SemaDecl.cpp revision 04d50da8b699861aa7c631e1dd6b40376bd36690
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
286                       Name, 0, true, TemplateResult,
287                       MemberOfUnknownSpecialization) == TNK_Type_template) {
288      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
289      Diag(IILoc, diag::err_template_missing_args) << TplName;
290      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
291        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
292          << TplDecl->getTemplateParameters()->getSourceRange();
293      }
294      return true;
295    }
296  }
297
298  // FIXME: Should we move the logic that tries to recover from a missing tag
299  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
300
301  if (!SS || (!SS->isSet() && !SS->isInvalid()))
302    Diag(IILoc, diag::err_unknown_typename) << &II;
303  else if (DeclContext *DC = computeDeclContext(*SS, false))
304    Diag(IILoc, diag::err_typename_nested_not_found)
305      << &II << DC << SS->getRange();
306  else if (isDependentScopeSpecifier(*SS)) {
307    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
308      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
309      << SourceRange(SS->getRange().getBegin(), IILoc)
310      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
311    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
312  } else {
313    assert(SS && SS->isInvalid() &&
314           "Invalid scope specifier has already been diagnosed");
315  }
316
317  return true;
318}
319
320// Determines the context to return to after temporarily entering a
321// context.  This depends in an unnecessarily complicated way on the
322// exact ordering of callbacks from the parser.
323DeclContext *Sema::getContainingDC(DeclContext *DC) {
324
325  // Functions defined inline within classes aren't parsed until we've
326  // finished parsing the top-level class, so the top-level class is
327  // the context we'll need to return to.
328  if (isa<FunctionDecl>(DC)) {
329    DC = DC->getLexicalParent();
330
331    // A function not defined within a class will always return to its
332    // lexical context.
333    if (!isa<CXXRecordDecl>(DC))
334      return DC;
335
336    // A C++ inline method/friend is parsed *after* the topmost class
337    // it was declared in is fully parsed ("complete");  the topmost
338    // class is the context we need to return to.
339    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
340      DC = RD;
341
342    // Return the declaration context of the topmost class the inline method is
343    // declared in.
344    return DC;
345  }
346
347  // ObjCMethodDecls are parsed (for some reason) outside the context
348  // of the class.
349  if (isa<ObjCMethodDecl>(DC))
350    return DC->getLexicalParent()->getLexicalParent();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366  assert(CurContext && "Popped translation unit!");
367}
368
369/// EnterDeclaratorContext - Used when we must lookup names in the context
370/// of a declarator's nested name specifier.
371///
372void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
373  // C++0x [basic.lookup.unqual]p13:
374  //   A name used in the definition of a static data member of class
375  //   X (after the qualified-id of the static member) is looked up as
376  //   if the name was used in a member function of X.
377  // C++0x [basic.lookup.unqual]p14:
378  //   If a variable member of a namespace is defined outside of the
379  //   scope of its namespace then any name used in the definition of
380  //   the variable member (after the declarator-id) is looked up as
381  //   if the definition of the variable member occurred in its
382  //   namespace.
383  // Both of these imply that we should push a scope whose context
384  // is the semantic context of the declaration.  We can't use
385  // PushDeclContext here because that context is not necessarily
386  // lexically contained in the current context.  Fortunately,
387  // the containing scope should have the appropriate information.
388
389  assert(!S->getEntity() && "scope already has entity");
390
391#ifndef NDEBUG
392  Scope *Ancestor = S->getParent();
393  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
394  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
395#endif
396
397  CurContext = DC;
398  S->setEntity(DC);
399}
400
401void Sema::ExitDeclaratorContext(Scope *S) {
402  assert(S->getEntity() == CurContext && "Context imbalance!");
403
404  // Switch back to the lexical context.  The safety of this is
405  // enforced by an assert in EnterDeclaratorContext.
406  Scope *Ancestor = S->getParent();
407  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
408  CurContext = (DeclContext*) Ancestor->getEntity();
409
410  // We don't need to do anything with the scope, which is going to
411  // disappear.
412}
413
414/// \brief Determine whether we allow overloading of the function
415/// PrevDecl with another declaration.
416///
417/// This routine determines whether overloading is possible, not
418/// whether some new function is actually an overload. It will return
419/// true in C++ (where we can always provide overloads) or, as an
420/// extension, in C when the previous function is already an
421/// overloaded function declaration or has the "overloadable"
422/// attribute.
423static bool AllowOverloadingOfFunction(LookupResult &Previous,
424                                       ASTContext &Context) {
425  if (Context.getLangOptions().CPlusPlus)
426    return true;
427
428  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
429    return true;
430
431  return (Previous.getResultKind() == LookupResult::Found
432          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
433}
434
435/// Add this decl to the scope shadowed decl chains.
436void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
437  // Move up the scope chain until we find the nearest enclosing
438  // non-transparent context. The declaration will be introduced into this
439  // scope.
440  while (S->getEntity() &&
441         ((DeclContext *)S->getEntity())->isTransparentContext())
442    S = S->getParent();
443
444  // Add scoped declarations into their context, so that they can be
445  // found later. Declarations without a context won't be inserted
446  // into any context.
447  if (AddToContext)
448    CurContext->addDecl(D);
449
450  // Out-of-line definitions shouldn't be pushed into scope in C++.
451  // Out-of-line variable and function definitions shouldn't even in C.
452  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
453      D->isOutOfLine())
454    return;
455
456  // Template instantiations should also not be pushed into scope.
457  if (isa<FunctionDecl>(D) &&
458      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
459    return;
460
461  // If this replaces anything in the current scope,
462  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
463                               IEnd = IdResolver.end();
464  for (; I != IEnd; ++I) {
465    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
466      S->RemoveDecl(DeclPtrTy::make(*I));
467      IdResolver.RemoveDecl(*I);
468
469      // Should only need to replace one decl.
470      break;
471    }
472  }
473
474  S->AddDecl(DeclPtrTy::make(D));
475  IdResolver.AddDecl(D);
476}
477
478bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
479  return IdResolver.isDeclInScope(D, Ctx, Context, S);
480}
481
482static bool isOutOfScopePreviousDeclaration(NamedDecl *,
483                                            DeclContext*,
484                                            ASTContext&);
485
486/// Filters out lookup results that don't fall within the given scope
487/// as determined by isDeclInScope.
488static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
489                                 DeclContext *Ctx, Scope *S,
490                                 bool ConsiderLinkage) {
491  LookupResult::Filter F = R.makeFilter();
492  while (F.hasNext()) {
493    NamedDecl *D = F.next();
494
495    if (SemaRef.isDeclInScope(D, Ctx, S))
496      continue;
497
498    if (ConsiderLinkage &&
499        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
500      continue;
501
502    F.erase();
503  }
504
505  F.done();
506}
507
508static bool isUsingDecl(NamedDecl *D) {
509  return isa<UsingShadowDecl>(D) ||
510         isa<UnresolvedUsingTypenameDecl>(D) ||
511         isa<UnresolvedUsingValueDecl>(D);
512}
513
514/// Removes using shadow declarations from the lookup results.
515static void RemoveUsingDecls(LookupResult &R) {
516  LookupResult::Filter F = R.makeFilter();
517  while (F.hasNext())
518    if (isUsingDecl(F.next()))
519      F.erase();
520
521  F.done();
522}
523
524bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
525  assert(D);
526  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
527    return false;
528  if (D->getLinkage() == ExternalLinkage)
529    return false;
530
531  // Ignore class templates.
532  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
533    if (MD->getParent()->getDescribedClassTemplate())
534      return false;
535
536  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
537    if (FD->isThisDeclarationADefinition())
538      return !Context.DeclMustBeEmitted(FD);
539    return true;
540   }
541
542   return false;
543 }
544
545 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
546  if (!D)
547    return;
548
549  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
550    const FunctionDecl *First = FD->getFirstDeclaration();
551    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
552      return; // First should already be in the vector.
553  }
554
555   if (ShouldWarnIfUnusedFileScopedDecl(D))
556     UnusedFileScopedDecls.push_back(D);
557 }
558
559static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
560  if (D->isInvalidDecl())
561    return false;
562
563  if (D->isUsed() || D->hasAttr<UnusedAttr>())
564    return false;
565
566  // White-list anything that isn't a local variable.
567  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
568      !D->getDeclContext()->isFunctionOrMethod())
569    return false;
570
571  // Types of valid local variables should be complete, so this should succeed.
572  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
573
574    // White-list anything with an __attribute__((unused)) type.
575    QualType Ty = VD->getType();
576
577    // Only look at the outermost level of typedef.
578    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
579      if (TT->getDecl()->hasAttr<UnusedAttr>())
580        return false;
581    }
582
583    // If we failed to complete the type for some reason, or if the type is
584    // dependent, don't diagnose the variable.
585    if (Ty->isIncompleteType() || Ty->isDependentType())
586      return false;
587
588    if (const TagType *TT = Ty->getAs<TagType>()) {
589      const TagDecl *Tag = TT->getDecl();
590      if (Tag->hasAttr<UnusedAttr>())
591        return false;
592
593      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
594        // FIXME: Checking for the presence of a user-declared constructor
595        // isn't completely accurate; we'd prefer to check that the initializer
596        // has no side effects.
597        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
598          return false;
599      }
600    }
601
602    // TODO: __attribute__((unused)) templates?
603  }
604
605  return true;
606}
607
608void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
609  if (!ShouldDiagnoseUnusedDecl(D))
610    return;
611
612  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
613    Diag(D->getLocation(), diag::warn_unused_exception_param)
614    << D->getDeclName();
615  else
616    Diag(D->getLocation(), diag::warn_unused_variable)
617    << D->getDeclName();
618}
619
620void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
621  if (S->decl_empty()) return;
622  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
623         "Scope shouldn't contain decls!");
624
625  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
626       I != E; ++I) {
627    Decl *TmpD = (*I).getAs<Decl>();
628    assert(TmpD && "This decl didn't get pushed??");
629
630    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
631    NamedDecl *D = cast<NamedDecl>(TmpD);
632
633    if (!D->getDeclName()) continue;
634
635    // Diagnose unused variables in this scope.
636    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
637      DiagnoseUnusedDecl(D);
638
639    // Remove this name from our lexical scope.
640    IdResolver.RemoveDecl(D);
641  }
642}
643
644/// \brief Look for an Objective-C class in the translation unit.
645///
646/// \param Id The name of the Objective-C class we're looking for. If
647/// typo-correction fixes this name, the Id will be updated
648/// to the fixed name.
649///
650/// \param IdLoc The location of the name in the translation unit.
651///
652/// \param TypoCorrection If true, this routine will attempt typo correction
653/// if there is no class with the given name.
654///
655/// \returns The declaration of the named Objective-C class, or NULL if the
656/// class could not be found.
657ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
658                                              SourceLocation IdLoc,
659                                              bool TypoCorrection) {
660  // The third "scope" argument is 0 since we aren't enabling lazy built-in
661  // creation from this context.
662  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
663
664  if (!IDecl && TypoCorrection) {
665    // Perform typo correction at the given location, but only if we
666    // find an Objective-C class name.
667    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
668    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
669        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
670      Diag(IdLoc, diag::err_undef_interface_suggest)
671        << Id << IDecl->getDeclName()
672        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
673      Diag(IDecl->getLocation(), diag::note_previous_decl)
674        << IDecl->getDeclName();
675
676      Id = IDecl->getIdentifier();
677    }
678  }
679
680  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
681}
682
683/// getNonFieldDeclScope - Retrieves the innermost scope, starting
684/// from S, where a non-field would be declared. This routine copes
685/// with the difference between C and C++ scoping rules in structs and
686/// unions. For example, the following code is well-formed in C but
687/// ill-formed in C++:
688/// @code
689/// struct S6 {
690///   enum { BAR } e;
691/// };
692///
693/// void test_S6() {
694///   struct S6 a;
695///   a.e = BAR;
696/// }
697/// @endcode
698/// For the declaration of BAR, this routine will return a different
699/// scope. The scope S will be the scope of the unnamed enumeration
700/// within S6. In C++, this routine will return the scope associated
701/// with S6, because the enumeration's scope is a transparent
702/// context but structures can contain non-field names. In C, this
703/// routine will return the translation unit scope, since the
704/// enumeration's scope is a transparent context and structures cannot
705/// contain non-field names.
706Scope *Sema::getNonFieldDeclScope(Scope *S) {
707  while (((S->getFlags() & Scope::DeclScope) == 0) ||
708         (S->getEntity() &&
709          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
710         (S->isClassScope() && !getLangOptions().CPlusPlus))
711    S = S->getParent();
712  return S;
713}
714
715void Sema::InitBuiltinVaListType() {
716  if (!Context.getBuiltinVaListType().isNull())
717    return;
718
719  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
720  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
721                                       LookupOrdinaryName, ForRedeclaration);
722  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
723  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
724}
725
726/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
727/// file scope.  lazily create a decl for it. ForRedeclaration is true
728/// if we're creating this built-in in anticipation of redeclaring the
729/// built-in.
730NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
731                                     Scope *S, bool ForRedeclaration,
732                                     SourceLocation Loc) {
733  Builtin::ID BID = (Builtin::ID)bid;
734
735  if (Context.BuiltinInfo.hasVAListUse(BID))
736    InitBuiltinVaListType();
737
738  ASTContext::GetBuiltinTypeError Error;
739  QualType R = Context.GetBuiltinType(BID, Error);
740  switch (Error) {
741  case ASTContext::GE_None:
742    // Okay
743    break;
744
745  case ASTContext::GE_Missing_stdio:
746    if (ForRedeclaration)
747      Diag(Loc, diag::err_implicit_decl_requires_stdio)
748        << Context.BuiltinInfo.GetName(BID);
749    return 0;
750
751  case ASTContext::GE_Missing_setjmp:
752    if (ForRedeclaration)
753      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
754        << Context.BuiltinInfo.GetName(BID);
755    return 0;
756  }
757
758  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
759    Diag(Loc, diag::ext_implicit_lib_function_decl)
760      << Context.BuiltinInfo.GetName(BID)
761      << R;
762    if (Context.BuiltinInfo.getHeaderName(BID) &&
763        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
764          != Diagnostic::Ignored)
765      Diag(Loc, diag::note_please_include_header)
766        << Context.BuiltinInfo.getHeaderName(BID)
767        << Context.BuiltinInfo.GetName(BID);
768  }
769
770  FunctionDecl *New = FunctionDecl::Create(Context,
771                                           Context.getTranslationUnitDecl(),
772                                           Loc, II, R, /*TInfo=*/0,
773                                           FunctionDecl::Extern,
774                                           FunctionDecl::None, false,
775                                           /*hasPrototype=*/true);
776  New->setImplicit();
777
778  // Create Decl objects for each parameter, adding them to the
779  // FunctionDecl.
780  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
781    llvm::SmallVector<ParmVarDecl*, 16> Params;
782    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
783      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
784                                           FT->getArgType(i), /*TInfo=*/0,
785                                           VarDecl::None, VarDecl::None, 0));
786    New->setParams(Params.data(), Params.size());
787  }
788
789  AddKnownFunctionAttributes(New);
790
791  // TUScope is the translation-unit scope to insert this function into.
792  // FIXME: This is hideous. We need to teach PushOnScopeChains to
793  // relate Scopes to DeclContexts, and probably eliminate CurContext
794  // entirely, but we're not there yet.
795  DeclContext *SavedContext = CurContext;
796  CurContext = Context.getTranslationUnitDecl();
797  PushOnScopeChains(New, TUScope);
798  CurContext = SavedContext;
799  return New;
800}
801
802/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
803/// same name and scope as a previous declaration 'Old'.  Figure out
804/// how to resolve this situation, merging decls or emitting
805/// diagnostics as appropriate. If there was an error, set New to be invalid.
806///
807void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
808  // If the new decl is known invalid already, don't bother doing any
809  // merging checks.
810  if (New->isInvalidDecl()) return;
811
812  // Allow multiple definitions for ObjC built-in typedefs.
813  // FIXME: Verify the underlying types are equivalent!
814  if (getLangOptions().ObjC1) {
815    const IdentifierInfo *TypeID = New->getIdentifier();
816    switch (TypeID->getLength()) {
817    default: break;
818    case 2:
819      if (!TypeID->isStr("id"))
820        break;
821      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
822      // Install the built-in type for 'id', ignoring the current definition.
823      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
824      return;
825    case 5:
826      if (!TypeID->isStr("Class"))
827        break;
828      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
829      // Install the built-in type for 'Class', ignoring the current definition.
830      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
831      return;
832    case 3:
833      if (!TypeID->isStr("SEL"))
834        break;
835      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
836      // Install the built-in type for 'SEL', ignoring the current definition.
837      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
838      return;
839    case 8:
840      if (!TypeID->isStr("Protocol"))
841        break;
842      Context.setObjCProtoType(New->getUnderlyingType());
843      return;
844    }
845    // Fall through - the typedef name was not a builtin type.
846  }
847
848  // Verify the old decl was also a type.
849  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
850  if (!Old) {
851    Diag(New->getLocation(), diag::err_redefinition_different_kind)
852      << New->getDeclName();
853
854    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
855    if (OldD->getLocation().isValid())
856      Diag(OldD->getLocation(), diag::note_previous_definition);
857
858    return New->setInvalidDecl();
859  }
860
861  // If the old declaration is invalid, just give up here.
862  if (Old->isInvalidDecl())
863    return New->setInvalidDecl();
864
865  // Determine the "old" type we'll use for checking and diagnostics.
866  QualType OldType;
867  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
868    OldType = OldTypedef->getUnderlyingType();
869  else
870    OldType = Context.getTypeDeclType(Old);
871
872  // If the typedef types are not identical, reject them in all languages and
873  // with any extensions enabled.
874
875  if (OldType != New->getUnderlyingType() &&
876      Context.getCanonicalType(OldType) !=
877      Context.getCanonicalType(New->getUnderlyingType())) {
878    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
879      << New->getUnderlyingType() << OldType;
880    if (Old->getLocation().isValid())
881      Diag(Old->getLocation(), diag::note_previous_definition);
882    return New->setInvalidDecl();
883  }
884
885  // The types match.  Link up the redeclaration chain if the old
886  // declaration was a typedef.
887  // FIXME: this is a potential source of wierdness if the type
888  // spellings don't match exactly.
889  if (isa<TypedefDecl>(Old))
890    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
891
892  if (getLangOptions().Microsoft)
893    return;
894
895  if (getLangOptions().CPlusPlus) {
896    // C++ [dcl.typedef]p2:
897    //   In a given non-class scope, a typedef specifier can be used to
898    //   redefine the name of any type declared in that scope to refer
899    //   to the type to which it already refers.
900    if (!isa<CXXRecordDecl>(CurContext))
901      return;
902
903    // C++0x [dcl.typedef]p4:
904    //   In a given class scope, a typedef specifier can be used to redefine
905    //   any class-name declared in that scope that is not also a typedef-name
906    //   to refer to the type to which it already refers.
907    //
908    // This wording came in via DR424, which was a correction to the
909    // wording in DR56, which accidentally banned code like:
910    //
911    //   struct S {
912    //     typedef struct A { } A;
913    //   };
914    //
915    // in the C++03 standard. We implement the C++0x semantics, which
916    // allow the above but disallow
917    //
918    //   struct S {
919    //     typedef int I;
920    //     typedef int I;
921    //   };
922    //
923    // since that was the intent of DR56.
924    if (!isa<TypedefDecl >(Old))
925      return;
926
927    Diag(New->getLocation(), diag::err_redefinition)
928      << New->getDeclName();
929    Diag(Old->getLocation(), diag::note_previous_definition);
930    return New->setInvalidDecl();
931  }
932
933  // If we have a redefinition of a typedef in C, emit a warning.  This warning
934  // is normally mapped to an error, but can be controlled with
935  // -Wtypedef-redefinition.  If either the original or the redefinition is
936  // in a system header, don't emit this for compatibility with GCC.
937  if (getDiagnostics().getSuppressSystemWarnings() &&
938      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
939       Context.getSourceManager().isInSystemHeader(New->getLocation())))
940    return;
941
942  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
943    << New->getDeclName();
944  Diag(Old->getLocation(), diag::note_previous_definition);
945  return;
946}
947
948/// DeclhasAttr - returns true if decl Declaration already has the target
949/// attribute.
950static bool
951DeclHasAttr(const Decl *decl, const Attr *target) {
952  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
953    if (attr->getKind() == target->getKind())
954      return true;
955
956  return false;
957}
958
959/// MergeAttributes - append attributes from the Old decl to the New one.
960static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
961  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
962    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
963      Attr *NewAttr = attr->clone(C);
964      NewAttr->setInherited(true);
965      New->addAttr(NewAttr);
966    }
967  }
968}
969
970namespace {
971
972/// Used in MergeFunctionDecl to keep track of function parameters in
973/// C.
974struct GNUCompatibleParamWarning {
975  ParmVarDecl *OldParm;
976  ParmVarDecl *NewParm;
977  QualType PromotedType;
978};
979
980}
981
982/// getSpecialMember - get the special member enum for a method.
983Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
984  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
985    if (Ctor->isCopyConstructor())
986      return Sema::CXXCopyConstructor;
987
988    return Sema::CXXConstructor;
989  }
990
991  if (isa<CXXDestructorDecl>(MD))
992    return Sema::CXXDestructor;
993
994  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
995  return Sema::CXXCopyAssignment;
996}
997
998/// canRedefineFunction - checks if a function can be redefined. Currently,
999/// only extern inline functions can be redefined, and even then only in
1000/// GNU89 mode.
1001static bool canRedefineFunction(const FunctionDecl *FD,
1002                                const LangOptions& LangOpts) {
1003  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1004          FD->isInlineSpecified() &&
1005          FD->getStorageClass() == FunctionDecl::Extern);
1006}
1007
1008/// MergeFunctionDecl - We just parsed a function 'New' from
1009/// declarator D which has the same name and scope as a previous
1010/// declaration 'Old'.  Figure out how to resolve this situation,
1011/// merging decls or emitting diagnostics as appropriate.
1012///
1013/// In C++, New and Old must be declarations that are not
1014/// overloaded. Use IsOverload to determine whether New and Old are
1015/// overloaded, and to select the Old declaration that New should be
1016/// merged with.
1017///
1018/// Returns true if there was an error, false otherwise.
1019bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1020  // Verify the old decl was also a function.
1021  FunctionDecl *Old = 0;
1022  if (FunctionTemplateDecl *OldFunctionTemplate
1023        = dyn_cast<FunctionTemplateDecl>(OldD))
1024    Old = OldFunctionTemplate->getTemplatedDecl();
1025  else
1026    Old = dyn_cast<FunctionDecl>(OldD);
1027  if (!Old) {
1028    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1029      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1030      Diag(Shadow->getTargetDecl()->getLocation(),
1031           diag::note_using_decl_target);
1032      Diag(Shadow->getUsingDecl()->getLocation(),
1033           diag::note_using_decl) << 0;
1034      return true;
1035    }
1036
1037    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1038      << New->getDeclName();
1039    Diag(OldD->getLocation(), diag::note_previous_definition);
1040    return true;
1041  }
1042
1043  // Determine whether the previous declaration was a definition,
1044  // implicit declaration, or a declaration.
1045  diag::kind PrevDiag;
1046  if (Old->isThisDeclarationADefinition())
1047    PrevDiag = diag::note_previous_definition;
1048  else if (Old->isImplicit())
1049    PrevDiag = diag::note_previous_implicit_declaration;
1050  else
1051    PrevDiag = diag::note_previous_declaration;
1052
1053  QualType OldQType = Context.getCanonicalType(Old->getType());
1054  QualType NewQType = Context.getCanonicalType(New->getType());
1055
1056  // Don't complain about this if we're in GNU89 mode and the old function
1057  // is an extern inline function.
1058  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1059      New->getStorageClass() == FunctionDecl::Static &&
1060      Old->getStorageClass() != FunctionDecl::Static &&
1061      !canRedefineFunction(Old, getLangOptions())) {
1062    Diag(New->getLocation(), diag::err_static_non_static)
1063      << New;
1064    Diag(Old->getLocation(), PrevDiag);
1065    return true;
1066  }
1067
1068  // If a function is first declared with a calling convention, but is
1069  // later declared or defined without one, the second decl assumes the
1070  // calling convention of the first.
1071  //
1072  // For the new decl, we have to look at the NON-canonical type to tell the
1073  // difference between a function that really doesn't have a calling
1074  // convention and one that is declared cdecl. That's because in
1075  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1076  // because it is the default calling convention.
1077  //
1078  // Note also that we DO NOT return at this point, because we still have
1079  // other tests to run.
1080  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1081  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1082  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1083  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1084  if (OldTypeInfo.getCC() != CC_Default &&
1085      NewTypeInfo.getCC() == CC_Default) {
1086    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1087    New->setType(NewQType);
1088    NewQType = Context.getCanonicalType(NewQType);
1089  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1090                                     NewTypeInfo.getCC())) {
1091    // Calling conventions really aren't compatible, so complain.
1092    Diag(New->getLocation(), diag::err_cconv_change)
1093      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1094      << (OldTypeInfo.getCC() == CC_Default)
1095      << (OldTypeInfo.getCC() == CC_Default ? "" :
1096          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1097    Diag(Old->getLocation(), diag::note_previous_declaration);
1098    return true;
1099  }
1100
1101  // FIXME: diagnose the other way around?
1102  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1103    NewQType = Context.getNoReturnType(NewQType);
1104    New->setType(NewQType);
1105    assert(NewQType.isCanonical());
1106  }
1107
1108  // Merge regparm attribute.
1109  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1110    if (NewType->getRegParmType()) {
1111      Diag(New->getLocation(), diag::err_regparm_mismatch)
1112        << NewType->getRegParmType()
1113        << OldType->getRegParmType();
1114      Diag(Old->getLocation(), diag::note_previous_declaration);
1115      return true;
1116    }
1117
1118    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1119    New->setType(NewQType);
1120    assert(NewQType.isCanonical());
1121  }
1122
1123  if (getLangOptions().CPlusPlus) {
1124    // (C++98 13.1p2):
1125    //   Certain function declarations cannot be overloaded:
1126    //     -- Function declarations that differ only in the return type
1127    //        cannot be overloaded.
1128    QualType OldReturnType
1129      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1130    QualType NewReturnType
1131      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1132    QualType ResQT;
1133    if (OldReturnType != NewReturnType) {
1134      if (NewReturnType->isObjCObjectPointerType()
1135          && OldReturnType->isObjCObjectPointerType())
1136        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1137      if (ResQT.isNull()) {
1138        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1139        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1140        return true;
1141      }
1142      else
1143        NewQType = ResQT;
1144    }
1145
1146    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1147    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1148    if (OldMethod && NewMethod) {
1149      // Preserve triviality.
1150      NewMethod->setTrivial(OldMethod->isTrivial());
1151
1152      bool isFriend = NewMethod->getFriendObjectKind();
1153
1154      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1155        //    -- Member function declarations with the same name and the
1156        //       same parameter types cannot be overloaded if any of them
1157        //       is a static member function declaration.
1158        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1159          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1160          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1161          return true;
1162        }
1163
1164        // C++ [class.mem]p1:
1165        //   [...] A member shall not be declared twice in the
1166        //   member-specification, except that a nested class or member
1167        //   class template can be declared and then later defined.
1168        unsigned NewDiag;
1169        if (isa<CXXConstructorDecl>(OldMethod))
1170          NewDiag = diag::err_constructor_redeclared;
1171        else if (isa<CXXDestructorDecl>(NewMethod))
1172          NewDiag = diag::err_destructor_redeclared;
1173        else if (isa<CXXConversionDecl>(NewMethod))
1174          NewDiag = diag::err_conv_function_redeclared;
1175        else
1176          NewDiag = diag::err_member_redeclared;
1177
1178        Diag(New->getLocation(), NewDiag);
1179        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1180
1181      // Complain if this is an explicit declaration of a special
1182      // member that was initially declared implicitly.
1183      //
1184      // As an exception, it's okay to befriend such methods in order
1185      // to permit the implicit constructor/destructor/operator calls.
1186      } else if (OldMethod->isImplicit()) {
1187        if (isFriend) {
1188          NewMethod->setImplicit();
1189        } else {
1190          Diag(NewMethod->getLocation(),
1191               diag::err_definition_of_implicitly_declared_member)
1192            << New << getSpecialMember(OldMethod);
1193          return true;
1194        }
1195      }
1196    }
1197
1198    // (C++98 8.3.5p3):
1199    //   All declarations for a function shall agree exactly in both the
1200    //   return type and the parameter-type-list.
1201    // attributes should be ignored when comparing.
1202    if (Context.getNoReturnType(OldQType, false) ==
1203        Context.getNoReturnType(NewQType, false))
1204      return MergeCompatibleFunctionDecls(New, Old);
1205
1206    // Fall through for conflicting redeclarations and redefinitions.
1207  }
1208
1209  // C: Function types need to be compatible, not identical. This handles
1210  // duplicate function decls like "void f(int); void f(enum X);" properly.
1211  if (!getLangOptions().CPlusPlus &&
1212      Context.typesAreCompatible(OldQType, NewQType)) {
1213    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1214    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1215    const FunctionProtoType *OldProto = 0;
1216    if (isa<FunctionNoProtoType>(NewFuncType) &&
1217        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1218      // The old declaration provided a function prototype, but the
1219      // new declaration does not. Merge in the prototype.
1220      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1221      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1222                                                 OldProto->arg_type_end());
1223      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1224                                         ParamTypes.data(), ParamTypes.size(),
1225                                         OldProto->isVariadic(),
1226                                         OldProto->getTypeQuals(),
1227                                         false, false, 0, 0,
1228                                         OldProto->getExtInfo());
1229      New->setType(NewQType);
1230      New->setHasInheritedPrototype();
1231
1232      // Synthesize a parameter for each argument type.
1233      llvm::SmallVector<ParmVarDecl*, 16> Params;
1234      for (FunctionProtoType::arg_type_iterator
1235             ParamType = OldProto->arg_type_begin(),
1236             ParamEnd = OldProto->arg_type_end();
1237           ParamType != ParamEnd; ++ParamType) {
1238        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1239                                                 SourceLocation(), 0,
1240                                                 *ParamType, /*TInfo=*/0,
1241                                                 VarDecl::None, VarDecl::None,
1242                                                 0);
1243        Param->setImplicit();
1244        Params.push_back(Param);
1245      }
1246
1247      New->setParams(Params.data(), Params.size());
1248    }
1249
1250    return MergeCompatibleFunctionDecls(New, Old);
1251  }
1252
1253  // GNU C permits a K&R definition to follow a prototype declaration
1254  // if the declared types of the parameters in the K&R definition
1255  // match the types in the prototype declaration, even when the
1256  // promoted types of the parameters from the K&R definition differ
1257  // from the types in the prototype. GCC then keeps the types from
1258  // the prototype.
1259  //
1260  // If a variadic prototype is followed by a non-variadic K&R definition,
1261  // the K&R definition becomes variadic.  This is sort of an edge case, but
1262  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1263  // C99 6.9.1p8.
1264  if (!getLangOptions().CPlusPlus &&
1265      Old->hasPrototype() && !New->hasPrototype() &&
1266      New->getType()->getAs<FunctionProtoType>() &&
1267      Old->getNumParams() == New->getNumParams()) {
1268    llvm::SmallVector<QualType, 16> ArgTypes;
1269    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1270    const FunctionProtoType *OldProto
1271      = Old->getType()->getAs<FunctionProtoType>();
1272    const FunctionProtoType *NewProto
1273      = New->getType()->getAs<FunctionProtoType>();
1274
1275    // Determine whether this is the GNU C extension.
1276    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1277                                               NewProto->getResultType());
1278    bool LooseCompatible = !MergedReturn.isNull();
1279    for (unsigned Idx = 0, End = Old->getNumParams();
1280         LooseCompatible && Idx != End; ++Idx) {
1281      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1282      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1283      if (Context.typesAreCompatible(OldParm->getType(),
1284                                     NewProto->getArgType(Idx))) {
1285        ArgTypes.push_back(NewParm->getType());
1286      } else if (Context.typesAreCompatible(OldParm->getType(),
1287                                            NewParm->getType(),
1288                                            /*CompareUnqualified=*/true)) {
1289        GNUCompatibleParamWarning Warn
1290          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1291        Warnings.push_back(Warn);
1292        ArgTypes.push_back(NewParm->getType());
1293      } else
1294        LooseCompatible = false;
1295    }
1296
1297    if (LooseCompatible) {
1298      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1299        Diag(Warnings[Warn].NewParm->getLocation(),
1300             diag::ext_param_promoted_not_compatible_with_prototype)
1301          << Warnings[Warn].PromotedType
1302          << Warnings[Warn].OldParm->getType();
1303        if (Warnings[Warn].OldParm->getLocation().isValid())
1304          Diag(Warnings[Warn].OldParm->getLocation(),
1305               diag::note_previous_declaration);
1306      }
1307
1308      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1309                                           ArgTypes.size(),
1310                                           OldProto->isVariadic(), 0,
1311                                           false, false, 0, 0,
1312                                           OldProto->getExtInfo()));
1313      return MergeCompatibleFunctionDecls(New, Old);
1314    }
1315
1316    // Fall through to diagnose conflicting types.
1317  }
1318
1319  // A function that has already been declared has been redeclared or defined
1320  // with a different type- show appropriate diagnostic
1321  if (unsigned BuiltinID = Old->getBuiltinID()) {
1322    // The user has declared a builtin function with an incompatible
1323    // signature.
1324    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1325      // The function the user is redeclaring is a library-defined
1326      // function like 'malloc' or 'printf'. Warn about the
1327      // redeclaration, then pretend that we don't know about this
1328      // library built-in.
1329      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1330      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1331        << Old << Old->getType();
1332      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1333      Old->setInvalidDecl();
1334      return false;
1335    }
1336
1337    PrevDiag = diag::note_previous_builtin_declaration;
1338  }
1339
1340  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1341  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1342  return true;
1343}
1344
1345/// \brief Completes the merge of two function declarations that are
1346/// known to be compatible.
1347///
1348/// This routine handles the merging of attributes and other
1349/// properties of function declarations form the old declaration to
1350/// the new declaration, once we know that New is in fact a
1351/// redeclaration of Old.
1352///
1353/// \returns false
1354bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1355  // Merge the attributes
1356  MergeAttributes(New, Old, Context);
1357
1358  // Merge the storage class.
1359  if (Old->getStorageClass() != FunctionDecl::Extern &&
1360      Old->getStorageClass() != FunctionDecl::None)
1361    New->setStorageClass(Old->getStorageClass());
1362
1363  // Merge "pure" flag.
1364  if (Old->isPure())
1365    New->setPure();
1366
1367  // Merge the "deleted" flag.
1368  if (Old->isDeleted())
1369    New->setDeleted();
1370
1371  if (getLangOptions().CPlusPlus)
1372    return MergeCXXFunctionDecl(New, Old);
1373
1374  return false;
1375}
1376
1377/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1378/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1379/// situation, merging decls or emitting diagnostics as appropriate.
1380///
1381/// Tentative definition rules (C99 6.9.2p2) are checked by
1382/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1383/// definitions here, since the initializer hasn't been attached.
1384///
1385void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1386  // If the new decl is already invalid, don't do any other checking.
1387  if (New->isInvalidDecl())
1388    return;
1389
1390  // Verify the old decl was also a variable.
1391  VarDecl *Old = 0;
1392  if (!Previous.isSingleResult() ||
1393      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1394    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1395      << New->getDeclName();
1396    Diag(Previous.getRepresentativeDecl()->getLocation(),
1397         diag::note_previous_definition);
1398    return New->setInvalidDecl();
1399  }
1400
1401  MergeAttributes(New, Old, Context);
1402
1403  // Merge the types
1404  QualType MergedT;
1405  if (getLangOptions().CPlusPlus) {
1406    if (Context.hasSameType(New->getType(), Old->getType()))
1407      MergedT = New->getType();
1408    // C++ [basic.link]p10:
1409    //   [...] the types specified by all declarations referring to a given
1410    //   object or function shall be identical, except that declarations for an
1411    //   array object can specify array types that differ by the presence or
1412    //   absence of a major array bound (8.3.4).
1413    else if (Old->getType()->isIncompleteArrayType() &&
1414             New->getType()->isArrayType()) {
1415      CanQual<ArrayType> OldArray
1416        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1417      CanQual<ArrayType> NewArray
1418        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1419      if (OldArray->getElementType() == NewArray->getElementType())
1420        MergedT = New->getType();
1421    } else if (Old->getType()->isArrayType() &&
1422             New->getType()->isIncompleteArrayType()) {
1423      CanQual<ArrayType> OldArray
1424        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1425      CanQual<ArrayType> NewArray
1426        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1427      if (OldArray->getElementType() == NewArray->getElementType())
1428        MergedT = Old->getType();
1429    } else if (New->getType()->isObjCObjectPointerType()
1430               && Old->getType()->isObjCObjectPointerType()) {
1431        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1432    }
1433  } else {
1434    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1435  }
1436  if (MergedT.isNull()) {
1437    Diag(New->getLocation(), diag::err_redefinition_different_type)
1438      << New->getDeclName();
1439    Diag(Old->getLocation(), diag::note_previous_definition);
1440    return New->setInvalidDecl();
1441  }
1442  New->setType(MergedT);
1443
1444  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1445  if (New->getStorageClass() == VarDecl::Static &&
1446      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1447    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1448    Diag(Old->getLocation(), diag::note_previous_definition);
1449    return New->setInvalidDecl();
1450  }
1451  // C99 6.2.2p4:
1452  //   For an identifier declared with the storage-class specifier
1453  //   extern in a scope in which a prior declaration of that
1454  //   identifier is visible,23) if the prior declaration specifies
1455  //   internal or external linkage, the linkage of the identifier at
1456  //   the later declaration is the same as the linkage specified at
1457  //   the prior declaration. If no prior declaration is visible, or
1458  //   if the prior declaration specifies no linkage, then the
1459  //   identifier has external linkage.
1460  if (New->hasExternalStorage() && Old->hasLinkage())
1461    /* Okay */;
1462  else if (New->getStorageClass() != VarDecl::Static &&
1463           Old->getStorageClass() == VarDecl::Static) {
1464    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1465    Diag(Old->getLocation(), diag::note_previous_definition);
1466    return New->setInvalidDecl();
1467  }
1468
1469  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1470
1471  // FIXME: The test for external storage here seems wrong? We still
1472  // need to check for mismatches.
1473  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1474      // Don't complain about out-of-line definitions of static members.
1475      !(Old->getLexicalDeclContext()->isRecord() &&
1476        !New->getLexicalDeclContext()->isRecord())) {
1477    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1478    Diag(Old->getLocation(), diag::note_previous_definition);
1479    return New->setInvalidDecl();
1480  }
1481
1482  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1483    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1484    Diag(Old->getLocation(), diag::note_previous_definition);
1485  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1486    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1487    Diag(Old->getLocation(), diag::note_previous_definition);
1488  }
1489
1490  // C++ doesn't have tentative definitions, so go right ahead and check here.
1491  const VarDecl *Def;
1492  if (getLangOptions().CPlusPlus &&
1493      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1494      (Def = Old->getDefinition())) {
1495    Diag(New->getLocation(), diag::err_redefinition)
1496      << New->getDeclName();
1497    Diag(Def->getLocation(), diag::note_previous_definition);
1498    New->setInvalidDecl();
1499    return;
1500  }
1501  // c99 6.2.2 P4.
1502  // For an identifier declared with the storage-class specifier extern in a
1503  // scope in which a prior declaration of that identifier is visible, if
1504  // the prior declaration specifies internal or external linkage, the linkage
1505  // of the identifier at the later declaration is the same as the linkage
1506  // specified at the prior declaration.
1507  // FIXME. revisit this code.
1508  if (New->hasExternalStorage() &&
1509      Old->getLinkage() == InternalLinkage &&
1510      New->getDeclContext() == Old->getDeclContext())
1511    New->setStorageClass(Old->getStorageClass());
1512
1513  // Keep a chain of previous declarations.
1514  New->setPreviousDeclaration(Old);
1515
1516  // Inherit access appropriately.
1517  New->setAccess(Old->getAccess());
1518}
1519
1520/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1521/// no declarator (e.g. "struct foo;") is parsed.
1522Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1523                                                 DeclSpec &DS) {
1524  // FIXME: Error on auto/register at file scope
1525  // FIXME: Error on inline/virtual/explicit
1526  // FIXME: Warn on useless __thread
1527  // FIXME: Warn on useless const/volatile
1528  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1529  // FIXME: Warn on useless attributes
1530  Decl *TagD = 0;
1531  TagDecl *Tag = 0;
1532  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1533      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1534      DS.getTypeSpecType() == DeclSpec::TST_union ||
1535      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1536    TagD = static_cast<Decl *>(DS.getTypeRep());
1537
1538    if (!TagD) // We probably had an error
1539      return DeclPtrTy();
1540
1541    // Note that the above type specs guarantee that the
1542    // type rep is a Decl, whereas in many of the others
1543    // it's a Type.
1544    Tag = dyn_cast<TagDecl>(TagD);
1545  }
1546
1547  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1548    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1549    // or incomplete types shall not be restrict-qualified."
1550    if (TypeQuals & DeclSpec::TQ_restrict)
1551      Diag(DS.getRestrictSpecLoc(),
1552           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1553           << DS.getSourceRange();
1554  }
1555
1556  if (DS.isFriendSpecified()) {
1557    // If we're dealing with a class template decl, assume that the
1558    // template routines are handling it.
1559    if (TagD && isa<ClassTemplateDecl>(TagD))
1560      return DeclPtrTy();
1561    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1562  }
1563
1564  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1565    // If there are attributes in the DeclSpec, apply them to the record.
1566    if (const AttributeList *AL = DS.getAttributes())
1567      ProcessDeclAttributeList(S, Record, AL);
1568
1569    if (!Record->getDeclName() && Record->isDefinition() &&
1570        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1571      if (getLangOptions().CPlusPlus ||
1572          Record->getDeclContext()->isRecord())
1573        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1574
1575      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1576        << DS.getSourceRange();
1577    }
1578
1579    // Microsoft allows unnamed struct/union fields. Don't complain
1580    // about them.
1581    // FIXME: Should we support Microsoft's extensions in this area?
1582    if (Record->getDeclName() && getLangOptions().Microsoft)
1583      return DeclPtrTy::make(Tag);
1584  }
1585
1586  if (getLangOptions().CPlusPlus &&
1587      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1588    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1589      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1590          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1591        Diag(Enum->getLocation(), diag::ext_no_declarators)
1592          << DS.getSourceRange();
1593
1594  if (!DS.isMissingDeclaratorOk() &&
1595      DS.getTypeSpecType() != DeclSpec::TST_error) {
1596    // Warn about typedefs of enums without names, since this is an
1597    // extension in both Microsoft and GNU.
1598    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1599        Tag && isa<EnumDecl>(Tag)) {
1600      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1601        << DS.getSourceRange();
1602      return DeclPtrTy::make(Tag);
1603    }
1604
1605    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1606      << DS.getSourceRange();
1607  }
1608
1609  return DeclPtrTy::make(TagD);
1610}
1611
1612/// We are trying to inject an anonymous member into the given scope;
1613/// check if there's an existing declaration that can't be overloaded.
1614///
1615/// \return true if this is a forbidden redeclaration
1616static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1617                                         Scope *S,
1618                                         DeclContext *Owner,
1619                                         DeclarationName Name,
1620                                         SourceLocation NameLoc,
1621                                         unsigned diagnostic) {
1622  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1623                 Sema::ForRedeclaration);
1624  if (!SemaRef.LookupName(R, S)) return false;
1625
1626  if (R.getAsSingle<TagDecl>())
1627    return false;
1628
1629  // Pick a representative declaration.
1630  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1631  if (PrevDecl && Owner->isRecord()) {
1632    RecordDecl *Record = cast<RecordDecl>(Owner);
1633    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1634      return false;
1635  }
1636
1637  SemaRef.Diag(NameLoc, diagnostic) << Name;
1638  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1639
1640  return true;
1641}
1642
1643/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1644/// anonymous struct or union AnonRecord into the owning context Owner
1645/// and scope S. This routine will be invoked just after we realize
1646/// that an unnamed union or struct is actually an anonymous union or
1647/// struct, e.g.,
1648///
1649/// @code
1650/// union {
1651///   int i;
1652///   float f;
1653/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1654///    // f into the surrounding scope.x
1655/// @endcode
1656///
1657/// This routine is recursive, injecting the names of nested anonymous
1658/// structs/unions into the owning context and scope as well.
1659static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1660                                                DeclContext *Owner,
1661                                                RecordDecl *AnonRecord,
1662                                                AccessSpecifier AS) {
1663  unsigned diagKind
1664    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1665                            : diag::err_anonymous_struct_member_redecl;
1666
1667  bool Invalid = false;
1668  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1669                               FEnd = AnonRecord->field_end();
1670       F != FEnd; ++F) {
1671    if ((*F)->getDeclName()) {
1672      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1673                                       (*F)->getLocation(), diagKind)) {
1674        // C++ [class.union]p2:
1675        //   The names of the members of an anonymous union shall be
1676        //   distinct from the names of any other entity in the
1677        //   scope in which the anonymous union is declared.
1678        Invalid = true;
1679      } else {
1680        // C++ [class.union]p2:
1681        //   For the purpose of name lookup, after the anonymous union
1682        //   definition, the members of the anonymous union are
1683        //   considered to have been defined in the scope in which the
1684        //   anonymous union is declared.
1685        Owner->makeDeclVisibleInContext(*F);
1686        S->AddDecl(Sema::DeclPtrTy::make(*F));
1687        SemaRef.IdResolver.AddDecl(*F);
1688
1689        // That includes picking up the appropriate access specifier.
1690        if (AS != AS_none) (*F)->setAccess(AS);
1691      }
1692    } else if (const RecordType *InnerRecordType
1693                 = (*F)->getType()->getAs<RecordType>()) {
1694      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1695      if (InnerRecord->isAnonymousStructOrUnion())
1696        Invalid = Invalid ||
1697          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1698                                              InnerRecord, AS);
1699    }
1700  }
1701
1702  return Invalid;
1703}
1704
1705/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1706/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1707/// illegal input values are mapped to VarDecl::None.
1708static VarDecl::StorageClass
1709StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1710  switch (StorageClassSpec) {
1711  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1712  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1713  case DeclSpec::SCS_static:         return VarDecl::Static;
1714  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1715  case DeclSpec::SCS_register:       return VarDecl::Register;
1716  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1717    // Illegal SCSs map to None: error reporting is up to the caller.
1718  case DeclSpec::SCS_mutable:        // Fall through.
1719  case DeclSpec::SCS_typedef:        return VarDecl::None;
1720  }
1721  llvm_unreachable("unknown storage class specifier");
1722}
1723
1724/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1725/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1726/// illegal input values are mapped to FunctionDecl::None.
1727static FunctionDecl::StorageClass
1728StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1729  switch (StorageClassSpec) {
1730  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1731  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1732  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1733  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1734    // Illegal SCSs map to None: error reporting is up to the caller.
1735  case DeclSpec::SCS_auto:           // Fall through.
1736  case DeclSpec::SCS_mutable:        // Fall through.
1737  case DeclSpec::SCS_register:       // Fall through.
1738  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1739  }
1740  llvm_unreachable("unknown storage class specifier");
1741}
1742
1743/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1744/// anonymous structure or union. Anonymous unions are a C++ feature
1745/// (C++ [class.union]) and a GNU C extension; anonymous structures
1746/// are a GNU C and GNU C++ extension.
1747Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1748                                                  AccessSpecifier AS,
1749                                                  RecordDecl *Record) {
1750  DeclContext *Owner = Record->getDeclContext();
1751
1752  // Diagnose whether this anonymous struct/union is an extension.
1753  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1754    Diag(Record->getLocation(), diag::ext_anonymous_union);
1755  else if (!Record->isUnion())
1756    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1757
1758  // C and C++ require different kinds of checks for anonymous
1759  // structs/unions.
1760  bool Invalid = false;
1761  if (getLangOptions().CPlusPlus) {
1762    const char* PrevSpec = 0;
1763    unsigned DiagID;
1764    // C++ [class.union]p3:
1765    //   Anonymous unions declared in a named namespace or in the
1766    //   global namespace shall be declared static.
1767    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1768        (isa<TranslationUnitDecl>(Owner) ||
1769         (isa<NamespaceDecl>(Owner) &&
1770          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1771      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1772      Invalid = true;
1773
1774      // Recover by adding 'static'.
1775      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1776                             PrevSpec, DiagID);
1777    }
1778    // C++ [class.union]p3:
1779    //   A storage class is not allowed in a declaration of an
1780    //   anonymous union in a class scope.
1781    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1782             isa<RecordDecl>(Owner)) {
1783      Diag(DS.getStorageClassSpecLoc(),
1784           diag::err_anonymous_union_with_storage_spec);
1785      Invalid = true;
1786
1787      // Recover by removing the storage specifier.
1788      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1789                             PrevSpec, DiagID);
1790    }
1791
1792    // C++ [class.union]p2:
1793    //   The member-specification of an anonymous union shall only
1794    //   define non-static data members. [Note: nested types and
1795    //   functions cannot be declared within an anonymous union. ]
1796    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1797                                 MemEnd = Record->decls_end();
1798         Mem != MemEnd; ++Mem) {
1799      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1800        // C++ [class.union]p3:
1801        //   An anonymous union shall not have private or protected
1802        //   members (clause 11).
1803        assert(FD->getAccess() != AS_none);
1804        if (FD->getAccess() != AS_public) {
1805          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1806            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1807          Invalid = true;
1808        }
1809      } else if ((*Mem)->isImplicit()) {
1810        // Any implicit members are fine.
1811      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1812        // This is a type that showed up in an
1813        // elaborated-type-specifier inside the anonymous struct or
1814        // union, but which actually declares a type outside of the
1815        // anonymous struct or union. It's okay.
1816      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1817        if (!MemRecord->isAnonymousStructOrUnion() &&
1818            MemRecord->getDeclName()) {
1819          // This is a nested type declaration.
1820          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1821            << (int)Record->isUnion();
1822          Invalid = true;
1823        }
1824      } else if (isa<AccessSpecDecl>(*Mem)) {
1825        // Any access specifier is fine.
1826      } else {
1827        // We have something that isn't a non-static data
1828        // member. Complain about it.
1829        unsigned DK = diag::err_anonymous_record_bad_member;
1830        if (isa<TypeDecl>(*Mem))
1831          DK = diag::err_anonymous_record_with_type;
1832        else if (isa<FunctionDecl>(*Mem))
1833          DK = diag::err_anonymous_record_with_function;
1834        else if (isa<VarDecl>(*Mem))
1835          DK = diag::err_anonymous_record_with_static;
1836        Diag((*Mem)->getLocation(), DK)
1837            << (int)Record->isUnion();
1838          Invalid = true;
1839      }
1840    }
1841  }
1842
1843  if (!Record->isUnion() && !Owner->isRecord()) {
1844    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1845      << (int)getLangOptions().CPlusPlus;
1846    Invalid = true;
1847  }
1848
1849  // Mock up a declarator.
1850  Declarator Dc(DS, Declarator::TypeNameContext);
1851  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1852  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1853
1854  // Create a declaration for this anonymous struct/union.
1855  NamedDecl *Anon = 0;
1856  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1857    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1858                             /*IdentifierInfo=*/0,
1859                             Context.getTypeDeclType(Record),
1860                             TInfo,
1861                             /*BitWidth=*/0, /*Mutable=*/false);
1862    Anon->setAccess(AS);
1863    if (getLangOptions().CPlusPlus) {
1864      FieldCollector->Add(cast<FieldDecl>(Anon));
1865      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1866        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1867    }
1868  } else {
1869    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1870    assert(SCSpec != DeclSpec::SCS_typedef &&
1871           "Parser allowed 'typedef' as storage class VarDecl.");
1872    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1873    if (SCSpec == DeclSpec::SCS_mutable) {
1874      // mutable can only appear on non-static class members, so it's always
1875      // an error here
1876      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1877      Invalid = true;
1878      SC = VarDecl::None;
1879    }
1880    SCSpec = DS.getStorageClassSpecAsWritten();
1881    VarDecl::StorageClass SCAsWritten
1882      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1883
1884    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1885                           /*IdentifierInfo=*/0,
1886                           Context.getTypeDeclType(Record),
1887                           TInfo, SC, SCAsWritten);
1888  }
1889  Anon->setImplicit();
1890
1891  // Add the anonymous struct/union object to the current
1892  // context. We'll be referencing this object when we refer to one of
1893  // its members.
1894  Owner->addDecl(Anon);
1895
1896  // Inject the members of the anonymous struct/union into the owning
1897  // context and into the identifier resolver chain for name lookup
1898  // purposes.
1899  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1900    Invalid = true;
1901
1902  // Mark this as an anonymous struct/union type. Note that we do not
1903  // do this until after we have already checked and injected the
1904  // members of this anonymous struct/union type, because otherwise
1905  // the members could be injected twice: once by DeclContext when it
1906  // builds its lookup table, and once by
1907  // InjectAnonymousStructOrUnionMembers.
1908  Record->setAnonymousStructOrUnion(true);
1909
1910  if (Invalid)
1911    Anon->setInvalidDecl();
1912
1913  return DeclPtrTy::make(Anon);
1914}
1915
1916
1917/// GetNameForDeclarator - Determine the full declaration name for the
1918/// given Declarator.
1919DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1920  return GetNameFromUnqualifiedId(D.getName());
1921}
1922
1923/// \brief Retrieves the declaration name from a parsed unqualified-id.
1924DeclarationNameInfo
1925Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1926  DeclarationNameInfo NameInfo;
1927  NameInfo.setLoc(Name.StartLocation);
1928
1929  switch (Name.getKind()) {
1930
1931  case UnqualifiedId::IK_Identifier:
1932    NameInfo.setName(Name.Identifier);
1933    NameInfo.setLoc(Name.StartLocation);
1934    return NameInfo;
1935
1936  case UnqualifiedId::IK_OperatorFunctionId:
1937    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
1938                                           Name.OperatorFunctionId.Operator));
1939    NameInfo.setLoc(Name.StartLocation);
1940    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
1941      = Name.OperatorFunctionId.SymbolLocations[0];
1942    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
1943      = Name.EndLocation.getRawEncoding();
1944    return NameInfo;
1945
1946  case UnqualifiedId::IK_LiteralOperatorId:
1947    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
1948                                                           Name.Identifier));
1949    NameInfo.setLoc(Name.StartLocation);
1950    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
1951    return NameInfo;
1952
1953  case UnqualifiedId::IK_ConversionFunctionId: {
1954    TypeSourceInfo *TInfo;
1955    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
1956    if (Ty.isNull())
1957      return DeclarationNameInfo();
1958    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
1959                                               Context.getCanonicalType(Ty)));
1960    NameInfo.setLoc(Name.StartLocation);
1961    NameInfo.setNamedTypeInfo(TInfo);
1962    return NameInfo;
1963  }
1964
1965  case UnqualifiedId::IK_ConstructorName: {
1966    TypeSourceInfo *TInfo;
1967    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
1968    if (Ty.isNull())
1969      return DeclarationNameInfo();
1970    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
1971                                              Context.getCanonicalType(Ty)));
1972    NameInfo.setLoc(Name.StartLocation);
1973    NameInfo.setNamedTypeInfo(TInfo);
1974    return NameInfo;
1975  }
1976
1977  case UnqualifiedId::IK_ConstructorTemplateId: {
1978    // In well-formed code, we can only have a constructor
1979    // template-id that refers to the current context, so go there
1980    // to find the actual type being constructed.
1981    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1982    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1983      return DeclarationNameInfo();
1984
1985    // Determine the type of the class being constructed.
1986    QualType CurClassType = Context.getTypeDeclType(CurClass);
1987
1988    // FIXME: Check two things: that the template-id names the same type as
1989    // CurClassType, and that the template-id does not occur when the name
1990    // was qualified.
1991
1992    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
1993                                    Context.getCanonicalType(CurClassType)));
1994    NameInfo.setLoc(Name.StartLocation);
1995    // FIXME: should we retrieve TypeSourceInfo?
1996    NameInfo.setNamedTypeInfo(0);
1997    return NameInfo;
1998  }
1999
2000  case UnqualifiedId::IK_DestructorName: {
2001    TypeSourceInfo *TInfo;
2002    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2003    if (Ty.isNull())
2004      return DeclarationNameInfo();
2005    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2006                                              Context.getCanonicalType(Ty)));
2007    NameInfo.setLoc(Name.StartLocation);
2008    NameInfo.setNamedTypeInfo(TInfo);
2009    return NameInfo;
2010  }
2011
2012  case UnqualifiedId::IK_TemplateId: {
2013    TemplateName TName
2014      = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
2015    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2016    return Context.getNameForTemplate(TName, TNameLoc);
2017  }
2018
2019  } // switch (Name.getKind())
2020
2021  assert(false && "Unknown name kind");
2022  return DeclarationNameInfo();
2023}
2024
2025/// isNearlyMatchingFunction - Determine whether the C++ functions
2026/// Declaration and Definition are "nearly" matching. This heuristic
2027/// is used to improve diagnostics in the case where an out-of-line
2028/// function definition doesn't match any declaration within
2029/// the class or namespace.
2030static bool isNearlyMatchingFunction(ASTContext &Context,
2031                                     FunctionDecl *Declaration,
2032                                     FunctionDecl *Definition) {
2033  if (Declaration->param_size() != Definition->param_size())
2034    return false;
2035  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2036    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2037    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2038
2039    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2040                                        DefParamTy.getNonReferenceType()))
2041      return false;
2042  }
2043
2044  return true;
2045}
2046
2047/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2048/// declarator needs to be rebuilt in the current instantiation.
2049/// Any bits of declarator which appear before the name are valid for
2050/// consideration here.  That's specifically the type in the decl spec
2051/// and the base type in any member-pointer chunks.
2052static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2053                                                    DeclarationName Name) {
2054  // The types we specifically need to rebuild are:
2055  //   - typenames, typeofs, and decltypes
2056  //   - types which will become injected class names
2057  // Of course, we also need to rebuild any type referencing such a
2058  // type.  It's safest to just say "dependent", but we call out a
2059  // few cases here.
2060
2061  DeclSpec &DS = D.getMutableDeclSpec();
2062  switch (DS.getTypeSpecType()) {
2063  case DeclSpec::TST_typename:
2064  case DeclSpec::TST_typeofType:
2065  case DeclSpec::TST_typeofExpr:
2066  case DeclSpec::TST_decltype: {
2067    // Grab the type from the parser.
2068    TypeSourceInfo *TSI = 0;
2069    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2070    if (T.isNull() || !T->isDependentType()) break;
2071
2072    // Make sure there's a type source info.  This isn't really much
2073    // of a waste; most dependent types should have type source info
2074    // attached already.
2075    if (!TSI)
2076      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2077
2078    // Rebuild the type in the current instantiation.
2079    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2080    if (!TSI) return true;
2081
2082    // Store the new type back in the decl spec.
2083    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2084    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2085    break;
2086  }
2087
2088  default:
2089    // Nothing to do for these decl specs.
2090    break;
2091  }
2092
2093  // It doesn't matter what order we do this in.
2094  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2095    DeclaratorChunk &Chunk = D.getTypeObject(I);
2096
2097    // The only type information in the declarator which can come
2098    // before the declaration name is the base type of a member
2099    // pointer.
2100    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2101      continue;
2102
2103    // Rebuild the scope specifier in-place.
2104    CXXScopeSpec &SS = Chunk.Mem.Scope();
2105    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2106      return true;
2107  }
2108
2109  return false;
2110}
2111
2112Sema::DeclPtrTy
2113Sema::HandleDeclarator(Scope *S, Declarator &D,
2114                       MultiTemplateParamsArg TemplateParamLists,
2115                       bool IsFunctionDefinition) {
2116  // TODO: consider using NameInfo for diagnostic.
2117  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2118  DeclarationName Name = NameInfo.getName();
2119
2120  // All of these full declarators require an identifier.  If it doesn't have
2121  // one, the ParsedFreeStandingDeclSpec action should be used.
2122  if (!Name) {
2123    if (!D.isInvalidType())  // Reject this if we think it is valid.
2124      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2125           diag::err_declarator_need_ident)
2126        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2127    return DeclPtrTy();
2128  }
2129
2130  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2131  // we find one that is.
2132  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2133         (S->getFlags() & Scope::TemplateParamScope) != 0)
2134    S = S->getParent();
2135
2136  DeclContext *DC = CurContext;
2137  if (D.getCXXScopeSpec().isInvalid())
2138    D.setInvalidType();
2139  else if (D.getCXXScopeSpec().isSet()) {
2140    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2141    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2142    if (!DC) {
2143      // If we could not compute the declaration context, it's because the
2144      // declaration context is dependent but does not refer to a class,
2145      // class template, or class template partial specialization. Complain
2146      // and return early, to avoid the coming semantic disaster.
2147      Diag(D.getIdentifierLoc(),
2148           diag::err_template_qualified_declarator_no_match)
2149        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2150        << D.getCXXScopeSpec().getRange();
2151      return DeclPtrTy();
2152    }
2153
2154    bool IsDependentContext = DC->isDependentContext();
2155
2156    if (!IsDependentContext &&
2157        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2158      return DeclPtrTy();
2159
2160    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2161      Diag(D.getIdentifierLoc(),
2162           diag::err_member_def_undefined_record)
2163        << Name << DC << D.getCXXScopeSpec().getRange();
2164      D.setInvalidType();
2165    }
2166
2167    // Check whether we need to rebuild the type of the given
2168    // declaration in the current instantiation.
2169    if (EnteringContext && IsDependentContext &&
2170        TemplateParamLists.size() != 0) {
2171      ContextRAII SavedContext(*this, DC);
2172      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2173        D.setInvalidType();
2174    }
2175  }
2176
2177  NamedDecl *New;
2178
2179  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2180  QualType R = TInfo->getType();
2181
2182  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2183                        ForRedeclaration);
2184
2185  // See if this is a redefinition of a variable in the same scope.
2186  if (!D.getCXXScopeSpec().isSet()) {
2187    bool IsLinkageLookup = false;
2188
2189    // If the declaration we're planning to build will be a function
2190    // or object with linkage, then look for another declaration with
2191    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2192    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2193      /* Do nothing*/;
2194    else if (R->isFunctionType()) {
2195      if (CurContext->isFunctionOrMethod() ||
2196          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2197        IsLinkageLookup = true;
2198    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2199      IsLinkageLookup = true;
2200    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2201             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2202      IsLinkageLookup = true;
2203
2204    if (IsLinkageLookup)
2205      Previous.clear(LookupRedeclarationWithLinkage);
2206
2207    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2208  } else { // Something like "int foo::x;"
2209    LookupQualifiedName(Previous, DC);
2210
2211    // Don't consider using declarations as previous declarations for
2212    // out-of-line members.
2213    RemoveUsingDecls(Previous);
2214
2215    // C++ 7.3.1.2p2:
2216    // Members (including explicit specializations of templates) of a named
2217    // namespace can also be defined outside that namespace by explicit
2218    // qualification of the name being defined, provided that the entity being
2219    // defined was already declared in the namespace and the definition appears
2220    // after the point of declaration in a namespace that encloses the
2221    // declarations namespace.
2222    //
2223    // Note that we only check the context at this point. We don't yet
2224    // have enough information to make sure that PrevDecl is actually
2225    // the declaration we want to match. For example, given:
2226    //
2227    //   class X {
2228    //     void f();
2229    //     void f(float);
2230    //   };
2231    //
2232    //   void X::f(int) { } // ill-formed
2233    //
2234    // In this case, PrevDecl will point to the overload set
2235    // containing the two f's declared in X, but neither of them
2236    // matches.
2237
2238    // First check whether we named the global scope.
2239    if (isa<TranslationUnitDecl>(DC)) {
2240      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2241        << Name << D.getCXXScopeSpec().getRange();
2242    } else {
2243      DeclContext *Cur = CurContext;
2244      while (isa<LinkageSpecDecl>(Cur))
2245        Cur = Cur->getParent();
2246      if (!Cur->Encloses(DC)) {
2247        // The qualifying scope doesn't enclose the original declaration.
2248        // Emit diagnostic based on current scope.
2249        SourceLocation L = D.getIdentifierLoc();
2250        SourceRange R = D.getCXXScopeSpec().getRange();
2251        if (isa<FunctionDecl>(Cur))
2252          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2253        else
2254          Diag(L, diag::err_invalid_declarator_scope)
2255            << Name << cast<NamedDecl>(DC) << R;
2256        D.setInvalidType();
2257      }
2258    }
2259  }
2260
2261  if (Previous.isSingleResult() &&
2262      Previous.getFoundDecl()->isTemplateParameter()) {
2263    // Maybe we will complain about the shadowed template parameter.
2264    if (!D.isInvalidType())
2265      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2266                                          Previous.getFoundDecl()))
2267        D.setInvalidType();
2268
2269    // Just pretend that we didn't see the previous declaration.
2270    Previous.clear();
2271  }
2272
2273  // In C++, the previous declaration we find might be a tag type
2274  // (class or enum). In this case, the new declaration will hide the
2275  // tag type. Note that this does does not apply if we're declaring a
2276  // typedef (C++ [dcl.typedef]p4).
2277  if (Previous.isSingleTagDecl() &&
2278      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2279    Previous.clear();
2280
2281  bool Redeclaration = false;
2282  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2283    if (TemplateParamLists.size()) {
2284      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2285      return DeclPtrTy();
2286    }
2287
2288    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2289  } else if (R->isFunctionType()) {
2290    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2291                                  move(TemplateParamLists),
2292                                  IsFunctionDefinition, Redeclaration);
2293  } else {
2294    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2295                                  move(TemplateParamLists),
2296                                  Redeclaration);
2297  }
2298
2299  if (New == 0)
2300    return DeclPtrTy();
2301
2302  // If this has an identifier and is not an invalid redeclaration or
2303  // function template specialization, add it to the scope stack.
2304  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2305    PushOnScopeChains(New, S);
2306
2307  return DeclPtrTy::make(New);
2308}
2309
2310/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2311/// types into constant array types in certain situations which would otherwise
2312/// be errors (for GCC compatibility).
2313static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2314                                                    ASTContext &Context,
2315                                                    bool &SizeIsNegative) {
2316  // This method tries to turn a variable array into a constant
2317  // array even when the size isn't an ICE.  This is necessary
2318  // for compatibility with code that depends on gcc's buggy
2319  // constant expression folding, like struct {char x[(int)(char*)2];}
2320  SizeIsNegative = false;
2321
2322  QualifierCollector Qs;
2323  const Type *Ty = Qs.strip(T);
2324
2325  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2326    QualType Pointee = PTy->getPointeeType();
2327    QualType FixedType =
2328        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2329    if (FixedType.isNull()) return FixedType;
2330    FixedType = Context.getPointerType(FixedType);
2331    return Qs.apply(FixedType);
2332  }
2333
2334  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2335  if (!VLATy)
2336    return QualType();
2337  // FIXME: We should probably handle this case
2338  if (VLATy->getElementType()->isVariablyModifiedType())
2339    return QualType();
2340
2341  Expr::EvalResult EvalResult;
2342  if (!VLATy->getSizeExpr() ||
2343      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2344      !EvalResult.Val.isInt())
2345    return QualType();
2346
2347  llvm::APSInt &Res = EvalResult.Val.getInt();
2348  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2349    // TODO: preserve the size expression in declarator info
2350    return Context.getConstantArrayType(VLATy->getElementType(),
2351                                        Res, ArrayType::Normal, 0);
2352  }
2353
2354  SizeIsNegative = true;
2355  return QualType();
2356}
2357
2358/// \brief Register the given locally-scoped external C declaration so
2359/// that it can be found later for redeclarations
2360void
2361Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2362                                       const LookupResult &Previous,
2363                                       Scope *S) {
2364  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2365         "Decl is not a locally-scoped decl!");
2366  // Note that we have a locally-scoped external with this name.
2367  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2368
2369  if (!Previous.isSingleResult())
2370    return;
2371
2372  NamedDecl *PrevDecl = Previous.getFoundDecl();
2373
2374  // If there was a previous declaration of this variable, it may be
2375  // in our identifier chain. Update the identifier chain with the new
2376  // declaration.
2377  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2378    // The previous declaration was found on the identifer resolver
2379    // chain, so remove it from its scope.
2380    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2381      S = S->getParent();
2382
2383    if (S)
2384      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2385  }
2386}
2387
2388/// \brief Diagnose function specifiers on a declaration of an identifier that
2389/// does not identify a function.
2390void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2391  // FIXME: We should probably indicate the identifier in question to avoid
2392  // confusion for constructs like "inline int a(), b;"
2393  if (D.getDeclSpec().isInlineSpecified())
2394    Diag(D.getDeclSpec().getInlineSpecLoc(),
2395         diag::err_inline_non_function);
2396
2397  if (D.getDeclSpec().isVirtualSpecified())
2398    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2399         diag::err_virtual_non_function);
2400
2401  if (D.getDeclSpec().isExplicitSpecified())
2402    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2403         diag::err_explicit_non_function);
2404}
2405
2406NamedDecl*
2407Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2408                             QualType R,  TypeSourceInfo *TInfo,
2409                             LookupResult &Previous, bool &Redeclaration) {
2410  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2411  if (D.getCXXScopeSpec().isSet()) {
2412    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2413      << D.getCXXScopeSpec().getRange();
2414    D.setInvalidType();
2415    // Pretend we didn't see the scope specifier.
2416    DC = CurContext;
2417    Previous.clear();
2418  }
2419
2420  if (getLangOptions().CPlusPlus) {
2421    // Check that there are no default arguments (C++ only).
2422    CheckExtraCXXDefaultArguments(D);
2423  }
2424
2425  DiagnoseFunctionSpecifiers(D);
2426
2427  if (D.getDeclSpec().isThreadSpecified())
2428    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2429
2430  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2431    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2432      << D.getName().getSourceRange();
2433    return 0;
2434  }
2435
2436  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2437  if (!NewTD) return 0;
2438
2439  // Handle attributes prior to checking for duplicates in MergeVarDecl
2440  ProcessDeclAttributes(S, NewTD, D);
2441
2442  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2443  // then it shall have block scope.
2444  // Note that variably modified types must be fixed before merging the decl so
2445  // that redeclarations will match.
2446  QualType T = NewTD->getUnderlyingType();
2447  if (T->isVariablyModifiedType()) {
2448    setFunctionHasBranchProtectedScope();
2449
2450    if (S->getFnParent() == 0) {
2451      bool SizeIsNegative;
2452      QualType FixedTy =
2453          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2454      if (!FixedTy.isNull()) {
2455        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2456        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2457      } else {
2458        if (SizeIsNegative)
2459          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2460        else if (T->isVariableArrayType())
2461          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2462        else
2463          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2464        NewTD->setInvalidDecl();
2465      }
2466    }
2467  }
2468
2469  // Merge the decl with the existing one if appropriate. If the decl is
2470  // in an outer scope, it isn't the same thing.
2471  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2472  if (!Previous.empty()) {
2473    Redeclaration = true;
2474    MergeTypeDefDecl(NewTD, Previous);
2475  }
2476
2477  // If this is the C FILE type, notify the AST context.
2478  if (IdentifierInfo *II = NewTD->getIdentifier())
2479    if (!NewTD->isInvalidDecl() &&
2480        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2481      if (II->isStr("FILE"))
2482        Context.setFILEDecl(NewTD);
2483      else if (II->isStr("jmp_buf"))
2484        Context.setjmp_bufDecl(NewTD);
2485      else if (II->isStr("sigjmp_buf"))
2486        Context.setsigjmp_bufDecl(NewTD);
2487    }
2488
2489  return NewTD;
2490}
2491
2492/// \brief Determines whether the given declaration is an out-of-scope
2493/// previous declaration.
2494///
2495/// This routine should be invoked when name lookup has found a
2496/// previous declaration (PrevDecl) that is not in the scope where a
2497/// new declaration by the same name is being introduced. If the new
2498/// declaration occurs in a local scope, previous declarations with
2499/// linkage may still be considered previous declarations (C99
2500/// 6.2.2p4-5, C++ [basic.link]p6).
2501///
2502/// \param PrevDecl the previous declaration found by name
2503/// lookup
2504///
2505/// \param DC the context in which the new declaration is being
2506/// declared.
2507///
2508/// \returns true if PrevDecl is an out-of-scope previous declaration
2509/// for a new delcaration with the same name.
2510static bool
2511isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2512                                ASTContext &Context) {
2513  if (!PrevDecl)
2514    return 0;
2515
2516  if (!PrevDecl->hasLinkage())
2517    return false;
2518
2519  if (Context.getLangOptions().CPlusPlus) {
2520    // C++ [basic.link]p6:
2521    //   If there is a visible declaration of an entity with linkage
2522    //   having the same name and type, ignoring entities declared
2523    //   outside the innermost enclosing namespace scope, the block
2524    //   scope declaration declares that same entity and receives the
2525    //   linkage of the previous declaration.
2526    DeclContext *OuterContext = DC->getLookupContext();
2527    if (!OuterContext->isFunctionOrMethod())
2528      // This rule only applies to block-scope declarations.
2529      return false;
2530    else {
2531      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2532      if (PrevOuterContext->isRecord())
2533        // We found a member function: ignore it.
2534        return false;
2535      else {
2536        // Find the innermost enclosing namespace for the new and
2537        // previous declarations.
2538        while (!OuterContext->isFileContext())
2539          OuterContext = OuterContext->getParent();
2540        while (!PrevOuterContext->isFileContext())
2541          PrevOuterContext = PrevOuterContext->getParent();
2542
2543        // The previous declaration is in a different namespace, so it
2544        // isn't the same function.
2545        if (OuterContext->getPrimaryContext() !=
2546            PrevOuterContext->getPrimaryContext())
2547          return false;
2548      }
2549    }
2550  }
2551
2552  return true;
2553}
2554
2555static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2556  CXXScopeSpec &SS = D.getCXXScopeSpec();
2557  if (!SS.isSet()) return;
2558  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2559                       SS.getRange());
2560}
2561
2562NamedDecl*
2563Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2564                              QualType R, TypeSourceInfo *TInfo,
2565                              LookupResult &Previous,
2566                              MultiTemplateParamsArg TemplateParamLists,
2567                              bool &Redeclaration) {
2568  DeclarationName Name = GetNameForDeclarator(D).getName();
2569
2570  // Check that there are no default arguments (C++ only).
2571  if (getLangOptions().CPlusPlus)
2572    CheckExtraCXXDefaultArguments(D);
2573
2574  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2575  assert(SCSpec != DeclSpec::SCS_typedef &&
2576         "Parser allowed 'typedef' as storage class VarDecl.");
2577  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2578  if (SCSpec == DeclSpec::SCS_mutable) {
2579    // mutable can only appear on non-static class members, so it's always
2580    // an error here
2581    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2582    D.setInvalidType();
2583    SC = VarDecl::None;
2584  }
2585  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2586  VarDecl::StorageClass SCAsWritten
2587    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2588
2589  IdentifierInfo *II = Name.getAsIdentifierInfo();
2590  if (!II) {
2591    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2592      << Name.getAsString();
2593    return 0;
2594  }
2595
2596  DiagnoseFunctionSpecifiers(D);
2597
2598  if (!DC->isRecord() && S->getFnParent() == 0) {
2599    // C99 6.9p2: The storage-class specifiers auto and register shall not
2600    // appear in the declaration specifiers in an external declaration.
2601    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2602
2603      // If this is a register variable with an asm label specified, then this
2604      // is a GNU extension.
2605      if (SC == VarDecl::Register && D.getAsmLabel())
2606        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2607      else
2608        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2609      D.setInvalidType();
2610    }
2611  }
2612  if (DC->isRecord() && !CurContext->isRecord()) {
2613    // This is an out-of-line definition of a static data member.
2614    if (SC == VarDecl::Static) {
2615      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2616           diag::err_static_out_of_line)
2617        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2618    } else if (SC == VarDecl::None)
2619      SC = VarDecl::Static;
2620  }
2621  if (SC == VarDecl::Static) {
2622    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2623      if (RD->isLocalClass())
2624        Diag(D.getIdentifierLoc(),
2625             diag::err_static_data_member_not_allowed_in_local_class)
2626          << Name << RD->getDeclName();
2627    }
2628  }
2629
2630  // Match up the template parameter lists with the scope specifier, then
2631  // determine whether we have a template or a template specialization.
2632  bool isExplicitSpecialization = false;
2633  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2634  bool Invalid = false;
2635  if (TemplateParameterList *TemplateParams
2636        = MatchTemplateParametersToScopeSpecifier(
2637                                  D.getDeclSpec().getSourceRange().getBegin(),
2638                                                  D.getCXXScopeSpec(),
2639                        (TemplateParameterList**)TemplateParamLists.get(),
2640                                                   TemplateParamLists.size(),
2641                                                  /*never a friend*/ false,
2642                                                  isExplicitSpecialization,
2643                                                  Invalid)) {
2644    // All but one template parameter lists have been matching.
2645    --NumMatchedTemplateParamLists;
2646
2647    if (TemplateParams->size() > 0) {
2648      // There is no such thing as a variable template.
2649      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2650        << II
2651        << SourceRange(TemplateParams->getTemplateLoc(),
2652                       TemplateParams->getRAngleLoc());
2653      return 0;
2654    } else {
2655      // There is an extraneous 'template<>' for this variable. Complain
2656      // about it, but allow the declaration of the variable.
2657      Diag(TemplateParams->getTemplateLoc(),
2658           diag::err_template_variable_noparams)
2659        << II
2660        << SourceRange(TemplateParams->getTemplateLoc(),
2661                       TemplateParams->getRAngleLoc());
2662
2663      isExplicitSpecialization = true;
2664    }
2665  }
2666
2667  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2668                                   II, R, TInfo, SC, SCAsWritten);
2669
2670  if (D.isInvalidType() || Invalid)
2671    NewVD->setInvalidDecl();
2672
2673  SetNestedNameSpecifier(NewVD, D);
2674
2675  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2676    NewVD->setTemplateParameterListsInfo(Context,
2677                                         NumMatchedTemplateParamLists,
2678                        (TemplateParameterList**)TemplateParamLists.release());
2679  }
2680
2681  if (D.getDeclSpec().isThreadSpecified()) {
2682    if (NewVD->hasLocalStorage())
2683      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2684    else if (!Context.Target.isTLSSupported())
2685      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2686    else
2687      NewVD->setThreadSpecified(true);
2688  }
2689
2690  // Set the lexical context. If the declarator has a C++ scope specifier, the
2691  // lexical context will be different from the semantic context.
2692  NewVD->setLexicalDeclContext(CurContext);
2693
2694  // Handle attributes prior to checking for duplicates in MergeVarDecl
2695  ProcessDeclAttributes(S, NewVD, D);
2696
2697  // Handle GNU asm-label extension (encoded as an attribute).
2698  if (Expr *E = (Expr*) D.getAsmLabel()) {
2699    // The parser guarantees this is a string.
2700    StringLiteral *SE = cast<StringLiteral>(E);
2701    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2702  }
2703
2704  // Diagnose shadowed variables before filtering for scope.
2705  if (!D.getCXXScopeSpec().isSet())
2706    CheckShadow(S, NewVD, Previous);
2707
2708  // Don't consider existing declarations that are in a different
2709  // scope and are out-of-semantic-context declarations (if the new
2710  // declaration has linkage).
2711  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2712
2713  // Merge the decl with the existing one if appropriate.
2714  if (!Previous.empty()) {
2715    if (Previous.isSingleResult() &&
2716        isa<FieldDecl>(Previous.getFoundDecl()) &&
2717        D.getCXXScopeSpec().isSet()) {
2718      // The user tried to define a non-static data member
2719      // out-of-line (C++ [dcl.meaning]p1).
2720      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2721        << D.getCXXScopeSpec().getRange();
2722      Previous.clear();
2723      NewVD->setInvalidDecl();
2724    }
2725  } else if (D.getCXXScopeSpec().isSet()) {
2726    // No previous declaration in the qualifying scope.
2727    Diag(D.getIdentifierLoc(), diag::err_no_member)
2728      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2729      << D.getCXXScopeSpec().getRange();
2730    NewVD->setInvalidDecl();
2731  }
2732
2733  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2734
2735  // This is an explicit specialization of a static data member. Check it.
2736  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2737      CheckMemberSpecialization(NewVD, Previous))
2738    NewVD->setInvalidDecl();
2739
2740  // attributes declared post-definition are currently ignored
2741  if (Previous.isSingleResult()) {
2742    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2743    if (Def && (Def = Def->getDefinition()) &&
2744        Def != NewVD && D.hasAttributes()) {
2745      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2746      Diag(Def->getLocation(), diag::note_previous_definition);
2747    }
2748  }
2749
2750  // If this is a locally-scoped extern C variable, update the map of
2751  // such variables.
2752  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2753      !NewVD->isInvalidDecl())
2754    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2755
2756  // If there's a #pragma GCC visibility in scope, and this isn't a class
2757  // member, set the visibility of this variable.
2758  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2759    AddPushedVisibilityAttribute(NewVD);
2760
2761  return NewVD;
2762}
2763
2764/// \brief Diagnose variable or built-in function shadowing.  Implements
2765/// -Wshadow.
2766///
2767/// This method is called whenever a VarDecl is added to a "useful"
2768/// scope.
2769///
2770/// \param S the scope in which the shadowing name is being declared
2771/// \param R the lookup of the name
2772///
2773void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2774  // Return if warning is ignored.
2775  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2776    return;
2777
2778  // Don't diagnose declarations at file scope.  The scope might not
2779  // have a DeclContext if (e.g.) we're parsing a function prototype.
2780  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2781  if (NewDC && NewDC->isFileContext())
2782    return;
2783
2784  // Only diagnose if we're shadowing an unambiguous field or variable.
2785  if (R.getResultKind() != LookupResult::Found)
2786    return;
2787
2788  NamedDecl* ShadowedDecl = R.getFoundDecl();
2789  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2790    return;
2791
2792  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2793
2794  // Only warn about certain kinds of shadowing for class members.
2795  if (NewDC && NewDC->isRecord()) {
2796    // In particular, don't warn about shadowing non-class members.
2797    if (!OldDC->isRecord())
2798      return;
2799
2800    // TODO: should we warn about static data members shadowing
2801    // static data members from base classes?
2802
2803    // TODO: don't diagnose for inaccessible shadowed members.
2804    // This is hard to do perfectly because we might friend the
2805    // shadowing context, but that's just a false negative.
2806  }
2807
2808  // Determine what kind of declaration we're shadowing.
2809  unsigned Kind;
2810  if (isa<RecordDecl>(OldDC)) {
2811    if (isa<FieldDecl>(ShadowedDecl))
2812      Kind = 3; // field
2813    else
2814      Kind = 2; // static data member
2815  } else if (OldDC->isFileContext())
2816    Kind = 1; // global
2817  else
2818    Kind = 0; // local
2819
2820  DeclarationName Name = R.getLookupName();
2821
2822  // Emit warning and note.
2823  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2824  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2825}
2826
2827/// \brief Check -Wshadow without the advantage of a previous lookup.
2828void Sema::CheckShadow(Scope *S, VarDecl *D) {
2829  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2830                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2831  LookupName(R, S);
2832  CheckShadow(S, D, R);
2833}
2834
2835/// \brief Perform semantic checking on a newly-created variable
2836/// declaration.
2837///
2838/// This routine performs all of the type-checking required for a
2839/// variable declaration once it has been built. It is used both to
2840/// check variables after they have been parsed and their declarators
2841/// have been translated into a declaration, and to check variables
2842/// that have been instantiated from a template.
2843///
2844/// Sets NewVD->isInvalidDecl() if an error was encountered.
2845void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2846                                    LookupResult &Previous,
2847                                    bool &Redeclaration) {
2848  // If the decl is already known invalid, don't check it.
2849  if (NewVD->isInvalidDecl())
2850    return;
2851
2852  QualType T = NewVD->getType();
2853
2854  if (T->isObjCObjectType()) {
2855    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2856    return NewVD->setInvalidDecl();
2857  }
2858
2859  // Emit an error if an address space was applied to decl with local storage.
2860  // This includes arrays of objects with address space qualifiers, but not
2861  // automatic variables that point to other address spaces.
2862  // ISO/IEC TR 18037 S5.1.2
2863  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2864    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2865    return NewVD->setInvalidDecl();
2866  }
2867
2868  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2869      && !NewVD->hasAttr<BlocksAttr>())
2870    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2871
2872  bool isVM = T->isVariablyModifiedType();
2873  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2874      NewVD->hasAttr<BlocksAttr>())
2875    setFunctionHasBranchProtectedScope();
2876
2877  if ((isVM && NewVD->hasLinkage()) ||
2878      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2879    bool SizeIsNegative;
2880    QualType FixedTy =
2881        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2882
2883    if (FixedTy.isNull() && T->isVariableArrayType()) {
2884      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2885      // FIXME: This won't give the correct result for
2886      // int a[10][n];
2887      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2888
2889      if (NewVD->isFileVarDecl())
2890        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2891        << SizeRange;
2892      else if (NewVD->getStorageClass() == VarDecl::Static)
2893        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2894        << SizeRange;
2895      else
2896        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2897        << SizeRange;
2898      return NewVD->setInvalidDecl();
2899    }
2900
2901    if (FixedTy.isNull()) {
2902      if (NewVD->isFileVarDecl())
2903        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2904      else
2905        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2906      return NewVD->setInvalidDecl();
2907    }
2908
2909    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2910    NewVD->setType(FixedTy);
2911  }
2912
2913  if (Previous.empty() && NewVD->isExternC()) {
2914    // Since we did not find anything by this name and we're declaring
2915    // an extern "C" variable, look for a non-visible extern "C"
2916    // declaration with the same name.
2917    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2918      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2919    if (Pos != LocallyScopedExternalDecls.end())
2920      Previous.addDecl(Pos->second);
2921  }
2922
2923  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2924    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2925      << T;
2926    return NewVD->setInvalidDecl();
2927  }
2928
2929  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2930    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2931    return NewVD->setInvalidDecl();
2932  }
2933
2934  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2935    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2936    return NewVD->setInvalidDecl();
2937  }
2938
2939  // Function pointers and references cannot have qualified function type, only
2940  // function pointer-to-members can do that.
2941  QualType Pointee;
2942  unsigned PtrOrRef = 0;
2943  if (const PointerType *Ptr = T->getAs<PointerType>())
2944    Pointee = Ptr->getPointeeType();
2945  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
2946    Pointee = Ref->getPointeeType();
2947    PtrOrRef = 1;
2948  }
2949  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
2950      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
2951    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
2952        << PtrOrRef;
2953    return NewVD->setInvalidDecl();
2954  }
2955
2956  if (!Previous.empty()) {
2957    Redeclaration = true;
2958    MergeVarDecl(NewVD, Previous);
2959  }
2960}
2961
2962/// \brief Data used with FindOverriddenMethod
2963struct FindOverriddenMethodData {
2964  Sema *S;
2965  CXXMethodDecl *Method;
2966};
2967
2968/// \brief Member lookup function that determines whether a given C++
2969/// method overrides a method in a base class, to be used with
2970/// CXXRecordDecl::lookupInBases().
2971static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2972                                 CXXBasePath &Path,
2973                                 void *UserData) {
2974  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2975
2976  FindOverriddenMethodData *Data
2977    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2978
2979  DeclarationName Name = Data->Method->getDeclName();
2980
2981  // FIXME: Do we care about other names here too?
2982  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2983    // We really want to find the base class destructor here.
2984    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2985    CanQualType CT = Data->S->Context.getCanonicalType(T);
2986
2987    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2988  }
2989
2990  for (Path.Decls = BaseRecord->lookup(Name);
2991       Path.Decls.first != Path.Decls.second;
2992       ++Path.Decls.first) {
2993    NamedDecl *D = *Path.Decls.first;
2994    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2995      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2996        return true;
2997    }
2998  }
2999
3000  return false;
3001}
3002
3003/// AddOverriddenMethods - See if a method overrides any in the base classes,
3004/// and if so, check that it's a valid override and remember it.
3005void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3006  // Look for virtual methods in base classes that this method might override.
3007  CXXBasePaths Paths;
3008  FindOverriddenMethodData Data;
3009  Data.Method = MD;
3010  Data.S = this;
3011  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3012    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3013         E = Paths.found_decls_end(); I != E; ++I) {
3014      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3015        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3016            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3017            !CheckOverridingFunctionAttributes(MD, OldMD))
3018          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3019      }
3020    }
3021  }
3022}
3023
3024NamedDecl*
3025Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3026                              QualType R, TypeSourceInfo *TInfo,
3027                              LookupResult &Previous,
3028                              MultiTemplateParamsArg TemplateParamLists,
3029                              bool IsFunctionDefinition, bool &Redeclaration) {
3030  assert(R.getTypePtr()->isFunctionType());
3031
3032  // TODO: consider using NameInfo for diagnostic.
3033  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3034  DeclarationName Name = NameInfo.getName();
3035  FunctionDecl::StorageClass SC = FunctionDecl::None;
3036  switch (D.getDeclSpec().getStorageClassSpec()) {
3037  default: assert(0 && "Unknown storage class!");
3038  case DeclSpec::SCS_auto:
3039  case DeclSpec::SCS_register:
3040  case DeclSpec::SCS_mutable:
3041    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3042         diag::err_typecheck_sclass_func);
3043    D.setInvalidType();
3044    break;
3045  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3046  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3047  case DeclSpec::SCS_static: {
3048    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3049      // C99 6.7.1p5:
3050      //   The declaration of an identifier for a function that has
3051      //   block scope shall have no explicit storage-class specifier
3052      //   other than extern
3053      // See also (C++ [dcl.stc]p4).
3054      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3055           diag::err_static_block_func);
3056      SC = FunctionDecl::None;
3057    } else
3058      SC = FunctionDecl::Static;
3059    break;
3060  }
3061  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3062  }
3063
3064  if (D.getDeclSpec().isThreadSpecified())
3065    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3066
3067  bool isFriend = D.getDeclSpec().isFriendSpecified();
3068  bool isInline = D.getDeclSpec().isInlineSpecified();
3069  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3070  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3071
3072  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3073  FunctionDecl::StorageClass SCAsWritten
3074    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3075
3076  // Check that the return type is not an abstract class type.
3077  // For record types, this is done by the AbstractClassUsageDiagnoser once
3078  // the class has been completely parsed.
3079  if (!DC->isRecord() &&
3080      RequireNonAbstractType(D.getIdentifierLoc(),
3081                             R->getAs<FunctionType>()->getResultType(),
3082                             diag::err_abstract_type_in_decl,
3083                             AbstractReturnType))
3084    D.setInvalidType();
3085
3086  // Do not allow returning a objc interface by-value.
3087  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3088    Diag(D.getIdentifierLoc(),
3089         diag::err_object_cannot_be_passed_returned_by_value) << 0
3090      << R->getAs<FunctionType>()->getResultType();
3091    D.setInvalidType();
3092  }
3093
3094  bool isVirtualOkay = false;
3095  FunctionDecl *NewFD;
3096
3097  if (isFriend) {
3098    // C++ [class.friend]p5
3099    //   A function can be defined in a friend declaration of a
3100    //   class . . . . Such a function is implicitly inline.
3101    isInline |= IsFunctionDefinition;
3102  }
3103
3104  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3105    // This is a C++ constructor declaration.
3106    assert(DC->isRecord() &&
3107           "Constructors can only be declared in a member context");
3108
3109    R = CheckConstructorDeclarator(D, R, SC);
3110
3111    // Create the new declaration
3112    NewFD = CXXConstructorDecl::Create(Context,
3113                                       cast<CXXRecordDecl>(DC),
3114                                       NameInfo, R, TInfo,
3115                                       isExplicit, isInline,
3116                                       /*isImplicitlyDeclared=*/false);
3117  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3118    // This is a C++ destructor declaration.
3119    if (DC->isRecord()) {
3120      R = CheckDestructorDeclarator(D, R, SC);
3121
3122      NewFD = CXXDestructorDecl::Create(Context,
3123                                        cast<CXXRecordDecl>(DC),
3124                                        NameInfo, R,
3125                                        isInline,
3126                                        /*isImplicitlyDeclared=*/false);
3127      NewFD->setTypeSourceInfo(TInfo);
3128
3129      isVirtualOkay = true;
3130    } else {
3131      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3132
3133      // Create a FunctionDecl to satisfy the function definition parsing
3134      // code path.
3135      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3136                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3137                                   /*hasPrototype=*/true);
3138      D.setInvalidType();
3139    }
3140  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3141    if (!DC->isRecord()) {
3142      Diag(D.getIdentifierLoc(),
3143           diag::err_conv_function_not_member);
3144      return 0;
3145    }
3146
3147    CheckConversionDeclarator(D, R, SC);
3148    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3149                                      NameInfo, R, TInfo,
3150                                      isInline, isExplicit);
3151
3152    isVirtualOkay = true;
3153  } else if (DC->isRecord()) {
3154    // If the of the function is the same as the name of the record, then this
3155    // must be an invalid constructor that has a return type.
3156    // (The parser checks for a return type and makes the declarator a
3157    // constructor if it has no return type).
3158    // must have an invalid constructor that has a return type
3159    if (Name.getAsIdentifierInfo() &&
3160        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3161      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3162        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3163        << SourceRange(D.getIdentifierLoc());
3164      return 0;
3165    }
3166
3167    bool isStatic = SC == FunctionDecl::Static;
3168
3169    // [class.free]p1:
3170    // Any allocation function for a class T is a static member
3171    // (even if not explicitly declared static).
3172    if (Name.getCXXOverloadedOperator() == OO_New ||
3173        Name.getCXXOverloadedOperator() == OO_Array_New)
3174      isStatic = true;
3175
3176    // [class.free]p6 Any deallocation function for a class X is a static member
3177    // (even if not explicitly declared static).
3178    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3179        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3180      isStatic = true;
3181
3182    // This is a C++ method declaration.
3183    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3184                                  NameInfo, R, TInfo,
3185                                  isStatic, SCAsWritten, isInline);
3186
3187    isVirtualOkay = !isStatic;
3188  } else {
3189    // Determine whether the function was written with a
3190    // prototype. This true when:
3191    //   - we're in C++ (where every function has a prototype),
3192    //   - there is a prototype in the declarator, or
3193    //   - the type R of the function is some kind of typedef or other reference
3194    //     to a type name (which eventually refers to a function type).
3195    bool HasPrototype =
3196       getLangOptions().CPlusPlus ||
3197       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3198       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3199
3200    NewFD = FunctionDecl::Create(Context, DC,
3201                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3202                                 HasPrototype);
3203  }
3204
3205  if (D.isInvalidType())
3206    NewFD->setInvalidDecl();
3207
3208  SetNestedNameSpecifier(NewFD, D);
3209
3210  // Set the lexical context. If the declarator has a C++
3211  // scope specifier, or is the object of a friend declaration, the
3212  // lexical context will be different from the semantic context.
3213  NewFD->setLexicalDeclContext(CurContext);
3214
3215  // Match up the template parameter lists with the scope specifier, then
3216  // determine whether we have a template or a template specialization.
3217  FunctionTemplateDecl *FunctionTemplate = 0;
3218  bool isExplicitSpecialization = false;
3219  bool isFunctionTemplateSpecialization = false;
3220  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3221  bool Invalid = false;
3222  if (TemplateParameterList *TemplateParams
3223        = MatchTemplateParametersToScopeSpecifier(
3224                                  D.getDeclSpec().getSourceRange().getBegin(),
3225                                  D.getCXXScopeSpec(),
3226                           (TemplateParameterList**)TemplateParamLists.get(),
3227                                                  TemplateParamLists.size(),
3228                                                  isFriend,
3229                                                  isExplicitSpecialization,
3230                                                  Invalid)) {
3231    // All but one template parameter lists have been matching.
3232    --NumMatchedTemplateParamLists;
3233
3234    if (TemplateParams->size() > 0) {
3235      // This is a function template
3236
3237      // Check that we can declare a template here.
3238      if (CheckTemplateDeclScope(S, TemplateParams))
3239        return 0;
3240
3241      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3242                                                      NewFD->getLocation(),
3243                                                      Name, TemplateParams,
3244                                                      NewFD);
3245      FunctionTemplate->setLexicalDeclContext(CurContext);
3246      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3247    } else {
3248      // This is a function template specialization.
3249      isFunctionTemplateSpecialization = true;
3250
3251      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3252      if (isFriend && isFunctionTemplateSpecialization) {
3253        // We want to remove the "template<>", found here.
3254        SourceRange RemoveRange = TemplateParams->getSourceRange();
3255
3256        // If we remove the template<> and the name is not a
3257        // template-id, we're actually silently creating a problem:
3258        // the friend declaration will refer to an untemplated decl,
3259        // and clearly the user wants a template specialization.  So
3260        // we need to insert '<>' after the name.
3261        SourceLocation InsertLoc;
3262        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3263          InsertLoc = D.getName().getSourceRange().getEnd();
3264          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3265        }
3266
3267        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3268          << Name << RemoveRange
3269          << FixItHint::CreateRemoval(RemoveRange)
3270          << FixItHint::CreateInsertion(InsertLoc, "<>");
3271      }
3272    }
3273  }
3274
3275  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3276    NewFD->setTemplateParameterListsInfo(Context,
3277                                         NumMatchedTemplateParamLists,
3278                        (TemplateParameterList**)TemplateParamLists.release());
3279  }
3280
3281  if (Invalid) {
3282    NewFD->setInvalidDecl();
3283    if (FunctionTemplate)
3284      FunctionTemplate->setInvalidDecl();
3285  }
3286
3287  // C++ [dcl.fct.spec]p5:
3288  //   The virtual specifier shall only be used in declarations of
3289  //   nonstatic class member functions that appear within a
3290  //   member-specification of a class declaration; see 10.3.
3291  //
3292  if (isVirtual && !NewFD->isInvalidDecl()) {
3293    if (!isVirtualOkay) {
3294       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3295           diag::err_virtual_non_function);
3296    } else if (!CurContext->isRecord()) {
3297      // 'virtual' was specified outside of the class.
3298      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3299        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3300    } else {
3301      // Okay: Add virtual to the method.
3302      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3303      CurClass->setMethodAsVirtual(NewFD);
3304    }
3305  }
3306
3307  // C++ [dcl.fct.spec]p3:
3308  //  The inline specifier shall not appear on a block scope function declaration.
3309  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3310    if (CurContext->isFunctionOrMethod()) {
3311      // 'inline' is not allowed on block scope function declaration.
3312      Diag(D.getDeclSpec().getInlineSpecLoc(),
3313           diag::err_inline_declaration_block_scope) << Name
3314        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3315    }
3316  }
3317
3318  // C++ [dcl.fct.spec]p6:
3319  //  The explicit specifier shall be used only in the declaration of a
3320  //  constructor or conversion function within its class definition; see 12.3.1
3321  //  and 12.3.2.
3322  if (isExplicit && !NewFD->isInvalidDecl()) {
3323    if (!CurContext->isRecord()) {
3324      // 'explicit' was specified outside of the class.
3325      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3326           diag::err_explicit_out_of_class)
3327        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3328    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3329               !isa<CXXConversionDecl>(NewFD)) {
3330      // 'explicit' was specified on a function that wasn't a constructor
3331      // or conversion function.
3332      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3333           diag::err_explicit_non_ctor_or_conv_function)
3334        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3335    }
3336  }
3337
3338  // Filter out previous declarations that don't match the scope.
3339  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3340
3341  if (isFriend) {
3342    // DC is the namespace in which the function is being declared.
3343    assert((DC->isFileContext() || !Previous.empty()) &&
3344           "previously-undeclared friend function being created "
3345           "in a non-namespace context");
3346
3347    // For now, claim that the objects have no previous declaration.
3348    if (FunctionTemplate) {
3349      FunctionTemplate->setObjectOfFriendDecl(false);
3350      FunctionTemplate->setAccess(AS_public);
3351    }
3352    NewFD->setObjectOfFriendDecl(false);
3353    NewFD->setAccess(AS_public);
3354  }
3355
3356  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3357      !CurContext->isRecord()) {
3358    // C++ [class.static]p1:
3359    //   A data or function member of a class may be declared static
3360    //   in a class definition, in which case it is a static member of
3361    //   the class.
3362
3363    // Complain about the 'static' specifier if it's on an out-of-line
3364    // member function definition.
3365    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3366         diag::err_static_out_of_line)
3367      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3368  }
3369
3370  // Handle GNU asm-label extension (encoded as an attribute).
3371  if (Expr *E = (Expr*) D.getAsmLabel()) {
3372    // The parser guarantees this is a string.
3373    StringLiteral *SE = cast<StringLiteral>(E);
3374    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3375  }
3376
3377  // Copy the parameter declarations from the declarator D to the function
3378  // declaration NewFD, if they are available.  First scavenge them into Params.
3379  llvm::SmallVector<ParmVarDecl*, 16> Params;
3380  if (D.getNumTypeObjects() > 0) {
3381    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3382
3383    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3384    // function that takes no arguments, not a function that takes a
3385    // single void argument.
3386    // We let through "const void" here because Sema::GetTypeForDeclarator
3387    // already checks for that case.
3388    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3389        FTI.ArgInfo[0].Param &&
3390        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3391      // Empty arg list, don't push any params.
3392      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3393
3394      // In C++, the empty parameter-type-list must be spelled "void"; a
3395      // typedef of void is not permitted.
3396      if (getLangOptions().CPlusPlus &&
3397          Param->getType().getUnqualifiedType() != Context.VoidTy)
3398        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3399      // FIXME: Leaks decl?
3400    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3401      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3402        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3403        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3404        Param->setDeclContext(NewFD);
3405        Params.push_back(Param);
3406
3407        if (Param->isInvalidDecl())
3408          NewFD->setInvalidDecl();
3409      }
3410    }
3411
3412  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3413    // When we're declaring a function with a typedef, typeof, etc as in the
3414    // following example, we'll need to synthesize (unnamed)
3415    // parameters for use in the declaration.
3416    //
3417    // @code
3418    // typedef void fn(int);
3419    // fn f;
3420    // @endcode
3421
3422    // Synthesize a parameter for each argument type.
3423    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3424         AE = FT->arg_type_end(); AI != AE; ++AI) {
3425      ParmVarDecl *Param =
3426        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3427      Params.push_back(Param);
3428    }
3429  } else {
3430    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3431           "Should not need args for typedef of non-prototype fn");
3432  }
3433  // Finally, we know we have the right number of parameters, install them.
3434  NewFD->setParams(Params.data(), Params.size());
3435
3436  // If the declarator is a template-id, translate the parser's template
3437  // argument list into our AST format.
3438  bool HasExplicitTemplateArgs = false;
3439  TemplateArgumentListInfo TemplateArgs;
3440  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3441    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3442    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3443    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3444    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3445                                       TemplateId->getTemplateArgs(),
3446                                       TemplateId->NumArgs);
3447    translateTemplateArguments(TemplateArgsPtr,
3448                               TemplateArgs);
3449    TemplateArgsPtr.release();
3450
3451    HasExplicitTemplateArgs = true;
3452
3453    if (FunctionTemplate) {
3454      // FIXME: Diagnose function template with explicit template
3455      // arguments.
3456      HasExplicitTemplateArgs = false;
3457    } else if (!isFunctionTemplateSpecialization &&
3458               !D.getDeclSpec().isFriendSpecified()) {
3459      // We have encountered something that the user meant to be a
3460      // specialization (because it has explicitly-specified template
3461      // arguments) but that was not introduced with a "template<>" (or had
3462      // too few of them).
3463      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3464        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3465        << FixItHint::CreateInsertion(
3466                                   D.getDeclSpec().getSourceRange().getBegin(),
3467                                                 "template<> ");
3468      isFunctionTemplateSpecialization = true;
3469    } else {
3470      // "friend void foo<>(int);" is an implicit specialization decl.
3471      isFunctionTemplateSpecialization = true;
3472    }
3473  } else if (isFriend && isFunctionTemplateSpecialization) {
3474    // This combination is only possible in a recovery case;  the user
3475    // wrote something like:
3476    //   template <> friend void foo(int);
3477    // which we're recovering from as if the user had written:
3478    //   friend void foo<>(int);
3479    // Go ahead and fake up a template id.
3480    HasExplicitTemplateArgs = true;
3481    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3482    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3483  }
3484
3485  // If it's a friend (and only if it's a friend), it's possible
3486  // that either the specialized function type or the specialized
3487  // template is dependent, and therefore matching will fail.  In
3488  // this case, don't check the specialization yet.
3489  if (isFunctionTemplateSpecialization && isFriend &&
3490      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3491    assert(HasExplicitTemplateArgs &&
3492           "friend function specialization without template args");
3493    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3494                                                     Previous))
3495      NewFD->setInvalidDecl();
3496  } else if (isFunctionTemplateSpecialization) {
3497    if (CheckFunctionTemplateSpecialization(NewFD,
3498                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3499                                            Previous))
3500      NewFD->setInvalidDecl();
3501  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3502    if (CheckMemberSpecialization(NewFD, Previous))
3503      NewFD->setInvalidDecl();
3504  }
3505
3506  // Perform semantic checking on the function declaration.
3507  bool OverloadableAttrRequired = false; // FIXME: HACK!
3508  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3509                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3510
3511  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3512          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3513         "previous declaration set still overloaded");
3514
3515  NamedDecl *PrincipalDecl = (FunctionTemplate
3516                              ? cast<NamedDecl>(FunctionTemplate)
3517                              : NewFD);
3518
3519  if (isFriend && Redeclaration) {
3520    AccessSpecifier Access = AS_public;
3521    if (!NewFD->isInvalidDecl())
3522      Access = NewFD->getPreviousDeclaration()->getAccess();
3523
3524    NewFD->setAccess(Access);
3525    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3526
3527    PrincipalDecl->setObjectOfFriendDecl(true);
3528  }
3529
3530  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3531      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3532    PrincipalDecl->setNonMemberOperator();
3533
3534  // If we have a function template, check the template parameter
3535  // list. This will check and merge default template arguments.
3536  if (FunctionTemplate) {
3537    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3538    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3539                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3540             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3541                                                : TPC_FunctionTemplate);
3542  }
3543
3544  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3545    // Fake up an access specifier if it's supposed to be a class member.
3546    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3547      NewFD->setAccess(AS_public);
3548
3549    // An out-of-line member function declaration must also be a
3550    // definition (C++ [dcl.meaning]p1).
3551    // Note that this is not the case for explicit specializations of
3552    // function templates or member functions of class templates, per
3553    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3554    // for compatibility with old SWIG code which likes to generate them.
3555    if (!IsFunctionDefinition && !isFriend &&
3556        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3557      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3558        << D.getCXXScopeSpec().getRange();
3559    }
3560    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3561      // The user tried to provide an out-of-line definition for a
3562      // function that is a member of a class or namespace, but there
3563      // was no such member function declared (C++ [class.mfct]p2,
3564      // C++ [namespace.memdef]p2). For example:
3565      //
3566      // class X {
3567      //   void f() const;
3568      // };
3569      //
3570      // void X::f() { } // ill-formed
3571      //
3572      // Complain about this problem, and attempt to suggest close
3573      // matches (e.g., those that differ only in cv-qualifiers and
3574      // whether the parameter types are references).
3575      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3576        << Name << DC << D.getCXXScopeSpec().getRange();
3577      NewFD->setInvalidDecl();
3578
3579      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3580                        ForRedeclaration);
3581      LookupQualifiedName(Prev, DC);
3582      assert(!Prev.isAmbiguous() &&
3583             "Cannot have an ambiguity in previous-declaration lookup");
3584      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3585           Func != FuncEnd; ++Func) {
3586        if (isa<FunctionDecl>(*Func) &&
3587            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3588          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3589      }
3590    }
3591  }
3592
3593  // Handle attributes. We need to have merged decls when handling attributes
3594  // (for example to check for conflicts, etc).
3595  // FIXME: This needs to happen before we merge declarations. Then,
3596  // let attribute merging cope with attribute conflicts.
3597  ProcessDeclAttributes(S, NewFD, D);
3598
3599  // attributes declared post-definition are currently ignored
3600  if (Redeclaration && Previous.isSingleResult()) {
3601    const FunctionDecl *Def;
3602    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3603    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3604      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3605      Diag(Def->getLocation(), diag::note_previous_definition);
3606    }
3607  }
3608
3609  AddKnownFunctionAttributes(NewFD);
3610
3611  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3612    // If a function name is overloadable in C, then every function
3613    // with that name must be marked "overloadable".
3614    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3615      << Redeclaration << NewFD;
3616    if (!Previous.empty())
3617      Diag(Previous.getRepresentativeDecl()->getLocation(),
3618           diag::note_attribute_overloadable_prev_overload);
3619    NewFD->addAttr(::new (Context) OverloadableAttr());
3620  }
3621
3622  if (NewFD->hasAttr<OverloadableAttr>() &&
3623      !NewFD->getType()->getAs<FunctionProtoType>()) {
3624    Diag(NewFD->getLocation(),
3625         diag::err_attribute_overloadable_no_prototype)
3626      << NewFD;
3627
3628    // Turn this into a variadic function with no parameters.
3629    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3630    QualType R = Context.getFunctionType(FT->getResultType(),
3631                                         0, 0, true, 0, false, false, 0, 0,
3632                                         FT->getExtInfo());
3633    NewFD->setType(R);
3634  }
3635
3636  // If there's a #pragma GCC visibility in scope, and this isn't a class
3637  // member, set the visibility of this function.
3638  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3639    AddPushedVisibilityAttribute(NewFD);
3640
3641  // If this is a locally-scoped extern C function, update the
3642  // map of such names.
3643  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3644      && !NewFD->isInvalidDecl())
3645    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3646
3647  // Set this FunctionDecl's range up to the right paren.
3648  NewFD->setLocEnd(D.getSourceRange().getEnd());
3649
3650  if (FunctionTemplate && NewFD->isInvalidDecl())
3651    FunctionTemplate->setInvalidDecl();
3652
3653  if (FunctionTemplate)
3654    return FunctionTemplate;
3655
3656  MarkUnusedFileScopedDecl(NewFD);
3657
3658  return NewFD;
3659}
3660
3661/// \brief Perform semantic checking of a new function declaration.
3662///
3663/// Performs semantic analysis of the new function declaration
3664/// NewFD. This routine performs all semantic checking that does not
3665/// require the actual declarator involved in the declaration, and is
3666/// used both for the declaration of functions as they are parsed
3667/// (called via ActOnDeclarator) and for the declaration of functions
3668/// that have been instantiated via C++ template instantiation (called
3669/// via InstantiateDecl).
3670///
3671/// \param IsExplicitSpecialiation whether this new function declaration is
3672/// an explicit specialization of the previous declaration.
3673///
3674/// This sets NewFD->isInvalidDecl() to true if there was an error.
3675void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3676                                    LookupResult &Previous,
3677                                    bool IsExplicitSpecialization,
3678                                    bool &Redeclaration,
3679                                    bool &OverloadableAttrRequired) {
3680  // If NewFD is already known erroneous, don't do any of this checking.
3681  if (NewFD->isInvalidDecl()) {
3682    // If this is a class member, mark the class invalid immediately.
3683    // This avoids some consistency errors later.
3684    if (isa<CXXMethodDecl>(NewFD))
3685      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3686
3687    return;
3688  }
3689
3690  if (NewFD->getResultType()->isVariablyModifiedType()) {
3691    // Functions returning a variably modified type violate C99 6.7.5.2p2
3692    // because all functions have linkage.
3693    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3694    return NewFD->setInvalidDecl();
3695  }
3696
3697  if (NewFD->isMain())
3698    CheckMain(NewFD);
3699
3700  // Check for a previous declaration of this name.
3701  if (Previous.empty() && NewFD->isExternC()) {
3702    // Since we did not find anything by this name and we're declaring
3703    // an extern "C" function, look for a non-visible extern "C"
3704    // declaration with the same name.
3705    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3706      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3707    if (Pos != LocallyScopedExternalDecls.end())
3708      Previous.addDecl(Pos->second);
3709  }
3710
3711  // Merge or overload the declaration with an existing declaration of
3712  // the same name, if appropriate.
3713  if (!Previous.empty()) {
3714    // Determine whether NewFD is an overload of PrevDecl or
3715    // a declaration that requires merging. If it's an overload,
3716    // there's no more work to do here; we'll just add the new
3717    // function to the scope.
3718
3719    NamedDecl *OldDecl = 0;
3720    if (!AllowOverloadingOfFunction(Previous, Context)) {
3721      Redeclaration = true;
3722      OldDecl = Previous.getFoundDecl();
3723    } else {
3724      if (!getLangOptions().CPlusPlus)
3725        OverloadableAttrRequired = true;
3726
3727      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3728                            /*NewIsUsingDecl*/ false)) {
3729      case Ovl_Match:
3730        Redeclaration = true;
3731        break;
3732
3733      case Ovl_NonFunction:
3734        Redeclaration = true;
3735        break;
3736
3737      case Ovl_Overload:
3738        Redeclaration = false;
3739        break;
3740      }
3741    }
3742
3743    if (Redeclaration) {
3744      // NewFD and OldDecl represent declarations that need to be
3745      // merged.
3746      if (MergeFunctionDecl(NewFD, OldDecl))
3747        return NewFD->setInvalidDecl();
3748
3749      Previous.clear();
3750      Previous.addDecl(OldDecl);
3751
3752      if (FunctionTemplateDecl *OldTemplateDecl
3753                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3754        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3755        FunctionTemplateDecl *NewTemplateDecl
3756          = NewFD->getDescribedFunctionTemplate();
3757        assert(NewTemplateDecl && "Template/non-template mismatch");
3758        if (CXXMethodDecl *Method
3759              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3760          Method->setAccess(OldTemplateDecl->getAccess());
3761          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3762        }
3763
3764        // If this is an explicit specialization of a member that is a function
3765        // template, mark it as a member specialization.
3766        if (IsExplicitSpecialization &&
3767            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3768          NewTemplateDecl->setMemberSpecialization();
3769          assert(OldTemplateDecl->isMemberSpecialization());
3770        }
3771      } else {
3772        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3773          NewFD->setAccess(OldDecl->getAccess());
3774        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3775      }
3776    }
3777  }
3778
3779  // Semantic checking for this function declaration (in isolation).
3780  if (getLangOptions().CPlusPlus) {
3781    // C++-specific checks.
3782    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3783      CheckConstructor(Constructor);
3784    } else if (CXXDestructorDecl *Destructor =
3785                dyn_cast<CXXDestructorDecl>(NewFD)) {
3786      CXXRecordDecl *Record = Destructor->getParent();
3787      QualType ClassType = Context.getTypeDeclType(Record);
3788
3789      // FIXME: Shouldn't we be able to perform this check even when the class
3790      // type is dependent? Both gcc and edg can handle that.
3791      if (!ClassType->isDependentType()) {
3792        DeclarationName Name
3793          = Context.DeclarationNames.getCXXDestructorName(
3794                                        Context.getCanonicalType(ClassType));
3795//         NewFD->getDeclName().dump();
3796//         Name.dump();
3797        if (NewFD->getDeclName() != Name) {
3798          Diag(NewFD->getLocation(), diag::err_destructor_name);
3799          return NewFD->setInvalidDecl();
3800        }
3801      }
3802
3803      Record->setUserDeclaredDestructor(true);
3804      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3805      // user-defined destructor.
3806      Record->setPOD(false);
3807
3808      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3809      // declared destructor.
3810      // FIXME: C++0x: don't do this for "= default" destructors
3811      Record->setHasTrivialDestructor(false);
3812    } else if (CXXConversionDecl *Conversion
3813               = dyn_cast<CXXConversionDecl>(NewFD)) {
3814      ActOnConversionDeclarator(Conversion);
3815    }
3816
3817    // Find any virtual functions that this function overrides.
3818    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3819      if (!Method->isFunctionTemplateSpecialization() &&
3820          !Method->getDescribedFunctionTemplate())
3821        AddOverriddenMethods(Method->getParent(), Method);
3822    }
3823
3824    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3825    if (NewFD->isOverloadedOperator() &&
3826        CheckOverloadedOperatorDeclaration(NewFD))
3827      return NewFD->setInvalidDecl();
3828
3829    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3830    if (NewFD->getLiteralIdentifier() &&
3831        CheckLiteralOperatorDeclaration(NewFD))
3832      return NewFD->setInvalidDecl();
3833
3834    // In C++, check default arguments now that we have merged decls. Unless
3835    // the lexical context is the class, because in this case this is done
3836    // during delayed parsing anyway.
3837    if (!CurContext->isRecord())
3838      CheckCXXDefaultArguments(NewFD);
3839  }
3840}
3841
3842void Sema::CheckMain(FunctionDecl* FD) {
3843  // C++ [basic.start.main]p3:  A program that declares main to be inline
3844  //   or static is ill-formed.
3845  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3846  //   shall not appear in a declaration of main.
3847  // static main is not an error under C99, but we should warn about it.
3848  bool isInline = FD->isInlineSpecified();
3849  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3850  if (isInline || isStatic) {
3851    unsigned diagID = diag::warn_unusual_main_decl;
3852    if (isInline || getLangOptions().CPlusPlus)
3853      diagID = diag::err_unusual_main_decl;
3854
3855    int which = isStatic + (isInline << 1) - 1;
3856    Diag(FD->getLocation(), diagID) << which;
3857  }
3858
3859  QualType T = FD->getType();
3860  assert(T->isFunctionType() && "function decl is not of function type");
3861  const FunctionType* FT = T->getAs<FunctionType>();
3862
3863  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3864    // TODO: add a replacement fixit to turn the return type into 'int'.
3865    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3866    FD->setInvalidDecl(true);
3867  }
3868
3869  // Treat protoless main() as nullary.
3870  if (isa<FunctionNoProtoType>(FT)) return;
3871
3872  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3873  unsigned nparams = FTP->getNumArgs();
3874  assert(FD->getNumParams() == nparams);
3875
3876  bool HasExtraParameters = (nparams > 3);
3877
3878  // Darwin passes an undocumented fourth argument of type char**.  If
3879  // other platforms start sprouting these, the logic below will start
3880  // getting shifty.
3881  if (nparams == 4 &&
3882      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3883    HasExtraParameters = false;
3884
3885  if (HasExtraParameters) {
3886    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3887    FD->setInvalidDecl(true);
3888    nparams = 3;
3889  }
3890
3891  // FIXME: a lot of the following diagnostics would be improved
3892  // if we had some location information about types.
3893
3894  QualType CharPP =
3895    Context.getPointerType(Context.getPointerType(Context.CharTy));
3896  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3897
3898  for (unsigned i = 0; i < nparams; ++i) {
3899    QualType AT = FTP->getArgType(i);
3900
3901    bool mismatch = true;
3902
3903    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3904      mismatch = false;
3905    else if (Expected[i] == CharPP) {
3906      // As an extension, the following forms are okay:
3907      //   char const **
3908      //   char const * const *
3909      //   char * const *
3910
3911      QualifierCollector qs;
3912      const PointerType* PT;
3913      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3914          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3915          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3916        qs.removeConst();
3917        mismatch = !qs.empty();
3918      }
3919    }
3920
3921    if (mismatch) {
3922      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3923      // TODO: suggest replacing given type with expected type
3924      FD->setInvalidDecl(true);
3925    }
3926  }
3927
3928  if (nparams == 1 && !FD->isInvalidDecl()) {
3929    Diag(FD->getLocation(), diag::warn_main_one_arg);
3930  }
3931}
3932
3933bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3934  // FIXME: Need strict checking.  In C89, we need to check for
3935  // any assignment, increment, decrement, function-calls, or
3936  // commas outside of a sizeof.  In C99, it's the same list,
3937  // except that the aforementioned are allowed in unevaluated
3938  // expressions.  Everything else falls under the
3939  // "may accept other forms of constant expressions" exception.
3940  // (We never end up here for C++, so the constant expression
3941  // rules there don't matter.)
3942  if (Init->isConstantInitializer(Context, false))
3943    return false;
3944  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3945    << Init->getSourceRange();
3946  return true;
3947}
3948
3949void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3950  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3951}
3952
3953/// AddInitializerToDecl - Adds the initializer Init to the
3954/// declaration dcl. If DirectInit is true, this is C++ direct
3955/// initialization rather than copy initialization.
3956void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3957  Decl *RealDecl = dcl.getAs<Decl>();
3958  // If there is no declaration, there was an error parsing it.  Just ignore
3959  // the initializer.
3960  if (RealDecl == 0)
3961    return;
3962
3963  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3964    // With declarators parsed the way they are, the parser cannot
3965    // distinguish between a normal initializer and a pure-specifier.
3966    // Thus this grotesque test.
3967    IntegerLiteral *IL;
3968    Expr *Init = static_cast<Expr *>(init.get());
3969    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3970        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3971      CheckPureMethod(Method, Init->getSourceRange());
3972    else {
3973      Diag(Method->getLocation(), diag::err_member_function_initialization)
3974        << Method->getDeclName() << Init->getSourceRange();
3975      Method->setInvalidDecl();
3976    }
3977    return;
3978  }
3979
3980  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3981  if (!VDecl) {
3982    if (getLangOptions().CPlusPlus &&
3983        RealDecl->getLexicalDeclContext()->isRecord() &&
3984        isa<NamedDecl>(RealDecl))
3985      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3986        << cast<NamedDecl>(RealDecl)->getDeclName();
3987    else
3988      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3989    RealDecl->setInvalidDecl();
3990    return;
3991  }
3992
3993  // A definition must end up with a complete type, which means it must be
3994  // complete with the restriction that an array type might be completed by the
3995  // initializer; note that later code assumes this restriction.
3996  QualType BaseDeclType = VDecl->getType();
3997  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3998    BaseDeclType = Array->getElementType();
3999  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4000                          diag::err_typecheck_decl_incomplete_type)) {
4001    RealDecl->setInvalidDecl();
4002    return;
4003  }
4004
4005  // The variable can not have an abstract class type.
4006  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4007                             diag::err_abstract_type_in_decl,
4008                             AbstractVariableType))
4009    VDecl->setInvalidDecl();
4010
4011  const VarDecl *Def;
4012  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4013    Diag(VDecl->getLocation(), diag::err_redefinition)
4014      << VDecl->getDeclName();
4015    Diag(Def->getLocation(), diag::note_previous_definition);
4016    VDecl->setInvalidDecl();
4017    return;
4018  }
4019
4020  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4021    setFunctionHasBranchProtectedScope();
4022
4023  // Take ownership of the expression, now that we're sure we have somewhere
4024  // to put it.
4025  Expr *Init = init.takeAs<Expr>();
4026  assert(Init && "missing initializer");
4027
4028  // Capture the variable that is being initialized and the style of
4029  // initialization.
4030  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4031
4032  // FIXME: Poor source location information.
4033  InitializationKind Kind
4034    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4035                                                   Init->getLocStart(),
4036                                                   Init->getLocEnd())
4037                : InitializationKind::CreateCopy(VDecl->getLocation(),
4038                                                 Init->getLocStart());
4039
4040  // Get the decls type and save a reference for later, since
4041  // CheckInitializerTypes may change it.
4042  QualType DclT = VDecl->getType(), SavT = DclT;
4043  if (VDecl->isBlockVarDecl()) {
4044    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4045      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4046      VDecl->setInvalidDecl();
4047    } else if (!VDecl->isInvalidDecl()) {
4048      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4049      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4050                                          MultiExprArg(*this, (void**)&Init, 1),
4051                                                &DclT);
4052      if (Result.isInvalid()) {
4053        VDecl->setInvalidDecl();
4054        return;
4055      }
4056
4057      Init = Result.takeAs<Expr>();
4058
4059      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4060      // Don't check invalid declarations to avoid emitting useless diagnostics.
4061      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4062        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4063          CheckForConstantInitializer(Init, DclT);
4064      }
4065    }
4066  } else if (VDecl->isStaticDataMember() &&
4067             VDecl->getLexicalDeclContext()->isRecord()) {
4068    // This is an in-class initialization for a static data member, e.g.,
4069    //
4070    // struct S {
4071    //   static const int value = 17;
4072    // };
4073
4074    // Attach the initializer
4075    VDecl->setInit(Init);
4076
4077    // C++ [class.mem]p4:
4078    //   A member-declarator can contain a constant-initializer only
4079    //   if it declares a static member (9.4) of const integral or
4080    //   const enumeration type, see 9.4.2.
4081    QualType T = VDecl->getType();
4082    if (!T->isDependentType() &&
4083        (!Context.getCanonicalType(T).isConstQualified() ||
4084         !T->isIntegralOrEnumerationType())) {
4085      Diag(VDecl->getLocation(), diag::err_member_initialization)
4086        << VDecl->getDeclName() << Init->getSourceRange();
4087      VDecl->setInvalidDecl();
4088    } else {
4089      // C++ [class.static.data]p4:
4090      //   If a static data member is of const integral or const
4091      //   enumeration type, its declaration in the class definition
4092      //   can specify a constant-initializer which shall be an
4093      //   integral constant expression (5.19).
4094      if (!Init->isTypeDependent() &&
4095          !Init->getType()->isIntegralOrEnumerationType()) {
4096        // We have a non-dependent, non-integral or enumeration type.
4097        Diag(Init->getSourceRange().getBegin(),
4098             diag::err_in_class_initializer_non_integral_type)
4099          << Init->getType() << Init->getSourceRange();
4100        VDecl->setInvalidDecl();
4101      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4102        // Check whether the expression is a constant expression.
4103        llvm::APSInt Value;
4104        SourceLocation Loc;
4105        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4106          Diag(Loc, diag::err_in_class_initializer_non_constant)
4107            << Init->getSourceRange();
4108          VDecl->setInvalidDecl();
4109        } else if (!VDecl->getType()->isDependentType())
4110          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4111      }
4112    }
4113  } else if (VDecl->isFileVarDecl()) {
4114    if (VDecl->getStorageClass() == VarDecl::Extern &&
4115        (!getLangOptions().CPlusPlus ||
4116         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4117      Diag(VDecl->getLocation(), diag::warn_extern_init);
4118    if (!VDecl->isInvalidDecl()) {
4119      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4120      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4121                                          MultiExprArg(*this, (void**)&Init, 1),
4122                                                &DclT);
4123      if (Result.isInvalid()) {
4124        VDecl->setInvalidDecl();
4125        return;
4126      }
4127
4128      Init = Result.takeAs<Expr>();
4129    }
4130
4131    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4132    // Don't check invalid declarations to avoid emitting useless diagnostics.
4133    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4134      // C99 6.7.8p4. All file scoped initializers need to be constant.
4135      CheckForConstantInitializer(Init, DclT);
4136    }
4137  }
4138  // If the type changed, it means we had an incomplete type that was
4139  // completed by the initializer. For example:
4140  //   int ary[] = { 1, 3, 5 };
4141  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4142  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4143    VDecl->setType(DclT);
4144    Init->setType(DclT);
4145  }
4146
4147  Init = MaybeCreateCXXExprWithTemporaries(Init);
4148  // Attach the initializer to the decl.
4149  VDecl->setInit(Init);
4150
4151  if (getLangOptions().CPlusPlus) {
4152    if (!VDecl->isInvalidDecl() &&
4153        !VDecl->getDeclContext()->isDependentContext() &&
4154        VDecl->hasGlobalStorage() &&
4155        !Init->isConstantInitializer(Context,
4156                                     VDecl->getType()->isReferenceType()))
4157      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4158        << Init->getSourceRange();
4159
4160    // Make sure we mark the destructor as used if necessary.
4161    QualType InitType = VDecl->getType();
4162    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4163      InitType = Context.getBaseElementType(Array);
4164    if (const RecordType *Record = InitType->getAs<RecordType>())
4165      FinalizeVarWithDestructor(VDecl, Record);
4166  }
4167
4168  return;
4169}
4170
4171/// ActOnInitializerError - Given that there was an error parsing an
4172/// initializer for the given declaration, try to return to some form
4173/// of sanity.
4174void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4175  // Our main concern here is re-establishing invariants like "a
4176  // variable's type is either dependent or complete".
4177  Decl *D = dcl.getAs<Decl>();
4178  if (!D || D->isInvalidDecl()) return;
4179
4180  VarDecl *VD = dyn_cast<VarDecl>(D);
4181  if (!VD) return;
4182
4183  QualType Ty = VD->getType();
4184  if (Ty->isDependentType()) return;
4185
4186  // Require a complete type.
4187  if (RequireCompleteType(VD->getLocation(),
4188                          Context.getBaseElementType(Ty),
4189                          diag::err_typecheck_decl_incomplete_type)) {
4190    VD->setInvalidDecl();
4191    return;
4192  }
4193
4194  // Require an abstract type.
4195  if (RequireNonAbstractType(VD->getLocation(), Ty,
4196                             diag::err_abstract_type_in_decl,
4197                             AbstractVariableType)) {
4198    VD->setInvalidDecl();
4199    return;
4200  }
4201
4202  // Don't bother complaining about constructors or destructors,
4203  // though.
4204}
4205
4206void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4207                                  bool TypeContainsUndeducedAuto) {
4208  Decl *RealDecl = dcl.getAs<Decl>();
4209
4210  // If there is no declaration, there was an error parsing it. Just ignore it.
4211  if (RealDecl == 0)
4212    return;
4213
4214  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4215    QualType Type = Var->getType();
4216
4217    // C++0x [dcl.spec.auto]p3
4218    if (TypeContainsUndeducedAuto) {
4219      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4220        << Var->getDeclName() << Type;
4221      Var->setInvalidDecl();
4222      return;
4223    }
4224
4225    switch (Var->isThisDeclarationADefinition()) {
4226    case VarDecl::Definition:
4227      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4228        break;
4229
4230      // We have an out-of-line definition of a static data member
4231      // that has an in-class initializer, so we type-check this like
4232      // a declaration.
4233      //
4234      // Fall through
4235
4236    case VarDecl::DeclarationOnly:
4237      // It's only a declaration.
4238
4239      // Block scope. C99 6.7p7: If an identifier for an object is
4240      // declared with no linkage (C99 6.2.2p6), the type for the
4241      // object shall be complete.
4242      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4243          !Var->getLinkage() && !Var->isInvalidDecl() &&
4244          RequireCompleteType(Var->getLocation(), Type,
4245                              diag::err_typecheck_decl_incomplete_type))
4246        Var->setInvalidDecl();
4247
4248      // Make sure that the type is not abstract.
4249      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4250          RequireNonAbstractType(Var->getLocation(), Type,
4251                                 diag::err_abstract_type_in_decl,
4252                                 AbstractVariableType))
4253        Var->setInvalidDecl();
4254      return;
4255
4256    case VarDecl::TentativeDefinition:
4257      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4258      // object that has file scope without an initializer, and without a
4259      // storage-class specifier or with the storage-class specifier "static",
4260      // constitutes a tentative definition. Note: A tentative definition with
4261      // external linkage is valid (C99 6.2.2p5).
4262      if (!Var->isInvalidDecl()) {
4263        if (const IncompleteArrayType *ArrayT
4264                                    = Context.getAsIncompleteArrayType(Type)) {
4265          if (RequireCompleteType(Var->getLocation(),
4266                                  ArrayT->getElementType(),
4267                                  diag::err_illegal_decl_array_incomplete_type))
4268            Var->setInvalidDecl();
4269        } else if (Var->getStorageClass() == VarDecl::Static) {
4270          // C99 6.9.2p3: If the declaration of an identifier for an object is
4271          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4272          // declared type shall not be an incomplete type.
4273          // NOTE: code such as the following
4274          //     static struct s;
4275          //     struct s { int a; };
4276          // is accepted by gcc. Hence here we issue a warning instead of
4277          // an error and we do not invalidate the static declaration.
4278          // NOTE: to avoid multiple warnings, only check the first declaration.
4279          if (Var->getPreviousDeclaration() == 0)
4280            RequireCompleteType(Var->getLocation(), Type,
4281                                diag::ext_typecheck_decl_incomplete_type);
4282        }
4283      }
4284
4285      // Record the tentative definition; we're done.
4286      if (!Var->isInvalidDecl())
4287        TentativeDefinitions.push_back(Var);
4288      return;
4289    }
4290
4291    // Provide a specific diagnostic for uninitialized variable
4292    // definitions with incomplete array type.
4293    if (Type->isIncompleteArrayType()) {
4294      Diag(Var->getLocation(),
4295           diag::err_typecheck_incomplete_array_needs_initializer);
4296      Var->setInvalidDecl();
4297      return;
4298    }
4299
4300    // Provide a specific diagnostic for uninitialized variable
4301    // definitions with reference type.
4302    if (Type->isReferenceType()) {
4303      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4304        << Var->getDeclName()
4305        << SourceRange(Var->getLocation(), Var->getLocation());
4306      Var->setInvalidDecl();
4307      return;
4308    }
4309
4310    // Do not attempt to type-check the default initializer for a
4311    // variable with dependent type.
4312    if (Type->isDependentType())
4313      return;
4314
4315    if (Var->isInvalidDecl())
4316      return;
4317
4318    if (RequireCompleteType(Var->getLocation(),
4319                            Context.getBaseElementType(Type),
4320                            diag::err_typecheck_decl_incomplete_type)) {
4321      Var->setInvalidDecl();
4322      return;
4323    }
4324
4325    // The variable can not have an abstract class type.
4326    if (RequireNonAbstractType(Var->getLocation(), Type,
4327                               diag::err_abstract_type_in_decl,
4328                               AbstractVariableType)) {
4329      Var->setInvalidDecl();
4330      return;
4331    }
4332
4333    const RecordType *Record
4334      = Context.getBaseElementType(Type)->getAs<RecordType>();
4335    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4336        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4337      // C++03 [dcl.init]p9:
4338      //   If no initializer is specified for an object, and the
4339      //   object is of (possibly cv-qualified) non-POD class type (or
4340      //   array thereof), the object shall be default-initialized; if
4341      //   the object is of const-qualified type, the underlying class
4342      //   type shall have a user-declared default
4343      //   constructor. Otherwise, if no initializer is specified for
4344      //   a non- static object, the object and its subobjects, if
4345      //   any, have an indeterminate initial value); if the object
4346      //   or any of its subobjects are of const-qualified type, the
4347      //   program is ill-formed.
4348      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4349    } else {
4350      // Check for jumps past the implicit initializer.  C++0x
4351      // clarifies that this applies to a "variable with automatic
4352      // storage duration", not a "local variable".
4353      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4354        setFunctionHasBranchProtectedScope();
4355
4356      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4357      InitializationKind Kind
4358        = InitializationKind::CreateDefault(Var->getLocation());
4359
4360      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4361      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4362                                              MultiExprArg(*this, 0, 0));
4363      if (Init.isInvalid())
4364        Var->setInvalidDecl();
4365      else if (Init.get()) {
4366        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4367
4368        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4369            Var->hasGlobalStorage() &&
4370            !Var->getDeclContext()->isDependentContext() &&
4371            !Var->getInit()->isConstantInitializer(Context, false))
4372          Diag(Var->getLocation(), diag::warn_global_constructor);
4373      }
4374    }
4375
4376    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4377      FinalizeVarWithDestructor(Var, Record);
4378  }
4379}
4380
4381Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4382                                                   DeclPtrTy *Group,
4383                                                   unsigned NumDecls) {
4384  llvm::SmallVector<Decl*, 8> Decls;
4385
4386  if (DS.isTypeSpecOwned())
4387    Decls.push_back((Decl*)DS.getTypeRep());
4388
4389  for (unsigned i = 0; i != NumDecls; ++i)
4390    if (Decl *D = Group[i].getAs<Decl>())
4391      Decls.push_back(D);
4392
4393  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4394                                                   Decls.data(), Decls.size()));
4395}
4396
4397
4398/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4399/// to introduce parameters into function prototype scope.
4400Sema::DeclPtrTy
4401Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4402  const DeclSpec &DS = D.getDeclSpec();
4403
4404  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4405  VarDecl::StorageClass StorageClass = VarDecl::None;
4406  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4407  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4408    StorageClass = VarDecl::Register;
4409    StorageClassAsWritten = VarDecl::Register;
4410  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4411    Diag(DS.getStorageClassSpecLoc(),
4412         diag::err_invalid_storage_class_in_func_decl);
4413    D.getMutableDeclSpec().ClearStorageClassSpecs();
4414  }
4415
4416  if (D.getDeclSpec().isThreadSpecified())
4417    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4418
4419  DiagnoseFunctionSpecifiers(D);
4420
4421  // Check that there are no default arguments inside the type of this
4422  // parameter (C++ only).
4423  if (getLangOptions().CPlusPlus)
4424    CheckExtraCXXDefaultArguments(D);
4425
4426  TagDecl *OwnedDecl = 0;
4427  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4428  QualType parmDeclType = TInfo->getType();
4429
4430  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4431    // C++ [dcl.fct]p6:
4432    //   Types shall not be defined in return or parameter types.
4433    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4434      << Context.getTypeDeclType(OwnedDecl);
4435  }
4436
4437  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4438  IdentifierInfo *II = D.getIdentifier();
4439  if (II) {
4440    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4441                   ForRedeclaration);
4442    LookupName(R, S);
4443    if (R.isSingleResult()) {
4444      NamedDecl *PrevDecl = R.getFoundDecl();
4445      if (PrevDecl->isTemplateParameter()) {
4446        // Maybe we will complain about the shadowed template parameter.
4447        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4448        // Just pretend that we didn't see the previous declaration.
4449        PrevDecl = 0;
4450      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4451        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4452        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4453
4454        // Recover by removing the name
4455        II = 0;
4456        D.SetIdentifier(0, D.getIdentifierLoc());
4457        D.setInvalidType(true);
4458      }
4459    }
4460  }
4461
4462  // Temporarily put parameter variables in the translation unit, not
4463  // the enclosing context.  This prevents them from accidentally
4464  // looking like class members in C++.
4465  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4466                                    TInfo, parmDeclType, II,
4467                                    D.getIdentifierLoc(),
4468                                    StorageClass, StorageClassAsWritten);
4469
4470  if (D.isInvalidType())
4471    New->setInvalidDecl();
4472
4473  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4474  if (D.getCXXScopeSpec().isSet()) {
4475    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4476      << D.getCXXScopeSpec().getRange();
4477    New->setInvalidDecl();
4478  }
4479
4480  // Add the parameter declaration into this scope.
4481  S->AddDecl(DeclPtrTy::make(New));
4482  if (II)
4483    IdResolver.AddDecl(New);
4484
4485  ProcessDeclAttributes(S, New, D);
4486
4487  if (New->hasAttr<BlocksAttr>()) {
4488    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4489  }
4490  return DeclPtrTy::make(New);
4491}
4492
4493/// \brief Synthesizes a variable for a parameter arising from a
4494/// typedef.
4495ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4496                                              SourceLocation Loc,
4497                                              QualType T) {
4498  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4499                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4500                                           VarDecl::None, VarDecl::None, 0);
4501  Param->setImplicit();
4502  return Param;
4503}
4504
4505ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4506                                  TypeSourceInfo *TSInfo, QualType T,
4507                                  IdentifierInfo *Name,
4508                                  SourceLocation NameLoc,
4509                                  VarDecl::StorageClass StorageClass,
4510                                  VarDecl::StorageClass StorageClassAsWritten) {
4511  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4512                                         adjustParameterType(T), TSInfo,
4513                                         StorageClass, StorageClassAsWritten,
4514                                         0);
4515
4516  // Parameters can not be abstract class types.
4517  // For record types, this is done by the AbstractClassUsageDiagnoser once
4518  // the class has been completely parsed.
4519  if (!CurContext->isRecord() &&
4520      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4521                             AbstractParamType))
4522    New->setInvalidDecl();
4523
4524  // Parameter declarators cannot be interface types. All ObjC objects are
4525  // passed by reference.
4526  if (T->isObjCObjectType()) {
4527    Diag(NameLoc,
4528         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4529    New->setInvalidDecl();
4530  }
4531
4532  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4533  // duration shall not be qualified by an address-space qualifier."
4534  // Since all parameters have automatic store duration, they can not have
4535  // an address space.
4536  if (T.getAddressSpace() != 0) {
4537    Diag(NameLoc, diag::err_arg_with_address_space);
4538    New->setInvalidDecl();
4539  }
4540
4541  return New;
4542}
4543
4544void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4545                                           SourceLocation LocAfterDecls) {
4546  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4547         "Not a function declarator!");
4548  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4549
4550  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4551  // for a K&R function.
4552  if (!FTI.hasPrototype) {
4553    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4554      --i;
4555      if (FTI.ArgInfo[i].Param == 0) {
4556        llvm::SmallString<256> Code;
4557        llvm::raw_svector_ostream(Code) << "  int "
4558                                        << FTI.ArgInfo[i].Ident->getName()
4559                                        << ";\n";
4560        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4561          << FTI.ArgInfo[i].Ident
4562          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4563
4564        // Implicitly declare the argument as type 'int' for lack of a better
4565        // type.
4566        DeclSpec DS;
4567        const char* PrevSpec; // unused
4568        unsigned DiagID; // unused
4569        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4570                           PrevSpec, DiagID);
4571        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4572        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4573        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4574      }
4575    }
4576  }
4577}
4578
4579Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4580                                              Declarator &D) {
4581  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4582  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4583         "Not a function declarator!");
4584  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4585
4586  if (FTI.hasPrototype) {
4587    // FIXME: Diagnose arguments without names in C.
4588  }
4589
4590  Scope *ParentScope = FnBodyScope->getParent();
4591
4592  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4593                                  MultiTemplateParamsArg(*this),
4594                                  /*IsFunctionDefinition=*/true);
4595  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4596}
4597
4598static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4599  // Don't warn about invalid declarations.
4600  if (FD->isInvalidDecl())
4601    return false;
4602
4603  // Or declarations that aren't global.
4604  if (!FD->isGlobal())
4605    return false;
4606
4607  // Don't warn about C++ member functions.
4608  if (isa<CXXMethodDecl>(FD))
4609    return false;
4610
4611  // Don't warn about 'main'.
4612  if (FD->isMain())
4613    return false;
4614
4615  // Don't warn about inline functions.
4616  if (FD->isInlineSpecified())
4617    return false;
4618
4619  // Don't warn about function templates.
4620  if (FD->getDescribedFunctionTemplate())
4621    return false;
4622
4623  // Don't warn about function template specializations.
4624  if (FD->isFunctionTemplateSpecialization())
4625    return false;
4626
4627  bool MissingPrototype = true;
4628  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4629       Prev; Prev = Prev->getPreviousDeclaration()) {
4630    // Ignore any declarations that occur in function or method
4631    // scope, because they aren't visible from the header.
4632    if (Prev->getDeclContext()->isFunctionOrMethod())
4633      continue;
4634
4635    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4636    break;
4637  }
4638
4639  return MissingPrototype;
4640}
4641
4642Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4643  // Clear the last template instantiation error context.
4644  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4645
4646  if (!D)
4647    return D;
4648  FunctionDecl *FD = 0;
4649
4650  if (FunctionTemplateDecl *FunTmpl
4651        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4652    FD = FunTmpl->getTemplatedDecl();
4653  else
4654    FD = cast<FunctionDecl>(D.getAs<Decl>());
4655
4656  // Enter a new function scope
4657  PushFunctionScope();
4658
4659  // See if this is a redefinition.
4660  // But don't complain if we're in GNU89 mode and the previous definition
4661  // was an extern inline function.
4662  const FunctionDecl *Definition;
4663  if (FD->hasBody(Definition) &&
4664      !canRedefineFunction(Definition, getLangOptions())) {
4665    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4666    Diag(Definition->getLocation(), diag::note_previous_definition);
4667  }
4668
4669  // Builtin functions cannot be defined.
4670  if (unsigned BuiltinID = FD->getBuiltinID()) {
4671    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4672      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4673      FD->setInvalidDecl();
4674    }
4675  }
4676
4677  // The return type of a function definition must be complete
4678  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4679  QualType ResultType = FD->getResultType();
4680  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4681      !FD->isInvalidDecl() &&
4682      RequireCompleteType(FD->getLocation(), ResultType,
4683                          diag::err_func_def_incomplete_result))
4684    FD->setInvalidDecl();
4685
4686  // GNU warning -Wmissing-prototypes:
4687  //   Warn if a global function is defined without a previous
4688  //   prototype declaration. This warning is issued even if the
4689  //   definition itself provides a prototype. The aim is to detect
4690  //   global functions that fail to be declared in header files.
4691  if (ShouldWarnAboutMissingPrototype(FD))
4692    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4693
4694  if (FnBodyScope)
4695    PushDeclContext(FnBodyScope, FD);
4696
4697  // Check the validity of our function parameters
4698  CheckParmsForFunctionDef(FD);
4699
4700  bool ShouldCheckShadow =
4701    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4702
4703  // Introduce our parameters into the function scope
4704  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4705    ParmVarDecl *Param = FD->getParamDecl(p);
4706    Param->setOwningFunction(FD);
4707
4708    // If this has an identifier, add it to the scope stack.
4709    if (Param->getIdentifier() && FnBodyScope) {
4710      if (ShouldCheckShadow)
4711        CheckShadow(FnBodyScope, Param);
4712
4713      PushOnScopeChains(Param, FnBodyScope);
4714    }
4715  }
4716
4717  // Checking attributes of current function definition
4718  // dllimport attribute.
4719  if (FD->getAttr<DLLImportAttr>() &&
4720      (!FD->getAttr<DLLExportAttr>())) {
4721    // dllimport attribute cannot be applied to definition.
4722    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4723      Diag(FD->getLocation(),
4724           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4725        << "dllimport";
4726      FD->setInvalidDecl();
4727      return DeclPtrTy::make(FD);
4728    }
4729
4730    // Visual C++ appears to not think this is an issue, so only issue
4731    // a warning when Microsoft extensions are disabled.
4732    if (!LangOpts.Microsoft) {
4733      // If a symbol previously declared dllimport is later defined, the
4734      // attribute is ignored in subsequent references, and a warning is
4735      // emitted.
4736      Diag(FD->getLocation(),
4737           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4738        << FD->getNameAsCString() << "dllimport";
4739    }
4740  }
4741  return DeclPtrTy::make(FD);
4742}
4743
4744/// \brief Given the set of return statements within a function body,
4745/// compute the variables that are subject to the named return value
4746/// optimization.
4747///
4748/// Each of the variables that is subject to the named return value
4749/// optimization will be marked as NRVO variables in the AST, and any
4750/// return statement that has a marked NRVO variable as its NRVO candidate can
4751/// use the named return value optimization.
4752///
4753/// This function applies a very simplistic algorithm for NRVO: if every return
4754/// statement in the function has the same NRVO candidate, that candidate is
4755/// the NRVO variable.
4756///
4757/// FIXME: Employ a smarter algorithm that accounts for multiple return
4758/// statements and the lifetimes of the NRVO candidates. We should be able to
4759/// find a maximal set of NRVO variables.
4760static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4761  const VarDecl *NRVOCandidate = 0;
4762  for (unsigned I = 0; I != NumReturns; ++I) {
4763    if (!Returns[I]->getNRVOCandidate())
4764      return;
4765
4766    if (!NRVOCandidate)
4767      NRVOCandidate = Returns[I]->getNRVOCandidate();
4768    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4769      return;
4770  }
4771
4772  if (NRVOCandidate)
4773    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4774}
4775
4776Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4777  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4778}
4779
4780Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4781                                              bool IsInstantiation) {
4782  Decl *dcl = D.getAs<Decl>();
4783  Stmt *Body = BodyArg.takeAs<Stmt>();
4784
4785  FunctionDecl *FD = 0;
4786  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4787  if (FunTmpl)
4788    FD = FunTmpl->getTemplatedDecl();
4789  else
4790    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4791
4792  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4793
4794  if (FD) {
4795    FD->setBody(Body);
4796    if (FD->isMain()) {
4797      // C and C++ allow for main to automagically return 0.
4798      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4799      FD->setHasImplicitReturnZero(true);
4800      WP.disableCheckFallThrough();
4801    }
4802
4803    if (!FD->isInvalidDecl()) {
4804      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4805
4806      // If this is a constructor, we need a vtable.
4807      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4808        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4809
4810      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4811                  FunctionScopes.back()->Returns.size());
4812    }
4813
4814    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4815  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4816    assert(MD == getCurMethodDecl() && "Method parsing confused");
4817    MD->setBody(Body);
4818    MD->setEndLoc(Body->getLocEnd());
4819    if (!MD->isInvalidDecl())
4820      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4821  } else {
4822    return DeclPtrTy();
4823  }
4824
4825  // Verify and clean out per-function state.
4826
4827  // Check goto/label use.
4828  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4829       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4830    LabelStmt *L = I->second;
4831
4832    // Verify that we have no forward references left.  If so, there was a goto
4833    // or address of a label taken, but no definition of it.  Label fwd
4834    // definitions are indicated with a null substmt.
4835    if (L->getSubStmt() != 0)
4836      continue;
4837
4838    // Emit error.
4839    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4840
4841    // At this point, we have gotos that use the bogus label.  Stitch it into
4842    // the function body so that they aren't leaked and that the AST is well
4843    // formed.
4844    if (Body == 0) {
4845      // The whole function wasn't parsed correctly.
4846      continue;
4847    }
4848
4849    // Otherwise, the body is valid: we want to stitch the label decl into the
4850    // function somewhere so that it is properly owned and so that the goto
4851    // has a valid target.  Do this by creating a new compound stmt with the
4852    // label in it.
4853
4854    // Give the label a sub-statement.
4855    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4856
4857    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4858                               cast<CXXTryStmt>(Body)->getTryBlock() :
4859                               cast<CompoundStmt>(Body);
4860    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4861                                          Compound->body_end());
4862    Elements.push_back(L);
4863    Compound->setStmts(Context, Elements.data(), Elements.size());
4864  }
4865
4866  if (Body) {
4867    // C++ constructors that have function-try-blocks can't have return
4868    // statements in the handlers of that block. (C++ [except.handle]p14)
4869    // Verify this.
4870    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4871      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4872
4873    // Verify that that gotos and switch cases don't jump into scopes illegally.
4874    // Verify that that gotos and switch cases don't jump into scopes illegally.
4875    if (FunctionNeedsScopeChecking() &&
4876        !dcl->isInvalidDecl() &&
4877        !hasAnyErrorsInThisFunction())
4878      DiagnoseInvalidJumps(Body);
4879
4880    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
4881      if (!Destructor->getParent()->isDependentType())
4882        CheckDestructor(Destructor);
4883
4884      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4885                                             Destructor->getParent());
4886    }
4887
4888    // If any errors have occurred, clear out any temporaries that may have
4889    // been leftover. This ensures that these temporaries won't be picked up for
4890    // deletion in some later function.
4891    if (PP.getDiagnostics().hasErrorOccurred())
4892      ExprTemporaries.clear();
4893    else if (!isa<FunctionTemplateDecl>(dcl)) {
4894      // Since the body is valid, issue any analysis-based warnings that are
4895      // enabled.
4896      QualType ResultType;
4897      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4898        ResultType = FD->getResultType();
4899      }
4900      else {
4901        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4902        ResultType = MD->getResultType();
4903      }
4904      AnalysisWarnings.IssueWarnings(WP, dcl);
4905    }
4906
4907    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4908  }
4909
4910  if (!IsInstantiation)
4911    PopDeclContext();
4912
4913  PopFunctionOrBlockScope();
4914
4915  // If any errors have occurred, clear out any temporaries that may have
4916  // been leftover. This ensures that these temporaries won't be picked up for
4917  // deletion in some later function.
4918  if (getDiagnostics().hasErrorOccurred())
4919    ExprTemporaries.clear();
4920
4921  return D;
4922}
4923
4924/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4925/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4926NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4927                                          IdentifierInfo &II, Scope *S) {
4928  // Before we produce a declaration for an implicitly defined
4929  // function, see whether there was a locally-scoped declaration of
4930  // this name as a function or variable. If so, use that
4931  // (non-visible) declaration, and complain about it.
4932  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4933    = LocallyScopedExternalDecls.find(&II);
4934  if (Pos != LocallyScopedExternalDecls.end()) {
4935    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4936    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4937    return Pos->second;
4938  }
4939
4940  // Extension in C99.  Legal in C90, but warn about it.
4941  if (II.getName().startswith("__builtin_"))
4942    Diag(Loc, diag::warn_builtin_unknown) << &II;
4943  else if (getLangOptions().C99)
4944    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4945  else
4946    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4947
4948  // Set a Declarator for the implicit definition: int foo();
4949  const char *Dummy;
4950  DeclSpec DS;
4951  unsigned DiagID;
4952  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4953  Error = Error; // Silence warning.
4954  assert(!Error && "Error setting up implicit decl!");
4955  Declarator D(DS, Declarator::BlockContext);
4956  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4957                                             0, 0, false, SourceLocation(),
4958                                             false, 0,0,0, Loc, Loc, D),
4959                SourceLocation());
4960  D.SetIdentifier(&II, Loc);
4961
4962  // Insert this function into translation-unit scope.
4963
4964  DeclContext *PrevDC = CurContext;
4965  CurContext = Context.getTranslationUnitDecl();
4966
4967  FunctionDecl *FD =
4968 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4969  FD->setImplicit();
4970
4971  CurContext = PrevDC;
4972
4973  AddKnownFunctionAttributes(FD);
4974
4975  return FD;
4976}
4977
4978/// \brief Adds any function attributes that we know a priori based on
4979/// the declaration of this function.
4980///
4981/// These attributes can apply both to implicitly-declared builtins
4982/// (like __builtin___printf_chk) or to library-declared functions
4983/// like NSLog or printf.
4984void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4985  if (FD->isInvalidDecl())
4986    return;
4987
4988  // If this is a built-in function, map its builtin attributes to
4989  // actual attributes.
4990  if (unsigned BuiltinID = FD->getBuiltinID()) {
4991    // Handle printf-formatting attributes.
4992    unsigned FormatIdx;
4993    bool HasVAListArg;
4994    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4995      if (!FD->getAttr<FormatAttr>())
4996        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4997                                               HasVAListArg ? 0 : FormatIdx+2));
4998    }
4999    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5000                                             HasVAListArg)) {
5001     if (!FD->getAttr<FormatAttr>())
5002       FD->addAttr(::new (Context) FormatAttr(Context, "scanf", FormatIdx+1,
5003                                              HasVAListArg ? 0 : FormatIdx+2));
5004    }
5005
5006    // Mark const if we don't care about errno and that is the only
5007    // thing preventing the function from being const. This allows
5008    // IRgen to use LLVM intrinsics for such functions.
5009    if (!getLangOptions().MathErrno &&
5010        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5011      if (!FD->getAttr<ConstAttr>())
5012        FD->addAttr(::new (Context) ConstAttr());
5013    }
5014
5015    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5016      FD->setType(Context.getNoReturnType(FD->getType()));
5017    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5018      FD->addAttr(::new (Context) NoThrowAttr());
5019    if (Context.BuiltinInfo.isConst(BuiltinID))
5020      FD->addAttr(::new (Context) ConstAttr());
5021  }
5022
5023  IdentifierInfo *Name = FD->getIdentifier();
5024  if (!Name)
5025    return;
5026  if ((!getLangOptions().CPlusPlus &&
5027       FD->getDeclContext()->isTranslationUnit()) ||
5028      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5029       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5030       LinkageSpecDecl::lang_c)) {
5031    // Okay: this could be a libc/libm/Objective-C function we know
5032    // about.
5033  } else
5034    return;
5035
5036  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5037    // FIXME: NSLog and NSLogv should be target specific
5038    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5039      // FIXME: We known better than our headers.
5040      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5041    } else
5042      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
5043                                             Name->isStr("NSLogv") ? 0 : 2));
5044  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5045    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5046    // target-specific builtins, perhaps?
5047    if (!FD->getAttr<FormatAttr>())
5048      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
5049                                             Name->isStr("vasprintf") ? 0 : 3));
5050  }
5051}
5052
5053TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5054                                    TypeSourceInfo *TInfo) {
5055  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5056  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5057
5058  if (!TInfo) {
5059    assert(D.isInvalidType() && "no declarator info for valid type");
5060    TInfo = Context.getTrivialTypeSourceInfo(T);
5061  }
5062
5063  // Scope manipulation handled by caller.
5064  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5065                                           D.getIdentifierLoc(),
5066                                           D.getIdentifier(),
5067                                           TInfo);
5068
5069  if (const TagType *TT = T->getAs<TagType>()) {
5070    TagDecl *TD = TT->getDecl();
5071
5072    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5073    // keep track of the TypedefDecl.
5074    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5075      TD->setTypedefForAnonDecl(NewTD);
5076  }
5077
5078  if (D.isInvalidType())
5079    NewTD->setInvalidDecl();
5080  return NewTD;
5081}
5082
5083
5084/// \brief Determine whether a tag with a given kind is acceptable
5085/// as a redeclaration of the given tag declaration.
5086///
5087/// \returns true if the new tag kind is acceptable, false otherwise.
5088bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5089                                        TagTypeKind NewTag,
5090                                        SourceLocation NewTagLoc,
5091                                        const IdentifierInfo &Name) {
5092  // C++ [dcl.type.elab]p3:
5093  //   The class-key or enum keyword present in the
5094  //   elaborated-type-specifier shall agree in kind with the
5095  //   declaration to which the name in the elaborated-type-specifier
5096  //   refers. This rule also applies to the form of
5097  //   elaborated-type-specifier that declares a class-name or
5098  //   friend class since it can be construed as referring to the
5099  //   definition of the class. Thus, in any
5100  //   elaborated-type-specifier, the enum keyword shall be used to
5101  //   refer to an enumeration (7.2), the union class-key shall be
5102  //   used to refer to a union (clause 9), and either the class or
5103  //   struct class-key shall be used to refer to a class (clause 9)
5104  //   declared using the class or struct class-key.
5105  TagTypeKind OldTag = Previous->getTagKind();
5106  if (OldTag == NewTag)
5107    return true;
5108
5109  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5110      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5111    // Warn about the struct/class tag mismatch.
5112    bool isTemplate = false;
5113    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5114      isTemplate = Record->getDescribedClassTemplate();
5115
5116    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5117      << (NewTag == TTK_Class)
5118      << isTemplate << &Name
5119      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5120                              OldTag == TTK_Class? "class" : "struct");
5121    Diag(Previous->getLocation(), diag::note_previous_use);
5122    return true;
5123  }
5124  return false;
5125}
5126
5127/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5128/// former case, Name will be non-null.  In the later case, Name will be null.
5129/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5130/// reference/declaration/definition of a tag.
5131Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5132                               SourceLocation KWLoc, CXXScopeSpec &SS,
5133                               IdentifierInfo *Name, SourceLocation NameLoc,
5134                               AttributeList *Attr, AccessSpecifier AS,
5135                               MultiTemplateParamsArg TemplateParameterLists,
5136                               bool &OwnedDecl, bool &IsDependent) {
5137  // If this is not a definition, it must have a name.
5138  assert((Name != 0 || TUK == TUK_Definition) &&
5139         "Nameless record must be a definition!");
5140
5141  OwnedDecl = false;
5142  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5143
5144  // FIXME: Check explicit specializations more carefully.
5145  bool isExplicitSpecialization = false;
5146  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5147  bool Invalid = false;
5148  if (TUK != TUK_Reference) {
5149    if (TemplateParameterList *TemplateParams
5150          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5151                        (TemplateParameterList**)TemplateParameterLists.get(),
5152                                              TemplateParameterLists.size(),
5153                                                    TUK == TUK_Friend,
5154                                                    isExplicitSpecialization,
5155                                                    Invalid)) {
5156      // All but one template parameter lists have been matching.
5157      --NumMatchedTemplateParamLists;
5158
5159      if (TemplateParams->size() > 0) {
5160        // This is a declaration or definition of a class template (which may
5161        // be a member of another template).
5162        if (Invalid)
5163          return DeclPtrTy();
5164
5165        OwnedDecl = false;
5166        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5167                                               SS, Name, NameLoc, Attr,
5168                                               TemplateParams,
5169                                               AS);
5170        TemplateParameterLists.release();
5171        return Result.get();
5172      } else {
5173        // The "template<>" header is extraneous.
5174        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5175          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5176        isExplicitSpecialization = true;
5177      }
5178    }
5179  }
5180
5181  DeclContext *SearchDC = CurContext;
5182  DeclContext *DC = CurContext;
5183  bool isStdBadAlloc = false;
5184
5185  RedeclarationKind Redecl = ForRedeclaration;
5186  if (TUK == TUK_Friend || TUK == TUK_Reference)
5187    Redecl = NotForRedeclaration;
5188
5189  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5190
5191  if (Name && SS.isNotEmpty()) {
5192    // We have a nested-name tag ('struct foo::bar').
5193
5194    // Check for invalid 'foo::'.
5195    if (SS.isInvalid()) {
5196      Name = 0;
5197      goto CreateNewDecl;
5198    }
5199
5200    // If this is a friend or a reference to a class in a dependent
5201    // context, don't try to make a decl for it.
5202    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5203      DC = computeDeclContext(SS, false);
5204      if (!DC) {
5205        IsDependent = true;
5206        return DeclPtrTy();
5207      }
5208    } else {
5209      DC = computeDeclContext(SS, true);
5210      if (!DC) {
5211        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5212          << SS.getRange();
5213        return DeclPtrTy();
5214      }
5215    }
5216
5217    if (RequireCompleteDeclContext(SS, DC))
5218      return DeclPtrTy::make((Decl *)0);
5219
5220    SearchDC = DC;
5221    // Look-up name inside 'foo::'.
5222    LookupQualifiedName(Previous, DC);
5223
5224    if (Previous.isAmbiguous())
5225      return DeclPtrTy();
5226
5227    if (Previous.empty()) {
5228      // Name lookup did not find anything. However, if the
5229      // nested-name-specifier refers to the current instantiation,
5230      // and that current instantiation has any dependent base
5231      // classes, we might find something at instantiation time: treat
5232      // this as a dependent elaborated-type-specifier.
5233      if (Previous.wasNotFoundInCurrentInstantiation()) {
5234        IsDependent = true;
5235        return DeclPtrTy();
5236      }
5237
5238      // A tag 'foo::bar' must already exist.
5239      Diag(NameLoc, diag::err_not_tag_in_scope)
5240        << Kind << Name << DC << SS.getRange();
5241      Name = 0;
5242      Invalid = true;
5243      goto CreateNewDecl;
5244    }
5245  } else if (Name) {
5246    // If this is a named struct, check to see if there was a previous forward
5247    // declaration or definition.
5248    // FIXME: We're looking into outer scopes here, even when we
5249    // shouldn't be. Doing so can result in ambiguities that we
5250    // shouldn't be diagnosing.
5251    LookupName(Previous, S);
5252
5253    // Note:  there used to be some attempt at recovery here.
5254    if (Previous.isAmbiguous())
5255      return DeclPtrTy();
5256
5257    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5258      // FIXME: This makes sure that we ignore the contexts associated
5259      // with C structs, unions, and enums when looking for a matching
5260      // tag declaration or definition. See the similar lookup tweak
5261      // in Sema::LookupName; is there a better way to deal with this?
5262      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5263        SearchDC = SearchDC->getParent();
5264    }
5265  }
5266
5267  if (Previous.isSingleResult() &&
5268      Previous.getFoundDecl()->isTemplateParameter()) {
5269    // Maybe we will complain about the shadowed template parameter.
5270    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5271    // Just pretend that we didn't see the previous declaration.
5272    Previous.clear();
5273  }
5274
5275  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5276      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5277    // This is a declaration of or a reference to "std::bad_alloc".
5278    isStdBadAlloc = true;
5279
5280    if (Previous.empty() && StdBadAlloc) {
5281      // std::bad_alloc has been implicitly declared (but made invisible to
5282      // name lookup). Fill in this implicit declaration as the previous
5283      // declaration, so that the declarations get chained appropriately.
5284      Previous.addDecl(getStdBadAlloc());
5285    }
5286  }
5287
5288  // If we didn't find a previous declaration, and this is a reference
5289  // (or friend reference), move to the correct scope.  In C++, we
5290  // also need to do a redeclaration lookup there, just in case
5291  // there's a shadow friend decl.
5292  if (Name && Previous.empty() &&
5293      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5294    if (Invalid) goto CreateNewDecl;
5295    assert(SS.isEmpty());
5296
5297    if (TUK == TUK_Reference) {
5298      // C++ [basic.scope.pdecl]p5:
5299      //   -- for an elaborated-type-specifier of the form
5300      //
5301      //          class-key identifier
5302      //
5303      //      if the elaborated-type-specifier is used in the
5304      //      decl-specifier-seq or parameter-declaration-clause of a
5305      //      function defined in namespace scope, the identifier is
5306      //      declared as a class-name in the namespace that contains
5307      //      the declaration; otherwise, except as a friend
5308      //      declaration, the identifier is declared in the smallest
5309      //      non-class, non-function-prototype scope that contains the
5310      //      declaration.
5311      //
5312      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5313      // C structs and unions.
5314      //
5315      // It is an error in C++ to declare (rather than define) an enum
5316      // type, including via an elaborated type specifier.  We'll
5317      // diagnose that later; for now, declare the enum in the same
5318      // scope as we would have picked for any other tag type.
5319      //
5320      // GNU C also supports this behavior as part of its incomplete
5321      // enum types extension, while GNU C++ does not.
5322      //
5323      // Find the context where we'll be declaring the tag.
5324      // FIXME: We would like to maintain the current DeclContext as the
5325      // lexical context,
5326      while (SearchDC->isRecord())
5327        SearchDC = SearchDC->getParent();
5328
5329      // Find the scope where we'll be declaring the tag.
5330      while (S->isClassScope() ||
5331             (getLangOptions().CPlusPlus &&
5332              S->isFunctionPrototypeScope()) ||
5333             ((S->getFlags() & Scope::DeclScope) == 0) ||
5334             (S->getEntity() &&
5335              ((DeclContext *)S->getEntity())->isTransparentContext()))
5336        S = S->getParent();
5337    } else {
5338      assert(TUK == TUK_Friend);
5339      // C++ [namespace.memdef]p3:
5340      //   If a friend declaration in a non-local class first declares a
5341      //   class or function, the friend class or function is a member of
5342      //   the innermost enclosing namespace.
5343      SearchDC = SearchDC->getEnclosingNamespaceContext();
5344    }
5345
5346    // In C++, we need to do a redeclaration lookup to properly
5347    // diagnose some problems.
5348    if (getLangOptions().CPlusPlus) {
5349      Previous.setRedeclarationKind(ForRedeclaration);
5350      LookupQualifiedName(Previous, SearchDC);
5351    }
5352  }
5353
5354  if (!Previous.empty()) {
5355    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5356
5357    // It's okay to have a tag decl in the same scope as a typedef
5358    // which hides a tag decl in the same scope.  Finding this
5359    // insanity with a redeclaration lookup can only actually happen
5360    // in C++.
5361    //
5362    // This is also okay for elaborated-type-specifiers, which is
5363    // technically forbidden by the current standard but which is
5364    // okay according to the likely resolution of an open issue;
5365    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5366    if (getLangOptions().CPlusPlus) {
5367      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5368        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5369          TagDecl *Tag = TT->getDecl();
5370          if (Tag->getDeclName() == Name &&
5371              Tag->getDeclContext()->getLookupContext()
5372                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5373            PrevDecl = Tag;
5374            Previous.clear();
5375            Previous.addDecl(Tag);
5376          }
5377        }
5378      }
5379    }
5380
5381    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5382      // If this is a use of a previous tag, or if the tag is already declared
5383      // in the same scope (so that the definition/declaration completes or
5384      // rementions the tag), reuse the decl.
5385      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5386          isDeclInScope(PrevDecl, SearchDC, S)) {
5387        // Make sure that this wasn't declared as an enum and now used as a
5388        // struct or something similar.
5389        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5390          bool SafeToContinue
5391            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5392               Kind != TTK_Enum);
5393          if (SafeToContinue)
5394            Diag(KWLoc, diag::err_use_with_wrong_tag)
5395              << Name
5396              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5397                                              PrevTagDecl->getKindName());
5398          else
5399            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5400          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5401
5402          if (SafeToContinue)
5403            Kind = PrevTagDecl->getTagKind();
5404          else {
5405            // Recover by making this an anonymous redefinition.
5406            Name = 0;
5407            Previous.clear();
5408            Invalid = true;
5409          }
5410        }
5411
5412        if (!Invalid) {
5413          // If this is a use, just return the declaration we found.
5414
5415          // FIXME: In the future, return a variant or some other clue
5416          // for the consumer of this Decl to know it doesn't own it.
5417          // For our current ASTs this shouldn't be a problem, but will
5418          // need to be changed with DeclGroups.
5419          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5420              TUK == TUK_Friend)
5421            return DeclPtrTy::make(PrevTagDecl);
5422
5423          // Diagnose attempts to redefine a tag.
5424          if (TUK == TUK_Definition) {
5425            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5426              // If we're defining a specialization and the previous definition
5427              // is from an implicit instantiation, don't emit an error
5428              // here; we'll catch this in the general case below.
5429              if (!isExplicitSpecialization ||
5430                  !isa<CXXRecordDecl>(Def) ||
5431                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5432                                               == TSK_ExplicitSpecialization) {
5433                Diag(NameLoc, diag::err_redefinition) << Name;
5434                Diag(Def->getLocation(), diag::note_previous_definition);
5435                // If this is a redefinition, recover by making this
5436                // struct be anonymous, which will make any later
5437                // references get the previous definition.
5438                Name = 0;
5439                Previous.clear();
5440                Invalid = true;
5441              }
5442            } else {
5443              // If the type is currently being defined, complain
5444              // about a nested redefinition.
5445              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5446              if (Tag->isBeingDefined()) {
5447                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5448                Diag(PrevTagDecl->getLocation(),
5449                     diag::note_previous_definition);
5450                Name = 0;
5451                Previous.clear();
5452                Invalid = true;
5453              }
5454            }
5455
5456            // Okay, this is definition of a previously declared or referenced
5457            // tag PrevDecl. We're going to create a new Decl for it.
5458          }
5459        }
5460        // If we get here we have (another) forward declaration or we
5461        // have a definition.  Just create a new decl.
5462
5463      } else {
5464        // If we get here, this is a definition of a new tag type in a nested
5465        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5466        // new decl/type.  We set PrevDecl to NULL so that the entities
5467        // have distinct types.
5468        Previous.clear();
5469      }
5470      // If we get here, we're going to create a new Decl. If PrevDecl
5471      // is non-NULL, it's a definition of the tag declared by
5472      // PrevDecl. If it's NULL, we have a new definition.
5473
5474
5475    // Otherwise, PrevDecl is not a tag, but was found with tag
5476    // lookup.  This is only actually possible in C++, where a few
5477    // things like templates still live in the tag namespace.
5478    } else {
5479      assert(getLangOptions().CPlusPlus);
5480
5481      // Use a better diagnostic if an elaborated-type-specifier
5482      // found the wrong kind of type on the first
5483      // (non-redeclaration) lookup.
5484      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5485          !Previous.isForRedeclaration()) {
5486        unsigned Kind = 0;
5487        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5488        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5489        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5490        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5491        Invalid = true;
5492
5493      // Otherwise, only diagnose if the declaration is in scope.
5494      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5495        // do nothing
5496
5497      // Diagnose implicit declarations introduced by elaborated types.
5498      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5499        unsigned Kind = 0;
5500        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5501        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5502        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5503        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5504        Invalid = true;
5505
5506      // Otherwise it's a declaration.  Call out a particularly common
5507      // case here.
5508      } else if (isa<TypedefDecl>(PrevDecl)) {
5509        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5510          << Name
5511          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5512        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5513        Invalid = true;
5514
5515      // Otherwise, diagnose.
5516      } else {
5517        // The tag name clashes with something else in the target scope,
5518        // issue an error and recover by making this tag be anonymous.
5519        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5520        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5521        Name = 0;
5522        Invalid = true;
5523      }
5524
5525      // The existing declaration isn't relevant to us; we're in a
5526      // new scope, so clear out the previous declaration.
5527      Previous.clear();
5528    }
5529  }
5530
5531CreateNewDecl:
5532
5533  TagDecl *PrevDecl = 0;
5534  if (Previous.isSingleResult())
5535    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5536
5537  // If there is an identifier, use the location of the identifier as the
5538  // location of the decl, otherwise use the location of the struct/union
5539  // keyword.
5540  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5541
5542  // Otherwise, create a new declaration. If there is a previous
5543  // declaration of the same entity, the two will be linked via
5544  // PrevDecl.
5545  TagDecl *New;
5546
5547  if (Kind == TTK_Enum) {
5548    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5549    // enum X { A, B, C } D;    D should chain to X.
5550    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5551                           cast_or_null<EnumDecl>(PrevDecl));
5552    // If this is an undefined enum, warn.
5553    if (TUK != TUK_Definition && !Invalid) {
5554      TagDecl *Def;
5555      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5556        Diag(Loc, diag::ext_forward_ref_enum_def)
5557          << New;
5558        Diag(Def->getLocation(), diag::note_previous_definition);
5559      } else {
5560        Diag(Loc,
5561             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5562                                       : diag::ext_forward_ref_enum);
5563      }
5564    }
5565  } else {
5566    // struct/union/class
5567
5568    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5569    // struct X { int A; } D;    D should chain to X.
5570    if (getLangOptions().CPlusPlus) {
5571      // FIXME: Look for a way to use RecordDecl for simple structs.
5572      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5573                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5574
5575      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5576        StdBadAlloc = cast<CXXRecordDecl>(New);
5577    } else
5578      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5579                               cast_or_null<RecordDecl>(PrevDecl));
5580  }
5581
5582  // Maybe add qualifier info.
5583  if (SS.isNotEmpty()) {
5584    if (SS.isSet()) {
5585      NestedNameSpecifier *NNS
5586        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5587      New->setQualifierInfo(NNS, SS.getRange());
5588      if (NumMatchedTemplateParamLists > 0) {
5589        New->setTemplateParameterListsInfo(Context,
5590                                           NumMatchedTemplateParamLists,
5591                    (TemplateParameterList**) TemplateParameterLists.release());
5592      }
5593    }
5594    else
5595      Invalid = true;
5596  }
5597
5598  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5599    // Add alignment attributes if necessary; these attributes are checked when
5600    // the ASTContext lays out the structure.
5601    //
5602    // It is important for implementing the correct semantics that this
5603    // happen here (in act on tag decl). The #pragma pack stack is
5604    // maintained as a result of parser callbacks which can occur at
5605    // many points during the parsing of a struct declaration (because
5606    // the #pragma tokens are effectively skipped over during the
5607    // parsing of the struct).
5608    AddAlignmentAttributesForRecord(RD);
5609  }
5610
5611  // If this is a specialization of a member class (of a class template),
5612  // check the specialization.
5613  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5614    Invalid = true;
5615
5616  if (Invalid)
5617    New->setInvalidDecl();
5618
5619  if (Attr)
5620    ProcessDeclAttributeList(S, New, Attr);
5621
5622  // If we're declaring or defining a tag in function prototype scope
5623  // in C, note that this type can only be used within the function.
5624  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5625    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5626
5627  // Set the lexical context. If the tag has a C++ scope specifier, the
5628  // lexical context will be different from the semantic context.
5629  New->setLexicalDeclContext(CurContext);
5630
5631  // Mark this as a friend decl if applicable.
5632  if (TUK == TUK_Friend)
5633    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5634
5635  // Set the access specifier.
5636  if (!Invalid && SearchDC->isRecord())
5637    SetMemberAccessSpecifier(New, PrevDecl, AS);
5638
5639  if (TUK == TUK_Definition)
5640    New->startDefinition();
5641
5642  // If this has an identifier, add it to the scope stack.
5643  if (TUK == TUK_Friend) {
5644    // We might be replacing an existing declaration in the lookup tables;
5645    // if so, borrow its access specifier.
5646    if (PrevDecl)
5647      New->setAccess(PrevDecl->getAccess());
5648
5649    DeclContext *DC = New->getDeclContext()->getLookupContext();
5650    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5651    if (Name) // can be null along some error paths
5652      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5653        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5654  } else if (Name) {
5655    S = getNonFieldDeclScope(S);
5656    PushOnScopeChains(New, S);
5657  } else {
5658    CurContext->addDecl(New);
5659  }
5660
5661  // If this is the C FILE type, notify the AST context.
5662  if (IdentifierInfo *II = New->getIdentifier())
5663    if (!New->isInvalidDecl() &&
5664        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5665        II->isStr("FILE"))
5666      Context.setFILEDecl(New);
5667
5668  OwnedDecl = true;
5669  return DeclPtrTy::make(New);
5670}
5671
5672void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5673  AdjustDeclIfTemplate(TagD);
5674  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5675
5676  // Enter the tag context.
5677  PushDeclContext(S, Tag);
5678}
5679
5680void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5681                                           SourceLocation LBraceLoc) {
5682  AdjustDeclIfTemplate(TagD);
5683  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5684
5685  FieldCollector->StartClass();
5686
5687  if (!Record->getIdentifier())
5688    return;
5689
5690  // C++ [class]p2:
5691  //   [...] The class-name is also inserted into the scope of the
5692  //   class itself; this is known as the injected-class-name. For
5693  //   purposes of access checking, the injected-class-name is treated
5694  //   as if it were a public member name.
5695  CXXRecordDecl *InjectedClassName
5696    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5697                            CurContext, Record->getLocation(),
5698                            Record->getIdentifier(),
5699                            Record->getTagKeywordLoc(),
5700                            Record);
5701  InjectedClassName->setImplicit();
5702  InjectedClassName->setAccess(AS_public);
5703  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5704      InjectedClassName->setDescribedClassTemplate(Template);
5705  PushOnScopeChains(InjectedClassName, S);
5706  assert(InjectedClassName->isInjectedClassName() &&
5707         "Broken injected-class-name");
5708}
5709
5710void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5711                                    SourceLocation RBraceLoc) {
5712  AdjustDeclIfTemplate(TagD);
5713  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5714  Tag->setRBraceLoc(RBraceLoc);
5715
5716  if (isa<CXXRecordDecl>(Tag))
5717    FieldCollector->FinishClass();
5718
5719  // Exit this scope of this tag's definition.
5720  PopDeclContext();
5721
5722  // Notify the consumer that we've defined a tag.
5723  Consumer.HandleTagDeclDefinition(Tag);
5724}
5725
5726void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5727  AdjustDeclIfTemplate(TagD);
5728  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5729  Tag->setInvalidDecl();
5730
5731  // We're undoing ActOnTagStartDefinition here, not
5732  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5733  // the FieldCollector.
5734
5735  PopDeclContext();
5736}
5737
5738// Note that FieldName may be null for anonymous bitfields.
5739bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5740                          QualType FieldTy, const Expr *BitWidth,
5741                          bool *ZeroWidth) {
5742  // Default to true; that shouldn't confuse checks for emptiness
5743  if (ZeroWidth)
5744    *ZeroWidth = true;
5745
5746  // C99 6.7.2.1p4 - verify the field type.
5747  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5748  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5749    // Handle incomplete types with specific error.
5750    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5751      return true;
5752    if (FieldName)
5753      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5754        << FieldName << FieldTy << BitWidth->getSourceRange();
5755    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5756      << FieldTy << BitWidth->getSourceRange();
5757  }
5758
5759  // If the bit-width is type- or value-dependent, don't try to check
5760  // it now.
5761  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5762    return false;
5763
5764  llvm::APSInt Value;
5765  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5766    return true;
5767
5768  if (Value != 0 && ZeroWidth)
5769    *ZeroWidth = false;
5770
5771  // Zero-width bitfield is ok for anonymous field.
5772  if (Value == 0 && FieldName)
5773    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5774
5775  if (Value.isSigned() && Value.isNegative()) {
5776    if (FieldName)
5777      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5778               << FieldName << Value.toString(10);
5779    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5780      << Value.toString(10);
5781  }
5782
5783  if (!FieldTy->isDependentType()) {
5784    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5785    if (Value.getZExtValue() > TypeSize) {
5786      if (!getLangOptions().CPlusPlus) {
5787        if (FieldName)
5788          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5789            << FieldName << (unsigned)Value.getZExtValue()
5790            << (unsigned)TypeSize;
5791
5792        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5793          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5794      }
5795
5796      if (FieldName)
5797        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5798          << FieldName << (unsigned)Value.getZExtValue()
5799          << (unsigned)TypeSize;
5800      else
5801        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5802          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5803    }
5804  }
5805
5806  return false;
5807}
5808
5809/// ActOnField - Each field of a struct/union/class is passed into this in order
5810/// to create a FieldDecl object for it.
5811Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5812                                 SourceLocation DeclStart,
5813                                 Declarator &D, ExprTy *BitfieldWidth) {
5814  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5815                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5816                               AS_public);
5817  return DeclPtrTy::make(Res);
5818}
5819
5820/// HandleField - Analyze a field of a C struct or a C++ data member.
5821///
5822FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5823                             SourceLocation DeclStart,
5824                             Declarator &D, Expr *BitWidth,
5825                             AccessSpecifier AS) {
5826  IdentifierInfo *II = D.getIdentifier();
5827  SourceLocation Loc = DeclStart;
5828  if (II) Loc = D.getIdentifierLoc();
5829
5830  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5831  QualType T = TInfo->getType();
5832  if (getLangOptions().CPlusPlus)
5833    CheckExtraCXXDefaultArguments(D);
5834
5835  DiagnoseFunctionSpecifiers(D);
5836
5837  if (D.getDeclSpec().isThreadSpecified())
5838    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5839
5840  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5841                                         ForRedeclaration);
5842
5843  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5844    // Maybe we will complain about the shadowed template parameter.
5845    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5846    // Just pretend that we didn't see the previous declaration.
5847    PrevDecl = 0;
5848  }
5849
5850  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5851    PrevDecl = 0;
5852
5853  bool Mutable
5854    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5855  SourceLocation TSSL = D.getSourceRange().getBegin();
5856  FieldDecl *NewFD
5857    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5858                     AS, PrevDecl, &D);
5859
5860  if (NewFD->isInvalidDecl())
5861    Record->setInvalidDecl();
5862
5863  if (NewFD->isInvalidDecl() && PrevDecl) {
5864    // Don't introduce NewFD into scope; there's already something
5865    // with the same name in the same scope.
5866  } else if (II) {
5867    PushOnScopeChains(NewFD, S);
5868  } else
5869    Record->addDecl(NewFD);
5870
5871  return NewFD;
5872}
5873
5874/// \brief Build a new FieldDecl and check its well-formedness.
5875///
5876/// This routine builds a new FieldDecl given the fields name, type,
5877/// record, etc. \p PrevDecl should refer to any previous declaration
5878/// with the same name and in the same scope as the field to be
5879/// created.
5880///
5881/// \returns a new FieldDecl.
5882///
5883/// \todo The Declarator argument is a hack. It will be removed once
5884FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5885                                TypeSourceInfo *TInfo,
5886                                RecordDecl *Record, SourceLocation Loc,
5887                                bool Mutable, Expr *BitWidth,
5888                                SourceLocation TSSL,
5889                                AccessSpecifier AS, NamedDecl *PrevDecl,
5890                                Declarator *D) {
5891  IdentifierInfo *II = Name.getAsIdentifierInfo();
5892  bool InvalidDecl = false;
5893  if (D) InvalidDecl = D->isInvalidType();
5894
5895  // If we receive a broken type, recover by assuming 'int' and
5896  // marking this declaration as invalid.
5897  if (T.isNull()) {
5898    InvalidDecl = true;
5899    T = Context.IntTy;
5900  }
5901
5902  QualType EltTy = Context.getBaseElementType(T);
5903  if (!EltTy->isDependentType() &&
5904      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5905    InvalidDecl = true;
5906
5907  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5908  // than a variably modified type.
5909  if (!InvalidDecl && T->isVariablyModifiedType()) {
5910    bool SizeIsNegative;
5911    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5912                                                           SizeIsNegative);
5913    if (!FixedTy.isNull()) {
5914      Diag(Loc, diag::warn_illegal_constant_array_size);
5915      T = FixedTy;
5916    } else {
5917      if (SizeIsNegative)
5918        Diag(Loc, diag::err_typecheck_negative_array_size);
5919      else
5920        Diag(Loc, diag::err_typecheck_field_variable_size);
5921      InvalidDecl = true;
5922    }
5923  }
5924
5925  // Fields can not have abstract class types
5926  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5927                                             diag::err_abstract_type_in_decl,
5928                                             AbstractFieldType))
5929    InvalidDecl = true;
5930
5931  bool ZeroWidth = false;
5932  // If this is declared as a bit-field, check the bit-field.
5933  if (!InvalidDecl && BitWidth &&
5934      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5935    InvalidDecl = true;
5936    DeleteExpr(BitWidth);
5937    BitWidth = 0;
5938    ZeroWidth = false;
5939  }
5940
5941  // Check that 'mutable' is consistent with the type of the declaration.
5942  if (!InvalidDecl && Mutable) {
5943    unsigned DiagID = 0;
5944    if (T->isReferenceType())
5945      DiagID = diag::err_mutable_reference;
5946    else if (T.isConstQualified())
5947      DiagID = diag::err_mutable_const;
5948
5949    if (DiagID) {
5950      SourceLocation ErrLoc = Loc;
5951      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5952        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5953      Diag(ErrLoc, DiagID);
5954      Mutable = false;
5955      InvalidDecl = true;
5956    }
5957  }
5958
5959  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5960                                       BitWidth, Mutable);
5961  if (InvalidDecl)
5962    NewFD->setInvalidDecl();
5963
5964  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5965    Diag(Loc, diag::err_duplicate_member) << II;
5966    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5967    NewFD->setInvalidDecl();
5968  }
5969
5970  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5971    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5972
5973    if (!T->isPODType())
5974      CXXRecord->setPOD(false);
5975    if (!ZeroWidth)
5976      CXXRecord->setEmpty(false);
5977
5978    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5979      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5980      if (RDecl->getDefinition()) {
5981        if (!RDecl->hasTrivialConstructor())
5982          CXXRecord->setHasTrivialConstructor(false);
5983        if (!RDecl->hasTrivialCopyConstructor())
5984          CXXRecord->setHasTrivialCopyConstructor(false);
5985        if (!RDecl->hasTrivialCopyAssignment())
5986          CXXRecord->setHasTrivialCopyAssignment(false);
5987        if (!RDecl->hasTrivialDestructor())
5988          CXXRecord->setHasTrivialDestructor(false);
5989
5990        // C++ 9.5p1: An object of a class with a non-trivial
5991        // constructor, a non-trivial copy constructor, a non-trivial
5992        // destructor, or a non-trivial copy assignment operator
5993        // cannot be a member of a union, nor can an array of such
5994        // objects.
5995        // TODO: C++0x alters this restriction significantly.
5996        if (Record->isUnion()) {
5997          // We check for copy constructors before constructors
5998          // because otherwise we'll never get complaints about
5999          // copy constructors.
6000
6001          CXXSpecialMember member = CXXInvalid;
6002          if (!RDecl->hasTrivialCopyConstructor())
6003            member = CXXCopyConstructor;
6004          else if (!RDecl->hasTrivialConstructor())
6005            member = CXXConstructor;
6006          else if (!RDecl->hasTrivialCopyAssignment())
6007            member = CXXCopyAssignment;
6008          else if (!RDecl->hasTrivialDestructor())
6009            member = CXXDestructor;
6010
6011          if (member != CXXInvalid) {
6012            Diag(Loc, diag::err_illegal_union_member) << Name << member;
6013            DiagnoseNontrivial(RT, member);
6014            NewFD->setInvalidDecl();
6015          }
6016        }
6017      }
6018    }
6019  }
6020
6021  // FIXME: We need to pass in the attributes given an AST
6022  // representation, not a parser representation.
6023  if (D)
6024    // FIXME: What to pass instead of TUScope?
6025    ProcessDeclAttributes(TUScope, NewFD, *D);
6026
6027  if (T.isObjCGCWeak())
6028    Diag(Loc, diag::warn_attribute_weak_on_field);
6029
6030  NewFD->setAccess(AS);
6031
6032  // C++ [dcl.init.aggr]p1:
6033  //   An aggregate is an array or a class (clause 9) with [...] no
6034  //   private or protected non-static data members (clause 11).
6035  // A POD must be an aggregate.
6036  if (getLangOptions().CPlusPlus &&
6037      (AS == AS_private || AS == AS_protected)) {
6038    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6039    CXXRecord->setAggregate(false);
6040    CXXRecord->setPOD(false);
6041  }
6042
6043  return NewFD;
6044}
6045
6046/// DiagnoseNontrivial - Given that a class has a non-trivial
6047/// special member, figure out why.
6048void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6049  QualType QT(T, 0U);
6050  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6051
6052  // Check whether the member was user-declared.
6053  switch (member) {
6054  case CXXInvalid:
6055    break;
6056
6057  case CXXConstructor:
6058    if (RD->hasUserDeclaredConstructor()) {
6059      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6060      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6061        const FunctionDecl *body = 0;
6062        ci->hasBody(body);
6063        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6064          SourceLocation CtorLoc = ci->getLocation();
6065          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6066          return;
6067        }
6068      }
6069
6070      assert(0 && "found no user-declared constructors");
6071      return;
6072    }
6073    break;
6074
6075  case CXXCopyConstructor:
6076    if (RD->hasUserDeclaredCopyConstructor()) {
6077      SourceLocation CtorLoc =
6078        RD->getCopyConstructor(Context, 0)->getLocation();
6079      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6080      return;
6081    }
6082    break;
6083
6084  case CXXCopyAssignment:
6085    if (RD->hasUserDeclaredCopyAssignment()) {
6086      // FIXME: this should use the location of the copy
6087      // assignment, not the type.
6088      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6089      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6090      return;
6091    }
6092    break;
6093
6094  case CXXDestructor:
6095    if (RD->hasUserDeclaredDestructor()) {
6096      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6097      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6098      return;
6099    }
6100    break;
6101  }
6102
6103  typedef CXXRecordDecl::base_class_iterator base_iter;
6104
6105  // Virtual bases and members inhibit trivial copying/construction,
6106  // but not trivial destruction.
6107  if (member != CXXDestructor) {
6108    // Check for virtual bases.  vbases includes indirect virtual bases,
6109    // so we just iterate through the direct bases.
6110    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6111      if (bi->isVirtual()) {
6112        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6113        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6114        return;
6115      }
6116
6117    // Check for virtual methods.
6118    typedef CXXRecordDecl::method_iterator meth_iter;
6119    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6120         ++mi) {
6121      if (mi->isVirtual()) {
6122        SourceLocation MLoc = mi->getSourceRange().getBegin();
6123        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6124        return;
6125      }
6126    }
6127  }
6128
6129  bool (CXXRecordDecl::*hasTrivial)() const;
6130  switch (member) {
6131  case CXXConstructor:
6132    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6133  case CXXCopyConstructor:
6134    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6135  case CXXCopyAssignment:
6136    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6137  case CXXDestructor:
6138    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6139  default:
6140    assert(0 && "unexpected special member"); return;
6141  }
6142
6143  // Check for nontrivial bases (and recurse).
6144  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6145    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6146    assert(BaseRT && "Don't know how to handle dependent bases");
6147    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6148    if (!(BaseRecTy->*hasTrivial)()) {
6149      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6150      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6151      DiagnoseNontrivial(BaseRT, member);
6152      return;
6153    }
6154  }
6155
6156  // Check for nontrivial members (and recurse).
6157  typedef RecordDecl::field_iterator field_iter;
6158  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6159       ++fi) {
6160    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6161    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6162      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6163
6164      if (!(EltRD->*hasTrivial)()) {
6165        SourceLocation FLoc = (*fi)->getLocation();
6166        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6167        DiagnoseNontrivial(EltRT, member);
6168        return;
6169      }
6170    }
6171  }
6172
6173  assert(0 && "found no explanation for non-trivial member");
6174}
6175
6176/// TranslateIvarVisibility - Translate visibility from a token ID to an
6177///  AST enum value.
6178static ObjCIvarDecl::AccessControl
6179TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6180  switch (ivarVisibility) {
6181  default: assert(0 && "Unknown visitibility kind");
6182  case tok::objc_private: return ObjCIvarDecl::Private;
6183  case tok::objc_public: return ObjCIvarDecl::Public;
6184  case tok::objc_protected: return ObjCIvarDecl::Protected;
6185  case tok::objc_package: return ObjCIvarDecl::Package;
6186  }
6187}
6188
6189/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6190/// in order to create an IvarDecl object for it.
6191Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6192                                SourceLocation DeclStart,
6193                                DeclPtrTy IntfDecl,
6194                                Declarator &D, ExprTy *BitfieldWidth,
6195                                tok::ObjCKeywordKind Visibility) {
6196
6197  IdentifierInfo *II = D.getIdentifier();
6198  Expr *BitWidth = (Expr*)BitfieldWidth;
6199  SourceLocation Loc = DeclStart;
6200  if (II) Loc = D.getIdentifierLoc();
6201
6202  // FIXME: Unnamed fields can be handled in various different ways, for
6203  // example, unnamed unions inject all members into the struct namespace!
6204
6205  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6206  QualType T = TInfo->getType();
6207
6208  if (BitWidth) {
6209    // 6.7.2.1p3, 6.7.2.1p4
6210    if (VerifyBitField(Loc, II, T, BitWidth)) {
6211      D.setInvalidType();
6212      DeleteExpr(BitWidth);
6213      BitWidth = 0;
6214    }
6215  } else {
6216    // Not a bitfield.
6217
6218    // validate II.
6219
6220  }
6221  if (T->isReferenceType()) {
6222    Diag(Loc, diag::err_ivar_reference_type);
6223    D.setInvalidType();
6224  }
6225  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6226  // than a variably modified type.
6227  else if (T->isVariablyModifiedType()) {
6228    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6229    D.setInvalidType();
6230  }
6231
6232  // Get the visibility (access control) for this ivar.
6233  ObjCIvarDecl::AccessControl ac =
6234    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6235                                        : ObjCIvarDecl::None;
6236  // Must set ivar's DeclContext to its enclosing interface.
6237  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6238  ObjCContainerDecl *EnclosingContext;
6239  if (ObjCImplementationDecl *IMPDecl =
6240      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6241    // Case of ivar declared in an implementation. Context is that of its class.
6242    EnclosingContext = IMPDecl->getClassInterface();
6243    assert(EnclosingContext && "Implementation has no class interface!");
6244  } else {
6245    if (ObjCCategoryDecl *CDecl =
6246        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6247      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6248        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6249        return DeclPtrTy();
6250      }
6251    }
6252    EnclosingContext = EnclosingDecl;
6253  }
6254
6255  // Construct the decl.
6256  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6257                                             EnclosingContext, Loc, II, T,
6258                                             TInfo, ac, (Expr *)BitfieldWidth);
6259
6260  if (II) {
6261    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6262                                           ForRedeclaration);
6263    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6264        && !isa<TagDecl>(PrevDecl)) {
6265      Diag(Loc, diag::err_duplicate_member) << II;
6266      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6267      NewID->setInvalidDecl();
6268    }
6269  }
6270
6271  // Process attributes attached to the ivar.
6272  ProcessDeclAttributes(S, NewID, D);
6273
6274  if (D.isInvalidType())
6275    NewID->setInvalidDecl();
6276
6277  if (II) {
6278    // FIXME: When interfaces are DeclContexts, we'll need to add
6279    // these to the interface.
6280    S->AddDecl(DeclPtrTy::make(NewID));
6281    IdResolver.AddDecl(NewID);
6282  }
6283
6284  return DeclPtrTy::make(NewID);
6285}
6286
6287void Sema::ActOnFields(Scope* S,
6288                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6289                       DeclPtrTy *Fields, unsigned NumFields,
6290                       SourceLocation LBrac, SourceLocation RBrac,
6291                       AttributeList *Attr) {
6292  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6293  assert(EnclosingDecl && "missing record or interface decl");
6294
6295  // If the decl this is being inserted into is invalid, then it may be a
6296  // redeclaration or some other bogus case.  Don't try to add fields to it.
6297  if (EnclosingDecl->isInvalidDecl()) {
6298    // FIXME: Deallocate fields?
6299    return;
6300  }
6301
6302
6303  // Verify that all the fields are okay.
6304  unsigned NumNamedMembers = 0;
6305  llvm::SmallVector<FieldDecl*, 32> RecFields;
6306
6307  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6308  for (unsigned i = 0; i != NumFields; ++i) {
6309    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6310
6311    // Get the type for the field.
6312    Type *FDTy = FD->getType().getTypePtr();
6313
6314    if (!FD->isAnonymousStructOrUnion()) {
6315      // Remember all fields written by the user.
6316      RecFields.push_back(FD);
6317    }
6318
6319    // If the field is already invalid for some reason, don't emit more
6320    // diagnostics about it.
6321    if (FD->isInvalidDecl()) {
6322      EnclosingDecl->setInvalidDecl();
6323      continue;
6324    }
6325
6326    // C99 6.7.2.1p2:
6327    //   A structure or union shall not contain a member with
6328    //   incomplete or function type (hence, a structure shall not
6329    //   contain an instance of itself, but may contain a pointer to
6330    //   an instance of itself), except that the last member of a
6331    //   structure with more than one named member may have incomplete
6332    //   array type; such a structure (and any union containing,
6333    //   possibly recursively, a member that is such a structure)
6334    //   shall not be a member of a structure or an element of an
6335    //   array.
6336    if (FDTy->isFunctionType()) {
6337      // Field declared as a function.
6338      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6339        << FD->getDeclName();
6340      FD->setInvalidDecl();
6341      EnclosingDecl->setInvalidDecl();
6342      continue;
6343    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6344               Record && Record->isStruct()) {
6345      // Flexible array member.
6346      if (NumNamedMembers < 1) {
6347        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6348          << FD->getDeclName();
6349        FD->setInvalidDecl();
6350        EnclosingDecl->setInvalidDecl();
6351        continue;
6352      }
6353      if (!FD->getType()->isDependentType() &&
6354          !Context.getBaseElementType(FD->getType())->isPODType()) {
6355        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6356          << FD->getDeclName() << FD->getType();
6357        FD->setInvalidDecl();
6358        EnclosingDecl->setInvalidDecl();
6359        continue;
6360      }
6361
6362      // Okay, we have a legal flexible array member at the end of the struct.
6363      if (Record)
6364        Record->setHasFlexibleArrayMember(true);
6365    } else if (!FDTy->isDependentType() &&
6366               RequireCompleteType(FD->getLocation(), FD->getType(),
6367                                   diag::err_field_incomplete)) {
6368      // Incomplete type
6369      FD->setInvalidDecl();
6370      EnclosingDecl->setInvalidDecl();
6371      continue;
6372    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6373      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6374        // If this is a member of a union, then entire union becomes "flexible".
6375        if (Record && Record->isUnion()) {
6376          Record->setHasFlexibleArrayMember(true);
6377        } else {
6378          // If this is a struct/class and this is not the last element, reject
6379          // it.  Note that GCC supports variable sized arrays in the middle of
6380          // structures.
6381          if (i != NumFields-1)
6382            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6383              << FD->getDeclName() << FD->getType();
6384          else {
6385            // We support flexible arrays at the end of structs in
6386            // other structs as an extension.
6387            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6388              << FD->getDeclName();
6389            if (Record)
6390              Record->setHasFlexibleArrayMember(true);
6391          }
6392        }
6393      }
6394      if (Record && FDTTy->getDecl()->hasObjectMember())
6395        Record->setHasObjectMember(true);
6396    } else if (FDTy->isObjCObjectType()) {
6397      /// A field cannot be an Objective-c object
6398      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6399      FD->setInvalidDecl();
6400      EnclosingDecl->setInvalidDecl();
6401      continue;
6402    } else if (getLangOptions().ObjC1 &&
6403               getLangOptions().getGCMode() != LangOptions::NonGC &&
6404               Record &&
6405               (FD->getType()->isObjCObjectPointerType() ||
6406                FD->getType().isObjCGCStrong()))
6407      Record->setHasObjectMember(true);
6408    else if (Context.getAsArrayType(FD->getType())) {
6409      QualType BaseType = Context.getBaseElementType(FD->getType());
6410      if (Record && BaseType->isRecordType() &&
6411          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6412        Record->setHasObjectMember(true);
6413    }
6414    // Keep track of the number of named members.
6415    if (FD->getIdentifier())
6416      ++NumNamedMembers;
6417  }
6418
6419  // Okay, we successfully defined 'Record'.
6420  if (Record) {
6421    Record->completeDefinition();
6422  } else {
6423    ObjCIvarDecl **ClsFields =
6424      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6425    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6426      ID->setLocEnd(RBrac);
6427      // Add ivar's to class's DeclContext.
6428      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6429        ClsFields[i]->setLexicalDeclContext(ID);
6430        ID->addDecl(ClsFields[i]);
6431      }
6432      // Must enforce the rule that ivars in the base classes may not be
6433      // duplicates.
6434      if (ID->getSuperClass())
6435        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6436    } else if (ObjCImplementationDecl *IMPDecl =
6437                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6438      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6439      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6440        // Ivar declared in @implementation never belongs to the implementation.
6441        // Only it is in implementation's lexical context.
6442        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6443      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6444    } else if (ObjCCategoryDecl *CDecl =
6445                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6446      // case of ivars in class extension; all other cases have been
6447      // reported as errors elsewhere.
6448      // FIXME. Class extension does not have a LocEnd field.
6449      // CDecl->setLocEnd(RBrac);
6450      // Add ivar's to class extension's DeclContext.
6451      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6452        ClsFields[i]->setLexicalDeclContext(CDecl);
6453        CDecl->addDecl(ClsFields[i]);
6454      }
6455    }
6456  }
6457
6458  if (Attr)
6459    ProcessDeclAttributeList(S, Record, Attr);
6460
6461  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6462  // set the visibility of this record.
6463  if (Record && !Record->getDeclContext()->isRecord())
6464    AddPushedVisibilityAttribute(Record);
6465}
6466
6467/// \brief Determine whether the given integral value is representable within
6468/// the given type T.
6469static bool isRepresentableIntegerValue(ASTContext &Context,
6470                                        llvm::APSInt &Value,
6471                                        QualType T) {
6472  assert(T->isIntegralType(Context) && "Integral type required!");
6473  unsigned BitWidth = Context.getIntWidth(T);
6474
6475  if (Value.isUnsigned() || Value.isNonNegative())
6476    return Value.getActiveBits() < BitWidth;
6477
6478  return Value.getMinSignedBits() <= BitWidth;
6479}
6480
6481// \brief Given an integral type, return the next larger integral type
6482// (or a NULL type of no such type exists).
6483static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6484  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6485  // enum checking below.
6486  assert(T->isIntegralType(Context) && "Integral type required!");
6487  const unsigned NumTypes = 4;
6488  QualType SignedIntegralTypes[NumTypes] = {
6489    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6490  };
6491  QualType UnsignedIntegralTypes[NumTypes] = {
6492    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6493    Context.UnsignedLongLongTy
6494  };
6495
6496  unsigned BitWidth = Context.getTypeSize(T);
6497  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6498                                            : UnsignedIntegralTypes;
6499  for (unsigned I = 0; I != NumTypes; ++I)
6500    if (Context.getTypeSize(Types[I]) > BitWidth)
6501      return Types[I];
6502
6503  return QualType();
6504}
6505
6506EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6507                                          EnumConstantDecl *LastEnumConst,
6508                                          SourceLocation IdLoc,
6509                                          IdentifierInfo *Id,
6510                                          ExprArg val) {
6511  Expr *Val = (Expr *)val.get();
6512
6513  unsigned IntWidth = Context.Target.getIntWidth();
6514  llvm::APSInt EnumVal(IntWidth);
6515  QualType EltTy;
6516  if (Val) {
6517    if (Enum->isDependentType() || Val->isTypeDependent())
6518      EltTy = Context.DependentTy;
6519    else {
6520      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6521      SourceLocation ExpLoc;
6522      if (!Val->isValueDependent() &&
6523          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6524        Val = 0;
6525      } else {
6526        if (!getLangOptions().CPlusPlus) {
6527          // C99 6.7.2.2p2:
6528          //   The expression that defines the value of an enumeration constant
6529          //   shall be an integer constant expression that has a value
6530          //   representable as an int.
6531
6532          // Complain if the value is not representable in an int.
6533          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6534            Diag(IdLoc, diag::ext_enum_value_not_int)
6535              << EnumVal.toString(10) << Val->getSourceRange()
6536              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6537          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6538            // Force the type of the expression to 'int'.
6539            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6540
6541            if (Val != val.get()) {
6542              val.release();
6543              val = Val;
6544            }
6545          }
6546        }
6547
6548        // C++0x [dcl.enum]p5:
6549        //   If the underlying type is not fixed, the type of each enumerator
6550        //   is the type of its initializing value:
6551        //     - If an initializer is specified for an enumerator, the
6552        //       initializing value has the same type as the expression.
6553        EltTy = Val->getType();
6554      }
6555    }
6556  }
6557
6558  if (!Val) {
6559    if (Enum->isDependentType())
6560      EltTy = Context.DependentTy;
6561    else if (!LastEnumConst) {
6562      // C++0x [dcl.enum]p5:
6563      //   If the underlying type is not fixed, the type of each enumerator
6564      //   is the type of its initializing value:
6565      //     - If no initializer is specified for the first enumerator, the
6566      //       initializing value has an unspecified integral type.
6567      //
6568      // GCC uses 'int' for its unspecified integral type, as does
6569      // C99 6.7.2.2p3.
6570      EltTy = Context.IntTy;
6571    } else {
6572      // Assign the last value + 1.
6573      EnumVal = LastEnumConst->getInitVal();
6574      ++EnumVal;
6575      EltTy = LastEnumConst->getType();
6576
6577      // Check for overflow on increment.
6578      if (EnumVal < LastEnumConst->getInitVal()) {
6579        // C++0x [dcl.enum]p5:
6580        //   If the underlying type is not fixed, the type of each enumerator
6581        //   is the type of its initializing value:
6582        //
6583        //     - Otherwise the type of the initializing value is the same as
6584        //       the type of the initializing value of the preceding enumerator
6585        //       unless the incremented value is not representable in that type,
6586        //       in which case the type is an unspecified integral type
6587        //       sufficient to contain the incremented value. If no such type
6588        //       exists, the program is ill-formed.
6589        QualType T = getNextLargerIntegralType(Context, EltTy);
6590        if (T.isNull()) {
6591          // There is no integral type larger enough to represent this
6592          // value. Complain, then allow the value to wrap around.
6593          EnumVal = LastEnumConst->getInitVal();
6594          EnumVal.zext(EnumVal.getBitWidth() * 2);
6595          Diag(IdLoc, diag::warn_enumerator_too_large)
6596            << EnumVal.toString(10);
6597        } else {
6598          EltTy = T;
6599        }
6600
6601        // Retrieve the last enumerator's value, extent that type to the
6602        // type that is supposed to be large enough to represent the incremented
6603        // value, then increment.
6604        EnumVal = LastEnumConst->getInitVal();
6605        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6606        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6607        ++EnumVal;
6608
6609        // If we're not in C++, diagnose the overflow of enumerator values,
6610        // which in C99 means that the enumerator value is not representable in
6611        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6612        // permits enumerator values that are representable in some larger
6613        // integral type.
6614        if (!getLangOptions().CPlusPlus && !T.isNull())
6615          Diag(IdLoc, diag::warn_enum_value_overflow);
6616      } else if (!getLangOptions().CPlusPlus &&
6617                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6618        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6619        Diag(IdLoc, diag::ext_enum_value_not_int)
6620          << EnumVal.toString(10) << 1;
6621      }
6622    }
6623  }
6624
6625  if (!EltTy->isDependentType()) {
6626    // Make the enumerator value match the signedness and size of the
6627    // enumerator's type.
6628    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6629    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6630  }
6631
6632  val.release();
6633  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6634                                  Val, EnumVal);
6635}
6636
6637
6638Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6639                                        DeclPtrTy lastEnumConst,
6640                                        SourceLocation IdLoc,
6641                                        IdentifierInfo *Id,
6642                                        SourceLocation EqualLoc, ExprTy *val) {
6643  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6644  EnumConstantDecl *LastEnumConst =
6645    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6646  Expr *Val = static_cast<Expr*>(val);
6647
6648  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6649  // we find one that is.
6650  S = getNonFieldDeclScope(S);
6651
6652  // Verify that there isn't already something declared with this name in this
6653  // scope.
6654  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6655                                         ForRedeclaration);
6656  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6657    // Maybe we will complain about the shadowed template parameter.
6658    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6659    // Just pretend that we didn't see the previous declaration.
6660    PrevDecl = 0;
6661  }
6662
6663  if (PrevDecl) {
6664    // When in C++, we may get a TagDecl with the same name; in this case the
6665    // enum constant will 'hide' the tag.
6666    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6667           "Received TagDecl when not in C++!");
6668    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6669      if (isa<EnumConstantDecl>(PrevDecl))
6670        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6671      else
6672        Diag(IdLoc, diag::err_redefinition) << Id;
6673      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6674      return DeclPtrTy();
6675    }
6676  }
6677
6678  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6679                                            IdLoc, Id, Owned(Val));
6680
6681  // Register this decl in the current scope stack.
6682  if (New) {
6683    New->setAccess(TheEnumDecl->getAccess());
6684    PushOnScopeChains(New, S);
6685  }
6686
6687  return DeclPtrTy::make(New);
6688}
6689
6690void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6691                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6692                         DeclPtrTy *Elements, unsigned NumElements,
6693                         Scope *S, AttributeList *Attr) {
6694  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6695  QualType EnumType = Context.getTypeDeclType(Enum);
6696
6697  if (Attr)
6698    ProcessDeclAttributeList(S, Enum, Attr);
6699
6700  if (Enum->isDependentType()) {
6701    for (unsigned i = 0; i != NumElements; ++i) {
6702      EnumConstantDecl *ECD =
6703        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6704      if (!ECD) continue;
6705
6706      ECD->setType(EnumType);
6707    }
6708
6709    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6710    return;
6711  }
6712
6713  // TODO: If the result value doesn't fit in an int, it must be a long or long
6714  // long value.  ISO C does not support this, but GCC does as an extension,
6715  // emit a warning.
6716  unsigned IntWidth = Context.Target.getIntWidth();
6717  unsigned CharWidth = Context.Target.getCharWidth();
6718  unsigned ShortWidth = Context.Target.getShortWidth();
6719
6720  // Verify that all the values are okay, compute the size of the values, and
6721  // reverse the list.
6722  unsigned NumNegativeBits = 0;
6723  unsigned NumPositiveBits = 0;
6724
6725  // Keep track of whether all elements have type int.
6726  bool AllElementsInt = true;
6727
6728  for (unsigned i = 0; i != NumElements; ++i) {
6729    EnumConstantDecl *ECD =
6730      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6731    if (!ECD) continue;  // Already issued a diagnostic.
6732
6733    const llvm::APSInt &InitVal = ECD->getInitVal();
6734
6735    // Keep track of the size of positive and negative values.
6736    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6737      NumPositiveBits = std::max(NumPositiveBits,
6738                                 (unsigned)InitVal.getActiveBits());
6739    else
6740      NumNegativeBits = std::max(NumNegativeBits,
6741                                 (unsigned)InitVal.getMinSignedBits());
6742
6743    // Keep track of whether every enum element has type int (very commmon).
6744    if (AllElementsInt)
6745      AllElementsInt = ECD->getType() == Context.IntTy;
6746  }
6747
6748  // Figure out the type that should be used for this enum.
6749  // FIXME: Support -fshort-enums.
6750  QualType BestType;
6751  unsigned BestWidth;
6752
6753  // C++0x N3000 [conv.prom]p3:
6754  //   An rvalue of an unscoped enumeration type whose underlying
6755  //   type is not fixed can be converted to an rvalue of the first
6756  //   of the following types that can represent all the values of
6757  //   the enumeration: int, unsigned int, long int, unsigned long
6758  //   int, long long int, or unsigned long long int.
6759  // C99 6.4.4.3p2:
6760  //   An identifier declared as an enumeration constant has type int.
6761  // The C99 rule is modified by a gcc extension
6762  QualType BestPromotionType;
6763
6764  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6765
6766  if (NumNegativeBits) {
6767    // If there is a negative value, figure out the smallest integer type (of
6768    // int/long/longlong) that fits.
6769    // If it's packed, check also if it fits a char or a short.
6770    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6771      BestType = Context.SignedCharTy;
6772      BestWidth = CharWidth;
6773    } else if (Packed && NumNegativeBits <= ShortWidth &&
6774               NumPositiveBits < ShortWidth) {
6775      BestType = Context.ShortTy;
6776      BestWidth = ShortWidth;
6777    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6778      BestType = Context.IntTy;
6779      BestWidth = IntWidth;
6780    } else {
6781      BestWidth = Context.Target.getLongWidth();
6782
6783      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6784        BestType = Context.LongTy;
6785      } else {
6786        BestWidth = Context.Target.getLongLongWidth();
6787
6788        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6789          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6790        BestType = Context.LongLongTy;
6791      }
6792    }
6793    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6794  } else {
6795    // If there is no negative value, figure out the smallest type that fits
6796    // all of the enumerator values.
6797    // If it's packed, check also if it fits a char or a short.
6798    if (Packed && NumPositiveBits <= CharWidth) {
6799      BestType = Context.UnsignedCharTy;
6800      BestPromotionType = Context.IntTy;
6801      BestWidth = CharWidth;
6802    } else if (Packed && NumPositiveBits <= ShortWidth) {
6803      BestType = Context.UnsignedShortTy;
6804      BestPromotionType = Context.IntTy;
6805      BestWidth = ShortWidth;
6806    } else if (NumPositiveBits <= IntWidth) {
6807      BestType = Context.UnsignedIntTy;
6808      BestWidth = IntWidth;
6809      BestPromotionType
6810        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6811                           ? Context.UnsignedIntTy : Context.IntTy;
6812    } else if (NumPositiveBits <=
6813               (BestWidth = Context.Target.getLongWidth())) {
6814      BestType = Context.UnsignedLongTy;
6815      BestPromotionType
6816        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6817                           ? Context.UnsignedLongTy : Context.LongTy;
6818    } else {
6819      BestWidth = Context.Target.getLongLongWidth();
6820      assert(NumPositiveBits <= BestWidth &&
6821             "How could an initializer get larger than ULL?");
6822      BestType = Context.UnsignedLongLongTy;
6823      BestPromotionType
6824        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6825                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6826    }
6827  }
6828
6829  // Loop over all of the enumerator constants, changing their types to match
6830  // the type of the enum if needed.
6831  for (unsigned i = 0; i != NumElements; ++i) {
6832    EnumConstantDecl *ECD =
6833      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6834    if (!ECD) continue;  // Already issued a diagnostic.
6835
6836    // Standard C says the enumerators have int type, but we allow, as an
6837    // extension, the enumerators to be larger than int size.  If each
6838    // enumerator value fits in an int, type it as an int, otherwise type it the
6839    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6840    // that X has type 'int', not 'unsigned'.
6841
6842    // Determine whether the value fits into an int.
6843    llvm::APSInt InitVal = ECD->getInitVal();
6844
6845    // If it fits into an integer type, force it.  Otherwise force it to match
6846    // the enum decl type.
6847    QualType NewTy;
6848    unsigned NewWidth;
6849    bool NewSign;
6850    if (!getLangOptions().CPlusPlus &&
6851        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6852      NewTy = Context.IntTy;
6853      NewWidth = IntWidth;
6854      NewSign = true;
6855    } else if (ECD->getType() == BestType) {
6856      // Already the right type!
6857      if (getLangOptions().CPlusPlus)
6858        // C++ [dcl.enum]p4: Following the closing brace of an
6859        // enum-specifier, each enumerator has the type of its
6860        // enumeration.
6861        ECD->setType(EnumType);
6862      continue;
6863    } else {
6864      NewTy = BestType;
6865      NewWidth = BestWidth;
6866      NewSign = BestType->isSignedIntegerType();
6867    }
6868
6869    // Adjust the APSInt value.
6870    InitVal.extOrTrunc(NewWidth);
6871    InitVal.setIsSigned(NewSign);
6872    ECD->setInitVal(InitVal);
6873
6874    // Adjust the Expr initializer and type.
6875    if (ECD->getInitExpr())
6876      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
6877                                                CastExpr::CK_IntegralCast,
6878                                                ECD->getInitExpr(),
6879                                                /*base paths*/ 0,
6880                                                ImplicitCastExpr::RValue));
6881    if (getLangOptions().CPlusPlus)
6882      // C++ [dcl.enum]p4: Following the closing brace of an
6883      // enum-specifier, each enumerator has the type of its
6884      // enumeration.
6885      ECD->setType(EnumType);
6886    else
6887      ECD->setType(NewTy);
6888  }
6889
6890  Enum->completeDefinition(BestType, BestPromotionType,
6891                           NumPositiveBits, NumNegativeBits);
6892}
6893
6894Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6895                                            ExprArg expr) {
6896  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6897
6898  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6899                                                   Loc, AsmString);
6900  CurContext->addDecl(New);
6901  return DeclPtrTy::make(New);
6902}
6903
6904void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6905                             SourceLocation PragmaLoc,
6906                             SourceLocation NameLoc) {
6907  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6908
6909  if (PrevDecl) {
6910    PrevDecl->addAttr(::new (Context) WeakAttr());
6911  } else {
6912    (void)WeakUndeclaredIdentifiers.insert(
6913      std::pair<IdentifierInfo*,WeakInfo>
6914        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6915  }
6916}
6917
6918void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6919                                IdentifierInfo* AliasName,
6920                                SourceLocation PragmaLoc,
6921                                SourceLocation NameLoc,
6922                                SourceLocation AliasNameLoc) {
6923  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6924                                    LookupOrdinaryName);
6925  WeakInfo W = WeakInfo(Name, NameLoc);
6926
6927  if (PrevDecl) {
6928    if (!PrevDecl->hasAttr<AliasAttr>())
6929      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6930        DeclApplyPragmaWeak(TUScope, ND, W);
6931  } else {
6932    (void)WeakUndeclaredIdentifiers.insert(
6933      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6934  }
6935}
6936