MultiTemplateParamsArg TemplateParamLists,
5034                              bool &AddToScope) {
5035  QualType R = TInfo->getType();
5036
5037  assert(R.getTypePtr()->isFunctionType());
5038
5039  // TODO: consider using NameInfo for diagnostic.
5040  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5041  DeclarationName Name = NameInfo.getName();
5042  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5043
5044  if (D.getDeclSpec().isThreadSpecified())
5045    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5046
5047  // Do not allow returning a objc interface by-value.
5048  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5049    Diag(D.getIdentifierLoc(),
5050         diag::err_object_cannot_be_passed_returned_by_value) << 0
5051    << R->getAs<FunctionType>()->getResultType()
5052    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5053
5054    QualType T = R->getAs<FunctionType>()->getResultType();
5055    T = Context.getObjCObjectPointerType(T);
5056    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5057      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5058      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5059                                  FPT->getNumArgs(), EPI);
5060    }
5061    else if (isa<FunctionNoProtoType>(R))
5062      R = Context.getFunctionNoProtoType(T);
5063  }
5064
5065  bool isFriend = false;
5066  FunctionTemplateDecl *FunctionTemplate = 0;
5067  bool isExplicitSpecialization = false;
5068  bool isFunctionTemplateSpecialization = false;
5069
5070  bool isDependentClassScopeExplicitSpecialization = false;
5071  bool HasExplicitTemplateArgs = false;
5072  TemplateArgumentListInfo TemplateArgs;
5073
5074  bool isVirtualOkay = false;
5075
5076  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5077                                              isVirtualOkay);
5078  if (!NewFD) return 0;
5079
5080  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5081    NewFD->setTopLevelDeclInObjCContainer();
5082
5083  if (getLangOpts().CPlusPlus) {
5084    bool isInline = D.getDeclSpec().isInlineSpecified();
5085    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5086    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5087    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5088    isFriend = D.getDeclSpec().isFriendSpecified();
5089    if (isFriend && !isInline && D.isFunctionDefinition()) {
5090      // C++ [class.friend]p5
5091      //   A function can be defined in a friend declaration of a
5092      //   class . . . . Such a function is implicitly inline.
5093      NewFD->setImplicitlyInline();
5094    }
5095
5096    SetNestedNameSpecifier(NewFD, D);
5097    isExplicitSpecialization = false;
5098    isFunctionTemplateSpecialization = false;
5099    if (D.isInvalidType())
5100      NewFD->setInvalidDecl();
5101
5102    // Set the lexical context. If the declarator has a C++
5103    // scope specifier, or is the object of a friend declaration, the
5104    // lexical context will be different from the semantic context.
5105    NewFD->setLexicalDeclContext(CurContext);
5106
5107    // Match up the template parameter lists with the scope specifier, then
5108    // determine whether we have a template or a template specialization.
5109    bool Invalid = false;
5110    if (TemplateParameterList *TemplateParams
5111          = MatchTemplateParametersToScopeSpecifier(
5112                                  D.getDeclSpec().getLocStart(),
5113                                  D.getIdentifierLoc(),
5114                                  D.getCXXScopeSpec(),
5115                                  TemplateParamLists.get(),
5116                                  TemplateParamLists.size(),
5117                                  isFriend,
5118                                  isExplicitSpecialization,
5119                                  Invalid)) {
5120      if (TemplateParams->size() > 0) {
5121        // This is a function template
5122
5123        // Check that we can declare a template here.
5124        if (CheckTemplateDeclScope(S, TemplateParams))
5125          return 0;
5126
5127        // A destructor cannot be a template.
5128        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5129          Diag(NewFD->getLocation(), diag::err_destructor_template);
5130          return 0;
5131        }
5132
5133        // If we're adding a template to a dependent context, we may need to
5134        // rebuilding some of the types used within the template parameter list,
5135        // now that we know what the current instantiation is.
5136        if (DC->isDependentContext()) {
5137          ContextRAII SavedContext(*this, DC);
5138          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5139            Invalid = true;
5140        }
5141
5142
5143        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5144                                                        NewFD->getLocation(),
5145                                                        Name, TemplateParams,
5146                                                        NewFD);
5147        FunctionTemplate->setLexicalDeclContext(CurContext);
5148        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5149
5150        // For source fidelity, store the other template param lists.
5151        if (TemplateParamLists.size() > 1) {
5152          NewFD->setTemplateParameterListsInfo(Context,
5153                                               TemplateParamLists.size() - 1,
5154                                               TemplateParamLists.release());
5155        }
5156      } else {
5157        // This is a function template specialization.
5158        isFunctionTemplateSpecialization = true;
5159        // For source fidelity, store all the template param lists.
5160        NewFD->setTemplateParameterListsInfo(Context,
5161                                             TemplateParamLists.size(),
5162                                             TemplateParamLists.release());
5163
5164        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5165        if (isFriend) {
5166          // We want to remove the "template<>", found here.
5167          SourceRange RemoveRange = TemplateParams->getSourceRange();
5168
5169          // If we remove the template<> and the name is not a
5170          // template-id, we're actually silently creating a problem:
5171          // the friend declaration will refer to an untemplated decl,
5172          // and clearly the user wants a template specialization.  So
5173          // we need to insert '<>' after the name.
5174          SourceLocation InsertLoc;
5175          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5176            InsertLoc = D.getName().getSourceRange().getEnd();
5177            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5178          }
5179
5180          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5181            << Name << RemoveRange
5182            << FixItHint::CreateRemoval(RemoveRange)
5183            << FixItHint::CreateInsertion(InsertLoc, "<>");
5184        }
5185      }
5186    }
5187    else {
5188      // All template param lists were matched against the scope specifier:
5189      // this is NOT (an explicit specialization of) a template.
5190      if (TemplateParamLists.size() > 0)
5191        // For source fidelity, store all the template param lists.
5192        NewFD->setTemplateParameterListsInfo(Context,
5193                                             TemplateParamLists.size(),
5194                                             TemplateParamLists.release());
5195    }
5196
5197    if (Invalid) {
5198      NewFD->setInvalidDecl();
5199      if (FunctionTemplate)
5200        FunctionTemplate->setInvalidDecl();
5201    }
5202
5203    // If we see "T var();" at block scope, where T is a class type, it is
5204    // probably an attempt to initialize a variable, not a function declaration.
5205    // We don't catch this case earlier, since there is no ambiguity here.
5206    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
5207        CurContext->isFunctionOrMethod() &&
5208        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
5209        D.getDeclSpec().getStorageClassSpecAsWritten()
5210          == DeclSpec::SCS_unspecified) {
5211      QualType T = R->getAs<FunctionType>()->getResultType();
5212      DeclaratorChunk &C = D.getTypeObject(0);
5213      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
5214          !C.Fun.hasTrailingReturnType() &&
5215          C.Fun.getExceptionSpecType() == EST_None) {
5216        SourceRange ParenRange(C.Loc, C.EndLoc);
5217        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
5218
5219        // If the declaration looks like:
5220        //   T var1,
5221        //   f();
5222        // and name lookup finds a function named 'f', then the ',' was
5223        // probably intended to be a ';'.
5224        if (!D.isFirstDeclarator() && D.getIdentifier()) {
5225          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5226          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5227          if (Comma.getFileID() != Name.getFileID() ||
5228              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5229            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5230                                LookupOrdinaryName);
5231            if (LookupName(Result, S))
5232              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5233                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5234          }
5235        }
5236        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5237        // Empty parens mean value-initialization, and no parens mean default
5238        // initialization. These are equivalent if the default constructor is
5239        // user-provided, or if zero-initialization is a no-op.
5240        if (RD && RD->hasDefinition() &&
5241            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5242          Diag(C.Loc, diag::note_empty_parens_default_ctor)
5243            << FixItHint::CreateRemoval(ParenRange);
5244        else {
5245          std::string Init = getFixItZeroInitializerForType(T);
5246          if (Init.empty() && LangOpts.CPlusPlus0x)
5247            Init = "{}";
5248          if (!Init.empty())
5249            Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5250              << FixItHint::CreateReplacement(ParenRange, Init);
5251        }
5252      }
5253    }
5254
5255    // C++ [dcl.fct.spec]p5:
5256    //   The virtual specifier shall only be used in declarations of
5257    //   nonstatic class member functions that appear within a
5258    //   member-specification of a class declaration; see 10.3.
5259    //
5260    if (isVirtual && !NewFD->isInvalidDecl()) {
5261      if (!isVirtualOkay) {
5262        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5263             diag::err_virtual_non_function);
5264      } else if (!CurContext->isRecord()) {
5265        // 'virtual' was specified outside of the class.
5266        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5267             diag::err_virtual_out_of_class)
5268          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5269      } else if (NewFD->getDescribedFunctionTemplate()) {
5270        // C++ [temp.mem]p3:
5271        //  A member function template shall not be virtual.
5272        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5273             diag::err_virtual_member_function_template)
5274          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5275      } else {
5276        // Okay: Add virtual to the method.
5277        NewFD->setVirtualAsWritten(true);
5278      }
5279    }
5280
5281    // C++ [dcl.fct.spec]p3:
5282    //  The inline specifier shall not appear on a block scope function
5283    //  declaration.
5284    if (isInline && !NewFD->isInvalidDecl()) {
5285      if (CurContext->isFunctionOrMethod()) {
5286        // 'inline' is not allowed on block scope function declaration.
5287        Diag(D.getDeclSpec().getInlineSpecLoc(),
5288             diag::err_inline_declaration_block_scope) << Name
5289          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5290      }
5291    }
5292
5293    // C++ [dcl.fct.spec]p6:
5294    //  The explicit specifier shall be used only in the declaration of a
5295    //  constructor or conversion function within its class definition;
5296    //  see 12.3.1 and 12.3.2.
5297    if (isExplicit && !NewFD->isInvalidDecl()) {
5298      if (!CurContext->isRecord()) {
5299        // 'explicit' was specified outside of the class.
5300        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5301             diag::err_explicit_out_of_class)
5302          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5303      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5304                 !isa<CXXConversionDecl>(NewFD)) {
5305        // 'explicit' was specified on a function that wasn't a constructor
5306        // or conversion function.
5307        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5308             diag::err_explicit_non_ctor_or_conv_function)
5309          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5310      }
5311    }
5312
5313    if (isConstexpr) {
5314      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5315      // are implicitly inline.
5316      NewFD->setImplicitlyInline();
5317
5318      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5319      // be either constructors or to return a literal type. Therefore,
5320      // destructors cannot be declared constexpr.
5321      if (isa<CXXDestructorDecl>(NewFD))
5322        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5323    }
5324
5325    // If __module_private__ was specified, mark the function accordingly.
5326    if (D.getDeclSpec().isModulePrivateSpecified()) {
5327      if (isFunctionTemplateSpecialization) {
5328        SourceLocation ModulePrivateLoc
5329          = D.getDeclSpec().getModulePrivateSpecLoc();
5330        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5331          << 0
5332          << FixItHint::CreateRemoval(ModulePrivateLoc);
5333      } else {
5334        NewFD->setModulePrivate();
5335        if (FunctionTemplate)
5336          FunctionTemplate->setModulePrivate();
5337      }
5338    }
5339
5340    if (isFriend) {
5341      // For now, claim that the objects have no previous declaration.
5342      if (FunctionTemplate) {
5343        FunctionTemplate->setObjectOfFriendDecl(false);
5344        FunctionTemplate->setAccess(AS_public);
5345      }
5346      NewFD->setObjectOfFriendDecl(false);
5347      NewFD->setAccess(AS_public);
5348    }
5349
5350    // If a function is defined as defaulted or deleted, mark it as such now.
5351    switch (D.getFunctionDefinitionKind()) {
5352      case FDK_Declaration:
5353      case FDK_Definition:
5354        break;
5355
5356      case FDK_Defaulted:
5357        NewFD->setDefaulted();
5358        break;
5359
5360      case FDK_Deleted:
5361        NewFD->setDeletedAsWritten();
5362        break;
5363    }
5364
5365    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5366        D.isFunctionDefinition()) {
5367      // C++ [class.mfct]p2:
5368      //   A member function may be defined (8.4) in its class definition, in
5369      //   which case it is an inline member function (7.1.2)
5370      NewFD->setImplicitlyInline();
5371    }
5372
5373    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5374        !CurContext->isRecord()) {
5375      // C++ [class.static]p1:
5376      //   A data or function member of a class may be declared static
5377      //   in a class definition, in which case it is a static member of
5378      //   the class.
5379
5380      // Complain about the 'static' specifier if it's on an out-of-line
5381      // member function definition.
5382      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5383           diag::err_static_out_of_line)
5384        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5385    }
5386  }
5387
5388  // Filter out previous declarations that don't match the scope.
5389  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5390                       isExplicitSpecialization ||
5391                       isFunctionTemplateSpecialization);
5392
5393  // Handle GNU asm-label extension (encoded as an attribute).
5394  if (Expr *E = (Expr*) D.getAsmLabel()) {
5395    // The parser guarantees this is a string.
5396    StringLiteral *SE = cast<StringLiteral>(E);
5397    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5398                                                SE->getString()));
5399  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5400    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5401      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5402    if (I != ExtnameUndeclaredIdentifiers.end()) {
5403      NewFD->addAttr(I->second);
5404      ExtnameUndeclaredIdentifiers.erase(I);
5405    }
5406  }
5407
5408  // Copy the parameter declarations from the declarator D to the function
5409  // declaration NewFD, if they are available.  First scavenge them into Params.
5410  SmallVector<ParmVarDecl*, 16> Params;
5411  if (D.isFunctionDeclarator()) {
5412    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5413
5414    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5415    // function that takes no arguments, not a function that takes a
5416    // single void argument.
5417    // We let through "const void" here because Sema::GetTypeForDeclarator
5418    // already checks for that case.
5419    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5420        FTI.ArgInfo[0].Param &&
5421        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5422      // Empty arg list, don't push any params.
5423      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5424
5425      // In C++, the empty parameter-type-list must be spelled "void"; a
5426      // typedef of void is not permitted.
5427      if (getLangOpts().CPlusPlus &&
5428          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5429        bool IsTypeAlias = false;
5430        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5431          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5432        else if (const TemplateSpecializationType *TST =
5433                   Param->getType()->getAs<TemplateSpecializationType>())
5434          IsTypeAlias = TST->isTypeAlias();
5435        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5436          << IsTypeAlias;
5437      }
5438    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5439      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5440        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5441        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5442        Param->setDeclContext(NewFD);
5443        Params.push_back(Param);
5444
5445        if (Param->isInvalidDecl())
5446          NewFD->setInvalidDecl();
5447      }
5448    }
5449
5450  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5451    // When we're declaring a function with a typedef, typeof, etc as in the
5452    // following example, we'll need to synthesize (unnamed)
5453    // parameters for use in the declaration.
5454    //
5455    // @code
5456    // typedef void fn(int);
5457    // fn f;
5458    // @endcode
5459
5460    // Synthesize a parameter for each argument type.
5461    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5462         AE = FT->arg_type_end(); AI != AE; ++AI) {
5463      ParmVarDecl *Param =
5464        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5465      Param->setScopeInfo(0, Params.size());
5466      Params.push_back(Param);
5467    }
5468  } else {
5469    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5470           "Should not need args for typedef of non-prototype fn");
5471  }
5472
5473  // Finally, we know we have the right number of parameters, install them.
5474  NewFD->setParams(Params);
5475
5476  // Find all anonymous symbols defined during the declaration of this function
5477  // and add to NewFD. This lets us track decls such 'enum Y' in:
5478  //
5479  //   void f(enum Y {AA} x) {}
5480  //
5481  // which would otherwise incorrectly end up in the translation unit scope.
5482  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5483  DeclsInPrototypeScope.clear();
5484
5485  // Process the non-inheritable attributes on this declaration.
5486  ProcessDeclAttributes(S, NewFD, D,
5487                        /*NonInheritable=*/true, /*Inheritable=*/false);
5488
5489  // Functions returning a variably modified type violate C99 6.7.5.2p2
5490  // because all functions have linkage.
5491  if (!NewFD->isInvalidDecl() &&
5492      NewFD->getResultType()->isVariablyModifiedType()) {
5493    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5494    NewFD->setInvalidDecl();
5495  }
5496
5497  // Handle attributes.
5498  ProcessDeclAttributes(S, NewFD, D,
5499                        /*NonInheritable=*/false, /*Inheritable=*/true);
5500
5501  if (!getLangOpts().CPlusPlus) {
5502    // Perform semantic checking on the function declaration.
5503    bool isExplicitSpecialization=false;
5504    if (!NewFD->isInvalidDecl()) {
5505      if (NewFD->isMain())
5506        CheckMain(NewFD, D.getDeclSpec());
5507      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5508                                                  isExplicitSpecialization));
5509    }
5510    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5511            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5512           "previous declaration set still overloaded");
5513  } else {
5514    // If the declarator is a template-id, translate the parser's template
5515    // argument list into our AST format.
5516    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5517      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5518      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5519      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5520      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5521                                         TemplateId->getTemplateArgs(),
5522                                         TemplateId->NumArgs);
5523      translateTemplateArguments(TemplateArgsPtr,
5524                                 TemplateArgs);
5525      TemplateArgsPtr.release();
5526
5527      HasExplicitTemplateArgs = true;
5528
5529      if (NewFD->isInvalidDecl()) {
5530        HasExplicitTemplateArgs = false;
5531      } else if (FunctionTemplate) {
5532        // Function template with explicit template arguments.
5533        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5534          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5535
5536        HasExplicitTemplateArgs = false;
5537      } else if (!isFunctionTemplateSpecialization &&
5538                 !D.getDeclSpec().isFriendSpecified()) {
5539        // We have encountered something that the user meant to be a
5540        // specialization (because it has explicitly-specified template
5541        // arguments) but that was not introduced with a "template<>" (or had
5542        // too few of them).
5543        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5544          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5545          << FixItHint::CreateInsertion(
5546                                    D.getDeclSpec().getLocStart(),
5547                                        "template<> ");
5548        isFunctionTemplateSpecialization = true;
5549      } else {
5550        // "friend void foo<>(int);" is an implicit specialization decl.
5551        isFunctionTemplateSpecialization = true;
5552      }
5553    } else if (isFriend && isFunctionTemplateSpecialization) {
5554      // This combination is only possible in a recovery case;  the user
5555      // wrote something like:
5556      //   template <> friend void foo(int);
5557      // which we're recovering from as if the user had written:
5558      //   friend void foo<>(int);
5559      // Go ahead and fake up a template id.
5560      HasExplicitTemplateArgs = true;
5561        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5562      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5563    }
5564
5565    // If it's a friend (and only if it's a friend), it's possible
5566    // that either the specialized function type or the specialized
5567    // template is dependent, and therefore matching will fail.  In
5568    // this case, don't check the specialization yet.
5569    bool InstantiationDependent = false;
5570    if (isFunctionTemplateSpecialization && isFriend &&
5571        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5572         TemplateSpecializationType::anyDependentTemplateArguments(
5573            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5574            InstantiationDependent))) {
5575      assert(HasExplicitTemplateArgs &&
5576             "friend function specialization without template args");
5577      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5578                                                       Previous))
5579        NewFD->setInvalidDecl();
5580    } else if (isFunctionTemplateSpecialization) {
5581      if (CurContext->isDependentContext() && CurContext->isRecord()
5582          && !isFriend) {
5583        isDependentClassScopeExplicitSpecialization = true;
5584        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5585          diag::ext_function_specialization_in_class :
5586          diag::err_function_specialization_in_class)
5587          << NewFD->getDeclName();
5588      } else if (CheckFunctionTemplateSpecialization(NewFD,
5589                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5590                                                     Previous))
5591        NewFD->setInvalidDecl();
5592
5593      // C++ [dcl.stc]p1:
5594      //   A storage-class-specifier shall not be specified in an explicit
5595      //   specialization (14.7.3)
5596      if (SC != SC_None) {
5597        if (SC != NewFD->getStorageClass())
5598          Diag(NewFD->getLocation(),
5599               diag::err_explicit_specialization_inconsistent_storage_class)
5600            << SC
5601            << FixItHint::CreateRemoval(
5602                                      D.getDeclSpec().getStorageClassSpecLoc());
5603
5604        else
5605          Diag(NewFD->getLocation(),
5606               diag::ext_explicit_specialization_storage_class)
5607            << FixItHint::CreateRemoval(
5608                                      D.getDeclSpec().getStorageClassSpecLoc());
5609      }
5610
5611    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5612      if (CheckMemberSpecialization(NewFD, Previous))
5613          NewFD->setInvalidDecl();
5614    }
5615
5616    // Perform semantic checking on the function declaration.
5617    if (!isDependentClassScopeExplicitSpecialization) {
5618      if (NewFD->isInvalidDecl()) {
5619        // If this is a class member, mark the class invalid immediately.
5620        // This avoids some consistency errors later.
5621        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5622          methodDecl->getParent()->setInvalidDecl();
5623      } else {
5624        if (NewFD->isMain())
5625          CheckMain(NewFD, D.getDeclSpec());
5626        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5627                                                    isExplicitSpecialization));
5628      }
5629    }
5630
5631    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5632            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5633           "previous declaration set still overloaded");
5634
5635    NamedDecl *PrincipalDecl = (FunctionTemplate
5636                                ? cast<NamedDecl>(FunctionTemplate)
5637                                : NewFD);
5638
5639    if (isFriend && D.isRedeclaration()) {
5640      AccessSpecifier Access = AS_public;
5641      if (!NewFD->isInvalidDecl())
5642        Access = NewFD->getPreviousDecl()->getAccess();
5643
5644      NewFD->setAccess(Access);
5645      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5646
5647      PrincipalDecl->setObjectOfFriendDecl(true);
5648    }
5649
5650    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5651        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5652      PrincipalDecl->setNonMemberOperator();
5653
5654    // If we have a function template, check the template parameter
5655    // list. This will check and merge default template arguments.
5656    if (FunctionTemplate) {
5657      FunctionTemplateDecl *PrevTemplate =
5658                                     FunctionTemplate->getPreviousDecl();
5659      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5660                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5661                            D.getDeclSpec().isFriendSpecified()
5662                              ? (D.isFunctionDefinition()
5663                                   ? TPC_FriendFunctionTemplateDefinition
5664                                   : TPC_FriendFunctionTemplate)
5665                              : (D.getCXXScopeSpec().isSet() &&
5666                                 DC && DC->isRecord() &&
5667                                 DC->isDependentContext())
5668                                  ? TPC_ClassTemplateMember
5669                                  : TPC_FunctionTemplate);
5670    }
5671
5672    if (NewFD->isInvalidDecl()) {
5673      // Ignore all the rest of this.
5674    } else if (!D.isRedeclaration()) {
5675      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5676                                       AddToScope };
5677      // Fake up an access specifier if it's supposed to be a class member.
5678      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5679        NewFD->setAccess(AS_public);
5680
5681      // Qualified decls generally require a previous declaration.
5682      if (D.getCXXScopeSpec().isSet()) {
5683        // ...with the major exception of templated-scope or
5684        // dependent-scope friend declarations.
5685
5686        // TODO: we currently also suppress this check in dependent
5687        // contexts because (1) the parameter depth will be off when
5688        // matching friend templates and (2) we might actually be
5689        // selecting a friend based on a dependent factor.  But there
5690        // are situations where these conditions don't apply and we
5691        // can actually do this check immediately.
5692        if (isFriend &&
5693            (TemplateParamLists.size() ||
5694             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5695             CurContext->isDependentContext())) {
5696          // ignore these
5697        } else {
5698          // The user tried to provide an out-of-line definition for a
5699          // function that is a member of a class or namespace, but there
5700          // was no such member function declared (C++ [class.mfct]p2,
5701          // C++ [namespace.memdef]p2). For example:
5702          //
5703          // class X {
5704          //   void f() const;
5705          // };
5706          //
5707          // void X::f() { } // ill-formed
5708          //
5709          // Complain about this problem, and attempt to suggest close
5710          // matches (e.g., those that differ only in cv-qualifiers and
5711          // whether the parameter types are references).
5712
5713          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5714                                                               NewFD,
5715                                                               ExtraArgs)) {
5716            AddToScope = ExtraArgs.AddToScope;
5717            return Result;
5718          }
5719        }
5720
5721        // Unqualified local friend declarations are required to resolve
5722        // to something.
5723      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5724        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5725                                                             NewFD,
5726                                                             ExtraArgs)) {
5727          AddToScope = ExtraArgs.AddToScope;
5728          return Result;
5729        }
5730      }
5731
5732    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5733               !isFriend && !isFunctionTemplateSpecialization &&
5734               !isExplicitSpecialization) {
5735      // An out-of-line member function declaration must also be a
5736      // definition (C++ [dcl.meaning]p1).
5737      // Note that this is not the case for explicit specializations of
5738      // function templates or member functions of class templates, per
5739      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5740      // extension for compatibility with old SWIG code which likes to
5741      // generate them.
5742      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5743        << D.getCXXScopeSpec().getRange();
5744    }
5745  }
5746
5747  AddKnownFunctionAttributes(NewFD);
5748
5749  if (NewFD->hasAttr<OverloadableAttr>() &&
5750      !NewFD->getType()->getAs<FunctionProtoType>()) {
5751    Diag(NewFD->getLocation(),
5752         diag::err_attribute_overloadable_no_prototype)
5753      << NewFD;
5754
5755    // Turn this into a variadic function with no parameters.
5756    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5757    FunctionProtoType::ExtProtoInfo EPI;
5758    EPI.Variadic = true;
5759    EPI.ExtInfo = FT->getExtInfo();
5760
5761    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5762    NewFD->setType(R);
5763  }
5764
5765  // If there's a #pragma GCC visibility in scope, and this isn't a class
5766  // member, set the visibility of this function.
5767  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5768    AddPushedVisibilityAttribute(NewFD);
5769
5770  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5771  // marking the function.
5772  AddCFAuditedAttribute(NewFD);
5773
5774  // If this is a locally-scoped extern C function, update the
5775  // map of such names.
5776  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5777      && !NewFD->isInvalidDecl())
5778    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5779
5780  // Set this FunctionDecl's range up to the right paren.
5781  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5782
5783  if (getLangOpts().CPlusPlus) {
5784    if (FunctionTemplate) {
5785      if (NewFD->isInvalidDecl())
5786        FunctionTemplate->setInvalidDecl();
5787      return FunctionTemplate;
5788    }
5789  }
5790
5791  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5792  if ((getLangOpts().OpenCLVersion >= 120)
5793      && NewFD->hasAttr<OpenCLKernelAttr>()
5794      && (SC == SC_Static)) {
5795    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5796    D.setInvalidType();
5797  }
5798
5799  MarkUnusedFileScopedDecl(NewFD);
5800
5801  if (getLangOpts().CUDA)
5802    if (IdentifierInfo *II = NewFD->getIdentifier())
5803      if (!NewFD->isInvalidDecl() &&
5804          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5805        if (II->isStr("cudaConfigureCall")) {
5806          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5807            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5808
5809          Context.setcudaConfigureCallDecl(NewFD);
5810        }
5811      }
5812
5813  // Here we have an function template explicit specialization at class scope.
5814  // The actually specialization will be postponed to template instatiation
5815  // time via the ClassScopeFunctionSpecializationDecl node.
5816  if (isDependentClassScopeExplicitSpecialization) {
5817    ClassScopeFunctionSpecializationDecl *NewSpec =
5818                         ClassScopeFunctionSpecializationDecl::Create(
5819                                Context, CurContext, SourceLocation(),
5820                                cast<CXXMethodDecl>(NewFD),
5821                                HasExplicitTemplateArgs, TemplateArgs);
5822    CurContext->addDecl(NewSpec);
5823    AddToScope = false;
5824  }
5825
5826  return NewFD;
5827}
5828
5829/// \brief Perform semantic checking of a new function declaration.
5830///
5831/// Performs semantic analysis of the new function declaration
5832/// NewFD. This routine performs all semantic checking that does not
5833/// require the actual declarator involved in the declaration, and is
5834/// used both for the declaration of functions as they are parsed
5835/// (called via ActOnDeclarator) and for the declaration of functions
5836/// that have been instantiated via C++ template instantiation (called
5837/// via InstantiateDecl).
5838///
5839/// \param IsExplicitSpecialization whether this new function declaration is
5840/// an explicit specialization of the previous declaration.
5841///
5842/// This sets NewFD->isInvalidDecl() to true if there was an error.
5843///
5844/// \returns true if the function declaration is a redeclaration.
5845bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5846                                    LookupResult &Previous,
5847                                    bool IsExplicitSpecialization) {
5848  assert(!NewFD->getResultType()->isVariablyModifiedType()
5849         && "Variably modified return types are not handled here");
5850
5851  // Check for a previous declaration of this name.
5852  if (Previous.empty() && NewFD->isExternC()) {
5853    // Since we did not find anything by this name and we're declaring
5854    // an extern "C" function, look for a non-visible extern "C"
5855    // declaration with the same name.
5856    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5857      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5858    if (Pos != LocallyScopedExternalDecls.end())
5859      Previous.addDecl(Pos->second);
5860  }
5861
5862  bool Redeclaration = false;
5863
5864  // Merge or overload the declaration with an existing declaration of
5865  // the same name, if appropriate.
5866  if (!Previous.empty()) {
5867    // Determine whether NewFD is an overload of PrevDecl or
5868    // a declaration that requires merging. If it's an overload,
5869    // there's no more work to do here; we'll just add the new
5870    // function to the scope.
5871
5872    NamedDecl *OldDecl = 0;
5873    if (!AllowOverloadingOfFunction(Previous, Context)) {
5874      Redeclaration = true;
5875      OldDecl = Previous.getFoundDecl();
5876    } else {
5877      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5878                            /*NewIsUsingDecl*/ false)) {
5879      case Ovl_Match:
5880        Redeclaration = true;
5881        break;
5882
5883      case Ovl_NonFunction:
5884        Redeclaration = true;
5885        break;
5886
5887      case Ovl_Overload:
5888        Redeclaration = false;
5889        break;
5890      }
5891
5892      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5893        // If a function name is overloadable in C, then every function
5894        // with that name must be marked "overloadable".
5895        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5896          << Redeclaration << NewFD;
5897        NamedDecl *OverloadedDecl = 0;
5898        if (Redeclaration)
5899          OverloadedDecl = OldDecl;
5900        else if (!Previous.empty())
5901          OverloadedDecl = Previous.getRepresentativeDecl();
5902        if (OverloadedDecl)
5903          Diag(OverloadedDecl->getLocation(),
5904               diag::note_attribute_overloadable_prev_overload);
5905        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5906                                                        Context));
5907      }
5908    }
5909
5910    if (Redeclaration) {
5911      // NewFD and OldDecl represent declarations that need to be
5912      // merged.
5913      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5914        NewFD->setInvalidDecl();
5915        return Redeclaration;
5916      }
5917
5918      Previous.clear();
5919      Previous.addDecl(OldDecl);
5920
5921      if (FunctionTemplateDecl *OldTemplateDecl
5922                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5923        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5924        FunctionTemplateDecl *NewTemplateDecl
5925          = NewFD->getDescribedFunctionTemplate();
5926        assert(NewTemplateDecl && "Template/non-template mismatch");
5927        if (CXXMethodDecl *Method
5928              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5929          Method->setAccess(OldTemplateDecl->getAccess());
5930          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5931        }
5932
5933        // If this is an explicit specialization of a member that is a function
5934        // template, mark it as a member specialization.
5935        if (IsExplicitSpecialization &&
5936            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5937          NewTemplateDecl->setMemberSpecialization();
5938          assert(OldTemplateDecl->isMemberSpecialization());
5939        }
5940
5941      } else {
5942        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5943          NewFD->setAccess(OldDecl->getAccess());
5944        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5945      }
5946    }
5947  }
5948
5949  // Semantic checking for this function declaration (in isolation).
5950  if (getLangOpts().CPlusPlus) {
5951    // C++-specific checks.
5952    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5953      CheckConstructor(Constructor);
5954    } else if (CXXDestructorDecl *Destructor =
5955                dyn_cast<CXXDestructorDecl>(NewFD)) {
5956      CXXRecordDecl *Record = Destructor->getParent();
5957      QualType ClassType = Context.getTypeDeclType(Record);
5958
5959      // FIXME: Shouldn't we be able to perform this check even when the class
5960      // type is dependent? Both gcc and edg can handle that.
5961      if (!ClassType->isDependentType()) {
5962        DeclarationName Name
5963          = Context.DeclarationNames.getCXXDestructorName(
5964                                        Context.getCanonicalType(ClassType));
5965        if (NewFD->getDeclName() != Name) {
5966          Diag(NewFD->getLocation(), diag::err_destructor_name);
5967          NewFD->setInvalidDecl();
5968          return Redeclaration;
5969        }
5970      }
5971    } else if (CXXConversionDecl *Conversion
5972               = dyn_cast<CXXConversionDecl>(NewFD)) {
5973      ActOnConversionDeclarator(Conversion);
5974    }
5975
5976    // Find any virtual functions that this function overrides.
5977    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5978      if (!Method->isFunctionTemplateSpecialization() &&
5979          !Method->getDescribedFunctionTemplate()) {
5980        if (AddOverriddenMethods(Method->getParent(), Method)) {
5981          // If the function was marked as "static", we have a problem.
5982          if (NewFD->getStorageClass() == SC_Static) {
5983            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5984              << NewFD->getDeclName();
5985            for (CXXMethodDecl::method_iterator
5986                      Overridden = Method->begin_overridden_methods(),
5987                   OverriddenEnd = Method->end_overridden_methods();
5988                 Overridden != OverriddenEnd;
5989                 ++Overridden) {
5990              Diag((*Overridden)->getLocation(),
5991                   diag::note_overridden_virtual_function);
5992            }
5993          }
5994        }
5995      }
5996
5997      if (Method->isStatic())
5998        checkThisInStaticMemberFunctionType(Method);
5999    }
6000
6001    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6002    if (NewFD->isOverloadedOperator() &&
6003        CheckOverloadedOperatorDeclaration(NewFD)) {
6004      NewFD->setInvalidDecl();
6005      return Redeclaration;
6006    }
6007
6008    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6009    if (NewFD->getLiteralIdentifier() &&
6010        CheckLiteralOperatorDeclaration(NewFD)) {
6011      NewFD->setInvalidDecl();
6012      return Redeclaration;
6013    }
6014
6015    // In C++, check default arguments now that we have merged decls. Unless
6016    // the lexical context is the class, because in this case this is done
6017    // during delayed parsing anyway.
6018    if (!CurContext->isRecord())
6019      CheckCXXDefaultArguments(NewFD);
6020
6021    // If this function declares a builtin function, check the type of this
6022    // declaration against the expected type for the builtin.
6023    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6024      ASTContext::GetBuiltinTypeError Error;
6025      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6026      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6027        // The type of this function differs from the type of the builtin,
6028        // so forget about the builtin entirely.
6029        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6030      }
6031    }
6032
6033    // If this function is declared as being extern "C", then check to see if
6034    // the function returns a UDT (class, struct, or union type) that is not C
6035    // compatible, and if it does, warn the user.
6036    if (NewFD->isExternC()) {
6037      QualType R = NewFD->getResultType();
6038      if (!R.isPODType(Context) &&
6039          !R->isVoidType())
6040        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
6041          << NewFD << R;
6042    }
6043  }
6044  return Redeclaration;
6045}
6046
6047void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6048  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6049  //   static or constexpr is ill-formed.
6050  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6051  //   shall not appear in a declaration of main.
6052  // static main is not an error under C99, but we should warn about it.
6053  if (FD->getStorageClass() == SC_Static)
6054    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6055         ? diag::err_static_main : diag::warn_static_main)
6056      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6057  if (FD->isInlineSpecified())
6058    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6059      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6060  if (FD->isConstexpr()) {
6061    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6062      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6063    FD->setConstexpr(false);
6064  }
6065
6066  QualType T = FD->getType();
6067  assert(T->isFunctionType() && "function decl is not of function type");
6068  const FunctionType* FT = T->castAs<FunctionType>();
6069
6070  // All the standards say that main() should should return 'int'.
6071  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6072    // In C and C++, main magically returns 0 if you fall off the end;
6073    // set the flag which tells us that.
6074    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6075    FD->setHasImplicitReturnZero(true);
6076
6077  // In C with GNU extensions we allow main() to have non-integer return
6078  // type, but we should warn about the extension, and we disable the
6079  // implicit-return-zero rule.
6080  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6081    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6082
6083  // Otherwise, this is just a flat-out error.
6084  } else {
6085    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6086    FD->setInvalidDecl(true);
6087  }
6088
6089  // Treat protoless main() as nullary.
6090  if (isa<FunctionNoProtoType>(FT)) return;
6091
6092  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6093  unsigned nparams = FTP->getNumArgs();
6094  assert(FD->getNumParams() == nparams);
6095
6096  bool HasExtraParameters = (nparams > 3);
6097
6098  // Darwin passes an undocumented fourth argument of type char**.  If
6099  // other platforms start sprouting these, the logic below will start
6100  // getting shifty.
6101  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6102    HasExtraParameters = false;
6103
6104  if (HasExtraParameters) {
6105    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6106    FD->setInvalidDecl(true);
6107    nparams = 3;
6108  }
6109
6110  // FIXME: a lot of the following diagnostics would be improved
6111  // if we had some location information about types.
6112
6113  QualType CharPP =
6114    Context.getPointerType(Context.getPointerType(Context.CharTy));
6115  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6116
6117  for (unsigned i = 0; i < nparams; ++i) {
6118    QualType AT = FTP->getArgType(i);
6119
6120    bool mismatch = true;
6121
6122    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6123      mismatch = false;
6124    else if (Expected[i] == CharPP) {
6125      // As an extension, the following forms are okay:
6126      //   char const **
6127      //   char const * const *
6128      //   char * const *
6129
6130      QualifierCollector qs;
6131      const PointerType* PT;
6132      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6133          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6134          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6135        qs.removeConst();
6136        mismatch = !qs.empty();
6137      }
6138    }
6139
6140    if (mismatch) {
6141      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6142      // TODO: suggest replacing given type with expected type
6143      FD->setInvalidDecl(true);
6144    }
6145  }
6146
6147  if (nparams == 1 && !FD->isInvalidDecl()) {
6148    Diag(FD->getLocation(), diag::warn_main_one_arg);
6149  }
6150
6151  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6152    Diag(FD->getLocation(), diag::err_main_template_decl);
6153    FD->setInvalidDecl();
6154  }
6155}
6156
6157bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6158  // FIXME: Need strict checking.  In C89, we need to check for
6159  // any assignment, increment, decrement, function-calls, or
6160  // commas outside of a sizeof.  In C99, it's the same list,
6161  // except that the aforementioned are allowed in unevaluated
6162  // expressions.  Everything else falls under the
6163  // "may accept other forms of constant expressions" exception.
6164  // (We never end up here for C++, so the constant expression
6165  // rules there don't matter.)
6166  if (Init->isConstantInitializer(Context, false))
6167    return false;
6168  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6169    << Init->getSourceRange();
6170  return true;
6171}
6172
6173namespace {
6174  // Visits an initialization expression to see if OrigDecl is evaluated in
6175  // its own initialization and throws a warning if it does.
6176  class SelfReferenceChecker
6177      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6178    Sema &S;
6179    Decl *OrigDecl;
6180    bool isRecordType;
6181    bool isPODType;
6182
6183  public:
6184    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6185
6186    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6187                                                    S(S), OrigDecl(OrigDecl) {
6188      isPODType = false;
6189      isRecordType = false;
6190      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6191        isPODType = VD->getType().isPODType(S.Context);
6192        isRecordType = VD->getType()->isRecordType();
6193      }
6194    }
6195
6196    // Sometimes, the expression passed in lacks the casts that are used
6197    // to determine which DeclRefExpr's to check.  Assume that the casts
6198    // are present and continue visiting the expression.
6199    void HandleExpr(Expr *E) {
6200      // Skip checking T a = a where T is not a record type.  Doing so is a
6201      // way to silence uninitialized warnings.
6202      if (isRecordType)
6203        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6204          HandleDeclRefExpr(DRE);
6205
6206      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6207        HandleValue(CO->getTrueExpr());
6208        HandleValue(CO->getFalseExpr());
6209      }
6210
6211      Visit(E);
6212    }
6213
6214    // For most expressions, the cast is directly above the DeclRefExpr.
6215    // For conditional operators, the cast can be outside the conditional
6216    // operator if both expressions are DeclRefExpr's.
6217    void HandleValue(Expr *E) {
6218      E = E->IgnoreParenImpCasts();
6219      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6220        HandleDeclRefExpr(DRE);
6221        return;
6222      }
6223
6224      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6225        HandleValue(CO->getTrueExpr());
6226        HandleValue(CO->getFalseExpr());
6227      }
6228    }
6229
6230    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6231      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6232          (isRecordType && E->getCastKind() == CK_NoOp))
6233        HandleValue(E->getSubExpr());
6234
6235      Inherited::VisitImplicitCastExpr(E);
6236    }
6237
6238    void VisitMemberExpr(MemberExpr *E) {
6239      // Don't warn on arrays since they can be treated as pointers.
6240      if (E->getType()->canDecayToPointerType()) return;
6241
6242      ValueDecl *VD = E->getMemberDecl();
6243      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6244      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6245        if (DeclRefExpr *DRE
6246              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6247          HandleDeclRefExpr(DRE);
6248          return;
6249        }
6250
6251      Inherited::VisitMemberExpr(E);
6252    }
6253
6254    void VisitUnaryOperator(UnaryOperator *E) {
6255      // For POD record types, addresses of its own members are well-defined.
6256      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6257          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6258      Inherited::VisitUnaryOperator(E);
6259    }
6260
6261    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6262
6263    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6264      Decl* ReferenceDecl = DRE->getDecl();
6265      if (OrigDecl != ReferenceDecl) return;
6266      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6267                          Sema::NotForRedeclaration);
6268      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6269                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6270                              << Result.getLookupName()
6271                              << OrigDecl->getLocation()
6272                              << DRE->getSourceRange());
6273    }
6274  };
6275}
6276
6277/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6278void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6279  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6280}
6281
6282/// AddInitializerToDecl - Adds the initializer Init to the
6283/// declaration dcl. If DirectInit is true, this is C++ direct
6284/// initialization rather than copy initialization.
6285void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6286                                bool DirectInit, bool TypeMayContainAuto) {
6287  // If there is no declaration, there was an error parsing it.  Just ignore
6288  // the initializer.
6289  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6290    return;
6291
6292  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6293    // With declarators parsed the way they are, the parser cannot
6294    // distinguish between a normal initializer and a pure-specifier.
6295    // Thus this grotesque test.
6296    IntegerLiteral *IL;
6297    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6298        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6299      CheckPureMethod(Method, Init->getSourceRange());
6300    else {
6301      Diag(Method->getLocation(), diag::err_member_function_initialization)
6302        << Method->getDeclName() << Init->getSourceRange();
6303      Method->setInvalidDecl();
6304    }
6305    return;
6306  }
6307
6308  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6309  if (!VDecl) {
6310    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6311    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6312    RealDecl->setInvalidDecl();
6313    return;
6314  }
6315
6316  // Check for self-references within variable initializers.
6317  // Variables declared within a function/method body are handled
6318  // by a dataflow analysis.
6319  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6320    CheckSelfReference(RealDecl, Init);
6321
6322  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6323
6324  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6325  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6326    Expr *DeduceInit = Init;
6327    // Initializer could be a C++ direct-initializer. Deduction only works if it
6328    // contains exactly one expression.
6329    if (CXXDirectInit) {
6330      if (CXXDirectInit->getNumExprs() == 0) {
6331        // It isn't possible to write this directly, but it is possible to
6332        // end up in this situation with "auto x(some_pack...);"
6333        Diag(CXXDirectInit->getLocStart(),
6334             diag::err_auto_var_init_no_expression)
6335          << VDecl->getDeclName() << VDecl->getType()
6336          << VDecl->getSourceRange();
6337        RealDecl->setInvalidDecl();
6338        return;
6339      } else if (CXXDirectInit->getNumExprs() > 1) {
6340        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6341             diag::err_auto_var_init_multiple_expressions)
6342          << VDecl->getDeclName() << VDecl->getType()
6343          << VDecl->getSourceRange();
6344        RealDecl->setInvalidDecl();
6345        return;
6346      } else {
6347        DeduceInit = CXXDirectInit->getExpr(0);
6348      }
6349    }
6350    TypeSourceInfo *DeducedType = 0;
6351    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6352            DAR_Failed)
6353      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6354    if (!DeducedType) {
6355      RealDecl->setInvalidDecl();
6356      return;
6357    }
6358    VDecl->setTypeSourceInfo(DeducedType);
6359    VDecl->setType(DeducedType->getType());
6360    VDecl->ClearLinkageCache();
6361
6362    // In ARC, infer lifetime.
6363    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6364      VDecl->setInvalidDecl();
6365
6366    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6367    // 'id' instead of a specific object type prevents most of our usual checks.
6368    // We only want to warn outside of template instantiations, though:
6369    // inside a template, the 'id' could have come from a parameter.
6370    if (ActiveTemplateInstantiations.empty() &&
6371        DeducedType->getType()->isObjCIdType()) {
6372      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6373      Diag(Loc, diag::warn_auto_var_is_id)
6374        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6375    }
6376
6377    // If this is a redeclaration, check that the type we just deduced matches
6378    // the previously declared type.
6379    if (VarDecl *Old = VDecl->getPreviousDecl())
6380      MergeVarDeclTypes(VDecl, Old);
6381  }
6382
6383  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6384    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6385    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6386    VDecl->setInvalidDecl();
6387    return;
6388  }
6389
6390  if (!VDecl->getType()->isDependentType()) {
6391    // A definition must end up with a complete type, which means it must be
6392    // complete with the restriction that an array type might be completed by
6393    // the initializer; note that later code assumes this restriction.
6394    QualType BaseDeclType = VDecl->getType();
6395    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6396      BaseDeclType = Array->getElementType();
6397    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6398                            diag::err_typecheck_decl_incomplete_type)) {
6399      RealDecl->setInvalidDecl();
6400      return;
6401    }
6402
6403    // The variable can not have an abstract class type.
6404    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6405                               diag::err_abstract_type_in_decl,
6406                               AbstractVariableType))
6407      VDecl->setInvalidDecl();
6408  }
6409
6410  const VarDecl *Def;
6411  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6412    Diag(VDecl->getLocation(), diag::err_redefinition)
6413      << VDecl->getDeclName();
6414    Diag(Def->getLocation(), diag::note_previous_definition);
6415    VDecl->setInvalidDecl();
6416    return;
6417  }
6418
6419  const VarDecl* PrevInit = 0;
6420  if (getLangOpts().CPlusPlus) {
6421    // C++ [class.static.data]p4
6422    //   If a static data member is of const integral or const
6423    //   enumeration type, its declaration in the class definition can
6424    //   specify a constant-initializer which shall be an integral
6425    //   constant expression (5.19). In that case, the member can appear
6426    //   in integral constant expressions. The member shall still be
6427    //   defined in a namespace scope if it is used in the program and the
6428    //   namespace scope definition shall not contain an initializer.
6429    //
6430    // We already performed a redefinition check above, but for static
6431    // data members we also need to check whether there was an in-class
6432    // declaration with an initializer.
6433    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6434      Diag(VDecl->getLocation(), diag::err_redefinition)
6435        << VDecl->getDeclName();
6436      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6437      return;
6438    }
6439
6440    if (VDecl->hasLocalStorage())
6441      getCurFunction()->setHasBranchProtectedScope();
6442
6443    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6444      VDecl->setInvalidDecl();
6445      return;
6446    }
6447  }
6448
6449  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6450  // a kernel function cannot be initialized."
6451  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6452    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6453    VDecl->setInvalidDecl();
6454    return;
6455  }
6456
6457  // Get the decls type and save a reference for later, since
6458  // CheckInitializerTypes may change it.
6459  QualType DclT = VDecl->getType(), SavT = DclT;
6460
6461  // Top-level message sends default to 'id' when we're in a debugger
6462  // and we are assigning it to a variable of 'id' type.
6463  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6464    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6465      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6466      if (Result.isInvalid()) {
6467        VDecl->setInvalidDecl();
6468        return;
6469      }
6470      Init = Result.take();
6471    }
6472
6473  // Perform the initialization.
6474  if (!VDecl->isInvalidDecl()) {
6475    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6476    InitializationKind Kind
6477      = DirectInit ?
6478          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6479                                                           Init->getLocStart(),
6480                                                           Init->getLocEnd())
6481                        : InitializationKind::CreateDirectList(
6482                                                          VDecl->getLocation())
6483                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6484                                                    Init->getLocStart());
6485
6486    Expr **Args = &Init;
6487    unsigned NumArgs = 1;
6488    if (CXXDirectInit) {
6489      Args = CXXDirectInit->getExprs();
6490      NumArgs = CXXDirectInit->getNumExprs();
6491    }
6492    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6493    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6494                                              MultiExprArg(*this, Args,NumArgs),
6495                                              &DclT);
6496    if (Result.isInvalid()) {
6497      VDecl->setInvalidDecl();
6498      return;
6499    }
6500
6501    Init = Result.takeAs<Expr>();
6502  }
6503
6504  // If the type changed, it means we had an incomplete type that was
6505  // completed by the initializer. For example:
6506  //   int ary[] = { 1, 3, 5 };
6507  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6508  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6509    VDecl->setType(DclT);
6510
6511  // Check any implicit conversions within the expression.
6512  CheckImplicitConversions(Init, VDecl->getLocation());
6513
6514  if (!VDecl->isInvalidDecl())
6515    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6516
6517  Init = MaybeCreateExprWithCleanups(Init);
6518  // Attach the initializer to the decl.
6519  VDecl->setInit(Init);
6520
6521  if (VDecl->isLocalVarDecl()) {
6522    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6523    // static storage duration shall be constant expressions or string literals.
6524    // C++ does not have this restriction.
6525    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6526        VDecl->getStorageClass() == SC_Static)
6527      CheckForConstantInitializer(Init, DclT);
6528  } else if (VDecl->isStaticDataMember() &&
6529             VDecl->getLexicalDeclContext()->isRecord()) {
6530    // This is an in-class initialization for a static data member, e.g.,
6531    //
6532    // struct S {
6533    //   static const int value = 17;
6534    // };
6535
6536    // C++ [class.mem]p4:
6537    //   A member-declarator can contain a constant-initializer only
6538    //   if it declares a static member (9.4) of const integral or
6539    //   const enumeration type, see 9.4.2.
6540    //
6541    // C++11 [class.static.data]p3:
6542    //   If a non-volatile const static data member is of integral or
6543    //   enumeration type, its declaration in the class definition can
6544    //   specify a brace-or-equal-initializer in which every initalizer-clause
6545    //   that is an assignment-expression is a constant expression. A static
6546    //   data member of literal type can be declared in the class definition
6547    //   with the constexpr specifier; if so, its declaration shall specify a
6548    //   brace-or-equal-initializer in which every initializer-clause that is
6549    //   an assignment-expression is a constant expression.
6550
6551    // Do nothing on dependent types.
6552    if (DclT->isDependentType()) {
6553
6554    // Allow any 'static constexpr' members, whether or not they are of literal
6555    // type. We separately check that every constexpr variable is of literal
6556    // type.
6557    } else if (VDecl->isConstexpr()) {
6558
6559    // Require constness.
6560    } else if (!DclT.isConstQualified()) {
6561      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6562        << Init->getSourceRange();
6563      VDecl->setInvalidDecl();
6564
6565    // We allow integer constant expressions in all cases.
6566    } else if (DclT->isIntegralOrEnumerationType()) {
6567      // Check whether the expression is a constant expression.
6568      SourceLocation Loc;
6569      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6570        // In C++11, a non-constexpr const static data member with an
6571        // in-class initializer cannot be volatile.
6572        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6573      else if (Init->isValueDependent())
6574        ; // Nothing to check.
6575      else if (Init->isIntegerConstantExpr(Context, &Loc))
6576        ; // Ok, it's an ICE!
6577      else if (Init->isEvaluatable(Context)) {
6578        // If we can constant fold the initializer through heroics, accept it,
6579        // but report this as a use of an extension for -pedantic.
6580        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6581          << Init->getSourceRange();
6582      } else {
6583        // Otherwise, this is some crazy unknown case.  Report the issue at the
6584        // location provided by the isIntegerConstantExpr failed check.
6585        Diag(Loc, diag::err_in_class_initializer_non_constant)
6586          << Init->getSourceRange();
6587        VDecl->setInvalidDecl();
6588      }
6589
6590    // We allow foldable floating-point constants as an extension.
6591    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6592      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6593        << DclT << Init->getSourceRange();
6594      if (getLangOpts().CPlusPlus0x)
6595        Diag(VDecl->getLocation(),
6596             diag::note_in_class_initializer_float_type_constexpr)
6597          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6598
6599      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6600        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6601          << Init->getSourceRange();
6602        VDecl->setInvalidDecl();
6603      }
6604
6605    // Suggest adding 'constexpr' in C++11 for literal types.
6606    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6607      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6608        << DclT << Init->getSourceRange()
6609        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6610      VDecl->setConstexpr(true);
6611
6612    } else {
6613      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6614        << DclT << Init->getSourceRange();
6615      VDecl->setInvalidDecl();
6616    }
6617  } else if (VDecl->isFileVarDecl()) {
6618    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6619        (!getLangOpts().CPlusPlus ||
6620         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6621      Diag(VDecl->getLocation(), diag::warn_extern_init);
6622
6623    // C99 6.7.8p4. All file scoped initializers need to be constant.
6624    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6625      CheckForConstantInitializer(Init, DclT);
6626  }
6627
6628  // We will represent direct-initialization similarly to copy-initialization:
6629  //    int x(1);  -as-> int x = 1;
6630  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6631  //
6632  // Clients that want to distinguish between the two forms, can check for
6633  // direct initializer using VarDecl::getInitStyle().
6634  // A major benefit is that clients that don't particularly care about which
6635  // exactly form was it (like the CodeGen) can handle both cases without
6636  // special case code.
6637
6638  // C++ 8.5p11:
6639  // The form of initialization (using parentheses or '=') is generally
6640  // insignificant, but does matter when the entity being initialized has a
6641  // class type.
6642  if (CXXDirectInit) {
6643    assert(DirectInit && "Call-style initializer must be direct init.");
6644    VDecl->setInitStyle(VarDecl::CallInit);
6645  } else if (DirectInit) {
6646    // This must be list-initialization. No other way is direct-initialization.
6647    VDecl->setInitStyle(VarDecl::ListInit);
6648  }
6649
6650  CheckCompleteVariableDeclaration(VDecl);
6651}
6652
6653/// ActOnInitializerError - Given that there was an error parsing an
6654/// initializer for the given declaration, try to return to some form
6655/// of sanity.
6656void Sema::ActOnInitializerError(Decl *D) {
6657  // Our main concern here is re-establishing invariants like "a
6658  // variable's type is either dependent or complete".
6659  if (!D || D->isInvalidDecl()) return;
6660
6661  VarDecl *VD = dyn_cast<VarDecl>(D);
6662  if (!VD) return;
6663
6664  // Auto types are meaningless if we can't make sense of the initializer.
6665  if (ParsingInitForAutoVars.count(D)) {
6666    D->setInvalidDecl();
6667    return;
6668  }
6669
6670  QualType Ty = VD->getType();
6671  if (Ty->isDependentType()) return;
6672
6673  // Require a complete type.
6674  if (RequireCompleteType(VD->getLocation(),
6675                          Context.getBaseElementType(Ty),
6676                          diag::err_typecheck_decl_incomplete_type)) {
6677    VD->setInvalidDecl();
6678    return;
6679  }
6680
6681  // Require an abstract type.
6682  if (RequireNonAbstractType(VD->getLocation(), Ty,
6683                             diag::err_abstract_type_in_decl,
6684                             AbstractVariableType)) {
6685    VD->setInvalidDecl();
6686    return;
6687  }
6688
6689  // Don't bother complaining about constructors or destructors,
6690  // though.
6691}
6692
6693void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6694                                  bool TypeMayContainAuto) {
6695  // If there is no declaration, there was an error parsing it. Just ignore it.
6696  if (RealDecl == 0)
6697    return;
6698
6699  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6700    QualType Type = Var->getType();
6701
6702    // C++11 [dcl.spec.auto]p3
6703    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6704      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6705        << Var->getDeclName() << Type;
6706      Var->setInvalidDecl();
6707      return;
6708    }
6709
6710    // C++11 [class.static.data]p3: A static data member can be declared with
6711    // the constexpr specifier; if so, its declaration shall specify
6712    // a brace-or-equal-initializer.
6713    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6714    // the definition of a variable [...] or the declaration of a static data
6715    // member.
6716    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6717      if (Var->isStaticDataMember())
6718        Diag(Var->getLocation(),
6719             diag::err_constexpr_static_mem_var_requires_init)
6720          << Var->getDeclName();
6721      else
6722        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6723      Var->setInvalidDecl();
6724      return;
6725    }
6726
6727    switch (Var->isThisDeclarationADefinition()) {
6728    case VarDecl::Definition:
6729      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6730        break;
6731
6732      // We have an out-of-line definition of a static data member
6733      // that has an in-class initializer, so we type-check this like
6734      // a declaration.
6735      //
6736      // Fall through
6737
6738    case VarDecl::DeclarationOnly:
6739      // It's only a declaration.
6740
6741      // Block scope. C99 6.7p7: If an identifier for an object is
6742      // declared with no linkage (C99 6.2.2p6), the type for the
6743      // object shall be complete.
6744      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6745          !Var->getLinkage() && !Var->isInvalidDecl() &&
6746          RequireCompleteType(Var->getLocation(), Type,
6747                              diag::err_typecheck_decl_incomplete_type))
6748        Var->setInvalidDecl();
6749
6750      // Make sure that the type is not abstract.
6751      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6752          RequireNonAbstractType(Var->getLocation(), Type,
6753                                 diag::err_abstract_type_in_decl,
6754                                 AbstractVariableType))
6755        Var->setInvalidDecl();
6756      return;
6757
6758    case VarDecl::TentativeDefinition:
6759      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6760      // object that has file scope without an initializer, and without a
6761      // storage-class specifier or with the storage-class specifier "static",
6762      // constitutes a tentative definition. Note: A tentative definition with
6763      // external linkage is valid (C99 6.2.2p5).
6764      if (!Var->isInvalidDecl()) {
6765        if (const IncompleteArrayType *ArrayT
6766                                    = Context.getAsIncompleteArrayType(Type)) {
6767          if (RequireCompleteType(Var->getLocation(),
6768                                  ArrayT->getElementType(),
6769                                  diag::err_illegal_decl_array_incomplete_type))
6770            Var->setInvalidDecl();
6771        } else if (Var->getStorageClass() == SC_Static) {
6772          // C99 6.9.2p3: If the declaration of an identifier for an object is
6773          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6774          // declared type shall not be an incomplete type.
6775          // NOTE: code such as the following
6776          //     static struct s;
6777          //     struct s { int a; };
6778          // is accepted by gcc. Hence here we issue a warning instead of
6779          // an error and we do not invalidate the static declaration.
6780          // NOTE: to avoid multiple warnings, only check the first declaration.
6781          if (Var->getPreviousDecl() == 0)
6782            RequireCompleteType(Var->getLocation(), Type,
6783                                diag::ext_typecheck_decl_incomplete_type);
6784        }
6785      }
6786
6787      // Record the tentative definition; we're done.
6788      if (!Var->isInvalidDecl())
6789        TentativeDefinitions.push_back(Var);
6790      return;
6791    }
6792
6793    // Provide a specific diagnostic for uninitialized variable
6794    // definitions with incomplete array type.
6795    if (Type->isIncompleteArrayType()) {
6796      Diag(Var->getLocation(),
6797           diag::err_typecheck_incomplete_array_needs_initializer);
6798      Var->setInvalidDecl();
6799      return;
6800    }
6801
6802    // Provide a specific diagnostic for uninitialized variable
6803    // definitions with reference type.
6804    if (Type->isReferenceType()) {
6805      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6806        << Var->getDeclName()
6807        << SourceRange(Var->getLocation(), Var->getLocation());
6808      Var->setInvalidDecl();
6809      return;
6810    }
6811
6812    // Do not attempt to type-check the default initializer for a
6813    // variable with dependent type.
6814    if (Type->isDependentType())
6815      return;
6816
6817    if (Var->isInvalidDecl())
6818      return;
6819
6820    if (RequireCompleteType(Var->getLocation(),
6821                            Context.getBaseElementType(Type),
6822                            diag::err_typecheck_decl_incomplete_type)) {
6823      Var->setInvalidDecl();
6824      return;
6825    }
6826
6827    // The variable can not have an abstract class type.
6828    if (RequireNonAbstractType(Var->getLocation(), Type,
6829                               diag::err_abstract_type_in_decl,
6830                               AbstractVariableType)) {
6831      Var->setInvalidDecl();
6832      return;
6833    }
6834
6835    // Check for jumps past the implicit initializer.  C++0x
6836    // clarifies that this applies to a "variable with automatic
6837    // storage duration", not a "local variable".
6838    // C++11 [stmt.dcl]p3
6839    //   A program that jumps from a point where a variable with automatic
6840    //   storage duration is not in scope to a point where it is in scope is
6841    //   ill-formed unless the variable has scalar type, class type with a
6842    //   trivial default constructor and a trivial destructor, a cv-qualified
6843    //   version of one of these types, or an array of one of the preceding
6844    //   types and is declared without an initializer.
6845    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6846      if (const RecordType *Record
6847            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6848        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6849        // Mark the function for further checking even if the looser rules of
6850        // C++11 do not require such checks, so that we can diagnose
6851        // incompatibilities with C++98.
6852        if (!CXXRecord->isPOD())
6853          getCurFunction()->setHasBranchProtectedScope();
6854      }
6855    }
6856
6857    // C++03 [dcl.init]p9:
6858    //   If no initializer is specified for an object, and the
6859    //   object is of (possibly cv-qualified) non-POD class type (or
6860    //   array thereof), the object shall be default-initialized; if
6861    //   the object is of const-qualified type, the underlying class
6862    //   type shall have a user-declared default
6863    //   constructor. Otherwise, if no initializer is specified for
6864    //   a non- static object, the object and its subobjects, if
6865    //   any, have an indeterminate initial value); if the object
6866    //   or any of its subobjects are of const-qualified type, the
6867    //   program is ill-formed.
6868    // C++0x [dcl.init]p11:
6869    //   If no initializer is specified for an object, the object is
6870    //   default-initialized; [...].
6871    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6872    InitializationKind Kind
6873      = InitializationKind::CreateDefault(Var->getLocation());
6874
6875    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6876    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6877                                      MultiExprArg(*this, 0, 0));
6878    if (Init.isInvalid())
6879      Var->setInvalidDecl();
6880    else if (Init.get()) {
6881      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6882      // This is important for template substitution.
6883      Var->setInitStyle(VarDecl::CallInit);
6884    }
6885
6886    CheckCompleteVariableDeclaration(Var);
6887  }
6888}
6889
6890void Sema::ActOnCXXForRangeDecl(Decl *D) {
6891  VarDecl *VD = dyn_cast<VarDecl>(D);
6892  if (!VD) {
6893    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6894    D->setInvalidDecl();
6895    return;
6896  }
6897
6898  VD->setCXXForRangeDecl(true);
6899
6900  // for-range-declaration cannot be given a storage class specifier.
6901  int Error = -1;
6902  switch (VD->getStorageClassAsWritten()) {
6903  case SC_None:
6904    break;
6905  case SC_Extern:
6906    Error = 0;
6907    break;
6908  case SC_Static:
6909    Error = 1;
6910    break;
6911  case SC_PrivateExtern:
6912    Error = 2;
6913    break;
6914  case SC_Auto:
6915    Error = 3;
6916    break;
6917  case SC_Register:
6918    Error = 4;
6919    break;
6920  case SC_OpenCLWorkGroupLocal:
6921    llvm_unreachable("Unexpected storage class");
6922  }
6923  if (VD->isConstexpr())
6924    Error = 5;
6925  if (Error != -1) {
6926    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6927      << VD->getDeclName() << Error;
6928    D->setInvalidDecl();
6929  }
6930}
6931
6932void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6933  if (var->isInvalidDecl()) return;
6934
6935  // In ARC, don't allow jumps past the implicit initialization of a
6936  // local retaining variable.
6937  if (getLangOpts().ObjCAutoRefCount &&
6938      var->hasLocalStorage()) {
6939    switch (var->getType().getObjCLifetime()) {
6940    case Qualifiers::OCL_None:
6941    case Qualifiers::OCL_ExplicitNone:
6942    case Qualifiers::OCL_Autoreleasing:
6943      break;
6944
6945    case Qualifiers::OCL_Weak:
6946    case Qualifiers::OCL_Strong:
6947      getCurFunction()->setHasBranchProtectedScope();
6948      break;
6949    }
6950  }
6951
6952  // All the following checks are C++ only.
6953  if (!getLangOpts().CPlusPlus) return;
6954
6955  QualType baseType = Context.getBaseElementType(var->getType());
6956  if (baseType->isDependentType()) return;
6957
6958  // __block variables might require us to capture a copy-initializer.
6959  if (var->hasAttr<BlocksAttr>()) {
6960    // It's currently invalid to ever have a __block variable with an
6961    // array type; should we diagnose that here?
6962
6963    // Regardless, we don't want to ignore array nesting when
6964    // constructing this copy.
6965    QualType type = var->getType();
6966
6967    if (type->isStructureOrClassType()) {
6968      SourceLocation poi = var->getLocation();
6969      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6970      ExprResult result =
6971        PerformCopyInitialization(
6972                        InitializedEntity::InitializeBlock(poi, type, false),
6973                                  poi, Owned(varRef));
6974      if (!result.isInvalid()) {
6975        result = MaybeCreateExprWithCleanups(result);
6976        Expr *init = result.takeAs<Expr>();
6977        Context.setBlockVarCopyInits(var, init);
6978      }
6979    }
6980  }
6981
6982  Expr *Init = var->getInit();
6983  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6984
6985  if (!var->getDeclContext()->isDependentContext() && Init) {
6986    if (IsGlobal && !var->isConstexpr() &&
6987        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6988                                            var->getLocation())
6989          != DiagnosticsEngine::Ignored &&
6990        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6991      Diag(var->getLocation(), diag::warn_global_constructor)
6992        << Init->getSourceRange();
6993
6994    if (var->isConstexpr()) {
6995      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6996      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6997        SourceLocation DiagLoc = var->getLocation();
6998        // If the note doesn't add any useful information other than a source
6999        // location, fold it into the primary diagnostic.
7000        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7001              diag::note_invalid_subexpr_in_const_expr) {
7002          DiagLoc = Notes[0].first;
7003          Notes.clear();
7004        }
7005        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7006          << var << Init->getSourceRange();
7007        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7008          Diag(Notes[I].first, Notes[I].second);
7009      }
7010    } else if (var->isUsableInConstantExpressions(Context)) {
7011      // Check whether the initializer of a const variable of integral or
7012      // enumeration type is an ICE now, since we can't tell whether it was
7013      // initialized by a constant expression if we check later.
7014      var->checkInitIsICE();
7015    }
7016  }
7017
7018  // Require the destructor.
7019  if (const RecordType *recordType = baseType->getAs<RecordType>())
7020    FinalizeVarWithDestructor(var, recordType);
7021}
7022
7023/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7024/// any semantic actions necessary after any initializer has been attached.
7025void
7026Sema::FinalizeDeclaration(Decl *ThisDecl) {
7027  // Note that we are no longer parsing the initializer for this declaration.
7028  ParsingInitForAutoVars.erase(ThisDecl);
7029}
7030
7031Sema::DeclGroupPtrTy
7032Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7033                              Decl **Group, unsigned NumDecls) {
7034  SmallVector<Decl*, 8> Decls;
7035
7036  if (DS.isTypeSpecOwned())
7037    Decls.push_back(DS.getRepAsDecl());
7038
7039  for (unsigned i = 0; i != NumDecls; ++i)
7040    if (Decl *D = Group[i])
7041      Decls.push_back(D);
7042
7043  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7044                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7045}
7046
7047/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7048/// group, performing any necessary semantic checking.
7049Sema::DeclGroupPtrTy
7050Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7051                           bool TypeMayContainAuto) {
7052  // C++0x [dcl.spec.auto]p7:
7053  //   If the type deduced for the template parameter U is not the same in each
7054  //   deduction, the program is ill-formed.
7055  // FIXME: When initializer-list support is added, a distinction is needed
7056  // between the deduced type U and the deduced type which 'auto' stands for.
7057  //   auto a = 0, b = { 1, 2, 3 };
7058  // is legal because the deduced type U is 'int' in both cases.
7059  if (TypeMayContainAuto && NumDecls > 1) {
7060    QualType Deduced;
7061    CanQualType DeducedCanon;
7062    VarDecl *DeducedDecl = 0;
7063    for (unsigned i = 0; i != NumDecls; ++i) {
7064      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7065        AutoType *AT = D->getType()->getContainedAutoType();
7066        // Don't reissue diagnostics when instantiating a template.
7067        if (AT && D->isInvalidDecl())
7068          break;
7069        if (AT && AT->isDeduced()) {
7070          QualType U = AT->getDeducedType();
7071          CanQualType UCanon = Context.getCanonicalType(U);
7072          if (Deduced.isNull()) {
7073            Deduced = U;
7074            DeducedCanon = UCanon;
7075            DeducedDecl = D;
7076          } else if (DeducedCanon != UCanon) {
7077            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7078                 diag::err_auto_different_deductions)
7079              << Deduced << DeducedDecl->getDeclName()
7080              << U << D->getDeclName()
7081              << DeducedDecl->getInit()->getSourceRange()
7082              << D->getInit()->getSourceRange();
7083            D->setInvalidDecl();
7084            break;
7085          }
7086        }
7087      }
7088    }
7089  }
7090
7091  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7092}
7093
7094
7095/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7096/// to introduce parameters into function prototype scope.
7097Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7098  const DeclSpec &DS = D.getDeclSpec();
7099
7100  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7101  // C++03 [dcl.stc]p2 also permits 'auto'.
7102  VarDecl::StorageClass StorageClass = SC_None;
7103  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7104  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7105    StorageClass = SC_Register;
7106    StorageClassAsWritten = SC_Register;
7107  } else if (getLangOpts().CPlusPlus &&
7108             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7109    StorageClass = SC_Auto;
7110    StorageClassAsWritten = SC_Auto;
7111  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7112    Diag(DS.getStorageClassSpecLoc(),
7113         diag::err_invalid_storage_class_in_func_decl);
7114    D.getMutableDeclSpec().ClearStorageClassSpecs();
7115  }
7116
7117  if (D.getDeclSpec().isThreadSpecified())
7118    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7119  if (D.getDeclSpec().isConstexprSpecified())
7120    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7121      << 0;
7122
7123  DiagnoseFunctionSpecifiers(D);
7124
7125  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7126  QualType parmDeclType = TInfo->getType();
7127
7128  if (getLangOpts().CPlusPlus) {
7129    // Check that there are no default arguments inside the type of this
7130    // parameter.
7131    CheckExtraCXXDefaultArguments(D);
7132
7133    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7134    if (D.getCXXScopeSpec().isSet()) {
7135      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7136        << D.getCXXScopeSpec().getRange();
7137      D.getCXXScopeSpec().clear();
7138    }
7139  }
7140
7141  // Ensure we have a valid name
7142  IdentifierInfo *II = 0;
7143  if (D.hasName()) {
7144    II = D.getIdentifier();
7145    if (!II) {
7146      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7147        << GetNameForDeclarator(D).getName().getAsString();
7148      D.setInvalidType(true);
7149    }
7150  }
7151
7152  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7153  if (II) {
7154    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7155                   ForRedeclaration);
7156    LookupName(R, S);
7157    if (R.isSingleResult()) {
7158      NamedDecl *PrevDecl = R.getFoundDecl();
7159      if (PrevDecl->isTemplateParameter()) {
7160        // Maybe we will complain about the shadowed template parameter.
7161        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7162        // Just pretend that we didn't see the previous declaration.
7163        PrevDecl = 0;
7164      } else if (S->isDeclScope(PrevDecl)) {
7165        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7166        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7167
7168        // Recover by removing the name
7169        II = 0;
7170        D.SetIdentifier(0, D.getIdentifierLoc());
7171        D.setInvalidType(true);
7172      }
7173    }
7174  }
7175
7176  // Temporarily put parameter variables in the translation unit, not
7177  // the enclosing context.  This prevents them from accidentally
7178  // looking like class members in C++.
7179  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7180                                    D.getLocStart(),
7181                                    D.getIdentifierLoc(), II,
7182                                    parmDeclType, TInfo,
7183                                    StorageClass, StorageClassAsWritten);
7184
7185  if (D.isInvalidType())
7186    New->setInvalidDecl();
7187
7188  assert(S->isFunctionPrototypeScope());
7189  assert(S->getFunctionPrototypeDepth() >= 1);
7190  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7191                    S->getNextFunctionPrototypeIndex());
7192
7193  // Add the parameter declaration into this scope.
7194  S->AddDecl(New);
7195  if (II)
7196    IdResolver.AddDecl(New);
7197
7198  ProcessDeclAttributes(S, New, D);
7199
7200  if (D.getDeclSpec().isModulePrivateSpecified())
7201    Diag(New->getLocation(), diag::err_module_private_local)
7202      << 1 << New->getDeclName()
7203      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7204      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7205
7206  if (New->hasAttr<BlocksAttr>()) {
7207    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7208  }
7209  return New;
7210}
7211
7212/// \brief Synthesizes a variable for a parameter arising from a
7213/// typedef.
7214ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7215                                              SourceLocation Loc,
7216                                              QualType T) {
7217  /* FIXME: setting StartLoc == Loc.
7218     Would it be worth to modify callers so as to provide proper source
7219     location for the unnamed parameters, embedding the parameter's type? */
7220  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7221                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7222                                           SC_None, SC_None, 0);
7223  Param->setImplicit();
7224  return Param;
7225}
7226
7227void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7228                                    ParmVarDecl * const *ParamEnd) {
7229  // Don't diagnose unused-parameter errors in template instantiations; we
7230  // will already have done so in the template itself.
7231  if (!ActiveTemplateInstantiations.empty())
7232    return;
7233
7234  for (; Param != ParamEnd; ++Param) {
7235    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7236        !(*Param)->hasAttr<UnusedAttr>()) {
7237      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7238        << (*Param)->getDeclName();
7239    }
7240  }
7241}
7242
7243void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7244                                                  ParmVarDecl * const *ParamEnd,
7245                                                  QualType ReturnTy,
7246                                                  NamedDecl *D) {
7247  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7248    return;
7249
7250  // Warn if the return value is pass-by-value and larger than the specified
7251  // threshold.
7252  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7253    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7254    if (Size > LangOpts.NumLargeByValueCopy)
7255      Diag(D->getLocation(), diag::warn_return_value_size)
7256          << D->getDeclName() << Size;
7257  }
7258
7259  // Warn if any parameter is pass-by-value and larger than the specified
7260  // threshold.
7261  for (; Param != ParamEnd; ++Param) {
7262    QualType T = (*Param)->getType();
7263    if (T->isDependentType() || !T.isPODType(Context))
7264      continue;
7265    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7266    if (Size > LangOpts.NumLargeByValueCopy)
7267      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7268          << (*Param)->getDeclName() << Size;
7269  }
7270}
7271
7272ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7273                                  SourceLocation NameLoc, IdentifierInfo *Name,
7274                                  QualType T, TypeSourceInfo *TSInfo,
7275                                  VarDecl::StorageClass StorageClass,
7276                                  VarDecl::StorageClass StorageClassAsWritten) {
7277  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7278  if (getLangOpts().ObjCAutoRefCount &&
7279      T.getObjCLifetime() == Qualifiers::OCL_None &&
7280      T->isObjCLifetimeType()) {
7281
7282    Qualifiers::ObjCLifetime lifetime;
7283
7284    // Special cases for arrays:
7285    //   - if it's const, use __unsafe_unretained
7286    //   - otherwise, it's an error
7287    if (T->isArrayType()) {
7288      if (!T.isConstQualified()) {
7289        DelayedDiagnostics.add(
7290            sema::DelayedDiagnostic::makeForbiddenType(
7291            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7292      }
7293      lifetime = Qualifiers::OCL_ExplicitNone;
7294    } else {
7295      lifetime = T->getObjCARCImplicitLifetime();
7296    }
7297    T = Context.getLifetimeQualifiedType(T, lifetime);
7298  }
7299
7300  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7301                                         Context.getAdjustedParameterType(T),
7302                                         TSInfo,
7303                                         StorageClass, StorageClassAsWritten,
7304                                         0);
7305
7306  // Parameters can not be abstract class types.
7307  // For record types, this is done by the AbstractClassUsageDiagnoser once
7308  // the class has been completely parsed.
7309  if (!CurContext->isRecord() &&
7310      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7311                             AbstractParamType))
7312    New->setInvalidDecl();
7313
7314  // Parameter declarators cannot be interface types. All ObjC objects are
7315  // passed by reference.
7316  if (T->isObjCObjectType()) {
7317    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7318    Diag(NameLoc,
7319         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7320      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7321    T = Context.getObjCObjectPointerType(T);
7322    New->setType(T);
7323  }
7324
7325  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7326  // duration shall not be qualified by an address-space qualifier."
7327  // Since all parameters have automatic store duration, they can not have
7328  // an address space.
7329  if (T.getAddressSpace() != 0) {
7330    Diag(NameLoc, diag::err_arg_with_address_space);
7331    New->setInvalidDecl();
7332  }
7333
7334  return New;
7335}
7336
7337void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7338                                           SourceLocation LocAfterDecls) {
7339  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7340
7341  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7342  // for a K&R function.
7343  if (!FTI.hasPrototype) {
7344    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7345      --i;
7346      if (FTI.ArgInfo[i].Param == 0) {
7347        SmallString<256> Code;
7348        llvm::raw_svector_ostream(Code) << "  int "
7349                                        << FTI.ArgInfo[i].Ident->getName()
7350                                        << ";\n";
7351        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7352          << FTI.ArgInfo[i].Ident
7353          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7354
7355        // Implicitly declare the argument as type 'int' for lack of a better
7356        // type.
7357        AttributeFactory attrs;
7358        DeclSpec DS(attrs);
7359        const char* PrevSpec; // unused
7360        unsigned DiagID; // unused
7361        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7362                           PrevSpec, DiagID);
7363        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7364        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7365        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7366      }
7367    }
7368  }
7369}
7370
7371Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7372  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7373  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7374  Scope *ParentScope = FnBodyScope->getParent();
7375
7376  D.setFunctionDefinitionKind(FDK_Definition);
7377  Decl *DP = HandleDeclarator(ParentScope, D,
7378                              MultiTemplateParamsArg(*this));
7379  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7380}
7381
7382static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7383  // Don't warn about invalid declarations.
7384  if (FD->isInvalidDecl())
7385    return false;
7386
7387  // Or declarations that aren't global.
7388  if (!FD->isGlobal())
7389    return false;
7390
7391  // Don't warn about C++ member functions.
7392  if (isa<CXXMethodDecl>(FD))
7393    return false;
7394
7395  // Don't warn about 'main'.
7396  if (FD->isMain())
7397    return false;
7398
7399  // Don't warn about inline functions.
7400  if (FD->isInlined())
7401    return false;
7402
7403  // Don't warn about function templates.
7404  if (FD->getDescribedFunctionTemplate())
7405    return false;
7406
7407  // Don't warn about function template specializations.
7408  if (FD->isFunctionTemplateSpecialization())
7409    return false;
7410
7411  bool MissingPrototype = true;
7412  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7413       Prev; Prev = Prev->getPreviousDecl()) {
7414    // Ignore any declarations that occur in function or method
7415    // scope, because they aren't visible from the header.
7416    if (Prev->getDeclContext()->isFunctionOrMethod())
7417      continue;
7418
7419    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7420    break;
7421  }
7422
7423  return MissingPrototype;
7424}
7425
7426void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7427  // Don't complain if we're in GNU89 mode and the previous definition
7428  // was an extern inline function.
7429  const FunctionDecl *Definition;
7430  if (FD->isDefined(Definition) &&
7431      !canRedefineFunction(Definition, getLangOpts())) {
7432    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7433        Definition->getStorageClass() == SC_Extern)
7434      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7435        << FD->getDeclName() << getLangOpts().CPlusPlus;
7436    else
7437      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7438    Diag(Definition->getLocation(), diag::note_previous_definition);
7439  }
7440}
7441
7442Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7443  // Clear the last template instantiation error context.
7444  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7445
7446  if (!D)
7447    return D;
7448  FunctionDecl *FD = 0;
7449
7450  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7451    FD = FunTmpl->getTemplatedDecl();
7452  else
7453    FD = cast<FunctionDecl>(D);
7454
7455  // Enter a new function scope
7456  PushFunctionScope();
7457
7458  // See if this is a redefinition.
7459  if (!FD->isLateTemplateParsed())
7460    CheckForFunctionRedefinition(FD);
7461
7462  // Builtin functions cannot be defined.
7463  if (unsigned BuiltinID = FD->getBuiltinID()) {
7464    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7465      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7466      FD->setInvalidDecl();
7467    }
7468  }
7469
7470  // The return type of a function definition must be complete
7471  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7472  QualType ResultType = FD->getResultType();
7473  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7474      !FD->isInvalidDecl() &&
7475      RequireCompleteType(FD->getLocation(), ResultType,
7476                          diag::err_func_def_incomplete_result))
7477    FD->setInvalidDecl();
7478
7479  // GNU warning -Wmissing-prototypes:
7480  //   Warn if a global function is defined without a previous
7481  //   prototype declaration. This warning is issued even if the
7482  //   definition itself provides a prototype. The aim is to detect
7483  //   global functions that fail to be declared in header files.
7484  if (ShouldWarnAboutMissingPrototype(FD))
7485    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7486
7487  if (FnBodyScope)
7488    PushDeclContext(FnBodyScope, FD);
7489
7490  // Check the validity of our function parameters
7491  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7492                           /*CheckParameterNames=*/true);
7493
7494  // Introduce our parameters into the function scope
7495  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7496    ParmVarDecl *Param = FD->getParamDecl(p);
7497    Param->setOwningFunction(FD);
7498
7499    // If this has an identifier, add it to the scope stack.
7500    if (Param->getIdentifier() && FnBodyScope) {
7501      CheckShadow(FnBodyScope, Param);
7502
7503      PushOnScopeChains(Param, FnBodyScope);
7504    }
7505  }
7506
7507  // If we had any tags defined in the function prototype,
7508  // introduce them into the function scope.
7509  if (FnBodyScope) {
7510    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7511           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7512      NamedDecl *D = *I;
7513
7514      // Some of these decls (like enums) may have been pinned to the translation unit
7515      // for lack of a real context earlier. If so, remove from the translation unit
7516      // and reattach to the current context.
7517      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7518        // Is the decl actually in the context?
7519        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7520               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7521          if (*DI == D) {
7522            Context.getTranslationUnitDecl()->removeDecl(D);
7523            break;
7524          }
7525        }
7526        // Either way, reassign the lexical decl context to our FunctionDecl.
7527        D->setLexicalDeclContext(CurContext);
7528      }
7529
7530      // If the decl has a non-null name, make accessible in the current scope.
7531      if (!D->getName().empty())
7532        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7533
7534      // Similarly, dive into enums and fish their constants out, making them
7535      // accessible in this scope.
7536      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7537        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7538               EE = ED->enumerator_end(); EI != EE; ++EI)
7539          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7540      }
7541    }
7542  }
7543
7544  // Ensure that the function's exception specification is instantiated.
7545  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7546    ResolveExceptionSpec(D->getLocation(), FPT);
7547
7548  // Checking attributes of current function definition
7549  // dllimport attribute.
7550  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7551  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7552    // dllimport attribute cannot be directly applied to definition.
7553    // Microsoft accepts dllimport for functions defined within class scope.
7554    if (!DA->isInherited() &&
7555        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7556      Diag(FD->getLocation(),
7557           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7558        << "dllimport";
7559      FD->setInvalidDecl();
7560      return FD;
7561    }
7562
7563    // Visual C++ appears to not think this is an issue, so only issue
7564    // a warning when Microsoft extensions are disabled.
7565    if (!LangOpts.MicrosoftExt) {
7566      // If a symbol previously declared dllimport is later defined, the
7567      // attribute is ignored in subsequent references, and a warning is
7568      // emitted.
7569      Diag(FD->getLocation(),
7570           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7571        << FD->getName() << "dllimport";
7572    }
7573  }
7574  return FD;
7575}
7576
7577/// \brief Given the set of return statements within a function body,
7578/// compute the variables that are subject to the named return value
7579/// optimization.
7580///
7581/// Each of the variables that is subject to the named return value
7582/// optimization will be marked as NRVO variables in the AST, and any
7583/// return statement that has a marked NRVO variable as its NRVO candidate can
7584/// use the named return value optimization.
7585///
7586/// This function applies a very simplistic algorithm for NRVO: if every return
7587/// statement in the function has the same NRVO candidate, that candidate is
7588/// the NRVO variable.
7589///
7590/// FIXME: Employ a smarter algorithm that accounts for multiple return
7591/// statements and the lifetimes of the NRVO candidates. We should be able to
7592/// find a maximal set of NRVO variables.
7593void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7594  ReturnStmt **Returns = Scope->Returns.data();
7595
7596  const VarDecl *NRVOCandidate = 0;
7597  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7598    if (!Returns[I]->getNRVOCandidate())
7599      return;
7600
7601    if (!NRVOCandidate)
7602      NRVOCandidate = Returns[I]->getNRVOCandidate();
7603    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7604      return;
7605  }
7606
7607  if (NRVOCandidate)
7608    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7609}
7610
7611Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7612  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7613}
7614
7615Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7616                                    bool IsInstantiation) {
7617  FunctionDecl *FD = 0;
7618  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7619  if (FunTmpl)
7620    FD = FunTmpl->getTemplatedDecl();
7621  else
7622    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7623
7624  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7625  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7626
7627  if (FD) {
7628    FD->setBody(Body);
7629
7630    // If the function implicitly returns zero (like 'main') or is naked,
7631    // don't complain about missing return statements.
7632    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7633      WP.disableCheckFallThrough();
7634
7635    // MSVC permits the use of pure specifier (=0) on function definition,
7636    // defined at class scope, warn about this non standard construct.
7637    if (getLangOpts().MicrosoftExt && FD->isPure())
7638      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7639
7640    if (!FD->isInvalidDecl()) {
7641      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7642      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7643                                             FD->getResultType(), FD);
7644
7645      // If this is a constructor, we need a vtable.
7646      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7647        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7648
7649      computeNRVO(Body, getCurFunction());
7650    }
7651
7652    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7653           "Function parsing confused");
7654  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7655    assert(MD == getCurMethodDecl() && "Method parsing confused");
7656    MD->setBody(Body);
7657    if (!MD->isInvalidDecl()) {
7658      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7659      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7660                                             MD->getResultType(), MD);
7661
7662      if (Body)
7663        computeNRVO(Body, getCurFunction());
7664    }
7665    if (ObjCShouldCallSuperDealloc) {
7666      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7667      ObjCShouldCallSuperDealloc = false;
7668    }
7669    if (ObjCShouldCallSuperFinalize) {
7670      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7671      ObjCShouldCallSuperFinalize = false;
7672    }
7673  } else {
7674    return 0;
7675  }
7676
7677  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7678         "ObjC methods, which should have been handled in the block above.");
7679  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7680         "ObjC methods, which should have been handled in the block above.");
7681
7682  // Verify and clean out per-function state.
7683  if (Body) {
7684    // C++ constructors that have function-try-blocks can't have return
7685    // statements in the handlers of that block. (C++ [except.handle]p14)
7686    // Verify this.
7687    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7688      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7689
7690    // Verify that gotos and switch cases don't jump into scopes illegally.
7691    if (getCurFunction()->NeedsScopeChecking() &&
7692        !dcl->isInvalidDecl() &&
7693        !hasAnyUnrecoverableErrorsInThisFunction())
7694      DiagnoseInvalidJumps(Body);
7695
7696    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7697      if (!Destructor->getParent()->isDependentType())
7698        CheckDestructor(Destructor);
7699
7700      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7701                                             Destructor->getParent());
7702    }
7703
7704    // If any errors have occurred, clear out any temporaries that may have
7705    // been leftover. This ensures that these temporaries won't be picked up for
7706    // deletion in some later function.
7707    if (PP.getDiagnostics().hasErrorOccurred() ||
7708        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7709      DiscardCleanupsInEvaluationContext();
7710    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7711      // Since the body is valid, issue any analysis-based warnings that are
7712      // enabled.
7713      ActivePolicy = &WP;
7714    }
7715
7716    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7717        (!CheckConstexprFunctionDecl(FD) ||
7718         !CheckConstexprFunctionBody(FD, Body)))
7719      FD->setInvalidDecl();
7720
7721    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7722    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7723    assert(MaybeODRUseExprs.empty() &&
7724           "Leftover expressions for odr-use checking");
7725  }
7726
7727  if (!IsInstantiation)
7728    PopDeclContext();
7729
7730  PopFunctionScopeInfo(ActivePolicy, dcl);
7731
7732  // If any errors have occurred, clear out any temporaries that may have
7733  // been leftover. This ensures that these temporaries won't be picked up for
7734  // deletion in some later function.
7735  if (getDiagnostics().hasErrorOccurred()) {
7736    DiscardCleanupsInEvaluationContext();
7737  }
7738
7739  return dcl;
7740}
7741
7742
7743/// When we finish delayed parsing of an attribute, we must attach it to the
7744/// relevant Decl.
7745void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7746                                       ParsedAttributes &Attrs) {
7747  // Always attach attributes to the underlying decl.
7748  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7749    D = TD->getTemplatedDecl();
7750  ProcessDeclAttributeList(S, D, Attrs.getList());
7751
7752  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7753    if (Method->isStatic())
7754      checkThisInStaticMemberFunctionAttributes(Method);
7755}
7756
7757
7758/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7759/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7760NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7761                                          IdentifierInfo &II, Scope *S) {
7762  // Before we produce a declaration for an implicitly defined
7763  // function, see whether there was a locally-scoped declaration of
7764  // this name as a function or variable. If so, use that
7765  // (non-visible) declaration, and complain about it.
7766  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7767    = findLocallyScopedExternalDecl(&II);
7768  if (Pos != LocallyScopedExternalDecls.end()) {
7769    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7770    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7771    return Pos->second;
7772  }
7773
7774  // Extension in C99.  Legal in C90, but warn about it.
7775  unsigned diag_id;
7776  if (II.getName().startswith("__builtin_"))
7777    diag_id = diag::warn_builtin_unknown;
7778  else if (getLangOpts().C99)
7779    diag_id = diag::ext_implicit_function_decl;
7780  else
7781    diag_id = diag::warn_implicit_function_decl;
7782  Diag(Loc, diag_id) << &II;
7783
7784  // Because typo correction is expensive, only do it if the implicit
7785  // function declaration is going to be treated as an error.
7786  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7787    TypoCorrection Corrected;
7788    DeclFilterCCC<FunctionDecl> Validator;
7789    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7790                                      LookupOrdinaryName, S, 0, Validator))) {
7791      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7792      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7793      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7794
7795      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7796          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7797
7798      if (Func->getLocation().isValid()
7799          && !II.getName().startswith("__builtin_"))
7800        Diag(Func->getLocation(), diag::note_previous_decl)
7801            << CorrectedQuotedStr;
7802    }
7803  }
7804
7805  // Set a Declarator for the implicit definition: int foo();
7806  const char *Dummy;
7807  AttributeFactory attrFactory;
7808  DeclSpec DS(attrFactory);
7809  unsigned DiagID;
7810  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7811  (void)Error; // Silence warning.
7812  assert(!Error && "Error setting up implicit decl!");
7813  Declarator D(DS, Declarator::BlockContext);
7814  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7815                                             0, 0, true, SourceLocation(),
7816                                             SourceLocation(), SourceLocation(),
7817                                             SourceLocation(),
7818                                             EST_None, SourceLocation(),
7819                                             0, 0, 0, 0, Loc, Loc, D),
7820                DS.getAttributes(),
7821                SourceLocation());
7822  D.SetIdentifier(&II, Loc);
7823
7824  // Insert this function into translation-unit scope.
7825
7826  DeclContext *PrevDC = CurContext;
7827  CurContext = Context.getTranslationUnitDecl();
7828
7829  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7830  FD->setImplicit();
7831
7832  CurContext = PrevDC;
7833
7834  AddKnownFunctionAttributes(FD);
7835
7836  return FD;
7837}
7838
7839/// \brief Adds any function attributes that we know a priori based on
7840/// the declaration of this function.
7841///
7842/// These attributes can apply both to implicitly-declared builtins
7843/// (like __builtin___printf_chk) or to library-declared functions
7844/// like NSLog or printf.
7845///
7846/// We need to check for duplicate attributes both here and where user-written
7847/// attributes are applied to declarations.
7848void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7849  if (FD->isInvalidDecl())
7850    return;
7851
7852  // If this is a built-in function, map its builtin attributes to
7853  // actual attributes.
7854  if (unsigned BuiltinID = FD->getBuiltinID()) {
7855    // Handle printf-formatting attributes.
7856    unsigned FormatIdx;
7857    bool HasVAListArg;
7858    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7859      if (!FD->getAttr<FormatAttr>()) {
7860        const char *fmt = "printf";
7861        unsigned int NumParams = FD->getNumParams();
7862        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7863            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7864          fmt = "NSString";
7865        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7866                                               fmt, FormatIdx+1,
7867                                               HasVAListArg ? 0 : FormatIdx+2));
7868      }
7869    }
7870    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7871                                             HasVAListArg)) {
7872     if (!FD->getAttr<FormatAttr>())
7873       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7874                                              "scanf", FormatIdx+1,
7875                                              HasVAListArg ? 0 : FormatIdx+2));
7876    }
7877
7878    // Mark const if we don't care about errno and that is the only
7879    // thing preventing the function from being const. This allows
7880    // IRgen to use LLVM intrinsics for such functions.
7881    if (!getLangOpts().MathErrno &&
7882        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7883      if (!FD->getAttr<ConstAttr>())
7884        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7885    }
7886
7887    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7888        !FD->getAttr<ReturnsTwiceAttr>())
7889      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7890    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7891      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7892    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7893      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7894  }
7895
7896  IdentifierInfo *Name = FD->getIdentifier();
7897  if (!Name)
7898    return;
7899  if ((!getLangOpts().CPlusPlus &&
7900       FD->getDeclContext()->isTranslationUnit()) ||
7901      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7902       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7903       LinkageSpecDecl::lang_c)) {
7904    // Okay: this could be a libc/libm/Objective-C function we know
7905    // about.
7906  } else
7907    return;
7908
7909  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7910    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7911    // target-specific builtins, perhaps?
7912    if (!FD->getAttr<FormatAttr>())
7913      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7914                                             "printf", 2,
7915                                             Name->isStr("vasprintf") ? 0 : 3));
7916  }
7917}
7918
7919TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7920                                    TypeSourceInfo *TInfo) {
7921  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7922  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7923
7924  if (!TInfo) {
7925    assert(D.isInvalidType() && "no declarator info for valid type");
7926    TInfo = Context.getTrivialTypeSourceInfo(T);
7927  }
7928
7929  // Scope manipulation handled by caller.
7930  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7931                                           D.getLocStart(),
7932                                           D.getIdentifierLoc(),
7933                                           D.getIdentifier(),
7934                                           TInfo);
7935
7936  // Bail out immediately if we have an invalid declaration.
7937  if (D.isInvalidType()) {
7938    NewTD->setInvalidDecl();
7939    return NewTD;
7940  }
7941
7942  if (D.getDeclSpec().isModulePrivateSpecified()) {
7943    if (CurContext->isFunctionOrMethod())
7944      Diag(NewTD->getLocation(), diag::err_module_private_local)
7945        << 2 << NewTD->getDeclName()
7946        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7947        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7948    else
7949      NewTD->setModulePrivate();
7950  }
7951
7952  // C++ [dcl.typedef]p8:
7953  //   If the typedef declaration defines an unnamed class (or
7954  //   enum), the first typedef-name declared by the declaration
7955  //   to be that class type (or enum type) is used to denote the
7956  //   class type (or enum type) for linkage purposes only.
7957  // We need to check whether the type was declared in the declaration.
7958  switch (D.getDeclSpec().getTypeSpecType()) {
7959  case TST_enum:
7960  case TST_struct:
7961  case TST_union:
7962  case TST_class: {
7963    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7964
7965    // Do nothing if the tag is not anonymous or already has an
7966    // associated typedef (from an earlier typedef in this decl group).
7967    if (tagFromDeclSpec->getIdentifier()) break;
7968    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7969
7970    // A well-formed anonymous tag must always be a TUK_Definition.
7971    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7972
7973    // The type must match the tag exactly;  no qualifiers allowed.
7974    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7975      break;
7976
7977    // Otherwise, set this is the anon-decl typedef for the tag.
7978    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7979    break;
7980  }
7981
7982  default:
7983    break;
7984  }
7985
7986  return NewTD;
7987}
7988
7989
7990/// \brief Check that this is a valid underlying type for an enum declaration.
7991bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
7992  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7993  QualType T = TI->getType();
7994
7995  if (T->isDependentType() || T->isIntegralType(Context))
7996    return false;
7997
7998  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
7999  return true;
8000}
8001
8002/// Check whether this is a valid redeclaration of a previous enumeration.
8003/// \return true if the redeclaration was invalid.
8004bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8005                                  QualType EnumUnderlyingTy,
8006                                  const EnumDecl *Prev) {
8007  bool IsFixed = !EnumUnderlyingTy.isNull();
8008
8009  if (IsScoped != Prev->isScoped()) {
8010    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8011      << Prev->isScoped();
8012    Diag(Prev->getLocation(), diag::note_previous_use);
8013    return true;
8014  }
8015
8016  if (IsFixed && Prev->isFixed()) {
8017    if (!EnumUnderlyingTy->isDependentType() &&
8018        !Prev->getIntegerType()->isDependentType() &&
8019        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8020                                        Prev->getIntegerType())) {
8021      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8022        << EnumUnderlyingTy << Prev->getIntegerType();
8023      Diag(Prev->getLocation(), diag::note_previous_use);
8024      return true;
8025    }
8026  } else if (IsFixed != Prev->isFixed()) {
8027    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8028      << Prev->isFixed();
8029    Diag(Prev->getLocation(), diag::note_previous_use);
8030    return true;
8031  }
8032
8033  return false;
8034}
8035
8036/// \brief Determine whether a tag with a given kind is acceptable
8037/// as a redeclaration of the given tag declaration.
8038///
8039/// \returns true if the new tag kind is acceptable, false otherwise.
8040bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8041                                        TagTypeKind NewTag, bool isDefinition,
8042                                        SourceLocation NewTagLoc,
8043                                        const IdentifierInfo &Name) {
8044  // C++ [dcl.type.elab]p3:
8045  //   The class-key or enum keyword present in the
8046  //   elaborated-type-specifier shall agree in kind with the
8047  //   declaration to which the name in the elaborated-type-specifier
8048  //   refers. This rule also applies to the form of
8049  //   elaborated-type-specifier that declares a class-name or
8050  //   friend class since it can be construed as referring to the
8051  //   definition of the class. Thus, in any
8052  //   elaborated-type-specifier, the enum keyword shall be used to
8053  //   refer to an enumeration (7.2), the union class-key shall be
8054  //   used to refer to a union (clause 9), and either the class or
8055  //   struct class-key shall be used to refer to a class (clause 9)
8056  //   declared using the class or struct class-key.
8057  TagTypeKind OldTag = Previous->getTagKind();
8058  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
8059    if (OldTag == NewTag)
8060      return true;
8061
8062  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
8063      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
8064    // Warn about the struct/class tag mismatch.
8065    bool isTemplate = false;
8066    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8067      isTemplate = Record->getDescribedClassTemplate();
8068
8069    if (!ActiveTemplateInstantiations.empty()) {
8070      // In a template instantiation, do not offer fix-its for tag mismatches
8071      // since they usually mess up the template instead of fixing the problem.
8072      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8073        << (NewTag == TTK_Class) << isTemplate << &Name;
8074      return true;
8075    }
8076
8077    if (isDefinition) {
8078      // On definitions, check previous tags and issue a fix-it for each
8079      // one that doesn't match the current tag.
8080      if (Previous->getDefinition()) {
8081        // Don't suggest fix-its for redefinitions.
8082        return true;
8083      }
8084
8085      bool previousMismatch = false;
8086      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8087           E(Previous->redecls_end()); I != E; ++I) {
8088        if (I->getTagKind() != NewTag) {
8089          if (!previousMismatch) {
8090            previousMismatch = true;
8091            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8092              << (NewTag == TTK_Class) << isTemplate << &Name;
8093          }
8094          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8095            << (NewTag == TTK_Class)
8096            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8097                                            NewTag == TTK_Class?
8098                                            "class" : "struct");
8099        }
8100      }
8101      return true;
8102    }
8103
8104    // Check for a previous definition.  If current tag and definition
8105    // are same type, do nothing.  If no definition, but disagree with
8106    // with previous tag type, give a warning, but no fix-it.
8107    const TagDecl *Redecl = Previous->getDefinition() ?
8108                            Previous->getDefinition() : Previous;
8109    if (Redecl->getTagKind() == NewTag) {
8110      return true;
8111    }
8112
8113    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8114      << (NewTag == TTK_Class)
8115      << isTemplate << &Name;
8116    Diag(Redecl->getLocation(), diag::note_previous_use);
8117
8118    // If there is a previous defintion, suggest a fix-it.
8119    if (Previous->getDefinition()) {
8120        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8121          << (Redecl->getTagKind() == TTK_Class)
8122          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8123                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
8124    }
8125
8126    return true;
8127  }
8128  return false;
8129}
8130
8131/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8132/// former case, Name will be non-null.  In the later case, Name will be null.
8133/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8134/// reference/declaration/definition of a tag.
8135Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8136                     SourceLocation KWLoc, CXXScopeSpec &SS,
8137                     IdentifierInfo *Name, SourceLocation NameLoc,
8138                     AttributeList *Attr, AccessSpecifier AS,
8139                     SourceLocation ModulePrivateLoc,
8140                     MultiTemplateParamsArg TemplateParameterLists,
8141                     bool &OwnedDecl, bool &IsDependent,
8142                     SourceLocation ScopedEnumKWLoc,
8143                     bool ScopedEnumUsesClassTag,
8144                     TypeResult UnderlyingType) {
8145  // If this is not a definition, it must have a name.
8146  IdentifierInfo *OrigName = Name;
8147  assert((Name != 0 || TUK == TUK_Definition) &&
8148         "Nameless record must be a definition!");
8149  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8150
8151  OwnedDecl = false;
8152  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8153  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8154
8155  // FIXME: Check explicit specializations more carefully.
8156  bool isExplicitSpecialization = false;
8157  bool Invalid = false;
8158
8159  // We only need to do this matching if we have template parameters
8160  // or a scope specifier, which also conveniently avoids this work
8161  // for non-C++ cases.
8162  if (TemplateParameterLists.size() > 0 ||
8163      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8164    if (TemplateParameterList *TemplateParams
8165          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8166                                                TemplateParameterLists.get(),
8167                                                TemplateParameterLists.size(),
8168                                                    TUK == TUK_Friend,
8169                                                    isExplicitSpecialization,
8170                                                    Invalid)) {
8171      if (TemplateParams->size() > 0) {
8172        // This is a declaration or definition of a class template (which may
8173        // be a member of another template).
8174
8175        if (Invalid)
8176          return 0;
8177
8178        OwnedDecl = false;
8179        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8180                                               SS, Name, NameLoc, Attr,
8181                                               TemplateParams, AS,
8182                                               ModulePrivateLoc,
8183                                           TemplateParameterLists.size() - 1,
8184                 (TemplateParameterList**) TemplateParameterLists.release());
8185        return Result.get();
8186      } else {
8187        // The "template<>" header is extraneous.
8188        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8189          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8190        isExplicitSpecialization = true;
8191      }
8192    }
8193  }
8194
8195  // Figure out the underlying type if this a enum declaration. We need to do
8196  // this early, because it's needed to detect if this is an incompatible
8197  // redeclaration.
8198  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8199
8200  if (Kind == TTK_Enum) {
8201    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8202      // No underlying type explicitly specified, or we failed to parse the
8203      // type, default to int.
8204      EnumUnderlying = Context.IntTy.getTypePtr();
8205    else if (UnderlyingType.get()) {
8206      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8207      // integral type; any cv-qualification is ignored.
8208      TypeSourceInfo *TI = 0;
8209      GetTypeFromParser(UnderlyingType.get(), &TI);
8210      EnumUnderlying = TI;
8211
8212      if (CheckEnumUnderlyingType(TI))
8213        // Recover by falling back to int.
8214        EnumUnderlying = Context.IntTy.getTypePtr();
8215
8216      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8217                                          UPPC_FixedUnderlyingType))
8218        EnumUnderlying = Context.IntTy.getTypePtr();
8219
8220    } else if (getLangOpts().MicrosoftMode)
8221      // Microsoft enums are always of int type.
8222      EnumUnderlying = Context.IntTy.getTypePtr();
8223  }
8224
8225  DeclContext *SearchDC = CurContext;
8226  DeclContext *DC = CurContext;
8227  bool isStdBadAlloc = false;
8228
8229  RedeclarationKind Redecl = ForRedeclaration;
8230  if (TUK == TUK_Friend || TUK == TUK_Reference)
8231    Redecl = NotForRedeclaration;
8232
8233  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8234
8235  if (Name && SS.isNotEmpty()) {
8236    // We have a nested-name tag ('struct foo::bar').
8237
8238    // Check for invalid 'foo::'.
8239    if (SS.isInvalid()) {
8240      Name = 0;
8241      goto CreateNewDecl;
8242    }
8243
8244    // If this is a friend or a reference to a class in a dependent
8245    // context, don't try to make a decl for it.
8246    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8247      DC = computeDeclContext(SS, false);
8248      if (!DC) {
8249        IsDependent = true;
8250        return 0;
8251      }
8252    } else {
8253      DC = computeDeclContext(SS, true);
8254      if (!DC) {
8255        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8256          << SS.getRange();
8257        return 0;
8258      }
8259    }
8260
8261    if (RequireCompleteDeclContext(SS, DC))
8262      return 0;
8263
8264    SearchDC = DC;
8265    // Look-up name inside 'foo::'.
8266    LookupQualifiedName(Previous, DC);
8267
8268    if (Previous.isAmbiguous())
8269      return 0;
8270
8271    if (Previous.empty()) {
8272      // Name lookup did not find anything. However, if the
8273      // nested-name-specifier refers to the current instantiation,
8274      // and that current instantiation has any dependent base
8275      // classes, we might find something at instantiation time: treat
8276      // this as a dependent elaborated-type-specifier.
8277      // But this only makes any sense for reference-like lookups.
8278      if (Previous.wasNotFoundInCurrentInstantiation() &&
8279          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8280        IsDependent = true;
8281        return 0;
8282      }
8283
8284      // A tag 'foo::bar' must already exist.
8285      Diag(NameLoc, diag::err_not_tag_in_scope)
8286        << Kind << Name << DC << SS.getRange();
8287      Name = 0;
8288      Invalid = true;
8289      goto CreateNewDecl;
8290    }
8291  } else if (Name) {
8292    // If this is a named struct, check to see if there was a previous forward
8293    // declaration or definition.
8294    // FIXME: We're looking into outer scopes here, even when we
8295    // shouldn't be. Doing so can result in ambiguities that we
8296    // shouldn't be diagnosing.
8297    LookupName(Previous, S);
8298
8299    if (Previous.isAmbiguous() &&
8300        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8301      LookupResult::Filter F = Previous.makeFilter();
8302      while (F.hasNext()) {
8303        NamedDecl *ND = F.next();
8304        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8305          F.erase();
8306      }
8307      F.done();
8308    }
8309
8310    // Note:  there used to be some attempt at recovery here.
8311    if (Previous.isAmbiguous())
8312      return 0;
8313
8314    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8315      // FIXME: This makes sure that we ignore the contexts associated
8316      // with C structs, unions, and enums when looking for a matching
8317      // tag declaration or definition. See the similar lookup tweak
8318      // in Sema::LookupName; is there a better way to deal with this?
8319      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8320        SearchDC = SearchDC->getParent();
8321    }
8322  } else if (S->isFunctionPrototypeScope()) {
8323    // If this is an enum declaration in function prototype scope, set its
8324    // initial context to the translation unit.
8325    // FIXME: [citation needed]
8326    SearchDC = Context.getTranslationUnitDecl();
8327  }
8328
8329  if (Previous.isSingleResult() &&
8330      Previous.getFoundDecl()->isTemplateParameter()) {
8331    // Maybe we will complain about the shadowed template parameter.
8332    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8333    // Just pretend that we didn't see the previous declaration.
8334    Previous.clear();
8335  }
8336
8337  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8338      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8339    // This is a declaration of or a reference to "std::bad_alloc".
8340    isStdBadAlloc = true;
8341
8342    if (Previous.empty() && StdBadAlloc) {
8343      // std::bad_alloc has been implicitly declared (but made invisible to
8344      // name lookup). Fill in this implicit declaration as the previous
8345      // declaration, so that the declarations get chained appropriately.
8346      Previous.addDecl(getStdBadAlloc());
8347    }
8348  }
8349
8350  // If we didn't find a previous declaration, and this is a reference
8351  // (or friend reference), move to the correct scope.  In C++, we
8352  // also need to do a redeclaration lookup there, just in case
8353  // there's a shadow friend decl.
8354  if (Name && Previous.empty() &&
8355      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8356    if (Invalid) goto CreateNewDecl;
8357    assert(SS.isEmpty());
8358
8359    if (TUK == TUK_Reference) {
8360      // C++ [basic.scope.pdecl]p5:
8361      //   -- for an elaborated-type-specifier of the form
8362      //
8363      //          class-key identifier
8364      //
8365      //      if the elaborated-type-specifier is used in the
8366      //      decl-specifier-seq or parameter-declaration-clause of a
8367      //      function defined in namespace scope, the identifier is
8368      //      declared as a class-name in the namespace that contains
8369      //      the declaration; otherwise, except as a friend
8370      //      declaration, the identifier is declared in the smallest
8371      //      non-class, non-function-prototype scope that contains the
8372      //      declaration.
8373      //
8374      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8375      // C structs and unions.
8376      //
8377      // It is an error in C++ to declare (rather than define) an enum
8378      // type, including via an elaborated type specifier.  We'll
8379      // diagnose that later; for now, declare the enum in the same
8380      // scope as we would have picked for any other tag type.
8381      //
8382      // GNU C also supports this behavior as part of its incomplete
8383      // enum types extension, while GNU C++ does not.
8384      //
8385      // Find the context where we'll be declaring the tag.
8386      // FIXME: We would like to maintain the current DeclContext as the
8387      // lexical context,
8388      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8389        SearchDC = SearchDC->getParent();
8390
8391      // Find the scope where we'll be declaring the tag.
8392      while (S->isClassScope() ||
8393             (getLangOpts().CPlusPlus &&
8394              S->isFunctionPrototypeScope()) ||
8395             ((S->getFlags() & Scope::DeclScope) == 0) ||
8396             (S->getEntity() &&
8397              ((DeclContext *)S->getEntity())->isTransparentContext()))
8398        S = S->getParent();
8399    } else {
8400      assert(TUK == TUK_Friend);
8401      // C++ [namespace.memdef]p3:
8402      //   If a friend declaration in a non-local class first declares a
8403      //   class or function, the friend class or function is a member of
8404      //   the innermost enclosing namespace.
8405      SearchDC = SearchDC->getEnclosingNamespaceContext();
8406    }
8407
8408    // In C++, we need to do a redeclaration lookup to properly
8409    // diagnose some problems.
8410    if (getLangOpts().CPlusPlus) {
8411      Previous.setRedeclarationKind(ForRedeclaration);
8412      LookupQualifiedName(Previous, SearchDC);
8413    }
8414  }
8415
8416  if (!Previous.empty()) {
8417    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8418
8419    // It's okay to have a tag decl in the same scope as a typedef
8420    // which hides a tag decl in the same scope.  Finding this
8421    // insanity with a redeclaration lookup can only actually happen
8422    // in C++.
8423    //
8424    // This is also okay for elaborated-type-specifiers, which is
8425    // technically forbidden by the current standard but which is
8426    // okay according to the likely resolution of an open issue;
8427    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8428    if (getLangOpts().CPlusPlus) {
8429      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8430        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8431          TagDecl *Tag = TT->getDecl();
8432          if (Tag->getDeclName() == Name &&
8433              Tag->getDeclContext()->getRedeclContext()
8434                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8435            PrevDecl = Tag;
8436            Previous.clear();
8437            Previous.addDecl(Tag);
8438            Previous.resolveKind();
8439          }
8440        }
8441      }
8442    }
8443
8444    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8445      // If this is a use of a previous tag, or if the tag is already declared
8446      // in the same scope (so that the definition/declaration completes or
8447      // rementions the tag), reuse the decl.
8448      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8449          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8450        // Make sure that this wasn't declared as an enum and now used as a
8451        // struct or something similar.
8452        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8453                                          TUK == TUK_Definition, KWLoc,
8454                                          *Name)) {
8455          bool SafeToContinue
8456            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8457               Kind != TTK_Enum);
8458          if (SafeToContinue)
8459            Diag(KWLoc, diag::err_use_with_wrong_tag)
8460              << Name
8461              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8462                                              PrevTagDecl->getKindName());
8463          else
8464            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8465          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8466
8467          if (SafeToContinue)
8468            Kind = PrevTagDecl->getTagKind();
8469          else {
8470            // Recover by making this an anonymous redefinition.
8471            Name = 0;
8472            Previous.clear();
8473            Invalid = true;
8474          }
8475        }
8476
8477        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8478          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8479
8480          // If this is an elaborated-type-specifier for a scoped enumeration,
8481          // the 'class' keyword is not necessary and not permitted.
8482          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8483            if (ScopedEnum)
8484              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8485                << PrevEnum->isScoped()
8486                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8487            return PrevTagDecl;
8488          }
8489
8490          QualType EnumUnderlyingTy;
8491          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8492            EnumUnderlyingTy = TI->getType();
8493          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8494            EnumUnderlyingTy = QualType(T, 0);
8495
8496          // All conflicts with previous declarations are recovered by
8497          // returning the previous declaration, unless this is a definition,
8498          // in which case we want the caller to bail out.
8499          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8500                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8501            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8502        }
8503
8504        if (!Invalid) {
8505          // If this is a use, just return the declaration we found.
8506
8507          // FIXME: In the future, return a variant or some other clue
8508          // for the consumer of this Decl to know it doesn't own it.
8509          // For our current ASTs this shouldn't be a problem, but will
8510          // need to be changed with DeclGroups.
8511          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8512               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8513            return PrevTagDecl;
8514
8515          // Diagnose attempts to redefine a tag.
8516          if (TUK == TUK_Definition) {
8517            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8518              // If we're defining a specialization and the previous definition
8519              // is from an implicit instantiation, don't emit an error
8520              // here; we'll catch this in the general case below.
8521              bool IsExplicitSpecializationAfterInstantiation = false;
8522              if (isExplicitSpecialization) {
8523                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8524                  IsExplicitSpecializationAfterInstantiation =
8525                    RD->getTemplateSpecializationKind() !=
8526                    TSK_ExplicitSpecialization;
8527                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8528                  IsExplicitSpecializationAfterInstantiation =
8529                    ED->getTemplateSpecializationKind() !=
8530                    TSK_ExplicitSpecialization;
8531              }
8532
8533              if (!IsExplicitSpecializationAfterInstantiation) {
8534                // A redeclaration in function prototype scope in C isn't
8535                // visible elsewhere, so merely issue a warning.
8536                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8537                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8538                else
8539                  Diag(NameLoc, diag::err_redefinition) << Name;
8540                Diag(Def->getLocation(), diag::note_previous_definition);
8541                // If this is a redefinition, recover by making this
8542                // struct be anonymous, which will make any later
8543                // references get the previous definition.
8544                Name = 0;
8545                Previous.clear();
8546                Invalid = true;
8547              }
8548            } else {
8549              // If the type is currently being defined, complain
8550              // about a nested redefinition.
8551              const TagType *Tag
8552                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8553              if (Tag->isBeingDefined()) {
8554                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8555                Diag(PrevTagDecl->getLocation(),
8556                     diag::note_previous_definition);
8557                Name = 0;
8558                Previous.clear();
8559                Invalid = true;
8560              }
8561            }
8562
8563            // Okay, this is definition of a previously declared or referenced
8564            // tag PrevDecl. We're going to create a new Decl for it.
8565          }
8566        }
8567        // If we get here we have (another) forward declaration or we
8568        // have a definition.  Just create a new decl.
8569
8570      } else {
8571        // If we get here, this is a definition of a new tag type in a nested
8572        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8573        // new decl/type.  We set PrevDecl to NULL so that the entities
8574        // have distinct types.
8575        Previous.clear();
8576      }
8577      // If we get here, we're going to create a new Decl. If PrevDecl
8578      // is non-NULL, it's a definition of the tag declared by
8579      // PrevDecl. If it's NULL, we have a new definition.
8580
8581
8582    // Otherwise, PrevDecl is not a tag, but was found with tag
8583    // lookup.  This is only actually possible in C++, where a few
8584    // things like templates still live in the tag namespace.
8585    } else {
8586      // Use a better diagnostic if an elaborated-type-specifier
8587      // found the wrong kind of type on the first
8588      // (non-redeclaration) lookup.
8589      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8590          !Previous.isForRedeclaration()) {
8591        unsigned Kind = 0;
8592        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8593        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8594        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8595        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8596        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8597        Invalid = true;
8598
8599      // Otherwise, only diagnose if the declaration is in scope.
8600      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8601                                isExplicitSpecialization)) {
8602        // do nothing
8603
8604      // Diagnose implicit declarations introduced by elaborated types.
8605      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8606        unsigned Kind = 0;
8607        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8608        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8609        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8610        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8611        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8612        Invalid = true;
8613
8614      // Otherwise it's a declaration.  Call out a particularly common
8615      // case here.
8616      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8617        unsigned Kind = 0;
8618        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8619        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8620          << Name << Kind << TND->getUnderlyingType();
8621        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8622        Invalid = true;
8623
8624      // Otherwise, diagnose.
8625      } else {
8626        // The tag name clashes with something else in the target scope,
8627        // issue an error and recover by making this tag be anonymous.
8628        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8629        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8630        Name = 0;
8631        Invalid = true;
8632      }
8633
8634      // The existing declaration isn't relevant to us; we're in a
8635      // new scope, so clear out the previous declaration.
8636      Previous.clear();
8637    }
8638  }
8639
8640CreateNewDecl:
8641
8642  TagDecl *PrevDecl = 0;
8643  if (Previous.isSingleResult())
8644    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8645
8646  // If there is an identifier, use the location of the identifier as the
8647  // location of the decl, otherwise use the location of the struct/union
8648  // keyword.
8649  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8650
8651  // Otherwise, create a new declaration. If there is a previous
8652  // declaration of the same entity, the two will be linked via
8653  // PrevDecl.
8654  TagDecl *New;
8655
8656  bool IsForwardReference = false;
8657  if (Kind == TTK_Enum) {
8658    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8659    // enum X { A, B, C } D;    D should chain to X.
8660    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8661                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8662                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8663    // If this is an undefined enum, warn.
8664    if (TUK != TUK_Definition && !Invalid) {
8665      TagDecl *Def;
8666      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8667        // C++0x: 7.2p2: opaque-enum-declaration.
8668        // Conflicts are diagnosed above. Do nothing.
8669      }
8670      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8671        Diag(Loc, diag::ext_forward_ref_enum_def)
8672          << New;
8673        Diag(Def->getLocation(), diag::note_previous_definition);
8674      } else {
8675        unsigned DiagID = diag::ext_forward_ref_enum;
8676        if (getLangOpts().MicrosoftMode)
8677          DiagID = diag::ext_ms_forward_ref_enum;
8678        else if (getLangOpts().CPlusPlus)
8679          DiagID = diag::err_forward_ref_enum;
8680        Diag(Loc, DiagID);
8681
8682        // If this is a forward-declared reference to an enumeration, make a
8683        // note of it; we won't actually be introducing the declaration into
8684        // the declaration context.
8685        if (TUK == TUK_Reference)
8686          IsForwardReference = true;
8687      }
8688    }
8689
8690    if (EnumUnderlying) {
8691      EnumDecl *ED = cast<EnumDecl>(New);
8692      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8693        ED->setIntegerTypeSourceInfo(TI);
8694      else
8695        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8696      ED->setPromotionType(ED->getIntegerType());
8697    }
8698
8699  } else {
8700    // struct/union/class
8701
8702    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8703    // struct X { int A; } D;    D should chain to X.
8704    if (getLangOpts().CPlusPlus) {
8705      // FIXME: Look for a way to use RecordDecl for simple structs.
8706      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8707                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8708
8709      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8710        StdBadAlloc = cast<CXXRecordDecl>(New);
8711    } else
8712      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8713                               cast_or_null<RecordDecl>(PrevDecl));
8714  }
8715
8716  // Maybe add qualifier info.
8717  if (SS.isNotEmpty()) {
8718    if (SS.isSet()) {
8719      // If this is either a declaration or a definition, check the
8720      // nested-name-specifier against the current context. We don't do this
8721      // for explicit specializations, because they have similar checking
8722      // (with more specific diagnostics) in the call to
8723      // CheckMemberSpecialization, below.
8724      if (!isExplicitSpecialization &&
8725          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8726          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8727        Invalid = true;
8728
8729      New->setQualifierInfo(SS.getWithLocInContext(Context));
8730      if (TemplateParameterLists.size() > 0) {
8731        New->setTemplateParameterListsInfo(Context,
8732                                           TemplateParameterLists.size(),
8733                    (TemplateParameterList**) TemplateParameterLists.release());
8734      }
8735    }
8736    else
8737      Invalid = true;
8738  }
8739
8740  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8741    // Add alignment attributes if necessary; these attributes are checked when
8742    // the ASTContext lays out the structure.
8743    //
8744    // It is important for implementing the correct semantics that this
8745    // happen here (in act on tag decl). The #pragma pack stack is
8746    // maintained as a result of parser callbacks which can occur at
8747    // many points during the parsing of a struct declaration (because
8748    // the #pragma tokens are effectively skipped over during the
8749    // parsing of the struct).
8750    AddAlignmentAttributesForRecord(RD);
8751
8752    AddMsStructLayoutForRecord(RD);
8753  }
8754
8755  if (ModulePrivateLoc.isValid()) {
8756    if (isExplicitSpecialization)
8757      Diag(New->getLocation(), diag::err_module_private_specialization)
8758        << 2
8759        << FixItHint::CreateRemoval(ModulePrivateLoc);
8760    // __module_private__ does not apply to local classes. However, we only
8761    // diagnose this as an error when the declaration specifiers are
8762    // freestanding. Here, we just ignore the __module_private__.
8763    else if (!SearchDC->isFunctionOrMethod())
8764      New->setModulePrivate();
8765  }
8766
8767  // If this is a specialization of a member class (of a class template),
8768  // check the specialization.
8769  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8770    Invalid = true;
8771
8772  if (Invalid)
8773    New->setInvalidDecl();
8774
8775  if (Attr)
8776    ProcessDeclAttributeList(S, New, Attr);
8777
8778  // If we're declaring or defining a tag in function prototype scope
8779  // in C, note that this type can only be used within the function.
8780  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8781    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8782
8783  // Set the lexical context. If the tag has a C++ scope specifier, the
8784  // lexical context will be different from the semantic context.
8785  New->setLexicalDeclContext(CurContext);
8786
8787  // Mark this as a friend decl if applicable.
8788  // In Microsoft mode, a friend declaration also acts as a forward
8789  // declaration so we always pass true to setObjectOfFriendDecl to make
8790  // the tag name visible.
8791  if (TUK == TUK_Friend)
8792    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8793                               getLangOpts().MicrosoftExt);
8794
8795  // Set the access specifier.
8796  if (!Invalid && SearchDC->isRecord())
8797    SetMemberAccessSpecifier(New, PrevDecl, AS);
8798
8799  if (TUK == TUK_Definition)
8800    New->startDefinition();
8801
8802  // If this has an identifier, add it to the scope stack.
8803  if (TUK == TUK_Friend) {
8804    // We might be replacing an existing declaration in the lookup tables;
8805    // if so, borrow its access specifier.
8806    if (PrevDecl)
8807      New->setAccess(PrevDecl->getAccess());
8808
8809    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8810    DC->makeDeclVisibleInContext(New);
8811    if (Name) // can be null along some error paths
8812      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8813        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8814  } else if (Name) {
8815    S = getNonFieldDeclScope(S);
8816    PushOnScopeChains(New, S, !IsForwardReference);
8817    if (IsForwardReference)
8818      SearchDC->makeDeclVisibleInContext(New);
8819
8820  } else {
8821    CurContext->addDecl(New);
8822  }
8823
8824  // If this is the C FILE type, notify the AST context.
8825  if (IdentifierInfo *II = New->getIdentifier())
8826    if (!New->isInvalidDecl() &&
8827        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8828        II->isStr("FILE"))
8829      Context.setFILEDecl(New);
8830
8831  // If we were in function prototype scope (and not in C++ mode), add this
8832  // tag to the list of decls to inject into the function definition scope.
8833  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8834      InFunctionDeclarator && Name)
8835    DeclsInPrototypeScope.push_back(New);
8836
8837  if (PrevDecl)
8838    mergeDeclAttributes(New, PrevDecl);
8839
8840  OwnedDecl = true;
8841  return New;
8842}
8843
8844void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8845  AdjustDeclIfTemplate(TagD);
8846  TagDecl *Tag = cast<TagDecl>(TagD);
8847
8848  // Enter the tag context.
8849  PushDeclContext(S, Tag);
8850}
8851
8852Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8853  assert(isa<ObjCContainerDecl>(IDecl) &&
8854         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8855  DeclContext *OCD = cast<DeclContext>(IDecl);
8856  assert(getContainingDC(OCD) == CurContext &&
8857      "The next DeclContext should be lexically contained in the current one.");
8858  CurContext = OCD;
8859  return IDecl;
8860}
8861
8862void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8863                                           SourceLocation FinalLoc,
8864                                           SourceLocation LBraceLoc) {
8865  AdjustDeclIfTemplate(TagD);
8866  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8867
8868  FieldCollector->StartClass();
8869
8870  if (!Record->getIdentifier())
8871    return;
8872
8873  if (FinalLoc.isValid())
8874    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8875
8876  // C++ [class]p2:
8877  //   [...] The class-name is also inserted into the scope of the
8878  //   class itself; this is known as the injected-class-name. For
8879  //   purposes of access checking, the injected-class-name is treated
8880  //   as if it were a public member name.
8881  CXXRecordDecl *InjectedClassName
8882    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8883                            Record->getLocStart(), Record->getLocation(),
8884                            Record->getIdentifier(),
8885                            /*PrevDecl=*/0,
8886                            /*DelayTypeCreation=*/true);
8887  Context.getTypeDeclType(InjectedClassName, Record);
8888  InjectedClassName->setImplicit();
8889  InjectedClassName->setAccess(AS_public);
8890  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8891      InjectedClassName->setDescribedClassTemplate(Template);
8892  PushOnScopeChains(InjectedClassName, S);
8893  assert(InjectedClassName->isInjectedClassName() &&
8894         "Broken injected-class-name");
8895}
8896
8897void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8898                                    SourceLocation RBraceLoc) {
8899  AdjustDeclIfTemplate(TagD);
8900  TagDecl *Tag = cast<TagDecl>(TagD);
8901  Tag->setRBraceLoc(RBraceLoc);
8902
8903  // Make sure we "complete" the definition even it is invalid.
8904  if (Tag->isBeingDefined()) {
8905    assert(Tag->isInvalidDecl() && "We should already have completed it");
8906    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8907      RD->completeDefinition();
8908  }
8909
8910  if (isa<CXXRecordDecl>(Tag))
8911    FieldCollector->FinishClass();
8912
8913  // Exit this scope of this tag's definition.
8914  PopDeclContext();
8915
8916  // Notify the consumer that we've defined a tag.
8917  Consumer.HandleTagDeclDefinition(Tag);
8918}
8919
8920void Sema::ActOnObjCContainerFinishDefinition() {
8921  // Exit this scope of this interface definition.
8922  PopDeclContext();
8923}
8924
8925void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8926  assert(DC == CurContext && "Mismatch of container contexts");
8927  OriginalLexicalContext = DC;
8928  ActOnObjCContainerFinishDefinition();
8929}
8930
8931void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8932  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8933  OriginalLexicalContext = 0;
8934}
8935
8936void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8937  AdjustDeclIfTemplate(TagD);
8938  TagDecl *Tag = cast<TagDecl>(TagD);
8939  Tag->setInvalidDecl();
8940
8941  // Make sure we "complete" the definition even it is invalid.
8942  if (Tag->isBeingDefined()) {
8943    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8944      RD->completeDefinition();
8945  }
8946
8947  // We're undoing ActOnTagStartDefinition here, not
8948  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8949  // the FieldCollector.
8950
8951  PopDeclContext();
8952}
8953
8954// Note that FieldName may be null for anonymous bitfields.
8955ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8956                                IdentifierInfo *FieldName,
8957                                QualType FieldTy, Expr *BitWidth,
8958                                bool *ZeroWidth) {
8959  // Default to true; that shouldn't confuse checks for emptiness
8960  if (ZeroWidth)
8961    *ZeroWidth = true;
8962
8963  // C99 6.7.2.1p4 - verify the field type.
8964  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8965  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8966    // Handle incomplete types with specific error.
8967    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8968      return ExprError();
8969    if (FieldName)
8970      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8971        << FieldName << FieldTy << BitWidth->getSourceRange();
8972    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8973      << FieldTy << BitWidth->getSourceRange();
8974  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8975                                             UPPC_BitFieldWidth))
8976    return ExprError();
8977
8978  // If the bit-width is type- or value-dependent, don't try to check
8979  // it now.
8980  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8981    return Owned(BitWidth);
8982
8983  llvm::APSInt Value;
8984  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8985  if (ICE.isInvalid())
8986    return ICE;
8987  BitWidth = ICE.take();
8988
8989  if (Value != 0 && ZeroWidth)
8990    *ZeroWidth = false;
8991
8992  // Zero-width bitfield is ok for anonymous field.
8993  if (Value == 0 && FieldName)
8994    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8995
8996  if (Value.isSigned() && Value.isNegative()) {
8997    if (FieldName)
8998      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8999               << FieldName << Value.toString(10);
9000    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9001      << Value.toString(10);
9002  }
9003
9004  if (!FieldTy->isDependentType()) {
9005    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9006    if (Value.getZExtValue() > TypeSize) {
9007      if (!getLangOpts().CPlusPlus) {
9008        if (FieldName)
9009          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9010            << FieldName << (unsigned)Value.getZExtValue()
9011            << (unsigned)TypeSize;
9012
9013        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9014          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9015      }
9016
9017      if (FieldName)
9018        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9019          << FieldName << (unsigned)Value.getZExtValue()
9020          << (unsigned)TypeSize;
9021      else
9022        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9023          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9024    }
9025  }
9026
9027  return Owned(BitWidth);
9028}
9029
9030/// ActOnField - Each field of a C struct/union is passed into this in order
9031/// to create a FieldDecl object for it.
9032Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9033                       Declarator &D, Expr *BitfieldWidth) {
9034  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9035                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9036                               /*InitStyle=*/ICIS_NoInit, AS_public);
9037  return Res;
9038}
9039
9040/// HandleField - Analyze a field of a C struct or a C++ data member.
9041///
9042FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9043                             SourceLocation DeclStart,
9044                             Declarator &D, Expr *BitWidth,
9045                             InClassInitStyle InitStyle,
9046                             AccessSpecifier AS) {
9047  IdentifierInfo *II = D.getIdentifier();
9048  SourceLocation Loc = DeclStart;
9049  if (II) Loc = D.getIdentifierLoc();
9050
9051  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9052  QualType T = TInfo->getType();
9053  if (getLangOpts().CPlusPlus) {
9054    CheckExtraCXXDefaultArguments(D);
9055
9056    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9057                                        UPPC_DataMemberType)) {
9058      D.setInvalidType();
9059      T = Context.IntTy;
9060      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9061    }
9062  }
9063
9064  DiagnoseFunctionSpecifiers(D);
9065
9066  if (D.getDeclSpec().isThreadSpecified())
9067    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9068  if (D.getDeclSpec().isConstexprSpecified())
9069    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9070      << 2;
9071
9072  // Check to see if this name was declared as a member previously
9073  NamedDecl *PrevDecl = 0;
9074  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9075  LookupName(Previous, S);
9076  switch (Previous.getResultKind()) {
9077    case LookupResult::Found:
9078    case LookupResult::FoundUnresolvedValue:
9079      PrevDecl = Previous.getAsSingle<NamedDecl>();
9080      break;
9081
9082    case LookupResult::FoundOverloaded:
9083      PrevDecl = Previous.getRepresentativeDecl();
9084      break;
9085
9086    case LookupResult::NotFound:
9087    case LookupResult::NotFoundInCurrentInstantiation:
9088    case LookupResult::Ambiguous:
9089      break;
9090  }
9091  Previous.suppressDiagnostics();
9092
9093  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9094    // Maybe we will complain about the shadowed template parameter.
9095    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9096    // Just pretend that we didn't see the previous declaration.
9097    PrevDecl = 0;
9098  }
9099
9100  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9101    PrevDecl = 0;
9102
9103  bool Mutable
9104    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9105  SourceLocation TSSL = D.getLocStart();
9106  FieldDecl *NewFD
9107    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9108                     TSSL, AS, PrevDecl, &D);
9109
9110  if (NewFD->isInvalidDecl())
9111    Record->setInvalidDecl();
9112
9113  if (D.getDeclSpec().isModulePrivateSpecified())
9114    NewFD->setModulePrivate();
9115
9116  if (NewFD->isInvalidDecl() && PrevDecl) {
9117    // Don't introduce NewFD into scope; there's already something
9118    // with the same name in the same scope.
9119  } else if (II) {
9120    PushOnScopeChains(NewFD, S);
9121  } else
9122    Record->addDecl(NewFD);
9123
9124  return NewFD;
9125}
9126
9127/// \brief Build a new FieldDecl and check its well-formedness.
9128///
9129/// This routine builds a new FieldDecl given the fields name, type,
9130/// record, etc. \p PrevDecl should refer to any previous declaration
9131/// with the same name and in the same scope as the field to be
9132/// created.
9133///
9134/// \returns a new FieldDecl.
9135///
9136/// \todo The Declarator argument is a hack. It will be removed once
9137FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9138                                TypeSourceInfo *TInfo,
9139                                RecordDecl *Record, SourceLocation Loc,
9140                                bool Mutable, Expr *BitWidth,
9141                                InClassInitStyle InitStyle,
9142                                SourceLocation TSSL,
9143                                AccessSpecifier AS, NamedDecl *PrevDecl,
9144                                Declarator *D) {
9145  IdentifierInfo *II = Name.getAsIdentifierInfo();
9146  bool InvalidDecl = false;
9147  if (D) InvalidDecl = D->isInvalidType();
9148
9149  // If we receive a broken type, recover by assuming 'int' and
9150  // marking this declaration as invalid.
9151  if (T.isNull()) {
9152    InvalidDecl = true;
9153    T = Context.IntTy;
9154  }
9155
9156  QualType EltTy = Context.getBaseElementType(T);
9157  if (!EltTy->isDependentType()) {
9158    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9159      // Fields of incomplete type force their record to be invalid.
9160      Record->setInvalidDecl();
9161      InvalidDecl = true;
9162    } else {
9163      NamedDecl *Def;
9164      EltTy->isIncompleteType(&Def);
9165      if (Def && Def->isInvalidDecl()) {
9166        Record->setInvalidDecl();
9167        InvalidDecl = true;
9168      }
9169    }
9170  }
9171
9172  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9173  // than a variably modified type.
9174  if (!InvalidDecl && T->isVariablyModifiedType()) {
9175    bool SizeIsNegative;
9176    llvm::APSInt Oversized;
9177    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9178                                                           SizeIsNegative,
9179                                                           Oversized);
9180    if (!FixedTy.isNull()) {
9181      Diag(Loc, diag::warn_illegal_constant_array_size);
9182      T = FixedTy;
9183    } else {
9184      if (SizeIsNegative)
9185        Diag(Loc, diag::err_typecheck_negative_array_size);
9186      else if (Oversized.getBoolValue())
9187        Diag(Loc, diag::err_array_too_large)
9188          << Oversized.toString(10);
9189      else
9190        Diag(Loc, diag::err_typecheck_field_variable_size);
9191      InvalidDecl = true;
9192    }
9193  }
9194
9195  // Fields can not have abstract class types
9196  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9197                                             diag::err_abstract_type_in_decl,
9198                                             AbstractFieldType))
9199    InvalidDecl = true;
9200
9201  bool ZeroWidth = false;
9202  // If this is declared as a bit-field, check the bit-field.
9203  if (!InvalidDecl && BitWidth) {
9204    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9205    if (!BitWidth) {
9206      InvalidDecl = true;
9207      BitWidth = 0;
9208      ZeroWidth = false;
9209    }
9210  }
9211
9212  // Check that 'mutable' is consistent with the type of the declaration.
9213  if (!InvalidDecl && Mutable) {
9214    unsigned DiagID = 0;
9215    if (T->isReferenceType())
9216      DiagID = diag::err_mutable_reference;
9217    else if (T.isConstQualified())
9218      DiagID = diag::err_mutable_const;
9219
9220    if (DiagID) {
9221      SourceLocation ErrLoc = Loc;
9222      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9223        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9224      Diag(ErrLoc, DiagID);
9225      Mutable = false;
9226      InvalidDecl = true;
9227    }
9228  }
9229
9230  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9231                                       BitWidth, Mutable, InitStyle);
9232  if (InvalidDecl)
9233    NewFD->setInvalidDecl();
9234
9235  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9236    Diag(Loc, diag::err_duplicate_member) << II;
9237    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9238    NewFD->setInvalidDecl();
9239  }
9240
9241  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9242    if (Record->isUnion()) {
9243      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9244        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9245        if (RDecl->getDefinition()) {
9246          // C++ [class.union]p1: An object of a class with a non-trivial
9247          // constructor, a non-trivial copy constructor, a non-trivial
9248          // destructor, or a non-trivial copy assignment operator
9249          // cannot be a member of a union, nor can an array of such
9250          // objects.
9251          if (CheckNontrivialField(NewFD))
9252            NewFD->setInvalidDecl();
9253        }
9254      }
9255
9256      // C++ [class.union]p1: If a union contains a member of reference type,
9257      // the program is ill-formed.
9258      if (EltTy->isReferenceType()) {
9259        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9260          << NewFD->getDeclName() << EltTy;
9261        NewFD->setInvalidDecl();
9262      }
9263    }
9264  }
9265
9266  // FIXME: We need to pass in the attributes given an AST
9267  // representation, not a parser representation.
9268  if (D)
9269    // FIXME: What to pass instead of TUScope?
9270    ProcessDeclAttributes(TUScope, NewFD, *D);
9271
9272  // In auto-retain/release, infer strong retension for fields of
9273  // retainable type.
9274  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9275    NewFD->setInvalidDecl();
9276
9277  if (T.isObjCGCWeak())
9278    Diag(Loc, diag::warn_attribute_weak_on_field);
9279
9280  NewFD->setAccess(AS);
9281  return NewFD;
9282}
9283
9284bool Sema::CheckNontrivialField(FieldDecl *FD) {
9285  assert(FD);
9286  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9287
9288  if (FD->isInvalidDecl())
9289    return true;
9290
9291  QualType EltTy = Context.getBaseElementType(FD->getType());
9292  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9293    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9294    if (RDecl->getDefinition()) {
9295      // We check for copy constructors before constructors
9296      // because otherwise we'll never get complaints about
9297      // copy constructors.
9298
9299      CXXSpecialMember member = CXXInvalid;
9300      if (!RDecl->hasTrivialCopyConstructor())
9301        member = CXXCopyConstructor;
9302      else if (!RDecl->hasTrivialDefaultConstructor())
9303        member = CXXDefaultConstructor;
9304      else if (!RDecl->hasTrivialCopyAssignment())
9305        member = CXXCopyAssignment;
9306      else if (!RDecl->hasTrivialDestructor())
9307        member = CXXDestructor;
9308
9309      if (member != CXXInvalid) {
9310        if (!getLangOpts().CPlusPlus0x &&
9311            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9312          // Objective-C++ ARC: it is an error to have a non-trivial field of
9313          // a union. However, system headers in Objective-C programs
9314          // occasionally have Objective-C lifetime objects within unions,
9315          // and rather than cause the program to fail, we make those
9316          // members unavailable.
9317          SourceLocation Loc = FD->getLocation();
9318          if (getSourceManager().isInSystemHeader(Loc)) {
9319            if (!FD->hasAttr<UnavailableAttr>())
9320              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9321                                  "this system field has retaining ownership"));
9322            return false;
9323          }
9324        }
9325
9326        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9327               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9328               diag::err_illegal_union_or_anon_struct_member)
9329          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9330        DiagnoseNontrivial(RT, member);
9331        return !getLangOpts().CPlusPlus0x;
9332      }
9333    }
9334  }
9335
9336  return false;
9337}
9338
9339/// If the given constructor is user-provided, produce a diagnostic explaining
9340/// that it makes the class non-trivial.
9341static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9342                                               CXXConstructorDecl *CD,
9343                                               Sema::CXXSpecialMember CSM) {
9344  if (!CD->isUserProvided())
9345    return false;
9346
9347  SourceLocation CtorLoc = CD->getLocation();
9348  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9349  return true;
9350}
9351
9352/// DiagnoseNontrivial - Given that a class has a non-trivial
9353/// special member, figure out why.
9354void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9355  QualType QT(T, 0U);
9356  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9357
9358  // Check whether the member was user-declared.
9359  switch (member) {
9360  case CXXInvalid:
9361    break;
9362
9363  case CXXDefaultConstructor:
9364    if (RD->hasUserDeclaredConstructor()) {
9365      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9366      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9367        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9368          return;
9369
9370      // No user-provided constructors; look for constructor templates.
9371      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9372          tmpl_iter;
9373      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9374           TI != TE; ++TI) {
9375        CXXConstructorDecl *CD =
9376            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9377        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9378          return;
9379      }
9380    }
9381    break;
9382
9383  case CXXCopyConstructor:
9384    if (RD->hasUserDeclaredCopyConstructor()) {
9385      SourceLocation CtorLoc =
9386        RD->getCopyConstructor(0)->getLocation();
9387      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9388      return;
9389    }
9390    break;
9391
9392  case CXXMoveConstructor:
9393    if (RD->hasUserDeclaredMoveConstructor()) {
9394      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9395      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9396      return;
9397    }
9398    break;
9399
9400  case CXXCopyAssignment:
9401    if (RD->hasUserDeclaredCopyAssignment()) {
9402      // FIXME: this should use the location of the copy
9403      // assignment, not the type.
9404      SourceLocation TyLoc = RD->getLocStart();
9405      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9406      return;
9407    }
9408    break;
9409
9410  case CXXMoveAssignment:
9411    if (RD->hasUserDeclaredMoveAssignment()) {
9412      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9413      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9414      return;
9415    }
9416    break;
9417
9418  case CXXDestructor:
9419    if (RD->hasUserDeclaredDestructor()) {
9420      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9421      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9422      return;
9423    }
9424    break;
9425  }
9426
9427  typedef CXXRecordDecl::base_class_iterator base_iter;
9428
9429  // Virtual bases and members inhibit trivial copying/construction,
9430  // but not trivial destruction.
9431  if (member != CXXDestructor) {
9432    // Check for virtual bases.  vbases includes indirect virtual bases,
9433    // so we just iterate through the direct bases.
9434    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9435      if (bi->isVirtual()) {
9436        SourceLocation BaseLoc = bi->getLocStart();
9437        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9438        return;
9439      }
9440
9441    // Check for virtual methods.
9442    typedef CXXRecordDecl::method_iterator meth_iter;
9443    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9444         ++mi) {
9445      if (mi->isVirtual()) {
9446        SourceLocation MLoc = mi->getLocStart();
9447        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9448        return;
9449      }
9450    }
9451  }
9452
9453  bool (CXXRecordDecl::*hasTrivial)() const;
9454  switch (member) {
9455  case CXXDefaultConstructor:
9456    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9457  case CXXCopyConstructor:
9458    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9459  case CXXCopyAssignment:
9460    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9461  case CXXDestructor:
9462    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9463  default:
9464    llvm_unreachable("unexpected special member");
9465  }
9466
9467  // Check for nontrivial bases (and recurse).
9468  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9469    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9470    assert(BaseRT && "Don't know how to handle dependent bases");
9471    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9472    if (!(BaseRecTy->*hasTrivial)()) {
9473      SourceLocation BaseLoc = bi->getLocStart();
9474      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9475      DiagnoseNontrivial(BaseRT, member);
9476      return;
9477    }
9478  }
9479
9480  // Check for nontrivial members (and recurse).
9481  typedef RecordDecl::field_iterator field_iter;
9482  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9483       ++fi) {
9484    QualType EltTy = Context.getBaseElementType(fi->getType());
9485    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9486      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9487
9488      if (!(EltRD->*hasTrivial)()) {
9489        SourceLocation FLoc = fi->getLocation();
9490        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9491        DiagnoseNontrivial(EltRT, member);
9492        return;
9493      }
9494    }
9495
9496    if (EltTy->isObjCLifetimeType()) {
9497      switch (EltTy.getObjCLifetime()) {
9498      case Qualifiers::OCL_None:
9499      case Qualifiers::OCL_ExplicitNone:
9500        break;
9501
9502      case Qualifiers::OCL_Autoreleasing:
9503      case Qualifiers::OCL_Weak:
9504      case Qualifiers::OCL_Strong:
9505        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9506          << QT << EltTy.getObjCLifetime();
9507        return;
9508      }
9509    }
9510  }
9511
9512  llvm_unreachable("found no explanation for non-trivial member");
9513}
9514
9515/// TranslateIvarVisibility - Translate visibility from a token ID to an
9516///  AST enum value.
9517static ObjCIvarDecl::AccessControl
9518TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9519  switch (ivarVisibility) {
9520  default: llvm_unreachable("Unknown visitibility kind");
9521  case tok::objc_private: return ObjCIvarDecl::Private;
9522  case tok::objc_public: return ObjCIvarDecl::Public;
9523  case tok::objc_protected: return ObjCIvarDecl::Protected;
9524  case tok::objc_package: return ObjCIvarDecl::Package;
9525  }
9526}
9527
9528/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9529/// in order to create an IvarDecl object for it.
9530Decl *Sema::ActOnIvar(Scope *S,
9531                                SourceLocation DeclStart,
9532                                Declarator &D, Expr *BitfieldWidth,
9533                                tok::ObjCKeywordKind Visibility) {
9534
9535  IdentifierInfo *II = D.getIdentifier();
9536  Expr *BitWidth = (Expr*)BitfieldWidth;
9537  SourceLocation Loc = DeclStart;
9538  if (II) Loc = D.getIdentifierLoc();
9539
9540  // FIXME: Unnamed fields can be handled in various different ways, for
9541  // example, unnamed unions inject all members into the struct namespace!
9542
9543  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9544  QualType T = TInfo->getType();
9545
9546  if (BitWidth) {
9547    // 6.7.2.1p3, 6.7.2.1p4
9548    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9549    if (!BitWidth)
9550      D.setInvalidType();
9551  } else {
9552    // Not a bitfield.
9553
9554    // validate II.
9555
9556  }
9557  if (T->isReferenceType()) {
9558    Diag(Loc, diag::err_ivar_reference_type);
9559    D.setInvalidType();
9560  }
9561  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9562  // than a variably modified type.
9563  else if (T->isVariablyModifiedType()) {
9564    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9565    D.setInvalidType();
9566  }
9567
9568  // Get the visibility (access control) for this ivar.
9569  ObjCIvarDecl::AccessControl ac =
9570    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9571                                        : ObjCIvarDecl::None;
9572  // Must set ivar's DeclContext to its enclosing interface.
9573  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9574  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9575    return 0;
9576  ObjCContainerDecl *EnclosingContext;
9577  if (ObjCImplementationDecl *IMPDecl =
9578      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9579    if (LangOpts.ObjCRuntime.isFragile()) {
9580    // Case of ivar declared in an implementation. Context is that of its class.
9581      EnclosingContext = IMPDecl->getClassInterface();
9582      assert(EnclosingContext && "Implementation has no class interface!");
9583    }
9584    else
9585      EnclosingContext = EnclosingDecl;
9586  } else {
9587    if (ObjCCategoryDecl *CDecl =
9588        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9589      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9590        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9591        return 0;
9592      }
9593    }
9594    EnclosingContext = EnclosingDecl;
9595  }
9596
9597  // Construct the decl.
9598  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9599                                             DeclStart, Loc, II, T,
9600                                             TInfo, ac, (Expr *)BitfieldWidth);
9601
9602  if (II) {
9603    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9604                                           ForRedeclaration);
9605    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9606        && !isa<TagDecl>(PrevDecl)) {
9607      Diag(Loc, diag::err_duplicate_member) << II;
9608      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9609      NewID->setInvalidDecl();
9610    }
9611  }
9612
9613  // Process attributes attached to the ivar.
9614  ProcessDeclAttributes(S, NewID, D);
9615
9616  if (D.isInvalidType())
9617    NewID->setInvalidDecl();
9618
9619  // In ARC, infer 'retaining' for ivars of retainable type.
9620  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9621    NewID->setInvalidDecl();
9622
9623  if (D.getDeclSpec().isModulePrivateSpecified())
9624    NewID->setModulePrivate();
9625
9626  if (II) {
9627    // FIXME: When interfaces are DeclContexts, we'll need to add
9628    // these to the interface.
9629    S->AddDecl(NewID);
9630    IdResolver.AddDecl(NewID);
9631  }
9632
9633  if (LangOpts.ObjCRuntime.isNonFragile() &&
9634      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9635    Diag(Loc, diag::warn_ivars_in_interface);
9636
9637  return NewID;
9638}
9639
9640/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9641/// class and class extensions. For every class @interface and class
9642/// extension @interface, if the last ivar is a bitfield of any type,
9643/// then add an implicit `char :0` ivar to the end of that interface.
9644void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9645                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9646  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9647    return;
9648
9649  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9650  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9651
9652  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9653    return;
9654  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9655  if (!ID) {
9656    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9657      if (!CD->IsClassExtension())
9658        return;
9659    }
9660    // No need to add this to end of @implementation.
9661    else
9662      return;
9663  }
9664  // All conditions are met. Add a new bitfield to the tail end of ivars.
9665  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9666  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9667
9668  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9669                              DeclLoc, DeclLoc, 0,
9670                              Context.CharTy,
9671                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9672                                                               DeclLoc),
9673                              ObjCIvarDecl::Private, BW,
9674                              true);
9675  AllIvarDecls.push_back(Ivar);
9676}
9677
9678void Sema::ActOnFields(Scope* S,
9679                       SourceLocation RecLoc, Decl *EnclosingDecl,
9680                       llvm::ArrayRef<Decl *> Fields,
9681                       SourceLocation LBrac, SourceLocation RBrac,
9682                       AttributeList *Attr) {
9683  assert(EnclosingDecl && "missing record or interface decl");
9684
9685  // If the decl this is being inserted into is invalid, then it may be a
9686  // redeclaration or some other bogus case.  Don't try to add fields to it.
9687  if (EnclosingDecl->isInvalidDecl())
9688    return;
9689
9690  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9691
9692  // Start counting up the number of named members; make sure to include
9693  // members of anonymous structs and unions in the total.
9694  unsigned NumNamedMembers = 0;
9695  if (Record) {
9696    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9697                                   e = Record->decls_end(); i != e; i++) {
9698      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9699        if (IFD->getDeclName())
9700          ++NumNamedMembers;
9701    }
9702  }
9703
9704  // Verify that all the fields are okay.
9705  SmallVector<FieldDecl*, 32> RecFields;
9706
9707  bool ARCErrReported = false;
9708  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9709       i != end; ++i) {
9710    FieldDecl *FD = cast<FieldDecl>(*i);
9711
9712    // Get the type for the field.
9713    const Type *FDTy = FD->getType().getTypePtr();
9714
9715    if (!FD->isAnonymousStructOrUnion()) {
9716      // Remember all fields written by the user.
9717      RecFields.push_back(FD);
9718    }
9719
9720    // If the field is already invalid for some reason, don't emit more
9721    // diagnostics about it.
9722    if (FD->isInvalidDecl()) {
9723      EnclosingDecl->setInvalidDecl();
9724      continue;
9725    }
9726
9727    // C99 6.7.2.1p2:
9728    //   A structure or union shall not contain a member with
9729    //   incomplete or function type (hence, a structure shall not
9730    //   contain an instance of itself, but may contain a pointer to
9731    //   an instance of itself), except that the last member of a
9732    //   structure with more than one named member may have incomplete
9733    //   array type; such a structure (and any union containing,
9734    //   possibly recursively, a member that is such a structure)
9735    //   shall not be a member of a structure or an element of an
9736    //   array.
9737    if (FDTy->isFunctionType()) {
9738      // Field declared as a function.
9739      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9740        << FD->getDeclName();
9741      FD->setInvalidDecl();
9742      EnclosingDecl->setInvalidDecl();
9743      continue;
9744    } else if (FDTy->isIncompleteArrayType() && Record &&
9745               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9746                ((getLangOpts().MicrosoftExt ||
9747                  getLangOpts().CPlusPlus) &&
9748                 (i + 1 == Fields.end() || Record->isUnion())))) {
9749      // Flexible array member.
9750      // Microsoft and g++ is more permissive regarding flexible array.
9751      // It will accept flexible array in union and also
9752      // as the sole element of a struct/class.
9753      if (getLangOpts().MicrosoftExt) {
9754        if (Record->isUnion())
9755          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9756            << FD->getDeclName();
9757        else if (Fields.size() == 1)
9758          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9759            << FD->getDeclName() << Record->getTagKind();
9760      } else if (getLangOpts().CPlusPlus) {
9761        if (Record->isUnion())
9762          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9763            << FD->getDeclName();
9764        else if (Fields.size() == 1)
9765          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9766            << FD->getDeclName() << Record->getTagKind();
9767      } else if (!getLangOpts().C99) {
9768      if (Record->isUnion())
9769        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9770          << FD->getDeclName();
9771      else
9772        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9773          << FD->getDeclName() << Record->getTagKind();
9774      } else if (NumNamedMembers < 1) {
9775        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9776          << FD->getDeclName();
9777        FD->setInvalidDecl();
9778        EnclosingDecl->setInvalidDecl();
9779        continue;
9780      }
9781      if (!FD->getType()->isDependentType() &&
9782          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9783        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9784          << FD->getDeclName() << FD->getType();
9785        FD->setInvalidDecl();
9786        EnclosingDecl->setInvalidDecl();
9787        continue;
9788      }
9789      // Okay, we have a legal flexible array member at the end of the struct.
9790      if (Record)
9791        Record->setHasFlexibleArrayMember(true);
9792    } else if (!FDTy->isDependentType() &&
9793               RequireCompleteType(FD->getLocation(), FD->getType(),
9794                                   diag::err_field_incomplete)) {
9795      // Incomplete type
9796      FD->setInvalidDecl();
9797      EnclosingDecl->setInvalidDecl();
9798      continue;
9799    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9800      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9801        // If this is a member of a union, then entire union becomes "flexible".
9802        if (Record && Record->isUnion()) {
9803          Record->setHasFlexibleArrayMember(true);
9804        } else {
9805          // If this is a struct/class and this is not the last element, reject
9806          // it.  Note that GCC supports variable sized arrays in the middle of
9807          // structures.
9808          if (i + 1 != Fields.end())
9809            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9810              << FD->getDeclName() << FD->getType();
9811          else {
9812            // We support flexible arrays at the end of structs in
9813            // other structs as an extension.
9814            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9815              << FD->getDeclName();
9816            if (Record)
9817              Record->setHasFlexibleArrayMember(true);
9818          }
9819        }
9820      }
9821      if (Record && FDTTy->getDecl()->hasObjectMember())
9822        Record->setHasObjectMember(true);
9823    } else if (FDTy->isObjCObjectType()) {
9824      /// A field cannot be an Objective-c object
9825      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9826        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9827      QualType T = Context.getObjCObjectPointerType(FD->getType());
9828      FD->setType(T);
9829    }
9830    else if (!getLangOpts().CPlusPlus) {
9831      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9832        // It's an error in ARC if a field has lifetime.
9833        // We don't want to report this in a system header, though,
9834        // so we just make the field unavailable.
9835        // FIXME: that's really not sufficient; we need to make the type
9836        // itself invalid to, say, initialize or copy.
9837        QualType T = FD->getType();
9838        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9839        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9840          SourceLocation loc = FD->getLocation();
9841          if (getSourceManager().isInSystemHeader(loc)) {
9842            if (!FD->hasAttr<UnavailableAttr>()) {
9843              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9844                                "this system field has retaining ownership"));
9845            }
9846          } else {
9847            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9848              << T->isBlockPointerType();
9849          }
9850          ARCErrReported = true;
9851        }
9852      }
9853      else if (getLangOpts().ObjC1 &&
9854               getLangOpts().getGC() != LangOptions::NonGC &&
9855               Record && !Record->hasObjectMember()) {
9856        if (FD->getType()->isObjCObjectPointerType() ||
9857            FD->getType().isObjCGCStrong())
9858          Record->setHasObjectMember(true);
9859        else if (Context.getAsArrayType(FD->getType())) {
9860          QualType BaseType = Context.getBaseElementType(FD->getType());
9861          if (BaseType->isRecordType() &&
9862              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9863            Record->setHasObjectMember(true);
9864          else if (BaseType->isObjCObjectPointerType() ||
9865                   BaseType.isObjCGCStrong())
9866                 Record->setHasObjectMember(true);
9867        }
9868      }
9869    }
9870    // Keep track of the number of named members.
9871    if (FD->getIdentifier())
9872      ++NumNamedMembers;
9873  }
9874
9875  // Okay, we successfully defined 'Record'.
9876  if (Record) {
9877    bool Completed = false;
9878    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9879      if (!CXXRecord->isInvalidDecl()) {
9880        // Set access bits correctly on the directly-declared conversions.
9881        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9882        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9883             I != E; ++I)
9884          Convs->setAccess(I, (*I)->getAccess());
9885
9886        if (!CXXRecord->isDependentType()) {
9887          // Objective-C Automatic Reference Counting:
9888          //   If a class has a non-static data member of Objective-C pointer
9889          //   type (or array thereof), it is a non-POD type and its
9890          //   default constructor (if any), copy constructor, copy assignment
9891          //   operator, and destructor are non-trivial.
9892          //
9893          // This rule is also handled by CXXRecordDecl::completeDefinition().
9894          // However, here we check whether this particular class is only
9895          // non-POD because of the presence of an Objective-C pointer member.
9896          // If so, objects of this type cannot be shared between code compiled
9897          // with instant objects and code compiled with manual retain/release.
9898          if (getLangOpts().ObjCAutoRefCount &&
9899              CXXRecord->hasObjectMember() &&
9900              CXXRecord->getLinkage() == ExternalLinkage) {
9901            if (CXXRecord->isPOD()) {
9902              Diag(CXXRecord->getLocation(),
9903                   diag::warn_arc_non_pod_class_with_object_member)
9904               << CXXRecord;
9905            } else {
9906              // FIXME: Fix-Its would be nice here, but finding a good location
9907              // for them is going to be tricky.
9908              if (CXXRecord->hasTrivialCopyConstructor())
9909                Diag(CXXRecord->getLocation(),
9910                     diag::warn_arc_trivial_member_function_with_object_member)
9911                  << CXXRecord << 0;
9912              if (CXXRecord->hasTrivialCopyAssignment())
9913                Diag(CXXRecord->getLocation(),
9914                     diag::warn_arc_trivial_member_function_with_object_member)
9915                << CXXRecord << 1;
9916              if (CXXRecord->hasTrivialDestructor())
9917                Diag(CXXRecord->getLocation(),
9918                     diag::warn_arc_trivial_member_function_with_object_member)
9919                << CXXRecord << 2;
9920            }
9921          }
9922
9923          // Adjust user-defined destructor exception spec.
9924          if (getLangOpts().CPlusPlus0x &&
9925              CXXRecord->hasUserDeclaredDestructor())
9926            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9927
9928          // Add any implicitly-declared members to this class.
9929          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9930
9931          // If we have virtual base classes, we may end up finding multiple
9932          // final overriders for a given virtual function. Check for this
9933          // problem now.
9934          if (CXXRecord->getNumVBases()) {
9935            CXXFinalOverriderMap FinalOverriders;
9936            CXXRecord->getFinalOverriders(FinalOverriders);
9937
9938            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9939                                             MEnd = FinalOverriders.end();
9940                 M != MEnd; ++M) {
9941              for (OverridingMethods::iterator SO = M->second.begin(),
9942                                            SOEnd = M->second.end();
9943                   SO != SOEnd; ++SO) {
9944                assert(SO->second.size() > 0 &&
9945                       "Virtual function without overridding functions?");
9946                if (SO->second.size() == 1)
9947                  continue;
9948
9949                // C++ [class.virtual]p2:
9950                //   In a derived class, if a virtual member function of a base
9951                //   class subobject has more than one final overrider the
9952                //   program is ill-formed.
9953                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9954                  << (NamedDecl *)M->first << Record;
9955                Diag(M->first->getLocation(),
9956                     diag::note_overridden_virtual_function);
9957                for (OverridingMethods::overriding_iterator
9958                          OM = SO->second.begin(),
9959                       OMEnd = SO->second.end();
9960                     OM != OMEnd; ++OM)
9961                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9962                    << (NamedDecl *)M->first << OM->Method->getParent();
9963
9964                Record->setInvalidDecl();
9965              }
9966            }
9967            CXXRecord->completeDefinition(&FinalOverriders);
9968            Completed = true;
9969          }
9970        }
9971      }
9972    }
9973
9974    if (!Completed)
9975      Record->completeDefinition();
9976
9977  } else {
9978    ObjCIvarDecl **ClsFields =
9979      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9980    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9981      ID->setEndOfDefinitionLoc(RBrac);
9982      // Add ivar's to class's DeclContext.
9983      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9984        ClsFields[i]->setLexicalDeclContext(ID);
9985        ID->addDecl(ClsFields[i]);
9986      }
9987      // Must enforce the rule that ivars in the base classes may not be
9988      // duplicates.
9989      if (ID->getSuperClass())
9990        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9991    } else if (ObjCImplementationDecl *IMPDecl =
9992                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9993      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9994      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9995        // Ivar declared in @implementation never belongs to the implementation.
9996        // Only it is in implementation's lexical context.
9997        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9998      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9999      IMPDecl->setIvarLBraceLoc(LBrac);
10000      IMPDecl->setIvarRBraceLoc(RBrac);
10001    } else if (ObjCCategoryDecl *CDecl =
10002                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10003      // case of ivars in class extension; all other cases have been
10004      // reported as errors elsewhere.
10005      // FIXME. Class extension does not have a LocEnd field.
10006      // CDecl->setLocEnd(RBrac);
10007      // Add ivar's to class extension's DeclContext.
10008      // Diagnose redeclaration of private ivars.
10009      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10010      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10011        if (IDecl) {
10012          if (const ObjCIvarDecl *ClsIvar =
10013              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10014            Diag(ClsFields[i]->getLocation(),
10015                 diag::err_duplicate_ivar_declaration);
10016            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10017            continue;
10018          }
10019          for (const ObjCCategoryDecl *ClsExtDecl =
10020                IDecl->getFirstClassExtension();
10021               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10022            if (const ObjCIvarDecl *ClsExtIvar =
10023                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10024              Diag(ClsFields[i]->getLocation(),
10025                   diag::err_duplicate_ivar_declaration);
10026              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10027              continue;
10028            }
10029          }
10030        }
10031        ClsFields[i]->setLexicalDeclContext(CDecl);
10032        CDecl->addDecl(ClsFields[i]);
10033      }
10034      CDecl->setIvarLBraceLoc(LBrac);
10035      CDecl->setIvarRBraceLoc(RBrac);
10036    }
10037  }
10038
10039  if (Attr)
10040    ProcessDeclAttributeList(S, Record, Attr);
10041
10042  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
10043  // set the visibility of this record.
10044  if (Record && !Record->getDeclContext()->isRecord())
10045    AddPushedVisibilityAttribute(Record);
10046}
10047
10048/// \brief Determine whether the given integral value is representable within
10049/// the given type T.
10050static bool isRepresentableIntegerValue(ASTContext &Context,
10051                                        llvm::APSInt &Value,
10052                                        QualType T) {
10053  assert(T->isIntegralType(Context) && "Integral type required!");
10054  unsigned BitWidth = Context.getIntWidth(T);
10055
10056  if (Value.isUnsigned() || Value.isNonNegative()) {
10057    if (T->isSignedIntegerOrEnumerationType())
10058      --BitWidth;
10059    return Value.getActiveBits() <= BitWidth;
10060  }
10061  return Value.getMinSignedBits() <= BitWidth;
10062}
10063
10064// \brief Given an integral type, return the next larger integral type
10065// (or a NULL type of no such type exists).
10066static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10067  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10068  // enum checking below.
10069  assert(T->isIntegralType(Context) && "Integral type required!");
10070  const unsigned NumTypes = 4;
10071  QualType SignedIntegralTypes[NumTypes] = {
10072    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10073  };
10074  QualType UnsignedIntegralTypes[NumTypes] = {
10075    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10076    Context.UnsignedLongLongTy
10077  };
10078
10079  unsigned BitWidth = Context.getTypeSize(T);
10080  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10081                                                        : UnsignedIntegralTypes;
10082  for (unsigned I = 0; I != NumTypes; ++I)
10083    if (Context.getTypeSize(Types[I]) > BitWidth)
10084      return Types[I];
10085
10086  return QualType();
10087}
10088
10089EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10090                                          EnumConstantDecl *LastEnumConst,
10091                                          SourceLocation IdLoc,
10092                                          IdentifierInfo *Id,
10093                                          Expr *Val) {
10094  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10095  llvm::APSInt EnumVal(IntWidth);
10096  QualType EltTy;
10097
10098  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10099    Val = 0;
10100
10101  if (Val)
10102    Val = DefaultLvalueConversion(Val).take();
10103
10104  if (Val) {
10105    if (Enum->isDependentType() || Val->isTypeDependent())
10106      EltTy = Context.DependentTy;
10107    else {
10108      SourceLocation ExpLoc;
10109      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10110          !getLangOpts().MicrosoftMode) {
10111        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10112        // constant-expression in the enumerator-definition shall be a converted
10113        // constant expression of the underlying type.
10114        EltTy = Enum->getIntegerType();
10115        ExprResult Converted =
10116          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10117                                           CCEK_Enumerator);
10118        if (Converted.isInvalid())
10119          Val = 0;
10120        else
10121          Val = Converted.take();
10122      } else if (!Val->isValueDependent() &&
10123                 !(Val = VerifyIntegerConstantExpression(Val,
10124                                                         &EnumVal).take())) {
10125        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10126      } else {
10127        if (Enum->isFixed()) {
10128          EltTy = Enum->getIntegerType();
10129
10130          // In Obj-C and Microsoft mode, require the enumeration value to be
10131          // representable in the underlying type of the enumeration. In C++11,
10132          // we perform a non-narrowing conversion as part of converted constant
10133          // expression checking.
10134          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10135            if (getLangOpts().MicrosoftMode) {
10136              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10137              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10138            } else
10139              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10140          } else
10141            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10142        } else if (getLangOpts().CPlusPlus) {
10143          // C++11 [dcl.enum]p5:
10144          //   If the underlying type is not fixed, the type of each enumerator
10145          //   is the type of its initializing value:
10146          //     - If an initializer is specified for an enumerator, the
10147          //       initializing value has the same type as the expression.
10148          EltTy = Val->getType();
10149        } else {
10150          // C99 6.7.2.2p2:
10151          //   The expression that defines the value of an enumeration constant
10152          //   shall be an integer constant expression that has a value
10153          //   representable as an int.
10154
10155          // Complain if the value is not representable in an int.
10156          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10157            Diag(IdLoc, diag::ext_enum_value_not_int)
10158              << EnumVal.toString(10) << Val->getSourceRange()
10159              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10160          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10161            // Force the type of the expression to 'int'.
10162            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10163          }
10164          EltTy = Val->getType();
10165        }
10166      }
10167    }
10168  }
10169
10170  if (!Val) {
10171    if (Enum->isDependentType())
10172      EltTy = Context.DependentTy;
10173    else if (!LastEnumConst) {
10174      // C++0x [dcl.enum]p5:
10175      //   If the underlying type is not fixed, the type of each enumerator
10176      //   is the type of its initializing value:
10177      //     - If no initializer is specified for the first enumerator, the
10178      //       initializing value has an unspecified integral type.
10179      //
10180      // GCC uses 'int' for its unspecified integral type, as does
10181      // C99 6.7.2.2p3.
10182      if (Enum->isFixed()) {
10183        EltTy = Enum->getIntegerType();
10184      }
10185      else {
10186        EltTy = Context.IntTy;
10187      }
10188    } else {
10189      // Assign the last value + 1.
10190      EnumVal = LastEnumConst->getInitVal();
10191      ++EnumVal;
10192      EltTy = LastEnumConst->getType();
10193
10194      // Check for overflow on increment.
10195      if (EnumVal < LastEnumConst->getInitVal()) {
10196        // C++0x [dcl.enum]p5:
10197        //   If the underlying type is not fixed, the type of each enumerator
10198        //   is the type of its initializing value:
10199        //
10200        //     - Otherwise the type of the initializing value is the same as
10201        //       the type of the initializing value of the preceding enumerator
10202        //       unless the incremented value is not representable in that type,
10203        //       in which case the type is an unspecified integral type
10204        //       sufficient to contain the incremented value. If no such type
10205        //       exists, the program is ill-formed.
10206        QualType T = getNextLargerIntegralType(Context, EltTy);
10207        if (T.isNull() || Enum->isFixed()) {
10208          // There is no integral type larger enough to represent this
10209          // value. Complain, then allow the value to wrap around.
10210          EnumVal = LastEnumConst->getInitVal();
10211          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10212          ++EnumVal;
10213          if (Enum->isFixed())
10214            // When the underlying type is fixed, this is ill-formed.
10215            Diag(IdLoc, diag::err_enumerator_wrapped)
10216              << EnumVal.toString(10)
10217              << EltTy;
10218          else
10219            Diag(IdLoc, diag::warn_enumerator_too_large)
10220              << EnumVal.toString(10);
10221        } else {
10222          EltTy = T;
10223        }
10224
10225        // Retrieve the last enumerator's value, extent that type to the
10226        // type that is supposed to be large enough to represent the incremented
10227        // value, then increment.
10228        EnumVal = LastEnumConst->getInitVal();
10229        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10230        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10231        ++EnumVal;
10232
10233        // If we're not in C++, diagnose the overflow of enumerator values,
10234        // which in C99 means that the enumerator value is not representable in
10235        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10236        // permits enumerator values that are representable in some larger
10237        // integral type.
10238        if (!getLangOpts().CPlusPlus && !T.isNull())
10239          Diag(IdLoc, diag::warn_enum_value_overflow);
10240      } else if (!getLangOpts().CPlusPlus &&
10241                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10242        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10243        Diag(IdLoc, diag::ext_enum_value_not_int)
10244          << EnumVal.toString(10) << 1;
10245      }
10246    }
10247  }
10248
10249  if (!EltTy->isDependentType()) {
10250    // Make the enumerator value match the signedness and size of the
10251    // enumerator's type.
10252    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10253    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10254  }
10255
10256  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10257                                  Val, EnumVal);
10258}
10259
10260
10261Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10262                              SourceLocation IdLoc, IdentifierInfo *Id,
10263                              AttributeList *Attr,
10264                              SourceLocation EqualLoc, Expr *Val) {
10265  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10266  EnumConstantDecl *LastEnumConst =
10267    cast_or_null<EnumConstantDecl>(lastEnumConst);
10268
10269  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10270  // we find one that is.
10271  S = getNonFieldDeclScope(S);
10272
10273  // Verify that there isn't already something declared with this name in this
10274  // scope.
10275  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10276                                         ForRedeclaration);
10277  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10278    // Maybe we will complain about the shadowed template parameter.
10279    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10280    // Just pretend that we didn't see the previous declaration.
10281    PrevDecl = 0;
10282  }
10283
10284  if (PrevDecl) {
10285    // When in C++, we may get a TagDecl with the same name; in this case the
10286    // enum constant will 'hide' the tag.
10287    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10288           "Received TagDecl when not in C++!");
10289    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10290      if (isa<EnumConstantDecl>(PrevDecl))
10291        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10292      else
10293        Diag(IdLoc, diag::err_redefinition) << Id;
10294      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10295      return 0;
10296    }
10297  }
10298
10299  // C++ [class.mem]p13:
10300  //   If T is the name of a class, then each of the following shall have a
10301  //   name different from T:
10302  //     - every enumerator of every member of class T that is an enumerated
10303  //       type
10304  if (CXXRecordDecl *Record
10305                      = dyn_cast<CXXRecordDecl>(
10306                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10307    if (Record->getIdentifier() && Record->getIdentifier() == Id)
10308      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10309
10310  EnumConstantDecl *New =
10311    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10312
10313  if (New) {
10314    // Process attributes.
10315    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10316
10317    // Register this decl in the current scope stack.
10318    New->setAccess(TheEnumDecl->getAccess());
10319    PushOnScopeChains(New, S);
10320  }
10321
10322  return New;
10323}
10324
10325// Emits a warning if every element in the enum is the same value and if
10326// every element is initialized with a integer or boolean literal.
10327static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10328                                     unsigned NumElements, EnumDecl *Enum,
10329                                     QualType EnumType) {
10330  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10331                                 Enum->getLocation()) ==
10332      DiagnosticsEngine::Ignored)
10333    return;
10334
10335  if (NumElements < 2)
10336    return;
10337
10338  if (!Enum->getIdentifier())
10339    return;
10340
10341  llvm::APSInt FirstVal;
10342
10343  for (unsigned i = 0; i != NumElements; ++i) {
10344    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10345    if (!ECD)
10346      return;
10347
10348    Expr *InitExpr = ECD->getInitExpr();
10349    if (!InitExpr)
10350      return;
10351    InitExpr = InitExpr->IgnoreImpCasts();
10352    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10353      return;
10354
10355    if (i == 0) {
10356      FirstVal = ECD->getInitVal();
10357      continue;
10358    }
10359
10360    if (FirstVal != ECD->getInitVal())
10361      return;
10362  }
10363
10364  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10365      << EnumType << FirstVal.toString(10)
10366      << Enum->getSourceRange();
10367
10368  EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10369                   *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10370
10371  S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10372    << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10373                                    Next->getName());
10374}
10375
10376void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10377                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10378                         Decl **Elements, unsigned NumElements,
10379                         Scope *S, AttributeList *Attr) {
10380  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10381  QualType EnumType = Context.getTypeDeclType(Enum);
10382
10383  if (Attr)
10384    ProcessDeclAttributeList(S, Enum, Attr);
10385
10386  if (Enum->isDependentType()) {
10387    for (unsigned i = 0; i != NumElements; ++i) {
10388      EnumConstantDecl *ECD =
10389        cast_or_null<EnumConstantDecl>(Elements[i]);
10390      if (!ECD) continue;
10391
10392      ECD->setType(EnumType);
10393    }
10394
10395    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10396    return;
10397  }
10398
10399  // TODO: If the result value doesn't fit in an int, it must be a long or long
10400  // long value.  ISO C does not support this, but GCC does as an extension,
10401  // emit a warning.
10402  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10403  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10404  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10405
10406  // Verify that all the values are okay, compute the size of the values, and
10407  // reverse the list.
10408  unsigned NumNegativeBits = 0;
10409  unsigned NumPositiveBits = 0;
10410
10411  // Keep track of whether all elements have type int.
10412  bool AllElementsInt = true;
10413
10414  for (unsigned i = 0; i != NumElements; ++i) {
10415    EnumConstantDecl *ECD =
10416      cast_or_null<EnumConstantDecl>(Elements[i]);
10417    if (!ECD) continue;  // Already issued a diagnostic.
10418
10419    const llvm::APSInt &InitVal = ECD->getInitVal();
10420
10421    // Keep track of the size of positive and negative values.
10422    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10423      NumPositiveBits = std::max(NumPositiveBits,
10424                                 (unsigned)InitVal.getActiveBits());
10425    else
10426      NumNegativeBits = std::max(NumNegativeBits,
10427                                 (unsigned)InitVal.getMinSignedBits());
10428
10429    // Keep track of whether every enum element has type int (very commmon).
10430    if (AllElementsInt)
10431      AllElementsInt = ECD->getType() == Context.IntTy;
10432  }
10433
10434  // Figure out the type that should be used for this enum.
10435  QualType BestType;
10436  unsigned BestWidth;
10437
10438  // C++0x N3000 [conv.prom]p3:
10439  //   An rvalue of an unscoped enumeration type whose underlying
10440  //   type is not fixed can be converted to an rvalue of the first
10441  //   of the following types that can represent all the values of
10442  //   the enumeration: int, unsigned int, long int, unsigned long
10443  //   int, long long int, or unsigned long long int.
10444  // C99 6.4.4.3p2:
10445  //   An identifier declared as an enumeration constant has type int.
10446  // The C99 rule is modified by a gcc extension
10447  QualType BestPromotionType;
10448
10449  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10450  // -fshort-enums is the equivalent to specifying the packed attribute on all
10451  // enum definitions.
10452  if (LangOpts.ShortEnums)
10453    Packed = true;
10454
10455  if (Enum->isFixed()) {
10456    BestType = Enum->getIntegerType();
10457    if (BestType->isPromotableIntegerType())
10458      BestPromotionType = Context.getPromotedIntegerType(BestType);
10459    else
10460      BestPromotionType = BestType;
10461    // We don't need to set BestWidth, because BestType is going to be the type
10462    // of the enumerators, but we do anyway because otherwise some compilers
10463    // warn that it might be used uninitialized.
10464    BestWidth = CharWidth;
10465  }
10466  else if (NumNegativeBits) {
10467    // If there is a negative value, figure out the smallest integer type (of
10468    // int/long/longlong) that fits.
10469    // If it's packed, check also if it fits a char or a short.
10470    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10471      BestType = Context.SignedCharTy;
10472      BestWidth = CharWidth;
10473    } else if (Packed && NumNegativeBits <= ShortWidth &&
10474               NumPositiveBits < ShortWidth) {
10475      BestType = Context.ShortTy;
10476      BestWidth = ShortWidth;
10477    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10478      BestType = Context.IntTy;
10479      BestWidth = IntWidth;
10480    } else {
10481      BestWidth = Context.getTargetInfo().getLongWidth();
10482
10483      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10484        BestType = Context.LongTy;
10485      } else {
10486        BestWidth = Context.getTargetInfo().getLongLongWidth();
10487
10488        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10489          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10490        BestType = Context.LongLongTy;
10491      }
10492    }
10493    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10494  } else {
10495    // If there is no negative value, figure out the smallest type that fits
10496    // all of the enumerator values.
10497    // If it's packed, check also if it fits a char or a short.
10498    if (Packed && NumPositiveBits <= CharWidth) {
10499      BestType = Context.UnsignedCharTy;
10500      BestPromotionType = Context.IntTy;
10501      BestWidth = CharWidth;
10502    } else if (Packed && NumPositiveBits <= ShortWidth) {
10503      BestType = Context.UnsignedShortTy;
10504      BestPromotionType = Context.IntTy;
10505      BestWidth = ShortWidth;
10506    } else if (NumPositiveBits <= IntWidth) {
10507      BestType = Context.UnsignedIntTy;
10508      BestWidth = IntWidth;
10509      BestPromotionType
10510        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10511                           ? Context.UnsignedIntTy : Context.IntTy;
10512    } else if (NumPositiveBits <=
10513               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10514      BestType = Context.UnsignedLongTy;
10515      BestPromotionType
10516        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10517                           ? Context.UnsignedLongTy : Context.LongTy;
10518    } else {
10519      BestWidth = Context.getTargetInfo().getLongLongWidth();
10520      assert(NumPositiveBits <= BestWidth &&
10521             "How could an initializer get larger than ULL?");
10522      BestType = Context.UnsignedLongLongTy;
10523      BestPromotionType
10524        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10525                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10526    }
10527  }
10528
10529  // Loop over all of the enumerator constants, changing their types to match
10530  // the type of the enum if needed.
10531  for (unsigned i = 0; i != NumElements; ++i) {
10532    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10533    if (!ECD) continue;  // Already issued a diagnostic.
10534
10535    // Standard C says the enumerators have int type, but we allow, as an
10536    // extension, the enumerators to be larger than int size.  If each
10537    // enumerator value fits in an int, type it as an int, otherwise type it the
10538    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10539    // that X has type 'int', not 'unsigned'.
10540
10541    // Determine whether the value fits into an int.
10542    llvm::APSInt InitVal = ECD->getInitVal();
10543
10544    // If it fits into an integer type, force it.  Otherwise force it to match
10545    // the enum decl type.
10546    QualType NewTy;
10547    unsigned NewWidth;
10548    bool NewSign;
10549    if (!getLangOpts().CPlusPlus &&
10550        !Enum->isFixed() &&
10551        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10552      NewTy = Context.IntTy;
10553      NewWidth = IntWidth;
10554      NewSign = true;
10555    } else if (ECD->getType() == BestType) {
10556      // Already the right type!
10557      if (getLangOpts().CPlusPlus)
10558        // C++ [dcl.enum]p4: Following the closing brace of an
10559        // enum-specifier, each enumerator has the type of its
10560        // enumeration.
10561        ECD->setType(EnumType);
10562      continue;
10563    } else {
10564      NewTy = BestType;
10565      NewWidth = BestWidth;
10566      NewSign = BestType->isSignedIntegerOrEnumerationType();
10567    }
10568
10569    // Adjust the APSInt value.
10570    InitVal = InitVal.extOrTrunc(NewWidth);
10571    InitVal.setIsSigned(NewSign);
10572    ECD->setInitVal(InitVal);
10573
10574    // Adjust the Expr initializer and type.
10575    if (ECD->getInitExpr() &&
10576        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10577      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10578                                                CK_IntegralCast,
10579                                                ECD->getInitExpr(),
10580                                                /*base paths*/ 0,
10581                                                VK_RValue));
10582    if (getLangOpts().CPlusPlus)
10583      // C++ [dcl.enum]p4: Following the closing brace of an
10584      // enum-specifier, each enumerator has the type of its
10585      // enumeration.
10586      ECD->setType(EnumType);
10587    else
10588      ECD->setType(NewTy);
10589  }
10590
10591  Enum->completeDefinition(BestType, BestPromotionType,
10592                           NumPositiveBits, NumNegativeBits);
10593
10594  // If we're declaring a function, ensure this decl isn't forgotten about -
10595  // it needs to go into the function scope.
10596  if (InFunctionDeclarator)
10597    DeclsInPrototypeScope.push_back(Enum);
10598
10599  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
10600}
10601
10602Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10603                                  SourceLocation StartLoc,
10604                                  SourceLocation EndLoc) {
10605  StringLiteral *AsmString = cast<StringLiteral>(expr);
10606
10607  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10608                                                   AsmString, StartLoc,
10609                                                   EndLoc);
10610  CurContext->addDecl(New);
10611  return New;
10612}
10613
10614DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10615                                   SourceLocation ImportLoc,
10616                                   ModuleIdPath Path) {
10617  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10618                                                Module::AllVisible,
10619                                                /*IsIncludeDirective=*/false);
10620  if (!Mod)
10621    return true;
10622
10623  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10624  Module *ModCheck = Mod;
10625  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10626    // If we've run out of module parents, just drop the remaining identifiers.
10627    // We need the length to be consistent.
10628    if (!ModCheck)
10629      break;
10630    ModCheck = ModCheck->Parent;
10631
10632    IdentifierLocs.push_back(Path[I].second);
10633  }
10634
10635  ImportDecl *Import = ImportDecl::Create(Context,
10636                                          Context.getTranslationUnitDecl(),
10637                                          AtLoc.isValid()? AtLoc : ImportLoc,
10638                                          Mod, IdentifierLocs);
10639  Context.getTranslationUnitDecl()->addDecl(Import);
10640  return Import;
10641}
10642
10643void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10644                                      IdentifierInfo* AliasName,
10645                                      SourceLocation PragmaLoc,
10646                                      SourceLocation NameLoc,
10647                                      SourceLocation AliasNameLoc) {
10648  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10649                                    LookupOrdinaryName);
10650  AsmLabelAttr *Attr =
10651     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10652
10653  if (PrevDecl)
10654    PrevDecl->addAttr(Attr);
10655  else
10656    (void)ExtnameUndeclaredIdentifiers.insert(
10657      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10658}
10659
10660void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10661                             SourceLocation PragmaLoc,
10662                             SourceLocation NameLoc) {
10663  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10664
10665  if (PrevDecl) {
10666    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10667  } else {
10668    (void)WeakUndeclaredIdentifiers.insert(
10669      std::pair<IdentifierInfo*,WeakInfo>
10670        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10671  }
10672}
10673
10674void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10675                                IdentifierInfo* AliasName,
10676                                SourceLocation PragmaLoc,
10677                                SourceLocation NameLoc,
10678                                SourceLocation AliasNameLoc) {
10679  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10680                                    LookupOrdinaryName);
10681  WeakInfo W = WeakInfo(Name, NameLoc);
10682
10683  if (PrevDecl) {
10684    if (!PrevDecl->hasAttr<AliasAttr>())
10685      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10686        DeclApplyPragmaWeak(TUScope, ND, W);
10687  } else {
10688    (void)WeakUndeclaredIdentifiers.insert(
10689      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10690  }
10691}
10692
10693Decl *Sema::getObjCDeclContext() const {
10694  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10695}
10696
10697AvailabilityResult Sema::getCurContextAvailability() const {
10698  const Decl *D = cast<Decl>(getCurLexicalContext());
10699  // A category implicitly has the availability of the interface.
10700  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10701    D = CatD->getClassInterface();
10702
10703  return D->getAvailability();
10704}
10705