SemaDecl.cpp revision 04fa7a33279808dc3e5117c41b5f84c40eeb7362
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/CommentDiagnostic.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/EvaluatedExprVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::annot_decltype:
113  case tok::kw_decltype:
114    return getLangOpts().CPlusPlus;
115
116  default:
117    break;
118  }
119
120  return false;
121}
122
123/// \brief If the identifier refers to a type name within this scope,
124/// return the declaration of that type.
125///
126/// This routine performs ordinary name lookup of the identifier II
127/// within the given scope, with optional C++ scope specifier SS, to
128/// determine whether the name refers to a type. If so, returns an
129/// opaque pointer (actually a QualType) corresponding to that
130/// type. Otherwise, returns NULL.
131///
132/// If name lookup results in an ambiguity, this routine will complain
133/// and then return NULL.
134ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
135                             Scope *S, CXXScopeSpec *SS,
136                             bool isClassName, bool HasTrailingDot,
137                             ParsedType ObjectTypePtr,
138                             bool IsCtorOrDtorName,
139                             bool WantNontrivialTypeSourceInfo,
140                             IdentifierInfo **CorrectedII) {
141  // Determine where we will perform name lookup.
142  DeclContext *LookupCtx = 0;
143  if (ObjectTypePtr) {
144    QualType ObjectType = ObjectTypePtr.get();
145    if (ObjectType->isRecordType())
146      LookupCtx = computeDeclContext(ObjectType);
147  } else if (SS && SS->isNotEmpty()) {
148    LookupCtx = computeDeclContext(*SS, false);
149
150    if (!LookupCtx) {
151      if (isDependentScopeSpecifier(*SS)) {
152        // C++ [temp.res]p3:
153        //   A qualified-id that refers to a type and in which the
154        //   nested-name-specifier depends on a template-parameter (14.6.2)
155        //   shall be prefixed by the keyword typename to indicate that the
156        //   qualified-id denotes a type, forming an
157        //   elaborated-type-specifier (7.1.5.3).
158        //
159        // We therefore do not perform any name lookup if the result would
160        // refer to a member of an unknown specialization.
161        if (!isClassName && !IsCtorOrDtorName)
162          return ParsedType();
163
164        // We know from the grammar that this name refers to a type,
165        // so build a dependent node to describe the type.
166        if (WantNontrivialTypeSourceInfo)
167          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
168
169        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
170        QualType T =
171          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
172                            II, NameLoc);
173
174          return ParsedType::make(T);
175      }
176
177      return ParsedType();
178    }
179
180    if (!LookupCtx->isDependentContext() &&
181        RequireCompleteDeclContext(*SS, LookupCtx))
182      return ParsedType();
183  }
184
185  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
186  // lookup for class-names.
187  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
188                                      LookupOrdinaryName;
189  LookupResult Result(*this, &II, NameLoc, Kind);
190  if (LookupCtx) {
191    // Perform "qualified" name lookup into the declaration context we
192    // computed, which is either the type of the base of a member access
193    // expression or the declaration context associated with a prior
194    // nested-name-specifier.
195    LookupQualifiedName(Result, LookupCtx);
196
197    if (ObjectTypePtr && Result.empty()) {
198      // C++ [basic.lookup.classref]p3:
199      //   If the unqualified-id is ~type-name, the type-name is looked up
200      //   in the context of the entire postfix-expression. If the type T of
201      //   the object expression is of a class type C, the type-name is also
202      //   looked up in the scope of class C. At least one of the lookups shall
203      //   find a name that refers to (possibly cv-qualified) T.
204      LookupName(Result, S);
205    }
206  } else {
207    // Perform unqualified name lookup.
208    LookupName(Result, S);
209  }
210
211  NamedDecl *IIDecl = 0;
212  switch (Result.getResultKind()) {
213  case LookupResult::NotFound:
214  case LookupResult::NotFoundInCurrentInstantiation:
215    if (CorrectedII) {
216      TypeNameValidatorCCC Validator(true, isClassName);
217      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
218                                              Kind, S, SS, Validator);
219      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
220      TemplateTy Template;
221      bool MemberOfUnknownSpecialization;
222      UnqualifiedId TemplateName;
223      TemplateName.setIdentifier(NewII, NameLoc);
224      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
225      CXXScopeSpec NewSS, *NewSSPtr = SS;
226      if (SS && NNS) {
227        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
228        NewSSPtr = &NewSS;
229      }
230      if (Correction && (NNS || NewII != &II) &&
231          // Ignore a correction to a template type as the to-be-corrected
232          // identifier is not a template (typo correction for template names
233          // is handled elsewhere).
234          !(getLangOpts().CPlusPlus && NewSSPtr &&
235            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
236                           false, Template, MemberOfUnknownSpecialization))) {
237        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
238                                    isClassName, HasTrailingDot, ObjectTypePtr,
239                                    IsCtorOrDtorName,
240                                    WantNontrivialTypeSourceInfo);
241        if (Ty) {
242          diagnoseTypo(Correction,
243                       PDiag(diag::err_unknown_type_or_class_name_suggest)
244                         << Result.getLookupName() << isClassName);
245          if (SS && NNS)
246            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
247          *CorrectedII = NewII;
248          return Ty;
249        }
250      }
251    }
252    // If typo correction failed or was not performed, fall through
253  case LookupResult::FoundOverloaded:
254  case LookupResult::FoundUnresolvedValue:
255    Result.suppressDiagnostics();
256    return ParsedType();
257
258  case LookupResult::Ambiguous:
259    // Recover from type-hiding ambiguities by hiding the type.  We'll
260    // do the lookup again when looking for an object, and we can
261    // diagnose the error then.  If we don't do this, then the error
262    // about hiding the type will be immediately followed by an error
263    // that only makes sense if the identifier was treated like a type.
264    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
265      Result.suppressDiagnostics();
266      return ParsedType();
267    }
268
269    // Look to see if we have a type anywhere in the list of results.
270    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
271         Res != ResEnd; ++Res) {
272      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
273        if (!IIDecl ||
274            (*Res)->getLocation().getRawEncoding() <
275              IIDecl->getLocation().getRawEncoding())
276          IIDecl = *Res;
277      }
278    }
279
280    if (!IIDecl) {
281      // None of the entities we found is a type, so there is no way
282      // to even assume that the result is a type. In this case, don't
283      // complain about the ambiguity. The parser will either try to
284      // perform this lookup again (e.g., as an object name), which
285      // will produce the ambiguity, or will complain that it expected
286      // a type name.
287      Result.suppressDiagnostics();
288      return ParsedType();
289    }
290
291    // We found a type within the ambiguous lookup; diagnose the
292    // ambiguity and then return that type. This might be the right
293    // answer, or it might not be, but it suppresses any attempt to
294    // perform the name lookup again.
295    break;
296
297  case LookupResult::Found:
298    IIDecl = Result.getFoundDecl();
299    break;
300  }
301
302  assert(IIDecl && "Didn't find decl");
303
304  QualType T;
305  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
306    DiagnoseUseOfDecl(IIDecl, NameLoc);
307
308    if (T.isNull())
309      T = Context.getTypeDeclType(TD);
310
311    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
312    // constructor or destructor name (in such a case, the scope specifier
313    // will be attached to the enclosing Expr or Decl node).
314    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
315      if (WantNontrivialTypeSourceInfo) {
316        // Construct a type with type-source information.
317        TypeLocBuilder Builder;
318        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
319
320        T = getElaboratedType(ETK_None, *SS, T);
321        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
322        ElabTL.setElaboratedKeywordLoc(SourceLocation());
323        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
324        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
325      } else {
326        T = getElaboratedType(ETK_None, *SS, T);
327      }
328    }
329  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
330    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
331    if (!HasTrailingDot)
332      T = Context.getObjCInterfaceType(IDecl);
333  }
334
335  if (T.isNull()) {
336    // If it's not plausibly a type, suppress diagnostics.
337    Result.suppressDiagnostics();
338    return ParsedType();
339  }
340  return ParsedType::make(T);
341}
342
343/// isTagName() - This method is called *for error recovery purposes only*
344/// to determine if the specified name is a valid tag name ("struct foo").  If
345/// so, this returns the TST for the tag corresponding to it (TST_enum,
346/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
347/// cases in C where the user forgot to specify the tag.
348DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
349  // Do a tag name lookup in this scope.
350  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
351  LookupName(R, S, false);
352  R.suppressDiagnostics();
353  if (R.getResultKind() == LookupResult::Found)
354    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
355      switch (TD->getTagKind()) {
356      case TTK_Struct: return DeclSpec::TST_struct;
357      case TTK_Interface: return DeclSpec::TST_interface;
358      case TTK_Union:  return DeclSpec::TST_union;
359      case TTK_Class:  return DeclSpec::TST_class;
360      case TTK_Enum:   return DeclSpec::TST_enum;
361      }
362    }
363
364  return DeclSpec::TST_unspecified;
365}
366
367/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
368/// if a CXXScopeSpec's type is equal to the type of one of the base classes
369/// then downgrade the missing typename error to a warning.
370/// This is needed for MSVC compatibility; Example:
371/// @code
372/// template<class T> class A {
373/// public:
374///   typedef int TYPE;
375/// };
376/// template<class T> class B : public A<T> {
377/// public:
378///   A<T>::TYPE a; // no typename required because A<T> is a base class.
379/// };
380/// @endcode
381bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
382  if (CurContext->isRecord()) {
383    const Type *Ty = SS->getScopeRep()->getAsType();
384
385    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
386    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
387          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
388      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
389        return true;
390    return S->isFunctionPrototypeScope();
391  }
392  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
393}
394
395bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
396                                   SourceLocation IILoc,
397                                   Scope *S,
398                                   CXXScopeSpec *SS,
399                                   ParsedType &SuggestedType) {
400  // We don't have anything to suggest (yet).
401  SuggestedType = ParsedType();
402
403  // There may have been a typo in the name of the type. Look up typo
404  // results, in case we have something that we can suggest.
405  TypeNameValidatorCCC Validator(false);
406  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
407                                             LookupOrdinaryName, S, SS,
408                                             Validator)) {
409    if (Corrected.isKeyword()) {
410      // We corrected to a keyword.
411      diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
412      II = Corrected.getCorrectionAsIdentifierInfo();
413    } else {
414      // We found a similarly-named type or interface; suggest that.
415      if (!SS || !SS->isSet()) {
416        diagnoseTypo(Corrected,
417                     PDiag(diag::err_unknown_typename_suggest) << II);
418      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
419        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
420        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
421                                II->getName().equals(CorrectedStr);
422        diagnoseTypo(Corrected,
423                     PDiag(diag::err_unknown_nested_typename_suggest)
424                       << II << DC << DroppedSpecifier << SS->getRange());
425      } else {
426        llvm_unreachable("could not have corrected a typo here");
427      }
428
429      CXXScopeSpec tmpSS;
430      if (Corrected.getCorrectionSpecifier())
431        tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
432                          SourceRange(IILoc));
433      SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
434                                  IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
435                                  false, ParsedType(),
436                                  /*IsCtorOrDtorName=*/false,
437                                  /*NonTrivialTypeSourceInfo=*/true);
438    }
439    return true;
440  }
441
442  if (getLangOpts().CPlusPlus) {
443    // See if II is a class template that the user forgot to pass arguments to.
444    UnqualifiedId Name;
445    Name.setIdentifier(II, IILoc);
446    CXXScopeSpec EmptySS;
447    TemplateTy TemplateResult;
448    bool MemberOfUnknownSpecialization;
449    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
450                       Name, ParsedType(), true, TemplateResult,
451                       MemberOfUnknownSpecialization) == TNK_Type_template) {
452      TemplateName TplName = TemplateResult.get();
453      Diag(IILoc, diag::err_template_missing_args) << TplName;
454      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
455        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
456          << TplDecl->getTemplateParameters()->getSourceRange();
457      }
458      return true;
459    }
460  }
461
462  // FIXME: Should we move the logic that tries to recover from a missing tag
463  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
464
465  if (!SS || (!SS->isSet() && !SS->isInvalid()))
466    Diag(IILoc, diag::err_unknown_typename) << II;
467  else if (DeclContext *DC = computeDeclContext(*SS, false))
468    Diag(IILoc, diag::err_typename_nested_not_found)
469      << II << DC << SS->getRange();
470  else if (isDependentScopeSpecifier(*SS)) {
471    unsigned DiagID = diag::err_typename_missing;
472    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
473      DiagID = diag::warn_typename_missing;
474
475    Diag(SS->getRange().getBegin(), DiagID)
476      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
477      << SourceRange(SS->getRange().getBegin(), IILoc)
478      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
479    SuggestedType = ActOnTypenameType(S, SourceLocation(),
480                                      *SS, *II, IILoc).get();
481  } else {
482    assert(SS && SS->isInvalid() &&
483           "Invalid scope specifier has already been diagnosed");
484  }
485
486  return true;
487}
488
489/// \brief Determine whether the given result set contains either a type name
490/// or
491static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
492  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
493                       NextToken.is(tok::less);
494
495  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
496    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
497      return true;
498
499    if (CheckTemplate && isa<TemplateDecl>(*I))
500      return true;
501  }
502
503  return false;
504}
505
506static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
507                                    Scope *S, CXXScopeSpec &SS,
508                                    IdentifierInfo *&Name,
509                                    SourceLocation NameLoc) {
510  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
511  SemaRef.LookupParsedName(R, S, &SS);
512  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
513    const char *TagName = 0;
514    const char *FixItTagName = 0;
515    switch (Tag->getTagKind()) {
516      case TTK_Class:
517        TagName = "class";
518        FixItTagName = "class ";
519        break;
520
521      case TTK_Enum:
522        TagName = "enum";
523        FixItTagName = "enum ";
524        break;
525
526      case TTK_Struct:
527        TagName = "struct";
528        FixItTagName = "struct ";
529        break;
530
531      case TTK_Interface:
532        TagName = "__interface";
533        FixItTagName = "__interface ";
534        break;
535
536      case TTK_Union:
537        TagName = "union";
538        FixItTagName = "union ";
539        break;
540    }
541
542    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
543      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
544      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
545
546    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
547         I != IEnd; ++I)
548      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
549        << Name << TagName;
550
551    // Replace lookup results with just the tag decl.
552    Result.clear(Sema::LookupTagName);
553    SemaRef.LookupParsedName(Result, S, &SS);
554    return true;
555  }
556
557  return false;
558}
559
560/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
561static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
562                                  QualType T, SourceLocation NameLoc) {
563  ASTContext &Context = S.Context;
564
565  TypeLocBuilder Builder;
566  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
567
568  T = S.getElaboratedType(ETK_None, SS, T);
569  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
570  ElabTL.setElaboratedKeywordLoc(SourceLocation());
571  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
572  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
573}
574
575Sema::NameClassification Sema::ClassifyName(Scope *S,
576                                            CXXScopeSpec &SS,
577                                            IdentifierInfo *&Name,
578                                            SourceLocation NameLoc,
579                                            const Token &NextToken,
580                                            bool IsAddressOfOperand,
581                                            CorrectionCandidateCallback *CCC) {
582  DeclarationNameInfo NameInfo(Name, NameLoc);
583  ObjCMethodDecl *CurMethod = getCurMethodDecl();
584
585  if (NextToken.is(tok::coloncolon)) {
586    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
587                                QualType(), false, SS, 0, false);
588
589  }
590
591  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
592  LookupParsedName(Result, S, &SS, !CurMethod);
593
594  // Perform lookup for Objective-C instance variables (including automatically
595  // synthesized instance variables), if we're in an Objective-C method.
596  // FIXME: This lookup really, really needs to be folded in to the normal
597  // unqualified lookup mechanism.
598  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
599    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
600    if (E.get() || E.isInvalid())
601      return E;
602  }
603
604  bool SecondTry = false;
605  bool IsFilteredTemplateName = false;
606
607Corrected:
608  switch (Result.getResultKind()) {
609  case LookupResult::NotFound:
610    // If an unqualified-id is followed by a '(', then we have a function
611    // call.
612    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
613      // In C++, this is an ADL-only call.
614      // FIXME: Reference?
615      if (getLangOpts().CPlusPlus)
616        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
617
618      // C90 6.3.2.2:
619      //   If the expression that precedes the parenthesized argument list in a
620      //   function call consists solely of an identifier, and if no
621      //   declaration is visible for this identifier, the identifier is
622      //   implicitly declared exactly as if, in the innermost block containing
623      //   the function call, the declaration
624      //
625      //     extern int identifier ();
626      //
627      //   appeared.
628      //
629      // We also allow this in C99 as an extension.
630      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
631        Result.addDecl(D);
632        Result.resolveKind();
633        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
634      }
635    }
636
637    // In C, we first see whether there is a tag type by the same name, in
638    // which case it's likely that the user just forget to write "enum",
639    // "struct", or "union".
640    if (!getLangOpts().CPlusPlus && !SecondTry &&
641        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
642      break;
643    }
644
645    // Perform typo correction to determine if there is another name that is
646    // close to this name.
647    if (!SecondTry && CCC) {
648      SecondTry = true;
649      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
650                                                 Result.getLookupKind(), S,
651                                                 &SS, *CCC)) {
652        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
653        unsigned QualifiedDiag = diag::err_no_member_suggest;
654
655        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
656        NamedDecl *UnderlyingFirstDecl
657          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
658        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
659            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
660          UnqualifiedDiag = diag::err_no_template_suggest;
661          QualifiedDiag = diag::err_no_member_template_suggest;
662        } else if (UnderlyingFirstDecl &&
663                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
664                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
665                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
666          UnqualifiedDiag = diag::err_unknown_typename_suggest;
667          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
668        }
669
670        if (SS.isEmpty()) {
671          diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
672        } else {// FIXME: is this even reachable? Test it.
673          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
674          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
675                                  Name->getName().equals(CorrectedStr);
676          diagnoseTypo(Corrected, PDiag(QualifiedDiag)
677                                    << Name << computeDeclContext(SS, false)
678                                    << DroppedSpecifier << SS.getRange());
679        }
680
681        // Update the name, so that the caller has the new name.
682        Name = Corrected.getCorrectionAsIdentifierInfo();
683
684        // Typo correction corrected to a keyword.
685        if (Corrected.isKeyword())
686          return Name;
687
688        // Also update the LookupResult...
689        // FIXME: This should probably go away at some point
690        Result.clear();
691        Result.setLookupName(Corrected.getCorrection());
692        if (FirstDecl)
693          Result.addDecl(FirstDecl);
694
695        // If we found an Objective-C instance variable, let
696        // LookupInObjCMethod build the appropriate expression to
697        // reference the ivar.
698        // FIXME: This is a gross hack.
699        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
700          Result.clear();
701          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
702          return E;
703        }
704
705        goto Corrected;
706      }
707    }
708
709    // We failed to correct; just fall through and let the parser deal with it.
710    Result.suppressDiagnostics();
711    return NameClassification::Unknown();
712
713  case LookupResult::NotFoundInCurrentInstantiation: {
714    // We performed name lookup into the current instantiation, and there were
715    // dependent bases, so we treat this result the same way as any other
716    // dependent nested-name-specifier.
717
718    // C++ [temp.res]p2:
719    //   A name used in a template declaration or definition and that is
720    //   dependent on a template-parameter is assumed not to name a type
721    //   unless the applicable name lookup finds a type name or the name is
722    //   qualified by the keyword typename.
723    //
724    // FIXME: If the next token is '<', we might want to ask the parser to
725    // perform some heroics to see if we actually have a
726    // template-argument-list, which would indicate a missing 'template'
727    // keyword here.
728    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
729                                      NameInfo, IsAddressOfOperand,
730                                      /*TemplateArgs=*/0);
731  }
732
733  case LookupResult::Found:
734  case LookupResult::FoundOverloaded:
735  case LookupResult::FoundUnresolvedValue:
736    break;
737
738  case LookupResult::Ambiguous:
739    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
740        hasAnyAcceptableTemplateNames(Result)) {
741      // C++ [temp.local]p3:
742      //   A lookup that finds an injected-class-name (10.2) can result in an
743      //   ambiguity in certain cases (for example, if it is found in more than
744      //   one base class). If all of the injected-class-names that are found
745      //   refer to specializations of the same class template, and if the name
746      //   is followed by a template-argument-list, the reference refers to the
747      //   class template itself and not a specialization thereof, and is not
748      //   ambiguous.
749      //
750      // This filtering can make an ambiguous result into an unambiguous one,
751      // so try again after filtering out template names.
752      FilterAcceptableTemplateNames(Result);
753      if (!Result.isAmbiguous()) {
754        IsFilteredTemplateName = true;
755        break;
756      }
757    }
758
759    // Diagnose the ambiguity and return an error.
760    return NameClassification::Error();
761  }
762
763  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
764      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
765    // C++ [temp.names]p3:
766    //   After name lookup (3.4) finds that a name is a template-name or that
767    //   an operator-function-id or a literal- operator-id refers to a set of
768    //   overloaded functions any member of which is a function template if
769    //   this is followed by a <, the < is always taken as the delimiter of a
770    //   template-argument-list and never as the less-than operator.
771    if (!IsFilteredTemplateName)
772      FilterAcceptableTemplateNames(Result);
773
774    if (!Result.empty()) {
775      bool IsFunctionTemplate;
776      bool IsVarTemplate;
777      TemplateName Template;
778      if (Result.end() - Result.begin() > 1) {
779        IsFunctionTemplate = true;
780        Template = Context.getOverloadedTemplateName(Result.begin(),
781                                                     Result.end());
782      } else {
783        TemplateDecl *TD
784          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
785        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
786        IsVarTemplate = isa<VarTemplateDecl>(TD);
787
788        if (SS.isSet() && !SS.isInvalid())
789          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
790                                                    /*TemplateKeyword=*/false,
791                                                      TD);
792        else
793          Template = TemplateName(TD);
794      }
795
796      if (IsFunctionTemplate) {
797        // Function templates always go through overload resolution, at which
798        // point we'll perform the various checks (e.g., accessibility) we need
799        // to based on which function we selected.
800        Result.suppressDiagnostics();
801
802        return NameClassification::FunctionTemplate(Template);
803      }
804
805      return IsVarTemplate ? NameClassification::VarTemplate(Template)
806                           : NameClassification::TypeTemplate(Template);
807    }
808  }
809
810  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
811  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
812    DiagnoseUseOfDecl(Type, NameLoc);
813    QualType T = Context.getTypeDeclType(Type);
814    if (SS.isNotEmpty())
815      return buildNestedType(*this, SS, T, NameLoc);
816    return ParsedType::make(T);
817  }
818
819  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
820  if (!Class) {
821    // FIXME: It's unfortunate that we don't have a Type node for handling this.
822    if (ObjCCompatibleAliasDecl *Alias
823                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
824      Class = Alias->getClassInterface();
825  }
826
827  if (Class) {
828    DiagnoseUseOfDecl(Class, NameLoc);
829
830    if (NextToken.is(tok::period)) {
831      // Interface. <something> is parsed as a property reference expression.
832      // Just return "unknown" as a fall-through for now.
833      Result.suppressDiagnostics();
834      return NameClassification::Unknown();
835    }
836
837    QualType T = Context.getObjCInterfaceType(Class);
838    return ParsedType::make(T);
839  }
840
841  // We can have a type template here if we're classifying a template argument.
842  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
843    return NameClassification::TypeTemplate(
844        TemplateName(cast<TemplateDecl>(FirstDecl)));
845
846  // Check for a tag type hidden by a non-type decl in a few cases where it
847  // seems likely a type is wanted instead of the non-type that was found.
848  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
849  if ((NextToken.is(tok::identifier) ||
850       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
851      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
852    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
853    DiagnoseUseOfDecl(Type, NameLoc);
854    QualType T = Context.getTypeDeclType(Type);
855    if (SS.isNotEmpty())
856      return buildNestedType(*this, SS, T, NameLoc);
857    return ParsedType::make(T);
858  }
859
860  if (FirstDecl->isCXXClassMember())
861    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
862
863  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
864  return BuildDeclarationNameExpr(SS, Result, ADL);
865}
866
867// Determines the context to return to after temporarily entering a
868// context.  This depends in an unnecessarily complicated way on the
869// exact ordering of callbacks from the parser.
870DeclContext *Sema::getContainingDC(DeclContext *DC) {
871
872  // Functions defined inline within classes aren't parsed until we've
873  // finished parsing the top-level class, so the top-level class is
874  // the context we'll need to return to.
875  if (isa<FunctionDecl>(DC)) {
876    DC = DC->getLexicalParent();
877
878    // A function not defined within a class will always return to its
879    // lexical context.
880    if (!isa<CXXRecordDecl>(DC))
881      return DC;
882
883    // A C++ inline method/friend is parsed *after* the topmost class
884    // it was declared in is fully parsed ("complete");  the topmost
885    // class is the context we need to return to.
886    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
887      DC = RD;
888
889    // Return the declaration context of the topmost class the inline method is
890    // declared in.
891    return DC;
892  }
893
894  return DC->getLexicalParent();
895}
896
897void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
898  assert(getContainingDC(DC) == CurContext &&
899      "The next DeclContext should be lexically contained in the current one.");
900  CurContext = DC;
901  S->setEntity(DC);
902}
903
904void Sema::PopDeclContext() {
905  assert(CurContext && "DeclContext imbalance!");
906
907  CurContext = getContainingDC(CurContext);
908  assert(CurContext && "Popped translation unit!");
909}
910
911/// EnterDeclaratorContext - Used when we must lookup names in the context
912/// of a declarator's nested name specifier.
913///
914void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
915  // C++0x [basic.lookup.unqual]p13:
916  //   A name used in the definition of a static data member of class
917  //   X (after the qualified-id of the static member) is looked up as
918  //   if the name was used in a member function of X.
919  // C++0x [basic.lookup.unqual]p14:
920  //   If a variable member of a namespace is defined outside of the
921  //   scope of its namespace then any name used in the definition of
922  //   the variable member (after the declarator-id) is looked up as
923  //   if the definition of the variable member occurred in its
924  //   namespace.
925  // Both of these imply that we should push a scope whose context
926  // is the semantic context of the declaration.  We can't use
927  // PushDeclContext here because that context is not necessarily
928  // lexically contained in the current context.  Fortunately,
929  // the containing scope should have the appropriate information.
930
931  assert(!S->getEntity() && "scope already has entity");
932
933#ifndef NDEBUG
934  Scope *Ancestor = S->getParent();
935  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
936  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
937#endif
938
939  CurContext = DC;
940  S->setEntity(DC);
941}
942
943void Sema::ExitDeclaratorContext(Scope *S) {
944  assert(S->getEntity() == CurContext && "Context imbalance!");
945
946  // Switch back to the lexical context.  The safety of this is
947  // enforced by an assert in EnterDeclaratorContext.
948  Scope *Ancestor = S->getParent();
949  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
950  CurContext = (DeclContext*) Ancestor->getEntity();
951
952  // We don't need to do anything with the scope, which is going to
953  // disappear.
954}
955
956
957void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
958  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
959  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
960    // We assume that the caller has already called
961    // ActOnReenterTemplateScope
962    FD = TFD->getTemplatedDecl();
963  }
964  if (!FD)
965    return;
966
967  // Same implementation as PushDeclContext, but enters the context
968  // from the lexical parent, rather than the top-level class.
969  assert(CurContext == FD->getLexicalParent() &&
970    "The next DeclContext should be lexically contained in the current one.");
971  CurContext = FD;
972  S->setEntity(CurContext);
973
974  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
975    ParmVarDecl *Param = FD->getParamDecl(P);
976    // If the parameter has an identifier, then add it to the scope
977    if (Param->getIdentifier()) {
978      S->AddDecl(Param);
979      IdResolver.AddDecl(Param);
980    }
981  }
982}
983
984
985void Sema::ActOnExitFunctionContext() {
986  // Same implementation as PopDeclContext, but returns to the lexical parent,
987  // rather than the top-level class.
988  assert(CurContext && "DeclContext imbalance!");
989  CurContext = CurContext->getLexicalParent();
990  assert(CurContext && "Popped translation unit!");
991}
992
993
994/// \brief Determine whether we allow overloading of the function
995/// PrevDecl with another declaration.
996///
997/// This routine determines whether overloading is possible, not
998/// whether some new function is actually an overload. It will return
999/// true in C++ (where we can always provide overloads) or, as an
1000/// extension, in C when the previous function is already an
1001/// overloaded function declaration or has the "overloadable"
1002/// attribute.
1003static bool AllowOverloadingOfFunction(LookupResult &Previous,
1004                                       ASTContext &Context) {
1005  if (Context.getLangOpts().CPlusPlus)
1006    return true;
1007
1008  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1009    return true;
1010
1011  return (Previous.getResultKind() == LookupResult::Found
1012          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1013}
1014
1015/// Add this decl to the scope shadowed decl chains.
1016void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1017  // Move up the scope chain until we find the nearest enclosing
1018  // non-transparent context. The declaration will be introduced into this
1019  // scope.
1020  while (S->getEntity() &&
1021         ((DeclContext *)S->getEntity())->isTransparentContext())
1022    S = S->getParent();
1023
1024  // Add scoped declarations into their context, so that they can be
1025  // found later. Declarations without a context won't be inserted
1026  // into any context.
1027  if (AddToContext)
1028    CurContext->addDecl(D);
1029
1030  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1031  // are function-local declarations.
1032  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1033      !D->getDeclContext()->getRedeclContext()->Equals(
1034        D->getLexicalDeclContext()->getRedeclContext()) &&
1035      !D->getLexicalDeclContext()->isFunctionOrMethod())
1036    return;
1037
1038  // Template instantiations should also not be pushed into scope.
1039  if (isa<FunctionDecl>(D) &&
1040      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1041    return;
1042
1043  // If this replaces anything in the current scope,
1044  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1045                               IEnd = IdResolver.end();
1046  for (; I != IEnd; ++I) {
1047    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1048      S->RemoveDecl(*I);
1049      IdResolver.RemoveDecl(*I);
1050
1051      // Should only need to replace one decl.
1052      break;
1053    }
1054  }
1055
1056  S->AddDecl(D);
1057
1058  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1059    // Implicitly-generated labels may end up getting generated in an order that
1060    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1061    // the label at the appropriate place in the identifier chain.
1062    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1063      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1064      if (IDC == CurContext) {
1065        if (!S->isDeclScope(*I))
1066          continue;
1067      } else if (IDC->Encloses(CurContext))
1068        break;
1069    }
1070
1071    IdResolver.InsertDeclAfter(I, D);
1072  } else {
1073    IdResolver.AddDecl(D);
1074  }
1075}
1076
1077void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1078  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1079    TUScope->AddDecl(D);
1080}
1081
1082bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1083                         bool ExplicitInstantiationOrSpecialization) {
1084  return IdResolver.isDeclInScope(D, Ctx, S,
1085                                  ExplicitInstantiationOrSpecialization);
1086}
1087
1088Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1089  DeclContext *TargetDC = DC->getPrimaryContext();
1090  do {
1091    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1092      if (ScopeDC->getPrimaryContext() == TargetDC)
1093        return S;
1094  } while ((S = S->getParent()));
1095
1096  return 0;
1097}
1098
1099static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1100                                            DeclContext*,
1101                                            ASTContext&);
1102
1103/// Filters out lookup results that don't fall within the given scope
1104/// as determined by isDeclInScope.
1105void Sema::FilterLookupForScope(LookupResult &R,
1106                                DeclContext *Ctx, Scope *S,
1107                                bool ConsiderLinkage,
1108                                bool ExplicitInstantiationOrSpecialization) {
1109  LookupResult::Filter F = R.makeFilter();
1110  while (F.hasNext()) {
1111    NamedDecl *D = F.next();
1112
1113    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1114      continue;
1115
1116    if (ConsiderLinkage &&
1117        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1118      continue;
1119
1120    F.erase();
1121  }
1122
1123  F.done();
1124}
1125
1126static bool isUsingDecl(NamedDecl *D) {
1127  return isa<UsingShadowDecl>(D) ||
1128         isa<UnresolvedUsingTypenameDecl>(D) ||
1129         isa<UnresolvedUsingValueDecl>(D);
1130}
1131
1132/// Removes using shadow declarations from the lookup results.
1133static void RemoveUsingDecls(LookupResult &R) {
1134  LookupResult::Filter F = R.makeFilter();
1135  while (F.hasNext())
1136    if (isUsingDecl(F.next()))
1137      F.erase();
1138
1139  F.done();
1140}
1141
1142/// \brief Check for this common pattern:
1143/// @code
1144/// class S {
1145///   S(const S&); // DO NOT IMPLEMENT
1146///   void operator=(const S&); // DO NOT IMPLEMENT
1147/// };
1148/// @endcode
1149static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1150  // FIXME: Should check for private access too but access is set after we get
1151  // the decl here.
1152  if (D->doesThisDeclarationHaveABody())
1153    return false;
1154
1155  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1156    return CD->isCopyConstructor();
1157  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1158    return Method->isCopyAssignmentOperator();
1159  return false;
1160}
1161
1162// We need this to handle
1163//
1164// typedef struct {
1165//   void *foo() { return 0; }
1166// } A;
1167//
1168// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1169// for example. If 'A', foo will have external linkage. If we have '*A',
1170// foo will have no linkage. Since we can't know untill we get to the end
1171// of the typedef, this function finds out if D might have non external linkage.
1172// Callers should verify at the end of the TU if it D has external linkage or
1173// not.
1174bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1175  const DeclContext *DC = D->getDeclContext();
1176  while (!DC->isTranslationUnit()) {
1177    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1178      if (!RD->hasNameForLinkage())
1179        return true;
1180    }
1181    DC = DC->getParent();
1182  }
1183
1184  return !D->isExternallyVisible();
1185}
1186
1187// FIXME: This needs to be refactored; some other isInMainFile users want
1188// these semantics.
1189static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1190  if (S.TUKind != TU_Complete)
1191    return false;
1192  return S.SourceMgr.isInMainFile(Loc);
1193}
1194
1195bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1196  assert(D);
1197
1198  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1199    return false;
1200
1201  // Ignore class templates.
1202  if (D->getDeclContext()->isDependentContext() ||
1203      D->getLexicalDeclContext()->isDependentContext())
1204    return false;
1205
1206  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1207    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1208      return false;
1209
1210    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1211      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1212        return false;
1213    } else {
1214      // 'static inline' functions are defined in headers; don't warn.
1215      if (FD->isInlineSpecified() &&
1216          !isMainFileLoc(*this, FD->getLocation()))
1217        return false;
1218    }
1219
1220    if (FD->doesThisDeclarationHaveABody() &&
1221        Context.DeclMustBeEmitted(FD))
1222      return false;
1223  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1224    // Constants and utility variables are defined in headers with internal
1225    // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1226    // like "inline".)
1227    if (!isMainFileLoc(*this, VD->getLocation()))
1228      return false;
1229
1230    if (Context.DeclMustBeEmitted(VD))
1231      return false;
1232
1233    if (VD->isStaticDataMember() &&
1234        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1235      return false;
1236  } else {
1237    return false;
1238  }
1239
1240  // Only warn for unused decls internal to the translation unit.
1241  return mightHaveNonExternalLinkage(D);
1242}
1243
1244void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1245  if (!D)
1246    return;
1247
1248  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1249    const FunctionDecl *First = FD->getFirstDeclaration();
1250    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1251      return; // First should already be in the vector.
1252  }
1253
1254  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1255    const VarDecl *First = VD->getFirstDeclaration();
1256    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1257      return; // First should already be in the vector.
1258  }
1259
1260  if (ShouldWarnIfUnusedFileScopedDecl(D))
1261    UnusedFileScopedDecls.push_back(D);
1262}
1263
1264static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1265  if (D->isInvalidDecl())
1266    return false;
1267
1268  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1269    return false;
1270
1271  if (isa<LabelDecl>(D))
1272    return true;
1273
1274  // White-list anything that isn't a local variable.
1275  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1276      !D->getDeclContext()->isFunctionOrMethod())
1277    return false;
1278
1279  // Types of valid local variables should be complete, so this should succeed.
1280  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1281
1282    // White-list anything with an __attribute__((unused)) type.
1283    QualType Ty = VD->getType();
1284
1285    // Only look at the outermost level of typedef.
1286    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1287      if (TT->getDecl()->hasAttr<UnusedAttr>())
1288        return false;
1289    }
1290
1291    // If we failed to complete the type for some reason, or if the type is
1292    // dependent, don't diagnose the variable.
1293    if (Ty->isIncompleteType() || Ty->isDependentType())
1294      return false;
1295
1296    if (const TagType *TT = Ty->getAs<TagType>()) {
1297      const TagDecl *Tag = TT->getDecl();
1298      if (Tag->hasAttr<UnusedAttr>())
1299        return false;
1300
1301      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1302        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1303          return false;
1304
1305        if (const Expr *Init = VD->getInit()) {
1306          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1307            Init = Cleanups->getSubExpr();
1308          const CXXConstructExpr *Construct =
1309            dyn_cast<CXXConstructExpr>(Init);
1310          if (Construct && !Construct->isElidable()) {
1311            CXXConstructorDecl *CD = Construct->getConstructor();
1312            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1313              return false;
1314          }
1315        }
1316      }
1317    }
1318
1319    // TODO: __attribute__((unused)) templates?
1320  }
1321
1322  return true;
1323}
1324
1325static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1326                                     FixItHint &Hint) {
1327  if (isa<LabelDecl>(D)) {
1328    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1329                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1330    if (AfterColon.isInvalid())
1331      return;
1332    Hint = FixItHint::CreateRemoval(CharSourceRange::
1333                                    getCharRange(D->getLocStart(), AfterColon));
1334  }
1335  return;
1336}
1337
1338/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1339/// unless they are marked attr(unused).
1340void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1341  FixItHint Hint;
1342  if (!ShouldDiagnoseUnusedDecl(D))
1343    return;
1344
1345  GenerateFixForUnusedDecl(D, Context, Hint);
1346
1347  unsigned DiagID;
1348  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1349    DiagID = diag::warn_unused_exception_param;
1350  else if (isa<LabelDecl>(D))
1351    DiagID = diag::warn_unused_label;
1352  else
1353    DiagID = diag::warn_unused_variable;
1354
1355  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1356}
1357
1358static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1359  // Verify that we have no forward references left.  If so, there was a goto
1360  // or address of a label taken, but no definition of it.  Label fwd
1361  // definitions are indicated with a null substmt.
1362  if (L->getStmt() == 0)
1363    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1364}
1365
1366void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1367  if (S->decl_empty()) return;
1368  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1369         "Scope shouldn't contain decls!");
1370
1371  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1372       I != E; ++I) {
1373    Decl *TmpD = (*I);
1374    assert(TmpD && "This decl didn't get pushed??");
1375
1376    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1377    NamedDecl *D = cast<NamedDecl>(TmpD);
1378
1379    if (!D->getDeclName()) continue;
1380
1381    // Diagnose unused variables in this scope.
1382    if (!S->hasUnrecoverableErrorOccurred())
1383      DiagnoseUnusedDecl(D);
1384
1385    // If this was a forward reference to a label, verify it was defined.
1386    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1387      CheckPoppedLabel(LD, *this);
1388
1389    // Remove this name from our lexical scope.
1390    IdResolver.RemoveDecl(D);
1391  }
1392}
1393
1394void Sema::ActOnStartFunctionDeclarator() {
1395  ++InFunctionDeclarator;
1396}
1397
1398void Sema::ActOnEndFunctionDeclarator() {
1399  assert(InFunctionDeclarator);
1400  --InFunctionDeclarator;
1401}
1402
1403/// \brief Look for an Objective-C class in the translation unit.
1404///
1405/// \param Id The name of the Objective-C class we're looking for. If
1406/// typo-correction fixes this name, the Id will be updated
1407/// to the fixed name.
1408///
1409/// \param IdLoc The location of the name in the translation unit.
1410///
1411/// \param DoTypoCorrection If true, this routine will attempt typo correction
1412/// if there is no class with the given name.
1413///
1414/// \returns The declaration of the named Objective-C class, or NULL if the
1415/// class could not be found.
1416ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1417                                              SourceLocation IdLoc,
1418                                              bool DoTypoCorrection) {
1419  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1420  // creation from this context.
1421  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1422
1423  if (!IDecl && DoTypoCorrection) {
1424    // Perform typo correction at the given location, but only if we
1425    // find an Objective-C class name.
1426    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1427    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1428                                       LookupOrdinaryName, TUScope, NULL,
1429                                       Validator)) {
1430      diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1431      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1432      Id = IDecl->getIdentifier();
1433    }
1434  }
1435  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1436  // This routine must always return a class definition, if any.
1437  if (Def && Def->getDefinition())
1438      Def = Def->getDefinition();
1439  return Def;
1440}
1441
1442/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1443/// from S, where a non-field would be declared. This routine copes
1444/// with the difference between C and C++ scoping rules in structs and
1445/// unions. For example, the following code is well-formed in C but
1446/// ill-formed in C++:
1447/// @code
1448/// struct S6 {
1449///   enum { BAR } e;
1450/// };
1451///
1452/// void test_S6() {
1453///   struct S6 a;
1454///   a.e = BAR;
1455/// }
1456/// @endcode
1457/// For the declaration of BAR, this routine will return a different
1458/// scope. The scope S will be the scope of the unnamed enumeration
1459/// within S6. In C++, this routine will return the scope associated
1460/// with S6, because the enumeration's scope is a transparent
1461/// context but structures can contain non-field names. In C, this
1462/// routine will return the translation unit scope, since the
1463/// enumeration's scope is a transparent context and structures cannot
1464/// contain non-field names.
1465Scope *Sema::getNonFieldDeclScope(Scope *S) {
1466  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1467         (S->getEntity() &&
1468          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1469         (S->isClassScope() && !getLangOpts().CPlusPlus))
1470    S = S->getParent();
1471  return S;
1472}
1473
1474/// \brief Looks up the declaration of "struct objc_super" and
1475/// saves it for later use in building builtin declaration of
1476/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1477/// pre-existing declaration exists no action takes place.
1478static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1479                                        IdentifierInfo *II) {
1480  if (!II->isStr("objc_msgSendSuper"))
1481    return;
1482  ASTContext &Context = ThisSema.Context;
1483
1484  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1485                      SourceLocation(), Sema::LookupTagName);
1486  ThisSema.LookupName(Result, S);
1487  if (Result.getResultKind() == LookupResult::Found)
1488    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1489      Context.setObjCSuperType(Context.getTagDeclType(TD));
1490}
1491
1492/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1493/// file scope.  lazily create a decl for it. ForRedeclaration is true
1494/// if we're creating this built-in in anticipation of redeclaring the
1495/// built-in.
1496NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1497                                     Scope *S, bool ForRedeclaration,
1498                                     SourceLocation Loc) {
1499  LookupPredefedObjCSuperType(*this, S, II);
1500
1501  Builtin::ID BID = (Builtin::ID)bid;
1502
1503  ASTContext::GetBuiltinTypeError Error;
1504  QualType R = Context.GetBuiltinType(BID, Error);
1505  switch (Error) {
1506  case ASTContext::GE_None:
1507    // Okay
1508    break;
1509
1510  case ASTContext::GE_Missing_stdio:
1511    if (ForRedeclaration)
1512      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1513        << Context.BuiltinInfo.GetName(BID);
1514    return 0;
1515
1516  case ASTContext::GE_Missing_setjmp:
1517    if (ForRedeclaration)
1518      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1519        << Context.BuiltinInfo.GetName(BID);
1520    return 0;
1521
1522  case ASTContext::GE_Missing_ucontext:
1523    if (ForRedeclaration)
1524      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1525        << Context.BuiltinInfo.GetName(BID);
1526    return 0;
1527  }
1528
1529  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1530    Diag(Loc, diag::ext_implicit_lib_function_decl)
1531      << Context.BuiltinInfo.GetName(BID)
1532      << R;
1533    if (Context.BuiltinInfo.getHeaderName(BID) &&
1534        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1535          != DiagnosticsEngine::Ignored)
1536      Diag(Loc, diag::note_please_include_header)
1537        << Context.BuiltinInfo.getHeaderName(BID)
1538        << Context.BuiltinInfo.GetName(BID);
1539  }
1540
1541  FunctionDecl *New = FunctionDecl::Create(Context,
1542                                           Context.getTranslationUnitDecl(),
1543                                           Loc, Loc, II, R, /*TInfo=*/0,
1544                                           SC_Extern,
1545                                           false,
1546                                           /*hasPrototype=*/true);
1547  New->setImplicit();
1548
1549  // Create Decl objects for each parameter, adding them to the
1550  // FunctionDecl.
1551  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1552    SmallVector<ParmVarDecl*, 16> Params;
1553    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1554      ParmVarDecl *parm =
1555        ParmVarDecl::Create(Context, New, SourceLocation(),
1556                            SourceLocation(), 0,
1557                            FT->getArgType(i), /*TInfo=*/0,
1558                            SC_None, 0);
1559      parm->setScopeInfo(0, i);
1560      Params.push_back(parm);
1561    }
1562    New->setParams(Params);
1563  }
1564
1565  AddKnownFunctionAttributes(New);
1566
1567  // TUScope is the translation-unit scope to insert this function into.
1568  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1569  // relate Scopes to DeclContexts, and probably eliminate CurContext
1570  // entirely, but we're not there yet.
1571  DeclContext *SavedContext = CurContext;
1572  CurContext = Context.getTranslationUnitDecl();
1573  PushOnScopeChains(New, TUScope);
1574  CurContext = SavedContext;
1575  return New;
1576}
1577
1578/// \brief Filter out any previous declarations that the given declaration
1579/// should not consider because they are not permitted to conflict, e.g.,
1580/// because they come from hidden sub-modules and do not refer to the same
1581/// entity.
1582static void filterNonConflictingPreviousDecls(ASTContext &context,
1583                                              NamedDecl *decl,
1584                                              LookupResult &previous){
1585  // This is only interesting when modules are enabled.
1586  if (!context.getLangOpts().Modules)
1587    return;
1588
1589  // Empty sets are uninteresting.
1590  if (previous.empty())
1591    return;
1592
1593  LookupResult::Filter filter = previous.makeFilter();
1594  while (filter.hasNext()) {
1595    NamedDecl *old = filter.next();
1596
1597    // Non-hidden declarations are never ignored.
1598    if (!old->isHidden())
1599      continue;
1600
1601    if (!old->isExternallyVisible())
1602      filter.erase();
1603  }
1604
1605  filter.done();
1606}
1607
1608bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1609  QualType OldType;
1610  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1611    OldType = OldTypedef->getUnderlyingType();
1612  else
1613    OldType = Context.getTypeDeclType(Old);
1614  QualType NewType = New->getUnderlyingType();
1615
1616  if (NewType->isVariablyModifiedType()) {
1617    // Must not redefine a typedef with a variably-modified type.
1618    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1619    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1620      << Kind << NewType;
1621    if (Old->getLocation().isValid())
1622      Diag(Old->getLocation(), diag::note_previous_definition);
1623    New->setInvalidDecl();
1624    return true;
1625  }
1626
1627  if (OldType != NewType &&
1628      !OldType->isDependentType() &&
1629      !NewType->isDependentType() &&
1630      !Context.hasSameType(OldType, NewType)) {
1631    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1632    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1633      << Kind << NewType << OldType;
1634    if (Old->getLocation().isValid())
1635      Diag(Old->getLocation(), diag::note_previous_definition);
1636    New->setInvalidDecl();
1637    return true;
1638  }
1639  return false;
1640}
1641
1642/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1643/// same name and scope as a previous declaration 'Old'.  Figure out
1644/// how to resolve this situation, merging decls or emitting
1645/// diagnostics as appropriate. If there was an error, set New to be invalid.
1646///
1647void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1648  // If the new decl is known invalid already, don't bother doing any
1649  // merging checks.
1650  if (New->isInvalidDecl()) return;
1651
1652  // Allow multiple definitions for ObjC built-in typedefs.
1653  // FIXME: Verify the underlying types are equivalent!
1654  if (getLangOpts().ObjC1) {
1655    const IdentifierInfo *TypeID = New->getIdentifier();
1656    switch (TypeID->getLength()) {
1657    default: break;
1658    case 2:
1659      {
1660        if (!TypeID->isStr("id"))
1661          break;
1662        QualType T = New->getUnderlyingType();
1663        if (!T->isPointerType())
1664          break;
1665        if (!T->isVoidPointerType()) {
1666          QualType PT = T->getAs<PointerType>()->getPointeeType();
1667          if (!PT->isStructureType())
1668            break;
1669        }
1670        Context.setObjCIdRedefinitionType(T);
1671        // Install the built-in type for 'id', ignoring the current definition.
1672        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1673        return;
1674      }
1675    case 5:
1676      if (!TypeID->isStr("Class"))
1677        break;
1678      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1679      // Install the built-in type for 'Class', ignoring the current definition.
1680      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1681      return;
1682    case 3:
1683      if (!TypeID->isStr("SEL"))
1684        break;
1685      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1686      // Install the built-in type for 'SEL', ignoring the current definition.
1687      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1688      return;
1689    }
1690    // Fall through - the typedef name was not a builtin type.
1691  }
1692
1693  // Verify the old decl was also a type.
1694  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1695  if (!Old) {
1696    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1697      << New->getDeclName();
1698
1699    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1700    if (OldD->getLocation().isValid())
1701      Diag(OldD->getLocation(), diag::note_previous_definition);
1702
1703    return New->setInvalidDecl();
1704  }
1705
1706  // If the old declaration is invalid, just give up here.
1707  if (Old->isInvalidDecl())
1708    return New->setInvalidDecl();
1709
1710  // If the typedef types are not identical, reject them in all languages and
1711  // with any extensions enabled.
1712  if (isIncompatibleTypedef(Old, New))
1713    return;
1714
1715  // The types match.  Link up the redeclaration chain if the old
1716  // declaration was a typedef.
1717  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1718    New->setPreviousDeclaration(Typedef);
1719
1720  mergeDeclAttributes(New, Old);
1721
1722  if (getLangOpts().MicrosoftExt)
1723    return;
1724
1725  if (getLangOpts().CPlusPlus) {
1726    // C++ [dcl.typedef]p2:
1727    //   In a given non-class scope, a typedef specifier can be used to
1728    //   redefine the name of any type declared in that scope to refer
1729    //   to the type to which it already refers.
1730    if (!isa<CXXRecordDecl>(CurContext))
1731      return;
1732
1733    // C++0x [dcl.typedef]p4:
1734    //   In a given class scope, a typedef specifier can be used to redefine
1735    //   any class-name declared in that scope that is not also a typedef-name
1736    //   to refer to the type to which it already refers.
1737    //
1738    // This wording came in via DR424, which was a correction to the
1739    // wording in DR56, which accidentally banned code like:
1740    //
1741    //   struct S {
1742    //     typedef struct A { } A;
1743    //   };
1744    //
1745    // in the C++03 standard. We implement the C++0x semantics, which
1746    // allow the above but disallow
1747    //
1748    //   struct S {
1749    //     typedef int I;
1750    //     typedef int I;
1751    //   };
1752    //
1753    // since that was the intent of DR56.
1754    if (!isa<TypedefNameDecl>(Old))
1755      return;
1756
1757    Diag(New->getLocation(), diag::err_redefinition)
1758      << New->getDeclName();
1759    Diag(Old->getLocation(), diag::note_previous_definition);
1760    return New->setInvalidDecl();
1761  }
1762
1763  // Modules always permit redefinition of typedefs, as does C11.
1764  if (getLangOpts().Modules || getLangOpts().C11)
1765    return;
1766
1767  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1768  // is normally mapped to an error, but can be controlled with
1769  // -Wtypedef-redefinition.  If either the original or the redefinition is
1770  // in a system header, don't emit this for compatibility with GCC.
1771  if (getDiagnostics().getSuppressSystemWarnings() &&
1772      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1773       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1774    return;
1775
1776  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1777    << New->getDeclName();
1778  Diag(Old->getLocation(), diag::note_previous_definition);
1779  return;
1780}
1781
1782/// DeclhasAttr - returns true if decl Declaration already has the target
1783/// attribute.
1784static bool
1785DeclHasAttr(const Decl *D, const Attr *A) {
1786  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1787  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1788  // responsible for making sure they are consistent.
1789  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1790  if (AA)
1791    return false;
1792
1793  // The following thread safety attributes can also be duplicated.
1794  switch (A->getKind()) {
1795    case attr::ExclusiveLocksRequired:
1796    case attr::SharedLocksRequired:
1797    case attr::LocksExcluded:
1798    case attr::ExclusiveLockFunction:
1799    case attr::SharedLockFunction:
1800    case attr::UnlockFunction:
1801    case attr::ExclusiveTrylockFunction:
1802    case attr::SharedTrylockFunction:
1803    case attr::GuardedBy:
1804    case attr::PtGuardedBy:
1805    case attr::AcquiredBefore:
1806    case attr::AcquiredAfter:
1807      return false;
1808    default:
1809      ;
1810  }
1811
1812  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1813  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1814  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1815    if ((*i)->getKind() == A->getKind()) {
1816      if (Ann) {
1817        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1818          return true;
1819        continue;
1820      }
1821      // FIXME: Don't hardcode this check
1822      if (OA && isa<OwnershipAttr>(*i))
1823        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1824      return true;
1825    }
1826
1827  return false;
1828}
1829
1830static bool isAttributeTargetADefinition(Decl *D) {
1831  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1832    return VD->isThisDeclarationADefinition();
1833  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1834    return TD->isCompleteDefinition() || TD->isBeingDefined();
1835  return true;
1836}
1837
1838/// Merge alignment attributes from \p Old to \p New, taking into account the
1839/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1840///
1841/// \return \c true if any attributes were added to \p New.
1842static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1843  // Look for alignas attributes on Old, and pick out whichever attribute
1844  // specifies the strictest alignment requirement.
1845  AlignedAttr *OldAlignasAttr = 0;
1846  AlignedAttr *OldStrictestAlignAttr = 0;
1847  unsigned OldAlign = 0;
1848  for (specific_attr_iterator<AlignedAttr>
1849         I = Old->specific_attr_begin<AlignedAttr>(),
1850         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1851    // FIXME: We have no way of representing inherited dependent alignments
1852    // in a case like:
1853    //   template<int A, int B> struct alignas(A) X;
1854    //   template<int A, int B> struct alignas(B) X {};
1855    // For now, we just ignore any alignas attributes which are not on the
1856    // definition in such a case.
1857    if (I->isAlignmentDependent())
1858      return false;
1859
1860    if (I->isAlignas())
1861      OldAlignasAttr = *I;
1862
1863    unsigned Align = I->getAlignment(S.Context);
1864    if (Align > OldAlign) {
1865      OldAlign = Align;
1866      OldStrictestAlignAttr = *I;
1867    }
1868  }
1869
1870  // Look for alignas attributes on New.
1871  AlignedAttr *NewAlignasAttr = 0;
1872  unsigned NewAlign = 0;
1873  for (specific_attr_iterator<AlignedAttr>
1874         I = New->specific_attr_begin<AlignedAttr>(),
1875         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1876    if (I->isAlignmentDependent())
1877      return false;
1878
1879    if (I->isAlignas())
1880      NewAlignasAttr = *I;
1881
1882    unsigned Align = I->getAlignment(S.Context);
1883    if (Align > NewAlign)
1884      NewAlign = Align;
1885  }
1886
1887  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1888    // Both declarations have 'alignas' attributes. We require them to match.
1889    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1890    // fall short. (If two declarations both have alignas, they must both match
1891    // every definition, and so must match each other if there is a definition.)
1892
1893    // If either declaration only contains 'alignas(0)' specifiers, then it
1894    // specifies the natural alignment for the type.
1895    if (OldAlign == 0 || NewAlign == 0) {
1896      QualType Ty;
1897      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1898        Ty = VD->getType();
1899      else
1900        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1901
1902      if (OldAlign == 0)
1903        OldAlign = S.Context.getTypeAlign(Ty);
1904      if (NewAlign == 0)
1905        NewAlign = S.Context.getTypeAlign(Ty);
1906    }
1907
1908    if (OldAlign != NewAlign) {
1909      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1910        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1911        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1912      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1913    }
1914  }
1915
1916  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1917    // C++11 [dcl.align]p6:
1918    //   if any declaration of an entity has an alignment-specifier,
1919    //   every defining declaration of that entity shall specify an
1920    //   equivalent alignment.
1921    // C11 6.7.5/7:
1922    //   If the definition of an object does not have an alignment
1923    //   specifier, any other declaration of that object shall also
1924    //   have no alignment specifier.
1925    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1926      << OldAlignasAttr->isC11();
1927    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1928      << OldAlignasAttr->isC11();
1929  }
1930
1931  bool AnyAdded = false;
1932
1933  // Ensure we have an attribute representing the strictest alignment.
1934  if (OldAlign > NewAlign) {
1935    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1936    Clone->setInherited(true);
1937    New->addAttr(Clone);
1938    AnyAdded = true;
1939  }
1940
1941  // Ensure we have an alignas attribute if the old declaration had one.
1942  if (OldAlignasAttr && !NewAlignasAttr &&
1943      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1944    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1945    Clone->setInherited(true);
1946    New->addAttr(Clone);
1947    AnyAdded = true;
1948  }
1949
1950  return AnyAdded;
1951}
1952
1953static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1954                               bool Override) {
1955  InheritableAttr *NewAttr = NULL;
1956  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1957  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1958    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1959                                      AA->getIntroduced(), AA->getDeprecated(),
1960                                      AA->getObsoleted(), AA->getUnavailable(),
1961                                      AA->getMessage(), Override,
1962                                      AttrSpellingListIndex);
1963  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1964    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1965                                    AttrSpellingListIndex);
1966  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1967    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1968                                        AttrSpellingListIndex);
1969  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1970    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1971                                   AttrSpellingListIndex);
1972  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1973    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1974                                   AttrSpellingListIndex);
1975  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1976    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1977                                FA->getFormatIdx(), FA->getFirstArg(),
1978                                AttrSpellingListIndex);
1979  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1980    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1981                                 AttrSpellingListIndex);
1982  else if (isa<AlignedAttr>(Attr))
1983    // AlignedAttrs are handled separately, because we need to handle all
1984    // such attributes on a declaration at the same time.
1985    NewAttr = 0;
1986  else if (!DeclHasAttr(D, Attr))
1987    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
1988
1989  if (NewAttr) {
1990    NewAttr->setInherited(true);
1991    D->addAttr(NewAttr);
1992    return true;
1993  }
1994
1995  return false;
1996}
1997
1998static const Decl *getDefinition(const Decl *D) {
1999  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2000    return TD->getDefinition();
2001  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2002    return VD->getDefinition();
2003  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2004    const FunctionDecl* Def;
2005    if (FD->hasBody(Def))
2006      return Def;
2007  }
2008  return NULL;
2009}
2010
2011static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2012  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2013       I != E; ++I) {
2014    Attr *Attribute = *I;
2015    if (Attribute->getKind() == Kind)
2016      return true;
2017  }
2018  return false;
2019}
2020
2021/// checkNewAttributesAfterDef - If we already have a definition, check that
2022/// there are no new attributes in this declaration.
2023static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2024  if (!New->hasAttrs())
2025    return;
2026
2027  const Decl *Def = getDefinition(Old);
2028  if (!Def || Def == New)
2029    return;
2030
2031  AttrVec &NewAttributes = New->getAttrs();
2032  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2033    const Attr *NewAttribute = NewAttributes[I];
2034    if (hasAttribute(Def, NewAttribute->getKind())) {
2035      ++I;
2036      continue; // regular attr merging will take care of validating this.
2037    }
2038
2039    if (isa<C11NoReturnAttr>(NewAttribute)) {
2040      // C's _Noreturn is allowed to be added to a function after it is defined.
2041      ++I;
2042      continue;
2043    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2044      if (AA->isAlignas()) {
2045        // C++11 [dcl.align]p6:
2046        //   if any declaration of an entity has an alignment-specifier,
2047        //   every defining declaration of that entity shall specify an
2048        //   equivalent alignment.
2049        // C11 6.7.5/7:
2050        //   If the definition of an object does not have an alignment
2051        //   specifier, any other declaration of that object shall also
2052        //   have no alignment specifier.
2053        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2054          << AA->isC11();
2055        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2056          << AA->isC11();
2057        NewAttributes.erase(NewAttributes.begin() + I);
2058        --E;
2059        continue;
2060      }
2061    }
2062
2063    S.Diag(NewAttribute->getLocation(),
2064           diag::warn_attribute_precede_definition);
2065    S.Diag(Def->getLocation(), diag::note_previous_definition);
2066    NewAttributes.erase(NewAttributes.begin() + I);
2067    --E;
2068  }
2069}
2070
2071/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2072void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2073                               AvailabilityMergeKind AMK) {
2074  if (!Old->hasAttrs() && !New->hasAttrs())
2075    return;
2076
2077  // attributes declared post-definition are currently ignored
2078  checkNewAttributesAfterDef(*this, New, Old);
2079
2080  if (!Old->hasAttrs())
2081    return;
2082
2083  bool foundAny = New->hasAttrs();
2084
2085  // Ensure that any moving of objects within the allocated map is done before
2086  // we process them.
2087  if (!foundAny) New->setAttrs(AttrVec());
2088
2089  for (specific_attr_iterator<InheritableAttr>
2090         i = Old->specific_attr_begin<InheritableAttr>(),
2091         e = Old->specific_attr_end<InheritableAttr>();
2092       i != e; ++i) {
2093    bool Override = false;
2094    // Ignore deprecated/unavailable/availability attributes if requested.
2095    if (isa<DeprecatedAttr>(*i) ||
2096        isa<UnavailableAttr>(*i) ||
2097        isa<AvailabilityAttr>(*i)) {
2098      switch (AMK) {
2099      case AMK_None:
2100        continue;
2101
2102      case AMK_Redeclaration:
2103        break;
2104
2105      case AMK_Override:
2106        Override = true;
2107        break;
2108      }
2109    }
2110
2111    if (mergeDeclAttribute(*this, New, *i, Override))
2112      foundAny = true;
2113  }
2114
2115  if (mergeAlignedAttrs(*this, New, Old))
2116    foundAny = true;
2117
2118  if (!foundAny) New->dropAttrs();
2119}
2120
2121/// mergeParamDeclAttributes - Copy attributes from the old parameter
2122/// to the new one.
2123static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2124                                     const ParmVarDecl *oldDecl,
2125                                     Sema &S) {
2126  // C++11 [dcl.attr.depend]p2:
2127  //   The first declaration of a function shall specify the
2128  //   carries_dependency attribute for its declarator-id if any declaration
2129  //   of the function specifies the carries_dependency attribute.
2130  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2131      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2132    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2133           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2134    // Find the first declaration of the parameter.
2135    // FIXME: Should we build redeclaration chains for function parameters?
2136    const FunctionDecl *FirstFD =
2137      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2138    const ParmVarDecl *FirstVD =
2139      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2140    S.Diag(FirstVD->getLocation(),
2141           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2142  }
2143
2144  if (!oldDecl->hasAttrs())
2145    return;
2146
2147  bool foundAny = newDecl->hasAttrs();
2148
2149  // Ensure that any moving of objects within the allocated map is
2150  // done before we process them.
2151  if (!foundAny) newDecl->setAttrs(AttrVec());
2152
2153  for (specific_attr_iterator<InheritableParamAttr>
2154       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2155       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2156    if (!DeclHasAttr(newDecl, *i)) {
2157      InheritableAttr *newAttr =
2158        cast<InheritableParamAttr>((*i)->clone(S.Context));
2159      newAttr->setInherited(true);
2160      newDecl->addAttr(newAttr);
2161      foundAny = true;
2162    }
2163  }
2164
2165  if (!foundAny) newDecl->dropAttrs();
2166}
2167
2168namespace {
2169
2170/// Used in MergeFunctionDecl to keep track of function parameters in
2171/// C.
2172struct GNUCompatibleParamWarning {
2173  ParmVarDecl *OldParm;
2174  ParmVarDecl *NewParm;
2175  QualType PromotedType;
2176};
2177
2178}
2179
2180/// getSpecialMember - get the special member enum for a method.
2181Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2182  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2183    if (Ctor->isDefaultConstructor())
2184      return Sema::CXXDefaultConstructor;
2185
2186    if (Ctor->isCopyConstructor())
2187      return Sema::CXXCopyConstructor;
2188
2189    if (Ctor->isMoveConstructor())
2190      return Sema::CXXMoveConstructor;
2191  } else if (isa<CXXDestructorDecl>(MD)) {
2192    return Sema::CXXDestructor;
2193  } else if (MD->isCopyAssignmentOperator()) {
2194    return Sema::CXXCopyAssignment;
2195  } else if (MD->isMoveAssignmentOperator()) {
2196    return Sema::CXXMoveAssignment;
2197  }
2198
2199  return Sema::CXXInvalid;
2200}
2201
2202/// canRedefineFunction - checks if a function can be redefined. Currently,
2203/// only extern inline functions can be redefined, and even then only in
2204/// GNU89 mode.
2205static bool canRedefineFunction(const FunctionDecl *FD,
2206                                const LangOptions& LangOpts) {
2207  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2208          !LangOpts.CPlusPlus &&
2209          FD->isInlineSpecified() &&
2210          FD->getStorageClass() == SC_Extern);
2211}
2212
2213const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2214  const AttributedType *AT = T->getAs<AttributedType>();
2215  while (AT && !AT->isCallingConv())
2216    AT = AT->getModifiedType()->getAs<AttributedType>();
2217  return AT;
2218}
2219
2220template <typename T>
2221static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2222  const DeclContext *DC = Old->getDeclContext();
2223  if (DC->isRecord())
2224    return false;
2225
2226  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2227  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2228    return true;
2229  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2230    return true;
2231  return false;
2232}
2233
2234/// MergeFunctionDecl - We just parsed a function 'New' from
2235/// declarator D which has the same name and scope as a previous
2236/// declaration 'Old'.  Figure out how to resolve this situation,
2237/// merging decls or emitting diagnostics as appropriate.
2238///
2239/// In C++, New and Old must be declarations that are not
2240/// overloaded. Use IsOverload to determine whether New and Old are
2241/// overloaded, and to select the Old declaration that New should be
2242/// merged with.
2243///
2244/// Returns true if there was an error, false otherwise.
2245bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S,
2246                             bool MergeTypeWithOld) {
2247  // Verify the old decl was also a function.
2248  FunctionDecl *Old = 0;
2249  if (FunctionTemplateDecl *OldFunctionTemplate
2250        = dyn_cast<FunctionTemplateDecl>(OldD))
2251    Old = OldFunctionTemplate->getTemplatedDecl();
2252  else
2253    Old = dyn_cast<FunctionDecl>(OldD);
2254  if (!Old) {
2255    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2256      if (New->getFriendObjectKind()) {
2257        Diag(New->getLocation(), diag::err_using_decl_friend);
2258        Diag(Shadow->getTargetDecl()->getLocation(),
2259             diag::note_using_decl_target);
2260        Diag(Shadow->getUsingDecl()->getLocation(),
2261             diag::note_using_decl) << 0;
2262        return true;
2263      }
2264
2265      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2266      Diag(Shadow->getTargetDecl()->getLocation(),
2267           diag::note_using_decl_target);
2268      Diag(Shadow->getUsingDecl()->getLocation(),
2269           diag::note_using_decl) << 0;
2270      return true;
2271    }
2272
2273    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2274      << New->getDeclName();
2275    Diag(OldD->getLocation(), diag::note_previous_definition);
2276    return true;
2277  }
2278
2279  // If the old declaration is invalid, just give up here.
2280  if (Old->isInvalidDecl())
2281    return true;
2282
2283  // Determine whether the previous declaration was a definition,
2284  // implicit declaration, or a declaration.
2285  diag::kind PrevDiag;
2286  if (Old->isThisDeclarationADefinition())
2287    PrevDiag = diag::note_previous_definition;
2288  else if (Old->isImplicit())
2289    PrevDiag = diag::note_previous_implicit_declaration;
2290  else
2291    PrevDiag = diag::note_previous_declaration;
2292
2293  // Don't complain about this if we're in GNU89 mode and the old function
2294  // is an extern inline function.
2295  // Don't complain about specializations. They are not supposed to have
2296  // storage classes.
2297  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2298      New->getStorageClass() == SC_Static &&
2299      Old->hasExternalFormalLinkage() &&
2300      !New->getTemplateSpecializationInfo() &&
2301      !canRedefineFunction(Old, getLangOpts())) {
2302    if (getLangOpts().MicrosoftExt) {
2303      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2304      Diag(Old->getLocation(), PrevDiag);
2305    } else {
2306      Diag(New->getLocation(), diag::err_static_non_static) << New;
2307      Diag(Old->getLocation(), PrevDiag);
2308      return true;
2309    }
2310  }
2311
2312
2313  // If a function is first declared with a calling convention, but is later
2314  // declared or defined without one, all following decls assume the calling
2315  // convention of the first.
2316  //
2317  // It's OK if a function is first declared without a calling convention,
2318  // but is later declared or defined with the default calling convention.
2319  //
2320  // To test if either decl has an explicit calling convention, we look for
2321  // AttributedType sugar nodes on the type as written.  If they are missing or
2322  // were canonicalized away, we assume the calling convention was implicit.
2323  //
2324  // Note also that we DO NOT return at this point, because we still have
2325  // other tests to run.
2326  QualType OldQType = Context.getCanonicalType(Old->getType());
2327  QualType NewQType = Context.getCanonicalType(New->getType());
2328  const FunctionType *OldType = cast<FunctionType>(OldQType);
2329  const FunctionType *NewType = cast<FunctionType>(NewQType);
2330  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2331  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2332  bool RequiresAdjustment = false;
2333
2334  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2335    FunctionDecl *First = Old->getFirstDeclaration();
2336    const FunctionType *FT =
2337        First->getType().getCanonicalType()->castAs<FunctionType>();
2338    FunctionType::ExtInfo FI = FT->getExtInfo();
2339    bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2340    if (!NewCCExplicit) {
2341      // Inherit the CC from the previous declaration if it was specified
2342      // there but not here.
2343      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2344      RequiresAdjustment = true;
2345    } else {
2346      // Calling conventions aren't compatible, so complain.
2347      bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2348      Diag(New->getLocation(), diag::err_cconv_change)
2349        << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2350        << !FirstCCExplicit
2351        << (!FirstCCExplicit ? "" :
2352            FunctionType::getNameForCallConv(FI.getCC()));
2353
2354      // Put the note on the first decl, since it is the one that matters.
2355      Diag(First->getLocation(), diag::note_previous_declaration);
2356      return true;
2357    }
2358  }
2359
2360  // FIXME: diagnose the other way around?
2361  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2362    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2363    RequiresAdjustment = true;
2364  }
2365
2366  // Merge regparm attribute.
2367  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2368      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2369    if (NewTypeInfo.getHasRegParm()) {
2370      Diag(New->getLocation(), diag::err_regparm_mismatch)
2371        << NewType->getRegParmType()
2372        << OldType->getRegParmType();
2373      Diag(Old->getLocation(), diag::note_previous_declaration);
2374      return true;
2375    }
2376
2377    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2378    RequiresAdjustment = true;
2379  }
2380
2381  // Merge ns_returns_retained attribute.
2382  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2383    if (NewTypeInfo.getProducesResult()) {
2384      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2385      Diag(Old->getLocation(), diag::note_previous_declaration);
2386      return true;
2387    }
2388
2389    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2390    RequiresAdjustment = true;
2391  }
2392
2393  if (RequiresAdjustment) {
2394    const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2395    AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2396    New->setType(QualType(AdjustedType, 0));
2397    NewQType = Context.getCanonicalType(New->getType());
2398    NewType = cast<FunctionType>(NewQType);
2399  }
2400
2401  // If this redeclaration makes the function inline, we may need to add it to
2402  // UndefinedButUsed.
2403  if (!Old->isInlined() && New->isInlined() &&
2404      !New->hasAttr<GNUInlineAttr>() &&
2405      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2406      Old->isUsed(false) &&
2407      !Old->isDefined() && !New->isThisDeclarationADefinition())
2408    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2409                                           SourceLocation()));
2410
2411  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2412  // about it.
2413  if (New->hasAttr<GNUInlineAttr>() &&
2414      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2415    UndefinedButUsed.erase(Old->getCanonicalDecl());
2416  }
2417
2418  if (getLangOpts().CPlusPlus) {
2419    // (C++98 13.1p2):
2420    //   Certain function declarations cannot be overloaded:
2421    //     -- Function declarations that differ only in the return type
2422    //        cannot be overloaded.
2423
2424    // Go back to the type source info to compare the declared return types,
2425    // per C++1y [dcl.type.auto]p13:
2426    //   Redeclarations or specializations of a function or function template
2427    //   with a declared return type that uses a placeholder type shall also
2428    //   use that placeholder, not a deduced type.
2429    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2430      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2431      : OldType)->getResultType();
2432    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2433      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2434      : NewType)->getResultType();
2435    QualType ResQT;
2436    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2437        !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2438          New->isLocalExternDecl())) {
2439      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2440          OldDeclaredReturnType->isObjCObjectPointerType())
2441        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2442      if (ResQT.isNull()) {
2443        if (New->isCXXClassMember() && New->isOutOfLine())
2444          Diag(New->getLocation(),
2445               diag::err_member_def_does_not_match_ret_type) << New;
2446        else
2447          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2448        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2449        return true;
2450      }
2451      else
2452        NewQType = ResQT;
2453    }
2454
2455    QualType OldReturnType = OldType->getResultType();
2456    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2457    if (OldReturnType != NewReturnType) {
2458      // If this function has a deduced return type and has already been
2459      // defined, copy the deduced value from the old declaration.
2460      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2461      if (OldAT && OldAT->isDeduced()) {
2462        New->setType(
2463            SubstAutoType(New->getType(),
2464                          OldAT->isDependentType() ? Context.DependentTy
2465                                                   : OldAT->getDeducedType()));
2466        NewQType = Context.getCanonicalType(
2467            SubstAutoType(NewQType,
2468                          OldAT->isDependentType() ? Context.DependentTy
2469                                                   : OldAT->getDeducedType()));
2470      }
2471    }
2472
2473    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2474    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2475    if (OldMethod && NewMethod) {
2476      // Preserve triviality.
2477      NewMethod->setTrivial(OldMethod->isTrivial());
2478
2479      // MSVC allows explicit template specialization at class scope:
2480      // 2 CXMethodDecls referring to the same function will be injected.
2481      // We don't want a redeclartion error.
2482      bool IsClassScopeExplicitSpecialization =
2483                              OldMethod->isFunctionTemplateSpecialization() &&
2484                              NewMethod->isFunctionTemplateSpecialization();
2485      bool isFriend = NewMethod->getFriendObjectKind();
2486
2487      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2488          !IsClassScopeExplicitSpecialization) {
2489        //    -- Member function declarations with the same name and the
2490        //       same parameter types cannot be overloaded if any of them
2491        //       is a static member function declaration.
2492        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2493          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2494          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2495          return true;
2496        }
2497
2498        // C++ [class.mem]p1:
2499        //   [...] A member shall not be declared twice in the
2500        //   member-specification, except that a nested class or member
2501        //   class template can be declared and then later defined.
2502        if (ActiveTemplateInstantiations.empty()) {
2503          unsigned NewDiag;
2504          if (isa<CXXConstructorDecl>(OldMethod))
2505            NewDiag = diag::err_constructor_redeclared;
2506          else if (isa<CXXDestructorDecl>(NewMethod))
2507            NewDiag = diag::err_destructor_redeclared;
2508          else if (isa<CXXConversionDecl>(NewMethod))
2509            NewDiag = diag::err_conv_function_redeclared;
2510          else
2511            NewDiag = diag::err_member_redeclared;
2512
2513          Diag(New->getLocation(), NewDiag);
2514        } else {
2515          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2516            << New << New->getType();
2517        }
2518        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2519
2520      // Complain if this is an explicit declaration of a special
2521      // member that was initially declared implicitly.
2522      //
2523      // As an exception, it's okay to befriend such methods in order
2524      // to permit the implicit constructor/destructor/operator calls.
2525      } else if (OldMethod->isImplicit()) {
2526        if (isFriend) {
2527          NewMethod->setImplicit();
2528        } else {
2529          Diag(NewMethod->getLocation(),
2530               diag::err_definition_of_implicitly_declared_member)
2531            << New << getSpecialMember(OldMethod);
2532          return true;
2533        }
2534      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2535        Diag(NewMethod->getLocation(),
2536             diag::err_definition_of_explicitly_defaulted_member)
2537          << getSpecialMember(OldMethod);
2538        return true;
2539      }
2540    }
2541
2542    // C++11 [dcl.attr.noreturn]p1:
2543    //   The first declaration of a function shall specify the noreturn
2544    //   attribute if any declaration of that function specifies the noreturn
2545    //   attribute.
2546    if (New->hasAttr<CXX11NoReturnAttr>() &&
2547        !Old->hasAttr<CXX11NoReturnAttr>()) {
2548      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2549           diag::err_noreturn_missing_on_first_decl);
2550      Diag(Old->getFirstDeclaration()->getLocation(),
2551           diag::note_noreturn_missing_first_decl);
2552    }
2553
2554    // C++11 [dcl.attr.depend]p2:
2555    //   The first declaration of a function shall specify the
2556    //   carries_dependency attribute for its declarator-id if any declaration
2557    //   of the function specifies the carries_dependency attribute.
2558    if (New->hasAttr<CarriesDependencyAttr>() &&
2559        !Old->hasAttr<CarriesDependencyAttr>()) {
2560      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2561           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2562      Diag(Old->getFirstDeclaration()->getLocation(),
2563           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2564    }
2565
2566    // (C++98 8.3.5p3):
2567    //   All declarations for a function shall agree exactly in both the
2568    //   return type and the parameter-type-list.
2569    // We also want to respect all the extended bits except noreturn.
2570
2571    // noreturn should now match unless the old type info didn't have it.
2572    QualType OldQTypeForComparison = OldQType;
2573    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2574      assert(OldQType == QualType(OldType, 0));
2575      const FunctionType *OldTypeForComparison
2576        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2577      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2578      assert(OldQTypeForComparison.isCanonical());
2579    }
2580
2581    if (haveIncompatibleLanguageLinkages(Old, New)) {
2582      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2583      Diag(Old->getLocation(), PrevDiag);
2584      return true;
2585    }
2586
2587    if (OldQTypeForComparison == NewQType)
2588      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2589
2590    if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2591        New->isLocalExternDecl()) {
2592      // It's OK if we couldn't merge types for a local function declaraton
2593      // if either the old or new type is dependent. We'll merge the types
2594      // when we instantiate the function.
2595      return false;
2596    }
2597
2598    // Fall through for conflicting redeclarations and redefinitions.
2599  }
2600
2601  // C: Function types need to be compatible, not identical. This handles
2602  // duplicate function decls like "void f(int); void f(enum X);" properly.
2603  if (!getLangOpts().CPlusPlus &&
2604      Context.typesAreCompatible(OldQType, NewQType)) {
2605    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2606    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2607    const FunctionProtoType *OldProto = 0;
2608    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2609        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2610      // The old declaration provided a function prototype, but the
2611      // new declaration does not. Merge in the prototype.
2612      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2613      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2614                                                 OldProto->arg_type_end());
2615      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2616                                         ParamTypes,
2617                                         OldProto->getExtProtoInfo());
2618      New->setType(NewQType);
2619      New->setHasInheritedPrototype();
2620
2621      // Synthesize a parameter for each argument type.
2622      SmallVector<ParmVarDecl*, 16> Params;
2623      for (FunctionProtoType::arg_type_iterator
2624             ParamType = OldProto->arg_type_begin(),
2625             ParamEnd = OldProto->arg_type_end();
2626           ParamType != ParamEnd; ++ParamType) {
2627        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2628                                                 SourceLocation(),
2629                                                 SourceLocation(), 0,
2630                                                 *ParamType, /*TInfo=*/0,
2631                                                 SC_None,
2632                                                 0);
2633        Param->setScopeInfo(0, Params.size());
2634        Param->setImplicit();
2635        Params.push_back(Param);
2636      }
2637
2638      New->setParams(Params);
2639    }
2640
2641    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2642  }
2643
2644  // GNU C permits a K&R definition to follow a prototype declaration
2645  // if the declared types of the parameters in the K&R definition
2646  // match the types in the prototype declaration, even when the
2647  // promoted types of the parameters from the K&R definition differ
2648  // from the types in the prototype. GCC then keeps the types from
2649  // the prototype.
2650  //
2651  // If a variadic prototype is followed by a non-variadic K&R definition,
2652  // the K&R definition becomes variadic.  This is sort of an edge case, but
2653  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2654  // C99 6.9.1p8.
2655  if (!getLangOpts().CPlusPlus &&
2656      Old->hasPrototype() && !New->hasPrototype() &&
2657      New->getType()->getAs<FunctionProtoType>() &&
2658      Old->getNumParams() == New->getNumParams()) {
2659    SmallVector<QualType, 16> ArgTypes;
2660    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2661    const FunctionProtoType *OldProto
2662      = Old->getType()->getAs<FunctionProtoType>();
2663    const FunctionProtoType *NewProto
2664      = New->getType()->getAs<FunctionProtoType>();
2665
2666    // Determine whether this is the GNU C extension.
2667    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2668                                               NewProto->getResultType());
2669    bool LooseCompatible = !MergedReturn.isNull();
2670    for (unsigned Idx = 0, End = Old->getNumParams();
2671         LooseCompatible && Idx != End; ++Idx) {
2672      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2673      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2674      if (Context.typesAreCompatible(OldParm->getType(),
2675                                     NewProto->getArgType(Idx))) {
2676        ArgTypes.push_back(NewParm->getType());
2677      } else if (Context.typesAreCompatible(OldParm->getType(),
2678                                            NewParm->getType(),
2679                                            /*CompareUnqualified=*/true)) {
2680        GNUCompatibleParamWarning Warn
2681          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2682        Warnings.push_back(Warn);
2683        ArgTypes.push_back(NewParm->getType());
2684      } else
2685        LooseCompatible = false;
2686    }
2687
2688    if (LooseCompatible) {
2689      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2690        Diag(Warnings[Warn].NewParm->getLocation(),
2691             diag::ext_param_promoted_not_compatible_with_prototype)
2692          << Warnings[Warn].PromotedType
2693          << Warnings[Warn].OldParm->getType();
2694        if (Warnings[Warn].OldParm->getLocation().isValid())
2695          Diag(Warnings[Warn].OldParm->getLocation(),
2696               diag::note_previous_declaration);
2697      }
2698
2699      if (MergeTypeWithOld)
2700        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2701                                             OldProto->getExtProtoInfo()));
2702      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2703    }
2704
2705    // Fall through to diagnose conflicting types.
2706  }
2707
2708  // A function that has already been declared has been redeclared or
2709  // defined with a different type; show an appropriate diagnostic.
2710
2711  // If the previous declaration was an implicitly-generated builtin
2712  // declaration, then at the very least we should use a specialized note.
2713  unsigned BuiltinID;
2714  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2715    // If it's actually a library-defined builtin function like 'malloc'
2716    // or 'printf', just warn about the incompatible redeclaration.
2717    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2718      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2719      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2720        << Old << Old->getType();
2721
2722      // If this is a global redeclaration, just forget hereafter
2723      // about the "builtin-ness" of the function.
2724      //
2725      // Doing this for local extern declarations is problematic.  If
2726      // the builtin declaration remains visible, a second invalid
2727      // local declaration will produce a hard error; if it doesn't
2728      // remain visible, a single bogus local redeclaration (which is
2729      // actually only a warning) could break all the downstream code.
2730      if (!New->getLexicalDeclContext()->isFunctionOrMethod())
2731        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2732
2733      return false;
2734    }
2735
2736    PrevDiag = diag::note_previous_builtin_declaration;
2737  }
2738
2739  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2740  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2741  return true;
2742}
2743
2744/// \brief Completes the merge of two function declarations that are
2745/// known to be compatible.
2746///
2747/// This routine handles the merging of attributes and other
2748/// properties of function declarations form the old declaration to
2749/// the new declaration, once we know that New is in fact a
2750/// redeclaration of Old.
2751///
2752/// \returns false
2753bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2754                                        Scope *S, bool MergeTypeWithOld) {
2755  // Merge the attributes
2756  mergeDeclAttributes(New, Old);
2757
2758  // Merge "pure" flag.
2759  if (Old->isPure())
2760    New->setPure();
2761
2762  // Merge "used" flag.
2763  New->setIsUsed(Old->isUsed(false));
2764
2765  // Merge attributes from the parameters.  These can mismatch with K&R
2766  // declarations.
2767  if (New->getNumParams() == Old->getNumParams())
2768    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2769      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2770                               *this);
2771
2772  if (getLangOpts().CPlusPlus)
2773    return MergeCXXFunctionDecl(New, Old, S);
2774
2775  // Merge the function types so the we get the composite types for the return
2776  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
2777  // was visible.
2778  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2779  if (!Merged.isNull() && MergeTypeWithOld)
2780    New->setType(Merged);
2781
2782  return false;
2783}
2784
2785
2786void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2787                                ObjCMethodDecl *oldMethod) {
2788
2789  // Merge the attributes, including deprecated/unavailable
2790  AvailabilityMergeKind MergeKind =
2791    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2792                                                   : AMK_Override;
2793  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2794
2795  // Merge attributes from the parameters.
2796  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2797                                       oe = oldMethod->param_end();
2798  for (ObjCMethodDecl::param_iterator
2799         ni = newMethod->param_begin(), ne = newMethod->param_end();
2800       ni != ne && oi != oe; ++ni, ++oi)
2801    mergeParamDeclAttributes(*ni, *oi, *this);
2802
2803  CheckObjCMethodOverride(newMethod, oldMethod);
2804}
2805
2806/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2807/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2808/// emitting diagnostics as appropriate.
2809///
2810/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2811/// to here in AddInitializerToDecl. We can't check them before the initializer
2812/// is attached.
2813void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
2814                             bool MergeTypeWithOld) {
2815  if (New->isInvalidDecl() || Old->isInvalidDecl())
2816    return;
2817
2818  QualType MergedT;
2819  if (getLangOpts().CPlusPlus) {
2820    if (New->getType()->isUndeducedType()) {
2821      // We don't know what the new type is until the initializer is attached.
2822      return;
2823    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2824      // These could still be something that needs exception specs checked.
2825      return MergeVarDeclExceptionSpecs(New, Old);
2826    }
2827    // C++ [basic.link]p10:
2828    //   [...] the types specified by all declarations referring to a given
2829    //   object or function shall be identical, except that declarations for an
2830    //   array object can specify array types that differ by the presence or
2831    //   absence of a major array bound (8.3.4).
2832    else if (Old->getType()->isIncompleteArrayType() &&
2833             New->getType()->isArrayType()) {
2834      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2835      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2836      if (Context.hasSameType(OldArray->getElementType(),
2837                              NewArray->getElementType()))
2838        MergedT = New->getType();
2839    } else if (Old->getType()->isArrayType() &&
2840               New->getType()->isIncompleteArrayType()) {
2841      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2842      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2843      if (Context.hasSameType(OldArray->getElementType(),
2844                              NewArray->getElementType()))
2845        MergedT = Old->getType();
2846    } else if (New->getType()->isObjCObjectPointerType() &&
2847               Old->getType()->isObjCObjectPointerType()) {
2848      MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2849                                              Old->getType());
2850    }
2851  } else {
2852    // C 6.2.7p2:
2853    //   All declarations that refer to the same object or function shall have
2854    //   compatible type.
2855    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2856  }
2857  if (MergedT.isNull()) {
2858    // It's OK if we couldn't merge types if either type is dependent, for a
2859    // block-scope variable. In other cases (static data members of class
2860    // templates, variable templates, ...), we require the types to be
2861    // equivalent.
2862    // FIXME: The C++ standard doesn't say anything about this.
2863    if ((New->getType()->isDependentType() ||
2864         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
2865      // If the old type was dependent, we can't merge with it, so the new type
2866      // becomes dependent for now. We'll reproduce the original type when we
2867      // instantiate the TypeSourceInfo for the variable.
2868      if (!New->getType()->isDependentType() && MergeTypeWithOld)
2869        New->setType(Context.DependentTy);
2870      return;
2871    }
2872
2873    // FIXME: Even if this merging succeeds, some other non-visible declaration
2874    // of this variable might have an incompatible type. For instance:
2875    //
2876    //   extern int arr[];
2877    //   void f() { extern int arr[2]; }
2878    //   void g() { extern int arr[3]; }
2879    //
2880    // Neither C nor C++ requires a diagnostic for this, but we should still try
2881    // to diagnose it.
2882    Diag(New->getLocation(), diag::err_redefinition_different_type)
2883      << New->getDeclName() << New->getType() << Old->getType();
2884    Diag(Old->getLocation(), diag::note_previous_definition);
2885    return New->setInvalidDecl();
2886  }
2887
2888  // Don't actually update the type on the new declaration if the old
2889  // declaration was an extern declaration in a different scope.
2890  if (MergeTypeWithOld)
2891    New->setType(MergedT);
2892}
2893
2894static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
2895                                  LookupResult &Previous) {
2896  // C11 6.2.7p4:
2897  //   For an identifier with internal or external linkage declared
2898  //   in a scope in which a prior declaration of that identifier is
2899  //   visible, if the prior declaration specifies internal or
2900  //   external linkage, the type of the identifier at the later
2901  //   declaration becomes the composite type.
2902  //
2903  // If the variable isn't visible, we do not merge with its type.
2904  if (Previous.isShadowed())
2905    return false;
2906
2907  if (S.getLangOpts().CPlusPlus) {
2908    // C++11 [dcl.array]p3:
2909    //   If there is a preceding declaration of the entity in the same
2910    //   scope in which the bound was specified, an omitted array bound
2911    //   is taken to be the same as in that earlier declaration.
2912    return NewVD->isPreviousDeclInSameBlockScope() ||
2913           (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
2914            !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
2915  } else {
2916    // If the old declaration was function-local, don't merge with its
2917    // type unless we're in the same function.
2918    return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
2919           OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
2920  }
2921}
2922
2923/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2924/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2925/// situation, merging decls or emitting diagnostics as appropriate.
2926///
2927/// Tentative definition rules (C99 6.9.2p2) are checked by
2928/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2929/// definitions here, since the initializer hasn't been attached.
2930///
2931void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2932  // If the new decl is already invalid, don't do any other checking.
2933  if (New->isInvalidDecl())
2934    return;
2935
2936  // Verify the old decl was also a variable or variable template.
2937  VarDecl *Old = 0;
2938  if (Previous.isSingleResult() &&
2939      (Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2940    if (New->getDescribedVarTemplate())
2941      Old = Old->getDescribedVarTemplate() ? Old : 0;
2942    else
2943      Old = Old->getDescribedVarTemplate() ? 0 : Old;
2944  }
2945  if (!Old) {
2946    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2947      << New->getDeclName();
2948    Diag(Previous.getRepresentativeDecl()->getLocation(),
2949         diag::note_previous_definition);
2950    return New->setInvalidDecl();
2951  }
2952
2953  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2954    return;
2955
2956  // C++ [class.mem]p1:
2957  //   A member shall not be declared twice in the member-specification [...]
2958  //
2959  // Here, we need only consider static data members.
2960  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2961    Diag(New->getLocation(), diag::err_duplicate_member)
2962      << New->getIdentifier();
2963    Diag(Old->getLocation(), diag::note_previous_declaration);
2964    New->setInvalidDecl();
2965  }
2966
2967  mergeDeclAttributes(New, Old);
2968  // Warn if an already-declared variable is made a weak_import in a subsequent
2969  // declaration
2970  if (New->getAttr<WeakImportAttr>() &&
2971      Old->getStorageClass() == SC_None &&
2972      !Old->getAttr<WeakImportAttr>()) {
2973    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2974    Diag(Old->getLocation(), diag::note_previous_definition);
2975    // Remove weak_import attribute on new declaration.
2976    New->dropAttr<WeakImportAttr>();
2977  }
2978
2979  // Merge the types.
2980  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
2981
2982  if (New->isInvalidDecl())
2983    return;
2984
2985  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2986  if (New->getStorageClass() == SC_Static &&
2987      !New->isStaticDataMember() &&
2988      Old->hasExternalFormalLinkage()) {
2989    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2990    Diag(Old->getLocation(), diag::note_previous_definition);
2991    return New->setInvalidDecl();
2992  }
2993  // C99 6.2.2p4:
2994  //   For an identifier declared with the storage-class specifier
2995  //   extern in a scope in which a prior declaration of that
2996  //   identifier is visible,23) if the prior declaration specifies
2997  //   internal or external linkage, the linkage of the identifier at
2998  //   the later declaration is the same as the linkage specified at
2999  //   the prior declaration. If no prior declaration is visible, or
3000  //   if the prior declaration specifies no linkage, then the
3001  //   identifier has external linkage.
3002  if (New->hasExternalStorage() && Old->hasLinkage())
3003    /* Okay */;
3004  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3005           !New->isStaticDataMember() &&
3006           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3007    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3008    Diag(Old->getLocation(), diag::note_previous_definition);
3009    return New->setInvalidDecl();
3010  }
3011
3012  // Check if extern is followed by non-extern and vice-versa.
3013  if (New->hasExternalStorage() &&
3014      !Old->hasLinkage() && Old->isLocalVarDecl()) {
3015    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3016    Diag(Old->getLocation(), diag::note_previous_definition);
3017    return New->setInvalidDecl();
3018  }
3019  if (Old->hasLinkage() && New->isLocalVarDecl() &&
3020      !New->hasExternalStorage()) {
3021    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3022    Diag(Old->getLocation(), diag::note_previous_definition);
3023    return New->setInvalidDecl();
3024  }
3025
3026  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3027
3028  // FIXME: The test for external storage here seems wrong? We still
3029  // need to check for mismatches.
3030  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3031      // Don't complain about out-of-line definitions of static members.
3032      !(Old->getLexicalDeclContext()->isRecord() &&
3033        !New->getLexicalDeclContext()->isRecord())) {
3034    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3035    Diag(Old->getLocation(), diag::note_previous_definition);
3036    return New->setInvalidDecl();
3037  }
3038
3039  if (New->getTLSKind() != Old->getTLSKind()) {
3040    if (!Old->getTLSKind()) {
3041      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3042      Diag(Old->getLocation(), diag::note_previous_declaration);
3043    } else if (!New->getTLSKind()) {
3044      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3045      Diag(Old->getLocation(), diag::note_previous_declaration);
3046    } else {
3047      // Do not allow redeclaration to change the variable between requiring
3048      // static and dynamic initialization.
3049      // FIXME: GCC allows this, but uses the TLS keyword on the first
3050      // declaration to determine the kind. Do we need to be compatible here?
3051      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3052        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3053      Diag(Old->getLocation(), diag::note_previous_declaration);
3054    }
3055  }
3056
3057  // C++ doesn't have tentative definitions, so go right ahead and check here.
3058  const VarDecl *Def;
3059  if (getLangOpts().CPlusPlus &&
3060      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3061      (Def = Old->getDefinition())) {
3062    Diag(New->getLocation(), diag::err_redefinition) << New;
3063    Diag(Def->getLocation(), diag::note_previous_definition);
3064    New->setInvalidDecl();
3065    return;
3066  }
3067
3068  if (haveIncompatibleLanguageLinkages(Old, New)) {
3069    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3070    Diag(Old->getLocation(), diag::note_previous_definition);
3071    New->setInvalidDecl();
3072    return;
3073  }
3074
3075  // Merge "used" flag.
3076  New->setIsUsed(Old->isUsed(false));
3077
3078  // Keep a chain of previous declarations.
3079  New->setPreviousDeclaration(Old);
3080
3081  // Inherit access appropriately.
3082  New->setAccess(Old->getAccess());
3083
3084  if (VarTemplateDecl *VTD = New->getDescribedVarTemplate()) {
3085    if (New->isStaticDataMember() && New->isOutOfLine())
3086      VTD->setAccess(New->getAccess());
3087  }
3088}
3089
3090/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3091/// no declarator (e.g. "struct foo;") is parsed.
3092Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3093                                       DeclSpec &DS) {
3094  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3095}
3096
3097static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
3098  if (!S.Context.getLangOpts().CPlusPlus)
3099    return;
3100
3101  if (isa<CXXRecordDecl>(Tag->getParent())) {
3102    // If this tag is the direct child of a class, number it if
3103    // it is anonymous.
3104    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3105      return;
3106    MangleNumberingContext &MCtx =
3107        S.Context.getManglingNumberContext(Tag->getParent());
3108    S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
3109    return;
3110  }
3111
3112  // If this tag isn't a direct child of a class, number it if it is local.
3113  Decl *ManglingContextDecl;
3114  if (MangleNumberingContext *MCtx =
3115          S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3116                                          ManglingContextDecl)) {
3117    S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
3118  }
3119}
3120
3121/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3122/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3123/// parameters to cope with template friend declarations.
3124Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3125                                       DeclSpec &DS,
3126                                       MultiTemplateParamsArg TemplateParams,
3127                                       bool IsExplicitInstantiation) {
3128  Decl *TagD = 0;
3129  TagDecl *Tag = 0;
3130  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3131      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3132      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3133      DS.getTypeSpecType() == DeclSpec::TST_union ||
3134      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3135    TagD = DS.getRepAsDecl();
3136
3137    if (!TagD) // We probably had an error
3138      return 0;
3139
3140    // Note that the above type specs guarantee that the
3141    // type rep is a Decl, whereas in many of the others
3142    // it's a Type.
3143    if (isa<TagDecl>(TagD))
3144      Tag = cast<TagDecl>(TagD);
3145    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3146      Tag = CTD->getTemplatedDecl();
3147  }
3148
3149  if (Tag) {
3150    HandleTagNumbering(*this, Tag);
3151    Tag->setFreeStanding();
3152    if (Tag->isInvalidDecl())
3153      return Tag;
3154  }
3155
3156  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3157    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3158    // or incomplete types shall not be restrict-qualified."
3159    if (TypeQuals & DeclSpec::TQ_restrict)
3160      Diag(DS.getRestrictSpecLoc(),
3161           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3162           << DS.getSourceRange();
3163  }
3164
3165  if (DS.isConstexprSpecified()) {
3166    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3167    // and definitions of functions and variables.
3168    if (Tag)
3169      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3170        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3171            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3172            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3173            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3174    else
3175      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3176    // Don't emit warnings after this error.
3177    return TagD;
3178  }
3179
3180  DiagnoseFunctionSpecifiers(DS);
3181
3182  if (DS.isFriendSpecified()) {
3183    // If we're dealing with a decl but not a TagDecl, assume that
3184    // whatever routines created it handled the friendship aspect.
3185    if (TagD && !Tag)
3186      return 0;
3187    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3188  }
3189
3190  CXXScopeSpec &SS = DS.getTypeSpecScope();
3191  bool IsExplicitSpecialization =
3192    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3193  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3194      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3195    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3196    // nested-name-specifier unless it is an explicit instantiation
3197    // or an explicit specialization.
3198    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3199    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3200      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3201          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3202          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3203          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3204      << SS.getRange();
3205    return 0;
3206  }
3207
3208  // Track whether this decl-specifier declares anything.
3209  bool DeclaresAnything = true;
3210
3211  // Handle anonymous struct definitions.
3212  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3213    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3214        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3215      if (getLangOpts().CPlusPlus ||
3216          Record->getDeclContext()->isRecord())
3217        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3218
3219      DeclaresAnything = false;
3220    }
3221  }
3222
3223  // Check for Microsoft C extension: anonymous struct member.
3224  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3225      CurContext->isRecord() &&
3226      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3227    // Handle 2 kinds of anonymous struct:
3228    //   struct STRUCT;
3229    // and
3230    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3231    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3232    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3233        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3234         DS.getRepAsType().get()->isStructureType())) {
3235      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3236        << DS.getSourceRange();
3237      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3238    }
3239  }
3240
3241  // Skip all the checks below if we have a type error.
3242  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3243      (TagD && TagD->isInvalidDecl()))
3244    return TagD;
3245
3246  if (getLangOpts().CPlusPlus &&
3247      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3248    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3249      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3250          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3251        DeclaresAnything = false;
3252
3253  if (!DS.isMissingDeclaratorOk()) {
3254    // Customize diagnostic for a typedef missing a name.
3255    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3256      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3257        << DS.getSourceRange();
3258    else
3259      DeclaresAnything = false;
3260  }
3261
3262  if (DS.isModulePrivateSpecified() &&
3263      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3264    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3265      << Tag->getTagKind()
3266      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3267
3268  ActOnDocumentableDecl(TagD);
3269
3270  // C 6.7/2:
3271  //   A declaration [...] shall declare at least a declarator [...], a tag,
3272  //   or the members of an enumeration.
3273  // C++ [dcl.dcl]p3:
3274  //   [If there are no declarators], and except for the declaration of an
3275  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3276  //   names into the program, or shall redeclare a name introduced by a
3277  //   previous declaration.
3278  if (!DeclaresAnything) {
3279    // In C, we allow this as a (popular) extension / bug. Don't bother
3280    // producing further diagnostics for redundant qualifiers after this.
3281    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3282    return TagD;
3283  }
3284
3285  // C++ [dcl.stc]p1:
3286  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3287  //   init-declarator-list of the declaration shall not be empty.
3288  // C++ [dcl.fct.spec]p1:
3289  //   If a cv-qualifier appears in a decl-specifier-seq, the
3290  //   init-declarator-list of the declaration shall not be empty.
3291  //
3292  // Spurious qualifiers here appear to be valid in C.
3293  unsigned DiagID = diag::warn_standalone_specifier;
3294  if (getLangOpts().CPlusPlus)
3295    DiagID = diag::ext_standalone_specifier;
3296
3297  // Note that a linkage-specification sets a storage class, but
3298  // 'extern "C" struct foo;' is actually valid and not theoretically
3299  // useless.
3300  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3301    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3302      Diag(DS.getStorageClassSpecLoc(), DiagID)
3303        << DeclSpec::getSpecifierName(SCS);
3304
3305  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3306    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3307      << DeclSpec::getSpecifierName(TSCS);
3308  if (DS.getTypeQualifiers()) {
3309    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3310      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3311    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3312      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3313    // Restrict is covered above.
3314    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3315      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3316  }
3317
3318  // Warn about ignored type attributes, for example:
3319  // __attribute__((aligned)) struct A;
3320  // Attributes should be placed after tag to apply to type declaration.
3321  if (!DS.getAttributes().empty()) {
3322    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3323    if (TypeSpecType == DeclSpec::TST_class ||
3324        TypeSpecType == DeclSpec::TST_struct ||
3325        TypeSpecType == DeclSpec::TST_interface ||
3326        TypeSpecType == DeclSpec::TST_union ||
3327        TypeSpecType == DeclSpec::TST_enum) {
3328      AttributeList* attrs = DS.getAttributes().getList();
3329      while (attrs) {
3330        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3331        << attrs->getName()
3332        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3333            TypeSpecType == DeclSpec::TST_struct ? 1 :
3334            TypeSpecType == DeclSpec::TST_union ? 2 :
3335            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3336        attrs = attrs->getNext();
3337      }
3338    }
3339  }
3340
3341  return TagD;
3342}
3343
3344/// We are trying to inject an anonymous member into the given scope;
3345/// check if there's an existing declaration that can't be overloaded.
3346///
3347/// \return true if this is a forbidden redeclaration
3348static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3349                                         Scope *S,
3350                                         DeclContext *Owner,
3351                                         DeclarationName Name,
3352                                         SourceLocation NameLoc,
3353                                         unsigned diagnostic) {
3354  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3355                 Sema::ForRedeclaration);
3356  if (!SemaRef.LookupName(R, S)) return false;
3357
3358  if (R.getAsSingle<TagDecl>())
3359    return false;
3360
3361  // Pick a representative declaration.
3362  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3363  assert(PrevDecl && "Expected a non-null Decl");
3364
3365  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3366    return false;
3367
3368  SemaRef.Diag(NameLoc, diagnostic) << Name;
3369  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3370
3371  return true;
3372}
3373
3374/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3375/// anonymous struct or union AnonRecord into the owning context Owner
3376/// and scope S. This routine will be invoked just after we realize
3377/// that an unnamed union or struct is actually an anonymous union or
3378/// struct, e.g.,
3379///
3380/// @code
3381/// union {
3382///   int i;
3383///   float f;
3384/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3385///    // f into the surrounding scope.x
3386/// @endcode
3387///
3388/// This routine is recursive, injecting the names of nested anonymous
3389/// structs/unions into the owning context and scope as well.
3390static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3391                                         DeclContext *Owner,
3392                                         RecordDecl *AnonRecord,
3393                                         AccessSpecifier AS,
3394                                         SmallVectorImpl<NamedDecl *> &Chaining,
3395                                         bool MSAnonStruct) {
3396  unsigned diagKind
3397    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3398                            : diag::err_anonymous_struct_member_redecl;
3399
3400  bool Invalid = false;
3401
3402  // Look every FieldDecl and IndirectFieldDecl with a name.
3403  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3404                               DEnd = AnonRecord->decls_end();
3405       D != DEnd; ++D) {
3406    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3407        cast<NamedDecl>(*D)->getDeclName()) {
3408      ValueDecl *VD = cast<ValueDecl>(*D);
3409      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3410                                       VD->getLocation(), diagKind)) {
3411        // C++ [class.union]p2:
3412        //   The names of the members of an anonymous union shall be
3413        //   distinct from the names of any other entity in the
3414        //   scope in which the anonymous union is declared.
3415        Invalid = true;
3416      } else {
3417        // C++ [class.union]p2:
3418        //   For the purpose of name lookup, after the anonymous union
3419        //   definition, the members of the anonymous union are
3420        //   considered to have been defined in the scope in which the
3421        //   anonymous union is declared.
3422        unsigned OldChainingSize = Chaining.size();
3423        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3424          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3425               PE = IF->chain_end(); PI != PE; ++PI)
3426            Chaining.push_back(*PI);
3427        else
3428          Chaining.push_back(VD);
3429
3430        assert(Chaining.size() >= 2);
3431        NamedDecl **NamedChain =
3432          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3433        for (unsigned i = 0; i < Chaining.size(); i++)
3434          NamedChain[i] = Chaining[i];
3435
3436        IndirectFieldDecl* IndirectField =
3437          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3438                                    VD->getIdentifier(), VD->getType(),
3439                                    NamedChain, Chaining.size());
3440
3441        IndirectField->setAccess(AS);
3442        IndirectField->setImplicit();
3443        SemaRef.PushOnScopeChains(IndirectField, S);
3444
3445        // That includes picking up the appropriate access specifier.
3446        if (AS != AS_none) IndirectField->setAccess(AS);
3447
3448        Chaining.resize(OldChainingSize);
3449      }
3450    }
3451  }
3452
3453  return Invalid;
3454}
3455
3456/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3457/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3458/// illegal input values are mapped to SC_None.
3459static StorageClass
3460StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3461  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3462  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3463         "Parser allowed 'typedef' as storage class VarDecl.");
3464  switch (StorageClassSpec) {
3465  case DeclSpec::SCS_unspecified:    return SC_None;
3466  case DeclSpec::SCS_extern:
3467    if (DS.isExternInLinkageSpec())
3468      return SC_None;
3469    return SC_Extern;
3470  case DeclSpec::SCS_static:         return SC_Static;
3471  case DeclSpec::SCS_auto:           return SC_Auto;
3472  case DeclSpec::SCS_register:       return SC_Register;
3473  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3474    // Illegal SCSs map to None: error reporting is up to the caller.
3475  case DeclSpec::SCS_mutable:        // Fall through.
3476  case DeclSpec::SCS_typedef:        return SC_None;
3477  }
3478  llvm_unreachable("unknown storage class specifier");
3479}
3480
3481/// BuildAnonymousStructOrUnion - Handle the declaration of an
3482/// anonymous structure or union. Anonymous unions are a C++ feature
3483/// (C++ [class.union]) and a C11 feature; anonymous structures
3484/// are a C11 feature and GNU C++ extension.
3485Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3486                                             AccessSpecifier AS,
3487                                             RecordDecl *Record) {
3488  DeclContext *Owner = Record->getDeclContext();
3489
3490  // Diagnose whether this anonymous struct/union is an extension.
3491  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3492    Diag(Record->getLocation(), diag::ext_anonymous_union);
3493  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3494    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3495  else if (!Record->isUnion() && !getLangOpts().C11)
3496    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3497
3498  // C and C++ require different kinds of checks for anonymous
3499  // structs/unions.
3500  bool Invalid = false;
3501  if (getLangOpts().CPlusPlus) {
3502    const char* PrevSpec = 0;
3503    unsigned DiagID;
3504    if (Record->isUnion()) {
3505      // C++ [class.union]p6:
3506      //   Anonymous unions declared in a named namespace or in the
3507      //   global namespace shall be declared static.
3508      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3509          (isa<TranslationUnitDecl>(Owner) ||
3510           (isa<NamespaceDecl>(Owner) &&
3511            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3512        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3513          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3514
3515        // Recover by adding 'static'.
3516        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3517                               PrevSpec, DiagID);
3518      }
3519      // C++ [class.union]p6:
3520      //   A storage class is not allowed in a declaration of an
3521      //   anonymous union in a class scope.
3522      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3523               isa<RecordDecl>(Owner)) {
3524        Diag(DS.getStorageClassSpecLoc(),
3525             diag::err_anonymous_union_with_storage_spec)
3526          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3527
3528        // Recover by removing the storage specifier.
3529        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3530                               SourceLocation(),
3531                               PrevSpec, DiagID);
3532      }
3533    }
3534
3535    // Ignore const/volatile/restrict qualifiers.
3536    if (DS.getTypeQualifiers()) {
3537      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3538        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3539          << Record->isUnion() << "const"
3540          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3541      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3542        Diag(DS.getVolatileSpecLoc(),
3543             diag::ext_anonymous_struct_union_qualified)
3544          << Record->isUnion() << "volatile"
3545          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3546      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3547        Diag(DS.getRestrictSpecLoc(),
3548             diag::ext_anonymous_struct_union_qualified)
3549          << Record->isUnion() << "restrict"
3550          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3551      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3552        Diag(DS.getAtomicSpecLoc(),
3553             diag::ext_anonymous_struct_union_qualified)
3554          << Record->isUnion() << "_Atomic"
3555          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3556
3557      DS.ClearTypeQualifiers();
3558    }
3559
3560    // C++ [class.union]p2:
3561    //   The member-specification of an anonymous union shall only
3562    //   define non-static data members. [Note: nested types and
3563    //   functions cannot be declared within an anonymous union. ]
3564    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3565                                 MemEnd = Record->decls_end();
3566         Mem != MemEnd; ++Mem) {
3567      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3568        // C++ [class.union]p3:
3569        //   An anonymous union shall not have private or protected
3570        //   members (clause 11).
3571        assert(FD->getAccess() != AS_none);
3572        if (FD->getAccess() != AS_public) {
3573          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3574            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3575          Invalid = true;
3576        }
3577
3578        // C++ [class.union]p1
3579        //   An object of a class with a non-trivial constructor, a non-trivial
3580        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3581        //   assignment operator cannot be a member of a union, nor can an
3582        //   array of such objects.
3583        if (CheckNontrivialField(FD))
3584          Invalid = true;
3585      } else if ((*Mem)->isImplicit()) {
3586        // Any implicit members are fine.
3587      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3588        // This is a type that showed up in an
3589        // elaborated-type-specifier inside the anonymous struct or
3590        // union, but which actually declares a type outside of the
3591        // anonymous struct or union. It's okay.
3592      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3593        if (!MemRecord->isAnonymousStructOrUnion() &&
3594            MemRecord->getDeclName()) {
3595          // Visual C++ allows type definition in anonymous struct or union.
3596          if (getLangOpts().MicrosoftExt)
3597            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3598              << (int)Record->isUnion();
3599          else {
3600            // This is a nested type declaration.
3601            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3602              << (int)Record->isUnion();
3603            Invalid = true;
3604          }
3605        } else {
3606          // This is an anonymous type definition within another anonymous type.
3607          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3608          // not part of standard C++.
3609          Diag(MemRecord->getLocation(),
3610               diag::ext_anonymous_record_with_anonymous_type)
3611            << (int)Record->isUnion();
3612        }
3613      } else if (isa<AccessSpecDecl>(*Mem)) {
3614        // Any access specifier is fine.
3615      } else {
3616        // We have something that isn't a non-static data
3617        // member. Complain about it.
3618        unsigned DK = diag::err_anonymous_record_bad_member;
3619        if (isa<TypeDecl>(*Mem))
3620          DK = diag::err_anonymous_record_with_type;
3621        else if (isa<FunctionDecl>(*Mem))
3622          DK = diag::err_anonymous_record_with_function;
3623        else if (isa<VarDecl>(*Mem))
3624          DK = diag::err_anonymous_record_with_static;
3625
3626        // Visual C++ allows type definition in anonymous struct or union.
3627        if (getLangOpts().MicrosoftExt &&
3628            DK == diag::err_anonymous_record_with_type)
3629          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3630            << (int)Record->isUnion();
3631        else {
3632          Diag((*Mem)->getLocation(), DK)
3633              << (int)Record->isUnion();
3634          Invalid = true;
3635        }
3636      }
3637    }
3638  }
3639
3640  if (!Record->isUnion() && !Owner->isRecord()) {
3641    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3642      << (int)getLangOpts().CPlusPlus;
3643    Invalid = true;
3644  }
3645
3646  // Mock up a declarator.
3647  Declarator Dc(DS, Declarator::MemberContext);
3648  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3649  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3650
3651  // Create a declaration for this anonymous struct/union.
3652  NamedDecl *Anon = 0;
3653  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3654    Anon = FieldDecl::Create(Context, OwningClass,
3655                             DS.getLocStart(),
3656                             Record->getLocation(),
3657                             /*IdentifierInfo=*/0,
3658                             Context.getTypeDeclType(Record),
3659                             TInfo,
3660                             /*BitWidth=*/0, /*Mutable=*/false,
3661                             /*InitStyle=*/ICIS_NoInit);
3662    Anon->setAccess(AS);
3663    if (getLangOpts().CPlusPlus)
3664      FieldCollector->Add(cast<FieldDecl>(Anon));
3665  } else {
3666    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3667    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3668    if (SCSpec == DeclSpec::SCS_mutable) {
3669      // mutable can only appear on non-static class members, so it's always
3670      // an error here
3671      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3672      Invalid = true;
3673      SC = SC_None;
3674    }
3675
3676    Anon = VarDecl::Create(Context, Owner,
3677                           DS.getLocStart(),
3678                           Record->getLocation(), /*IdentifierInfo=*/0,
3679                           Context.getTypeDeclType(Record),
3680                           TInfo, SC);
3681
3682    // Default-initialize the implicit variable. This initialization will be
3683    // trivial in almost all cases, except if a union member has an in-class
3684    // initializer:
3685    //   union { int n = 0; };
3686    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3687  }
3688  Anon->setImplicit();
3689
3690  // Add the anonymous struct/union object to the current
3691  // context. We'll be referencing this object when we refer to one of
3692  // its members.
3693  Owner->addDecl(Anon);
3694
3695  // Inject the members of the anonymous struct/union into the owning
3696  // context and into the identifier resolver chain for name lookup
3697  // purposes.
3698  SmallVector<NamedDecl*, 2> Chain;
3699  Chain.push_back(Anon);
3700
3701  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3702                                          Chain, false))
3703    Invalid = true;
3704
3705  // Mark this as an anonymous struct/union type. Note that we do not
3706  // do this until after we have already checked and injected the
3707  // members of this anonymous struct/union type, because otherwise
3708  // the members could be injected twice: once by DeclContext when it
3709  // builds its lookup table, and once by
3710  // InjectAnonymousStructOrUnionMembers.
3711  Record->setAnonymousStructOrUnion(true);
3712
3713  if (Invalid)
3714    Anon->setInvalidDecl();
3715
3716  return Anon;
3717}
3718
3719/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3720/// Microsoft C anonymous structure.
3721/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3722/// Example:
3723///
3724/// struct A { int a; };
3725/// struct B { struct A; int b; };
3726///
3727/// void foo() {
3728///   B var;
3729///   var.a = 3;
3730/// }
3731///
3732Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3733                                           RecordDecl *Record) {
3734
3735  // If there is no Record, get the record via the typedef.
3736  if (!Record)
3737    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3738
3739  // Mock up a declarator.
3740  Declarator Dc(DS, Declarator::TypeNameContext);
3741  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3742  assert(TInfo && "couldn't build declarator info for anonymous struct");
3743
3744  // Create a declaration for this anonymous struct.
3745  NamedDecl* Anon = FieldDecl::Create(Context,
3746                             cast<RecordDecl>(CurContext),
3747                             DS.getLocStart(),
3748                             DS.getLocStart(),
3749                             /*IdentifierInfo=*/0,
3750                             Context.getTypeDeclType(Record),
3751                             TInfo,
3752                             /*BitWidth=*/0, /*Mutable=*/false,
3753                             /*InitStyle=*/ICIS_NoInit);
3754  Anon->setImplicit();
3755
3756  // Add the anonymous struct object to the current context.
3757  CurContext->addDecl(Anon);
3758
3759  // Inject the members of the anonymous struct into the current
3760  // context and into the identifier resolver chain for name lookup
3761  // purposes.
3762  SmallVector<NamedDecl*, 2> Chain;
3763  Chain.push_back(Anon);
3764
3765  RecordDecl *RecordDef = Record->getDefinition();
3766  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3767                                                        RecordDef, AS_none,
3768                                                        Chain, true))
3769    Anon->setInvalidDecl();
3770
3771  return Anon;
3772}
3773
3774/// GetNameForDeclarator - Determine the full declaration name for the
3775/// given Declarator.
3776DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3777  return GetNameFromUnqualifiedId(D.getName());
3778}
3779
3780/// \brief Retrieves the declaration name from a parsed unqualified-id.
3781DeclarationNameInfo
3782Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3783  DeclarationNameInfo NameInfo;
3784  NameInfo.setLoc(Name.StartLocation);
3785
3786  switch (Name.getKind()) {
3787
3788  case UnqualifiedId::IK_ImplicitSelfParam:
3789  case UnqualifiedId::IK_Identifier:
3790    NameInfo.setName(Name.Identifier);
3791    NameInfo.setLoc(Name.StartLocation);
3792    return NameInfo;
3793
3794  case UnqualifiedId::IK_OperatorFunctionId:
3795    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3796                                           Name.OperatorFunctionId.Operator));
3797    NameInfo.setLoc(Name.StartLocation);
3798    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3799      = Name.OperatorFunctionId.SymbolLocations[0];
3800    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3801      = Name.EndLocation.getRawEncoding();
3802    return NameInfo;
3803
3804  case UnqualifiedId::IK_LiteralOperatorId:
3805    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3806                                                           Name.Identifier));
3807    NameInfo.setLoc(Name.StartLocation);
3808    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3809    return NameInfo;
3810
3811  case UnqualifiedId::IK_ConversionFunctionId: {
3812    TypeSourceInfo *TInfo;
3813    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3814    if (Ty.isNull())
3815      return DeclarationNameInfo();
3816    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3817                                               Context.getCanonicalType(Ty)));
3818    NameInfo.setLoc(Name.StartLocation);
3819    NameInfo.setNamedTypeInfo(TInfo);
3820    return NameInfo;
3821  }
3822
3823  case UnqualifiedId::IK_ConstructorName: {
3824    TypeSourceInfo *TInfo;
3825    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3826    if (Ty.isNull())
3827      return DeclarationNameInfo();
3828    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3829                                              Context.getCanonicalType(Ty)));
3830    NameInfo.setLoc(Name.StartLocation);
3831    NameInfo.setNamedTypeInfo(TInfo);
3832    return NameInfo;
3833  }
3834
3835  case UnqualifiedId::IK_ConstructorTemplateId: {
3836    // In well-formed code, we can only have a constructor
3837    // template-id that refers to the current context, so go there
3838    // to find the actual type being constructed.
3839    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3840    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3841      return DeclarationNameInfo();
3842
3843    // Determine the type of the class being constructed.
3844    QualType CurClassType = Context.getTypeDeclType(CurClass);
3845
3846    // FIXME: Check two things: that the template-id names the same type as
3847    // CurClassType, and that the template-id does not occur when the name
3848    // was qualified.
3849
3850    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3851                                    Context.getCanonicalType(CurClassType)));
3852    NameInfo.setLoc(Name.StartLocation);
3853    // FIXME: should we retrieve TypeSourceInfo?
3854    NameInfo.setNamedTypeInfo(0);
3855    return NameInfo;
3856  }
3857
3858  case UnqualifiedId::IK_DestructorName: {
3859    TypeSourceInfo *TInfo;
3860    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3861    if (Ty.isNull())
3862      return DeclarationNameInfo();
3863    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3864                                              Context.getCanonicalType(Ty)));
3865    NameInfo.setLoc(Name.StartLocation);
3866    NameInfo.setNamedTypeInfo(TInfo);
3867    return NameInfo;
3868  }
3869
3870  case UnqualifiedId::IK_TemplateId: {
3871    TemplateName TName = Name.TemplateId->Template.get();
3872    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3873    return Context.getNameForTemplate(TName, TNameLoc);
3874  }
3875
3876  } // switch (Name.getKind())
3877
3878  llvm_unreachable("Unknown name kind");
3879}
3880
3881static QualType getCoreType(QualType Ty) {
3882  do {
3883    if (Ty->isPointerType() || Ty->isReferenceType())
3884      Ty = Ty->getPointeeType();
3885    else if (Ty->isArrayType())
3886      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3887    else
3888      return Ty.withoutLocalFastQualifiers();
3889  } while (true);
3890}
3891
3892/// hasSimilarParameters - Determine whether the C++ functions Declaration
3893/// and Definition have "nearly" matching parameters. This heuristic is
3894/// used to improve diagnostics in the case where an out-of-line function
3895/// definition doesn't match any declaration within the class or namespace.
3896/// Also sets Params to the list of indices to the parameters that differ
3897/// between the declaration and the definition. If hasSimilarParameters
3898/// returns true and Params is empty, then all of the parameters match.
3899static bool hasSimilarParameters(ASTContext &Context,
3900                                     FunctionDecl *Declaration,
3901                                     FunctionDecl *Definition,
3902                                     SmallVectorImpl<unsigned> &Params) {
3903  Params.clear();
3904  if (Declaration->param_size() != Definition->param_size())
3905    return false;
3906  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3907    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3908    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3909
3910    // The parameter types are identical
3911    if (Context.hasSameType(DefParamTy, DeclParamTy))
3912      continue;
3913
3914    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3915    QualType DefParamBaseTy = getCoreType(DefParamTy);
3916    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3917    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3918
3919    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3920        (DeclTyName && DeclTyName == DefTyName))
3921      Params.push_back(Idx);
3922    else  // The two parameters aren't even close
3923      return false;
3924  }
3925
3926  return true;
3927}
3928
3929/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3930/// declarator needs to be rebuilt in the current instantiation.
3931/// Any bits of declarator which appear before the name are valid for
3932/// consideration here.  That's specifically the type in the decl spec
3933/// and the base type in any member-pointer chunks.
3934static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3935                                                    DeclarationName Name) {
3936  // The types we specifically need to rebuild are:
3937  //   - typenames, typeofs, and decltypes
3938  //   - types which will become injected class names
3939  // Of course, we also need to rebuild any type referencing such a
3940  // type.  It's safest to just say "dependent", but we call out a
3941  // few cases here.
3942
3943  DeclSpec &DS = D.getMutableDeclSpec();
3944  switch (DS.getTypeSpecType()) {
3945  case DeclSpec::TST_typename:
3946  case DeclSpec::TST_typeofType:
3947  case DeclSpec::TST_underlyingType:
3948  case DeclSpec::TST_atomic: {
3949    // Grab the type from the parser.
3950    TypeSourceInfo *TSI = 0;
3951    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3952    if (T.isNull() || !T->isDependentType()) break;
3953
3954    // Make sure there's a type source info.  This isn't really much
3955    // of a waste; most dependent types should have type source info
3956    // attached already.
3957    if (!TSI)
3958      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3959
3960    // Rebuild the type in the current instantiation.
3961    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3962    if (!TSI) return true;
3963
3964    // Store the new type back in the decl spec.
3965    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3966    DS.UpdateTypeRep(LocType);
3967    break;
3968  }
3969
3970  case DeclSpec::TST_decltype:
3971  case DeclSpec::TST_typeofExpr: {
3972    Expr *E = DS.getRepAsExpr();
3973    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3974    if (Result.isInvalid()) return true;
3975    DS.UpdateExprRep(Result.get());
3976    break;
3977  }
3978
3979  default:
3980    // Nothing to do for these decl specs.
3981    break;
3982  }
3983
3984  // It doesn't matter what order we do this in.
3985  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3986    DeclaratorChunk &Chunk = D.getTypeObject(I);
3987
3988    // The only type information in the declarator which can come
3989    // before the declaration name is the base type of a member
3990    // pointer.
3991    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3992      continue;
3993
3994    // Rebuild the scope specifier in-place.
3995    CXXScopeSpec &SS = Chunk.Mem.Scope();
3996    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3997      return true;
3998  }
3999
4000  return false;
4001}
4002
4003Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4004  D.setFunctionDefinitionKind(FDK_Declaration);
4005  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4006
4007  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4008      Dcl && Dcl->getDeclContext()->isFileContext())
4009    Dcl->setTopLevelDeclInObjCContainer();
4010
4011  return Dcl;
4012}
4013
4014/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4015///   If T is the name of a class, then each of the following shall have a
4016///   name different from T:
4017///     - every static data member of class T;
4018///     - every member function of class T
4019///     - every member of class T that is itself a type;
4020/// \returns true if the declaration name violates these rules.
4021bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4022                                   DeclarationNameInfo NameInfo) {
4023  DeclarationName Name = NameInfo.getName();
4024
4025  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4026    if (Record->getIdentifier() && Record->getDeclName() == Name) {
4027      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4028      return true;
4029    }
4030
4031  return false;
4032}
4033
4034/// \brief Diagnose a declaration whose declarator-id has the given
4035/// nested-name-specifier.
4036///
4037/// \param SS The nested-name-specifier of the declarator-id.
4038///
4039/// \param DC The declaration context to which the nested-name-specifier
4040/// resolves.
4041///
4042/// \param Name The name of the entity being declared.
4043///
4044/// \param Loc The location of the name of the entity being declared.
4045///
4046/// \returns true if we cannot safely recover from this error, false otherwise.
4047bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4048                                        DeclarationName Name,
4049                                      SourceLocation Loc) {
4050  DeclContext *Cur = CurContext;
4051  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4052    Cur = Cur->getParent();
4053
4054  // C++ [dcl.meaning]p1:
4055  //   A declarator-id shall not be qualified except for the definition
4056  //   of a member function (9.3) or static data member (9.4) outside of
4057  //   its class, the definition or explicit instantiation of a function
4058  //   or variable member of a namespace outside of its namespace, or the
4059  //   definition of an explicit specialization outside of its namespace,
4060  //   or the declaration of a friend function that is a member of
4061  //   another class or namespace (11.3). [...]
4062
4063  // The user provided a superfluous scope specifier that refers back to the
4064  // class or namespaces in which the entity is already declared.
4065  //
4066  // class X {
4067  //   void X::f();
4068  // };
4069  if (Cur->Equals(DC)) {
4070    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
4071                                   : diag::err_member_extra_qualification)
4072      << Name << FixItHint::CreateRemoval(SS.getRange());
4073    SS.clear();
4074    return false;
4075  }
4076
4077  // Check whether the qualifying scope encloses the scope of the original
4078  // declaration.
4079  if (!Cur->Encloses(DC)) {
4080    if (Cur->isRecord())
4081      Diag(Loc, diag::err_member_qualification)
4082        << Name << SS.getRange();
4083    else if (isa<TranslationUnitDecl>(DC))
4084      Diag(Loc, diag::err_invalid_declarator_global_scope)
4085        << Name << SS.getRange();
4086    else if (isa<FunctionDecl>(Cur))
4087      Diag(Loc, diag::err_invalid_declarator_in_function)
4088        << Name << SS.getRange();
4089    else if (isa<BlockDecl>(Cur))
4090      Diag(Loc, diag::err_invalid_declarator_in_block)
4091        << Name << SS.getRange();
4092    else
4093      Diag(Loc, diag::err_invalid_declarator_scope)
4094      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4095
4096    return true;
4097  }
4098
4099  if (Cur->isRecord()) {
4100    // Cannot qualify members within a class.
4101    Diag(Loc, diag::err_member_qualification)
4102      << Name << SS.getRange();
4103    SS.clear();
4104
4105    // C++ constructors and destructors with incorrect scopes can break
4106    // our AST invariants by having the wrong underlying types. If
4107    // that's the case, then drop this declaration entirely.
4108    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4109         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4110        !Context.hasSameType(Name.getCXXNameType(),
4111                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4112      return true;
4113
4114    return false;
4115  }
4116
4117  // C++11 [dcl.meaning]p1:
4118  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4119  //   not begin with a decltype-specifer"
4120  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4121  while (SpecLoc.getPrefix())
4122    SpecLoc = SpecLoc.getPrefix();
4123  if (dyn_cast_or_null<DecltypeType>(
4124        SpecLoc.getNestedNameSpecifier()->getAsType()))
4125    Diag(Loc, diag::err_decltype_in_declarator)
4126      << SpecLoc.getTypeLoc().getSourceRange();
4127
4128  return false;
4129}
4130
4131NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4132                                  MultiTemplateParamsArg TemplateParamLists) {
4133  // TODO: consider using NameInfo for diagnostic.
4134  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4135  DeclarationName Name = NameInfo.getName();
4136
4137  // All of these full declarators require an identifier.  If it doesn't have
4138  // one, the ParsedFreeStandingDeclSpec action should be used.
4139  if (!Name) {
4140    if (!D.isInvalidType())  // Reject this if we think it is valid.
4141      Diag(D.getDeclSpec().getLocStart(),
4142           diag::err_declarator_need_ident)
4143        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4144    return 0;
4145  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4146    return 0;
4147
4148  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4149  // we find one that is.
4150  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4151         (S->getFlags() & Scope::TemplateParamScope) != 0)
4152    S = S->getParent();
4153
4154  DeclContext *DC = CurContext;
4155  if (D.getCXXScopeSpec().isInvalid())
4156    D.setInvalidType();
4157  else if (D.getCXXScopeSpec().isSet()) {
4158    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4159                                        UPPC_DeclarationQualifier))
4160      return 0;
4161
4162    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4163    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4164    if (!DC) {
4165      // If we could not compute the declaration context, it's because the
4166      // declaration context is dependent but does not refer to a class,
4167      // class template, or class template partial specialization. Complain
4168      // and return early, to avoid the coming semantic disaster.
4169      Diag(D.getIdentifierLoc(),
4170           diag::err_template_qualified_declarator_no_match)
4171        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4172        << D.getCXXScopeSpec().getRange();
4173      return 0;
4174    }
4175    bool IsDependentContext = DC->isDependentContext();
4176
4177    if (!IsDependentContext &&
4178        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4179      return 0;
4180
4181    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4182      Diag(D.getIdentifierLoc(),
4183           diag::err_member_def_undefined_record)
4184        << Name << DC << D.getCXXScopeSpec().getRange();
4185      D.setInvalidType();
4186    } else if (!D.getDeclSpec().isFriendSpecified()) {
4187      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4188                                      Name, D.getIdentifierLoc())) {
4189        if (DC->isRecord())
4190          return 0;
4191
4192        D.setInvalidType();
4193      }
4194    }
4195
4196    // Check whether we need to rebuild the type of the given
4197    // declaration in the current instantiation.
4198    if (EnteringContext && IsDependentContext &&
4199        TemplateParamLists.size() != 0) {
4200      ContextRAII SavedContext(*this, DC);
4201      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4202        D.setInvalidType();
4203    }
4204  }
4205
4206  if (DiagnoseClassNameShadow(DC, NameInfo))
4207    // If this is a typedef, we'll end up spewing multiple diagnostics.
4208    // Just return early; it's safer.
4209    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4210      return 0;
4211
4212  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4213  QualType R = TInfo->getType();
4214
4215  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4216                                      UPPC_DeclarationType))
4217    D.setInvalidType();
4218
4219  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4220                        ForRedeclaration);
4221
4222  // See if this is a redefinition of a variable in the same scope.
4223  if (!D.getCXXScopeSpec().isSet()) {
4224    bool IsLinkageLookup = false;
4225    bool CreateBuiltins = false;
4226
4227    // If the declaration we're planning to build will be a function
4228    // or object with linkage, then look for another declaration with
4229    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4230    //
4231    // If the declaration we're planning to build will be declared with
4232    // external linkage in the translation unit, create any builtin with
4233    // the same name.
4234    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4235      /* Do nothing*/;
4236    else if (CurContext->isFunctionOrMethod() &&
4237             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4238              R->isFunctionType())) {
4239      IsLinkageLookup = true;
4240      CreateBuiltins =
4241          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4242    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4243               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4244      CreateBuiltins = true;
4245
4246    if (IsLinkageLookup)
4247      Previous.clear(LookupRedeclarationWithLinkage);
4248
4249    LookupName(Previous, S, CreateBuiltins);
4250  } else { // Something like "int foo::x;"
4251    LookupQualifiedName(Previous, DC);
4252
4253    // C++ [dcl.meaning]p1:
4254    //   When the declarator-id is qualified, the declaration shall refer to a
4255    //  previously declared member of the class or namespace to which the
4256    //  qualifier refers (or, in the case of a namespace, of an element of the
4257    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4258    //  thereof; [...]
4259    //
4260    // Note that we already checked the context above, and that we do not have
4261    // enough information to make sure that Previous contains the declaration
4262    // we want to match. For example, given:
4263    //
4264    //   class X {
4265    //     void f();
4266    //     void f(float);
4267    //   };
4268    //
4269    //   void X::f(int) { } // ill-formed
4270    //
4271    // In this case, Previous will point to the overload set
4272    // containing the two f's declared in X, but neither of them
4273    // matches.
4274
4275    // C++ [dcl.meaning]p1:
4276    //   [...] the member shall not merely have been introduced by a
4277    //   using-declaration in the scope of the class or namespace nominated by
4278    //   the nested-name-specifier of the declarator-id.
4279    RemoveUsingDecls(Previous);
4280  }
4281
4282  if (Previous.isSingleResult() &&
4283      Previous.getFoundDecl()->isTemplateParameter()) {
4284    // Maybe we will complain about the shadowed template parameter.
4285    if (!D.isInvalidType())
4286      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4287                                      Previous.getFoundDecl());
4288
4289    // Just pretend that we didn't see the previous declaration.
4290    Previous.clear();
4291  }
4292
4293  // In C++, the previous declaration we find might be a tag type
4294  // (class or enum). In this case, the new declaration will hide the
4295  // tag type. Note that this does does not apply if we're declaring a
4296  // typedef (C++ [dcl.typedef]p4).
4297  if (Previous.isSingleTagDecl() &&
4298      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4299    Previous.clear();
4300
4301  // Check that there are no default arguments other than in the parameters
4302  // of a function declaration (C++ only).
4303  if (getLangOpts().CPlusPlus)
4304    CheckExtraCXXDefaultArguments(D);
4305
4306  NamedDecl *New;
4307
4308  bool AddToScope = true;
4309  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4310    if (TemplateParamLists.size()) {
4311      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4312      return 0;
4313    }
4314
4315    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4316  } else if (R->isFunctionType()) {
4317    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4318                                  TemplateParamLists,
4319                                  AddToScope);
4320  } else {
4321    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4322                                  AddToScope);
4323  }
4324
4325  if (New == 0)
4326    return 0;
4327
4328  // If this has an identifier and is not an invalid redeclaration or
4329  // function template specialization, add it to the scope stack.
4330  if (New->getDeclName() && AddToScope &&
4331       !(D.isRedeclaration() && New->isInvalidDecl())) {
4332    // Only make a locally-scoped extern declaration visible if it is the first
4333    // declaration of this entity. Qualified lookup for such an entity should
4334    // only find this declaration if there is no visible declaration of it.
4335    bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4336    PushOnScopeChains(New, S, AddToContext);
4337    if (!AddToContext)
4338      CurContext->addHiddenDecl(New);
4339  }
4340
4341  return New;
4342}
4343
4344/// Helper method to turn variable array types into constant array
4345/// types in certain situations which would otherwise be errors (for
4346/// GCC compatibility).
4347static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4348                                                    ASTContext &Context,
4349                                                    bool &SizeIsNegative,
4350                                                    llvm::APSInt &Oversized) {
4351  // This method tries to turn a variable array into a constant
4352  // array even when the size isn't an ICE.  This is necessary
4353  // for compatibility with code that depends on gcc's buggy
4354  // constant expression folding, like struct {char x[(int)(char*)2];}
4355  SizeIsNegative = false;
4356  Oversized = 0;
4357
4358  if (T->isDependentType())
4359    return QualType();
4360
4361  QualifierCollector Qs;
4362  const Type *Ty = Qs.strip(T);
4363
4364  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4365    QualType Pointee = PTy->getPointeeType();
4366    QualType FixedType =
4367        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4368                                            Oversized);
4369    if (FixedType.isNull()) return FixedType;
4370    FixedType = Context.getPointerType(FixedType);
4371    return Qs.apply(Context, FixedType);
4372  }
4373  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4374    QualType Inner = PTy->getInnerType();
4375    QualType FixedType =
4376        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4377                                            Oversized);
4378    if (FixedType.isNull()) return FixedType;
4379    FixedType = Context.getParenType(FixedType);
4380    return Qs.apply(Context, FixedType);
4381  }
4382
4383  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4384  if (!VLATy)
4385    return QualType();
4386  // FIXME: We should probably handle this case
4387  if (VLATy->getElementType()->isVariablyModifiedType())
4388    return QualType();
4389
4390  llvm::APSInt Res;
4391  if (!VLATy->getSizeExpr() ||
4392      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4393    return QualType();
4394
4395  // Check whether the array size is negative.
4396  if (Res.isSigned() && Res.isNegative()) {
4397    SizeIsNegative = true;
4398    return QualType();
4399  }
4400
4401  // Check whether the array is too large to be addressed.
4402  unsigned ActiveSizeBits
4403    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4404                                              Res);
4405  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4406    Oversized = Res;
4407    return QualType();
4408  }
4409
4410  return Context.getConstantArrayType(VLATy->getElementType(),
4411                                      Res, ArrayType::Normal, 0);
4412}
4413
4414static void
4415FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4416  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4417    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4418    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4419                                      DstPTL.getPointeeLoc());
4420    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4421    return;
4422  }
4423  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4424    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4425    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4426                                      DstPTL.getInnerLoc());
4427    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4428    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4429    return;
4430  }
4431  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4432  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4433  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4434  TypeLoc DstElemTL = DstATL.getElementLoc();
4435  DstElemTL.initializeFullCopy(SrcElemTL);
4436  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4437  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4438  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4439}
4440
4441/// Helper method to turn variable array types into constant array
4442/// types in certain situations which would otherwise be errors (for
4443/// GCC compatibility).
4444static TypeSourceInfo*
4445TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4446                                              ASTContext &Context,
4447                                              bool &SizeIsNegative,
4448                                              llvm::APSInt &Oversized) {
4449  QualType FixedTy
4450    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4451                                          SizeIsNegative, Oversized);
4452  if (FixedTy.isNull())
4453    return 0;
4454  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4455  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4456                                    FixedTInfo->getTypeLoc());
4457  return FixedTInfo;
4458}
4459
4460/// \brief Register the given locally-scoped extern "C" declaration so
4461/// that it can be found later for redeclarations. We include any extern "C"
4462/// declaration that is not visible in the translation unit here, not just
4463/// function-scope declarations.
4464void
4465Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4466  if (!getLangOpts().CPlusPlus &&
4467      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4468    // Don't need to track declarations in the TU in C.
4469    return;
4470
4471  // Note that we have a locally-scoped external with this name.
4472  // FIXME: There can be multiple such declarations if they are functions marked
4473  // __attribute__((overloadable)) declared in function scope in C.
4474  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4475}
4476
4477NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4478  if (ExternalSource) {
4479    // Load locally-scoped external decls from the external source.
4480    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4481    SmallVector<NamedDecl *, 4> Decls;
4482    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4483    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4484      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4485        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4486      if (Pos == LocallyScopedExternCDecls.end())
4487        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4488    }
4489  }
4490
4491  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4492  return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
4493}
4494
4495/// \brief Diagnose function specifiers on a declaration of an identifier that
4496/// does not identify a function.
4497void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4498  // FIXME: We should probably indicate the identifier in question to avoid
4499  // confusion for constructs like "inline int a(), b;"
4500  if (DS.isInlineSpecified())
4501    Diag(DS.getInlineSpecLoc(),
4502         diag::err_inline_non_function);
4503
4504  if (DS.isVirtualSpecified())
4505    Diag(DS.getVirtualSpecLoc(),
4506         diag::err_virtual_non_function);
4507
4508  if (DS.isExplicitSpecified())
4509    Diag(DS.getExplicitSpecLoc(),
4510         diag::err_explicit_non_function);
4511
4512  if (DS.isNoreturnSpecified())
4513    Diag(DS.getNoreturnSpecLoc(),
4514         diag::err_noreturn_non_function);
4515}
4516
4517NamedDecl*
4518Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4519                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4520  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4521  if (D.getCXXScopeSpec().isSet()) {
4522    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4523      << D.getCXXScopeSpec().getRange();
4524    D.setInvalidType();
4525    // Pretend we didn't see the scope specifier.
4526    DC = CurContext;
4527    Previous.clear();
4528  }
4529
4530  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4531
4532  if (D.getDeclSpec().isConstexprSpecified())
4533    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4534      << 1;
4535
4536  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4537    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4538      << D.getName().getSourceRange();
4539    return 0;
4540  }
4541
4542  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4543  if (!NewTD) return 0;
4544
4545  // Handle attributes prior to checking for duplicates in MergeVarDecl
4546  ProcessDeclAttributes(S, NewTD, D);
4547
4548  CheckTypedefForVariablyModifiedType(S, NewTD);
4549
4550  bool Redeclaration = D.isRedeclaration();
4551  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4552  D.setRedeclaration(Redeclaration);
4553  return ND;
4554}
4555
4556void
4557Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4558  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4559  // then it shall have block scope.
4560  // Note that variably modified types must be fixed before merging the decl so
4561  // that redeclarations will match.
4562  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4563  QualType T = TInfo->getType();
4564  if (T->isVariablyModifiedType()) {
4565    getCurFunction()->setHasBranchProtectedScope();
4566
4567    if (S->getFnParent() == 0) {
4568      bool SizeIsNegative;
4569      llvm::APSInt Oversized;
4570      TypeSourceInfo *FixedTInfo =
4571        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4572                                                      SizeIsNegative,
4573                                                      Oversized);
4574      if (FixedTInfo) {
4575        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4576        NewTD->setTypeSourceInfo(FixedTInfo);
4577      } else {
4578        if (SizeIsNegative)
4579          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4580        else if (T->isVariableArrayType())
4581          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4582        else if (Oversized.getBoolValue())
4583          Diag(NewTD->getLocation(), diag::err_array_too_large)
4584            << Oversized.toString(10);
4585        else
4586          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4587        NewTD->setInvalidDecl();
4588      }
4589    }
4590  }
4591}
4592
4593
4594/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4595/// declares a typedef-name, either using the 'typedef' type specifier or via
4596/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4597NamedDecl*
4598Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4599                           LookupResult &Previous, bool &Redeclaration) {
4600  // Merge the decl with the existing one if appropriate. If the decl is
4601  // in an outer scope, it isn't the same thing.
4602  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4603                       /*ExplicitInstantiationOrSpecialization=*/false);
4604  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4605  if (!Previous.empty()) {
4606    Redeclaration = true;
4607    MergeTypedefNameDecl(NewTD, Previous);
4608  }
4609
4610  // If this is the C FILE type, notify the AST context.
4611  if (IdentifierInfo *II = NewTD->getIdentifier())
4612    if (!NewTD->isInvalidDecl() &&
4613        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4614      if (II->isStr("FILE"))
4615        Context.setFILEDecl(NewTD);
4616      else if (II->isStr("jmp_buf"))
4617        Context.setjmp_bufDecl(NewTD);
4618      else if (II->isStr("sigjmp_buf"))
4619        Context.setsigjmp_bufDecl(NewTD);
4620      else if (II->isStr("ucontext_t"))
4621        Context.setucontext_tDecl(NewTD);
4622    }
4623
4624  return NewTD;
4625}
4626
4627/// \brief Determines whether the given declaration is an out-of-scope
4628/// previous declaration.
4629///
4630/// This routine should be invoked when name lookup has found a
4631/// previous declaration (PrevDecl) that is not in the scope where a
4632/// new declaration by the same name is being introduced. If the new
4633/// declaration occurs in a local scope, previous declarations with
4634/// linkage may still be considered previous declarations (C99
4635/// 6.2.2p4-5, C++ [basic.link]p6).
4636///
4637/// \param PrevDecl the previous declaration found by name
4638/// lookup
4639///
4640/// \param DC the context in which the new declaration is being
4641/// declared.
4642///
4643/// \returns true if PrevDecl is an out-of-scope previous declaration
4644/// for a new delcaration with the same name.
4645static bool
4646isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4647                                ASTContext &Context) {
4648  if (!PrevDecl)
4649    return false;
4650
4651  if (!PrevDecl->hasLinkage())
4652    return false;
4653
4654  if (Context.getLangOpts().CPlusPlus) {
4655    // C++ [basic.link]p6:
4656    //   If there is a visible declaration of an entity with linkage
4657    //   having the same name and type, ignoring entities declared
4658    //   outside the innermost enclosing namespace scope, the block
4659    //   scope declaration declares that same entity and receives the
4660    //   linkage of the previous declaration.
4661    DeclContext *OuterContext = DC->getRedeclContext();
4662    if (!OuterContext->isFunctionOrMethod())
4663      // This rule only applies to block-scope declarations.
4664      return false;
4665
4666    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4667    if (PrevOuterContext->isRecord())
4668      // We found a member function: ignore it.
4669      return false;
4670
4671    // Find the innermost enclosing namespace for the new and
4672    // previous declarations.
4673    OuterContext = OuterContext->getEnclosingNamespaceContext();
4674    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4675
4676    // The previous declaration is in a different namespace, so it
4677    // isn't the same function.
4678    if (!OuterContext->Equals(PrevOuterContext))
4679      return false;
4680  }
4681
4682  return true;
4683}
4684
4685static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4686  CXXScopeSpec &SS = D.getCXXScopeSpec();
4687  if (!SS.isSet()) return;
4688  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4689}
4690
4691bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4692  QualType type = decl->getType();
4693  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4694  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4695    // Various kinds of declaration aren't allowed to be __autoreleasing.
4696    unsigned kind = -1U;
4697    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4698      if (var->hasAttr<BlocksAttr>())
4699        kind = 0; // __block
4700      else if (!var->hasLocalStorage())
4701        kind = 1; // global
4702    } else if (isa<ObjCIvarDecl>(decl)) {
4703      kind = 3; // ivar
4704    } else if (isa<FieldDecl>(decl)) {
4705      kind = 2; // field
4706    }
4707
4708    if (kind != -1U) {
4709      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4710        << kind;
4711    }
4712  } else if (lifetime == Qualifiers::OCL_None) {
4713    // Try to infer lifetime.
4714    if (!type->isObjCLifetimeType())
4715      return false;
4716
4717    lifetime = type->getObjCARCImplicitLifetime();
4718    type = Context.getLifetimeQualifiedType(type, lifetime);
4719    decl->setType(type);
4720  }
4721
4722  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4723    // Thread-local variables cannot have lifetime.
4724    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4725        var->getTLSKind()) {
4726      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4727        << var->getType();
4728      return true;
4729    }
4730  }
4731
4732  return false;
4733}
4734
4735static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4736  // 'weak' only applies to declarations with external linkage.
4737  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4738    if (!ND.isExternallyVisible()) {
4739      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4740      ND.dropAttr<WeakAttr>();
4741    }
4742  }
4743  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4744    if (ND.isExternallyVisible()) {
4745      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4746      ND.dropAttr<WeakRefAttr>();
4747    }
4748  }
4749
4750  // 'selectany' only applies to externally visible varable declarations.
4751  // It does not apply to functions.
4752  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4753    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4754      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4755      ND.dropAttr<SelectAnyAttr>();
4756    }
4757  }
4758}
4759
4760/// Given that we are within the definition of the given function,
4761/// will that definition behave like C99's 'inline', where the
4762/// definition is discarded except for optimization purposes?
4763static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4764  // Try to avoid calling GetGVALinkageForFunction.
4765
4766  // All cases of this require the 'inline' keyword.
4767  if (!FD->isInlined()) return false;
4768
4769  // This is only possible in C++ with the gnu_inline attribute.
4770  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4771    return false;
4772
4773  // Okay, go ahead and call the relatively-more-expensive function.
4774
4775#ifndef NDEBUG
4776  // AST quite reasonably asserts that it's working on a function
4777  // definition.  We don't really have a way to tell it that we're
4778  // currently defining the function, so just lie to it in +Asserts
4779  // builds.  This is an awful hack.
4780  FD->setLazyBody(1);
4781#endif
4782
4783  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4784
4785#ifndef NDEBUG
4786  FD->setLazyBody(0);
4787#endif
4788
4789  return isC99Inline;
4790}
4791
4792/// Determine whether a variable is extern "C" prior to attaching
4793/// an initializer. We can't just call isExternC() here, because that
4794/// will also compute and cache whether the declaration is externally
4795/// visible, which might change when we attach the initializer.
4796///
4797/// This can only be used if the declaration is known to not be a
4798/// redeclaration of an internal linkage declaration.
4799///
4800/// For instance:
4801///
4802///   auto x = []{};
4803///
4804/// Attaching the initializer here makes this declaration not externally
4805/// visible, because its type has internal linkage.
4806///
4807/// FIXME: This is a hack.
4808template<typename T>
4809static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4810  if (S.getLangOpts().CPlusPlus) {
4811    // In C++, the overloadable attribute negates the effects of extern "C".
4812    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4813      return false;
4814  }
4815  return D->isExternC();
4816}
4817
4818static bool shouldConsiderLinkage(const VarDecl *VD) {
4819  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4820  if (DC->isFunctionOrMethod())
4821    return VD->hasExternalStorage();
4822  if (DC->isFileContext())
4823    return true;
4824  if (DC->isRecord())
4825    return false;
4826  llvm_unreachable("Unexpected context");
4827}
4828
4829static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4830  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4831  if (DC->isFileContext() || DC->isFunctionOrMethod())
4832    return true;
4833  if (DC->isRecord())
4834    return false;
4835  llvm_unreachable("Unexpected context");
4836}
4837
4838/// Adjust the \c DeclContext for a function or variable that might be a
4839/// function-local external declaration.
4840bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
4841  if (!DC->isFunctionOrMethod())
4842    return false;
4843
4844  // If this is a local extern function or variable declared within a function
4845  // template, don't add it into the enclosing namespace scope until it is
4846  // instantiated; it might have a dependent type right now.
4847  if (DC->isDependentContext())
4848    return true;
4849
4850  // C++11 [basic.link]p7:
4851  //   When a block scope declaration of an entity with linkage is not found to
4852  //   refer to some other declaration, then that entity is a member of the
4853  //   innermost enclosing namespace.
4854  //
4855  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
4856  // semantically-enclosing namespace, not a lexically-enclosing one.
4857  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
4858    DC = DC->getParent();
4859  return true;
4860}
4861
4862NamedDecl *
4863Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4864                              TypeSourceInfo *TInfo, LookupResult &Previous,
4865                              MultiTemplateParamsArg TemplateParamLists,
4866                              bool &AddToScope) {
4867  QualType R = TInfo->getType();
4868  DeclarationName Name = GetNameForDeclarator(D).getName();
4869
4870  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4871  VarDecl::StorageClass SC =
4872    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4873
4874  DeclContext *OriginalDC = DC;
4875  bool IsLocalExternDecl = SC == SC_Extern &&
4876                           adjustContextForLocalExternDecl(DC);
4877
4878  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4879    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4880    // half array type (unless the cl_khr_fp16 extension is enabled).
4881    if (Context.getBaseElementType(R)->isHalfType()) {
4882      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4883      D.setInvalidType();
4884    }
4885  }
4886
4887  if (SCSpec == DeclSpec::SCS_mutable) {
4888    // mutable can only appear on non-static class members, so it's always
4889    // an error here
4890    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4891    D.setInvalidType();
4892    SC = SC_None;
4893  }
4894
4895  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4896      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4897                              D.getDeclSpec().getStorageClassSpecLoc())) {
4898    // In C++11, the 'register' storage class specifier is deprecated.
4899    // Suppress the warning in system macros, it's used in macros in some
4900    // popular C system headers, such as in glibc's htonl() macro.
4901    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4902         diag::warn_deprecated_register)
4903      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4904  }
4905
4906  IdentifierInfo *II = Name.getAsIdentifierInfo();
4907  if (!II) {
4908    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4909      << Name;
4910    return 0;
4911  }
4912
4913  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4914
4915  if (!DC->isRecord() && S->getFnParent() == 0) {
4916    // C99 6.9p2: The storage-class specifiers auto and register shall not
4917    // appear in the declaration specifiers in an external declaration.
4918    if (SC == SC_Auto || SC == SC_Register) {
4919      // If this is a register variable with an asm label specified, then this
4920      // is a GNU extension.
4921      if (SC == SC_Register && D.getAsmLabel())
4922        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4923      else
4924        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4925      D.setInvalidType();
4926    }
4927  }
4928
4929  if (getLangOpts().OpenCL) {
4930    // Set up the special work-group-local storage class for variables in the
4931    // OpenCL __local address space.
4932    if (R.getAddressSpace() == LangAS::opencl_local) {
4933      SC = SC_OpenCLWorkGroupLocal;
4934    }
4935
4936    // OpenCL v1.2 s6.9.b p4:
4937    // The sampler type cannot be used with the __local and __global address
4938    // space qualifiers.
4939    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4940      R.getAddressSpace() == LangAS::opencl_global)) {
4941      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4942    }
4943
4944    // OpenCL 1.2 spec, p6.9 r:
4945    // The event type cannot be used to declare a program scope variable.
4946    // The event type cannot be used with the __local, __constant and __global
4947    // address space qualifiers.
4948    if (R->isEventT()) {
4949      if (S->getParent() == 0) {
4950        Diag(D.getLocStart(), diag::err_event_t_global_var);
4951        D.setInvalidType();
4952      }
4953
4954      if (R.getAddressSpace()) {
4955        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4956        D.setInvalidType();
4957      }
4958    }
4959  }
4960
4961  bool IsExplicitSpecialization = false;
4962  bool IsVariableTemplateSpecialization = false;
4963  bool IsPartialSpecialization = false;
4964  bool IsVariableTemplate = false;
4965  VarTemplateDecl *PrevVarTemplate = 0;
4966  VarDecl *NewVD = 0;
4967  VarTemplateDecl *NewTemplate = 0;
4968  if (!getLangOpts().CPlusPlus) {
4969    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4970                            D.getIdentifierLoc(), II,
4971                            R, TInfo, SC);
4972
4973    if (D.isInvalidType())
4974      NewVD->setInvalidDecl();
4975  } else {
4976    bool Invalid = false;
4977
4978    if (DC->isRecord() && !CurContext->isRecord()) {
4979      // This is an out-of-line definition of a static data member.
4980      switch (SC) {
4981      case SC_None:
4982        break;
4983      case SC_Static:
4984        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4985             diag::err_static_out_of_line)
4986          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4987        break;
4988      case SC_Auto:
4989      case SC_Register:
4990      case SC_Extern:
4991        // [dcl.stc] p2: The auto or register specifiers shall be applied only
4992        // to names of variables declared in a block or to function parameters.
4993        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4994        // of class members
4995
4996        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4997             diag::err_storage_class_for_static_member)
4998          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4999        break;
5000      case SC_PrivateExtern:
5001        llvm_unreachable("C storage class in c++!");
5002      case SC_OpenCLWorkGroupLocal:
5003        llvm_unreachable("OpenCL storage class in c++!");
5004      }
5005    }
5006
5007    if (SC == SC_Static && CurContext->isRecord()) {
5008      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5009        if (RD->isLocalClass())
5010          Diag(D.getIdentifierLoc(),
5011               diag::err_static_data_member_not_allowed_in_local_class)
5012            << Name << RD->getDeclName();
5013
5014        // C++98 [class.union]p1: If a union contains a static data member,
5015        // the program is ill-formed. C++11 drops this restriction.
5016        if (RD->isUnion())
5017          Diag(D.getIdentifierLoc(),
5018               getLangOpts().CPlusPlus11
5019                 ? diag::warn_cxx98_compat_static_data_member_in_union
5020                 : diag::ext_static_data_member_in_union) << Name;
5021        // We conservatively disallow static data members in anonymous structs.
5022        else if (!RD->getDeclName())
5023          Diag(D.getIdentifierLoc(),
5024               diag::err_static_data_member_not_allowed_in_anon_struct)
5025            << Name << RD->isUnion();
5026      }
5027    }
5028
5029    NamedDecl *PrevDecl = 0;
5030    if (Previous.begin() != Previous.end())
5031      PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5032    PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
5033
5034    // Match up the template parameter lists with the scope specifier, then
5035    // determine whether we have a template or a template specialization.
5036    TemplateParameterList *TemplateParams =
5037        MatchTemplateParametersToScopeSpecifier(
5038            D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5039            D.getCXXScopeSpec(), TemplateParamLists,
5040            /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5041    if (TemplateParams) {
5042      if (!TemplateParams->size() &&
5043          D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5044        // There is an extraneous 'template<>' for this variable. Complain
5045        // about it, but allow the declaration of the variable.
5046        Diag(TemplateParams->getTemplateLoc(),
5047             diag::err_template_variable_noparams)
5048          << II
5049          << SourceRange(TemplateParams->getTemplateLoc(),
5050                         TemplateParams->getRAngleLoc());
5051      } else {
5052        // Only C++1y supports variable templates (N3651).
5053        Diag(D.getIdentifierLoc(),
5054             getLangOpts().CPlusPlus1y
5055                 ? diag::warn_cxx11_compat_variable_template
5056                 : diag::ext_variable_template);
5057
5058        if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5059          // This is an explicit specialization or a partial specialization.
5060          // Check that we can declare a specialization here
5061
5062          IsVariableTemplateSpecialization = true;
5063          IsPartialSpecialization = TemplateParams->size() > 0;
5064
5065        } else { // if (TemplateParams->size() > 0)
5066          // This is a template declaration.
5067          IsVariableTemplate = true;
5068
5069          // Check that we can declare a template here.
5070          if (CheckTemplateDeclScope(S, TemplateParams))
5071            return 0;
5072
5073          // If there is a previous declaration with the same name, check
5074          // whether this is a valid redeclaration.
5075          if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
5076            PrevDecl = PrevVarTemplate = 0;
5077
5078          if (PrevVarTemplate) {
5079            // Ensure that the template parameter lists are compatible.
5080            if (!TemplateParameterListsAreEqual(
5081                    TemplateParams, PrevVarTemplate->getTemplateParameters(),
5082                    /*Complain=*/true, TPL_TemplateMatch))
5083              return 0;
5084          } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
5085            // Maybe we will complain about the shadowed template parameter.
5086            DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5087
5088            // Just pretend that we didn't see the previous declaration.
5089            PrevDecl = 0;
5090          } else if (PrevDecl) {
5091            // C++ [temp]p5:
5092            // ... a template name declared in namespace scope or in class
5093            // scope shall be unique in that scope.
5094            Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
5095                << Name;
5096            Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5097            return 0;
5098          }
5099
5100          // Check the template parameter list of this declaration, possibly
5101          // merging in the template parameter list from the previous variable
5102          // template declaration.
5103          if (CheckTemplateParameterList(
5104                  TemplateParams,
5105                  PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5106                                  : 0,
5107                  (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5108                   DC->isDependentContext())
5109                      ? TPC_ClassTemplateMember
5110                      : TPC_VarTemplate))
5111            Invalid = true;
5112
5113          if (D.getCXXScopeSpec().isSet()) {
5114            // If the name of the template was qualified, we must be defining
5115            // the template out-of-line.
5116            if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
5117                !PrevVarTemplate) {
5118              Diag(D.getIdentifierLoc(), diag::err_member_decl_does_not_match)
5119                  << Name << DC << /*IsDefinition*/true
5120                  << D.getCXXScopeSpec().getRange();
5121              Invalid = true;
5122            }
5123          }
5124        }
5125      }
5126    } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5127      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5128
5129      // We have encountered something that the user meant to be a
5130      // specialization (because it has explicitly-specified template
5131      // arguments) but that was not introduced with a "template<>" (or had
5132      // too few of them).
5133      // FIXME: Differentiate between attempts for explicit instantiations
5134      // (starting with "template") and the rest.
5135      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5136          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5137          << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
5138                                        "template<> ");
5139      IsVariableTemplateSpecialization = true;
5140    }
5141
5142    if (IsVariableTemplateSpecialization) {
5143      if (!PrevVarTemplate) {
5144        Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
5145            << IsPartialSpecialization;
5146        return 0;
5147      }
5148
5149      SourceLocation TemplateKWLoc =
5150          TemplateParamLists.size() > 0
5151              ? TemplateParamLists[0]->getTemplateLoc()
5152              : SourceLocation();
5153      DeclResult Res = ActOnVarTemplateSpecialization(
5154          S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5155          IsPartialSpecialization);
5156      if (Res.isInvalid())
5157        return 0;
5158      NewVD = cast<VarDecl>(Res.get());
5159      AddToScope = false;
5160    } else
5161      NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5162                              D.getIdentifierLoc(), II, R, TInfo, SC);
5163
5164    // If this is supposed to be a variable template, create it as such.
5165    if (IsVariableTemplate) {
5166      NewTemplate =
5167          VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5168                                  TemplateParams, NewVD, PrevVarTemplate);
5169      NewVD->setDescribedVarTemplate(NewTemplate);
5170    }
5171
5172    // If this decl has an auto type in need of deduction, make a note of the
5173    // Decl so we can diagnose uses of it in its own initializer.
5174    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5175      ParsingInitForAutoVars.insert(NewVD);
5176
5177    if (D.isInvalidType() || Invalid) {
5178      NewVD->setInvalidDecl();
5179      if (NewTemplate)
5180        NewTemplate->setInvalidDecl();
5181    }
5182
5183    SetNestedNameSpecifier(NewVD, D);
5184
5185    // FIXME: Do we need D.getCXXScopeSpec().isSet()?
5186    if (TemplateParams && TemplateParamLists.size() > 1 &&
5187        (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
5188      NewVD->setTemplateParameterListsInfo(
5189          Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
5190    } else if (IsVariableTemplateSpecialization ||
5191               (!TemplateParams && TemplateParamLists.size() > 0 &&
5192                (D.getCXXScopeSpec().isSet()))) {
5193      NewVD->setTemplateParameterListsInfo(Context,
5194                                           TemplateParamLists.size(),
5195                                           TemplateParamLists.data());
5196    }
5197
5198    if (D.getDeclSpec().isConstexprSpecified())
5199      NewVD->setConstexpr(true);
5200  }
5201
5202  // Set the lexical context. If the declarator has a C++ scope specifier, the
5203  // lexical context will be different from the semantic context.
5204  NewVD->setLexicalDeclContext(CurContext);
5205  if (NewTemplate)
5206    NewTemplate->setLexicalDeclContext(CurContext);
5207
5208  if (IsLocalExternDecl)
5209    NewVD->setLocalExternDecl();
5210
5211  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5212    if (NewVD->hasLocalStorage()) {
5213      // C++11 [dcl.stc]p4:
5214      //   When thread_local is applied to a variable of block scope the
5215      //   storage-class-specifier static is implied if it does not appear
5216      //   explicitly.
5217      // Core issue: 'static' is not implied if the variable is declared
5218      //   'extern'.
5219      if (SCSpec == DeclSpec::SCS_unspecified &&
5220          TSCS == DeclSpec::TSCS_thread_local &&
5221          DC->isFunctionOrMethod())
5222        NewVD->setTSCSpec(TSCS);
5223      else
5224        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5225             diag::err_thread_non_global)
5226          << DeclSpec::getSpecifierName(TSCS);
5227    } else if (!Context.getTargetInfo().isTLSSupported())
5228      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5229           diag::err_thread_unsupported);
5230    else
5231      NewVD->setTSCSpec(TSCS);
5232  }
5233
5234  // C99 6.7.4p3
5235  //   An inline definition of a function with external linkage shall
5236  //   not contain a definition of a modifiable object with static or
5237  //   thread storage duration...
5238  // We only apply this when the function is required to be defined
5239  // elsewhere, i.e. when the function is not 'extern inline'.  Note
5240  // that a local variable with thread storage duration still has to
5241  // be marked 'static'.  Also note that it's possible to get these
5242  // semantics in C++ using __attribute__((gnu_inline)).
5243  if (SC == SC_Static && S->getFnParent() != 0 &&
5244      !NewVD->getType().isConstQualified()) {
5245    FunctionDecl *CurFD = getCurFunctionDecl();
5246    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5247      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5248           diag::warn_static_local_in_extern_inline);
5249      MaybeSuggestAddingStaticToDecl(CurFD);
5250    }
5251  }
5252
5253  if (D.getDeclSpec().isModulePrivateSpecified()) {
5254    if (IsVariableTemplateSpecialization)
5255      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5256          << (IsPartialSpecialization ? 1 : 0)
5257          << FixItHint::CreateRemoval(
5258                 D.getDeclSpec().getModulePrivateSpecLoc());
5259    else if (IsExplicitSpecialization)
5260      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5261        << 2
5262        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5263    else if (NewVD->hasLocalStorage())
5264      Diag(NewVD->getLocation(), diag::err_module_private_local)
5265        << 0 << NewVD->getDeclName()
5266        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5267        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5268    else {
5269      NewVD->setModulePrivate();
5270      if (NewTemplate)
5271        NewTemplate->setModulePrivate();
5272    }
5273  }
5274
5275  // Handle attributes prior to checking for duplicates in MergeVarDecl
5276  ProcessDeclAttributes(S, NewVD, D);
5277
5278  if (NewVD->hasAttrs())
5279    CheckAlignasUnderalignment(NewVD);
5280
5281  if (getLangOpts().CUDA) {
5282    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5283    // storage [duration]."
5284    if (SC == SC_None && S->getFnParent() != 0 &&
5285        (NewVD->hasAttr<CUDASharedAttr>() ||
5286         NewVD->hasAttr<CUDAConstantAttr>())) {
5287      NewVD->setStorageClass(SC_Static);
5288    }
5289  }
5290
5291  // In auto-retain/release, infer strong retension for variables of
5292  // retainable type.
5293  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5294    NewVD->setInvalidDecl();
5295
5296  // Handle GNU asm-label extension (encoded as an attribute).
5297  if (Expr *E = (Expr*)D.getAsmLabel()) {
5298    // The parser guarantees this is a string.
5299    StringLiteral *SE = cast<StringLiteral>(E);
5300    StringRef Label = SE->getString();
5301    if (S->getFnParent() != 0) {
5302      switch (SC) {
5303      case SC_None:
5304      case SC_Auto:
5305        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5306        break;
5307      case SC_Register:
5308        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5309          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5310        break;
5311      case SC_Static:
5312      case SC_Extern:
5313      case SC_PrivateExtern:
5314      case SC_OpenCLWorkGroupLocal:
5315        break;
5316      }
5317    }
5318
5319    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5320                                                Context, Label));
5321  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5322    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5323      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5324    if (I != ExtnameUndeclaredIdentifiers.end()) {
5325      NewVD->addAttr(I->second);
5326      ExtnameUndeclaredIdentifiers.erase(I);
5327    }
5328  }
5329
5330  // Diagnose shadowed variables before filtering for scope.
5331  if (!D.getCXXScopeSpec().isSet())
5332    CheckShadow(S, NewVD, Previous);
5333
5334  // Don't consider existing declarations that are in a different
5335  // scope and are out-of-semantic-context declarations (if the new
5336  // declaration has linkage).
5337  FilterLookupForScope(
5338      Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5339      IsExplicitSpecialization || IsVariableTemplateSpecialization);
5340
5341  // Check whether the previous declaration is in the same block scope. This
5342  // affects whether we merge types with it, per C++11 [dcl.array]p3.
5343  if (getLangOpts().CPlusPlus &&
5344      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5345    NewVD->setPreviousDeclInSameBlockScope(
5346        Previous.isSingleResult() && !Previous.isShadowed() &&
5347        isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5348
5349  if (!getLangOpts().CPlusPlus) {
5350    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5351  } else {
5352    // Merge the decl with the existing one if appropriate.
5353    if (!Previous.empty()) {
5354      if (Previous.isSingleResult() &&
5355          isa<FieldDecl>(Previous.getFoundDecl()) &&
5356          D.getCXXScopeSpec().isSet()) {
5357        // The user tried to define a non-static data member
5358        // out-of-line (C++ [dcl.meaning]p1).
5359        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5360          << D.getCXXScopeSpec().getRange();
5361        Previous.clear();
5362        NewVD->setInvalidDecl();
5363      }
5364    } else if (D.getCXXScopeSpec().isSet()) {
5365      // No previous declaration in the qualifying scope.
5366      Diag(D.getIdentifierLoc(), diag::err_no_member)
5367        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5368        << D.getCXXScopeSpec().getRange();
5369      NewVD->setInvalidDecl();
5370    }
5371
5372    if (!IsVariableTemplateSpecialization) {
5373      if (PrevVarTemplate) {
5374        LookupResult PrevDecl(*this, GetNameForDeclarator(D),
5375                              LookupOrdinaryName, ForRedeclaration);
5376        PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
5377        D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
5378      } else
5379        D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5380    }
5381
5382    // This is an explicit specialization of a static data member. Check it.
5383    if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5384        CheckMemberSpecialization(NewVD, Previous))
5385      NewVD->setInvalidDecl();
5386  }
5387
5388  ProcessPragmaWeak(S, NewVD);
5389  checkAttributesAfterMerging(*this, *NewVD);
5390
5391  // If this is the first declaration of an extern C variable, update
5392  // the map of such variables.
5393  if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
5394      isIncompleteDeclExternC(*this, NewVD))
5395    RegisterLocallyScopedExternCDecl(NewVD, S);
5396
5397  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5398    Decl *ManglingContextDecl;
5399    if (MangleNumberingContext *MCtx =
5400            getCurrentMangleNumberContext(NewVD->getDeclContext(),
5401                                          ManglingContextDecl)) {
5402      Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
5403    }
5404  }
5405
5406  // If we are providing an explicit specialization of a static variable
5407  // template, make a note of that.
5408  if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
5409    PrevVarTemplate->setMemberSpecialization();
5410
5411  if (NewTemplate) {
5412    ActOnDocumentableDecl(NewTemplate);
5413    return NewTemplate;
5414  }
5415
5416  return NewVD;
5417}
5418
5419/// \brief Diagnose variable or built-in function shadowing.  Implements
5420/// -Wshadow.
5421///
5422/// This method is called whenever a VarDecl is added to a "useful"
5423/// scope.
5424///
5425/// \param S the scope in which the shadowing name is being declared
5426/// \param R the lookup of the name
5427///
5428void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5429  // Return if warning is ignored.
5430  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5431        DiagnosticsEngine::Ignored)
5432    return;
5433
5434  // Don't diagnose declarations at file scope.
5435  if (D->hasGlobalStorage())
5436    return;
5437
5438  DeclContext *NewDC = D->getDeclContext();
5439
5440  // Only diagnose if we're shadowing an unambiguous field or variable.
5441  if (R.getResultKind() != LookupResult::Found)
5442    return;
5443
5444  NamedDecl* ShadowedDecl = R.getFoundDecl();
5445  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5446    return;
5447
5448  // Fields are not shadowed by variables in C++ static methods.
5449  if (isa<FieldDecl>(ShadowedDecl))
5450    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5451      if (MD->isStatic())
5452        return;
5453
5454  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5455    if (shadowedVar->isExternC()) {
5456      // For shadowing external vars, make sure that we point to the global
5457      // declaration, not a locally scoped extern declaration.
5458      for (VarDecl::redecl_iterator
5459             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5460           I != E; ++I)
5461        if (I->isFileVarDecl()) {
5462          ShadowedDecl = *I;
5463          break;
5464        }
5465    }
5466
5467  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5468
5469  // Only warn about certain kinds of shadowing for class members.
5470  if (NewDC && NewDC->isRecord()) {
5471    // In particular, don't warn about shadowing non-class members.
5472    if (!OldDC->isRecord())
5473      return;
5474
5475    // TODO: should we warn about static data members shadowing
5476    // static data members from base classes?
5477
5478    // TODO: don't diagnose for inaccessible shadowed members.
5479    // This is hard to do perfectly because we might friend the
5480    // shadowing context, but that's just a false negative.
5481  }
5482
5483  // Determine what kind of declaration we're shadowing.
5484  unsigned Kind;
5485  if (isa<RecordDecl>(OldDC)) {
5486    if (isa<FieldDecl>(ShadowedDecl))
5487      Kind = 3; // field
5488    else
5489      Kind = 2; // static data member
5490  } else if (OldDC->isFileContext())
5491    Kind = 1; // global
5492  else
5493    Kind = 0; // local
5494
5495  DeclarationName Name = R.getLookupName();
5496
5497  // Emit warning and note.
5498  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5499  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5500}
5501
5502/// \brief Check -Wshadow without the advantage of a previous lookup.
5503void Sema::CheckShadow(Scope *S, VarDecl *D) {
5504  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5505        DiagnosticsEngine::Ignored)
5506    return;
5507
5508  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5509                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5510  LookupName(R, S);
5511  CheckShadow(S, D, R);
5512}
5513
5514/// Check for conflict between this global or extern "C" declaration and
5515/// previous global or extern "C" declarations. This is only used in C++.
5516template<typename T>
5517static bool checkGlobalOrExternCConflict(
5518    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5519  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5520  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5521
5522  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5523    // The common case: this global doesn't conflict with any extern "C"
5524    // declaration.
5525    return false;
5526  }
5527
5528  if (Prev) {
5529    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5530      // Both the old and new declarations have C language linkage. This is a
5531      // redeclaration.
5532      Previous.clear();
5533      Previous.addDecl(Prev);
5534      return true;
5535    }
5536
5537    // This is a global, non-extern "C" declaration, and there is a previous
5538    // non-global extern "C" declaration. Diagnose if this is a variable
5539    // declaration.
5540    if (!isa<VarDecl>(ND))
5541      return false;
5542  } else {
5543    // The declaration is extern "C". Check for any declaration in the
5544    // translation unit which might conflict.
5545    if (IsGlobal) {
5546      // We have already performed the lookup into the translation unit.
5547      IsGlobal = false;
5548      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5549           I != E; ++I) {
5550        if (isa<VarDecl>(*I)) {
5551          Prev = *I;
5552          break;
5553        }
5554      }
5555    } else {
5556      DeclContext::lookup_result R =
5557          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5558      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5559           I != E; ++I) {
5560        if (isa<VarDecl>(*I)) {
5561          Prev = *I;
5562          break;
5563        }
5564        // FIXME: If we have any other entity with this name in global scope,
5565        // the declaration is ill-formed, but that is a defect: it breaks the
5566        // 'stat' hack, for instance. Only variables can have mangled name
5567        // clashes with extern "C" declarations, so only they deserve a
5568        // diagnostic.
5569      }
5570    }
5571
5572    if (!Prev)
5573      return false;
5574  }
5575
5576  // Use the first declaration's location to ensure we point at something which
5577  // is lexically inside an extern "C" linkage-spec.
5578  assert(Prev && "should have found a previous declaration to diagnose");
5579  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5580    Prev = FD->getFirstDeclaration();
5581  else
5582    Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
5583
5584  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5585    << IsGlobal << ND;
5586  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5587    << IsGlobal;
5588  return false;
5589}
5590
5591/// Apply special rules for handling extern "C" declarations. Returns \c true
5592/// if we have found that this is a redeclaration of some prior entity.
5593///
5594/// Per C++ [dcl.link]p6:
5595///   Two declarations [for a function or variable] with C language linkage
5596///   with the same name that appear in different scopes refer to the same
5597///   [entity]. An entity with C language linkage shall not be declared with
5598///   the same name as an entity in global scope.
5599template<typename T>
5600static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5601                                                  LookupResult &Previous) {
5602  if (!S.getLangOpts().CPlusPlus) {
5603    // In C, when declaring a global variable, look for a corresponding 'extern'
5604    // variable declared in function scope. We don't need this in C++, because
5605    // we find local extern decls in the surrounding file-scope DeclContext.
5606    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5607      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5608        Previous.clear();
5609        Previous.addDecl(Prev);
5610        return true;
5611      }
5612    }
5613    return false;
5614  }
5615
5616  // A declaration in the translation unit can conflict with an extern "C"
5617  // declaration.
5618  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5619    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5620
5621  // An extern "C" declaration can conflict with a declaration in the
5622  // translation unit or can be a redeclaration of an extern "C" declaration
5623  // in another scope.
5624  if (isIncompleteDeclExternC(S,ND))
5625    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5626
5627  // Neither global nor extern "C": nothing to do.
5628  return false;
5629}
5630
5631void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5632  // If the decl is already known invalid, don't check it.
5633  if (NewVD->isInvalidDecl())
5634    return;
5635
5636  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5637  QualType T = TInfo->getType();
5638
5639  // Defer checking an 'auto' type until its initializer is attached.
5640  if (T->isUndeducedType())
5641    return;
5642
5643  if (T->isObjCObjectType()) {
5644    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5645      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5646    T = Context.getObjCObjectPointerType(T);
5647    NewVD->setType(T);
5648  }
5649
5650  // Emit an error if an address space was applied to decl with local storage.
5651  // This includes arrays of objects with address space qualifiers, but not
5652  // automatic variables that point to other address spaces.
5653  // ISO/IEC TR 18037 S5.1.2
5654  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5655    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5656    NewVD->setInvalidDecl();
5657    return;
5658  }
5659
5660  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5661  // __constant address space.
5662  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5663      && T.getAddressSpace() != LangAS::opencl_constant
5664      && !T->isSamplerT()){
5665    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5666    NewVD->setInvalidDecl();
5667    return;
5668  }
5669
5670  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5671  // scope.
5672  if ((getLangOpts().OpenCLVersion >= 120)
5673      && NewVD->isStaticLocal()) {
5674    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5675    NewVD->setInvalidDecl();
5676    return;
5677  }
5678
5679  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5680      && !NewVD->hasAttr<BlocksAttr>()) {
5681    if (getLangOpts().getGC() != LangOptions::NonGC)
5682      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5683    else {
5684      assert(!getLangOpts().ObjCAutoRefCount);
5685      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5686    }
5687  }
5688
5689  bool isVM = T->isVariablyModifiedType();
5690  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5691      NewVD->hasAttr<BlocksAttr>())
5692    getCurFunction()->setHasBranchProtectedScope();
5693
5694  if ((isVM && NewVD->hasLinkage()) ||
5695      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5696    bool SizeIsNegative;
5697    llvm::APSInt Oversized;
5698    TypeSourceInfo *FixedTInfo =
5699      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5700                                                    SizeIsNegative, Oversized);
5701    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5702      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5703      // FIXME: This won't give the correct result for
5704      // int a[10][n];
5705      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5706
5707      if (NewVD->isFileVarDecl())
5708        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5709        << SizeRange;
5710      else if (NewVD->isStaticLocal())
5711        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5712        << SizeRange;
5713      else
5714        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5715        << SizeRange;
5716      NewVD->setInvalidDecl();
5717      return;
5718    }
5719
5720    if (FixedTInfo == 0) {
5721      if (NewVD->isFileVarDecl())
5722        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5723      else
5724        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5725      NewVD->setInvalidDecl();
5726      return;
5727    }
5728
5729    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5730    NewVD->setType(FixedTInfo->getType());
5731    NewVD->setTypeSourceInfo(FixedTInfo);
5732  }
5733
5734  if (T->isVoidType()) {
5735    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5736    //                    of objects and functions.
5737    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5738      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5739        << T;
5740      NewVD->setInvalidDecl();
5741      return;
5742    }
5743  }
5744
5745  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5746    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5747    NewVD->setInvalidDecl();
5748    return;
5749  }
5750
5751  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5752    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5753    NewVD->setInvalidDecl();
5754    return;
5755  }
5756
5757  if (NewVD->isConstexpr() && !T->isDependentType() &&
5758      RequireLiteralType(NewVD->getLocation(), T,
5759                         diag::err_constexpr_var_non_literal)) {
5760    // Can't perform this check until the type is deduced.
5761    NewVD->setInvalidDecl();
5762    return;
5763  }
5764}
5765
5766/// \brief Perform semantic checking on a newly-created variable
5767/// declaration.
5768///
5769/// This routine performs all of the type-checking required for a
5770/// variable declaration once it has been built. It is used both to
5771/// check variables after they have been parsed and their declarators
5772/// have been translated into a declaration, and to check variables
5773/// that have been instantiated from a template.
5774///
5775/// Sets NewVD->isInvalidDecl() if an error was encountered.
5776///
5777/// Returns true if the variable declaration is a redeclaration.
5778bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
5779  CheckVariableDeclarationType(NewVD);
5780
5781  // If the decl is already known invalid, don't check it.
5782  if (NewVD->isInvalidDecl())
5783    return false;
5784
5785  // If we did not find anything by this name, look for a non-visible
5786  // extern "C" declaration with the same name.
5787  if (Previous.empty() &&
5788      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
5789    Previous.setShadowed();
5790
5791  // Filter out any non-conflicting previous declarations.
5792  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5793
5794  if (!Previous.empty()) {
5795    MergeVarDecl(NewVD, Previous);
5796    return true;
5797  }
5798  return false;
5799}
5800
5801/// \brief Data used with FindOverriddenMethod
5802struct FindOverriddenMethodData {
5803  Sema *S;
5804  CXXMethodDecl *Method;
5805};
5806
5807/// \brief Member lookup function that determines whether a given C++
5808/// method overrides a method in a base class, to be used with
5809/// CXXRecordDecl::lookupInBases().
5810static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5811                                 CXXBasePath &Path,
5812                                 void *UserData) {
5813  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5814
5815  FindOverriddenMethodData *Data
5816    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5817
5818  DeclarationName Name = Data->Method->getDeclName();
5819
5820  // FIXME: Do we care about other names here too?
5821  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5822    // We really want to find the base class destructor here.
5823    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5824    CanQualType CT = Data->S->Context.getCanonicalType(T);
5825
5826    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5827  }
5828
5829  for (Path.Decls = BaseRecord->lookup(Name);
5830       !Path.Decls.empty();
5831       Path.Decls = Path.Decls.slice(1)) {
5832    NamedDecl *D = Path.Decls.front();
5833    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5834      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5835        return true;
5836    }
5837  }
5838
5839  return false;
5840}
5841
5842namespace {
5843  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5844}
5845/// \brief Report an error regarding overriding, along with any relevant
5846/// overriden methods.
5847///
5848/// \param DiagID the primary error to report.
5849/// \param MD the overriding method.
5850/// \param OEK which overrides to include as notes.
5851static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5852                            OverrideErrorKind OEK = OEK_All) {
5853  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5854  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5855                                      E = MD->end_overridden_methods();
5856       I != E; ++I) {
5857    // This check (& the OEK parameter) could be replaced by a predicate, but
5858    // without lambdas that would be overkill. This is still nicer than writing
5859    // out the diag loop 3 times.
5860    if ((OEK == OEK_All) ||
5861        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5862        (OEK == OEK_Deleted && (*I)->isDeleted()))
5863      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5864  }
5865}
5866
5867/// AddOverriddenMethods - See if a method overrides any in the base classes,
5868/// and if so, check that it's a valid override and remember it.
5869bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5870  // Look for virtual methods in base classes that this method might override.
5871  CXXBasePaths Paths;
5872  FindOverriddenMethodData Data;
5873  Data.Method = MD;
5874  Data.S = this;
5875  bool hasDeletedOverridenMethods = false;
5876  bool hasNonDeletedOverridenMethods = false;
5877  bool AddedAny = false;
5878  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5879    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5880         E = Paths.found_decls_end(); I != E; ++I) {
5881      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5882        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5883        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5884            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5885            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5886            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5887          hasDeletedOverridenMethods |= OldMD->isDeleted();
5888          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5889          AddedAny = true;
5890        }
5891      }
5892    }
5893  }
5894
5895  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5896    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5897  }
5898  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5899    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5900  }
5901
5902  return AddedAny;
5903}
5904
5905namespace {
5906  // Struct for holding all of the extra arguments needed by
5907  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5908  struct ActOnFDArgs {
5909    Scope *S;
5910    Declarator &D;
5911    MultiTemplateParamsArg TemplateParamLists;
5912    bool AddToScope;
5913  };
5914}
5915
5916namespace {
5917
5918// Callback to only accept typo corrections that have a non-zero edit distance.
5919// Also only accept corrections that have the same parent decl.
5920class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5921 public:
5922  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5923                            CXXRecordDecl *Parent)
5924      : Context(Context), OriginalFD(TypoFD),
5925        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5926
5927  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5928    if (candidate.getEditDistance() == 0)
5929      return false;
5930
5931    SmallVector<unsigned, 1> MismatchedParams;
5932    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5933                                          CDeclEnd = candidate.end();
5934         CDecl != CDeclEnd; ++CDecl) {
5935      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5936
5937      if (FD && !FD->hasBody() &&
5938          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5939        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5940          CXXRecordDecl *Parent = MD->getParent();
5941          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5942            return true;
5943        } else if (!ExpectedParent) {
5944          return true;
5945        }
5946      }
5947    }
5948
5949    return false;
5950  }
5951
5952 private:
5953  ASTContext &Context;
5954  FunctionDecl *OriginalFD;
5955  CXXRecordDecl *ExpectedParent;
5956};
5957
5958}
5959
5960/// \brief Generate diagnostics for an invalid function redeclaration.
5961///
5962/// This routine handles generating the diagnostic messages for an invalid
5963/// function redeclaration, including finding possible similar declarations
5964/// or performing typo correction if there are no previous declarations with
5965/// the same name.
5966///
5967/// Returns a NamedDecl iff typo correction was performed and substituting in
5968/// the new declaration name does not cause new errors.
5969static NamedDecl *DiagnoseInvalidRedeclaration(
5970    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5971    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
5972  DeclarationName Name = NewFD->getDeclName();
5973  DeclContext *NewDC = NewFD->getDeclContext();
5974  SmallVector<unsigned, 1> MismatchedParams;
5975  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5976  TypoCorrection Correction;
5977  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
5978  unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
5979                                   : diag::err_member_decl_does_not_match;
5980  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5981                    IsLocalFriend ? Sema::LookupLocalFriendName
5982                                  : Sema::LookupOrdinaryName,
5983                    Sema::ForRedeclaration);
5984
5985  NewFD->setInvalidDecl();
5986  if (IsLocalFriend)
5987    SemaRef.LookupName(Prev, S);
5988  else
5989    SemaRef.LookupQualifiedName(Prev, NewDC);
5990  assert(!Prev.isAmbiguous() &&
5991         "Cannot have an ambiguity in previous-declaration lookup");
5992  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5993  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5994                                      MD ? MD->getParent() : 0);
5995  if (!Prev.empty()) {
5996    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5997         Func != FuncEnd; ++Func) {
5998      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5999      if (FD &&
6000          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6001        // Add 1 to the index so that 0 can mean the mismatch didn't
6002        // involve a parameter
6003        unsigned ParamNum =
6004            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6005        NearMatches.push_back(std::make_pair(FD, ParamNum));
6006      }
6007    }
6008  // If the qualified name lookup yielded nothing, try typo correction
6009  } else if ((Correction = SemaRef.CorrectTypo(
6010                 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6011                 &ExtraArgs.D.getCXXScopeSpec(), Validator,
6012                 IsLocalFriend ? 0 : NewDC))) {
6013    // Set up everything for the call to ActOnFunctionDeclarator
6014    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6015                              ExtraArgs.D.getIdentifierLoc());
6016    Previous.clear();
6017    Previous.setLookupName(Correction.getCorrection());
6018    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6019                                    CDeclEnd = Correction.end();
6020         CDecl != CDeclEnd; ++CDecl) {
6021      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6022      if (FD && !FD->hasBody() &&
6023          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6024        Previous.addDecl(FD);
6025      }
6026    }
6027    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6028
6029    NamedDecl *Result;
6030    // Retry building the function declaration with the new previous
6031    // declarations, and with errors suppressed.
6032    {
6033      // Trap errors.
6034      Sema::SFINAETrap Trap(SemaRef);
6035
6036      // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6037      // pieces need to verify the typo-corrected C++ declaration and hopefully
6038      // eliminate the need for the parameter pack ExtraArgs.
6039      Result = SemaRef.ActOnFunctionDeclarator(
6040          ExtraArgs.S, ExtraArgs.D,
6041          Correction.getCorrectionDecl()->getDeclContext(),
6042          NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6043          ExtraArgs.AddToScope);
6044
6045      if (Trap.hasErrorOccurred())
6046        Result = 0;
6047    }
6048
6049    if (Result) {
6050      // Determine which correction we picked.
6051      Decl *Canonical = Result->getCanonicalDecl();
6052      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6053           I != E; ++I)
6054        if ((*I)->getCanonicalDecl() == Canonical)
6055          Correction.setCorrectionDecl(*I);
6056
6057      SemaRef.diagnoseTypo(
6058          Correction,
6059          SemaRef.PDiag(IsLocalFriend
6060                          ? diag::err_no_matching_local_friend_suggest
6061                          : diag::err_member_decl_does_not_match_suggest)
6062            << Name << NewDC << IsDefinition);
6063      return Result;
6064    }
6065
6066    // Pretend the typo correction never occurred
6067    ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6068                              ExtraArgs.D.getIdentifierLoc());
6069    ExtraArgs.D.setRedeclaration(wasRedeclaration);
6070    Previous.clear();
6071    Previous.setLookupName(Name);
6072  }
6073
6074  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6075      << Name << NewDC << IsDefinition << NewFD->getLocation();
6076
6077  bool NewFDisConst = false;
6078  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6079    NewFDisConst = NewMD->isConst();
6080
6081  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6082       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6083       NearMatch != NearMatchEnd; ++NearMatch) {
6084    FunctionDecl *FD = NearMatch->first;
6085    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6086    bool FDisConst = MD && MD->isConst();
6087    bool IsMember = MD || !IsLocalFriend;
6088
6089    // FIXME: These notes are poorly worded for the local friend case.
6090    if (unsigned Idx = NearMatch->second) {
6091      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6092      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6093      if (Loc.isInvalid()) Loc = FD->getLocation();
6094      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6095                                 : diag::note_local_decl_close_param_match)
6096        << Idx << FDParam->getType()
6097        << NewFD->getParamDecl(Idx - 1)->getType();
6098    } else if (FDisConst != NewFDisConst) {
6099      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6100          << NewFDisConst << FD->getSourceRange().getEnd();
6101    } else
6102      SemaRef.Diag(FD->getLocation(),
6103                   IsMember ? diag::note_member_def_close_match
6104                            : diag::note_local_decl_close_match);
6105  }
6106  return 0;
6107}
6108
6109static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6110                                                          Declarator &D) {
6111  switch (D.getDeclSpec().getStorageClassSpec()) {
6112  default: llvm_unreachable("Unknown storage class!");
6113  case DeclSpec::SCS_auto:
6114  case DeclSpec::SCS_register:
6115  case DeclSpec::SCS_mutable:
6116    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6117                 diag::err_typecheck_sclass_func);
6118    D.setInvalidType();
6119    break;
6120  case DeclSpec::SCS_unspecified: break;
6121  case DeclSpec::SCS_extern:
6122    if (D.getDeclSpec().isExternInLinkageSpec())
6123      return SC_None;
6124    return SC_Extern;
6125  case DeclSpec::SCS_static: {
6126    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6127      // C99 6.7.1p5:
6128      //   The declaration of an identifier for a function that has
6129      //   block scope shall have no explicit storage-class specifier
6130      //   other than extern
6131      // See also (C++ [dcl.stc]p4).
6132      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6133                   diag::err_static_block_func);
6134      break;
6135    } else
6136      return SC_Static;
6137  }
6138  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6139  }
6140
6141  // No explicit storage class has already been returned
6142  return SC_None;
6143}
6144
6145static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6146                                           DeclContext *DC, QualType &R,
6147                                           TypeSourceInfo *TInfo,
6148                                           FunctionDecl::StorageClass SC,
6149                                           bool &IsVirtualOkay) {
6150  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6151  DeclarationName Name = NameInfo.getName();
6152
6153  FunctionDecl *NewFD = 0;
6154  bool isInline = D.getDeclSpec().isInlineSpecified();
6155
6156  if (!SemaRef.getLangOpts().CPlusPlus) {
6157    // Determine whether the function was written with a
6158    // prototype. This true when:
6159    //   - there is a prototype in the declarator, or
6160    //   - the type R of the function is some kind of typedef or other reference
6161    //     to a type name (which eventually refers to a function type).
6162    bool HasPrototype =
6163      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6164      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6165
6166    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6167                                 D.getLocStart(), NameInfo, R,
6168                                 TInfo, SC, isInline,
6169                                 HasPrototype, false);
6170    if (D.isInvalidType())
6171      NewFD->setInvalidDecl();
6172
6173    // Set the lexical context.
6174    NewFD->setLexicalDeclContext(SemaRef.CurContext);
6175
6176    return NewFD;
6177  }
6178
6179  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6180  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6181
6182  // Check that the return type is not an abstract class type.
6183  // For record types, this is done by the AbstractClassUsageDiagnoser once
6184  // the class has been completely parsed.
6185  if (!DC->isRecord() &&
6186      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
6187                                     R->getAs<FunctionType>()->getResultType(),
6188                                     diag::err_abstract_type_in_decl,
6189                                     SemaRef.AbstractReturnType))
6190    D.setInvalidType();
6191
6192  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6193    // This is a C++ constructor declaration.
6194    assert(DC->isRecord() &&
6195           "Constructors can only be declared in a member context");
6196
6197    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6198    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6199                                      D.getLocStart(), NameInfo,
6200                                      R, TInfo, isExplicit, isInline,
6201                                      /*isImplicitlyDeclared=*/false,
6202                                      isConstexpr);
6203
6204  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6205    // This is a C++ destructor declaration.
6206    if (DC->isRecord()) {
6207      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6208      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6209      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6210                                        SemaRef.Context, Record,
6211                                        D.getLocStart(),
6212                                        NameInfo, R, TInfo, isInline,
6213                                        /*isImplicitlyDeclared=*/false);
6214
6215      // If the class is complete, then we now create the implicit exception
6216      // specification. If the class is incomplete or dependent, we can't do
6217      // it yet.
6218      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6219          Record->getDefinition() && !Record->isBeingDefined() &&
6220          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6221        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6222      }
6223
6224      // The Microsoft ABI requires that we perform the destructor body
6225      // checks (i.e. operator delete() lookup) at every declaration, as
6226      // any translation unit may need to emit a deleting destructor.
6227      if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6228          !Record->isDependentType() && Record->getDefinition() &&
6229          !Record->isBeingDefined()) {
6230        SemaRef.CheckDestructor(NewDD);
6231      }
6232
6233      IsVirtualOkay = true;
6234      return NewDD;
6235
6236    } else {
6237      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6238      D.setInvalidType();
6239
6240      // Create a FunctionDecl to satisfy the function definition parsing
6241      // code path.
6242      return FunctionDecl::Create(SemaRef.Context, DC,
6243                                  D.getLocStart(),
6244                                  D.getIdentifierLoc(), Name, R, TInfo,
6245                                  SC, isInline,
6246                                  /*hasPrototype=*/true, isConstexpr);
6247    }
6248
6249  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6250    if (!DC->isRecord()) {
6251      SemaRef.Diag(D.getIdentifierLoc(),
6252           diag::err_conv_function_not_member);
6253      return 0;
6254    }
6255
6256    SemaRef.CheckConversionDeclarator(D, R, SC);
6257    IsVirtualOkay = true;
6258    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6259                                     D.getLocStart(), NameInfo,
6260                                     R, TInfo, isInline, isExplicit,
6261                                     isConstexpr, SourceLocation());
6262
6263  } else if (DC->isRecord()) {
6264    // If the name of the function is the same as the name of the record,
6265    // then this must be an invalid constructor that has a return type.
6266    // (The parser checks for a return type and makes the declarator a
6267    // constructor if it has no return type).
6268    if (Name.getAsIdentifierInfo() &&
6269        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6270      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6271        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6272        << SourceRange(D.getIdentifierLoc());
6273      return 0;
6274    }
6275
6276    // This is a C++ method declaration.
6277    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6278                                               cast<CXXRecordDecl>(DC),
6279                                               D.getLocStart(), NameInfo, R,
6280                                               TInfo, SC, isInline,
6281                                               isConstexpr, SourceLocation());
6282    IsVirtualOkay = !Ret->isStatic();
6283    return Ret;
6284  } else {
6285    // Determine whether the function was written with a
6286    // prototype. This true when:
6287    //   - we're in C++ (where every function has a prototype),
6288    return FunctionDecl::Create(SemaRef.Context, DC,
6289                                D.getLocStart(),
6290                                NameInfo, R, TInfo, SC, isInline,
6291                                true/*HasPrototype*/, isConstexpr);
6292  }
6293}
6294
6295void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6296  // In C++, the empty parameter-type-list must be spelled "void"; a
6297  // typedef of void is not permitted.
6298  if (getLangOpts().CPlusPlus &&
6299      Param->getType().getUnqualifiedType() != Context.VoidTy) {
6300    bool IsTypeAlias = false;
6301    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6302      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6303    else if (const TemplateSpecializationType *TST =
6304               Param->getType()->getAs<TemplateSpecializationType>())
6305      IsTypeAlias = TST->isTypeAlias();
6306    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6307      << IsTypeAlias;
6308  }
6309}
6310
6311enum OpenCLParamType {
6312  ValidKernelParam,
6313  PtrPtrKernelParam,
6314  PtrKernelParam,
6315  InvalidKernelParam,
6316  RecordKernelParam
6317};
6318
6319static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6320  if (PT->isPointerType()) {
6321    QualType PointeeType = PT->getPointeeType();
6322    return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
6323  }
6324
6325  // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6326  // be used as builtin types.
6327
6328  if (PT->isImageType())
6329    return PtrKernelParam;
6330
6331  if (PT->isBooleanType())
6332    return InvalidKernelParam;
6333
6334  if (PT->isEventT())
6335    return InvalidKernelParam;
6336
6337  if (PT->isHalfType())
6338    return InvalidKernelParam;
6339
6340  if (PT->isRecordType())
6341    return RecordKernelParam;
6342
6343  return ValidKernelParam;
6344}
6345
6346static void checkIsValidOpenCLKernelParameter(
6347  Sema &S,
6348  Declarator &D,
6349  ParmVarDecl *Param,
6350  llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6351  QualType PT = Param->getType();
6352
6353  // Cache the valid types we encounter to avoid rechecking structs that are
6354  // used again
6355  if (ValidTypes.count(PT.getTypePtr()))
6356    return;
6357
6358  switch (getOpenCLKernelParameterType(PT)) {
6359  case PtrPtrKernelParam:
6360    // OpenCL v1.2 s6.9.a:
6361    // A kernel function argument cannot be declared as a
6362    // pointer to a pointer type.
6363    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6364    D.setInvalidType();
6365    return;
6366
6367    // OpenCL v1.2 s6.9.k:
6368    // Arguments to kernel functions in a program cannot be declared with the
6369    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6370    // uintptr_t or a struct and/or union that contain fields declared to be
6371    // one of these built-in scalar types.
6372
6373  case InvalidKernelParam:
6374    // OpenCL v1.2 s6.8 n:
6375    // A kernel function argument cannot be declared
6376    // of event_t type.
6377    S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6378    D.setInvalidType();
6379    return;
6380
6381  case PtrKernelParam:
6382  case ValidKernelParam:
6383    ValidTypes.insert(PT.getTypePtr());
6384    return;
6385
6386  case RecordKernelParam:
6387    break;
6388  }
6389
6390  // Track nested structs we will inspect
6391  SmallVector<const Decl *, 4> VisitStack;
6392
6393  // Track where we are in the nested structs. Items will migrate from
6394  // VisitStack to HistoryStack as we do the DFS for bad field.
6395  SmallVector<const FieldDecl *, 4> HistoryStack;
6396  HistoryStack.push_back((const FieldDecl *) 0);
6397
6398  const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6399  VisitStack.push_back(PD);
6400
6401  assert(VisitStack.back() && "First decl null?");
6402
6403  do {
6404    const Decl *Next = VisitStack.pop_back_val();
6405    if (!Next) {
6406      assert(!HistoryStack.empty());
6407      // Found a marker, we have gone up a level
6408      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6409        ValidTypes.insert(Hist->getType().getTypePtr());
6410
6411      continue;
6412    }
6413
6414    // Adds everything except the original parameter declaration (which is not a
6415    // field itself) to the history stack.
6416    const RecordDecl *RD;
6417    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6418      HistoryStack.push_back(Field);
6419      RD = Field->getType()->castAs<RecordType>()->getDecl();
6420    } else {
6421      RD = cast<RecordDecl>(Next);
6422    }
6423
6424    // Add a null marker so we know when we've gone back up a level
6425    VisitStack.push_back((const Decl *) 0);
6426
6427    for (RecordDecl::field_iterator I = RD->field_begin(),
6428           E = RD->field_end(); I != E; ++I) {
6429      const FieldDecl *FD = *I;
6430      QualType QT = FD->getType();
6431
6432      if (ValidTypes.count(QT.getTypePtr()))
6433        continue;
6434
6435      OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6436      if (ParamType == ValidKernelParam)
6437        continue;
6438
6439      if (ParamType == RecordKernelParam) {
6440        VisitStack.push_back(FD);
6441        continue;
6442      }
6443
6444      // OpenCL v1.2 s6.9.p:
6445      // Arguments to kernel functions that are declared to be a struct or union
6446      // do not allow OpenCL objects to be passed as elements of the struct or
6447      // union.
6448      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
6449        S.Diag(Param->getLocation(),
6450               diag::err_record_with_pointers_kernel_param)
6451          << PT->isUnionType()
6452          << PT;
6453      } else {
6454        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6455      }
6456
6457      S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6458        << PD->getDeclName();
6459
6460      // We have an error, now let's go back up through history and show where
6461      // the offending field came from
6462      for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6463             E = HistoryStack.end(); I != E; ++I) {
6464        const FieldDecl *OuterField = *I;
6465        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6466          << OuterField->getType();
6467      }
6468
6469      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6470        << QT->isPointerType()
6471        << QT;
6472      D.setInvalidType();
6473      return;
6474    }
6475  } while (!VisitStack.empty());
6476}
6477
6478NamedDecl*
6479Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6480                              TypeSourceInfo *TInfo, LookupResult &Previous,
6481                              MultiTemplateParamsArg TemplateParamLists,
6482                              bool &AddToScope) {
6483  QualType R = TInfo->getType();
6484
6485  assert(R.getTypePtr()->isFunctionType());
6486
6487  // TODO: consider using NameInfo for diagnostic.
6488  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6489  DeclarationName Name = NameInfo.getName();
6490  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6491
6492  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6493    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6494         diag::err_invalid_thread)
6495      << DeclSpec::getSpecifierName(TSCS);
6496
6497  if (DC->isRecord() &&
6498      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static &&
6499      !D.getDeclSpec().isFriendSpecified())
6500    adjustMemberFunctionCC(R);
6501
6502  bool isFriend = false;
6503  FunctionTemplateDecl *FunctionTemplate = 0;
6504  bool isExplicitSpecialization = false;
6505  bool isFunctionTemplateSpecialization = false;
6506
6507  bool isDependentClassScopeExplicitSpecialization = false;
6508  bool HasExplicitTemplateArgs = false;
6509  TemplateArgumentListInfo TemplateArgs;
6510
6511  bool isVirtualOkay = false;
6512
6513  DeclContext *OriginalDC = DC;
6514  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
6515
6516  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6517                                              isVirtualOkay);
6518  if (!NewFD) return 0;
6519
6520  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6521    NewFD->setTopLevelDeclInObjCContainer();
6522
6523  // Set the lexical context. If this is a function-scope declaration, or has a
6524  // C++ scope specifier, or is the object of a friend declaration, the lexical
6525  // context will be different from the semantic context.
6526  NewFD->setLexicalDeclContext(CurContext);
6527
6528  if (IsLocalExternDecl)
6529    NewFD->setLocalExternDecl();
6530
6531  if (getLangOpts().CPlusPlus) {
6532    bool isInline = D.getDeclSpec().isInlineSpecified();
6533    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6534    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6535    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6536    isFriend = D.getDeclSpec().isFriendSpecified();
6537    if (isFriend && !isInline && D.isFunctionDefinition()) {
6538      // C++ [class.friend]p5
6539      //   A function can be defined in a friend declaration of a
6540      //   class . . . . Such a function is implicitly inline.
6541      NewFD->setImplicitlyInline();
6542    }
6543
6544    // If this is a method defined in an __interface, and is not a constructor
6545    // or an overloaded operator, then set the pure flag (isVirtual will already
6546    // return true).
6547    if (const CXXRecordDecl *Parent =
6548          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6549      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6550        NewFD->setPure(true);
6551    }
6552
6553    SetNestedNameSpecifier(NewFD, D);
6554    isExplicitSpecialization = false;
6555    isFunctionTemplateSpecialization = false;
6556    if (D.isInvalidType())
6557      NewFD->setInvalidDecl();
6558
6559    // Match up the template parameter lists with the scope specifier, then
6560    // determine whether we have a template or a template specialization.
6561    bool Invalid = false;
6562    if (TemplateParameterList *TemplateParams =
6563            MatchTemplateParametersToScopeSpecifier(
6564                D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6565                D.getCXXScopeSpec(), TemplateParamLists, isFriend,
6566                isExplicitSpecialization, Invalid)) {
6567      if (TemplateParams->size() > 0) {
6568        // This is a function template
6569
6570        // Check that we can declare a template here.
6571        if (CheckTemplateDeclScope(S, TemplateParams))
6572          return 0;
6573
6574        // A destructor cannot be a template.
6575        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6576          Diag(NewFD->getLocation(), diag::err_destructor_template);
6577          return 0;
6578        }
6579
6580        // If we're adding a template to a dependent context, we may need to
6581        // rebuilding some of the types used within the template parameter list,
6582        // now that we know what the current instantiation is.
6583        if (DC->isDependentContext()) {
6584          ContextRAII SavedContext(*this, DC);
6585          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6586            Invalid = true;
6587        }
6588
6589
6590        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6591                                                        NewFD->getLocation(),
6592                                                        Name, TemplateParams,
6593                                                        NewFD);
6594        FunctionTemplate->setLexicalDeclContext(CurContext);
6595        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6596
6597        // For source fidelity, store the other template param lists.
6598        if (TemplateParamLists.size() > 1) {
6599          NewFD->setTemplateParameterListsInfo(Context,
6600                                               TemplateParamLists.size() - 1,
6601                                               TemplateParamLists.data());
6602        }
6603      } else {
6604        // This is a function template specialization.
6605        isFunctionTemplateSpecialization = true;
6606        // For source fidelity, store all the template param lists.
6607        NewFD->setTemplateParameterListsInfo(Context,
6608                                             TemplateParamLists.size(),
6609                                             TemplateParamLists.data());
6610
6611        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6612        if (isFriend) {
6613          // We want to remove the "template<>", found here.
6614          SourceRange RemoveRange = TemplateParams->getSourceRange();
6615
6616          // If we remove the template<> and the name is not a
6617          // template-id, we're actually silently creating a problem:
6618          // the friend declaration will refer to an untemplated decl,
6619          // and clearly the user wants a template specialization.  So
6620          // we need to insert '<>' after the name.
6621          SourceLocation InsertLoc;
6622          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6623            InsertLoc = D.getName().getSourceRange().getEnd();
6624            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6625          }
6626
6627          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6628            << Name << RemoveRange
6629            << FixItHint::CreateRemoval(RemoveRange)
6630            << FixItHint::CreateInsertion(InsertLoc, "<>");
6631        }
6632      }
6633    }
6634    else {
6635      // All template param lists were matched against the scope specifier:
6636      // this is NOT (an explicit specialization of) a template.
6637      if (TemplateParamLists.size() > 0)
6638        // For source fidelity, store all the template param lists.
6639        NewFD->setTemplateParameterListsInfo(Context,
6640                                             TemplateParamLists.size(),
6641                                             TemplateParamLists.data());
6642    }
6643
6644    if (Invalid) {
6645      NewFD->setInvalidDecl();
6646      if (FunctionTemplate)
6647        FunctionTemplate->setInvalidDecl();
6648    }
6649
6650    // C++ [dcl.fct.spec]p5:
6651    //   The virtual specifier shall only be used in declarations of
6652    //   nonstatic class member functions that appear within a
6653    //   member-specification of a class declaration; see 10.3.
6654    //
6655    if (isVirtual && !NewFD->isInvalidDecl()) {
6656      if (!isVirtualOkay) {
6657        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6658             diag::err_virtual_non_function);
6659      } else if (!CurContext->isRecord()) {
6660        // 'virtual' was specified outside of the class.
6661        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6662             diag::err_virtual_out_of_class)
6663          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6664      } else if (NewFD->getDescribedFunctionTemplate()) {
6665        // C++ [temp.mem]p3:
6666        //  A member function template shall not be virtual.
6667        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6668             diag::err_virtual_member_function_template)
6669          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6670      } else {
6671        // Okay: Add virtual to the method.
6672        NewFD->setVirtualAsWritten(true);
6673      }
6674
6675      if (getLangOpts().CPlusPlus1y &&
6676          NewFD->getResultType()->isUndeducedType())
6677        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6678    }
6679
6680    if (getLangOpts().CPlusPlus1y && NewFD->isDependentContext() &&
6681        NewFD->getResultType()->isUndeducedType()) {
6682      // If the function template is referenced directly (for instance, as a
6683      // member of the current instantiation), pretend it has a dependent type.
6684      // This is not really justified by the standard, but is the only sane
6685      // thing to do.
6686      const FunctionProtoType *FPT =
6687          NewFD->getType()->castAs<FunctionProtoType>();
6688      QualType Result = SubstAutoType(FPT->getResultType(),
6689                                       Context.DependentTy);
6690      NewFD->setType(Context.getFunctionType(Result, FPT->getArgTypes(),
6691                                             FPT->getExtProtoInfo()));
6692    }
6693
6694    // C++ [dcl.fct.spec]p3:
6695    //  The inline specifier shall not appear on a block scope function
6696    //  declaration.
6697    if (isInline && !NewFD->isInvalidDecl()) {
6698      if (CurContext->isFunctionOrMethod()) {
6699        // 'inline' is not allowed on block scope function declaration.
6700        Diag(D.getDeclSpec().getInlineSpecLoc(),
6701             diag::err_inline_declaration_block_scope) << Name
6702          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6703      }
6704    }
6705
6706    // C++ [dcl.fct.spec]p6:
6707    //  The explicit specifier shall be used only in the declaration of a
6708    //  constructor or conversion function within its class definition;
6709    //  see 12.3.1 and 12.3.2.
6710    if (isExplicit && !NewFD->isInvalidDecl()) {
6711      if (!CurContext->isRecord()) {
6712        // 'explicit' was specified outside of the class.
6713        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6714             diag::err_explicit_out_of_class)
6715          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6716      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6717                 !isa<CXXConversionDecl>(NewFD)) {
6718        // 'explicit' was specified on a function that wasn't a constructor
6719        // or conversion function.
6720        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6721             diag::err_explicit_non_ctor_or_conv_function)
6722          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6723      }
6724    }
6725
6726    if (isConstexpr) {
6727      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6728      // are implicitly inline.
6729      NewFD->setImplicitlyInline();
6730
6731      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6732      // be either constructors or to return a literal type. Therefore,
6733      // destructors cannot be declared constexpr.
6734      if (isa<CXXDestructorDecl>(NewFD))
6735        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6736    }
6737
6738    // If __module_private__ was specified, mark the function accordingly.
6739    if (D.getDeclSpec().isModulePrivateSpecified()) {
6740      if (isFunctionTemplateSpecialization) {
6741        SourceLocation ModulePrivateLoc
6742          = D.getDeclSpec().getModulePrivateSpecLoc();
6743        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6744          << 0
6745          << FixItHint::CreateRemoval(ModulePrivateLoc);
6746      } else {
6747        NewFD->setModulePrivate();
6748        if (FunctionTemplate)
6749          FunctionTemplate->setModulePrivate();
6750      }
6751    }
6752
6753    if (isFriend) {
6754      if (FunctionTemplate) {
6755        FunctionTemplate->setObjectOfFriendDecl();
6756        FunctionTemplate->setAccess(AS_public);
6757      }
6758      NewFD->setObjectOfFriendDecl();
6759      NewFD->setAccess(AS_public);
6760    }
6761
6762    // If a function is defined as defaulted or deleted, mark it as such now.
6763    switch (D.getFunctionDefinitionKind()) {
6764      case FDK_Declaration:
6765      case FDK_Definition:
6766        break;
6767
6768      case FDK_Defaulted:
6769        NewFD->setDefaulted();
6770        break;
6771
6772      case FDK_Deleted:
6773        NewFD->setDeletedAsWritten();
6774        break;
6775    }
6776
6777    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6778        D.isFunctionDefinition()) {
6779      // C++ [class.mfct]p2:
6780      //   A member function may be defined (8.4) in its class definition, in
6781      //   which case it is an inline member function (7.1.2)
6782      NewFD->setImplicitlyInline();
6783    }
6784
6785    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6786        !CurContext->isRecord()) {
6787      // C++ [class.static]p1:
6788      //   A data or function member of a class may be declared static
6789      //   in a class definition, in which case it is a static member of
6790      //   the class.
6791
6792      // Complain about the 'static' specifier if it's on an out-of-line
6793      // member function definition.
6794      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6795           diag::err_static_out_of_line)
6796        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6797    }
6798
6799    // C++11 [except.spec]p15:
6800    //   A deallocation function with no exception-specification is treated
6801    //   as if it were specified with noexcept(true).
6802    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6803    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6804         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6805        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6806      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6807      EPI.ExceptionSpecType = EST_BasicNoexcept;
6808      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6809                                             FPT->getArgTypes(), EPI));
6810    }
6811  }
6812
6813  // Filter out previous declarations that don't match the scope.
6814  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
6815                       isExplicitSpecialization ||
6816                       isFunctionTemplateSpecialization);
6817
6818  // Handle GNU asm-label extension (encoded as an attribute).
6819  if (Expr *E = (Expr*) D.getAsmLabel()) {
6820    // The parser guarantees this is a string.
6821    StringLiteral *SE = cast<StringLiteral>(E);
6822    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6823                                                SE->getString()));
6824  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6825    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6826      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6827    if (I != ExtnameUndeclaredIdentifiers.end()) {
6828      NewFD->addAttr(I->second);
6829      ExtnameUndeclaredIdentifiers.erase(I);
6830    }
6831  }
6832
6833  // Copy the parameter declarations from the declarator D to the function
6834  // declaration NewFD, if they are available.  First scavenge them into Params.
6835  SmallVector<ParmVarDecl*, 16> Params;
6836  if (D.isFunctionDeclarator()) {
6837    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6838
6839    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6840    // function that takes no arguments, not a function that takes a
6841    // single void argument.
6842    // We let through "const void" here because Sema::GetTypeForDeclarator
6843    // already checks for that case.
6844    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6845        FTI.ArgInfo[0].Param &&
6846        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6847      // Empty arg list, don't push any params.
6848      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6849    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6850      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6851        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6852        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6853        Param->setDeclContext(NewFD);
6854        Params.push_back(Param);
6855
6856        if (Param->isInvalidDecl())
6857          NewFD->setInvalidDecl();
6858      }
6859    }
6860
6861  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6862    // When we're declaring a function with a typedef, typeof, etc as in the
6863    // following example, we'll need to synthesize (unnamed)
6864    // parameters for use in the declaration.
6865    //
6866    // @code
6867    // typedef void fn(int);
6868    // fn f;
6869    // @endcode
6870
6871    // Synthesize a parameter for each argument type.
6872    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6873         AE = FT->arg_type_end(); AI != AE; ++AI) {
6874      ParmVarDecl *Param =
6875        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6876      Param->setScopeInfo(0, Params.size());
6877      Params.push_back(Param);
6878    }
6879  } else {
6880    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6881           "Should not need args for typedef of non-prototype fn");
6882  }
6883
6884  // Finally, we know we have the right number of parameters, install them.
6885  NewFD->setParams(Params);
6886
6887  // Find all anonymous symbols defined during the declaration of this function
6888  // and add to NewFD. This lets us track decls such 'enum Y' in:
6889  //
6890  //   void f(enum Y {AA} x) {}
6891  //
6892  // which would otherwise incorrectly end up in the translation unit scope.
6893  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6894  DeclsInPrototypeScope.clear();
6895
6896  if (D.getDeclSpec().isNoreturnSpecified())
6897    NewFD->addAttr(
6898        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6899                                       Context));
6900
6901  // Functions returning a variably modified type violate C99 6.7.5.2p2
6902  // because all functions have linkage.
6903  if (!NewFD->isInvalidDecl() &&
6904      NewFD->getResultType()->isVariablyModifiedType()) {
6905    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6906    NewFD->setInvalidDecl();
6907  }
6908
6909  // Handle attributes.
6910  ProcessDeclAttributes(S, NewFD, D);
6911
6912  QualType RetType = NewFD->getResultType();
6913  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6914      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6915  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6916      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6917    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6918    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6919      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6920                                                        Context));
6921    }
6922  }
6923
6924  if (!getLangOpts().CPlusPlus) {
6925    // Perform semantic checking on the function declaration.
6926    bool isExplicitSpecialization=false;
6927    if (!NewFD->isInvalidDecl() && NewFD->isMain())
6928      CheckMain(NewFD, D.getDeclSpec());
6929
6930    if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
6931      CheckMSVCRTEntryPoint(NewFD);
6932
6933    if (!NewFD->isInvalidDecl())
6934      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6935                                                  isExplicitSpecialization));
6936    else if (!Previous.empty())
6937      // Make graceful recovery from an invalid redeclaration.
6938      D.setRedeclaration(true);
6939    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6940            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6941           "previous declaration set still overloaded");
6942  } else {
6943    // If the declarator is a template-id, translate the parser's template
6944    // argument list into our AST format.
6945    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6946      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6947      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6948      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6949      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6950                                         TemplateId->NumArgs);
6951      translateTemplateArguments(TemplateArgsPtr,
6952                                 TemplateArgs);
6953
6954      HasExplicitTemplateArgs = true;
6955
6956      if (NewFD->isInvalidDecl()) {
6957        HasExplicitTemplateArgs = false;
6958      } else if (FunctionTemplate) {
6959        // Function template with explicit template arguments.
6960        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6961          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6962
6963        HasExplicitTemplateArgs = false;
6964      } else if (!isFunctionTemplateSpecialization &&
6965                 !D.getDeclSpec().isFriendSpecified()) {
6966        // We have encountered something that the user meant to be a
6967        // specialization (because it has explicitly-specified template
6968        // arguments) but that was not introduced with a "template<>" (or had
6969        // too few of them).
6970        // FIXME: Differentiate between attempts for explicit instantiations
6971        // (starting with "template") and the rest.
6972        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6973          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6974          << FixItHint::CreateInsertion(
6975                                    D.getDeclSpec().getLocStart(),
6976                                        "template<> ");
6977        isFunctionTemplateSpecialization = true;
6978      } else {
6979        // "friend void foo<>(int);" is an implicit specialization decl.
6980        isFunctionTemplateSpecialization = true;
6981      }
6982    } else if (isFriend && isFunctionTemplateSpecialization) {
6983      // This combination is only possible in a recovery case;  the user
6984      // wrote something like:
6985      //   template <> friend void foo(int);
6986      // which we're recovering from as if the user had written:
6987      //   friend void foo<>(int);
6988      // Go ahead and fake up a template id.
6989      HasExplicitTemplateArgs = true;
6990        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6991      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6992    }
6993
6994    // If it's a friend (and only if it's a friend), it's possible
6995    // that either the specialized function type or the specialized
6996    // template is dependent, and therefore matching will fail.  In
6997    // this case, don't check the specialization yet.
6998    bool InstantiationDependent = false;
6999    if (isFunctionTemplateSpecialization && isFriend &&
7000        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7001         TemplateSpecializationType::anyDependentTemplateArguments(
7002            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7003            InstantiationDependent))) {
7004      assert(HasExplicitTemplateArgs &&
7005             "friend function specialization without template args");
7006      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7007                                                       Previous))
7008        NewFD->setInvalidDecl();
7009    } else if (isFunctionTemplateSpecialization) {
7010      if (CurContext->isDependentContext() && CurContext->isRecord()
7011          && !isFriend) {
7012        isDependentClassScopeExplicitSpecialization = true;
7013        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7014          diag::ext_function_specialization_in_class :
7015          diag::err_function_specialization_in_class)
7016          << NewFD->getDeclName();
7017      } else if (CheckFunctionTemplateSpecialization(NewFD,
7018                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7019                                                     Previous))
7020        NewFD->setInvalidDecl();
7021
7022      // C++ [dcl.stc]p1:
7023      //   A storage-class-specifier shall not be specified in an explicit
7024      //   specialization (14.7.3)
7025      FunctionTemplateSpecializationInfo *Info =
7026          NewFD->getTemplateSpecializationInfo();
7027      if (Info && SC != SC_None) {
7028        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7029          Diag(NewFD->getLocation(),
7030               diag::err_explicit_specialization_inconsistent_storage_class)
7031            << SC
7032            << FixItHint::CreateRemoval(
7033                                      D.getDeclSpec().getStorageClassSpecLoc());
7034
7035        else
7036          Diag(NewFD->getLocation(),
7037               diag::ext_explicit_specialization_storage_class)
7038            << FixItHint::CreateRemoval(
7039                                      D.getDeclSpec().getStorageClassSpecLoc());
7040      }
7041
7042    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7043      if (CheckMemberSpecialization(NewFD, Previous))
7044          NewFD->setInvalidDecl();
7045    }
7046
7047    // Perform semantic checking on the function declaration.
7048    if (!isDependentClassScopeExplicitSpecialization) {
7049      if (!NewFD->isInvalidDecl() && NewFD->isMain())
7050        CheckMain(NewFD, D.getDeclSpec());
7051
7052      if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7053        CheckMSVCRTEntryPoint(NewFD);
7054
7055      if (NewFD->isInvalidDecl()) {
7056        // If this is a class member, mark the class invalid immediately.
7057        // This avoids some consistency errors later.
7058        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
7059          methodDecl->getParent()->setInvalidDecl();
7060      } else
7061        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7062                                                    isExplicitSpecialization));
7063    }
7064
7065    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7066            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7067           "previous declaration set still overloaded");
7068
7069    NamedDecl *PrincipalDecl = (FunctionTemplate
7070                                ? cast<NamedDecl>(FunctionTemplate)
7071                                : NewFD);
7072
7073    if (isFriend && D.isRedeclaration()) {
7074      AccessSpecifier Access = AS_public;
7075      if (!NewFD->isInvalidDecl())
7076        Access = NewFD->getPreviousDecl()->getAccess();
7077
7078      NewFD->setAccess(Access);
7079      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7080    }
7081
7082    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7083        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7084      PrincipalDecl->setNonMemberOperator();
7085
7086    // If we have a function template, check the template parameter
7087    // list. This will check and merge default template arguments.
7088    if (FunctionTemplate) {
7089      FunctionTemplateDecl *PrevTemplate =
7090                                     FunctionTemplate->getPreviousDecl();
7091      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7092                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
7093                            D.getDeclSpec().isFriendSpecified()
7094                              ? (D.isFunctionDefinition()
7095                                   ? TPC_FriendFunctionTemplateDefinition
7096                                   : TPC_FriendFunctionTemplate)
7097                              : (D.getCXXScopeSpec().isSet() &&
7098                                 DC && DC->isRecord() &&
7099                                 DC->isDependentContext())
7100                                  ? TPC_ClassTemplateMember
7101                                  : TPC_FunctionTemplate);
7102    }
7103
7104    if (NewFD->isInvalidDecl()) {
7105      // Ignore all the rest of this.
7106    } else if (!D.isRedeclaration()) {
7107      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7108                                       AddToScope };
7109      // Fake up an access specifier if it's supposed to be a class member.
7110      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7111        NewFD->setAccess(AS_public);
7112
7113      // Qualified decls generally require a previous declaration.
7114      if (D.getCXXScopeSpec().isSet()) {
7115        // ...with the major exception of templated-scope or
7116        // dependent-scope friend declarations.
7117
7118        // TODO: we currently also suppress this check in dependent
7119        // contexts because (1) the parameter depth will be off when
7120        // matching friend templates and (2) we might actually be
7121        // selecting a friend based on a dependent factor.  But there
7122        // are situations where these conditions don't apply and we
7123        // can actually do this check immediately.
7124        if (isFriend &&
7125            (TemplateParamLists.size() ||
7126             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7127             CurContext->isDependentContext())) {
7128          // ignore these
7129        } else {
7130          // The user tried to provide an out-of-line definition for a
7131          // function that is a member of a class or namespace, but there
7132          // was no such member function declared (C++ [class.mfct]p2,
7133          // C++ [namespace.memdef]p2). For example:
7134          //
7135          // class X {
7136          //   void f() const;
7137          // };
7138          //
7139          // void X::f() { } // ill-formed
7140          //
7141          // Complain about this problem, and attempt to suggest close
7142          // matches (e.g., those that differ only in cv-qualifiers and
7143          // whether the parameter types are references).
7144
7145          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7146                  *this, Previous, NewFD, ExtraArgs, false, 0)) {
7147            AddToScope = ExtraArgs.AddToScope;
7148            return Result;
7149          }
7150        }
7151
7152        // Unqualified local friend declarations are required to resolve
7153        // to something.
7154      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7155        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7156                *this, Previous, NewFD, ExtraArgs, true, S)) {
7157          AddToScope = ExtraArgs.AddToScope;
7158          return Result;
7159        }
7160      }
7161
7162    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
7163               !isFriend && !isFunctionTemplateSpecialization &&
7164               !isExplicitSpecialization) {
7165      // An out-of-line member function declaration must also be a
7166      // definition (C++ [dcl.meaning]p1).
7167      // Note that this is not the case for explicit specializations of
7168      // function templates or member functions of class templates, per
7169      // C++ [temp.expl.spec]p2. We also allow these declarations as an
7170      // extension for compatibility with old SWIG code which likes to
7171      // generate them.
7172      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7173        << D.getCXXScopeSpec().getRange();
7174    }
7175  }
7176
7177  ProcessPragmaWeak(S, NewFD);
7178  checkAttributesAfterMerging(*this, *NewFD);
7179
7180  AddKnownFunctionAttributes(NewFD);
7181
7182  if (NewFD->hasAttr<OverloadableAttr>() &&
7183      !NewFD->getType()->getAs<FunctionProtoType>()) {
7184    Diag(NewFD->getLocation(),
7185         diag::err_attribute_overloadable_no_prototype)
7186      << NewFD;
7187
7188    // Turn this into a variadic function with no parameters.
7189    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7190    FunctionProtoType::ExtProtoInfo EPI(
7191        Context.getDefaultCallingConvention(true, false));
7192    EPI.Variadic = true;
7193    EPI.ExtInfo = FT->getExtInfo();
7194
7195    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
7196    NewFD->setType(R);
7197  }
7198
7199  // If there's a #pragma GCC visibility in scope, and this isn't a class
7200  // member, set the visibility of this function.
7201  if (!DC->isRecord() && NewFD->isExternallyVisible())
7202    AddPushedVisibilityAttribute(NewFD);
7203
7204  // If there's a #pragma clang arc_cf_code_audited in scope, consider
7205  // marking the function.
7206  AddCFAuditedAttribute(NewFD);
7207
7208  // If this is the first declaration of an extern C variable, update
7209  // the map of such variables.
7210  if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
7211      isIncompleteDeclExternC(*this, NewFD))
7212    RegisterLocallyScopedExternCDecl(NewFD, S);
7213
7214  // Set this FunctionDecl's range up to the right paren.
7215  NewFD->setRangeEnd(D.getSourceRange().getEnd());
7216
7217  if (getLangOpts().CPlusPlus) {
7218    if (FunctionTemplate) {
7219      if (NewFD->isInvalidDecl())
7220        FunctionTemplate->setInvalidDecl();
7221      return FunctionTemplate;
7222    }
7223  }
7224
7225  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7226    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7227    if ((getLangOpts().OpenCLVersion >= 120)
7228        && (SC == SC_Static)) {
7229      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7230      D.setInvalidType();
7231    }
7232
7233    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7234    if (!NewFD->getResultType()->isVoidType()) {
7235      Diag(D.getIdentifierLoc(),
7236           diag::err_expected_kernel_void_return_type);
7237      D.setInvalidType();
7238    }
7239
7240    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7241    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
7242         PE = NewFD->param_end(); PI != PE; ++PI) {
7243      ParmVarDecl *Param = *PI;
7244      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7245    }
7246  }
7247
7248  MarkUnusedFileScopedDecl(NewFD);
7249
7250  if (getLangOpts().CUDA)
7251    if (IdentifierInfo *II = NewFD->getIdentifier())
7252      if (!NewFD->isInvalidDecl() &&
7253          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7254        if (II->isStr("cudaConfigureCall")) {
7255          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
7256            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7257
7258          Context.setcudaConfigureCallDecl(NewFD);
7259        }
7260      }
7261
7262  // Here we have an function template explicit specialization at class scope.
7263  // The actually specialization will be postponed to template instatiation
7264  // time via the ClassScopeFunctionSpecializationDecl node.
7265  if (isDependentClassScopeExplicitSpecialization) {
7266    ClassScopeFunctionSpecializationDecl *NewSpec =
7267                         ClassScopeFunctionSpecializationDecl::Create(
7268                                Context, CurContext, SourceLocation(),
7269                                cast<CXXMethodDecl>(NewFD),
7270                                HasExplicitTemplateArgs, TemplateArgs);
7271    CurContext->addDecl(NewSpec);
7272    AddToScope = false;
7273  }
7274
7275  return NewFD;
7276}
7277
7278/// \brief Perform semantic checking of a new function declaration.
7279///
7280/// Performs semantic analysis of the new function declaration
7281/// NewFD. This routine performs all semantic checking that does not
7282/// require the actual declarator involved in the declaration, and is
7283/// used both for the declaration of functions as they are parsed
7284/// (called via ActOnDeclarator) and for the declaration of functions
7285/// that have been instantiated via C++ template instantiation (called
7286/// via InstantiateDecl).
7287///
7288/// \param IsExplicitSpecialization whether this new function declaration is
7289/// an explicit specialization of the previous declaration.
7290///
7291/// This sets NewFD->isInvalidDecl() to true if there was an error.
7292///
7293/// \returns true if the function declaration is a redeclaration.
7294bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7295                                    LookupResult &Previous,
7296                                    bool IsExplicitSpecialization) {
7297  assert(!NewFD->getResultType()->isVariablyModifiedType()
7298         && "Variably modified return types are not handled here");
7299
7300  // Determine whether the type of this function should be merged with
7301  // a previous visible declaration. This never happens for functions in C++,
7302  // and always happens in C if the previous declaration was visible.
7303  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7304                               !Previous.isShadowed();
7305
7306  // Filter out any non-conflicting previous declarations.
7307  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7308
7309  bool Redeclaration = false;
7310  NamedDecl *OldDecl = 0;
7311
7312  // Merge or overload the declaration with an existing declaration of
7313  // the same name, if appropriate.
7314  if (!Previous.empty()) {
7315    // Determine whether NewFD is an overload of PrevDecl or
7316    // a declaration that requires merging. If it's an overload,
7317    // there's no more work to do here; we'll just add the new
7318    // function to the scope.
7319    if (!AllowOverloadingOfFunction(Previous, Context)) {
7320      NamedDecl *Candidate = Previous.getFoundDecl();
7321      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7322        Redeclaration = true;
7323        OldDecl = Candidate;
7324      }
7325    } else {
7326      switch (CheckOverload(S, NewFD, Previous, OldDecl,
7327                            /*NewIsUsingDecl*/ false)) {
7328      case Ovl_Match:
7329        Redeclaration = true;
7330        break;
7331
7332      case Ovl_NonFunction:
7333        Redeclaration = true;
7334        break;
7335
7336      case Ovl_Overload:
7337        Redeclaration = false;
7338        break;
7339      }
7340
7341      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7342        // If a function name is overloadable in C, then every function
7343        // with that name must be marked "overloadable".
7344        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7345          << Redeclaration << NewFD;
7346        NamedDecl *OverloadedDecl = 0;
7347        if (Redeclaration)
7348          OverloadedDecl = OldDecl;
7349        else if (!Previous.empty())
7350          OverloadedDecl = Previous.getRepresentativeDecl();
7351        if (OverloadedDecl)
7352          Diag(OverloadedDecl->getLocation(),
7353               diag::note_attribute_overloadable_prev_overload);
7354        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7355                                                        Context));
7356      }
7357    }
7358  }
7359
7360  // Check for a previous extern "C" declaration with this name.
7361  if (!Redeclaration &&
7362      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7363    filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7364    if (!Previous.empty()) {
7365      // This is an extern "C" declaration with the same name as a previous
7366      // declaration, and thus redeclares that entity...
7367      Redeclaration = true;
7368      OldDecl = Previous.getFoundDecl();
7369      MergeTypeWithPrevious = false;
7370
7371      // ... except in the presence of __attribute__((overloadable)).
7372      if (OldDecl->hasAttr<OverloadableAttr>()) {
7373        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7374          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7375            << Redeclaration << NewFD;
7376          Diag(Previous.getFoundDecl()->getLocation(),
7377               diag::note_attribute_overloadable_prev_overload);
7378          NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7379                                                          Context));
7380        }
7381        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7382          Redeclaration = false;
7383          OldDecl = 0;
7384        }
7385      }
7386    }
7387  }
7388
7389  // C++11 [dcl.constexpr]p8:
7390  //   A constexpr specifier for a non-static member function that is not
7391  //   a constructor declares that member function to be const.
7392  //
7393  // This needs to be delayed until we know whether this is an out-of-line
7394  // definition of a static member function.
7395  //
7396  // This rule is not present in C++1y, so we produce a backwards
7397  // compatibility warning whenever it happens in C++11.
7398  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7399  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7400      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7401      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7402    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
7403    if (FunctionTemplateDecl *OldTD =
7404          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
7405      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
7406    if (!OldMD || !OldMD->isStatic()) {
7407      const FunctionProtoType *FPT =
7408        MD->getType()->castAs<FunctionProtoType>();
7409      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7410      EPI.TypeQuals |= Qualifiers::Const;
7411      MD->setType(Context.getFunctionType(FPT->getResultType(),
7412                                          FPT->getArgTypes(), EPI));
7413
7414      // Warn that we did this, if we're not performing template instantiation.
7415      // In that case, we'll have warned already when the template was defined.
7416      if (ActiveTemplateInstantiations.empty()) {
7417        SourceLocation AddConstLoc;
7418        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7419                .IgnoreParens().getAs<FunctionTypeLoc>())
7420          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
7421
7422        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7423          << FixItHint::CreateInsertion(AddConstLoc, " const");
7424      }
7425    }
7426  }
7427
7428  if (Redeclaration) {
7429    // NewFD and OldDecl represent declarations that need to be
7430    // merged.
7431    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7432      NewFD->setInvalidDecl();
7433      return Redeclaration;
7434    }
7435
7436    Previous.clear();
7437    Previous.addDecl(OldDecl);
7438
7439    if (FunctionTemplateDecl *OldTemplateDecl
7440                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7441      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7442      FunctionTemplateDecl *NewTemplateDecl
7443        = NewFD->getDescribedFunctionTemplate();
7444      assert(NewTemplateDecl && "Template/non-template mismatch");
7445      if (CXXMethodDecl *Method
7446            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7447        Method->setAccess(OldTemplateDecl->getAccess());
7448        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7449      }
7450
7451      // If this is an explicit specialization of a member that is a function
7452      // template, mark it as a member specialization.
7453      if (IsExplicitSpecialization &&
7454          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7455        NewTemplateDecl->setMemberSpecialization();
7456        assert(OldTemplateDecl->isMemberSpecialization());
7457      }
7458
7459    } else {
7460      // This needs to happen first so that 'inline' propagates.
7461      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7462
7463      if (isa<CXXMethodDecl>(NewFD)) {
7464        // A valid redeclaration of a C++ method must be out-of-line,
7465        // but (unfortunately) it's not necessarily a definition
7466        // because of templates, which means that the previous
7467        // declaration is not necessarily from the class definition.
7468
7469        // For just setting the access, that doesn't matter.
7470        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7471        NewFD->setAccess(oldMethod->getAccess());
7472
7473        // Update the key-function state if necessary for this ABI.
7474        if (NewFD->isInlined() &&
7475            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7476          // setNonKeyFunction needs to work with the original
7477          // declaration from the class definition, and isVirtual() is
7478          // just faster in that case, so map back to that now.
7479          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
7480          if (oldMethod->isVirtual()) {
7481            Context.setNonKeyFunction(oldMethod);
7482          }
7483        }
7484      }
7485    }
7486  }
7487
7488  // Semantic checking for this function declaration (in isolation).
7489  if (getLangOpts().CPlusPlus) {
7490    // C++-specific checks.
7491    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7492      CheckConstructor(Constructor);
7493    } else if (CXXDestructorDecl *Destructor =
7494                dyn_cast<CXXDestructorDecl>(NewFD)) {
7495      CXXRecordDecl *Record = Destructor->getParent();
7496      QualType ClassType = Context.getTypeDeclType(Record);
7497
7498      // FIXME: Shouldn't we be able to perform this check even when the class
7499      // type is dependent? Both gcc and edg can handle that.
7500      if (!ClassType->isDependentType()) {
7501        DeclarationName Name
7502          = Context.DeclarationNames.getCXXDestructorName(
7503                                        Context.getCanonicalType(ClassType));
7504        if (NewFD->getDeclName() != Name) {
7505          Diag(NewFD->getLocation(), diag::err_destructor_name);
7506          NewFD->setInvalidDecl();
7507          return Redeclaration;
7508        }
7509      }
7510    } else if (CXXConversionDecl *Conversion
7511               = dyn_cast<CXXConversionDecl>(NewFD)) {
7512      ActOnConversionDeclarator(Conversion);
7513    }
7514
7515    // Find any virtual functions that this function overrides.
7516    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7517      if (!Method->isFunctionTemplateSpecialization() &&
7518          !Method->getDescribedFunctionTemplate() &&
7519          Method->isCanonicalDecl()) {
7520        if (AddOverriddenMethods(Method->getParent(), Method)) {
7521          // If the function was marked as "static", we have a problem.
7522          if (NewFD->getStorageClass() == SC_Static) {
7523            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7524          }
7525        }
7526      }
7527
7528      if (Method->isStatic())
7529        checkThisInStaticMemberFunctionType(Method);
7530    }
7531
7532    // Extra checking for C++ overloaded operators (C++ [over.oper]).
7533    if (NewFD->isOverloadedOperator() &&
7534        CheckOverloadedOperatorDeclaration(NewFD)) {
7535      NewFD->setInvalidDecl();
7536      return Redeclaration;
7537    }
7538
7539    // Extra checking for C++0x literal operators (C++0x [over.literal]).
7540    if (NewFD->getLiteralIdentifier() &&
7541        CheckLiteralOperatorDeclaration(NewFD)) {
7542      NewFD->setInvalidDecl();
7543      return Redeclaration;
7544    }
7545
7546    // In C++, check default arguments now that we have merged decls. Unless
7547    // the lexical context is the class, because in this case this is done
7548    // during delayed parsing anyway.
7549    if (!CurContext->isRecord())
7550      CheckCXXDefaultArguments(NewFD);
7551
7552    // If this function declares a builtin function, check the type of this
7553    // declaration against the expected type for the builtin.
7554    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7555      ASTContext::GetBuiltinTypeError Error;
7556      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7557      QualType T = Context.GetBuiltinType(BuiltinID, Error);
7558      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7559        // The type of this function differs from the type of the builtin,
7560        // so forget about the builtin entirely.
7561        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7562      }
7563    }
7564
7565    // If this function is declared as being extern "C", then check to see if
7566    // the function returns a UDT (class, struct, or union type) that is not C
7567    // compatible, and if it does, warn the user.
7568    // But, issue any diagnostic on the first declaration only.
7569    if (NewFD->isExternC() && Previous.empty()) {
7570      QualType R = NewFD->getResultType();
7571      if (R->isIncompleteType() && !R->isVoidType())
7572        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7573            << NewFD << R;
7574      else if (!R.isPODType(Context) && !R->isVoidType() &&
7575               !R->isObjCObjectPointerType())
7576        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7577    }
7578  }
7579  return Redeclaration;
7580}
7581
7582static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7583  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7584  if (!TSI)
7585    return SourceRange();
7586
7587  TypeLoc TL = TSI->getTypeLoc();
7588  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7589  if (!FunctionTL)
7590    return SourceRange();
7591
7592  TypeLoc ResultTL = FunctionTL.getResultLoc();
7593  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7594    return ResultTL.getSourceRange();
7595
7596  return SourceRange();
7597}
7598
7599void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7600  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7601  //   static or constexpr is ill-formed.
7602  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7603  //   appear in a declaration of main.
7604  // static main is not an error under C99, but we should warn about it.
7605  // We accept _Noreturn main as an extension.
7606  if (FD->getStorageClass() == SC_Static)
7607    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7608         ? diag::err_static_main : diag::warn_static_main)
7609      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7610  if (FD->isInlineSpecified())
7611    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7612      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7613  if (DS.isNoreturnSpecified()) {
7614    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7615    SourceRange NoreturnRange(NoreturnLoc,
7616                              PP.getLocForEndOfToken(NoreturnLoc));
7617    Diag(NoreturnLoc, diag::ext_noreturn_main);
7618    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7619      << FixItHint::CreateRemoval(NoreturnRange);
7620  }
7621  if (FD->isConstexpr()) {
7622    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7623      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7624    FD->setConstexpr(false);
7625  }
7626
7627  QualType T = FD->getType();
7628  assert(T->isFunctionType() && "function decl is not of function type");
7629  const FunctionType* FT = T->castAs<FunctionType>();
7630
7631  // All the standards say that main() should should return 'int'.
7632  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7633    // In C and C++, main magically returns 0 if you fall off the end;
7634    // set the flag which tells us that.
7635    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7636    FD->setHasImplicitReturnZero(true);
7637
7638  // In C with GNU extensions we allow main() to have non-integer return
7639  // type, but we should warn about the extension, and we disable the
7640  // implicit-return-zero rule.
7641  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7642    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7643
7644    SourceRange ResultRange = getResultSourceRange(FD);
7645    if (ResultRange.isValid())
7646      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7647          << FixItHint::CreateReplacement(ResultRange, "int");
7648
7649  // Otherwise, this is just a flat-out error.
7650  } else {
7651    SourceRange ResultRange = getResultSourceRange(FD);
7652    if (ResultRange.isValid())
7653      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7654          << FixItHint::CreateReplacement(ResultRange, "int");
7655    else
7656      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7657
7658    FD->setInvalidDecl(true);
7659  }
7660
7661  // Treat protoless main() as nullary.
7662  if (isa<FunctionNoProtoType>(FT)) return;
7663
7664  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7665  unsigned nparams = FTP->getNumArgs();
7666  assert(FD->getNumParams() == nparams);
7667
7668  bool HasExtraParameters = (nparams > 3);
7669
7670  // Darwin passes an undocumented fourth argument of type char**.  If
7671  // other platforms start sprouting these, the logic below will start
7672  // getting shifty.
7673  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7674    HasExtraParameters = false;
7675
7676  if (HasExtraParameters) {
7677    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7678    FD->setInvalidDecl(true);
7679    nparams = 3;
7680  }
7681
7682  // FIXME: a lot of the following diagnostics would be improved
7683  // if we had some location information about types.
7684
7685  QualType CharPP =
7686    Context.getPointerType(Context.getPointerType(Context.CharTy));
7687  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7688
7689  for (unsigned i = 0; i < nparams; ++i) {
7690    QualType AT = FTP->getArgType(i);
7691
7692    bool mismatch = true;
7693
7694    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7695      mismatch = false;
7696    else if (Expected[i] == CharPP) {
7697      // As an extension, the following forms are okay:
7698      //   char const **
7699      //   char const * const *
7700      //   char * const *
7701
7702      QualifierCollector qs;
7703      const PointerType* PT;
7704      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7705          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7706          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7707                              Context.CharTy)) {
7708        qs.removeConst();
7709        mismatch = !qs.empty();
7710      }
7711    }
7712
7713    if (mismatch) {
7714      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7715      // TODO: suggest replacing given type with expected type
7716      FD->setInvalidDecl(true);
7717    }
7718  }
7719
7720  if (nparams == 1 && !FD->isInvalidDecl()) {
7721    Diag(FD->getLocation(), diag::warn_main_one_arg);
7722  }
7723
7724  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7725    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
7726    FD->setInvalidDecl();
7727  }
7728}
7729
7730void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
7731  QualType T = FD->getType();
7732  assert(T->isFunctionType() && "function decl is not of function type");
7733  const FunctionType *FT = T->castAs<FunctionType>();
7734
7735  // Set an implicit return of 'zero' if the function can return some integral,
7736  // enumeration, pointer or nullptr type.
7737  if (FT->getResultType()->isIntegralOrEnumerationType() ||
7738      FT->getResultType()->isAnyPointerType() ||
7739      FT->getResultType()->isNullPtrType())
7740    // DllMain is exempt because a return value of zero means it failed.
7741    if (FD->getName() != "DllMain")
7742      FD->setHasImplicitReturnZero(true);
7743
7744  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7745    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
7746    FD->setInvalidDecl();
7747  }
7748}
7749
7750bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7751  // FIXME: Need strict checking.  In C89, we need to check for
7752  // any assignment, increment, decrement, function-calls, or
7753  // commas outside of a sizeof.  In C99, it's the same list,
7754  // except that the aforementioned are allowed in unevaluated
7755  // expressions.  Everything else falls under the
7756  // "may accept other forms of constant expressions" exception.
7757  // (We never end up here for C++, so the constant expression
7758  // rules there don't matter.)
7759  if (Init->isConstantInitializer(Context, false))
7760    return false;
7761  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7762    << Init->getSourceRange();
7763  return true;
7764}
7765
7766namespace {
7767  // Visits an initialization expression to see if OrigDecl is evaluated in
7768  // its own initialization and throws a warning if it does.
7769  class SelfReferenceChecker
7770      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7771    Sema &S;
7772    Decl *OrigDecl;
7773    bool isRecordType;
7774    bool isPODType;
7775    bool isReferenceType;
7776
7777  public:
7778    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7779
7780    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7781                                                    S(S), OrigDecl(OrigDecl) {
7782      isPODType = false;
7783      isRecordType = false;
7784      isReferenceType = false;
7785      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7786        isPODType = VD->getType().isPODType(S.Context);
7787        isRecordType = VD->getType()->isRecordType();
7788        isReferenceType = VD->getType()->isReferenceType();
7789      }
7790    }
7791
7792    // For most expressions, the cast is directly above the DeclRefExpr.
7793    // For conditional operators, the cast can be outside the conditional
7794    // operator if both expressions are DeclRefExpr's.
7795    void HandleValue(Expr *E) {
7796      if (isReferenceType)
7797        return;
7798      E = E->IgnoreParenImpCasts();
7799      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7800        HandleDeclRefExpr(DRE);
7801        return;
7802      }
7803
7804      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7805        HandleValue(CO->getTrueExpr());
7806        HandleValue(CO->getFalseExpr());
7807        return;
7808      }
7809
7810      if (isa<MemberExpr>(E)) {
7811        Expr *Base = E->IgnoreParenImpCasts();
7812        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7813          // Check for static member variables and don't warn on them.
7814          if (!isa<FieldDecl>(ME->getMemberDecl()))
7815            return;
7816          Base = ME->getBase()->IgnoreParenImpCasts();
7817        }
7818        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7819          HandleDeclRefExpr(DRE);
7820        return;
7821      }
7822    }
7823
7824    // Reference types are handled here since all uses of references are
7825    // bad, not just r-value uses.
7826    void VisitDeclRefExpr(DeclRefExpr *E) {
7827      if (isReferenceType)
7828        HandleDeclRefExpr(E);
7829    }
7830
7831    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7832      if (E->getCastKind() == CK_LValueToRValue ||
7833          (isRecordType && E->getCastKind() == CK_NoOp))
7834        HandleValue(E->getSubExpr());
7835
7836      Inherited::VisitImplicitCastExpr(E);
7837    }
7838
7839    void VisitMemberExpr(MemberExpr *E) {
7840      // Don't warn on arrays since they can be treated as pointers.
7841      if (E->getType()->canDecayToPointerType()) return;
7842
7843      // Warn when a non-static method call is followed by non-static member
7844      // field accesses, which is followed by a DeclRefExpr.
7845      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7846      bool Warn = (MD && !MD->isStatic());
7847      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7848      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7849        if (!isa<FieldDecl>(ME->getMemberDecl()))
7850          Warn = false;
7851        Base = ME->getBase()->IgnoreParenImpCasts();
7852      }
7853
7854      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7855        if (Warn)
7856          HandleDeclRefExpr(DRE);
7857        return;
7858      }
7859
7860      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7861      // Visit that expression.
7862      Visit(Base);
7863    }
7864
7865    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7866      if (E->getNumArgs() > 0)
7867        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7868          HandleDeclRefExpr(DRE);
7869
7870      Inherited::VisitCXXOperatorCallExpr(E);
7871    }
7872
7873    void VisitUnaryOperator(UnaryOperator *E) {
7874      // For POD record types, addresses of its own members are well-defined.
7875      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7876          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7877        if (!isPODType)
7878          HandleValue(E->getSubExpr());
7879        return;
7880      }
7881      Inherited::VisitUnaryOperator(E);
7882    }
7883
7884    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7885
7886    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7887      Decl* ReferenceDecl = DRE->getDecl();
7888      if (OrigDecl != ReferenceDecl) return;
7889      unsigned diag;
7890      if (isReferenceType) {
7891        diag = diag::warn_uninit_self_reference_in_reference_init;
7892      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7893        diag = diag::warn_static_self_reference_in_init;
7894      } else {
7895        diag = diag::warn_uninit_self_reference_in_init;
7896      }
7897
7898      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7899                            S.PDiag(diag)
7900                              << DRE->getNameInfo().getName()
7901                              << OrigDecl->getLocation()
7902                              << DRE->getSourceRange());
7903    }
7904  };
7905
7906  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7907  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7908                                 bool DirectInit) {
7909    // Parameters arguments are occassionially constructed with itself,
7910    // for instance, in recursive functions.  Skip them.
7911    if (isa<ParmVarDecl>(OrigDecl))
7912      return;
7913
7914    E = E->IgnoreParens();
7915
7916    // Skip checking T a = a where T is not a record or reference type.
7917    // Doing so is a way to silence uninitialized warnings.
7918    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7919      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7920        if (ICE->getCastKind() == CK_LValueToRValue)
7921          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7922            if (DRE->getDecl() == OrigDecl)
7923              return;
7924
7925    SelfReferenceChecker(S, OrigDecl).Visit(E);
7926  }
7927}
7928
7929/// AddInitializerToDecl - Adds the initializer Init to the
7930/// declaration dcl. If DirectInit is true, this is C++ direct
7931/// initialization rather than copy initialization.
7932void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7933                                bool DirectInit, bool TypeMayContainAuto) {
7934  // If there is no declaration, there was an error parsing it.  Just ignore
7935  // the initializer.
7936  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7937    return;
7938
7939  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7940    // With declarators parsed the way they are, the parser cannot
7941    // distinguish between a normal initializer and a pure-specifier.
7942    // Thus this grotesque test.
7943    IntegerLiteral *IL;
7944    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7945        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7946      CheckPureMethod(Method, Init->getSourceRange());
7947    else {
7948      Diag(Method->getLocation(), diag::err_member_function_initialization)
7949        << Method->getDeclName() << Init->getSourceRange();
7950      Method->setInvalidDecl();
7951    }
7952    return;
7953  }
7954
7955  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7956  if (!VDecl) {
7957    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7958    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7959    RealDecl->setInvalidDecl();
7960    return;
7961  }
7962  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7963
7964  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7965  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7966    Expr *DeduceInit = Init;
7967    // Initializer could be a C++ direct-initializer. Deduction only works if it
7968    // contains exactly one expression.
7969    if (CXXDirectInit) {
7970      if (CXXDirectInit->getNumExprs() == 0) {
7971        // It isn't possible to write this directly, but it is possible to
7972        // end up in this situation with "auto x(some_pack...);"
7973        Diag(CXXDirectInit->getLocStart(),
7974             VDecl->isInitCapture() ? diag::err_init_capture_no_expression
7975                                    : diag::err_auto_var_init_no_expression)
7976          << VDecl->getDeclName() << VDecl->getType()
7977          << VDecl->getSourceRange();
7978        RealDecl->setInvalidDecl();
7979        return;
7980      } else if (CXXDirectInit->getNumExprs() > 1) {
7981        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7982             VDecl->isInitCapture()
7983                 ? diag::err_init_capture_multiple_expressions
7984                 : diag::err_auto_var_init_multiple_expressions)
7985          << VDecl->getDeclName() << VDecl->getType()
7986          << VDecl->getSourceRange();
7987        RealDecl->setInvalidDecl();
7988        return;
7989      } else {
7990        DeduceInit = CXXDirectInit->getExpr(0);
7991      }
7992    }
7993
7994    // Expressions default to 'id' when we're in a debugger.
7995    bool DefaultedToAuto = false;
7996    if (getLangOpts().DebuggerCastResultToId &&
7997        Init->getType() == Context.UnknownAnyTy) {
7998      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7999      if (Result.isInvalid()) {
8000        VDecl->setInvalidDecl();
8001        return;
8002      }
8003      Init = Result.take();
8004      DefaultedToAuto = true;
8005    }
8006
8007    QualType DeducedType;
8008    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8009            DAR_Failed)
8010      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8011    if (DeducedType.isNull()) {
8012      RealDecl->setInvalidDecl();
8013      return;
8014    }
8015    VDecl->setType(DeducedType);
8016    assert(VDecl->isLinkageValid());
8017
8018    // In ARC, infer lifetime.
8019    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8020      VDecl->setInvalidDecl();
8021
8022    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8023    // 'id' instead of a specific object type prevents most of our usual checks.
8024    // We only want to warn outside of template instantiations, though:
8025    // inside a template, the 'id' could have come from a parameter.
8026    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8027        DeducedType->isObjCIdType()) {
8028      SourceLocation Loc =
8029          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8030      Diag(Loc, diag::warn_auto_var_is_id)
8031        << VDecl->getDeclName() << DeduceInit->getSourceRange();
8032    }
8033
8034    // If this is a redeclaration, check that the type we just deduced matches
8035    // the previously declared type.
8036    if (VarDecl *Old = VDecl->getPreviousDecl()) {
8037      // We never need to merge the type, because we cannot form an incomplete
8038      // array of auto, nor deduce such a type.
8039      MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8040    }
8041
8042    // Check the deduced type is valid for a variable declaration.
8043    CheckVariableDeclarationType(VDecl);
8044    if (VDecl->isInvalidDecl())
8045      return;
8046  }
8047
8048  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8049    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8050    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8051    VDecl->setInvalidDecl();
8052    return;
8053  }
8054
8055  if (!VDecl->getType()->isDependentType()) {
8056    // A definition must end up with a complete type, which means it must be
8057    // complete with the restriction that an array type might be completed by
8058    // the initializer; note that later code assumes this restriction.
8059    QualType BaseDeclType = VDecl->getType();
8060    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8061      BaseDeclType = Array->getElementType();
8062    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8063                            diag::err_typecheck_decl_incomplete_type)) {
8064      RealDecl->setInvalidDecl();
8065      return;
8066    }
8067
8068    // The variable can not have an abstract class type.
8069    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8070                               diag::err_abstract_type_in_decl,
8071                               AbstractVariableType))
8072      VDecl->setInvalidDecl();
8073  }
8074
8075  const VarDecl *Def;
8076  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8077    Diag(VDecl->getLocation(), diag::err_redefinition)
8078      << VDecl->getDeclName();
8079    Diag(Def->getLocation(), diag::note_previous_definition);
8080    VDecl->setInvalidDecl();
8081    return;
8082  }
8083
8084  const VarDecl* PrevInit = 0;
8085  if (getLangOpts().CPlusPlus) {
8086    // C++ [class.static.data]p4
8087    //   If a static data member is of const integral or const
8088    //   enumeration type, its declaration in the class definition can
8089    //   specify a constant-initializer which shall be an integral
8090    //   constant expression (5.19). In that case, the member can appear
8091    //   in integral constant expressions. The member shall still be
8092    //   defined in a namespace scope if it is used in the program and the
8093    //   namespace scope definition shall not contain an initializer.
8094    //
8095    // We already performed a redefinition check above, but for static
8096    // data members we also need to check whether there was an in-class
8097    // declaration with an initializer.
8098    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8099      Diag(VDecl->getLocation(), diag::err_redefinition)
8100        << VDecl->getDeclName();
8101      Diag(PrevInit->getLocation(), diag::note_previous_definition);
8102      return;
8103    }
8104
8105    if (VDecl->hasLocalStorage())
8106      getCurFunction()->setHasBranchProtectedScope();
8107
8108    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8109      VDecl->setInvalidDecl();
8110      return;
8111    }
8112  }
8113
8114  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8115  // a kernel function cannot be initialized."
8116  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8117    Diag(VDecl->getLocation(), diag::err_local_cant_init);
8118    VDecl->setInvalidDecl();
8119    return;
8120  }
8121
8122  // Get the decls type and save a reference for later, since
8123  // CheckInitializerTypes may change it.
8124  QualType DclT = VDecl->getType(), SavT = DclT;
8125
8126  // Expressions default to 'id' when we're in a debugger
8127  // and we are assigning it to a variable of Objective-C pointer type.
8128  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8129      Init->getType() == Context.UnknownAnyTy) {
8130    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8131    if (Result.isInvalid()) {
8132      VDecl->setInvalidDecl();
8133      return;
8134    }
8135    Init = Result.take();
8136  }
8137
8138  // Perform the initialization.
8139  if (!VDecl->isInvalidDecl()) {
8140    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8141    InitializationKind Kind
8142      = DirectInit ?
8143          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8144                                                           Init->getLocStart(),
8145                                                           Init->getLocEnd())
8146                        : InitializationKind::CreateDirectList(
8147                                                          VDecl->getLocation())
8148                   : InitializationKind::CreateCopy(VDecl->getLocation(),
8149                                                    Init->getLocStart());
8150
8151    MultiExprArg Args = Init;
8152    if (CXXDirectInit)
8153      Args = MultiExprArg(CXXDirectInit->getExprs(),
8154                          CXXDirectInit->getNumExprs());
8155
8156    InitializationSequence InitSeq(*this, Entity, Kind, Args);
8157    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8158    if (Result.isInvalid()) {
8159      VDecl->setInvalidDecl();
8160      return;
8161    }
8162
8163    Init = Result.takeAs<Expr>();
8164  }
8165
8166  // Check for self-references within variable initializers.
8167  // Variables declared within a function/method body (except for references)
8168  // are handled by a dataflow analysis.
8169  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8170      VDecl->getType()->isReferenceType()) {
8171    CheckSelfReference(*this, RealDecl, Init, DirectInit);
8172  }
8173
8174  // If the type changed, it means we had an incomplete type that was
8175  // completed by the initializer. For example:
8176  //   int ary[] = { 1, 3, 5 };
8177  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8178  if (!VDecl->isInvalidDecl() && (DclT != SavT))
8179    VDecl->setType(DclT);
8180
8181  if (!VDecl->isInvalidDecl()) {
8182    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8183
8184    if (VDecl->hasAttr<BlocksAttr>())
8185      checkRetainCycles(VDecl, Init);
8186
8187    // It is safe to assign a weak reference into a strong variable.
8188    // Although this code can still have problems:
8189    //   id x = self.weakProp;
8190    //   id y = self.weakProp;
8191    // we do not warn to warn spuriously when 'x' and 'y' are on separate
8192    // paths through the function. This should be revisited if
8193    // -Wrepeated-use-of-weak is made flow-sensitive.
8194    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
8195      DiagnosticsEngine::Level Level =
8196        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8197                                 Init->getLocStart());
8198      if (Level != DiagnosticsEngine::Ignored)
8199        getCurFunction()->markSafeWeakUse(Init);
8200    }
8201  }
8202
8203  // The initialization is usually a full-expression.
8204  //
8205  // FIXME: If this is a braced initialization of an aggregate, it is not
8206  // an expression, and each individual field initializer is a separate
8207  // full-expression. For instance, in:
8208  //
8209  //   struct Temp { ~Temp(); };
8210  //   struct S { S(Temp); };
8211  //   struct T { S a, b; } t = { Temp(), Temp() }
8212  //
8213  // we should destroy the first Temp before constructing the second.
8214  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8215                                          false,
8216                                          VDecl->isConstexpr());
8217  if (Result.isInvalid()) {
8218    VDecl->setInvalidDecl();
8219    return;
8220  }
8221  Init = Result.take();
8222
8223  // Attach the initializer to the decl.
8224  VDecl->setInit(Init);
8225
8226  if (VDecl->isLocalVarDecl()) {
8227    // C99 6.7.8p4: All the expressions in an initializer for an object that has
8228    // static storage duration shall be constant expressions or string literals.
8229    // C++ does not have this restriction.
8230    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8231      if (VDecl->getStorageClass() == SC_Static)
8232        CheckForConstantInitializer(Init, DclT);
8233      // C89 is stricter than C99 for non-static aggregate types.
8234      // C89 6.5.7p3: All the expressions [...] in an initializer list
8235      // for an object that has aggregate or union type shall be
8236      // constant expressions.
8237      else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8238               isa<InitListExpr>(Init) &&
8239               !Init->isConstantInitializer(Context, false))
8240        Diag(Init->getExprLoc(),
8241             diag::ext_aggregate_init_not_constant)
8242          << Init->getSourceRange();
8243    }
8244  } else if (VDecl->isStaticDataMember() &&
8245             VDecl->getLexicalDeclContext()->isRecord()) {
8246    // This is an in-class initialization for a static data member, e.g.,
8247    //
8248    // struct S {
8249    //   static const int value = 17;
8250    // };
8251
8252    // C++ [class.mem]p4:
8253    //   A member-declarator can contain a constant-initializer only
8254    //   if it declares a static member (9.4) of const integral or
8255    //   const enumeration type, see 9.4.2.
8256    //
8257    // C++11 [class.static.data]p3:
8258    //   If a non-volatile const static data member is of integral or
8259    //   enumeration type, its declaration in the class definition can
8260    //   specify a brace-or-equal-initializer in which every initalizer-clause
8261    //   that is an assignment-expression is a constant expression. A static
8262    //   data member of literal type can be declared in the class definition
8263    //   with the constexpr specifier; if so, its declaration shall specify a
8264    //   brace-or-equal-initializer in which every initializer-clause that is
8265    //   an assignment-expression is a constant expression.
8266
8267    // Do nothing on dependent types.
8268    if (DclT->isDependentType()) {
8269
8270    // Allow any 'static constexpr' members, whether or not they are of literal
8271    // type. We separately check that every constexpr variable is of literal
8272    // type.
8273    } else if (VDecl->isConstexpr()) {
8274
8275    // Require constness.
8276    } else if (!DclT.isConstQualified()) {
8277      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8278        << Init->getSourceRange();
8279      VDecl->setInvalidDecl();
8280
8281    // We allow integer constant expressions in all cases.
8282    } else if (DclT->isIntegralOrEnumerationType()) {
8283      // Check whether the expression is a constant expression.
8284      SourceLocation Loc;
8285      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8286        // In C++11, a non-constexpr const static data member with an
8287        // in-class initializer cannot be volatile.
8288        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8289      else if (Init->isValueDependent())
8290        ; // Nothing to check.
8291      else if (Init->isIntegerConstantExpr(Context, &Loc))
8292        ; // Ok, it's an ICE!
8293      else if (Init->isEvaluatable(Context)) {
8294        // If we can constant fold the initializer through heroics, accept it,
8295        // but report this as a use of an extension for -pedantic.
8296        Diag(Loc, diag::ext_in_class_initializer_non_constant)
8297          << Init->getSourceRange();
8298      } else {
8299        // Otherwise, this is some crazy unknown case.  Report the issue at the
8300        // location provided by the isIntegerConstantExpr failed check.
8301        Diag(Loc, diag::err_in_class_initializer_non_constant)
8302          << Init->getSourceRange();
8303        VDecl->setInvalidDecl();
8304      }
8305
8306    // We allow foldable floating-point constants as an extension.
8307    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8308      // In C++98, this is a GNU extension. In C++11, it is not, but we support
8309      // it anyway and provide a fixit to add the 'constexpr'.
8310      if (getLangOpts().CPlusPlus11) {
8311        Diag(VDecl->getLocation(),
8312             diag::ext_in_class_initializer_float_type_cxx11)
8313            << DclT << Init->getSourceRange();
8314        Diag(VDecl->getLocStart(),
8315             diag::note_in_class_initializer_float_type_cxx11)
8316            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8317      } else {
8318        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8319          << DclT << Init->getSourceRange();
8320
8321        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8322          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8323            << Init->getSourceRange();
8324          VDecl->setInvalidDecl();
8325        }
8326      }
8327
8328    // Suggest adding 'constexpr' in C++11 for literal types.
8329    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8330      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8331        << DclT << Init->getSourceRange()
8332        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8333      VDecl->setConstexpr(true);
8334
8335    } else {
8336      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8337        << DclT << Init->getSourceRange();
8338      VDecl->setInvalidDecl();
8339    }
8340  } else if (VDecl->isFileVarDecl()) {
8341    if (VDecl->getStorageClass() == SC_Extern &&
8342        (!getLangOpts().CPlusPlus ||
8343         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8344           VDecl->isExternC())) &&
8345        !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
8346      Diag(VDecl->getLocation(), diag::warn_extern_init);
8347
8348    // C99 6.7.8p4. All file scoped initializers need to be constant.
8349    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8350      CheckForConstantInitializer(Init, DclT);
8351    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
8352             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
8353             !Init->isValueDependent() && !VDecl->isConstexpr() &&
8354             !Init->isConstantInitializer(
8355                 Context, VDecl->getType()->isReferenceType())) {
8356      // GNU C++98 edits for __thread, [basic.start.init]p4:
8357      //   An object of thread storage duration shall not require dynamic
8358      //   initialization.
8359      // FIXME: Need strict checking here.
8360      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
8361      if (getLangOpts().CPlusPlus11)
8362        Diag(VDecl->getLocation(), diag::note_use_thread_local);
8363    }
8364  }
8365
8366  // We will represent direct-initialization similarly to copy-initialization:
8367  //    int x(1);  -as-> int x = 1;
8368  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8369  //
8370  // Clients that want to distinguish between the two forms, can check for
8371  // direct initializer using VarDecl::getInitStyle().
8372  // A major benefit is that clients that don't particularly care about which
8373  // exactly form was it (like the CodeGen) can handle both cases without
8374  // special case code.
8375
8376  // C++ 8.5p11:
8377  // The form of initialization (using parentheses or '=') is generally
8378  // insignificant, but does matter when the entity being initialized has a
8379  // class type.
8380  if (CXXDirectInit) {
8381    assert(DirectInit && "Call-style initializer must be direct init.");
8382    VDecl->setInitStyle(VarDecl::CallInit);
8383  } else if (DirectInit) {
8384    // This must be list-initialization. No other way is direct-initialization.
8385    VDecl->setInitStyle(VarDecl::ListInit);
8386  }
8387
8388  CheckCompleteVariableDeclaration(VDecl);
8389}
8390
8391/// ActOnInitializerError - Given that there was an error parsing an
8392/// initializer for the given declaration, try to return to some form
8393/// of sanity.
8394void Sema::ActOnInitializerError(Decl *D) {
8395  // Our main concern here is re-establishing invariants like "a
8396  // variable's type is either dependent or complete".
8397  if (!D || D->isInvalidDecl()) return;
8398
8399  VarDecl *VD = dyn_cast<VarDecl>(D);
8400  if (!VD) return;
8401
8402  // Auto types are meaningless if we can't make sense of the initializer.
8403  if (ParsingInitForAutoVars.count(D)) {
8404    D->setInvalidDecl();
8405    return;
8406  }
8407
8408  QualType Ty = VD->getType();
8409  if (Ty->isDependentType()) return;
8410
8411  // Require a complete type.
8412  if (RequireCompleteType(VD->getLocation(),
8413                          Context.getBaseElementType(Ty),
8414                          diag::err_typecheck_decl_incomplete_type)) {
8415    VD->setInvalidDecl();
8416    return;
8417  }
8418
8419  // Require an abstract type.
8420  if (RequireNonAbstractType(VD->getLocation(), Ty,
8421                             diag::err_abstract_type_in_decl,
8422                             AbstractVariableType)) {
8423    VD->setInvalidDecl();
8424    return;
8425  }
8426
8427  // Don't bother complaining about constructors or destructors,
8428  // though.
8429}
8430
8431void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8432                                  bool TypeMayContainAuto) {
8433  // If there is no declaration, there was an error parsing it. Just ignore it.
8434  if (RealDecl == 0)
8435    return;
8436
8437  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8438    QualType Type = Var->getType();
8439
8440    // C++11 [dcl.spec.auto]p3
8441    if (TypeMayContainAuto && Type->getContainedAutoType()) {
8442      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8443        << Var->getDeclName() << Type;
8444      Var->setInvalidDecl();
8445      return;
8446    }
8447
8448    // C++11 [class.static.data]p3: A static data member can be declared with
8449    // the constexpr specifier; if so, its declaration shall specify
8450    // a brace-or-equal-initializer.
8451    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8452    // the definition of a variable [...] or the declaration of a static data
8453    // member.
8454    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8455      if (Var->isStaticDataMember())
8456        Diag(Var->getLocation(),
8457             diag::err_constexpr_static_mem_var_requires_init)
8458          << Var->getDeclName();
8459      else
8460        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8461      Var->setInvalidDecl();
8462      return;
8463    }
8464
8465    switch (Var->isThisDeclarationADefinition()) {
8466    case VarDecl::Definition:
8467      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8468        break;
8469
8470      // We have an out-of-line definition of a static data member
8471      // that has an in-class initializer, so we type-check this like
8472      // a declaration.
8473      //
8474      // Fall through
8475
8476    case VarDecl::DeclarationOnly:
8477      // It's only a declaration.
8478
8479      // Block scope. C99 6.7p7: If an identifier for an object is
8480      // declared with no linkage (C99 6.2.2p6), the type for the
8481      // object shall be complete.
8482      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8483          !Var->hasLinkage() && !Var->isInvalidDecl() &&
8484          RequireCompleteType(Var->getLocation(), Type,
8485                              diag::err_typecheck_decl_incomplete_type))
8486        Var->setInvalidDecl();
8487
8488      // Make sure that the type is not abstract.
8489      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8490          RequireNonAbstractType(Var->getLocation(), Type,
8491                                 diag::err_abstract_type_in_decl,
8492                                 AbstractVariableType))
8493        Var->setInvalidDecl();
8494      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8495          Var->getStorageClass() == SC_PrivateExtern) {
8496        Diag(Var->getLocation(), diag::warn_private_extern);
8497        Diag(Var->getLocation(), diag::note_private_extern);
8498      }
8499
8500      return;
8501
8502    case VarDecl::TentativeDefinition:
8503      // File scope. C99 6.9.2p2: A declaration of an identifier for an
8504      // object that has file scope without an initializer, and without a
8505      // storage-class specifier or with the storage-class specifier "static",
8506      // constitutes a tentative definition. Note: A tentative definition with
8507      // external linkage is valid (C99 6.2.2p5).
8508      if (!Var->isInvalidDecl()) {
8509        if (const IncompleteArrayType *ArrayT
8510                                    = Context.getAsIncompleteArrayType(Type)) {
8511          if (RequireCompleteType(Var->getLocation(),
8512                                  ArrayT->getElementType(),
8513                                  diag::err_illegal_decl_array_incomplete_type))
8514            Var->setInvalidDecl();
8515        } else if (Var->getStorageClass() == SC_Static) {
8516          // C99 6.9.2p3: If the declaration of an identifier for an object is
8517          // a tentative definition and has internal linkage (C99 6.2.2p3), the
8518          // declared type shall not be an incomplete type.
8519          // NOTE: code such as the following
8520          //     static struct s;
8521          //     struct s { int a; };
8522          // is accepted by gcc. Hence here we issue a warning instead of
8523          // an error and we do not invalidate the static declaration.
8524          // NOTE: to avoid multiple warnings, only check the first declaration.
8525          if (Var->getPreviousDecl() == 0)
8526            RequireCompleteType(Var->getLocation(), Type,
8527                                diag::ext_typecheck_decl_incomplete_type);
8528        }
8529      }
8530
8531      // Record the tentative definition; we're done.
8532      if (!Var->isInvalidDecl())
8533        TentativeDefinitions.push_back(Var);
8534      return;
8535    }
8536
8537    // Provide a specific diagnostic for uninitialized variable
8538    // definitions with incomplete array type.
8539    if (Type->isIncompleteArrayType()) {
8540      Diag(Var->getLocation(),
8541           diag::err_typecheck_incomplete_array_needs_initializer);
8542      Var->setInvalidDecl();
8543      return;
8544    }
8545
8546    // Provide a specific diagnostic for uninitialized variable
8547    // definitions with reference type.
8548    if (Type->isReferenceType()) {
8549      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8550        << Var->getDeclName()
8551        << SourceRange(Var->getLocation(), Var->getLocation());
8552      Var->setInvalidDecl();
8553      return;
8554    }
8555
8556    // Do not attempt to type-check the default initializer for a
8557    // variable with dependent type.
8558    if (Type->isDependentType())
8559      return;
8560
8561    if (Var->isInvalidDecl())
8562      return;
8563
8564    if (RequireCompleteType(Var->getLocation(),
8565                            Context.getBaseElementType(Type),
8566                            diag::err_typecheck_decl_incomplete_type)) {
8567      Var->setInvalidDecl();
8568      return;
8569    }
8570
8571    // The variable can not have an abstract class type.
8572    if (RequireNonAbstractType(Var->getLocation(), Type,
8573                               diag::err_abstract_type_in_decl,
8574                               AbstractVariableType)) {
8575      Var->setInvalidDecl();
8576      return;
8577    }
8578
8579    // Check for jumps past the implicit initializer.  C++0x
8580    // clarifies that this applies to a "variable with automatic
8581    // storage duration", not a "local variable".
8582    // C++11 [stmt.dcl]p3
8583    //   A program that jumps from a point where a variable with automatic
8584    //   storage duration is not in scope to a point where it is in scope is
8585    //   ill-formed unless the variable has scalar type, class type with a
8586    //   trivial default constructor and a trivial destructor, a cv-qualified
8587    //   version of one of these types, or an array of one of the preceding
8588    //   types and is declared without an initializer.
8589    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8590      if (const RecordType *Record
8591            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8592        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8593        // Mark the function for further checking even if the looser rules of
8594        // C++11 do not require such checks, so that we can diagnose
8595        // incompatibilities with C++98.
8596        if (!CXXRecord->isPOD())
8597          getCurFunction()->setHasBranchProtectedScope();
8598      }
8599    }
8600
8601    // C++03 [dcl.init]p9:
8602    //   If no initializer is specified for an object, and the
8603    //   object is of (possibly cv-qualified) non-POD class type (or
8604    //   array thereof), the object shall be default-initialized; if
8605    //   the object is of const-qualified type, the underlying class
8606    //   type shall have a user-declared default
8607    //   constructor. Otherwise, if no initializer is specified for
8608    //   a non- static object, the object and its subobjects, if
8609    //   any, have an indeterminate initial value); if the object
8610    //   or any of its subobjects are of const-qualified type, the
8611    //   program is ill-formed.
8612    // C++0x [dcl.init]p11:
8613    //   If no initializer is specified for an object, the object is
8614    //   default-initialized; [...].
8615    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8616    InitializationKind Kind
8617      = InitializationKind::CreateDefault(Var->getLocation());
8618
8619    InitializationSequence InitSeq(*this, Entity, Kind, None);
8620    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8621    if (Init.isInvalid())
8622      Var->setInvalidDecl();
8623    else if (Init.get()) {
8624      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8625      // This is important for template substitution.
8626      Var->setInitStyle(VarDecl::CallInit);
8627    }
8628
8629    CheckCompleteVariableDeclaration(Var);
8630  }
8631}
8632
8633void Sema::ActOnCXXForRangeDecl(Decl *D) {
8634  VarDecl *VD = dyn_cast<VarDecl>(D);
8635  if (!VD) {
8636    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8637    D->setInvalidDecl();
8638    return;
8639  }
8640
8641  VD->setCXXForRangeDecl(true);
8642
8643  // for-range-declaration cannot be given a storage class specifier.
8644  int Error = -1;
8645  switch (VD->getStorageClass()) {
8646  case SC_None:
8647    break;
8648  case SC_Extern:
8649    Error = 0;
8650    break;
8651  case SC_Static:
8652    Error = 1;
8653    break;
8654  case SC_PrivateExtern:
8655    Error = 2;
8656    break;
8657  case SC_Auto:
8658    Error = 3;
8659    break;
8660  case SC_Register:
8661    Error = 4;
8662    break;
8663  case SC_OpenCLWorkGroupLocal:
8664    llvm_unreachable("Unexpected storage class");
8665  }
8666  if (VD->isConstexpr())
8667    Error = 5;
8668  if (Error != -1) {
8669    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8670      << VD->getDeclName() << Error;
8671    D->setInvalidDecl();
8672  }
8673}
8674
8675void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8676  if (var->isInvalidDecl()) return;
8677
8678  // In ARC, don't allow jumps past the implicit initialization of a
8679  // local retaining variable.
8680  if (getLangOpts().ObjCAutoRefCount &&
8681      var->hasLocalStorage()) {
8682    switch (var->getType().getObjCLifetime()) {
8683    case Qualifiers::OCL_None:
8684    case Qualifiers::OCL_ExplicitNone:
8685    case Qualifiers::OCL_Autoreleasing:
8686      break;
8687
8688    case Qualifiers::OCL_Weak:
8689    case Qualifiers::OCL_Strong:
8690      getCurFunction()->setHasBranchProtectedScope();
8691      break;
8692    }
8693  }
8694
8695  if (var->isThisDeclarationADefinition() &&
8696      var->isExternallyVisible() && var->hasLinkage() &&
8697      getDiagnostics().getDiagnosticLevel(
8698                       diag::warn_missing_variable_declarations,
8699                       var->getLocation())) {
8700    // Find a previous declaration that's not a definition.
8701    VarDecl *prev = var->getPreviousDecl();
8702    while (prev && prev->isThisDeclarationADefinition())
8703      prev = prev->getPreviousDecl();
8704
8705    if (!prev)
8706      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8707  }
8708
8709  if (var->getTLSKind() == VarDecl::TLS_Static &&
8710      var->getType().isDestructedType()) {
8711    // GNU C++98 edits for __thread, [basic.start.term]p3:
8712    //   The type of an object with thread storage duration shall not
8713    //   have a non-trivial destructor.
8714    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8715    if (getLangOpts().CPlusPlus11)
8716      Diag(var->getLocation(), diag::note_use_thread_local);
8717  }
8718
8719  // All the following checks are C++ only.
8720  if (!getLangOpts().CPlusPlus) return;
8721
8722  QualType type = var->getType();
8723  if (type->isDependentType()) return;
8724
8725  // __block variables might require us to capture a copy-initializer.
8726  if (var->hasAttr<BlocksAttr>()) {
8727    // It's currently invalid to ever have a __block variable with an
8728    // array type; should we diagnose that here?
8729
8730    // Regardless, we don't want to ignore array nesting when
8731    // constructing this copy.
8732    if (type->isStructureOrClassType()) {
8733      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8734      SourceLocation poi = var->getLocation();
8735      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8736      ExprResult result
8737        = PerformMoveOrCopyInitialization(
8738            InitializedEntity::InitializeBlock(poi, type, false),
8739            var, var->getType(), varRef, /*AllowNRVO=*/true);
8740      if (!result.isInvalid()) {
8741        result = MaybeCreateExprWithCleanups(result);
8742        Expr *init = result.takeAs<Expr>();
8743        Context.setBlockVarCopyInits(var, init);
8744      }
8745    }
8746  }
8747
8748  Expr *Init = var->getInit();
8749  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8750  QualType baseType = Context.getBaseElementType(type);
8751
8752  if (!var->getDeclContext()->isDependentContext() &&
8753      Init && !Init->isValueDependent()) {
8754    if (IsGlobal && !var->isConstexpr() &&
8755        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8756                                            var->getLocation())
8757          != DiagnosticsEngine::Ignored) {
8758      // Warn about globals which don't have a constant initializer.  Don't
8759      // warn about globals with a non-trivial destructor because we already
8760      // warned about them.
8761      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
8762      if (!(RD && !RD->hasTrivialDestructor()) &&
8763          !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8764        Diag(var->getLocation(), diag::warn_global_constructor)
8765          << Init->getSourceRange();
8766    }
8767
8768    if (var->isConstexpr()) {
8769      SmallVector<PartialDiagnosticAt, 8> Notes;
8770      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8771        SourceLocation DiagLoc = var->getLocation();
8772        // If the note doesn't add any useful information other than a source
8773        // location, fold it into the primary diagnostic.
8774        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8775              diag::note_invalid_subexpr_in_const_expr) {
8776          DiagLoc = Notes[0].first;
8777          Notes.clear();
8778        }
8779        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8780          << var << Init->getSourceRange();
8781        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8782          Diag(Notes[I].first, Notes[I].second);
8783      }
8784    } else if (var->isUsableInConstantExpressions(Context)) {
8785      // Check whether the initializer of a const variable of integral or
8786      // enumeration type is an ICE now, since we can't tell whether it was
8787      // initialized by a constant expression if we check later.
8788      var->checkInitIsICE();
8789    }
8790  }
8791
8792  // Require the destructor.
8793  if (const RecordType *recordType = baseType->getAs<RecordType>())
8794    FinalizeVarWithDestructor(var, recordType);
8795}
8796
8797/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8798/// any semantic actions necessary after any initializer has been attached.
8799void
8800Sema::FinalizeDeclaration(Decl *ThisDecl) {
8801  // Note that we are no longer parsing the initializer for this declaration.
8802  ParsingInitForAutoVars.erase(ThisDecl);
8803
8804  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8805  if (!VD)
8806    return;
8807
8808  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
8809    if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
8810      Diag(Attr->getLocation(), diag::warn_attribute_ignored) << "used";
8811      VD->dropAttr<UsedAttr>();
8812    }
8813  }
8814
8815  const DeclContext *DC = VD->getDeclContext();
8816  // If there's a #pragma GCC visibility in scope, and this isn't a class
8817  // member, set the visibility of this variable.
8818  if (!DC->isRecord() && VD->isExternallyVisible())
8819    AddPushedVisibilityAttribute(VD);
8820
8821  if (VD->isFileVarDecl())
8822    MarkUnusedFileScopedDecl(VD);
8823
8824  // Now we have parsed the initializer and can update the table of magic
8825  // tag values.
8826  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8827      !VD->getType()->isIntegralOrEnumerationType())
8828    return;
8829
8830  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8831         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8832         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8833       I != E; ++I) {
8834    const Expr *MagicValueExpr = VD->getInit();
8835    if (!MagicValueExpr) {
8836      continue;
8837    }
8838    llvm::APSInt MagicValueInt;
8839    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8840      Diag(I->getRange().getBegin(),
8841           diag::err_type_tag_for_datatype_not_ice)
8842        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8843      continue;
8844    }
8845    if (MagicValueInt.getActiveBits() > 64) {
8846      Diag(I->getRange().getBegin(),
8847           diag::err_type_tag_for_datatype_too_large)
8848        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8849      continue;
8850    }
8851    uint64_t MagicValue = MagicValueInt.getZExtValue();
8852    RegisterTypeTagForDatatype(I->getArgumentKind(),
8853                               MagicValue,
8854                               I->getMatchingCType(),
8855                               I->getLayoutCompatible(),
8856                               I->getMustBeNull());
8857  }
8858}
8859
8860Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8861                                                   ArrayRef<Decl *> Group) {
8862  SmallVector<Decl*, 8> Decls;
8863
8864  if (DS.isTypeSpecOwned())
8865    Decls.push_back(DS.getRepAsDecl());
8866
8867  DeclaratorDecl *FirstDeclaratorInGroup = 0;
8868  for (unsigned i = 0, e = Group.size(); i != e; ++i)
8869    if (Decl *D = Group[i]) {
8870      if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
8871        if (!FirstDeclaratorInGroup)
8872          FirstDeclaratorInGroup = DD;
8873      Decls.push_back(D);
8874    }
8875
8876  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
8877    if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
8878      HandleTagNumbering(*this, Tag);
8879      if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
8880        Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
8881    }
8882  }
8883
8884  return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
8885}
8886
8887/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8888/// group, performing any necessary semantic checking.
8889Sema::DeclGroupPtrTy
8890Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
8891                           bool TypeMayContainAuto) {
8892  // C++0x [dcl.spec.auto]p7:
8893  //   If the type deduced for the template parameter U is not the same in each
8894  //   deduction, the program is ill-formed.
8895  // FIXME: When initializer-list support is added, a distinction is needed
8896  // between the deduced type U and the deduced type which 'auto' stands for.
8897  //   auto a = 0, b = { 1, 2, 3 };
8898  // is legal because the deduced type U is 'int' in both cases.
8899  if (TypeMayContainAuto && Group.size() > 1) {
8900    QualType Deduced;
8901    CanQualType DeducedCanon;
8902    VarDecl *DeducedDecl = 0;
8903    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
8904      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8905        AutoType *AT = D->getType()->getContainedAutoType();
8906        // Don't reissue diagnostics when instantiating a template.
8907        if (AT && D->isInvalidDecl())
8908          break;
8909        QualType U = AT ? AT->getDeducedType() : QualType();
8910        if (!U.isNull()) {
8911          CanQualType UCanon = Context.getCanonicalType(U);
8912          if (Deduced.isNull()) {
8913            Deduced = U;
8914            DeducedCanon = UCanon;
8915            DeducedDecl = D;
8916          } else if (DeducedCanon != UCanon) {
8917            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8918                 diag::err_auto_different_deductions)
8919              << (AT->isDecltypeAuto() ? 1 : 0)
8920              << Deduced << DeducedDecl->getDeclName()
8921              << U << D->getDeclName()
8922              << DeducedDecl->getInit()->getSourceRange()
8923              << D->getInit()->getSourceRange();
8924            D->setInvalidDecl();
8925            break;
8926          }
8927        }
8928      }
8929    }
8930  }
8931
8932  ActOnDocumentableDecls(Group);
8933
8934  return DeclGroupPtrTy::make(
8935      DeclGroupRef::Create(Context, Group.data(), Group.size()));
8936}
8937
8938void Sema::ActOnDocumentableDecl(Decl *D) {
8939  ActOnDocumentableDecls(D);
8940}
8941
8942void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
8943  // Don't parse the comment if Doxygen diagnostics are ignored.
8944  if (Group.empty() || !Group[0])
8945   return;
8946
8947  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8948                               Group[0]->getLocation())
8949        == DiagnosticsEngine::Ignored)
8950    return;
8951
8952  if (Group.size() >= 2) {
8953    // This is a decl group.  Normally it will contain only declarations
8954    // produced from declarator list.  But in case we have any definitions or
8955    // additional declaration references:
8956    //   'typedef struct S {} S;'
8957    //   'typedef struct S *S;'
8958    //   'struct S *pS;'
8959    // FinalizeDeclaratorGroup adds these as separate declarations.
8960    Decl *MaybeTagDecl = Group[0];
8961    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8962      Group = Group.slice(1);
8963    }
8964  }
8965
8966  // See if there are any new comments that are not attached to a decl.
8967  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8968  if (!Comments.empty() &&
8969      !Comments.back()->isAttached()) {
8970    // There is at least one comment that not attached to a decl.
8971    // Maybe it should be attached to one of these decls?
8972    //
8973    // Note that this way we pick up not only comments that precede the
8974    // declaration, but also comments that *follow* the declaration -- thanks to
8975    // the lookahead in the lexer: we've consumed the semicolon and looked
8976    // ahead through comments.
8977    for (unsigned i = 0, e = Group.size(); i != e; ++i)
8978      Context.getCommentForDecl(Group[i], &PP);
8979  }
8980}
8981
8982/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8983/// to introduce parameters into function prototype scope.
8984Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8985  const DeclSpec &DS = D.getDeclSpec();
8986
8987  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8988
8989  // C++03 [dcl.stc]p2 also permits 'auto'.
8990  VarDecl::StorageClass StorageClass = SC_None;
8991  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8992    StorageClass = SC_Register;
8993  } else if (getLangOpts().CPlusPlus &&
8994             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8995    StorageClass = SC_Auto;
8996  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8997    Diag(DS.getStorageClassSpecLoc(),
8998         diag::err_invalid_storage_class_in_func_decl);
8999    D.getMutableDeclSpec().ClearStorageClassSpecs();
9000  }
9001
9002  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9003    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9004      << DeclSpec::getSpecifierName(TSCS);
9005  if (DS.isConstexprSpecified())
9006    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9007      << 0;
9008
9009  DiagnoseFunctionSpecifiers(DS);
9010
9011  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9012  QualType parmDeclType = TInfo->getType();
9013
9014  if (getLangOpts().CPlusPlus) {
9015    // Check that there are no default arguments inside the type of this
9016    // parameter.
9017    CheckExtraCXXDefaultArguments(D);
9018
9019    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9020    if (D.getCXXScopeSpec().isSet()) {
9021      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9022        << D.getCXXScopeSpec().getRange();
9023      D.getCXXScopeSpec().clear();
9024    }
9025  }
9026
9027  // Ensure we have a valid name
9028  IdentifierInfo *II = 0;
9029  if (D.hasName()) {
9030    II = D.getIdentifier();
9031    if (!II) {
9032      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9033        << GetNameForDeclarator(D).getName().getAsString();
9034      D.setInvalidType(true);
9035    }
9036  }
9037
9038  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9039  if (II) {
9040    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9041                   ForRedeclaration);
9042    LookupName(R, S);
9043    if (R.isSingleResult()) {
9044      NamedDecl *PrevDecl = R.getFoundDecl();
9045      if (PrevDecl->isTemplateParameter()) {
9046        // Maybe we will complain about the shadowed template parameter.
9047        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9048        // Just pretend that we didn't see the previous declaration.
9049        PrevDecl = 0;
9050      } else if (S->isDeclScope(PrevDecl)) {
9051        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9052        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9053
9054        // Recover by removing the name
9055        II = 0;
9056        D.SetIdentifier(0, D.getIdentifierLoc());
9057        D.setInvalidType(true);
9058      }
9059    }
9060  }
9061
9062  // Temporarily put parameter variables in the translation unit, not
9063  // the enclosing context.  This prevents them from accidentally
9064  // looking like class members in C++.
9065  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9066                                    D.getLocStart(),
9067                                    D.getIdentifierLoc(), II,
9068                                    parmDeclType, TInfo,
9069                                    StorageClass);
9070
9071  if (D.isInvalidType())
9072    New->setInvalidDecl();
9073
9074  assert(S->isFunctionPrototypeScope());
9075  assert(S->getFunctionPrototypeDepth() >= 1);
9076  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9077                    S->getNextFunctionPrototypeIndex());
9078
9079  // Add the parameter declaration into this scope.
9080  S->AddDecl(New);
9081  if (II)
9082    IdResolver.AddDecl(New);
9083
9084  ProcessDeclAttributes(S, New, D);
9085
9086  if (D.getDeclSpec().isModulePrivateSpecified())
9087    Diag(New->getLocation(), diag::err_module_private_local)
9088      << 1 << New->getDeclName()
9089      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9090      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9091
9092  if (New->hasAttr<BlocksAttr>()) {
9093    Diag(New->getLocation(), diag::err_block_on_nonlocal);
9094  }
9095  return New;
9096}
9097
9098/// \brief Synthesizes a variable for a parameter arising from a
9099/// typedef.
9100ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9101                                              SourceLocation Loc,
9102                                              QualType T) {
9103  /* FIXME: setting StartLoc == Loc.
9104     Would it be worth to modify callers so as to provide proper source
9105     location for the unnamed parameters, embedding the parameter's type? */
9106  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
9107                                T, Context.getTrivialTypeSourceInfo(T, Loc),
9108                                           SC_None, 0);
9109  Param->setImplicit();
9110  return Param;
9111}
9112
9113void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9114                                    ParmVarDecl * const *ParamEnd) {
9115  // Don't diagnose unused-parameter errors in template instantiations; we
9116  // will already have done so in the template itself.
9117  if (!ActiveTemplateInstantiations.empty())
9118    return;
9119
9120  for (; Param != ParamEnd; ++Param) {
9121    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9122        !(*Param)->hasAttr<UnusedAttr>()) {
9123      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9124        << (*Param)->getDeclName();
9125    }
9126  }
9127}
9128
9129void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9130                                                  ParmVarDecl * const *ParamEnd,
9131                                                  QualType ReturnTy,
9132                                                  NamedDecl *D) {
9133  if (LangOpts.NumLargeByValueCopy == 0) // No check.
9134    return;
9135
9136  // Warn if the return value is pass-by-value and larger than the specified
9137  // threshold.
9138  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9139    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9140    if (Size > LangOpts.NumLargeByValueCopy)
9141      Diag(D->getLocation(), diag::warn_return_value_size)
9142          << D->getDeclName() << Size;
9143  }
9144
9145  // Warn if any parameter is pass-by-value and larger than the specified
9146  // threshold.
9147  for (; Param != ParamEnd; ++Param) {
9148    QualType T = (*Param)->getType();
9149    if (T->isDependentType() || !T.isPODType(Context))
9150      continue;
9151    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9152    if (Size > LangOpts.NumLargeByValueCopy)
9153      Diag((*Param)->getLocation(), diag::warn_parameter_size)
9154          << (*Param)->getDeclName() << Size;
9155  }
9156}
9157
9158ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9159                                  SourceLocation NameLoc, IdentifierInfo *Name,
9160                                  QualType T, TypeSourceInfo *TSInfo,
9161                                  VarDecl::StorageClass StorageClass) {
9162  // In ARC, infer a lifetime qualifier for appropriate parameter types.
9163  if (getLangOpts().ObjCAutoRefCount &&
9164      T.getObjCLifetime() == Qualifiers::OCL_None &&
9165      T->isObjCLifetimeType()) {
9166
9167    Qualifiers::ObjCLifetime lifetime;
9168
9169    // Special cases for arrays:
9170    //   - if it's const, use __unsafe_unretained
9171    //   - otherwise, it's an error
9172    if (T->isArrayType()) {
9173      if (!T.isConstQualified()) {
9174        DelayedDiagnostics.add(
9175            sema::DelayedDiagnostic::makeForbiddenType(
9176            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9177      }
9178      lifetime = Qualifiers::OCL_ExplicitNone;
9179    } else {
9180      lifetime = T->getObjCARCImplicitLifetime();
9181    }
9182    T = Context.getLifetimeQualifiedType(T, lifetime);
9183  }
9184
9185  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9186                                         Context.getAdjustedParameterType(T),
9187                                         TSInfo,
9188                                         StorageClass, 0);
9189
9190  // Parameters can not be abstract class types.
9191  // For record types, this is done by the AbstractClassUsageDiagnoser once
9192  // the class has been completely parsed.
9193  if (!CurContext->isRecord() &&
9194      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9195                             AbstractParamType))
9196    New->setInvalidDecl();
9197
9198  // Parameter declarators cannot be interface types. All ObjC objects are
9199  // passed by reference.
9200  if (T->isObjCObjectType()) {
9201    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9202    Diag(NameLoc,
9203         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9204      << FixItHint::CreateInsertion(TypeEndLoc, "*");
9205    T = Context.getObjCObjectPointerType(T);
9206    New->setType(T);
9207  }
9208
9209  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9210  // duration shall not be qualified by an address-space qualifier."
9211  // Since all parameters have automatic store duration, they can not have
9212  // an address space.
9213  if (T.getAddressSpace() != 0) {
9214    Diag(NameLoc, diag::err_arg_with_address_space);
9215    New->setInvalidDecl();
9216  }
9217
9218  return New;
9219}
9220
9221void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9222                                           SourceLocation LocAfterDecls) {
9223  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9224
9225  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9226  // for a K&R function.
9227  if (!FTI.hasPrototype) {
9228    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
9229      --i;
9230      if (FTI.ArgInfo[i].Param == 0) {
9231        SmallString<256> Code;
9232        llvm::raw_svector_ostream(Code) << "  int "
9233                                        << FTI.ArgInfo[i].Ident->getName()
9234                                        << ";\n";
9235        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
9236          << FTI.ArgInfo[i].Ident
9237          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9238
9239        // Implicitly declare the argument as type 'int' for lack of a better
9240        // type.
9241        AttributeFactory attrs;
9242        DeclSpec DS(attrs);
9243        const char* PrevSpec; // unused
9244        unsigned DiagID; // unused
9245        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
9246                           PrevSpec, DiagID);
9247        // Use the identifier location for the type source range.
9248        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
9249        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
9250        Declarator ParamD(DS, Declarator::KNRTypeListContext);
9251        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
9252        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
9253      }
9254    }
9255  }
9256}
9257
9258Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9259  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
9260  assert(D.isFunctionDeclarator() && "Not a function declarator!");
9261  Scope *ParentScope = FnBodyScope->getParent();
9262
9263  D.setFunctionDefinitionKind(FDK_Definition);
9264  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9265  return ActOnStartOfFunctionDef(FnBodyScope, DP);
9266}
9267
9268static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9269                             const FunctionDecl*& PossibleZeroParamPrototype) {
9270  // Don't warn about invalid declarations.
9271  if (FD->isInvalidDecl())
9272    return false;
9273
9274  // Or declarations that aren't global.
9275  if (!FD->isGlobal())
9276    return false;
9277
9278  // Don't warn about C++ member functions.
9279  if (isa<CXXMethodDecl>(FD))
9280    return false;
9281
9282  // Don't warn about 'main'.
9283  if (FD->isMain())
9284    return false;
9285
9286  // Don't warn about inline functions.
9287  if (FD->isInlined())
9288    return false;
9289
9290  // Don't warn about function templates.
9291  if (FD->getDescribedFunctionTemplate())
9292    return false;
9293
9294  // Don't warn about function template specializations.
9295  if (FD->isFunctionTemplateSpecialization())
9296    return false;
9297
9298  // Don't warn for OpenCL kernels.
9299  if (FD->hasAttr<OpenCLKernelAttr>())
9300    return false;
9301
9302  bool MissingPrototype = true;
9303  for (const FunctionDecl *Prev = FD->getPreviousDecl();
9304       Prev; Prev = Prev->getPreviousDecl()) {
9305    // Ignore any declarations that occur in function or method
9306    // scope, because they aren't visible from the header.
9307    if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
9308      continue;
9309
9310    MissingPrototype = !Prev->getType()->isFunctionProtoType();
9311    if (FD->getNumParams() == 0)
9312      PossibleZeroParamPrototype = Prev;
9313    break;
9314  }
9315
9316  return MissingPrototype;
9317}
9318
9319void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
9320  // Don't complain if we're in GNU89 mode and the previous definition
9321  // was an extern inline function.
9322  const FunctionDecl *Definition;
9323  if (FD->isDefined(Definition) &&
9324      !canRedefineFunction(Definition, getLangOpts())) {
9325    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9326        Definition->getStorageClass() == SC_Extern)
9327      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9328        << FD->getDeclName() << getLangOpts().CPlusPlus;
9329    else
9330      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9331    Diag(Definition->getLocation(), diag::note_previous_definition);
9332    FD->setInvalidDecl();
9333  }
9334}
9335
9336Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9337  // Clear the last template instantiation error context.
9338  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9339
9340  if (!D)
9341    return D;
9342  FunctionDecl *FD = 0;
9343
9344  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9345    FD = FunTmpl->getTemplatedDecl();
9346  else
9347    FD = cast<FunctionDecl>(D);
9348  // If we are instantiating a generic lambda call operator, push
9349  // a LambdaScopeInfo onto the function stack.  But use the information
9350  // that's already been calculated (ActOnLambdaExpr) when analyzing the
9351  // template version, to prime the current LambdaScopeInfo.
9352  if (isGenericLambdaCallOperatorSpecialization(D)) {
9353    CXXMethodDecl *CallOperator = cast<CXXMethodDecl>(D);
9354    CXXRecordDecl *LambdaClass = CallOperator->getParent();
9355    LambdaExpr    *LE = LambdaClass->getLambdaExpr();
9356    assert(LE &&
9357     "No LambdaExpr of closure class when instantiating a generic lambda!");
9358    assert(ActiveTemplateInstantiations.size() &&
9359      "There should be an active template instantiation on the stack "
9360      "when instantiating a generic lambda!");
9361    PushLambdaScope();
9362    LambdaScopeInfo *LSI = getCurLambda();
9363    LSI->CallOperator = CallOperator;
9364    LSI->Lambda = LambdaClass;
9365    LSI->ReturnType = CallOperator->getResultType();
9366
9367    if (LE->getCaptureDefault() == LCD_None)
9368      LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
9369    else if (LE->getCaptureDefault() == LCD_ByCopy)
9370      LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
9371    else if (LE->getCaptureDefault() == LCD_ByRef)
9372      LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
9373
9374    LSI->IntroducerRange = LE->getIntroducerRange();
9375  }
9376  else
9377    // Enter a new function scope
9378    PushFunctionScope();
9379
9380  // See if this is a redefinition.
9381  if (!FD->isLateTemplateParsed())
9382    CheckForFunctionRedefinition(FD);
9383
9384  // Builtin functions cannot be defined.
9385  if (unsigned BuiltinID = FD->getBuiltinID()) {
9386    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9387        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9388      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9389      FD->setInvalidDecl();
9390    }
9391  }
9392
9393  // The return type of a function definition must be complete
9394  // (C99 6.9.1p3, C++ [dcl.fct]p6).
9395  QualType ResultType = FD->getResultType();
9396  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9397      !FD->isInvalidDecl() &&
9398      RequireCompleteType(FD->getLocation(), ResultType,
9399                          diag::err_func_def_incomplete_result))
9400    FD->setInvalidDecl();
9401
9402  // GNU warning -Wmissing-prototypes:
9403  //   Warn if a global function is defined without a previous
9404  //   prototype declaration. This warning is issued even if the
9405  //   definition itself provides a prototype. The aim is to detect
9406  //   global functions that fail to be declared in header files.
9407  const FunctionDecl *PossibleZeroParamPrototype = 0;
9408  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9409    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9410
9411    if (PossibleZeroParamPrototype) {
9412      // We found a declaration that is not a prototype,
9413      // but that could be a zero-parameter prototype
9414      if (TypeSourceInfo *TI =
9415              PossibleZeroParamPrototype->getTypeSourceInfo()) {
9416        TypeLoc TL = TI->getTypeLoc();
9417        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9418          Diag(PossibleZeroParamPrototype->getLocation(),
9419               diag::note_declaration_not_a_prototype)
9420            << PossibleZeroParamPrototype
9421            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9422      }
9423    }
9424  }
9425
9426  if (FnBodyScope)
9427    PushDeclContext(FnBodyScope, FD);
9428
9429  // Check the validity of our function parameters
9430  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9431                           /*CheckParameterNames=*/true);
9432
9433  // Introduce our parameters into the function scope
9434  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
9435    ParmVarDecl *Param = FD->getParamDecl(p);
9436    Param->setOwningFunction(FD);
9437
9438    // If this has an identifier, add it to the scope stack.
9439    if (Param->getIdentifier() && FnBodyScope) {
9440      CheckShadow(FnBodyScope, Param);
9441
9442      PushOnScopeChains(Param, FnBodyScope);
9443    }
9444  }
9445
9446  // If we had any tags defined in the function prototype,
9447  // introduce them into the function scope.
9448  if (FnBodyScope) {
9449    for (ArrayRef<NamedDecl *>::iterator
9450             I = FD->getDeclsInPrototypeScope().begin(),
9451             E = FD->getDeclsInPrototypeScope().end();
9452         I != E; ++I) {
9453      NamedDecl *D = *I;
9454
9455      // Some of these decls (like enums) may have been pinned to the translation unit
9456      // for lack of a real context earlier. If so, remove from the translation unit
9457      // and reattach to the current context.
9458      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9459        // Is the decl actually in the context?
9460        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
9461               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
9462          if (*DI == D) {
9463            Context.getTranslationUnitDecl()->removeDecl(D);
9464            break;
9465          }
9466        }
9467        // Either way, reassign the lexical decl context to our FunctionDecl.
9468        D->setLexicalDeclContext(CurContext);
9469      }
9470
9471      // If the decl has a non-null name, make accessible in the current scope.
9472      if (!D->getName().empty())
9473        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9474
9475      // Similarly, dive into enums and fish their constants out, making them
9476      // accessible in this scope.
9477      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
9478        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
9479               EE = ED->enumerator_end(); EI != EE; ++EI)
9480          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
9481      }
9482    }
9483  }
9484
9485  // Ensure that the function's exception specification is instantiated.
9486  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9487    ResolveExceptionSpec(D->getLocation(), FPT);
9488
9489  // Checking attributes of current function definition
9490  // dllimport attribute.
9491  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
9492  if (DA && (!FD->getAttr<DLLExportAttr>())) {
9493    // dllimport attribute cannot be directly applied to definition.
9494    // Microsoft accepts dllimport for functions defined within class scope.
9495    if (!DA->isInherited() &&
9496        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
9497      Diag(FD->getLocation(),
9498           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
9499        << "dllimport";
9500      FD->setInvalidDecl();
9501      return D;
9502    }
9503
9504    // Visual C++ appears to not think this is an issue, so only issue
9505    // a warning when Microsoft extensions are disabled.
9506    if (!LangOpts.MicrosoftExt) {
9507      // If a symbol previously declared dllimport is later defined, the
9508      // attribute is ignored in subsequent references, and a warning is
9509      // emitted.
9510      Diag(FD->getLocation(),
9511           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
9512        << FD->getName() << "dllimport";
9513    }
9514  }
9515  // We want to attach documentation to original Decl (which might be
9516  // a function template).
9517  ActOnDocumentableDecl(D);
9518  return D;
9519}
9520
9521/// \brief Given the set of return statements within a function body,
9522/// compute the variables that are subject to the named return value
9523/// optimization.
9524///
9525/// Each of the variables that is subject to the named return value
9526/// optimization will be marked as NRVO variables in the AST, and any
9527/// return statement that has a marked NRVO variable as its NRVO candidate can
9528/// use the named return value optimization.
9529///
9530/// This function applies a very simplistic algorithm for NRVO: if every return
9531/// statement in the function has the same NRVO candidate, that candidate is
9532/// the NRVO variable.
9533///
9534/// FIXME: Employ a smarter algorithm that accounts for multiple return
9535/// statements and the lifetimes of the NRVO candidates. We should be able to
9536/// find a maximal set of NRVO variables.
9537void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9538  ReturnStmt **Returns = Scope->Returns.data();
9539
9540  const VarDecl *NRVOCandidate = 0;
9541  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9542    if (!Returns[I]->getNRVOCandidate())
9543      return;
9544
9545    if (!NRVOCandidate)
9546      NRVOCandidate = Returns[I]->getNRVOCandidate();
9547    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9548      return;
9549  }
9550
9551  if (NRVOCandidate)
9552    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9553}
9554
9555bool Sema::canSkipFunctionBody(Decl *D) {
9556  if (!Consumer.shouldSkipFunctionBody(D))
9557    return false;
9558
9559  if (isa<ObjCMethodDecl>(D))
9560    return true;
9561
9562  FunctionDecl *FD = 0;
9563  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9564    FD = FTD->getTemplatedDecl();
9565  else
9566    FD = cast<FunctionDecl>(D);
9567
9568  // We cannot skip the body of a function (or function template) which is
9569  // constexpr, since we may need to evaluate its body in order to parse the
9570  // rest of the file.
9571  // We cannot skip the body of a function with an undeduced return type,
9572  // because any callers of that function need to know the type.
9573  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9574}
9575
9576Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9577  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9578    FD->setHasSkippedBody();
9579  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9580    MD->setHasSkippedBody();
9581  return ActOnFinishFunctionBody(Decl, 0);
9582}
9583
9584Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9585  return ActOnFinishFunctionBody(D, BodyArg, false);
9586}
9587
9588Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9589                                    bool IsInstantiation) {
9590  FunctionDecl *FD = 0;
9591  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9592  if (FunTmpl)
9593    FD = FunTmpl->getTemplatedDecl();
9594  else
9595    FD = dyn_cast_or_null<FunctionDecl>(dcl);
9596
9597  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9598  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9599
9600  if (FD) {
9601    FD->setBody(Body);
9602
9603    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9604        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9605      // If the function has a deduced result type but contains no 'return'
9606      // statements, the result type as written must be exactly 'auto', and
9607      // the deduced result type is 'void'.
9608      if (!FD->getResultType()->getAs<AutoType>()) {
9609        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9610          << FD->getResultType();
9611        FD->setInvalidDecl();
9612      } else {
9613        // Substitute 'void' for the 'auto' in the type.
9614        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9615            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9616        Context.adjustDeducedFunctionResultType(
9617            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9618      }
9619    }
9620
9621    // The only way to be included in UndefinedButUsed is if there is an
9622    // ODR use before the definition. Avoid the expensive map lookup if this
9623    // is the first declaration.
9624    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
9625      if (!FD->isExternallyVisible())
9626        UndefinedButUsed.erase(FD);
9627      else if (FD->isInlined() &&
9628               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9629               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9630        UndefinedButUsed.erase(FD);
9631    }
9632
9633    // If the function implicitly returns zero (like 'main') or is naked,
9634    // don't complain about missing return statements.
9635    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9636      WP.disableCheckFallThrough();
9637
9638    // MSVC permits the use of pure specifier (=0) on function definition,
9639    // defined at class scope, warn about this non standard construct.
9640    if (getLangOpts().MicrosoftExt && FD->isPure())
9641      Diag(FD->getLocation(), diag::warn_pure_function_definition);
9642
9643    if (!FD->isInvalidDecl()) {
9644      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9645      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9646                                             FD->getResultType(), FD);
9647
9648      // If this is a constructor, we need a vtable.
9649      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9650        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9651
9652      // Try to apply the named return value optimization. We have to check
9653      // if we can do this here because lambdas keep return statements around
9654      // to deduce an implicit return type.
9655      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9656          !FD->isDependentContext())
9657        computeNRVO(Body, getCurFunction());
9658    }
9659
9660    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9661           "Function parsing confused");
9662  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9663    assert(MD == getCurMethodDecl() && "Method parsing confused");
9664    MD->setBody(Body);
9665    if (!MD->isInvalidDecl()) {
9666      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9667      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9668                                             MD->getResultType(), MD);
9669
9670      if (Body)
9671        computeNRVO(Body, getCurFunction());
9672    }
9673    if (getCurFunction()->ObjCShouldCallSuper) {
9674      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9675        << MD->getSelector().getAsString();
9676      getCurFunction()->ObjCShouldCallSuper = false;
9677    }
9678  } else {
9679    return 0;
9680  }
9681
9682  assert(!getCurFunction()->ObjCShouldCallSuper &&
9683         "This should only be set for ObjC methods, which should have been "
9684         "handled in the block above.");
9685
9686  // Verify and clean out per-function state.
9687  if (Body) {
9688    // C++ constructors that have function-try-blocks can't have return
9689    // statements in the handlers of that block. (C++ [except.handle]p14)
9690    // Verify this.
9691    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9692      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9693
9694    // Verify that gotos and switch cases don't jump into scopes illegally.
9695    if (getCurFunction()->NeedsScopeChecking() &&
9696        !dcl->isInvalidDecl() &&
9697        !hasAnyUnrecoverableErrorsInThisFunction() &&
9698        !PP.isCodeCompletionEnabled())
9699      DiagnoseInvalidJumps(Body);
9700
9701    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9702      if (!Destructor->getParent()->isDependentType())
9703        CheckDestructor(Destructor);
9704
9705      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9706                                             Destructor->getParent());
9707    }
9708
9709    // If any errors have occurred, clear out any temporaries that may have
9710    // been leftover. This ensures that these temporaries won't be picked up for
9711    // deletion in some later function.
9712    if (PP.getDiagnostics().hasErrorOccurred() ||
9713        PP.getDiagnostics().getSuppressAllDiagnostics()) {
9714      DiscardCleanupsInEvaluationContext();
9715    }
9716    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9717        !isa<FunctionTemplateDecl>(dcl)) {
9718      // Since the body is valid, issue any analysis-based warnings that are
9719      // enabled.
9720      ActivePolicy = &WP;
9721    }
9722
9723    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9724        (!CheckConstexprFunctionDecl(FD) ||
9725         !CheckConstexprFunctionBody(FD, Body)))
9726      FD->setInvalidDecl();
9727
9728    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9729    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9730    assert(MaybeODRUseExprs.empty() &&
9731           "Leftover expressions for odr-use checking");
9732  }
9733
9734  if (!IsInstantiation)
9735    PopDeclContext();
9736
9737  PopFunctionScopeInfo(ActivePolicy, dcl);
9738
9739  // If any errors have occurred, clear out any temporaries that may have
9740  // been leftover. This ensures that these temporaries won't be picked up for
9741  // deletion in some later function.
9742  if (getDiagnostics().hasErrorOccurred()) {
9743    DiscardCleanupsInEvaluationContext();
9744  }
9745
9746  return dcl;
9747}
9748
9749
9750/// When we finish delayed parsing of an attribute, we must attach it to the
9751/// relevant Decl.
9752void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9753                                       ParsedAttributes &Attrs) {
9754  // Always attach attributes to the underlying decl.
9755  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9756    D = TD->getTemplatedDecl();
9757  ProcessDeclAttributeList(S, D, Attrs.getList());
9758
9759  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9760    if (Method->isStatic())
9761      checkThisInStaticMemberFunctionAttributes(Method);
9762}
9763
9764
9765/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9766/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9767NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9768                                          IdentifierInfo &II, Scope *S) {
9769  // Before we produce a declaration for an implicitly defined
9770  // function, see whether there was a locally-scoped declaration of
9771  // this name as a function or variable. If so, use that
9772  // (non-visible) declaration, and complain about it.
9773  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9774    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9775    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9776    return ExternCPrev;
9777  }
9778
9779  // Extension in C99.  Legal in C90, but warn about it.
9780  unsigned diag_id;
9781  if (II.getName().startswith("__builtin_"))
9782    diag_id = diag::warn_builtin_unknown;
9783  else if (getLangOpts().C99)
9784    diag_id = diag::ext_implicit_function_decl;
9785  else
9786    diag_id = diag::warn_implicit_function_decl;
9787  Diag(Loc, diag_id) << &II;
9788
9789  // Because typo correction is expensive, only do it if the implicit
9790  // function declaration is going to be treated as an error.
9791  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9792    TypoCorrection Corrected;
9793    DeclFilterCCC<FunctionDecl> Validator;
9794    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9795                                      LookupOrdinaryName, S, 0, Validator)))
9796      diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
9797                   /*ErrorRecovery*/false);
9798  }
9799
9800  // Set a Declarator for the implicit definition: int foo();
9801  const char *Dummy;
9802  AttributeFactory attrFactory;
9803  DeclSpec DS(attrFactory);
9804  unsigned DiagID;
9805  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9806  (void)Error; // Silence warning.
9807  assert(!Error && "Error setting up implicit decl!");
9808  SourceLocation NoLoc;
9809  Declarator D(DS, Declarator::BlockContext);
9810  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9811                                             /*IsAmbiguous=*/false,
9812                                             /*RParenLoc=*/NoLoc,
9813                                             /*ArgInfo=*/0,
9814                                             /*NumArgs=*/0,
9815                                             /*EllipsisLoc=*/NoLoc,
9816                                             /*RParenLoc=*/NoLoc,
9817                                             /*TypeQuals=*/0,
9818                                             /*RefQualifierIsLvalueRef=*/true,
9819                                             /*RefQualifierLoc=*/NoLoc,
9820                                             /*ConstQualifierLoc=*/NoLoc,
9821                                             /*VolatileQualifierLoc=*/NoLoc,
9822                                             /*MutableLoc=*/NoLoc,
9823                                             EST_None,
9824                                             /*ESpecLoc=*/NoLoc,
9825                                             /*Exceptions=*/0,
9826                                             /*ExceptionRanges=*/0,
9827                                             /*NumExceptions=*/0,
9828                                             /*NoexceptExpr=*/0,
9829                                             Loc, Loc, D),
9830                DS.getAttributes(),
9831                SourceLocation());
9832  D.SetIdentifier(&II, Loc);
9833
9834  // Insert this function into translation-unit scope.
9835
9836  DeclContext *PrevDC = CurContext;
9837  CurContext = Context.getTranslationUnitDecl();
9838
9839  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9840  FD->setImplicit();
9841
9842  CurContext = PrevDC;
9843
9844  AddKnownFunctionAttributes(FD);
9845
9846  return FD;
9847}
9848
9849/// \brief Adds any function attributes that we know a priori based on
9850/// the declaration of this function.
9851///
9852/// These attributes can apply both to implicitly-declared builtins
9853/// (like __builtin___printf_chk) or to library-declared functions
9854/// like NSLog or printf.
9855///
9856/// We need to check for duplicate attributes both here and where user-written
9857/// attributes are applied to declarations.
9858void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9859  if (FD->isInvalidDecl())
9860    return;
9861
9862  // If this is a built-in function, map its builtin attributes to
9863  // actual attributes.
9864  if (unsigned BuiltinID = FD->getBuiltinID()) {
9865    // Handle printf-formatting attributes.
9866    unsigned FormatIdx;
9867    bool HasVAListArg;
9868    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9869      if (!FD->getAttr<FormatAttr>()) {
9870        const char *fmt = "printf";
9871        unsigned int NumParams = FD->getNumParams();
9872        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9873            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9874          fmt = "NSString";
9875        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9876                                               &Context.Idents.get(fmt),
9877                                               FormatIdx+1,
9878                                               HasVAListArg ? 0 : FormatIdx+2));
9879      }
9880    }
9881    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9882                                             HasVAListArg)) {
9883     if (!FD->getAttr<FormatAttr>())
9884       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9885                                              &Context.Idents.get("scanf"),
9886                                              FormatIdx+1,
9887                                              HasVAListArg ? 0 : FormatIdx+2));
9888    }
9889
9890    // Mark const if we don't care about errno and that is the only
9891    // thing preventing the function from being const. This allows
9892    // IRgen to use LLVM intrinsics for such functions.
9893    if (!getLangOpts().MathErrno &&
9894        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9895      if (!FD->getAttr<ConstAttr>())
9896        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9897    }
9898
9899    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9900        !FD->getAttr<ReturnsTwiceAttr>())
9901      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9902    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9903      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9904    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9905      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9906  }
9907
9908  IdentifierInfo *Name = FD->getIdentifier();
9909  if (!Name)
9910    return;
9911  if ((!getLangOpts().CPlusPlus &&
9912       FD->getDeclContext()->isTranslationUnit()) ||
9913      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9914       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9915       LinkageSpecDecl::lang_c)) {
9916    // Okay: this could be a libc/libm/Objective-C function we know
9917    // about.
9918  } else
9919    return;
9920
9921  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9922    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9923    // target-specific builtins, perhaps?
9924    if (!FD->getAttr<FormatAttr>())
9925      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9926                                             &Context.Idents.get("printf"), 2,
9927                                             Name->isStr("vasprintf") ? 0 : 3));
9928  }
9929
9930  if (Name->isStr("__CFStringMakeConstantString")) {
9931    // We already have a __builtin___CFStringMakeConstantString,
9932    // but builds that use -fno-constant-cfstrings don't go through that.
9933    if (!FD->getAttr<FormatArgAttr>())
9934      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9935  }
9936}
9937
9938TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9939                                    TypeSourceInfo *TInfo) {
9940  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9941  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9942
9943  if (!TInfo) {
9944    assert(D.isInvalidType() && "no declarator info for valid type");
9945    TInfo = Context.getTrivialTypeSourceInfo(T);
9946  }
9947
9948  // Scope manipulation handled by caller.
9949  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9950                                           D.getLocStart(),
9951                                           D.getIdentifierLoc(),
9952                                           D.getIdentifier(),
9953                                           TInfo);
9954
9955  // Bail out immediately if we have an invalid declaration.
9956  if (D.isInvalidType()) {
9957    NewTD->setInvalidDecl();
9958    return NewTD;
9959  }
9960
9961  if (D.getDeclSpec().isModulePrivateSpecified()) {
9962    if (CurContext->isFunctionOrMethod())
9963      Diag(NewTD->getLocation(), diag::err_module_private_local)
9964        << 2 << NewTD->getDeclName()
9965        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9966        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9967    else
9968      NewTD->setModulePrivate();
9969  }
9970
9971  // C++ [dcl.typedef]p8:
9972  //   If the typedef declaration defines an unnamed class (or
9973  //   enum), the first typedef-name declared by the declaration
9974  //   to be that class type (or enum type) is used to denote the
9975  //   class type (or enum type) for linkage purposes only.
9976  // We need to check whether the type was declared in the declaration.
9977  switch (D.getDeclSpec().getTypeSpecType()) {
9978  case TST_enum:
9979  case TST_struct:
9980  case TST_interface:
9981  case TST_union:
9982  case TST_class: {
9983    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9984
9985    // Do nothing if the tag is not anonymous or already has an
9986    // associated typedef (from an earlier typedef in this decl group).
9987    if (tagFromDeclSpec->getIdentifier()) break;
9988    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9989
9990    // A well-formed anonymous tag must always be a TUK_Definition.
9991    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9992
9993    // The type must match the tag exactly;  no qualifiers allowed.
9994    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9995      break;
9996
9997    // Otherwise, set this is the anon-decl typedef for the tag.
9998    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9999    break;
10000  }
10001
10002  default:
10003    break;
10004  }
10005
10006  return NewTD;
10007}
10008
10009
10010/// \brief Check that this is a valid underlying type for an enum declaration.
10011bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
10012  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
10013  QualType T = TI->getType();
10014
10015  if (T->isDependentType())
10016    return false;
10017
10018  if (const BuiltinType *BT = T->getAs<BuiltinType>())
10019    if (BT->isInteger())
10020      return false;
10021
10022  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
10023  return true;
10024}
10025
10026/// Check whether this is a valid redeclaration of a previous enumeration.
10027/// \return true if the redeclaration was invalid.
10028bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
10029                                  QualType EnumUnderlyingTy,
10030                                  const EnumDecl *Prev) {
10031  bool IsFixed = !EnumUnderlyingTy.isNull();
10032
10033  if (IsScoped != Prev->isScoped()) {
10034    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
10035      << Prev->isScoped();
10036    Diag(Prev->getLocation(), diag::note_previous_use);
10037    return true;
10038  }
10039
10040  if (IsFixed && Prev->isFixed()) {
10041    if (!EnumUnderlyingTy->isDependentType() &&
10042        !Prev->getIntegerType()->isDependentType() &&
10043        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
10044                                        Prev->getIntegerType())) {
10045      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10046        << EnumUnderlyingTy << Prev->getIntegerType();
10047      Diag(Prev->getLocation(), diag::note_previous_use);
10048      return true;
10049    }
10050  } else if (IsFixed != Prev->isFixed()) {
10051    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10052      << Prev->isFixed();
10053    Diag(Prev->getLocation(), diag::note_previous_use);
10054    return true;
10055  }
10056
10057  return false;
10058}
10059
10060/// \brief Get diagnostic %select index for tag kind for
10061/// redeclaration diagnostic message.
10062/// WARNING: Indexes apply to particular diagnostics only!
10063///
10064/// \returns diagnostic %select index.
10065static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10066  switch (Tag) {
10067  case TTK_Struct: return 0;
10068  case TTK_Interface: return 1;
10069  case TTK_Class:  return 2;
10070  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
10071  }
10072}
10073
10074/// \brief Determine if tag kind is a class-key compatible with
10075/// class for redeclaration (class, struct, or __interface).
10076///
10077/// \returns true iff the tag kind is compatible.
10078static bool isClassCompatTagKind(TagTypeKind Tag)
10079{
10080  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
10081}
10082
10083/// \brief Determine whether a tag with a given kind is acceptable
10084/// as a redeclaration of the given tag declaration.
10085///
10086/// \returns true if the new tag kind is acceptable, false otherwise.
10087bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
10088                                        TagTypeKind NewTag, bool isDefinition,
10089                                        SourceLocation NewTagLoc,
10090                                        const IdentifierInfo &Name) {
10091  // C++ [dcl.type.elab]p3:
10092  //   The class-key or enum keyword present in the
10093  //   elaborated-type-specifier shall agree in kind with the
10094  //   declaration to which the name in the elaborated-type-specifier
10095  //   refers. This rule also applies to the form of
10096  //   elaborated-type-specifier that declares a class-name or
10097  //   friend class since it can be construed as referring to the
10098  //   definition of the class. Thus, in any
10099  //   elaborated-type-specifier, the enum keyword shall be used to
10100  //   refer to an enumeration (7.2), the union class-key shall be
10101  //   used to refer to a union (clause 9), and either the class or
10102  //   struct class-key shall be used to refer to a class (clause 9)
10103  //   declared using the class or struct class-key.
10104  TagTypeKind OldTag = Previous->getTagKind();
10105  if (!isDefinition || !isClassCompatTagKind(NewTag))
10106    if (OldTag == NewTag)
10107      return true;
10108
10109  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
10110    // Warn about the struct/class tag mismatch.
10111    bool isTemplate = false;
10112    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
10113      isTemplate = Record->getDescribedClassTemplate();
10114
10115    if (!ActiveTemplateInstantiations.empty()) {
10116      // In a template instantiation, do not offer fix-its for tag mismatches
10117      // since they usually mess up the template instead of fixing the problem.
10118      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10119        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10120        << getRedeclDiagFromTagKind(OldTag);
10121      return true;
10122    }
10123
10124    if (isDefinition) {
10125      // On definitions, check previous tags and issue a fix-it for each
10126      // one that doesn't match the current tag.
10127      if (Previous->getDefinition()) {
10128        // Don't suggest fix-its for redefinitions.
10129        return true;
10130      }
10131
10132      bool previousMismatch = false;
10133      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
10134           E(Previous->redecls_end()); I != E; ++I) {
10135        if (I->getTagKind() != NewTag) {
10136          if (!previousMismatch) {
10137            previousMismatch = true;
10138            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
10139              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10140              << getRedeclDiagFromTagKind(I->getTagKind());
10141          }
10142          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
10143            << getRedeclDiagFromTagKind(NewTag)
10144            << FixItHint::CreateReplacement(I->getInnerLocStart(),
10145                 TypeWithKeyword::getTagTypeKindName(NewTag));
10146        }
10147      }
10148      return true;
10149    }
10150
10151    // Check for a previous definition.  If current tag and definition
10152    // are same type, do nothing.  If no definition, but disagree with
10153    // with previous tag type, give a warning, but no fix-it.
10154    const TagDecl *Redecl = Previous->getDefinition() ?
10155                            Previous->getDefinition() : Previous;
10156    if (Redecl->getTagKind() == NewTag) {
10157      return true;
10158    }
10159
10160    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10161      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10162      << getRedeclDiagFromTagKind(OldTag);
10163    Diag(Redecl->getLocation(), diag::note_previous_use);
10164
10165    // If there is a previous defintion, suggest a fix-it.
10166    if (Previous->getDefinition()) {
10167        Diag(NewTagLoc, diag::note_struct_class_suggestion)
10168          << getRedeclDiagFromTagKind(Redecl->getTagKind())
10169          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10170               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10171    }
10172
10173    return true;
10174  }
10175  return false;
10176}
10177
10178/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10179/// former case, Name will be non-null.  In the later case, Name will be null.
10180/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10181/// reference/declaration/definition of a tag.
10182Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10183                     SourceLocation KWLoc, CXXScopeSpec &SS,
10184                     IdentifierInfo *Name, SourceLocation NameLoc,
10185                     AttributeList *Attr, AccessSpecifier AS,
10186                     SourceLocation ModulePrivateLoc,
10187                     MultiTemplateParamsArg TemplateParameterLists,
10188                     bool &OwnedDecl, bool &IsDependent,
10189                     SourceLocation ScopedEnumKWLoc,
10190                     bool ScopedEnumUsesClassTag,
10191                     TypeResult UnderlyingType) {
10192  // If this is not a definition, it must have a name.
10193  IdentifierInfo *OrigName = Name;
10194  assert((Name != 0 || TUK == TUK_Definition) &&
10195         "Nameless record must be a definition!");
10196  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10197
10198  OwnedDecl = false;
10199  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10200  bool ScopedEnum = ScopedEnumKWLoc.isValid();
10201
10202  // FIXME: Check explicit specializations more carefully.
10203  bool isExplicitSpecialization = false;
10204  bool Invalid = false;
10205
10206  // We only need to do this matching if we have template parameters
10207  // or a scope specifier, which also conveniently avoids this work
10208  // for non-C++ cases.
10209  if (TemplateParameterLists.size() > 0 ||
10210      (SS.isNotEmpty() && TUK != TUK_Reference)) {
10211    if (TemplateParameterList *TemplateParams =
10212            MatchTemplateParametersToScopeSpecifier(
10213                KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
10214                isExplicitSpecialization, Invalid)) {
10215      if (Kind == TTK_Enum) {
10216        Diag(KWLoc, diag::err_enum_template);
10217        return 0;
10218      }
10219
10220      if (TemplateParams->size() > 0) {
10221        // This is a declaration or definition of a class template (which may
10222        // be a member of another template).
10223
10224        if (Invalid)
10225          return 0;
10226
10227        OwnedDecl = false;
10228        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10229                                               SS, Name, NameLoc, Attr,
10230                                               TemplateParams, AS,
10231                                               ModulePrivateLoc,
10232                                               TemplateParameterLists.size()-1,
10233                                               TemplateParameterLists.data());
10234        return Result.get();
10235      } else {
10236        // The "template<>" header is extraneous.
10237        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10238          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10239        isExplicitSpecialization = true;
10240      }
10241    }
10242  }
10243
10244  // Figure out the underlying type if this a enum declaration. We need to do
10245  // this early, because it's needed to detect if this is an incompatible
10246  // redeclaration.
10247  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10248
10249  if (Kind == TTK_Enum) {
10250    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10251      // No underlying type explicitly specified, or we failed to parse the
10252      // type, default to int.
10253      EnumUnderlying = Context.IntTy.getTypePtr();
10254    else if (UnderlyingType.get()) {
10255      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10256      // integral type; any cv-qualification is ignored.
10257      TypeSourceInfo *TI = 0;
10258      GetTypeFromParser(UnderlyingType.get(), &TI);
10259      EnumUnderlying = TI;
10260
10261      if (CheckEnumUnderlyingType(TI))
10262        // Recover by falling back to int.
10263        EnumUnderlying = Context.IntTy.getTypePtr();
10264
10265      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10266                                          UPPC_FixedUnderlyingType))
10267        EnumUnderlying = Context.IntTy.getTypePtr();
10268
10269    } else if (getLangOpts().MicrosoftMode)
10270      // Microsoft enums are always of int type.
10271      EnumUnderlying = Context.IntTy.getTypePtr();
10272  }
10273
10274  DeclContext *SearchDC = CurContext;
10275  DeclContext *DC = CurContext;
10276  bool isStdBadAlloc = false;
10277
10278  RedeclarationKind Redecl = ForRedeclaration;
10279  if (TUK == TUK_Friend || TUK == TUK_Reference)
10280    Redecl = NotForRedeclaration;
10281
10282  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10283  bool FriendSawTagOutsideEnclosingNamespace = false;
10284  if (Name && SS.isNotEmpty()) {
10285    // We have a nested-name tag ('struct foo::bar').
10286
10287    // Check for invalid 'foo::'.
10288    if (SS.isInvalid()) {
10289      Name = 0;
10290      goto CreateNewDecl;
10291    }
10292
10293    // If this is a friend or a reference to a class in a dependent
10294    // context, don't try to make a decl for it.
10295    if (TUK == TUK_Friend || TUK == TUK_Reference) {
10296      DC = computeDeclContext(SS, false);
10297      if (!DC) {
10298        IsDependent = true;
10299        return 0;
10300      }
10301    } else {
10302      DC = computeDeclContext(SS, true);
10303      if (!DC) {
10304        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10305          << SS.getRange();
10306        return 0;
10307      }
10308    }
10309
10310    if (RequireCompleteDeclContext(SS, DC))
10311      return 0;
10312
10313    SearchDC = DC;
10314    // Look-up name inside 'foo::'.
10315    LookupQualifiedName(Previous, DC);
10316
10317    if (Previous.isAmbiguous())
10318      return 0;
10319
10320    if (Previous.empty()) {
10321      // Name lookup did not find anything. However, if the
10322      // nested-name-specifier refers to the current instantiation,
10323      // and that current instantiation has any dependent base
10324      // classes, we might find something at instantiation time: treat
10325      // this as a dependent elaborated-type-specifier.
10326      // But this only makes any sense for reference-like lookups.
10327      if (Previous.wasNotFoundInCurrentInstantiation() &&
10328          (TUK == TUK_Reference || TUK == TUK_Friend)) {
10329        IsDependent = true;
10330        return 0;
10331      }
10332
10333      // A tag 'foo::bar' must already exist.
10334      Diag(NameLoc, diag::err_not_tag_in_scope)
10335        << Kind << Name << DC << SS.getRange();
10336      Name = 0;
10337      Invalid = true;
10338      goto CreateNewDecl;
10339    }
10340  } else if (Name) {
10341    // If this is a named struct, check to see if there was a previous forward
10342    // declaration or definition.
10343    // FIXME: We're looking into outer scopes here, even when we
10344    // shouldn't be. Doing so can result in ambiguities that we
10345    // shouldn't be diagnosing.
10346    LookupName(Previous, S);
10347
10348    // When declaring or defining a tag, ignore ambiguities introduced
10349    // by types using'ed into this scope.
10350    if (Previous.isAmbiguous() &&
10351        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10352      LookupResult::Filter F = Previous.makeFilter();
10353      while (F.hasNext()) {
10354        NamedDecl *ND = F.next();
10355        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10356          F.erase();
10357      }
10358      F.done();
10359    }
10360
10361    // C++11 [namespace.memdef]p3:
10362    //   If the name in a friend declaration is neither qualified nor
10363    //   a template-id and the declaration is a function or an
10364    //   elaborated-type-specifier, the lookup to determine whether
10365    //   the entity has been previously declared shall not consider
10366    //   any scopes outside the innermost enclosing namespace.
10367    //
10368    // Does it matter that this should be by scope instead of by
10369    // semantic context?
10370    if (!Previous.empty() && TUK == TUK_Friend) {
10371      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10372      LookupResult::Filter F = Previous.makeFilter();
10373      while (F.hasNext()) {
10374        NamedDecl *ND = F.next();
10375        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10376        if (DC->isFileContext() &&
10377            !EnclosingNS->Encloses(ND->getDeclContext())) {
10378          F.erase();
10379          FriendSawTagOutsideEnclosingNamespace = true;
10380        }
10381      }
10382      F.done();
10383    }
10384
10385    // Note:  there used to be some attempt at recovery here.
10386    if (Previous.isAmbiguous())
10387      return 0;
10388
10389    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10390      // FIXME: This makes sure that we ignore the contexts associated
10391      // with C structs, unions, and enums when looking for a matching
10392      // tag declaration or definition. See the similar lookup tweak
10393      // in Sema::LookupName; is there a better way to deal with this?
10394      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10395        SearchDC = SearchDC->getParent();
10396    }
10397  } else if (S->isFunctionPrototypeScope()) {
10398    // If this is an enum declaration in function prototype scope, set its
10399    // initial context to the translation unit.
10400    // FIXME: [citation needed]
10401    SearchDC = Context.getTranslationUnitDecl();
10402  }
10403
10404  if (Previous.isSingleResult() &&
10405      Previous.getFoundDecl()->isTemplateParameter()) {
10406    // Maybe we will complain about the shadowed template parameter.
10407    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10408    // Just pretend that we didn't see the previous declaration.
10409    Previous.clear();
10410  }
10411
10412  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10413      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10414    // This is a declaration of or a reference to "std::bad_alloc".
10415    isStdBadAlloc = true;
10416
10417    if (Previous.empty() && StdBadAlloc) {
10418      // std::bad_alloc has been implicitly declared (but made invisible to
10419      // name lookup). Fill in this implicit declaration as the previous
10420      // declaration, so that the declarations get chained appropriately.
10421      Previous.addDecl(getStdBadAlloc());
10422    }
10423  }
10424
10425  // If we didn't find a previous declaration, and this is a reference
10426  // (or friend reference), move to the correct scope.  In C++, we
10427  // also need to do a redeclaration lookup there, just in case
10428  // there's a shadow friend decl.
10429  if (Name && Previous.empty() &&
10430      (TUK == TUK_Reference || TUK == TUK_Friend)) {
10431    if (Invalid) goto CreateNewDecl;
10432    assert(SS.isEmpty());
10433
10434    if (TUK == TUK_Reference) {
10435      // C++ [basic.scope.pdecl]p5:
10436      //   -- for an elaborated-type-specifier of the form
10437      //
10438      //          class-key identifier
10439      //
10440      //      if the elaborated-type-specifier is used in the
10441      //      decl-specifier-seq or parameter-declaration-clause of a
10442      //      function defined in namespace scope, the identifier is
10443      //      declared as a class-name in the namespace that contains
10444      //      the declaration; otherwise, except as a friend
10445      //      declaration, the identifier is declared in the smallest
10446      //      non-class, non-function-prototype scope that contains the
10447      //      declaration.
10448      //
10449      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10450      // C structs and unions.
10451      //
10452      // It is an error in C++ to declare (rather than define) an enum
10453      // type, including via an elaborated type specifier.  We'll
10454      // diagnose that later; for now, declare the enum in the same
10455      // scope as we would have picked for any other tag type.
10456      //
10457      // GNU C also supports this behavior as part of its incomplete
10458      // enum types extension, while GNU C++ does not.
10459      //
10460      // Find the context where we'll be declaring the tag.
10461      // FIXME: We would like to maintain the current DeclContext as the
10462      // lexical context,
10463      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
10464        SearchDC = SearchDC->getParent();
10465
10466      // Find the scope where we'll be declaring the tag.
10467      while (S->isClassScope() ||
10468             (getLangOpts().CPlusPlus &&
10469              S->isFunctionPrototypeScope()) ||
10470             ((S->getFlags() & Scope::DeclScope) == 0) ||
10471             (S->getEntity() &&
10472              ((DeclContext *)S->getEntity())->isTransparentContext()))
10473        S = S->getParent();
10474    } else {
10475      assert(TUK == TUK_Friend);
10476      // C++ [namespace.memdef]p3:
10477      //   If a friend declaration in a non-local class first declares a
10478      //   class or function, the friend class or function is a member of
10479      //   the innermost enclosing namespace.
10480      SearchDC = SearchDC->getEnclosingNamespaceContext();
10481    }
10482
10483    // In C++, we need to do a redeclaration lookup to properly
10484    // diagnose some problems.
10485    if (getLangOpts().CPlusPlus) {
10486      Previous.setRedeclarationKind(ForRedeclaration);
10487      LookupQualifiedName(Previous, SearchDC);
10488    }
10489  }
10490
10491  if (!Previous.empty()) {
10492    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
10493
10494    // It's okay to have a tag decl in the same scope as a typedef
10495    // which hides a tag decl in the same scope.  Finding this
10496    // insanity with a redeclaration lookup can only actually happen
10497    // in C++.
10498    //
10499    // This is also okay for elaborated-type-specifiers, which is
10500    // technically forbidden by the current standard but which is
10501    // okay according to the likely resolution of an open issue;
10502    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
10503    if (getLangOpts().CPlusPlus) {
10504      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10505        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
10506          TagDecl *Tag = TT->getDecl();
10507          if (Tag->getDeclName() == Name &&
10508              Tag->getDeclContext()->getRedeclContext()
10509                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
10510            PrevDecl = Tag;
10511            Previous.clear();
10512            Previous.addDecl(Tag);
10513            Previous.resolveKind();
10514          }
10515        }
10516      }
10517    }
10518
10519    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
10520      // If this is a use of a previous tag, or if the tag is already declared
10521      // in the same scope (so that the definition/declaration completes or
10522      // rementions the tag), reuse the decl.
10523      if (TUK == TUK_Reference || TUK == TUK_Friend ||
10524          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10525        // Make sure that this wasn't declared as an enum and now used as a
10526        // struct or something similar.
10527        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10528                                          TUK == TUK_Definition, KWLoc,
10529                                          *Name)) {
10530          bool SafeToContinue
10531            = (PrevTagDecl->getTagKind() != TTK_Enum &&
10532               Kind != TTK_Enum);
10533          if (SafeToContinue)
10534            Diag(KWLoc, diag::err_use_with_wrong_tag)
10535              << Name
10536              << FixItHint::CreateReplacement(SourceRange(KWLoc),
10537                                              PrevTagDecl->getKindName());
10538          else
10539            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10540          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10541
10542          if (SafeToContinue)
10543            Kind = PrevTagDecl->getTagKind();
10544          else {
10545            // Recover by making this an anonymous redefinition.
10546            Name = 0;
10547            Previous.clear();
10548            Invalid = true;
10549          }
10550        }
10551
10552        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10553          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10554
10555          // If this is an elaborated-type-specifier for a scoped enumeration,
10556          // the 'class' keyword is not necessary and not permitted.
10557          if (TUK == TUK_Reference || TUK == TUK_Friend) {
10558            if (ScopedEnum)
10559              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10560                << PrevEnum->isScoped()
10561                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10562            return PrevTagDecl;
10563          }
10564
10565          QualType EnumUnderlyingTy;
10566          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10567            EnumUnderlyingTy = TI->getType();
10568          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10569            EnumUnderlyingTy = QualType(T, 0);
10570
10571          // All conflicts with previous declarations are recovered by
10572          // returning the previous declaration, unless this is a definition,
10573          // in which case we want the caller to bail out.
10574          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10575                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
10576            return TUK == TUK_Declaration ? PrevTagDecl : 0;
10577        }
10578
10579        // C++11 [class.mem]p1:
10580        //   A member shall not be declared twice in the member-specification,
10581        //   except that a nested class or member class template can be declared
10582        //   and then later defined.
10583        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10584            S->isDeclScope(PrevDecl)) {
10585          Diag(NameLoc, diag::ext_member_redeclared);
10586          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10587        }
10588
10589        if (!Invalid) {
10590          // If this is a use, just return the declaration we found.
10591
10592          // FIXME: In the future, return a variant or some other clue
10593          // for the consumer of this Decl to know it doesn't own it.
10594          // For our current ASTs this shouldn't be a problem, but will
10595          // need to be changed with DeclGroups.
10596          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10597               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10598            return PrevTagDecl;
10599
10600          // Diagnose attempts to redefine a tag.
10601          if (TUK == TUK_Definition) {
10602            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10603              // If we're defining a specialization and the previous definition
10604              // is from an implicit instantiation, don't emit an error
10605              // here; we'll catch this in the general case below.
10606              bool IsExplicitSpecializationAfterInstantiation = false;
10607              if (isExplicitSpecialization) {
10608                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10609                  IsExplicitSpecializationAfterInstantiation =
10610                    RD->getTemplateSpecializationKind() !=
10611                    TSK_ExplicitSpecialization;
10612                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10613                  IsExplicitSpecializationAfterInstantiation =
10614                    ED->getTemplateSpecializationKind() !=
10615                    TSK_ExplicitSpecialization;
10616              }
10617
10618              if (!IsExplicitSpecializationAfterInstantiation) {
10619                // A redeclaration in function prototype scope in C isn't
10620                // visible elsewhere, so merely issue a warning.
10621                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10622                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10623                else
10624                  Diag(NameLoc, diag::err_redefinition) << Name;
10625                Diag(Def->getLocation(), diag::note_previous_definition);
10626                // If this is a redefinition, recover by making this
10627                // struct be anonymous, which will make any later
10628                // references get the previous definition.
10629                Name = 0;
10630                Previous.clear();
10631                Invalid = true;
10632              }
10633            } else {
10634              // If the type is currently being defined, complain
10635              // about a nested redefinition.
10636              const TagType *Tag
10637                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10638              if (Tag->isBeingDefined()) {
10639                Diag(NameLoc, diag::err_nested_redefinition) << Name;
10640                Diag(PrevTagDecl->getLocation(),
10641                     diag::note_previous_definition);
10642                Name = 0;
10643                Previous.clear();
10644                Invalid = true;
10645              }
10646            }
10647
10648            // Okay, this is definition of a previously declared or referenced
10649            // tag PrevDecl. We're going to create a new Decl for it.
10650          }
10651        }
10652        // If we get here we have (another) forward declaration or we
10653        // have a definition.  Just create a new decl.
10654
10655      } else {
10656        // If we get here, this is a definition of a new tag type in a nested
10657        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10658        // new decl/type.  We set PrevDecl to NULL so that the entities
10659        // have distinct types.
10660        Previous.clear();
10661      }
10662      // If we get here, we're going to create a new Decl. If PrevDecl
10663      // is non-NULL, it's a definition of the tag declared by
10664      // PrevDecl. If it's NULL, we have a new definition.
10665
10666
10667    // Otherwise, PrevDecl is not a tag, but was found with tag
10668    // lookup.  This is only actually possible in C++, where a few
10669    // things like templates still live in the tag namespace.
10670    } else {
10671      // Use a better diagnostic if an elaborated-type-specifier
10672      // found the wrong kind of type on the first
10673      // (non-redeclaration) lookup.
10674      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10675          !Previous.isForRedeclaration()) {
10676        unsigned Kind = 0;
10677        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10678        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10679        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10680        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10681        Diag(PrevDecl->getLocation(), diag::note_declared_at);
10682        Invalid = true;
10683
10684      // Otherwise, only diagnose if the declaration is in scope.
10685      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10686                                isExplicitSpecialization)) {
10687        // do nothing
10688
10689      // Diagnose implicit declarations introduced by elaborated types.
10690      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10691        unsigned Kind = 0;
10692        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10693        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10694        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10695        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10696        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10697        Invalid = true;
10698
10699      // Otherwise it's a declaration.  Call out a particularly common
10700      // case here.
10701      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10702        unsigned Kind = 0;
10703        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10704        Diag(NameLoc, diag::err_tag_definition_of_typedef)
10705          << Name << Kind << TND->getUnderlyingType();
10706        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10707        Invalid = true;
10708
10709      // Otherwise, diagnose.
10710      } else {
10711        // The tag name clashes with something else in the target scope,
10712        // issue an error and recover by making this tag be anonymous.
10713        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10714        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10715        Name = 0;
10716        Invalid = true;
10717      }
10718
10719      // The existing declaration isn't relevant to us; we're in a
10720      // new scope, so clear out the previous declaration.
10721      Previous.clear();
10722    }
10723  }
10724
10725CreateNewDecl:
10726
10727  TagDecl *PrevDecl = 0;
10728  if (Previous.isSingleResult())
10729    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10730
10731  // If there is an identifier, use the location of the identifier as the
10732  // location of the decl, otherwise use the location of the struct/union
10733  // keyword.
10734  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10735
10736  // Otherwise, create a new declaration. If there is a previous
10737  // declaration of the same entity, the two will be linked via
10738  // PrevDecl.
10739  TagDecl *New;
10740
10741  bool IsForwardReference = false;
10742  if (Kind == TTK_Enum) {
10743    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10744    // enum X { A, B, C } D;    D should chain to X.
10745    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10746                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10747                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10748    // If this is an undefined enum, warn.
10749    if (TUK != TUK_Definition && !Invalid) {
10750      TagDecl *Def;
10751      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10752          cast<EnumDecl>(New)->isFixed()) {
10753        // C++0x: 7.2p2: opaque-enum-declaration.
10754        // Conflicts are diagnosed above. Do nothing.
10755      }
10756      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10757        Diag(Loc, diag::ext_forward_ref_enum_def)
10758          << New;
10759        Diag(Def->getLocation(), diag::note_previous_definition);
10760      } else {
10761        unsigned DiagID = diag::ext_forward_ref_enum;
10762        if (getLangOpts().MicrosoftMode)
10763          DiagID = diag::ext_ms_forward_ref_enum;
10764        else if (getLangOpts().CPlusPlus)
10765          DiagID = diag::err_forward_ref_enum;
10766        Diag(Loc, DiagID);
10767
10768        // If this is a forward-declared reference to an enumeration, make a
10769        // note of it; we won't actually be introducing the declaration into
10770        // the declaration context.
10771        if (TUK == TUK_Reference)
10772          IsForwardReference = true;
10773      }
10774    }
10775
10776    if (EnumUnderlying) {
10777      EnumDecl *ED = cast<EnumDecl>(New);
10778      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10779        ED->setIntegerTypeSourceInfo(TI);
10780      else
10781        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10782      ED->setPromotionType(ED->getIntegerType());
10783    }
10784
10785  } else {
10786    // struct/union/class
10787
10788    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10789    // struct X { int A; } D;    D should chain to X.
10790    if (getLangOpts().CPlusPlus) {
10791      // FIXME: Look for a way to use RecordDecl for simple structs.
10792      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10793                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10794
10795      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10796        StdBadAlloc = cast<CXXRecordDecl>(New);
10797    } else
10798      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10799                               cast_or_null<RecordDecl>(PrevDecl));
10800  }
10801
10802  // Maybe add qualifier info.
10803  if (SS.isNotEmpty()) {
10804    if (SS.isSet()) {
10805      // If this is either a declaration or a definition, check the
10806      // nested-name-specifier against the current context. We don't do this
10807      // for explicit specializations, because they have similar checking
10808      // (with more specific diagnostics) in the call to
10809      // CheckMemberSpecialization, below.
10810      if (!isExplicitSpecialization &&
10811          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10812          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10813        Invalid = true;
10814
10815      New->setQualifierInfo(SS.getWithLocInContext(Context));
10816      if (TemplateParameterLists.size() > 0) {
10817        New->setTemplateParameterListsInfo(Context,
10818                                           TemplateParameterLists.size(),
10819                                           TemplateParameterLists.data());
10820      }
10821    }
10822    else
10823      Invalid = true;
10824  }
10825
10826  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10827    // Add alignment attributes if necessary; these attributes are checked when
10828    // the ASTContext lays out the structure.
10829    //
10830    // It is important for implementing the correct semantics that this
10831    // happen here (in act on tag decl). The #pragma pack stack is
10832    // maintained as a result of parser callbacks which can occur at
10833    // many points during the parsing of a struct declaration (because
10834    // the #pragma tokens are effectively skipped over during the
10835    // parsing of the struct).
10836    if (TUK == TUK_Definition) {
10837      AddAlignmentAttributesForRecord(RD);
10838      AddMsStructLayoutForRecord(RD);
10839    }
10840  }
10841
10842  if (ModulePrivateLoc.isValid()) {
10843    if (isExplicitSpecialization)
10844      Diag(New->getLocation(), diag::err_module_private_specialization)
10845        << 2
10846        << FixItHint::CreateRemoval(ModulePrivateLoc);
10847    // __module_private__ does not apply to local classes. However, we only
10848    // diagnose this as an error when the declaration specifiers are
10849    // freestanding. Here, we just ignore the __module_private__.
10850    else if (!SearchDC->isFunctionOrMethod())
10851      New->setModulePrivate();
10852  }
10853
10854  // If this is a specialization of a member class (of a class template),
10855  // check the specialization.
10856  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10857    Invalid = true;
10858
10859  if (Invalid)
10860    New->setInvalidDecl();
10861
10862  if (Attr)
10863    ProcessDeclAttributeList(S, New, Attr);
10864
10865  // If we're declaring or defining a tag in function prototype scope
10866  // in C, note that this type can only be used within the function.
10867  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10868    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10869
10870  // Set the lexical context. If the tag has a C++ scope specifier, the
10871  // lexical context will be different from the semantic context.
10872  New->setLexicalDeclContext(CurContext);
10873
10874  // Mark this as a friend decl if applicable.
10875  // In Microsoft mode, a friend declaration also acts as a forward
10876  // declaration so we always pass true to setObjectOfFriendDecl to make
10877  // the tag name visible.
10878  if (TUK == TUK_Friend)
10879    New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
10880                               getLangOpts().MicrosoftExt);
10881
10882  // Set the access specifier.
10883  if (!Invalid && SearchDC->isRecord())
10884    SetMemberAccessSpecifier(New, PrevDecl, AS);
10885
10886  if (TUK == TUK_Definition)
10887    New->startDefinition();
10888
10889  // If this has an identifier, add it to the scope stack.
10890  if (TUK == TUK_Friend) {
10891    // We might be replacing an existing declaration in the lookup tables;
10892    // if so, borrow its access specifier.
10893    if (PrevDecl)
10894      New->setAccess(PrevDecl->getAccess());
10895
10896    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10897    DC->makeDeclVisibleInContext(New);
10898    if (Name) // can be null along some error paths
10899      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10900        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10901  } else if (Name) {
10902    S = getNonFieldDeclScope(S);
10903    PushOnScopeChains(New, S, !IsForwardReference);
10904    if (IsForwardReference)
10905      SearchDC->makeDeclVisibleInContext(New);
10906
10907  } else {
10908    CurContext->addDecl(New);
10909  }
10910
10911  // If this is the C FILE type, notify the AST context.
10912  if (IdentifierInfo *II = New->getIdentifier())
10913    if (!New->isInvalidDecl() &&
10914        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10915        II->isStr("FILE"))
10916      Context.setFILEDecl(New);
10917
10918  // If we were in function prototype scope (and not in C++ mode), add this
10919  // tag to the list of decls to inject into the function definition scope.
10920  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10921      InFunctionDeclarator && Name)
10922    DeclsInPrototypeScope.push_back(New);
10923
10924  if (PrevDecl)
10925    mergeDeclAttributes(New, PrevDecl);
10926
10927  // If there's a #pragma GCC visibility in scope, set the visibility of this
10928  // record.
10929  AddPushedVisibilityAttribute(New);
10930
10931  OwnedDecl = true;
10932  // In C++, don't return an invalid declaration. We can't recover well from
10933  // the cases where we make the type anonymous.
10934  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10935}
10936
10937void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10938  AdjustDeclIfTemplate(TagD);
10939  TagDecl *Tag = cast<TagDecl>(TagD);
10940
10941  // Enter the tag context.
10942  PushDeclContext(S, Tag);
10943
10944  ActOnDocumentableDecl(TagD);
10945
10946  // If there's a #pragma GCC visibility in scope, set the visibility of this
10947  // record.
10948  AddPushedVisibilityAttribute(Tag);
10949}
10950
10951Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10952  assert(isa<ObjCContainerDecl>(IDecl) &&
10953         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10954  DeclContext *OCD = cast<DeclContext>(IDecl);
10955  assert(getContainingDC(OCD) == CurContext &&
10956      "The next DeclContext should be lexically contained in the current one.");
10957  CurContext = OCD;
10958  return IDecl;
10959}
10960
10961void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10962                                           SourceLocation FinalLoc,
10963                                           SourceLocation LBraceLoc) {
10964  AdjustDeclIfTemplate(TagD);
10965  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10966
10967  FieldCollector->StartClass();
10968
10969  if (!Record->getIdentifier())
10970    return;
10971
10972  if (FinalLoc.isValid())
10973    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10974
10975  // C++ [class]p2:
10976  //   [...] The class-name is also inserted into the scope of the
10977  //   class itself; this is known as the injected-class-name. For
10978  //   purposes of access checking, the injected-class-name is treated
10979  //   as if it were a public member name.
10980  CXXRecordDecl *InjectedClassName
10981    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10982                            Record->getLocStart(), Record->getLocation(),
10983                            Record->getIdentifier(),
10984                            /*PrevDecl=*/0,
10985                            /*DelayTypeCreation=*/true);
10986  Context.getTypeDeclType(InjectedClassName, Record);
10987  InjectedClassName->setImplicit();
10988  InjectedClassName->setAccess(AS_public);
10989  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10990      InjectedClassName->setDescribedClassTemplate(Template);
10991  PushOnScopeChains(InjectedClassName, S);
10992  assert(InjectedClassName->isInjectedClassName() &&
10993         "Broken injected-class-name");
10994}
10995
10996void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10997                                    SourceLocation RBraceLoc) {
10998  AdjustDeclIfTemplate(TagD);
10999  TagDecl *Tag = cast<TagDecl>(TagD);
11000  Tag->setRBraceLoc(RBraceLoc);
11001
11002  // Make sure we "complete" the definition even it is invalid.
11003  if (Tag->isBeingDefined()) {
11004    assert(Tag->isInvalidDecl() && "We should already have completed it");
11005    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11006      RD->completeDefinition();
11007  }
11008
11009  if (isa<CXXRecordDecl>(Tag))
11010    FieldCollector->FinishClass();
11011
11012  // Exit this scope of this tag's definition.
11013  PopDeclContext();
11014
11015  if (getCurLexicalContext()->isObjCContainer() &&
11016      Tag->getDeclContext()->isFileContext())
11017    Tag->setTopLevelDeclInObjCContainer();
11018
11019  // Notify the consumer that we've defined a tag.
11020  if (!Tag->isInvalidDecl())
11021    Consumer.HandleTagDeclDefinition(Tag);
11022}
11023
11024void Sema::ActOnObjCContainerFinishDefinition() {
11025  // Exit this scope of this interface definition.
11026  PopDeclContext();
11027}
11028
11029void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
11030  assert(DC == CurContext && "Mismatch of container contexts");
11031  OriginalLexicalContext = DC;
11032  ActOnObjCContainerFinishDefinition();
11033}
11034
11035void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
11036  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
11037  OriginalLexicalContext = 0;
11038}
11039
11040void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
11041  AdjustDeclIfTemplate(TagD);
11042  TagDecl *Tag = cast<TagDecl>(TagD);
11043  Tag->setInvalidDecl();
11044
11045  // Make sure we "complete" the definition even it is invalid.
11046  if (Tag->isBeingDefined()) {
11047    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11048      RD->completeDefinition();
11049  }
11050
11051  // We're undoing ActOnTagStartDefinition here, not
11052  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
11053  // the FieldCollector.
11054
11055  PopDeclContext();
11056}
11057
11058// Note that FieldName may be null for anonymous bitfields.
11059ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
11060                                IdentifierInfo *FieldName,
11061                                QualType FieldTy, bool IsMsStruct,
11062                                Expr *BitWidth, bool *ZeroWidth) {
11063  // Default to true; that shouldn't confuse checks for emptiness
11064  if (ZeroWidth)
11065    *ZeroWidth = true;
11066
11067  // C99 6.7.2.1p4 - verify the field type.
11068  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
11069  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
11070    // Handle incomplete types with specific error.
11071    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
11072      return ExprError();
11073    if (FieldName)
11074      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
11075        << FieldName << FieldTy << BitWidth->getSourceRange();
11076    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
11077      << FieldTy << BitWidth->getSourceRange();
11078  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
11079                                             UPPC_BitFieldWidth))
11080    return ExprError();
11081
11082  // If the bit-width is type- or value-dependent, don't try to check
11083  // it now.
11084  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
11085    return Owned(BitWidth);
11086
11087  llvm::APSInt Value;
11088  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
11089  if (ICE.isInvalid())
11090    return ICE;
11091  BitWidth = ICE.take();
11092
11093  if (Value != 0 && ZeroWidth)
11094    *ZeroWidth = false;
11095
11096  // Zero-width bitfield is ok for anonymous field.
11097  if (Value == 0 && FieldName)
11098    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
11099
11100  if (Value.isSigned() && Value.isNegative()) {
11101    if (FieldName)
11102      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
11103               << FieldName << Value.toString(10);
11104    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
11105      << Value.toString(10);
11106  }
11107
11108  if (!FieldTy->isDependentType()) {
11109    uint64_t TypeSize = Context.getTypeSize(FieldTy);
11110    if (Value.getZExtValue() > TypeSize) {
11111      if (!getLangOpts().CPlusPlus || IsMsStruct) {
11112        if (FieldName)
11113          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
11114            << FieldName << (unsigned)Value.getZExtValue()
11115            << (unsigned)TypeSize;
11116
11117        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
11118          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11119      }
11120
11121      if (FieldName)
11122        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
11123          << FieldName << (unsigned)Value.getZExtValue()
11124          << (unsigned)TypeSize;
11125      else
11126        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
11127          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11128    }
11129  }
11130
11131  return Owned(BitWidth);
11132}
11133
11134/// ActOnField - Each field of a C struct/union is passed into this in order
11135/// to create a FieldDecl object for it.
11136Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
11137                       Declarator &D, Expr *BitfieldWidth) {
11138  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
11139                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
11140                               /*InitStyle=*/ICIS_NoInit, AS_public);
11141  return Res;
11142}
11143
11144/// HandleField - Analyze a field of a C struct or a C++ data member.
11145///
11146FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
11147                             SourceLocation DeclStart,
11148                             Declarator &D, Expr *BitWidth,
11149                             InClassInitStyle InitStyle,
11150                             AccessSpecifier AS) {
11151  IdentifierInfo *II = D.getIdentifier();
11152  SourceLocation Loc = DeclStart;
11153  if (II) Loc = D.getIdentifierLoc();
11154
11155  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11156  QualType T = TInfo->getType();
11157  if (getLangOpts().CPlusPlus) {
11158    CheckExtraCXXDefaultArguments(D);
11159
11160    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11161                                        UPPC_DataMemberType)) {
11162      D.setInvalidType();
11163      T = Context.IntTy;
11164      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11165    }
11166  }
11167
11168  // TR 18037 does not allow fields to be declared with address spaces.
11169  if (T.getQualifiers().hasAddressSpace()) {
11170    Diag(Loc, diag::err_field_with_address_space);
11171    D.setInvalidType();
11172  }
11173
11174  // OpenCL 1.2 spec, s6.9 r:
11175  // The event type cannot be used to declare a structure or union field.
11176  if (LangOpts.OpenCL && T->isEventT()) {
11177    Diag(Loc, diag::err_event_t_struct_field);
11178    D.setInvalidType();
11179  }
11180
11181  DiagnoseFunctionSpecifiers(D.getDeclSpec());
11182
11183  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11184    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11185         diag::err_invalid_thread)
11186      << DeclSpec::getSpecifierName(TSCS);
11187
11188  // Check to see if this name was declared as a member previously
11189  NamedDecl *PrevDecl = 0;
11190  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11191  LookupName(Previous, S);
11192  switch (Previous.getResultKind()) {
11193    case LookupResult::Found:
11194    case LookupResult::FoundUnresolvedValue:
11195      PrevDecl = Previous.getAsSingle<NamedDecl>();
11196      break;
11197
11198    case LookupResult::FoundOverloaded:
11199      PrevDecl = Previous.getRepresentativeDecl();
11200      break;
11201
11202    case LookupResult::NotFound:
11203    case LookupResult::NotFoundInCurrentInstantiation:
11204    case LookupResult::Ambiguous:
11205      break;
11206  }
11207  Previous.suppressDiagnostics();
11208
11209  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11210    // Maybe we will complain about the shadowed template parameter.
11211    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11212    // Just pretend that we didn't see the previous declaration.
11213    PrevDecl = 0;
11214  }
11215
11216  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11217    PrevDecl = 0;
11218
11219  bool Mutable
11220    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11221  SourceLocation TSSL = D.getLocStart();
11222  FieldDecl *NewFD
11223    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11224                     TSSL, AS, PrevDecl, &D);
11225
11226  if (NewFD->isInvalidDecl())
11227    Record->setInvalidDecl();
11228
11229  if (D.getDeclSpec().isModulePrivateSpecified())
11230    NewFD->setModulePrivate();
11231
11232  if (NewFD->isInvalidDecl() && PrevDecl) {
11233    // Don't introduce NewFD into scope; there's already something
11234    // with the same name in the same scope.
11235  } else if (II) {
11236    PushOnScopeChains(NewFD, S);
11237  } else
11238    Record->addDecl(NewFD);
11239
11240  return NewFD;
11241}
11242
11243/// \brief Build a new FieldDecl and check its well-formedness.
11244///
11245/// This routine builds a new FieldDecl given the fields name, type,
11246/// record, etc. \p PrevDecl should refer to any previous declaration
11247/// with the same name and in the same scope as the field to be
11248/// created.
11249///
11250/// \returns a new FieldDecl.
11251///
11252/// \todo The Declarator argument is a hack. It will be removed once
11253FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11254                                TypeSourceInfo *TInfo,
11255                                RecordDecl *Record, SourceLocation Loc,
11256                                bool Mutable, Expr *BitWidth,
11257                                InClassInitStyle InitStyle,
11258                                SourceLocation TSSL,
11259                                AccessSpecifier AS, NamedDecl *PrevDecl,
11260                                Declarator *D) {
11261  IdentifierInfo *II = Name.getAsIdentifierInfo();
11262  bool InvalidDecl = false;
11263  if (D) InvalidDecl = D->isInvalidType();
11264
11265  // If we receive a broken type, recover by assuming 'int' and
11266  // marking this declaration as invalid.
11267  if (T.isNull()) {
11268    InvalidDecl = true;
11269    T = Context.IntTy;
11270  }
11271
11272  QualType EltTy = Context.getBaseElementType(T);
11273  if (!EltTy->isDependentType()) {
11274    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11275      // Fields of incomplete type force their record to be invalid.
11276      Record->setInvalidDecl();
11277      InvalidDecl = true;
11278    } else {
11279      NamedDecl *Def;
11280      EltTy->isIncompleteType(&Def);
11281      if (Def && Def->isInvalidDecl()) {
11282        Record->setInvalidDecl();
11283        InvalidDecl = true;
11284      }
11285    }
11286  }
11287
11288  // OpenCL v1.2 s6.9.c: bitfields are not supported.
11289  if (BitWidth && getLangOpts().OpenCL) {
11290    Diag(Loc, diag::err_opencl_bitfields);
11291    InvalidDecl = true;
11292  }
11293
11294  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11295  // than a variably modified type.
11296  if (!InvalidDecl && T->isVariablyModifiedType()) {
11297    bool SizeIsNegative;
11298    llvm::APSInt Oversized;
11299
11300    TypeSourceInfo *FixedTInfo =
11301      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11302                                                    SizeIsNegative,
11303                                                    Oversized);
11304    if (FixedTInfo) {
11305      Diag(Loc, diag::warn_illegal_constant_array_size);
11306      TInfo = FixedTInfo;
11307      T = FixedTInfo->getType();
11308    } else {
11309      if (SizeIsNegative)
11310        Diag(Loc, diag::err_typecheck_negative_array_size);
11311      else if (Oversized.getBoolValue())
11312        Diag(Loc, diag::err_array_too_large)
11313          << Oversized.toString(10);
11314      else
11315        Diag(Loc, diag::err_typecheck_field_variable_size);
11316      InvalidDecl = true;
11317    }
11318  }
11319
11320  // Fields can not have abstract class types
11321  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11322                                             diag::err_abstract_type_in_decl,
11323                                             AbstractFieldType))
11324    InvalidDecl = true;
11325
11326  bool ZeroWidth = false;
11327  // If this is declared as a bit-field, check the bit-field.
11328  if (!InvalidDecl && BitWidth) {
11329    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11330                              &ZeroWidth).take();
11331    if (!BitWidth) {
11332      InvalidDecl = true;
11333      BitWidth = 0;
11334      ZeroWidth = false;
11335    }
11336  }
11337
11338  // Check that 'mutable' is consistent with the type of the declaration.
11339  if (!InvalidDecl && Mutable) {
11340    unsigned DiagID = 0;
11341    if (T->isReferenceType())
11342      DiagID = diag::err_mutable_reference;
11343    else if (T.isConstQualified())
11344      DiagID = diag::err_mutable_const;
11345
11346    if (DiagID) {
11347      SourceLocation ErrLoc = Loc;
11348      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11349        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11350      Diag(ErrLoc, DiagID);
11351      Mutable = false;
11352      InvalidDecl = true;
11353    }
11354  }
11355
11356  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11357                                       BitWidth, Mutable, InitStyle);
11358  if (InvalidDecl)
11359    NewFD->setInvalidDecl();
11360
11361  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11362    Diag(Loc, diag::err_duplicate_member) << II;
11363    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11364    NewFD->setInvalidDecl();
11365  }
11366
11367  if (!InvalidDecl && getLangOpts().CPlusPlus) {
11368    if (Record->isUnion()) {
11369      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11370        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11371        if (RDecl->getDefinition()) {
11372          // C++ [class.union]p1: An object of a class with a non-trivial
11373          // constructor, a non-trivial copy constructor, a non-trivial
11374          // destructor, or a non-trivial copy assignment operator
11375          // cannot be a member of a union, nor can an array of such
11376          // objects.
11377          if (CheckNontrivialField(NewFD))
11378            NewFD->setInvalidDecl();
11379        }
11380      }
11381
11382      // C++ [class.union]p1: If a union contains a member of reference type,
11383      // the program is ill-formed, except when compiling with MSVC extensions
11384      // enabled.
11385      if (EltTy->isReferenceType()) {
11386        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11387                                    diag::ext_union_member_of_reference_type :
11388                                    diag::err_union_member_of_reference_type)
11389          << NewFD->getDeclName() << EltTy;
11390        if (!getLangOpts().MicrosoftExt)
11391          NewFD->setInvalidDecl();
11392      }
11393    }
11394  }
11395
11396  // FIXME: We need to pass in the attributes given an AST
11397  // representation, not a parser representation.
11398  if (D) {
11399    // FIXME: The current scope is almost... but not entirely... correct here.
11400    ProcessDeclAttributes(getCurScope(), NewFD, *D);
11401
11402    if (NewFD->hasAttrs())
11403      CheckAlignasUnderalignment(NewFD);
11404  }
11405
11406  // In auto-retain/release, infer strong retension for fields of
11407  // retainable type.
11408  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11409    NewFD->setInvalidDecl();
11410
11411  if (T.isObjCGCWeak())
11412    Diag(Loc, diag::warn_attribute_weak_on_field);
11413
11414  NewFD->setAccess(AS);
11415  return NewFD;
11416}
11417
11418bool Sema::CheckNontrivialField(FieldDecl *FD) {
11419  assert(FD);
11420  assert(getLangOpts().CPlusPlus && "valid check only for C++");
11421
11422  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
11423    return false;
11424
11425  QualType EltTy = Context.getBaseElementType(FD->getType());
11426  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11427    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
11428    if (RDecl->getDefinition()) {
11429      // We check for copy constructors before constructors
11430      // because otherwise we'll never get complaints about
11431      // copy constructors.
11432
11433      CXXSpecialMember member = CXXInvalid;
11434      // We're required to check for any non-trivial constructors. Since the
11435      // implicit default constructor is suppressed if there are any
11436      // user-declared constructors, we just need to check that there is a
11437      // trivial default constructor and a trivial copy constructor. (We don't
11438      // worry about move constructors here, since this is a C++98 check.)
11439      if (RDecl->hasNonTrivialCopyConstructor())
11440        member = CXXCopyConstructor;
11441      else if (!RDecl->hasTrivialDefaultConstructor())
11442        member = CXXDefaultConstructor;
11443      else if (RDecl->hasNonTrivialCopyAssignment())
11444        member = CXXCopyAssignment;
11445      else if (RDecl->hasNonTrivialDestructor())
11446        member = CXXDestructor;
11447
11448      if (member != CXXInvalid) {
11449        if (!getLangOpts().CPlusPlus11 &&
11450            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
11451          // Objective-C++ ARC: it is an error to have a non-trivial field of
11452          // a union. However, system headers in Objective-C programs
11453          // occasionally have Objective-C lifetime objects within unions,
11454          // and rather than cause the program to fail, we make those
11455          // members unavailable.
11456          SourceLocation Loc = FD->getLocation();
11457          if (getSourceManager().isInSystemHeader(Loc)) {
11458            if (!FD->hasAttr<UnavailableAttr>())
11459              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
11460                                  "this system field has retaining ownership"));
11461            return false;
11462          }
11463        }
11464
11465        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
11466               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
11467               diag::err_illegal_union_or_anon_struct_member)
11468          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
11469        DiagnoseNontrivial(RDecl, member);
11470        return !getLangOpts().CPlusPlus11;
11471      }
11472    }
11473  }
11474
11475  return false;
11476}
11477
11478/// TranslateIvarVisibility - Translate visibility from a token ID to an
11479///  AST enum value.
11480static ObjCIvarDecl::AccessControl
11481TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
11482  switch (ivarVisibility) {
11483  default: llvm_unreachable("Unknown visitibility kind");
11484  case tok::objc_private: return ObjCIvarDecl::Private;
11485  case tok::objc_public: return ObjCIvarDecl::Public;
11486  case tok::objc_protected: return ObjCIvarDecl::Protected;
11487  case tok::objc_package: return ObjCIvarDecl::Package;
11488  }
11489}
11490
11491/// ActOnIvar - Each ivar field of an objective-c class is passed into this
11492/// in order to create an IvarDecl object for it.
11493Decl *Sema::ActOnIvar(Scope *S,
11494                                SourceLocation DeclStart,
11495                                Declarator &D, Expr *BitfieldWidth,
11496                                tok::ObjCKeywordKind Visibility) {
11497
11498  IdentifierInfo *II = D.getIdentifier();
11499  Expr *BitWidth = (Expr*)BitfieldWidth;
11500  SourceLocation Loc = DeclStart;
11501  if (II) Loc = D.getIdentifierLoc();
11502
11503  // FIXME: Unnamed fields can be handled in various different ways, for
11504  // example, unnamed unions inject all members into the struct namespace!
11505
11506  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11507  QualType T = TInfo->getType();
11508
11509  if (BitWidth) {
11510    // 6.7.2.1p3, 6.7.2.1p4
11511    BitWidth =
11512        VerifyBitField(Loc, II, T, /*IsMsStruct=*/false, BitWidth).take();
11513    if (!BitWidth)
11514      D.setInvalidType();
11515  } else {
11516    // Not a bitfield.
11517
11518    // validate II.
11519
11520  }
11521  if (T->isReferenceType()) {
11522    Diag(Loc, diag::err_ivar_reference_type);
11523    D.setInvalidType();
11524  }
11525  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11526  // than a variably modified type.
11527  else if (T->isVariablyModifiedType()) {
11528    Diag(Loc, diag::err_typecheck_ivar_variable_size);
11529    D.setInvalidType();
11530  }
11531
11532  // Get the visibility (access control) for this ivar.
11533  ObjCIvarDecl::AccessControl ac =
11534    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11535                                        : ObjCIvarDecl::None;
11536  // Must set ivar's DeclContext to its enclosing interface.
11537  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11538  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11539    return 0;
11540  ObjCContainerDecl *EnclosingContext;
11541  if (ObjCImplementationDecl *IMPDecl =
11542      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11543    if (LangOpts.ObjCRuntime.isFragile()) {
11544    // Case of ivar declared in an implementation. Context is that of its class.
11545      EnclosingContext = IMPDecl->getClassInterface();
11546      assert(EnclosingContext && "Implementation has no class interface!");
11547    }
11548    else
11549      EnclosingContext = EnclosingDecl;
11550  } else {
11551    if (ObjCCategoryDecl *CDecl =
11552        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11553      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11554        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11555        return 0;
11556      }
11557    }
11558    EnclosingContext = EnclosingDecl;
11559  }
11560
11561  // Construct the decl.
11562  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11563                                             DeclStart, Loc, II, T,
11564                                             TInfo, ac, (Expr *)BitfieldWidth);
11565
11566  if (II) {
11567    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11568                                           ForRedeclaration);
11569    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11570        && !isa<TagDecl>(PrevDecl)) {
11571      Diag(Loc, diag::err_duplicate_member) << II;
11572      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11573      NewID->setInvalidDecl();
11574    }
11575  }
11576
11577  // Process attributes attached to the ivar.
11578  ProcessDeclAttributes(S, NewID, D);
11579
11580  if (D.isInvalidType())
11581    NewID->setInvalidDecl();
11582
11583  // In ARC, infer 'retaining' for ivars of retainable type.
11584  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11585    NewID->setInvalidDecl();
11586
11587  if (D.getDeclSpec().isModulePrivateSpecified())
11588    NewID->setModulePrivate();
11589
11590  if (II) {
11591    // FIXME: When interfaces are DeclContexts, we'll need to add
11592    // these to the interface.
11593    S->AddDecl(NewID);
11594    IdResolver.AddDecl(NewID);
11595  }
11596
11597  if (LangOpts.ObjCRuntime.isNonFragile() &&
11598      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11599    Diag(Loc, diag::warn_ivars_in_interface);
11600
11601  return NewID;
11602}
11603
11604/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11605/// class and class extensions. For every class \@interface and class
11606/// extension \@interface, if the last ivar is a bitfield of any type,
11607/// then add an implicit `char :0` ivar to the end of that interface.
11608void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11609                             SmallVectorImpl<Decl *> &AllIvarDecls) {
11610  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11611    return;
11612
11613  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11614  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11615
11616  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11617    return;
11618  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11619  if (!ID) {
11620    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11621      if (!CD->IsClassExtension())
11622        return;
11623    }
11624    // No need to add this to end of @implementation.
11625    else
11626      return;
11627  }
11628  // All conditions are met. Add a new bitfield to the tail end of ivars.
11629  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11630  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11631
11632  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11633                              DeclLoc, DeclLoc, 0,
11634                              Context.CharTy,
11635                              Context.getTrivialTypeSourceInfo(Context.CharTy,
11636                                                               DeclLoc),
11637                              ObjCIvarDecl::Private, BW,
11638                              true);
11639  AllIvarDecls.push_back(Ivar);
11640}
11641
11642void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
11643                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
11644                       SourceLocation RBrac, AttributeList *Attr) {
11645  assert(EnclosingDecl && "missing record or interface decl");
11646
11647  // If this is an Objective-C @implementation or category and we have
11648  // new fields here we should reset the layout of the interface since
11649  // it will now change.
11650  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11651    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11652    switch (DC->getKind()) {
11653    default: break;
11654    case Decl::ObjCCategory:
11655      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11656      break;
11657    case Decl::ObjCImplementation:
11658      Context.
11659        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11660      break;
11661    }
11662  }
11663
11664  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11665
11666  // Start counting up the number of named members; make sure to include
11667  // members of anonymous structs and unions in the total.
11668  unsigned NumNamedMembers = 0;
11669  if (Record) {
11670    for (RecordDecl::decl_iterator i = Record->decls_begin(),
11671                                   e = Record->decls_end(); i != e; i++) {
11672      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11673        if (IFD->getDeclName())
11674          ++NumNamedMembers;
11675    }
11676  }
11677
11678  // Verify that all the fields are okay.
11679  SmallVector<FieldDecl*, 32> RecFields;
11680
11681  bool ARCErrReported = false;
11682  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11683       i != end; ++i) {
11684    FieldDecl *FD = cast<FieldDecl>(*i);
11685
11686    // Get the type for the field.
11687    const Type *FDTy = FD->getType().getTypePtr();
11688
11689    if (!FD->isAnonymousStructOrUnion()) {
11690      // Remember all fields written by the user.
11691      RecFields.push_back(FD);
11692    }
11693
11694    // If the field is already invalid for some reason, don't emit more
11695    // diagnostics about it.
11696    if (FD->isInvalidDecl()) {
11697      EnclosingDecl->setInvalidDecl();
11698      continue;
11699    }
11700
11701    // C99 6.7.2.1p2:
11702    //   A structure or union shall not contain a member with
11703    //   incomplete or function type (hence, a structure shall not
11704    //   contain an instance of itself, but may contain a pointer to
11705    //   an instance of itself), except that the last member of a
11706    //   structure with more than one named member may have incomplete
11707    //   array type; such a structure (and any union containing,
11708    //   possibly recursively, a member that is such a structure)
11709    //   shall not be a member of a structure or an element of an
11710    //   array.
11711    if (FDTy->isFunctionType()) {
11712      // Field declared as a function.
11713      Diag(FD->getLocation(), diag::err_field_declared_as_function)
11714        << FD->getDeclName();
11715      FD->setInvalidDecl();
11716      EnclosingDecl->setInvalidDecl();
11717      continue;
11718    } else if (FDTy->isIncompleteArrayType() && Record &&
11719               ((i + 1 == Fields.end() && !Record->isUnion()) ||
11720                ((getLangOpts().MicrosoftExt ||
11721                  getLangOpts().CPlusPlus) &&
11722                 (i + 1 == Fields.end() || Record->isUnion())))) {
11723      // Flexible array member.
11724      // Microsoft and g++ is more permissive regarding flexible array.
11725      // It will accept flexible array in union and also
11726      // as the sole element of a struct/class.
11727      if (getLangOpts().MicrosoftExt) {
11728        if (Record->isUnion())
11729          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11730            << FD->getDeclName();
11731        else if (Fields.size() == 1)
11732          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11733            << FD->getDeclName() << Record->getTagKind();
11734      } else if (getLangOpts().CPlusPlus) {
11735        if (Record->isUnion())
11736          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11737            << FD->getDeclName();
11738        else if (Fields.size() == 1)
11739          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11740            << FD->getDeclName() << Record->getTagKind();
11741      } else if (!getLangOpts().C99) {
11742      if (Record->isUnion())
11743        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11744          << FD->getDeclName();
11745      else
11746        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11747          << FD->getDeclName() << Record->getTagKind();
11748      } else if (NumNamedMembers < 1) {
11749        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11750          << FD->getDeclName();
11751        FD->setInvalidDecl();
11752        EnclosingDecl->setInvalidDecl();
11753        continue;
11754      }
11755      if (!FD->getType()->isDependentType() &&
11756          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11757        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11758          << FD->getDeclName() << FD->getType();
11759        FD->setInvalidDecl();
11760        EnclosingDecl->setInvalidDecl();
11761        continue;
11762      }
11763      // Okay, we have a legal flexible array member at the end of the struct.
11764      if (Record)
11765        Record->setHasFlexibleArrayMember(true);
11766    } else if (!FDTy->isDependentType() &&
11767               RequireCompleteType(FD->getLocation(), FD->getType(),
11768                                   diag::err_field_incomplete)) {
11769      // Incomplete type
11770      FD->setInvalidDecl();
11771      EnclosingDecl->setInvalidDecl();
11772      continue;
11773    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11774      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11775        // If this is a member of a union, then entire union becomes "flexible".
11776        if (Record && Record->isUnion()) {
11777          Record->setHasFlexibleArrayMember(true);
11778        } else {
11779          // If this is a struct/class and this is not the last element, reject
11780          // it.  Note that GCC supports variable sized arrays in the middle of
11781          // structures.
11782          if (i + 1 != Fields.end())
11783            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11784              << FD->getDeclName() << FD->getType();
11785          else {
11786            // We support flexible arrays at the end of structs in
11787            // other structs as an extension.
11788            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11789              << FD->getDeclName();
11790            if (Record)
11791              Record->setHasFlexibleArrayMember(true);
11792          }
11793        }
11794      }
11795      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11796          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11797                                 diag::err_abstract_type_in_decl,
11798                                 AbstractIvarType)) {
11799        // Ivars can not have abstract class types
11800        FD->setInvalidDecl();
11801      }
11802      if (Record && FDTTy->getDecl()->hasObjectMember())
11803        Record->setHasObjectMember(true);
11804      if (Record && FDTTy->getDecl()->hasVolatileMember())
11805        Record->setHasVolatileMember(true);
11806    } else if (FDTy->isObjCObjectType()) {
11807      /// A field cannot be an Objective-c object
11808      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11809        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11810      QualType T = Context.getObjCObjectPointerType(FD->getType());
11811      FD->setType(T);
11812    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11813               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11814      // It's an error in ARC if a field has lifetime.
11815      // We don't want to report this in a system header, though,
11816      // so we just make the field unavailable.
11817      // FIXME: that's really not sufficient; we need to make the type
11818      // itself invalid to, say, initialize or copy.
11819      QualType T = FD->getType();
11820      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11821      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11822        SourceLocation loc = FD->getLocation();
11823        if (getSourceManager().isInSystemHeader(loc)) {
11824          if (!FD->hasAttr<UnavailableAttr>()) {
11825            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11826                              "this system field has retaining ownership"));
11827          }
11828        } else {
11829          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11830            << T->isBlockPointerType() << Record->getTagKind();
11831        }
11832        ARCErrReported = true;
11833      }
11834    } else if (getLangOpts().ObjC1 &&
11835               getLangOpts().getGC() != LangOptions::NonGC &&
11836               Record && !Record->hasObjectMember()) {
11837      if (FD->getType()->isObjCObjectPointerType() ||
11838          FD->getType().isObjCGCStrong())
11839        Record->setHasObjectMember(true);
11840      else if (Context.getAsArrayType(FD->getType())) {
11841        QualType BaseType = Context.getBaseElementType(FD->getType());
11842        if (BaseType->isRecordType() &&
11843            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11844          Record->setHasObjectMember(true);
11845        else if (BaseType->isObjCObjectPointerType() ||
11846                 BaseType.isObjCGCStrong())
11847               Record->setHasObjectMember(true);
11848      }
11849    }
11850    if (Record && FD->getType().isVolatileQualified())
11851      Record->setHasVolatileMember(true);
11852    // Keep track of the number of named members.
11853    if (FD->getIdentifier())
11854      ++NumNamedMembers;
11855  }
11856
11857  // Okay, we successfully defined 'Record'.
11858  if (Record) {
11859    bool Completed = false;
11860    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11861      if (!CXXRecord->isInvalidDecl()) {
11862        // Set access bits correctly on the directly-declared conversions.
11863        for (CXXRecordDecl::conversion_iterator
11864               I = CXXRecord->conversion_begin(),
11865               E = CXXRecord->conversion_end(); I != E; ++I)
11866          I.setAccess((*I)->getAccess());
11867
11868        if (!CXXRecord->isDependentType()) {
11869          if (CXXRecord->hasUserDeclaredDestructor()) {
11870            // Adjust user-defined destructor exception spec.
11871            if (getLangOpts().CPlusPlus11)
11872              AdjustDestructorExceptionSpec(CXXRecord,
11873                                            CXXRecord->getDestructor());
11874
11875            // The Microsoft ABI requires that we perform the destructor body
11876            // checks (i.e. operator delete() lookup) at every declaration, as
11877            // any translation unit may need to emit a deleting destructor.
11878            if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11879              CheckDestructor(CXXRecord->getDestructor());
11880          }
11881
11882          // Add any implicitly-declared members to this class.
11883          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11884
11885          // If we have virtual base classes, we may end up finding multiple
11886          // final overriders for a given virtual function. Check for this
11887          // problem now.
11888          if (CXXRecord->getNumVBases()) {
11889            CXXFinalOverriderMap FinalOverriders;
11890            CXXRecord->getFinalOverriders(FinalOverriders);
11891
11892            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11893                                             MEnd = FinalOverriders.end();
11894                 M != MEnd; ++M) {
11895              for (OverridingMethods::iterator SO = M->second.begin(),
11896                                            SOEnd = M->second.end();
11897                   SO != SOEnd; ++SO) {
11898                assert(SO->second.size() > 0 &&
11899                       "Virtual function without overridding functions?");
11900                if (SO->second.size() == 1)
11901                  continue;
11902
11903                // C++ [class.virtual]p2:
11904                //   In a derived class, if a virtual member function of a base
11905                //   class subobject has more than one final overrider the
11906                //   program is ill-formed.
11907                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11908                  << (const NamedDecl *)M->first << Record;
11909                Diag(M->first->getLocation(),
11910                     diag::note_overridden_virtual_function);
11911                for (OverridingMethods::overriding_iterator
11912                          OM = SO->second.begin(),
11913                       OMEnd = SO->second.end();
11914                     OM != OMEnd; ++OM)
11915                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11916                    << (const NamedDecl *)M->first << OM->Method->getParent();
11917
11918                Record->setInvalidDecl();
11919              }
11920            }
11921            CXXRecord->completeDefinition(&FinalOverriders);
11922            Completed = true;
11923          }
11924        }
11925      }
11926    }
11927
11928    if (!Completed)
11929      Record->completeDefinition();
11930
11931    if (Record->hasAttrs())
11932      CheckAlignasUnderalignment(Record);
11933
11934    // Check if the structure/union declaration is a language extension.
11935    if (!getLangOpts().CPlusPlus) {
11936      bool ZeroSize = true;
11937      bool IsEmpty = true;
11938      unsigned NonBitFields = 0;
11939      for (RecordDecl::field_iterator I = Record->field_begin(),
11940                                      E = Record->field_end();
11941           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11942        IsEmpty = false;
11943        if (I->isUnnamedBitfield()) {
11944          if (I->getBitWidthValue(Context) > 0)
11945            ZeroSize = false;
11946        } else {
11947          ++NonBitFields;
11948          QualType FieldType = I->getType();
11949          if (FieldType->isIncompleteType() ||
11950              !Context.getTypeSizeInChars(FieldType).isZero())
11951            ZeroSize = false;
11952        }
11953      }
11954
11955      // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11956      // C++.
11957      if (ZeroSize)
11958        Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11959            << Record->isUnion() << (NonBitFields > 1);
11960
11961      // Structs without named members are extension in C (C99 6.7.2.1p7), but
11962      // are accepted by GCC.
11963      if (NonBitFields == 0) {
11964        if (IsEmpty)
11965          Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11966        else
11967          Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11968      }
11969    }
11970  } else {
11971    ObjCIvarDecl **ClsFields =
11972      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11973    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11974      ID->setEndOfDefinitionLoc(RBrac);
11975      // Add ivar's to class's DeclContext.
11976      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11977        ClsFields[i]->setLexicalDeclContext(ID);
11978        ID->addDecl(ClsFields[i]);
11979      }
11980      // Must enforce the rule that ivars in the base classes may not be
11981      // duplicates.
11982      if (ID->getSuperClass())
11983        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11984    } else if (ObjCImplementationDecl *IMPDecl =
11985                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11986      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11987      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11988        // Ivar declared in @implementation never belongs to the implementation.
11989        // Only it is in implementation's lexical context.
11990        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11991      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11992      IMPDecl->setIvarLBraceLoc(LBrac);
11993      IMPDecl->setIvarRBraceLoc(RBrac);
11994    } else if (ObjCCategoryDecl *CDecl =
11995                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11996      // case of ivars in class extension; all other cases have been
11997      // reported as errors elsewhere.
11998      // FIXME. Class extension does not have a LocEnd field.
11999      // CDecl->setLocEnd(RBrac);
12000      // Add ivar's to class extension's DeclContext.
12001      // Diagnose redeclaration of private ivars.
12002      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
12003      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12004        if (IDecl) {
12005          if (const ObjCIvarDecl *ClsIvar =
12006              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
12007            Diag(ClsFields[i]->getLocation(),
12008                 diag::err_duplicate_ivar_declaration);
12009            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
12010            continue;
12011          }
12012          for (ObjCInterfaceDecl::known_extensions_iterator
12013                 Ext = IDecl->known_extensions_begin(),
12014                 ExtEnd = IDecl->known_extensions_end();
12015               Ext != ExtEnd; ++Ext) {
12016            if (const ObjCIvarDecl *ClsExtIvar
12017                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
12018              Diag(ClsFields[i]->getLocation(),
12019                   diag::err_duplicate_ivar_declaration);
12020              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
12021              continue;
12022            }
12023          }
12024        }
12025        ClsFields[i]->setLexicalDeclContext(CDecl);
12026        CDecl->addDecl(ClsFields[i]);
12027      }
12028      CDecl->setIvarLBraceLoc(LBrac);
12029      CDecl->setIvarRBraceLoc(RBrac);
12030    }
12031  }
12032
12033  if (Attr)
12034    ProcessDeclAttributeList(S, Record, Attr);
12035}
12036
12037/// \brief Determine whether the given integral value is representable within
12038/// the given type T.
12039static bool isRepresentableIntegerValue(ASTContext &Context,
12040                                        llvm::APSInt &Value,
12041                                        QualType T) {
12042  assert(T->isIntegralType(Context) && "Integral type required!");
12043  unsigned BitWidth = Context.getIntWidth(T);
12044
12045  if (Value.isUnsigned() || Value.isNonNegative()) {
12046    if (T->isSignedIntegerOrEnumerationType())
12047      --BitWidth;
12048    return Value.getActiveBits() <= BitWidth;
12049  }
12050  return Value.getMinSignedBits() <= BitWidth;
12051}
12052
12053// \brief Given an integral type, return the next larger integral type
12054// (or a NULL type of no such type exists).
12055static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
12056  // FIXME: Int128/UInt128 support, which also needs to be introduced into
12057  // enum checking below.
12058  assert(T->isIntegralType(Context) && "Integral type required!");
12059  const unsigned NumTypes = 4;
12060  QualType SignedIntegralTypes[NumTypes] = {
12061    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
12062  };
12063  QualType UnsignedIntegralTypes[NumTypes] = {
12064    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
12065    Context.UnsignedLongLongTy
12066  };
12067
12068  unsigned BitWidth = Context.getTypeSize(T);
12069  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
12070                                                        : UnsignedIntegralTypes;
12071  for (unsigned I = 0; I != NumTypes; ++I)
12072    if (Context.getTypeSize(Types[I]) > BitWidth)
12073      return Types[I];
12074
12075  return QualType();
12076}
12077
12078EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
12079                                          EnumConstantDecl *LastEnumConst,
12080                                          SourceLocation IdLoc,
12081                                          IdentifierInfo *Id,
12082                                          Expr *Val) {
12083  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12084  llvm::APSInt EnumVal(IntWidth);
12085  QualType EltTy;
12086
12087  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
12088    Val = 0;
12089
12090  if (Val)
12091    Val = DefaultLvalueConversion(Val).take();
12092
12093  if (Val) {
12094    if (Enum->isDependentType() || Val->isTypeDependent())
12095      EltTy = Context.DependentTy;
12096    else {
12097      SourceLocation ExpLoc;
12098      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
12099          !getLangOpts().MicrosoftMode) {
12100        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
12101        // constant-expression in the enumerator-definition shall be a converted
12102        // constant expression of the underlying type.
12103        EltTy = Enum->getIntegerType();
12104        ExprResult Converted =
12105          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
12106                                           CCEK_Enumerator);
12107        if (Converted.isInvalid())
12108          Val = 0;
12109        else
12110          Val = Converted.take();
12111      } else if (!Val->isValueDependent() &&
12112                 !(Val = VerifyIntegerConstantExpression(Val,
12113                                                         &EnumVal).take())) {
12114        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
12115      } else {
12116        if (Enum->isFixed()) {
12117          EltTy = Enum->getIntegerType();
12118
12119          // In Obj-C and Microsoft mode, require the enumeration value to be
12120          // representable in the underlying type of the enumeration. In C++11,
12121          // we perform a non-narrowing conversion as part of converted constant
12122          // expression checking.
12123          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12124            if (getLangOpts().MicrosoftMode) {
12125              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
12126              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12127            } else
12128              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
12129          } else
12130            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12131        } else if (getLangOpts().CPlusPlus) {
12132          // C++11 [dcl.enum]p5:
12133          //   If the underlying type is not fixed, the type of each enumerator
12134          //   is the type of its initializing value:
12135          //     - If an initializer is specified for an enumerator, the
12136          //       initializing value has the same type as the expression.
12137          EltTy = Val->getType();
12138        } else {
12139          // C99 6.7.2.2p2:
12140          //   The expression that defines the value of an enumeration constant
12141          //   shall be an integer constant expression that has a value
12142          //   representable as an int.
12143
12144          // Complain if the value is not representable in an int.
12145          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
12146            Diag(IdLoc, diag::ext_enum_value_not_int)
12147              << EnumVal.toString(10) << Val->getSourceRange()
12148              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12149          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12150            // Force the type of the expression to 'int'.
12151            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
12152          }
12153          EltTy = Val->getType();
12154        }
12155      }
12156    }
12157  }
12158
12159  if (!Val) {
12160    if (Enum->isDependentType())
12161      EltTy = Context.DependentTy;
12162    else if (!LastEnumConst) {
12163      // C++0x [dcl.enum]p5:
12164      //   If the underlying type is not fixed, the type of each enumerator
12165      //   is the type of its initializing value:
12166      //     - If no initializer is specified for the first enumerator, the
12167      //       initializing value has an unspecified integral type.
12168      //
12169      // GCC uses 'int' for its unspecified integral type, as does
12170      // C99 6.7.2.2p3.
12171      if (Enum->isFixed()) {
12172        EltTy = Enum->getIntegerType();
12173      }
12174      else {
12175        EltTy = Context.IntTy;
12176      }
12177    } else {
12178      // Assign the last value + 1.
12179      EnumVal = LastEnumConst->getInitVal();
12180      ++EnumVal;
12181      EltTy = LastEnumConst->getType();
12182
12183      // Check for overflow on increment.
12184      if (EnumVal < LastEnumConst->getInitVal()) {
12185        // C++0x [dcl.enum]p5:
12186        //   If the underlying type is not fixed, the type of each enumerator
12187        //   is the type of its initializing value:
12188        //
12189        //     - Otherwise the type of the initializing value is the same as
12190        //       the type of the initializing value of the preceding enumerator
12191        //       unless the incremented value is not representable in that type,
12192        //       in which case the type is an unspecified integral type
12193        //       sufficient to contain the incremented value. If no such type
12194        //       exists, the program is ill-formed.
12195        QualType T = getNextLargerIntegralType(Context, EltTy);
12196        if (T.isNull() || Enum->isFixed()) {
12197          // There is no integral type larger enough to represent this
12198          // value. Complain, then allow the value to wrap around.
12199          EnumVal = LastEnumConst->getInitVal();
12200          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12201          ++EnumVal;
12202          if (Enum->isFixed())
12203            // When the underlying type is fixed, this is ill-formed.
12204            Diag(IdLoc, diag::err_enumerator_wrapped)
12205              << EnumVal.toString(10)
12206              << EltTy;
12207          else
12208            Diag(IdLoc, diag::warn_enumerator_too_large)
12209              << EnumVal.toString(10);
12210        } else {
12211          EltTy = T;
12212        }
12213
12214        // Retrieve the last enumerator's value, extent that type to the
12215        // type that is supposed to be large enough to represent the incremented
12216        // value, then increment.
12217        EnumVal = LastEnumConst->getInitVal();
12218        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12219        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12220        ++EnumVal;
12221
12222        // If we're not in C++, diagnose the overflow of enumerator values,
12223        // which in C99 means that the enumerator value is not representable in
12224        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12225        // permits enumerator values that are representable in some larger
12226        // integral type.
12227        if (!getLangOpts().CPlusPlus && !T.isNull())
12228          Diag(IdLoc, diag::warn_enum_value_overflow);
12229      } else if (!getLangOpts().CPlusPlus &&
12230                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12231        // Enforce C99 6.7.2.2p2 even when we compute the next value.
12232        Diag(IdLoc, diag::ext_enum_value_not_int)
12233          << EnumVal.toString(10) << 1;
12234      }
12235    }
12236  }
12237
12238  if (!EltTy->isDependentType()) {
12239    // Make the enumerator value match the signedness and size of the
12240    // enumerator's type.
12241    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12242    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12243  }
12244
12245  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12246                                  Val, EnumVal);
12247}
12248
12249
12250Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12251                              SourceLocation IdLoc, IdentifierInfo *Id,
12252                              AttributeList *Attr,
12253                              SourceLocation EqualLoc, Expr *Val) {
12254  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12255  EnumConstantDecl *LastEnumConst =
12256    cast_or_null<EnumConstantDecl>(lastEnumConst);
12257
12258  // The scope passed in may not be a decl scope.  Zip up the scope tree until
12259  // we find one that is.
12260  S = getNonFieldDeclScope(S);
12261
12262  // Verify that there isn't already something declared with this name in this
12263  // scope.
12264  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12265                                         ForRedeclaration);
12266  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12267    // Maybe we will complain about the shadowed template parameter.
12268    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12269    // Just pretend that we didn't see the previous declaration.
12270    PrevDecl = 0;
12271  }
12272
12273  if (PrevDecl) {
12274    // When in C++, we may get a TagDecl with the same name; in this case the
12275    // enum constant will 'hide' the tag.
12276    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12277           "Received TagDecl when not in C++!");
12278    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12279      if (isa<EnumConstantDecl>(PrevDecl))
12280        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12281      else
12282        Diag(IdLoc, diag::err_redefinition) << Id;
12283      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12284      return 0;
12285    }
12286  }
12287
12288  // C++ [class.mem]p15:
12289  // If T is the name of a class, then each of the following shall have a name
12290  // different from T:
12291  // - every enumerator of every member of class T that is an unscoped
12292  // enumerated type
12293  if (CXXRecordDecl *Record
12294                      = dyn_cast<CXXRecordDecl>(
12295                             TheEnumDecl->getDeclContext()->getRedeclContext()))
12296    if (!TheEnumDecl->isScoped() &&
12297        Record->getIdentifier() && Record->getIdentifier() == Id)
12298      Diag(IdLoc, diag::err_member_name_of_class) << Id;
12299
12300  EnumConstantDecl *New =
12301    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12302
12303  if (New) {
12304    // Process attributes.
12305    if (Attr) ProcessDeclAttributeList(S, New, Attr);
12306
12307    // Register this decl in the current scope stack.
12308    New->setAccess(TheEnumDecl->getAccess());
12309    PushOnScopeChains(New, S);
12310  }
12311
12312  ActOnDocumentableDecl(New);
12313
12314  return New;
12315}
12316
12317// Returns true when the enum initial expression does not trigger the
12318// duplicate enum warning.  A few common cases are exempted as follows:
12319// Element2 = Element1
12320// Element2 = Element1 + 1
12321// Element2 = Element1 - 1
12322// Where Element2 and Element1 are from the same enum.
12323static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12324  Expr *InitExpr = ECD->getInitExpr();
12325  if (!InitExpr)
12326    return true;
12327  InitExpr = InitExpr->IgnoreImpCasts();
12328
12329  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12330    if (!BO->isAdditiveOp())
12331      return true;
12332    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12333    if (!IL)
12334      return true;
12335    if (IL->getValue() != 1)
12336      return true;
12337
12338    InitExpr = BO->getLHS();
12339  }
12340
12341  // This checks if the elements are from the same enum.
12342  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12343  if (!DRE)
12344    return true;
12345
12346  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12347  if (!EnumConstant)
12348    return true;
12349
12350  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12351      Enum)
12352    return true;
12353
12354  return false;
12355}
12356
12357struct DupKey {
12358  int64_t val;
12359  bool isTombstoneOrEmptyKey;
12360  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12361    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12362};
12363
12364static DupKey GetDupKey(const llvm::APSInt& Val) {
12365  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12366                false);
12367}
12368
12369struct DenseMapInfoDupKey {
12370  static DupKey getEmptyKey() { return DupKey(0, true); }
12371  static DupKey getTombstoneKey() { return DupKey(1, true); }
12372  static unsigned getHashValue(const DupKey Key) {
12373    return (unsigned)(Key.val * 37);
12374  }
12375  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12376    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12377           LHS.val == RHS.val;
12378  }
12379};
12380
12381// Emits a warning when an element is implicitly set a value that
12382// a previous element has already been set to.
12383static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12384                                        EnumDecl *Enum,
12385                                        QualType EnumType) {
12386  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
12387                                 Enum->getLocation()) ==
12388      DiagnosticsEngine::Ignored)
12389    return;
12390  // Avoid anonymous enums
12391  if (!Enum->getIdentifier())
12392    return;
12393
12394  // Only check for small enums.
12395  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12396    return;
12397
12398  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12399  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
12400
12401  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
12402  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
12403          ValueToVectorMap;
12404
12405  DuplicatesVector DupVector;
12406  ValueToVectorMap EnumMap;
12407
12408  // Populate the EnumMap with all values represented by enum constants without
12409  // an initialier.
12410  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12411    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12412
12413    // Null EnumConstantDecl means a previous diagnostic has been emitted for
12414    // this constant.  Skip this enum since it may be ill-formed.
12415    if (!ECD) {
12416      return;
12417    }
12418
12419    if (ECD->getInitExpr())
12420      continue;
12421
12422    DupKey Key = GetDupKey(ECD->getInitVal());
12423    DeclOrVector &Entry = EnumMap[Key];
12424
12425    // First time encountering this value.
12426    if (Entry.isNull())
12427      Entry = ECD;
12428  }
12429
12430  // Create vectors for any values that has duplicates.
12431  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12432    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
12433    if (!ValidDuplicateEnum(ECD, Enum))
12434      continue;
12435
12436    DupKey Key = GetDupKey(ECD->getInitVal());
12437
12438    DeclOrVector& Entry = EnumMap[Key];
12439    if (Entry.isNull())
12440      continue;
12441
12442    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
12443      // Ensure constants are different.
12444      if (D == ECD)
12445        continue;
12446
12447      // Create new vector and push values onto it.
12448      ECDVector *Vec = new ECDVector();
12449      Vec->push_back(D);
12450      Vec->push_back(ECD);
12451
12452      // Update entry to point to the duplicates vector.
12453      Entry = Vec;
12454
12455      // Store the vector somewhere we can consult later for quick emission of
12456      // diagnostics.
12457      DupVector.push_back(Vec);
12458      continue;
12459    }
12460
12461    ECDVector *Vec = Entry.get<ECDVector*>();
12462    // Make sure constants are not added more than once.
12463    if (*Vec->begin() == ECD)
12464      continue;
12465
12466    Vec->push_back(ECD);
12467  }
12468
12469  // Emit diagnostics.
12470  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
12471                                  DupVectorEnd = DupVector.end();
12472       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
12473    ECDVector *Vec = *DupVectorIter;
12474    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
12475
12476    // Emit warning for one enum constant.
12477    ECDVector::iterator I = Vec->begin();
12478    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
12479      << (*I)->getName() << (*I)->getInitVal().toString(10)
12480      << (*I)->getSourceRange();
12481    ++I;
12482
12483    // Emit one note for each of the remaining enum constants with
12484    // the same value.
12485    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
12486      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
12487        << (*I)->getName() << (*I)->getInitVal().toString(10)
12488        << (*I)->getSourceRange();
12489    delete Vec;
12490  }
12491}
12492
12493void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
12494                         SourceLocation RBraceLoc, Decl *EnumDeclX,
12495                         ArrayRef<Decl *> Elements,
12496                         Scope *S, AttributeList *Attr) {
12497  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
12498  QualType EnumType = Context.getTypeDeclType(Enum);
12499
12500  if (Attr)
12501    ProcessDeclAttributeList(S, Enum, Attr);
12502
12503  if (Enum->isDependentType()) {
12504    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12505      EnumConstantDecl *ECD =
12506        cast_or_null<EnumConstantDecl>(Elements[i]);
12507      if (!ECD) continue;
12508
12509      ECD->setType(EnumType);
12510    }
12511
12512    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
12513    return;
12514  }
12515
12516  // TODO: If the result value doesn't fit in an int, it must be a long or long
12517  // long value.  ISO C does not support this, but GCC does as an extension,
12518  // emit a warning.
12519  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12520  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
12521  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
12522
12523  // Verify that all the values are okay, compute the size of the values, and
12524  // reverse the list.
12525  unsigned NumNegativeBits = 0;
12526  unsigned NumPositiveBits = 0;
12527
12528  // Keep track of whether all elements have type int.
12529  bool AllElementsInt = true;
12530
12531  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12532    EnumConstantDecl *ECD =
12533      cast_or_null<EnumConstantDecl>(Elements[i]);
12534    if (!ECD) continue;  // Already issued a diagnostic.
12535
12536    const llvm::APSInt &InitVal = ECD->getInitVal();
12537
12538    // Keep track of the size of positive and negative values.
12539    if (InitVal.isUnsigned() || InitVal.isNonNegative())
12540      NumPositiveBits = std::max(NumPositiveBits,
12541                                 (unsigned)InitVal.getActiveBits());
12542    else
12543      NumNegativeBits = std::max(NumNegativeBits,
12544                                 (unsigned)InitVal.getMinSignedBits());
12545
12546    // Keep track of whether every enum element has type int (very commmon).
12547    if (AllElementsInt)
12548      AllElementsInt = ECD->getType() == Context.IntTy;
12549  }
12550
12551  // Figure out the type that should be used for this enum.
12552  QualType BestType;
12553  unsigned BestWidth;
12554
12555  // C++0x N3000 [conv.prom]p3:
12556  //   An rvalue of an unscoped enumeration type whose underlying
12557  //   type is not fixed can be converted to an rvalue of the first
12558  //   of the following types that can represent all the values of
12559  //   the enumeration: int, unsigned int, long int, unsigned long
12560  //   int, long long int, or unsigned long long int.
12561  // C99 6.4.4.3p2:
12562  //   An identifier declared as an enumeration constant has type int.
12563  // The C99 rule is modified by a gcc extension
12564  QualType BestPromotionType;
12565
12566  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12567  // -fshort-enums is the equivalent to specifying the packed attribute on all
12568  // enum definitions.
12569  if (LangOpts.ShortEnums)
12570    Packed = true;
12571
12572  if (Enum->isFixed()) {
12573    BestType = Enum->getIntegerType();
12574    if (BestType->isPromotableIntegerType())
12575      BestPromotionType = Context.getPromotedIntegerType(BestType);
12576    else
12577      BestPromotionType = BestType;
12578    // We don't need to set BestWidth, because BestType is going to be the type
12579    // of the enumerators, but we do anyway because otherwise some compilers
12580    // warn that it might be used uninitialized.
12581    BestWidth = CharWidth;
12582  }
12583  else if (NumNegativeBits) {
12584    // If there is a negative value, figure out the smallest integer type (of
12585    // int/long/longlong) that fits.
12586    // If it's packed, check also if it fits a char or a short.
12587    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12588      BestType = Context.SignedCharTy;
12589      BestWidth = CharWidth;
12590    } else if (Packed && NumNegativeBits <= ShortWidth &&
12591               NumPositiveBits < ShortWidth) {
12592      BestType = Context.ShortTy;
12593      BestWidth = ShortWidth;
12594    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12595      BestType = Context.IntTy;
12596      BestWidth = IntWidth;
12597    } else {
12598      BestWidth = Context.getTargetInfo().getLongWidth();
12599
12600      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12601        BestType = Context.LongTy;
12602      } else {
12603        BestWidth = Context.getTargetInfo().getLongLongWidth();
12604
12605        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12606          Diag(Enum->getLocation(), diag::warn_enum_too_large);
12607        BestType = Context.LongLongTy;
12608      }
12609    }
12610    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12611  } else {
12612    // If there is no negative value, figure out the smallest type that fits
12613    // all of the enumerator values.
12614    // If it's packed, check also if it fits a char or a short.
12615    if (Packed && NumPositiveBits <= CharWidth) {
12616      BestType = Context.UnsignedCharTy;
12617      BestPromotionType = Context.IntTy;
12618      BestWidth = CharWidth;
12619    } else if (Packed && NumPositiveBits <= ShortWidth) {
12620      BestType = Context.UnsignedShortTy;
12621      BestPromotionType = Context.IntTy;
12622      BestWidth = ShortWidth;
12623    } else if (NumPositiveBits <= IntWidth) {
12624      BestType = Context.UnsignedIntTy;
12625      BestWidth = IntWidth;
12626      BestPromotionType
12627        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12628                           ? Context.UnsignedIntTy : Context.IntTy;
12629    } else if (NumPositiveBits <=
12630               (BestWidth = Context.getTargetInfo().getLongWidth())) {
12631      BestType = Context.UnsignedLongTy;
12632      BestPromotionType
12633        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12634                           ? Context.UnsignedLongTy : Context.LongTy;
12635    } else {
12636      BestWidth = Context.getTargetInfo().getLongLongWidth();
12637      assert(NumPositiveBits <= BestWidth &&
12638             "How could an initializer get larger than ULL?");
12639      BestType = Context.UnsignedLongLongTy;
12640      BestPromotionType
12641        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12642                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
12643    }
12644  }
12645
12646  // Loop over all of the enumerator constants, changing their types to match
12647  // the type of the enum if needed.
12648  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12649    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12650    if (!ECD) continue;  // Already issued a diagnostic.
12651
12652    // Standard C says the enumerators have int type, but we allow, as an
12653    // extension, the enumerators to be larger than int size.  If each
12654    // enumerator value fits in an int, type it as an int, otherwise type it the
12655    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12656    // that X has type 'int', not 'unsigned'.
12657
12658    // Determine whether the value fits into an int.
12659    llvm::APSInt InitVal = ECD->getInitVal();
12660
12661    // If it fits into an integer type, force it.  Otherwise force it to match
12662    // the enum decl type.
12663    QualType NewTy;
12664    unsigned NewWidth;
12665    bool NewSign;
12666    if (!getLangOpts().CPlusPlus &&
12667        !Enum->isFixed() &&
12668        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12669      NewTy = Context.IntTy;
12670      NewWidth = IntWidth;
12671      NewSign = true;
12672    } else if (ECD->getType() == BestType) {
12673      // Already the right type!
12674      if (getLangOpts().CPlusPlus)
12675        // C++ [dcl.enum]p4: Following the closing brace of an
12676        // enum-specifier, each enumerator has the type of its
12677        // enumeration.
12678        ECD->setType(EnumType);
12679      continue;
12680    } else {
12681      NewTy = BestType;
12682      NewWidth = BestWidth;
12683      NewSign = BestType->isSignedIntegerOrEnumerationType();
12684    }
12685
12686    // Adjust the APSInt value.
12687    InitVal = InitVal.extOrTrunc(NewWidth);
12688    InitVal.setIsSigned(NewSign);
12689    ECD->setInitVal(InitVal);
12690
12691    // Adjust the Expr initializer and type.
12692    if (ECD->getInitExpr() &&
12693        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12694      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12695                                                CK_IntegralCast,
12696                                                ECD->getInitExpr(),
12697                                                /*base paths*/ 0,
12698                                                VK_RValue));
12699    if (getLangOpts().CPlusPlus)
12700      // C++ [dcl.enum]p4: Following the closing brace of an
12701      // enum-specifier, each enumerator has the type of its
12702      // enumeration.
12703      ECD->setType(EnumType);
12704    else
12705      ECD->setType(NewTy);
12706  }
12707
12708  Enum->completeDefinition(BestType, BestPromotionType,
12709                           NumPositiveBits, NumNegativeBits);
12710
12711  // If we're declaring a function, ensure this decl isn't forgotten about -
12712  // it needs to go into the function scope.
12713  if (InFunctionDeclarator)
12714    DeclsInPrototypeScope.push_back(Enum);
12715
12716  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12717
12718  // Now that the enum type is defined, ensure it's not been underaligned.
12719  if (Enum->hasAttrs())
12720    CheckAlignasUnderalignment(Enum);
12721}
12722
12723Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12724                                  SourceLocation StartLoc,
12725                                  SourceLocation EndLoc) {
12726  StringLiteral *AsmString = cast<StringLiteral>(expr);
12727
12728  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12729                                                   AsmString, StartLoc,
12730                                                   EndLoc);
12731  CurContext->addDecl(New);
12732  return New;
12733}
12734
12735DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12736                                   SourceLocation ImportLoc,
12737                                   ModuleIdPath Path) {
12738  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12739                                                Module::AllVisible,
12740                                                /*IsIncludeDirective=*/false);
12741  if (!Mod)
12742    return true;
12743
12744  SmallVector<SourceLocation, 2> IdentifierLocs;
12745  Module *ModCheck = Mod;
12746  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12747    // If we've run out of module parents, just drop the remaining identifiers.
12748    // We need the length to be consistent.
12749    if (!ModCheck)
12750      break;
12751    ModCheck = ModCheck->Parent;
12752
12753    IdentifierLocs.push_back(Path[I].second);
12754  }
12755
12756  ImportDecl *Import = ImportDecl::Create(Context,
12757                                          Context.getTranslationUnitDecl(),
12758                                          AtLoc.isValid()? AtLoc : ImportLoc,
12759                                          Mod, IdentifierLocs);
12760  Context.getTranslationUnitDecl()->addDecl(Import);
12761  return Import;
12762}
12763
12764void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12765  // Create the implicit import declaration.
12766  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12767  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12768                                                   Loc, Mod, Loc);
12769  TU->addDecl(ImportD);
12770  Consumer.HandleImplicitImportDecl(ImportD);
12771
12772  // Make the module visible.
12773  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12774                                         /*Complain=*/false);
12775}
12776
12777void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12778                                      IdentifierInfo* AliasName,
12779                                      SourceLocation PragmaLoc,
12780                                      SourceLocation NameLoc,
12781                                      SourceLocation AliasNameLoc) {
12782  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12783                                    LookupOrdinaryName);
12784  AsmLabelAttr *Attr =
12785     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12786
12787  if (PrevDecl)
12788    PrevDecl->addAttr(Attr);
12789  else
12790    (void)ExtnameUndeclaredIdentifiers.insert(
12791      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12792}
12793
12794void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12795                             SourceLocation PragmaLoc,
12796                             SourceLocation NameLoc) {
12797  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12798
12799  if (PrevDecl) {
12800    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12801  } else {
12802    (void)WeakUndeclaredIdentifiers.insert(
12803      std::pair<IdentifierInfo*,WeakInfo>
12804        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12805  }
12806}
12807
12808void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12809                                IdentifierInfo* AliasName,
12810                                SourceLocation PragmaLoc,
12811                                SourceLocation NameLoc,
12812                                SourceLocation AliasNameLoc) {
12813  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12814                                    LookupOrdinaryName);
12815  WeakInfo W = WeakInfo(Name, NameLoc);
12816
12817  if (PrevDecl) {
12818    if (!PrevDecl->hasAttr<AliasAttr>())
12819      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12820        DeclApplyPragmaWeak(TUScope, ND, W);
12821  } else {
12822    (void)WeakUndeclaredIdentifiers.insert(
12823      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12824  }
12825}
12826
12827Decl *Sema::getObjCDeclContext() const {
12828  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12829}
12830
12831AvailabilityResult Sema::getCurContextAvailability() const {
12832  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12833  return D->getAvailability();
12834}
12835