SemaDecl.cpp revision 07253c7f77aca1857ba0226903c47cfb3a3b0543
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
31  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
32
33  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
34                 isa<ObjCInterfaceDecl>(IIDecl) ||
35                 isa<TagDecl>(IIDecl)))
36    return IIDecl;
37  return 0;
38}
39
40DeclContext *Sema::getDCParent(DeclContext *DC) {
41  // If CurContext is a ObjC method, getParent() will return NULL.
42  if (isa<ObjCMethodDecl>(DC))
43    return Context.getTranslationUnitDecl();
44
45  // A C++ inline method is parsed *after* the topmost class it was declared in
46  // is fully parsed (it's "complete").
47  // The parsing of a C++ inline method happens at the declaration context of
48  // the topmost (non-nested) class it is declared in.
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
51    DC = MD->getParent();
52    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
53      DC = RD;
54
55    // Return the declaration context of the topmost class the inline method is
56    // declared in.
57    return DC;
58  }
59
60  return DC->getParent();
61}
62
63void Sema::PushDeclContext(DeclContext *DC) {
64  assert(getDCParent(DC) == CurContext &&
65       "The next DeclContext should be directly contained in the current one.");
66  CurContext = DC;
67}
68
69void Sema::PopDeclContext() {
70  assert(CurContext && "DeclContext imbalance!");
71  CurContext = getDCParent(CurContext);
72}
73
74/// Add this decl to the scope shadowed decl chains.
75void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
76  S->AddDecl(D);
77
78  // C++ [basic.scope]p4:
79  //   -- exactly one declaration shall declare a class name or
80  //   enumeration name that is not a typedef name and the other
81  //   declarations shall all refer to the same object or
82  //   enumerator, or all refer to functions and function templates;
83  //   in this case the class name or enumeration name is hidden.
84  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
85    // We are pushing the name of a tag (enum or class).
86    IdentifierResolver::iterator
87        I = IdResolver.begin(TD->getIdentifier(),
88                             TD->getDeclContext(), false/*LookInParentCtx*/);
89    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
90      // There is already a declaration with the same name in the same
91      // scope. It must be found before we find the new declaration,
92      // so swap the order on the shadowed declaration chain.
93
94      IdResolver.AddShadowedDecl(TD, *I);
95      return;
96    }
97  }
98  IdResolver.AddDecl(D);
99}
100
101void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
102  if (S->decl_empty()) return;
103  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
104
105  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
106       I != E; ++I) {
107    Decl *TmpD = static_cast<Decl*>(*I);
108    assert(TmpD && "This decl didn't get pushed??");
109
110    if (isa<CXXFieldDecl>(TmpD)) continue;
111
112    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
113    ScopedDecl *D = cast<ScopedDecl>(TmpD);
114
115    IdentifierInfo *II = D->getIdentifier();
116    if (!II) continue;
117
118    // We only want to remove the decls from the identifier decl chains for
119    // local scopes, when inside a function/method.
120    if (S->getFnParent() != 0)
121      IdResolver.RemoveDecl(D);
122
123    // Chain this decl to the containing DeclContext.
124    D->setNext(CurContext->getDeclChain());
125    CurContext->setDeclChain(D);
126  }
127}
128
129/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
130/// return 0 if one not found.
131ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
132  // The third "scope" argument is 0 since we aren't enabling lazy built-in
133  // creation from this context.
134  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
135
136  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
137}
138
139/// LookupDecl - Look up the inner-most declaration in the specified
140/// namespace.
141Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
142                       Scope *S, bool enableLazyBuiltinCreation) {
143  if (II == 0) return 0;
144  unsigned NS = NSI;
145  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
146    NS |= Decl::IDNS_Tag;
147
148  // Scan up the scope chain looking for a decl that matches this identifier
149  // that is in the appropriate namespace.  This search should not take long, as
150  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
151  for (IdentifierResolver::iterator
152       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
153    if ((*I)->getIdentifierNamespace() & NS)
154      return *I;
155
156  // If we didn't find a use of this identifier, and if the identifier
157  // corresponds to a compiler builtin, create the decl object for the builtin
158  // now, injecting it into translation unit scope, and return it.
159  if (NS & Decl::IDNS_Ordinary) {
160    if (enableLazyBuiltinCreation) {
161      // If this is a builtin on this (or all) targets, create the decl.
162      if (unsigned BuiltinID = II->getBuiltinID())
163        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
164    }
165    if (getLangOptions().ObjC1) {
166      // @interface and @compatibility_alias introduce typedef-like names.
167      // Unlike typedef's, they can only be introduced at file-scope (and are
168      // therefore not scoped decls). They can, however, be shadowed by
169      // other names in IDNS_Ordinary.
170      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
171      if (IDI != ObjCInterfaceDecls.end())
172        return IDI->second;
173      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
174      if (I != ObjCAliasDecls.end())
175        return I->second->getClassInterface();
176    }
177  }
178  return 0;
179}
180
181void Sema::InitBuiltinVaListType() {
182  if (!Context.getBuiltinVaListType().isNull())
183    return;
184
185  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
186  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
187  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
188  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
189}
190
191/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
192/// lazily create a decl for it.
193ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
194                                      Scope *S) {
195  Builtin::ID BID = (Builtin::ID)bid;
196
197  if (Context.BuiltinInfo.hasVAListUse(BID))
198    InitBuiltinVaListType();
199
200  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
201  FunctionDecl *New = FunctionDecl::Create(Context,
202                                           Context.getTranslationUnitDecl(),
203                                           SourceLocation(), II, R,
204                                           FunctionDecl::Extern, false, 0);
205
206  // Create Decl objects for each parameter, adding them to the
207  // FunctionDecl.
208  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
209    llvm::SmallVector<ParmVarDecl*, 16> Params;
210    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
211      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
212                                           FT->getArgType(i), VarDecl::None, 0,
213                                           0));
214    New->setParams(&Params[0], Params.size());
215  }
216
217
218
219  // TUScope is the translation-unit scope to insert this function into.
220  PushOnScopeChains(New, TUScope);
221  return New;
222}
223
224/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
225/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
226/// situation, merging decls or emitting diagnostics as appropriate.
227///
228TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
229  // Allow multiple definitions for ObjC built-in typedefs.
230  // FIXME: Verify the underlying types are equivalent!
231  if (getLangOptions().ObjC1) {
232    const IdentifierInfo *typeIdent = New->getIdentifier();
233    if (typeIdent == Ident_id) {
234      Context.setObjCIdType(New);
235      return New;
236    } else if (typeIdent == Ident_Class) {
237      Context.setObjCClassType(New);
238      return New;
239    } else if (typeIdent == Ident_SEL) {
240      Context.setObjCSelType(New);
241      return New;
242    } else if (typeIdent == Ident_Protocol) {
243      Context.setObjCProtoType(New->getUnderlyingType());
244      return New;
245    }
246    // Fall through - the typedef name was not a builtin type.
247  }
248  // Verify the old decl was also a typedef.
249  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
250  if (!Old) {
251    Diag(New->getLocation(), diag::err_redefinition_different_kind,
252         New->getName());
253    Diag(OldD->getLocation(), diag::err_previous_definition);
254    return New;
255  }
256
257  // If the typedef types are not identical, reject them in all languages and
258  // with any extensions enabled.
259  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
260      Context.getCanonicalType(Old->getUnderlyingType()) !=
261      Context.getCanonicalType(New->getUnderlyingType())) {
262    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
263         New->getUnderlyingType().getAsString(),
264         Old->getUnderlyingType().getAsString());
265    Diag(Old->getLocation(), diag::err_previous_definition);
266    return Old;
267  }
268
269  if (getLangOptions().Microsoft) return New;
270
271  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
272  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
273  // *either* declaration is in a system header. The code below implements
274  // this adhoc compatibility rule. FIXME: The following code will not
275  // work properly when compiling ".i" files (containing preprocessed output).
276  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
277    SourceManager &SrcMgr = Context.getSourceManager();
278    if (SrcMgr.isInSystemHeader(Old->getLocation()))
279      return New;
280    if (SrcMgr.isInSystemHeader(New->getLocation()))
281      return New;
282  }
283
284  Diag(New->getLocation(), diag::err_redefinition, New->getName());
285  Diag(Old->getLocation(), diag::err_previous_definition);
286  return New;
287}
288
289/// DeclhasAttr - returns true if decl Declaration already has the target
290/// attribute.
291static bool DeclHasAttr(const Decl *decl, const Attr *target) {
292  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
293    if (attr->getKind() == target->getKind())
294      return true;
295
296  return false;
297}
298
299/// MergeAttributes - append attributes from the Old decl to the New one.
300static void MergeAttributes(Decl *New, Decl *Old) {
301  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
302
303  while (attr) {
304     tmp = attr;
305     attr = attr->getNext();
306
307    if (!DeclHasAttr(New, tmp)) {
308       New->addAttr(tmp);
309    } else {
310       tmp->setNext(0);
311       delete(tmp);
312    }
313  }
314
315  Old->invalidateAttrs();
316}
317
318/// MergeFunctionDecl - We just parsed a function 'New' from
319/// declarator D which has the same name and scope as a previous
320/// declaration 'Old'.  Figure out how to resolve this situation,
321/// merging decls or emitting diagnostics as appropriate.
322/// Redeclaration will be set true if thisNew is a redeclaration OldD.
323FunctionDecl *
324Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
325  Redeclaration = false;
326  // Verify the old decl was also a function.
327  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
328  if (!Old) {
329    Diag(New->getLocation(), diag::err_redefinition_different_kind,
330         New->getName());
331    Diag(OldD->getLocation(), diag::err_previous_definition);
332    return New;
333  }
334
335  QualType OldQType = Context.getCanonicalType(Old->getType());
336  QualType NewQType = Context.getCanonicalType(New->getType());
337
338  // C++ [dcl.fct]p3:
339  //   All declarations for a function shall agree exactly in both the
340  //   return type and the parameter-type-list.
341  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
342    MergeAttributes(New, Old);
343    Redeclaration = true;
344    return MergeCXXFunctionDecl(New, Old);
345  }
346
347  // C: Function types need to be compatible, not identical. This handles
348  // duplicate function decls like "void f(int); void f(enum X);" properly.
349  if (!getLangOptions().CPlusPlus &&
350      Context.typesAreCompatible(OldQType, NewQType)) {
351    MergeAttributes(New, Old);
352    Redeclaration = true;
353    return New;
354  }
355
356  // A function that has already been declared has been redeclared or defined
357  // with a different type- show appropriate diagnostic
358  diag::kind PrevDiag;
359  if (Old->isThisDeclarationADefinition())
360    PrevDiag = diag::err_previous_definition;
361  else if (Old->isImplicit())
362    PrevDiag = diag::err_previous_implicit_declaration;
363  else
364    PrevDiag = diag::err_previous_declaration;
365
366  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
367  // TODO: This is totally simplistic.  It should handle merging functions
368  // together etc, merging extern int X; int X; ...
369  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
370  Diag(Old->getLocation(), PrevDiag);
371  return New;
372}
373
374/// Predicate for C "tentative" external object definitions (C99 6.9.2).
375static bool isTentativeDefinition(VarDecl *VD) {
376  if (VD->isFileVarDecl())
377    return (!VD->getInit() &&
378            (VD->getStorageClass() == VarDecl::None ||
379             VD->getStorageClass() == VarDecl::Static));
380  return false;
381}
382
383/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
384/// when dealing with C "tentative" external object definitions (C99 6.9.2).
385void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
386  bool VDIsTentative = isTentativeDefinition(VD);
387  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
388
389  for (IdentifierResolver::iterator
390       I = IdResolver.begin(VD->getIdentifier(),
391                            VD->getDeclContext(), false/*LookInParentCtx*/),
392       E = IdResolver.end(); I != E; ++I) {
393    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
394      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
395
396      // Handle the following case:
397      //   int a[10];
398      //   int a[];   - the code below makes sure we set the correct type.
399      //   int a[11]; - this is an error, size isn't 10.
400      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
401          OldDecl->getType()->isConstantArrayType())
402        VD->setType(OldDecl->getType());
403
404      // Check for "tentative" definitions. We can't accomplish this in
405      // MergeVarDecl since the initializer hasn't been attached.
406      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
407        continue;
408
409      // Handle __private_extern__ just like extern.
410      if (OldDecl->getStorageClass() != VarDecl::Extern &&
411          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
412          VD->getStorageClass() != VarDecl::Extern &&
413          VD->getStorageClass() != VarDecl::PrivateExtern) {
414        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
415        Diag(OldDecl->getLocation(), diag::err_previous_definition);
416      }
417    }
418  }
419}
420
421/// MergeVarDecl - We just parsed a variable 'New' which has the same name
422/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
423/// situation, merging decls or emitting diagnostics as appropriate.
424///
425/// Tentative definition rules (C99 6.9.2p2) are checked by
426/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
427/// definitions here, since the initializer hasn't been attached.
428///
429VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
430  // Verify the old decl was also a variable.
431  VarDecl *Old = dyn_cast<VarDecl>(OldD);
432  if (!Old) {
433    Diag(New->getLocation(), diag::err_redefinition_different_kind,
434         New->getName());
435    Diag(OldD->getLocation(), diag::err_previous_definition);
436    return New;
437  }
438
439  MergeAttributes(New, Old);
440
441  // Verify the types match.
442  QualType OldCType = Context.getCanonicalType(Old->getType());
443  QualType NewCType = Context.getCanonicalType(New->getType());
444  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
445    Diag(New->getLocation(), diag::err_redefinition, New->getName());
446    Diag(Old->getLocation(), diag::err_previous_definition);
447    return New;
448  }
449  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
450  if (New->getStorageClass() == VarDecl::Static &&
451      (Old->getStorageClass() == VarDecl::None ||
452       Old->getStorageClass() == VarDecl::Extern)) {
453    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
454    Diag(Old->getLocation(), diag::err_previous_definition);
455    return New;
456  }
457  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
458  if (New->getStorageClass() != VarDecl::Static &&
459      Old->getStorageClass() == VarDecl::Static) {
460    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
461    Diag(Old->getLocation(), diag::err_previous_definition);
462    return New;
463  }
464  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
465  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
466    Diag(New->getLocation(), diag::err_redefinition, New->getName());
467    Diag(Old->getLocation(), diag::err_previous_definition);
468  }
469  return New;
470}
471
472/// CheckParmsForFunctionDef - Check that the parameters of the given
473/// function are appropriate for the definition of a function. This
474/// takes care of any checks that cannot be performed on the
475/// declaration itself, e.g., that the types of each of the function
476/// parameters are complete.
477bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
478  bool HasInvalidParm = false;
479  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
480    ParmVarDecl *Param = FD->getParamDecl(p);
481
482    // C99 6.7.5.3p4: the parameters in a parameter type list in a
483    // function declarator that is part of a function definition of
484    // that function shall not have incomplete type.
485    if (Param->getType()->isIncompleteType() &&
486        !Param->isInvalidDecl()) {
487      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
488           Param->getType().getAsString());
489      Param->setInvalidDecl();
490      HasInvalidParm = true;
491    }
492  }
493
494  return HasInvalidParm;
495}
496
497/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
498/// no declarator (e.g. "struct foo;") is parsed.
499Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
500  // TODO: emit error on 'int;' or 'const enum foo;'.
501  // TODO: emit error on 'typedef int;'
502  // if (!DS.isMissingDeclaratorOk()) Diag(...);
503
504  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
505}
506
507bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
508  // Get the type before calling CheckSingleAssignmentConstraints(), since
509  // it can promote the expression.
510  QualType InitType = Init->getType();
511
512  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
513  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
514                                  InitType, Init, "initializing");
515}
516
517bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
518  const ArrayType *AT = Context.getAsArrayType(DeclT);
519
520  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
521    // C99 6.7.8p14. We have an array of character type with unknown size
522    // being initialized to a string literal.
523    llvm::APSInt ConstVal(32);
524    ConstVal = strLiteral->getByteLength() + 1;
525    // Return a new array type (C99 6.7.8p22).
526    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
527                                         ArrayType::Normal, 0);
528  } else {
529    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
530    // C99 6.7.8p14. We have an array of character type with known size.
531    // FIXME: Avoid truncation for 64-bit length strings.
532    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
533      Diag(strLiteral->getSourceRange().getBegin(),
534           diag::warn_initializer_string_for_char_array_too_long,
535           strLiteral->getSourceRange());
536  }
537  // Set type from "char *" to "constant array of char".
538  strLiteral->setType(DeclT);
539  // For now, we always return false (meaning success).
540  return false;
541}
542
543StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
544  const ArrayType *AT = Context.getAsArrayType(DeclType);
545  if (AT && AT->getElementType()->isCharType()) {
546    return dyn_cast<StringLiteral>(Init);
547  }
548  return 0;
549}
550
551bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
552  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
553  // of unknown size ("[]") or an object type that is not a variable array type.
554  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
555    return Diag(VAT->getSizeExpr()->getLocStart(),
556                diag::err_variable_object_no_init,
557                VAT->getSizeExpr()->getSourceRange());
558
559  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
560  if (!InitList) {
561    // FIXME: Handle wide strings
562    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
563      return CheckStringLiteralInit(strLiteral, DeclType);
564
565    // C99 6.7.8p16.
566    if (DeclType->isArrayType())
567      return Diag(Init->getLocStart(),
568                  diag::err_array_init_list_required,
569                  Init->getSourceRange());
570
571    return CheckSingleInitializer(Init, DeclType);
572  }
573
574  InitListChecker CheckInitList(this, InitList, DeclType);
575  return CheckInitList.HadError();
576}
577
578Sema::DeclTy *
579Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
580  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
581  IdentifierInfo *II = D.getIdentifier();
582
583  // All of these full declarators require an identifier.  If it doesn't have
584  // one, the ParsedFreeStandingDeclSpec action should be used.
585  if (II == 0) {
586    Diag(D.getDeclSpec().getSourceRange().getBegin(),
587         diag::err_declarator_need_ident,
588         D.getDeclSpec().getSourceRange(), D.getSourceRange());
589    return 0;
590  }
591
592  // The scope passed in may not be a decl scope.  Zip up the scope tree until
593  // we find one that is.
594  while ((S->getFlags() & Scope::DeclScope) == 0)
595    S = S->getParent();
596
597  // See if this is a redefinition of a variable in the same scope.
598  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
599  ScopedDecl *New;
600  bool InvalidDecl = false;
601
602  // In C++, the previous declaration we find might be a tag type
603  // (class or enum). In this case, the new declaration will hide the
604  // tag type.
605  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
606    PrevDecl = 0;
607
608  QualType R = GetTypeForDeclarator(D, S);
609  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
610
611  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
612    // Check that there are no default arguments (C++ only).
613    if (getLangOptions().CPlusPlus)
614      CheckExtraCXXDefaultArguments(D);
615
616    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
617    if (!NewTD) return 0;
618
619    // Handle attributes prior to checking for duplicates in MergeVarDecl
620    ProcessDeclAttributes(NewTD, D);
621    // Merge the decl with the existing one if appropriate. If the decl is
622    // in an outer scope, it isn't the same thing.
623    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
624      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
625      if (NewTD == 0) return 0;
626    }
627    New = NewTD;
628    if (S->getFnParent() == 0) {
629      // C99 6.7.7p2: If a typedef name specifies a variably modified type
630      // then it shall have block scope.
631      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
632        // FIXME: Diagnostic needs to be fixed.
633        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
634        InvalidDecl = true;
635      }
636    }
637  } else if (R.getTypePtr()->isFunctionType()) {
638    FunctionDecl::StorageClass SC = FunctionDecl::None;
639    switch (D.getDeclSpec().getStorageClassSpec()) {
640      default: assert(0 && "Unknown storage class!");
641      case DeclSpec::SCS_auto:
642      case DeclSpec::SCS_register:
643        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
644             R.getAsString());
645        InvalidDecl = true;
646        break;
647      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
648      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
649      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
650      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
651    }
652
653    bool isInline = D.getDeclSpec().isInlineSpecified();
654    FunctionDecl *NewFD;
655    if (D.getContext() == Declarator::MemberContext) {
656      // This is a C++ method declaration.
657      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
658                                    D.getIdentifierLoc(), II, R,
659                                    (SC == FunctionDecl::Static), isInline,
660                                    LastDeclarator);
661    } else {
662      NewFD = FunctionDecl::Create(Context, CurContext,
663                                   D.getIdentifierLoc(),
664                                   II, R, SC, isInline,
665                                   LastDeclarator);
666    }
667    // Handle attributes.
668    ProcessDeclAttributes(NewFD, D);
669
670    // Handle GNU asm-label extension (encoded as an attribute).
671    if (Expr *E = (Expr*) D.getAsmLabel()) {
672      // The parser guarantees this is a string.
673      StringLiteral *SE = cast<StringLiteral>(E);
674      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
675                                                  SE->getByteLength())));
676    }
677
678    // Copy the parameter declarations from the declarator D to
679    // the function declaration NewFD, if they are available.
680    if (D.getNumTypeObjects() > 0) {
681      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
682
683      // Create Decl objects for each parameter, adding them to the
684      // FunctionDecl.
685      llvm::SmallVector<ParmVarDecl*, 16> Params;
686
687      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
688      // function that takes no arguments, not a function that takes a
689      // single void argument.
690      // We let through "const void" here because Sema::GetTypeForDeclarator
691      // already checks for that case.
692      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
693          FTI.ArgInfo[0].Param &&
694          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
695        // empty arg list, don't push any params.
696        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
697
698        // In C++, the empty parameter-type-list must be spelled "void"; a
699        // typedef of void is not permitted.
700        if (getLangOptions().CPlusPlus &&
701            Param->getType().getUnqualifiedType() != Context.VoidTy) {
702          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
703        }
704
705      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
706        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
707          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
708      }
709
710      NewFD->setParams(&Params[0], Params.size());
711    }
712
713    // Merge the decl with the existing one if appropriate. Since C functions
714    // are in a flat namespace, make sure we consider decls in outer scopes.
715    if (PrevDecl &&
716        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
717      bool Redeclaration = false;
718      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
719      if (NewFD == 0) return 0;
720      if (Redeclaration) {
721        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
722      }
723    }
724    New = NewFD;
725
726    // In C++, check default arguments now that we have merged decls.
727    if (getLangOptions().CPlusPlus)
728      CheckCXXDefaultArguments(NewFD);
729  } else {
730    // Check that there are no default arguments (C++ only).
731    if (getLangOptions().CPlusPlus)
732      CheckExtraCXXDefaultArguments(D);
733
734    if (R.getTypePtr()->isObjCInterfaceType()) {
735      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
736           D.getIdentifier()->getName());
737      InvalidDecl = true;
738    }
739
740    VarDecl *NewVD;
741    VarDecl::StorageClass SC;
742    switch (D.getDeclSpec().getStorageClassSpec()) {
743    default: assert(0 && "Unknown storage class!");
744    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
745    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
746    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
747    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
748    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
749    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
750    }
751    if (D.getContext() == Declarator::MemberContext) {
752      assert(SC == VarDecl::Static && "Invalid storage class for member!");
753      // This is a static data member for a C++ class.
754      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
755                                      D.getIdentifierLoc(), II,
756                                      R, LastDeclarator);
757    } else {
758      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
759      if (S->getFnParent() == 0) {
760        // C99 6.9p2: The storage-class specifiers auto and register shall not
761        // appear in the declaration specifiers in an external declaration.
762        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
763          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
764               R.getAsString());
765          InvalidDecl = true;
766        }
767      }
768        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
769                                II, R, SC, LastDeclarator);
770        NewVD->setThreadSpecified(ThreadSpecified);
771    }
772    // Handle attributes prior to checking for duplicates in MergeVarDecl
773    ProcessDeclAttributes(NewVD, D);
774
775    // Handle GNU asm-label extension (encoded as an attribute).
776    if (Expr *E = (Expr*) D.getAsmLabel()) {
777      // The parser guarantees this is a string.
778      StringLiteral *SE = cast<StringLiteral>(E);
779      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
780                                                  SE->getByteLength())));
781    }
782
783    // Emit an error if an address space was applied to decl with local storage.
784    // This includes arrays of objects with address space qualifiers, but not
785    // automatic variables that point to other address spaces.
786    // ISO/IEC TR 18037 S5.1.2
787    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
788      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
789      InvalidDecl = true;
790    }
791    // Merge the decl with the existing one if appropriate. If the decl is
792    // in an outer scope, it isn't the same thing.
793    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
794      NewVD = MergeVarDecl(NewVD, PrevDecl);
795      if (NewVD == 0) return 0;
796    }
797    New = NewVD;
798  }
799
800  // If this has an identifier, add it to the scope stack.
801  if (II)
802    PushOnScopeChains(New, S);
803  // If any semantic error occurred, mark the decl as invalid.
804  if (D.getInvalidType() || InvalidDecl)
805    New->setInvalidDecl();
806
807  return New;
808}
809
810bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
811  switch (Init->getStmtClass()) {
812  default:
813    Diag(Init->getExprLoc(),
814         diag::err_init_element_not_constant, Init->getSourceRange());
815    return true;
816  case Expr::ParenExprClass: {
817    const ParenExpr* PE = cast<ParenExpr>(Init);
818    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
819  }
820  case Expr::CompoundLiteralExprClass:
821    return cast<CompoundLiteralExpr>(Init)->isFileScope();
822  case Expr::DeclRefExprClass: {
823    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
824    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
825      if (VD->hasGlobalStorage())
826        return false;
827      Diag(Init->getExprLoc(),
828           diag::err_init_element_not_constant, Init->getSourceRange());
829      return true;
830    }
831    if (isa<FunctionDecl>(D))
832      return false;
833    Diag(Init->getExprLoc(),
834         diag::err_init_element_not_constant, Init->getSourceRange());
835    return true;
836  }
837  case Expr::MemberExprClass: {
838    const MemberExpr *M = cast<MemberExpr>(Init);
839    if (M->isArrow())
840      return CheckAddressConstantExpression(M->getBase());
841    return CheckAddressConstantExpressionLValue(M->getBase());
842  }
843  case Expr::ArraySubscriptExprClass: {
844    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
845    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
846    return CheckAddressConstantExpression(ASE->getBase()) ||
847           CheckArithmeticConstantExpression(ASE->getIdx());
848  }
849  case Expr::StringLiteralClass:
850  case Expr::PredefinedExprClass:
851    return false;
852  case Expr::UnaryOperatorClass: {
853    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
854
855    // C99 6.6p9
856    if (Exp->getOpcode() == UnaryOperator::Deref)
857      return CheckAddressConstantExpression(Exp->getSubExpr());
858
859    Diag(Init->getExprLoc(),
860         diag::err_init_element_not_constant, Init->getSourceRange());
861    return true;
862  }
863  }
864}
865
866bool Sema::CheckAddressConstantExpression(const Expr* Init) {
867  switch (Init->getStmtClass()) {
868  default:
869    Diag(Init->getExprLoc(),
870         diag::err_init_element_not_constant, Init->getSourceRange());
871    return true;
872  case Expr::ParenExprClass: {
873    const ParenExpr* PE = cast<ParenExpr>(Init);
874    return CheckAddressConstantExpression(PE->getSubExpr());
875  }
876  case Expr::StringLiteralClass:
877  case Expr::ObjCStringLiteralClass:
878    return false;
879  case Expr::CallExprClass: {
880    const CallExpr *CE = cast<CallExpr>(Init);
881    if (CE->isBuiltinConstantExpr(Context))
882      return false;
883    Diag(Init->getExprLoc(),
884         diag::err_init_element_not_constant, Init->getSourceRange());
885    return true;
886  }
887  case Expr::UnaryOperatorClass: {
888    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
889
890    // C99 6.6p9
891    if (Exp->getOpcode() == UnaryOperator::AddrOf)
892      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
893
894    if (Exp->getOpcode() == UnaryOperator::Extension)
895      return CheckAddressConstantExpression(Exp->getSubExpr());
896
897    Diag(Init->getExprLoc(),
898         diag::err_init_element_not_constant, Init->getSourceRange());
899    return true;
900  }
901  case Expr::BinaryOperatorClass: {
902    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
903    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
904
905    Expr *PExp = Exp->getLHS();
906    Expr *IExp = Exp->getRHS();
907    if (IExp->getType()->isPointerType())
908      std::swap(PExp, IExp);
909
910    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
911    return CheckAddressConstantExpression(PExp) ||
912           CheckArithmeticConstantExpression(IExp);
913  }
914  case Expr::ImplicitCastExprClass:
915  case Expr::ExplicitCastExprClass: {
916    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
917    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
918      // Check for implicit promotion
919      if (SubExpr->getType()->isFunctionType() ||
920          SubExpr->getType()->isArrayType())
921        return CheckAddressConstantExpressionLValue(SubExpr);
922    }
923
924    // Check for pointer->pointer cast
925    if (SubExpr->getType()->isPointerType())
926      return CheckAddressConstantExpression(SubExpr);
927
928    if (SubExpr->getType()->isIntegralType()) {
929      // Check for the special-case of a pointer->int->pointer cast;
930      // this isn't standard, but some code requires it. See
931      // PR2720 for an example.
932      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
933        if (SubCast->getSubExpr()->getType()->isPointerType()) {
934          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
935          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
936          if (IntWidth >= PointerWidth) {
937            return CheckAddressConstantExpression(SubCast->getSubExpr());
938          }
939        }
940      }
941    }
942    if (SubExpr->getType()->isArithmeticType()) {
943      return CheckArithmeticConstantExpression(SubExpr);
944    }
945
946    Diag(Init->getExprLoc(),
947         diag::err_init_element_not_constant, Init->getSourceRange());
948    return true;
949  }
950  case Expr::ConditionalOperatorClass: {
951    // FIXME: Should we pedwarn here?
952    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
953    if (!Exp->getCond()->getType()->isArithmeticType()) {
954      Diag(Init->getExprLoc(),
955           diag::err_init_element_not_constant, Init->getSourceRange());
956      return true;
957    }
958    if (CheckArithmeticConstantExpression(Exp->getCond()))
959      return true;
960    if (Exp->getLHS() &&
961        CheckAddressConstantExpression(Exp->getLHS()))
962      return true;
963    return CheckAddressConstantExpression(Exp->getRHS());
964  }
965  case Expr::AddrLabelExprClass:
966    return false;
967  }
968}
969
970static const Expr* FindExpressionBaseAddress(const Expr* E);
971
972static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
973  switch (E->getStmtClass()) {
974  default:
975    return E;
976  case Expr::ParenExprClass: {
977    const ParenExpr* PE = cast<ParenExpr>(E);
978    return FindExpressionBaseAddressLValue(PE->getSubExpr());
979  }
980  case Expr::MemberExprClass: {
981    const MemberExpr *M = cast<MemberExpr>(E);
982    if (M->isArrow())
983      return FindExpressionBaseAddress(M->getBase());
984    return FindExpressionBaseAddressLValue(M->getBase());
985  }
986  case Expr::ArraySubscriptExprClass: {
987    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
988    return FindExpressionBaseAddress(ASE->getBase());
989  }
990  case Expr::UnaryOperatorClass: {
991    const UnaryOperator *Exp = cast<UnaryOperator>(E);
992
993    if (Exp->getOpcode() == UnaryOperator::Deref)
994      return FindExpressionBaseAddress(Exp->getSubExpr());
995
996    return E;
997  }
998  }
999}
1000
1001static const Expr* FindExpressionBaseAddress(const Expr* E) {
1002  switch (E->getStmtClass()) {
1003  default:
1004    return E;
1005  case Expr::ParenExprClass: {
1006    const ParenExpr* PE = cast<ParenExpr>(E);
1007    return FindExpressionBaseAddress(PE->getSubExpr());
1008  }
1009  case Expr::UnaryOperatorClass: {
1010    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1011
1012    // C99 6.6p9
1013    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1014      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1015
1016    if (Exp->getOpcode() == UnaryOperator::Extension)
1017      return FindExpressionBaseAddress(Exp->getSubExpr());
1018
1019    return E;
1020  }
1021  case Expr::BinaryOperatorClass: {
1022    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1023
1024    Expr *PExp = Exp->getLHS();
1025    Expr *IExp = Exp->getRHS();
1026    if (IExp->getType()->isPointerType())
1027      std::swap(PExp, IExp);
1028
1029    return FindExpressionBaseAddress(PExp);
1030  }
1031  case Expr::ImplicitCastExprClass: {
1032    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1033
1034    // Check for implicit promotion
1035    if (SubExpr->getType()->isFunctionType() ||
1036        SubExpr->getType()->isArrayType())
1037      return FindExpressionBaseAddressLValue(SubExpr);
1038
1039    // Check for pointer->pointer cast
1040    if (SubExpr->getType()->isPointerType())
1041      return FindExpressionBaseAddress(SubExpr);
1042
1043    // We assume that we have an arithmetic expression here;
1044    // if we don't, we'll figure it out later
1045    return 0;
1046  }
1047  case Expr::ExplicitCastExprClass: {
1048    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1049
1050    // Check for pointer->pointer cast
1051    if (SubExpr->getType()->isPointerType())
1052      return FindExpressionBaseAddress(SubExpr);
1053
1054    // We assume that we have an arithmetic expression here;
1055    // if we don't, we'll figure it out later
1056    return 0;
1057  }
1058  }
1059}
1060
1061bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1062  switch (Init->getStmtClass()) {
1063  default:
1064    Diag(Init->getExprLoc(),
1065         diag::err_init_element_not_constant, Init->getSourceRange());
1066    return true;
1067  case Expr::ParenExprClass: {
1068    const ParenExpr* PE = cast<ParenExpr>(Init);
1069    return CheckArithmeticConstantExpression(PE->getSubExpr());
1070  }
1071  case Expr::FloatingLiteralClass:
1072  case Expr::IntegerLiteralClass:
1073  case Expr::CharacterLiteralClass:
1074  case Expr::ImaginaryLiteralClass:
1075  case Expr::TypesCompatibleExprClass:
1076  case Expr::CXXBoolLiteralExprClass:
1077    return false;
1078  case Expr::CallExprClass: {
1079    const CallExpr *CE = cast<CallExpr>(Init);
1080    if (CE->isBuiltinConstantExpr(Context))
1081      return false;
1082    Diag(Init->getExprLoc(),
1083         diag::err_init_element_not_constant, Init->getSourceRange());
1084    return true;
1085  }
1086  case Expr::DeclRefExprClass: {
1087    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1088    if (isa<EnumConstantDecl>(D))
1089      return false;
1090    Diag(Init->getExprLoc(),
1091         diag::err_init_element_not_constant, Init->getSourceRange());
1092    return true;
1093  }
1094  case Expr::CompoundLiteralExprClass:
1095    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1096    // but vectors are allowed to be magic.
1097    if (Init->getType()->isVectorType())
1098      return false;
1099    Diag(Init->getExprLoc(),
1100         diag::err_init_element_not_constant, Init->getSourceRange());
1101    return true;
1102  case Expr::UnaryOperatorClass: {
1103    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1104
1105    switch (Exp->getOpcode()) {
1106    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1107    // See C99 6.6p3.
1108    default:
1109      Diag(Init->getExprLoc(),
1110           diag::err_init_element_not_constant, Init->getSourceRange());
1111      return true;
1112    case UnaryOperator::SizeOf:
1113    case UnaryOperator::AlignOf:
1114    case UnaryOperator::OffsetOf:
1115      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1116      // See C99 6.5.3.4p2 and 6.6p3.
1117      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1118        return false;
1119      Diag(Init->getExprLoc(),
1120           diag::err_init_element_not_constant, Init->getSourceRange());
1121      return true;
1122    case UnaryOperator::Extension:
1123    case UnaryOperator::LNot:
1124    case UnaryOperator::Plus:
1125    case UnaryOperator::Minus:
1126    case UnaryOperator::Not:
1127      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1128    }
1129  }
1130  case Expr::SizeOfAlignOfTypeExprClass: {
1131    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1132    // Special check for void types, which are allowed as an extension
1133    if (Exp->getArgumentType()->isVoidType())
1134      return false;
1135    // alignof always evaluates to a constant.
1136    // FIXME: is sizeof(int[3.0]) a constant expression?
1137    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1138      Diag(Init->getExprLoc(),
1139           diag::err_init_element_not_constant, Init->getSourceRange());
1140      return true;
1141    }
1142    return false;
1143  }
1144  case Expr::BinaryOperatorClass: {
1145    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1146
1147    if (Exp->getLHS()->getType()->isArithmeticType() &&
1148        Exp->getRHS()->getType()->isArithmeticType()) {
1149      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1150             CheckArithmeticConstantExpression(Exp->getRHS());
1151    }
1152
1153    if (Exp->getLHS()->getType()->isPointerType() &&
1154        Exp->getRHS()->getType()->isPointerType()) {
1155      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1156      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1157
1158      // Only allow a null (constant integer) base; we could
1159      // allow some additional cases if necessary, but this
1160      // is sufficient to cover offsetof-like constructs.
1161      if (!LHSBase && !RHSBase) {
1162        return CheckAddressConstantExpression(Exp->getLHS()) ||
1163               CheckAddressConstantExpression(Exp->getRHS());
1164      }
1165    }
1166
1167    Diag(Init->getExprLoc(),
1168         diag::err_init_element_not_constant, Init->getSourceRange());
1169    return true;
1170  }
1171  case Expr::ImplicitCastExprClass:
1172  case Expr::ExplicitCastExprClass: {
1173    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1174    if (SubExpr->getType()->isArithmeticType())
1175      return CheckArithmeticConstantExpression(SubExpr);
1176
1177    if (SubExpr->getType()->isPointerType()) {
1178      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1179      // If the pointer has a null base, this is an offsetof-like construct
1180      if (!Base)
1181        return CheckAddressConstantExpression(SubExpr);
1182    }
1183
1184    Diag(Init->getExprLoc(),
1185         diag::err_init_element_not_constant, Init->getSourceRange());
1186    return true;
1187  }
1188  case Expr::ConditionalOperatorClass: {
1189    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1190    if (CheckArithmeticConstantExpression(Exp->getCond()))
1191      return true;
1192    if (Exp->getLHS() &&
1193        CheckArithmeticConstantExpression(Exp->getLHS()))
1194      return true;
1195    return CheckArithmeticConstantExpression(Exp->getRHS());
1196  }
1197  }
1198}
1199
1200bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1201  Init = Init->IgnoreParens();
1202
1203  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1204  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1205    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1206
1207  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1208    return CheckForConstantInitializer(e->getInitializer(), DclT);
1209
1210  if (Init->getType()->isReferenceType()) {
1211    // FIXME: Work out how the heck reference types work
1212    return false;
1213#if 0
1214    // A reference is constant if the address of the expression
1215    // is constant
1216    // We look through initlists here to simplify
1217    // CheckAddressConstantExpressionLValue.
1218    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1219      assert(Exp->getNumInits() > 0 &&
1220             "Refernce initializer cannot be empty");
1221      Init = Exp->getInit(0);
1222    }
1223    return CheckAddressConstantExpressionLValue(Init);
1224#endif
1225  }
1226
1227  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1228    unsigned numInits = Exp->getNumInits();
1229    for (unsigned i = 0; i < numInits; i++) {
1230      // FIXME: Need to get the type of the declaration for C++,
1231      // because it could be a reference?
1232      if (CheckForConstantInitializer(Exp->getInit(i),
1233                                      Exp->getInit(i)->getType()))
1234        return true;
1235    }
1236    return false;
1237  }
1238
1239  if (Init->isNullPointerConstant(Context))
1240    return false;
1241  if (Init->getType()->isArithmeticType()) {
1242    QualType InitTy = Context.getCanonicalType(Init->getType())
1243                             .getUnqualifiedType();
1244    if (InitTy == Context.BoolTy) {
1245      // Special handling for pointers implicitly cast to bool;
1246      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1247      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1248        Expr* SubE = ICE->getSubExpr();
1249        if (SubE->getType()->isPointerType() ||
1250            SubE->getType()->isArrayType() ||
1251            SubE->getType()->isFunctionType()) {
1252          return CheckAddressConstantExpression(Init);
1253        }
1254      }
1255    } else if (InitTy->isIntegralType()) {
1256      Expr* SubE = 0;
1257      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1258        SubE = CE->getSubExpr();
1259      // Special check for pointer cast to int; we allow as an extension
1260      // an address constant cast to an integer if the integer
1261      // is of an appropriate width (this sort of code is apparently used
1262      // in some places).
1263      // FIXME: Add pedwarn?
1264      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1265      if (SubE && (SubE->getType()->isPointerType() ||
1266                   SubE->getType()->isArrayType() ||
1267                   SubE->getType()->isFunctionType())) {
1268        unsigned IntWidth = Context.getTypeSize(Init->getType());
1269        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1270        if (IntWidth >= PointerWidth)
1271          return CheckAddressConstantExpression(Init);
1272      }
1273    }
1274
1275    return CheckArithmeticConstantExpression(Init);
1276  }
1277
1278  if (Init->getType()->isPointerType())
1279    return CheckAddressConstantExpression(Init);
1280
1281  // An array type at the top level that isn't an init-list must
1282  // be a string literal
1283  if (Init->getType()->isArrayType())
1284    return false;
1285
1286  if (Init->getType()->isFunctionType())
1287    return false;
1288
1289  // Allow block exprs at top level.
1290  if (Init->getType()->isBlockPointerType())
1291    return false;
1292
1293  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1294       Init->getSourceRange());
1295  return true;
1296}
1297
1298void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1299  Decl *RealDecl = static_cast<Decl *>(dcl);
1300  Expr *Init = static_cast<Expr *>(init);
1301  assert(Init && "missing initializer");
1302
1303  // If there is no declaration, there was an error parsing it.  Just ignore
1304  // the initializer.
1305  if (RealDecl == 0) {
1306    delete Init;
1307    return;
1308  }
1309
1310  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1311  if (!VDecl) {
1312    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1313         diag::err_illegal_initializer);
1314    RealDecl->setInvalidDecl();
1315    return;
1316  }
1317  // Get the decls type and save a reference for later, since
1318  // CheckInitializerTypes may change it.
1319  QualType DclT = VDecl->getType(), SavT = DclT;
1320  if (VDecl->isBlockVarDecl()) {
1321    VarDecl::StorageClass SC = VDecl->getStorageClass();
1322    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1323      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1324      VDecl->setInvalidDecl();
1325    } else if (!VDecl->isInvalidDecl()) {
1326      if (CheckInitializerTypes(Init, DclT))
1327        VDecl->setInvalidDecl();
1328
1329      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1330      if (!getLangOptions().CPlusPlus) {
1331        if (SC == VarDecl::Static) // C99 6.7.8p4.
1332          CheckForConstantInitializer(Init, DclT);
1333      }
1334    }
1335  } else if (VDecl->isFileVarDecl()) {
1336    if (VDecl->getStorageClass() == VarDecl::Extern)
1337      Diag(VDecl->getLocation(), diag::warn_extern_init);
1338    if (!VDecl->isInvalidDecl())
1339      if (CheckInitializerTypes(Init, DclT))
1340        VDecl->setInvalidDecl();
1341
1342    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1343    if (!getLangOptions().CPlusPlus) {
1344      // C99 6.7.8p4. All file scoped initializers need to be constant.
1345      CheckForConstantInitializer(Init, DclT);
1346    }
1347  }
1348  // If the type changed, it means we had an incomplete type that was
1349  // completed by the initializer. For example:
1350  //   int ary[] = { 1, 3, 5 };
1351  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1352  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1353    VDecl->setType(DclT);
1354    Init->setType(DclT);
1355  }
1356
1357  // Attach the initializer to the decl.
1358  VDecl->setInit(Init);
1359  return;
1360}
1361
1362/// The declarators are chained together backwards, reverse the list.
1363Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1364  // Often we have single declarators, handle them quickly.
1365  Decl *GroupDecl = static_cast<Decl*>(group);
1366  if (GroupDecl == 0)
1367    return 0;
1368
1369  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1370  ScopedDecl *NewGroup = 0;
1371  if (Group->getNextDeclarator() == 0)
1372    NewGroup = Group;
1373  else { // reverse the list.
1374    while (Group) {
1375      ScopedDecl *Next = Group->getNextDeclarator();
1376      Group->setNextDeclarator(NewGroup);
1377      NewGroup = Group;
1378      Group = Next;
1379    }
1380  }
1381  // Perform semantic analysis that depends on having fully processed both
1382  // the declarator and initializer.
1383  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1384    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1385    if (!IDecl)
1386      continue;
1387    QualType T = IDecl->getType();
1388
1389    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1390    // static storage duration, it shall not have a variable length array.
1391    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1392        IDecl->getStorageClass() == VarDecl::Static) {
1393      if (T->isVariableArrayType()) {
1394        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1395        IDecl->setInvalidDecl();
1396      }
1397    }
1398    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1399    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1400    if (IDecl->isBlockVarDecl() &&
1401        IDecl->getStorageClass() != VarDecl::Extern) {
1402      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1403        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1404             T.getAsString());
1405        IDecl->setInvalidDecl();
1406      }
1407    }
1408    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1409    // object that has file scope without an initializer, and without a
1410    // storage-class specifier or with the storage-class specifier "static",
1411    // constitutes a tentative definition. Note: A tentative definition with
1412    // external linkage is valid (C99 6.2.2p5).
1413    if (isTentativeDefinition(IDecl)) {
1414      if (T->isIncompleteArrayType()) {
1415        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1416        // array to be completed. Don't issue a diagnostic.
1417      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1418        // C99 6.9.2p3: If the declaration of an identifier for an object is
1419        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1420        // declared type shall not be an incomplete type.
1421        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1422             T.getAsString());
1423        IDecl->setInvalidDecl();
1424      }
1425    }
1426    if (IDecl->isFileVarDecl())
1427      CheckForFileScopedRedefinitions(S, IDecl);
1428  }
1429  return NewGroup;
1430}
1431
1432/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1433/// to introduce parameters into function prototype scope.
1434Sema::DeclTy *
1435Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1436  const DeclSpec &DS = D.getDeclSpec();
1437
1438  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1439  VarDecl::StorageClass StorageClass = VarDecl::None;
1440  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1441    StorageClass = VarDecl::Register;
1442  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1443    Diag(DS.getStorageClassSpecLoc(),
1444         diag::err_invalid_storage_class_in_func_decl);
1445    D.getMutableDeclSpec().ClearStorageClassSpecs();
1446  }
1447  if (DS.isThreadSpecified()) {
1448    Diag(DS.getThreadSpecLoc(),
1449         diag::err_invalid_storage_class_in_func_decl);
1450    D.getMutableDeclSpec().ClearStorageClassSpecs();
1451  }
1452
1453  // Check that there are no default arguments inside the type of this
1454  // parameter (C++ only).
1455  if (getLangOptions().CPlusPlus)
1456    CheckExtraCXXDefaultArguments(D);
1457
1458  // In this context, we *do not* check D.getInvalidType(). If the declarator
1459  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1460  // though it will not reflect the user specified type.
1461  QualType parmDeclType = GetTypeForDeclarator(D, S);
1462
1463  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1464
1465  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1466  // Can this happen for params?  We already checked that they don't conflict
1467  // among each other.  Here they can only shadow globals, which is ok.
1468  IdentifierInfo *II = D.getIdentifier();
1469  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1470    if (S->isDeclScope(PrevDecl)) {
1471      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1472           dyn_cast<NamedDecl>(PrevDecl)->getName());
1473
1474      // Recover by removing the name
1475      II = 0;
1476      D.SetIdentifier(0, D.getIdentifierLoc());
1477    }
1478  }
1479
1480  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1481  // Doing the promotion here has a win and a loss. The win is the type for
1482  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1483  // code generator). The loss is the orginal type isn't preserved. For example:
1484  //
1485  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1486  //    int blockvardecl[5];
1487  //    sizeof(parmvardecl);  // size == 4
1488  //    sizeof(blockvardecl); // size == 20
1489  // }
1490  //
1491  // For expressions, all implicit conversions are captured using the
1492  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1493  //
1494  // FIXME: If a source translation tool needs to see the original type, then
1495  // we need to consider storing both types (in ParmVarDecl)...
1496  //
1497  if (parmDeclType->isArrayType()) {
1498    // int x[restrict 4] ->  int *restrict
1499    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1500  } else if (parmDeclType->isFunctionType())
1501    parmDeclType = Context.getPointerType(parmDeclType);
1502
1503  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1504                                         D.getIdentifierLoc(), II,
1505                                         parmDeclType, StorageClass,
1506                                         0, 0);
1507
1508  if (D.getInvalidType())
1509    New->setInvalidDecl();
1510
1511  if (II)
1512    PushOnScopeChains(New, S);
1513
1514  ProcessDeclAttributes(New, D);
1515  return New;
1516
1517}
1518
1519Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1520  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1521  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1522         "Not a function declarator!");
1523  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1524
1525  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1526  // for a K&R function.
1527  if (!FTI.hasPrototype) {
1528    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1529      if (FTI.ArgInfo[i].Param == 0) {
1530        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1531             FTI.ArgInfo[i].Ident->getName());
1532        // Implicitly declare the argument as type 'int' for lack of a better
1533        // type.
1534        DeclSpec DS;
1535        const char* PrevSpec; // unused
1536        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1537                           PrevSpec);
1538        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1539        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1540        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1541      }
1542    }
1543  } else {
1544    // FIXME: Diagnose arguments without names in C.
1545  }
1546
1547  Scope *GlobalScope = FnBodyScope->getParent();
1548
1549  // See if this is a redefinition.
1550  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1551                             GlobalScope);
1552  if (PrevDcl && isDeclInScope(PrevDcl, CurContext)) {
1553    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1554      const FunctionDecl *Definition;
1555      if (FD->getBody(Definition)) {
1556        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1557             D.getIdentifier()->getName());
1558        Diag(Definition->getLocation(), diag::err_previous_definition);
1559      }
1560    }
1561  }
1562
1563  return ActOnStartOfFunctionDef(FnBodyScope,
1564                                 ActOnDeclarator(GlobalScope, D, 0));
1565}
1566
1567Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1568  Decl *decl = static_cast<Decl*>(D);
1569  FunctionDecl *FD = cast<FunctionDecl>(decl);
1570  PushDeclContext(FD);
1571
1572  // Check the validity of our function parameters
1573  CheckParmsForFunctionDef(FD);
1574
1575  // Introduce our parameters into the function scope
1576  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1577    ParmVarDecl *Param = FD->getParamDecl(p);
1578    // If this has an identifier, add it to the scope stack.
1579    if (Param->getIdentifier())
1580      PushOnScopeChains(Param, FnBodyScope);
1581  }
1582
1583  return FD;
1584}
1585
1586Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1587  Decl *dcl = static_cast<Decl *>(D);
1588  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1589    FD->setBody((Stmt*)Body);
1590    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1591  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1592    MD->setBody((Stmt*)Body);
1593  } else
1594    return 0;
1595  PopDeclContext();
1596  // Verify and clean out per-function state.
1597
1598  // Check goto/label use.
1599  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1600       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1601    // Verify that we have no forward references left.  If so, there was a goto
1602    // or address of a label taken, but no definition of it.  Label fwd
1603    // definitions are indicated with a null substmt.
1604    if (I->second->getSubStmt() == 0) {
1605      LabelStmt *L = I->second;
1606      // Emit error.
1607      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1608
1609      // At this point, we have gotos that use the bogus label.  Stitch it into
1610      // the function body so that they aren't leaked and that the AST is well
1611      // formed.
1612      if (Body) {
1613        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1614        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1615      } else {
1616        // The whole function wasn't parsed correctly, just delete this.
1617        delete L;
1618      }
1619    }
1620  }
1621  LabelMap.clear();
1622
1623  return D;
1624}
1625
1626/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1627/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1628ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1629                                           IdentifierInfo &II, Scope *S) {
1630  // Extension in C99.  Legal in C90, but warn about it.
1631  if (getLangOptions().C99)
1632    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1633  else
1634    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1635
1636  // FIXME: handle stuff like:
1637  // void foo() { extern float X(); }
1638  // void bar() { X(); }  <-- implicit decl for X in another scope.
1639
1640  // Set a Declarator for the implicit definition: int foo();
1641  const char *Dummy;
1642  DeclSpec DS;
1643  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1644  Error = Error; // Silence warning.
1645  assert(!Error && "Error setting up implicit decl!");
1646  Declarator D(DS, Declarator::BlockContext);
1647  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1648  D.SetIdentifier(&II, Loc);
1649
1650  // Insert this function into translation-unit scope.
1651
1652  DeclContext *PrevDC = CurContext;
1653  CurContext = Context.getTranslationUnitDecl();
1654
1655  FunctionDecl *FD =
1656    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1657  FD->setImplicit();
1658
1659  CurContext = PrevDC;
1660
1661  return FD;
1662}
1663
1664
1665TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1666                                    ScopedDecl *LastDeclarator) {
1667  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1668  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1669
1670  // Scope manipulation handled by caller.
1671  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1672                                           D.getIdentifierLoc(),
1673                                           D.getIdentifier(),
1674                                           T, LastDeclarator);
1675  if (D.getInvalidType())
1676    NewTD->setInvalidDecl();
1677  return NewTD;
1678}
1679
1680/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1681/// former case, Name will be non-null.  In the later case, Name will be null.
1682/// TagType indicates what kind of tag this is. TK indicates whether this is a
1683/// reference/declaration/definition of a tag.
1684Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1685                             SourceLocation KWLoc, IdentifierInfo *Name,
1686                             SourceLocation NameLoc, AttributeList *Attr) {
1687  // If this is a use of an existing tag, it must have a name.
1688  assert((Name != 0 || TK == TK_Definition) &&
1689         "Nameless record must be a definition!");
1690
1691  TagDecl::TagKind Kind;
1692  switch (TagType) {
1693  default: assert(0 && "Unknown tag type!");
1694  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1695  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1696  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1697  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1698  }
1699
1700  // Two code paths: a new one for structs/unions/classes where we create
1701  //   separate decls for forward declarations, and an old (eventually to
1702  //   be removed) code path for enums.
1703  if (Kind != TagDecl::TK_enum)
1704    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1705
1706  // If this is a named struct, check to see if there was a previous forward
1707  // declaration or definition.
1708  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1709  ScopedDecl *PrevDecl =
1710    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1711
1712  if (PrevDecl) {
1713    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1714            "unexpected Decl type");
1715    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1716      // If this is a use of a previous tag, or if the tag is already declared
1717      // in the same scope (so that the definition/declaration completes or
1718      // rementions the tag), reuse the decl.
1719      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1720        // Make sure that this wasn't declared as an enum and now used as a
1721        // struct or something similar.
1722        if (PrevTagDecl->getTagKind() != Kind) {
1723          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1724          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1725          // Recover by making this an anonymous redefinition.
1726          Name = 0;
1727          PrevDecl = 0;
1728        } else {
1729          // If this is a use or a forward declaration, we're good.
1730          if (TK != TK_Definition)
1731            return PrevDecl;
1732
1733          // Diagnose attempts to redefine a tag.
1734          if (PrevTagDecl->isDefinition()) {
1735            Diag(NameLoc, diag::err_redefinition, Name->getName());
1736            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1737            // If this is a redefinition, recover by making this struct be
1738            // anonymous, which will make any later references get the previous
1739            // definition.
1740            Name = 0;
1741          } else {
1742            // Okay, this is definition of a previously declared or referenced
1743            // tag. Move the location of the decl to be the definition site.
1744            PrevDecl->setLocation(NameLoc);
1745            return PrevDecl;
1746          }
1747        }
1748      }
1749      // If we get here, this is a definition of a new struct type in a nested
1750      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1751      // type.
1752    } else {
1753      // PrevDecl is a namespace.
1754      if (isDeclInScope(PrevDecl, CurContext, S)) {
1755        // The tag name clashes with a namespace name, issue an error and
1756        // recover by making this tag be anonymous.
1757        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1758        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1759        Name = 0;
1760      }
1761    }
1762  }
1763
1764  // If there is an identifier, use the location of the identifier as the
1765  // location of the decl, otherwise use the location of the struct/union
1766  // keyword.
1767  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1768
1769  // Otherwise, if this is the first time we've seen this tag, create the decl.
1770  TagDecl *New;
1771  if (Kind == TagDecl::TK_enum) {
1772    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1773    // enum X { A, B, C } D;    D should chain to X.
1774    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1775    // If this is an undefined enum, warn.
1776    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1777  } else {
1778    // struct/union/class
1779
1780    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1781    // struct X { int A; } D;    D should chain to X.
1782    if (getLangOptions().CPlusPlus)
1783      // FIXME: Look for a way to use RecordDecl for simple structs.
1784      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1785    else
1786      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1787  }
1788
1789  // If this has an identifier, add it to the scope stack.
1790  if (Name) {
1791    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1792    // we find one that is.
1793    while ((S->getFlags() & Scope::DeclScope) == 0)
1794      S = S->getParent();
1795
1796    // Add it to the decl chain.
1797    PushOnScopeChains(New, S);
1798  }
1799
1800  if (Attr)
1801    ProcessDeclAttributeList(New, Attr);
1802  return New;
1803}
1804
1805/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
1806///  the logic for enums, we create separate decls for forward declarations.
1807///  This is called by ActOnTag, but eventually will replace its logic.
1808Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
1809                             SourceLocation KWLoc, IdentifierInfo *Name,
1810                             SourceLocation NameLoc, AttributeList *Attr) {
1811
1812  // If this is a named struct, check to see if there was a previous forward
1813  // declaration or definition.
1814  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1815  ScopedDecl *PrevDecl =
1816    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1817
1818  if (PrevDecl) {
1819    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1820           "unexpected Decl type");
1821
1822    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1823      // If this is a use of a previous tag, or if the tag is already declared
1824      // in the same scope (so that the definition/declaration completes or
1825      // rementions the tag), reuse the decl.
1826      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1827        // Make sure that this wasn't declared as an enum and now used as a
1828        // struct or something similar.
1829        if (PrevTagDecl->getTagKind() != Kind) {
1830          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1831          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1832          // Recover by making this an anonymous redefinition.
1833          Name = 0;
1834          PrevDecl = 0;
1835        } else {
1836          // If this is a use, return the original decl.
1837
1838          // FIXME: In the future, return a variant or some other clue
1839          //  for the consumer of this Decl to know it doesn't own it.
1840          //  For our current ASTs this shouldn't be a problem, but will
1841          //  need to be changed with DeclGroups.
1842          if (TK == TK_Reference)
1843            return PrevDecl;
1844
1845          // The new decl is a definition?
1846          if (TK == TK_Definition) {
1847            // Diagnose attempts to redefine a tag.
1848            if (RecordDecl* DefRecord =
1849                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
1850              Diag(NameLoc, diag::err_redefinition, Name->getName());
1851              Diag(DefRecord->getLocation(), diag::err_previous_definition);
1852              // If this is a redefinition, recover by making this struct be
1853              // anonymous, which will make any later references get the previous
1854              // definition.
1855              Name = 0;
1856              PrevDecl = 0;
1857            }
1858            // Okay, this is definition of a previously declared or referenced
1859            // tag.  We're going to create a new Decl.
1860          }
1861        }
1862        // If we get here we have (another) forward declaration.  Just create
1863        // a new decl.
1864      }
1865      else {
1866        // If we get here, this is a definition of a new struct type in a nested
1867        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
1868        // new decl/type.  We set PrevDecl to NULL so that the Records
1869        // have distinct types.
1870        PrevDecl = 0;
1871      }
1872    } else {
1873      // PrevDecl is a namespace.
1874      if (isDeclInScope(PrevDecl, CurContext, S)) {
1875        // The tag name clashes with a namespace name, issue an error and
1876        // recover by making this tag be anonymous.
1877        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1878        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1879        Name = 0;
1880      }
1881    }
1882  }
1883
1884  // If there is an identifier, use the location of the identifier as the
1885  // location of the decl, otherwise use the location of the struct/union
1886  // keyword.
1887  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1888
1889  // Otherwise, if this is the first time we've seen this tag, create the decl.
1890  TagDecl *New;
1891
1892  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1893  // struct X { int A; } D;    D should chain to X.
1894  if (getLangOptions().CPlusPlus)
1895    // FIXME: Look for a way to use RecordDecl for simple structs.
1896    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1897                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
1898  else
1899    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1900                             dyn_cast_or_null<RecordDecl>(PrevDecl));
1901
1902  // If this has an identifier, add it to the scope stack.
1903  if ((TK == TK_Definition || !PrevDecl) && Name) {
1904    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1905    // we find one that is.
1906    while ((S->getFlags() & Scope::DeclScope) == 0)
1907      S = S->getParent();
1908
1909    // Add it to the decl chain.
1910    PushOnScopeChains(New, S);
1911  }
1912
1913  if (Attr)
1914    ProcessDeclAttributeList(New, Attr);
1915
1916  return New;
1917}
1918
1919
1920/// Collect the instance variables declared in an Objective-C object.  Used in
1921/// the creation of structures from objects using the @defs directive.
1922static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
1923                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
1924  if (Class->getSuperClass())
1925    CollectIvars(Class->getSuperClass(), Ctx, ivars);
1926
1927  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1928  for (ObjCInterfaceDecl::ivar_iterator
1929        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
1930
1931    ObjCIvarDecl* ID = *I;
1932    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
1933                                                ID->getIdentifier(),
1934                                                ID->getType(),
1935                                                ID->getBitWidth()));
1936  }
1937}
1938
1939/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1940/// instance variables of ClassName into Decls.
1941void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
1942                     IdentifierInfo *ClassName,
1943                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
1944  // Check that ClassName is a valid class
1945  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
1946  if (!Class) {
1947    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
1948    return;
1949  }
1950  // Collect the instance variables
1951  CollectIvars(Class, Context, Decls);
1952}
1953
1954QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1955  // This method tries to turn a variable array into a constant
1956  // array even when the size isn't an ICE.  This is necessary
1957  // for compatibility with code that depends on gcc's buggy
1958  // constant expression folding, like struct {char x[(int)(char*)2];}
1959  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1960    APValue Result;
1961    if (VLATy->getSizeExpr() &&
1962        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
1963      llvm::APSInt &Res = Result.getInt();
1964      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1965        return Context.getConstantArrayType(VLATy->getElementType(),
1966                                            Res, ArrayType::Normal, 0);
1967    }
1968  }
1969  return QualType();
1970}
1971
1972/// ActOnField - Each field of a struct/union/class is passed into this in order
1973/// to create a FieldDecl object for it.
1974Sema::DeclTy *Sema::ActOnField(Scope *S,
1975                               SourceLocation DeclStart,
1976                               Declarator &D, ExprTy *BitfieldWidth) {
1977  IdentifierInfo *II = D.getIdentifier();
1978  Expr *BitWidth = (Expr*)BitfieldWidth;
1979  SourceLocation Loc = DeclStart;
1980  if (II) Loc = D.getIdentifierLoc();
1981
1982  // FIXME: Unnamed fields can be handled in various different ways, for
1983  // example, unnamed unions inject all members into the struct namespace!
1984
1985  if (BitWidth) {
1986    // TODO: Validate.
1987    //printf("WARNING: BITFIELDS IGNORED!\n");
1988
1989    // 6.7.2.1p3
1990    // 6.7.2.1p4
1991
1992  } else {
1993    // Not a bitfield.
1994
1995    // validate II.
1996
1997  }
1998
1999  QualType T = GetTypeForDeclarator(D, S);
2000  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2001  bool InvalidDecl = false;
2002
2003  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2004  // than a variably modified type.
2005  if (T->isVariablyModifiedType()) {
2006    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2007    if (!FixedTy.isNull()) {
2008      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2009      T = FixedTy;
2010    } else {
2011      // FIXME: This diagnostic needs work
2012      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2013      InvalidDecl = true;
2014    }
2015  }
2016  // FIXME: Chain fielddecls together.
2017  FieldDecl *NewFD;
2018
2019  if (getLangOptions().CPlusPlus) {
2020    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2021    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2022                                 Loc, II, T, BitWidth);
2023    if (II)
2024      PushOnScopeChains(NewFD, S);
2025  }
2026  else
2027    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2028
2029  ProcessDeclAttributes(NewFD, D);
2030
2031  if (D.getInvalidType() || InvalidDecl)
2032    NewFD->setInvalidDecl();
2033  return NewFD;
2034}
2035
2036/// TranslateIvarVisibility - Translate visibility from a token ID to an
2037///  AST enum value.
2038static ObjCIvarDecl::AccessControl
2039TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2040  switch (ivarVisibility) {
2041    case tok::objc_private: return ObjCIvarDecl::Private;
2042    case tok::objc_public: return ObjCIvarDecl::Public;
2043    case tok::objc_protected: return ObjCIvarDecl::Protected;
2044    case tok::objc_package: return ObjCIvarDecl::Package;
2045    default: assert(false && "Unknown visitibility kind");
2046  }
2047}
2048
2049/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2050/// in order to create an IvarDecl object for it.
2051Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2052                              SourceLocation DeclStart,
2053                              Declarator &D, ExprTy *BitfieldWidth,
2054                              tok::ObjCKeywordKind Visibility) {
2055  IdentifierInfo *II = D.getIdentifier();
2056  Expr *BitWidth = (Expr*)BitfieldWidth;
2057  SourceLocation Loc = DeclStart;
2058  if (II) Loc = D.getIdentifierLoc();
2059
2060  // FIXME: Unnamed fields can be handled in various different ways, for
2061  // example, unnamed unions inject all members into the struct namespace!
2062
2063
2064  if (BitWidth) {
2065    // TODO: Validate.
2066    //printf("WARNING: BITFIELDS IGNORED!\n");
2067
2068    // 6.7.2.1p3
2069    // 6.7.2.1p4
2070
2071  } else {
2072    // Not a bitfield.
2073
2074    // validate II.
2075
2076  }
2077
2078  QualType T = GetTypeForDeclarator(D, S);
2079  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2080  bool InvalidDecl = false;
2081
2082  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2083  // than a variably modified type.
2084  if (T->isVariablyModifiedType()) {
2085    // FIXME: This diagnostic needs work
2086    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2087    InvalidDecl = true;
2088  }
2089
2090  // Get the visibility (access control) for this ivar.
2091  ObjCIvarDecl::AccessControl ac =
2092    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2093                                        : ObjCIvarDecl::None;
2094
2095  // Construct the decl.
2096  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2097                                             (Expr *)BitfieldWidth);
2098
2099  // Process attributes attached to the ivar.
2100  ProcessDeclAttributes(NewID, D);
2101
2102  if (D.getInvalidType() || InvalidDecl)
2103    NewID->setInvalidDecl();
2104
2105  return NewID;
2106}
2107
2108void Sema::ActOnFields(Scope* S,
2109                       SourceLocation RecLoc, DeclTy *RecDecl,
2110                       DeclTy **Fields, unsigned NumFields,
2111                       SourceLocation LBrac, SourceLocation RBrac) {
2112  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2113  assert(EnclosingDecl && "missing record or interface decl");
2114  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2115
2116  if (Record)
2117    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2118      // Diagnose code like:
2119      //     struct S { struct S {} X; };
2120      // We discover this when we complete the outer S.  Reject and ignore the
2121      // outer S.
2122      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2123           DefRecord->getKindName());
2124      Diag(RecLoc, diag::err_previous_definition);
2125      Record->setInvalidDecl();
2126      return;
2127    }
2128
2129  // Verify that all the fields are okay.
2130  unsigned NumNamedMembers = 0;
2131  llvm::SmallVector<FieldDecl*, 32> RecFields;
2132  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2133
2134  for (unsigned i = 0; i != NumFields; ++i) {
2135
2136    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2137    assert(FD && "missing field decl");
2138
2139    // Remember all fields.
2140    RecFields.push_back(FD);
2141
2142    // Get the type for the field.
2143    Type *FDTy = FD->getType().getTypePtr();
2144
2145    // C99 6.7.2.1p2 - A field may not be a function type.
2146    if (FDTy->isFunctionType()) {
2147      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2148           FD->getName());
2149      FD->setInvalidDecl();
2150      EnclosingDecl->setInvalidDecl();
2151      continue;
2152    }
2153    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2154    if (FDTy->isIncompleteType()) {
2155      if (!Record) {  // Incomplete ivar type is always an error.
2156        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2157        FD->setInvalidDecl();
2158        EnclosingDecl->setInvalidDecl();
2159        continue;
2160      }
2161      if (i != NumFields-1 ||                   // ... that the last member ...
2162          !Record->isStruct() ||  // ... of a structure ...
2163          !FDTy->isArrayType()) {         //... may have incomplete array type.
2164        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2165        FD->setInvalidDecl();
2166        EnclosingDecl->setInvalidDecl();
2167        continue;
2168      }
2169      if (NumNamedMembers < 1) {  //... must have more than named member ...
2170        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2171             FD->getName());
2172        FD->setInvalidDecl();
2173        EnclosingDecl->setInvalidDecl();
2174        continue;
2175      }
2176      // Okay, we have a legal flexible array member at the end of the struct.
2177      if (Record)
2178        Record->setHasFlexibleArrayMember(true);
2179    }
2180    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2181    /// field of another structure or the element of an array.
2182    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2183      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2184        // If this is a member of a union, then entire union becomes "flexible".
2185        if (Record && Record->isUnion()) {
2186          Record->setHasFlexibleArrayMember(true);
2187        } else {
2188          // If this is a struct/class and this is not the last element, reject
2189          // it.  Note that GCC supports variable sized arrays in the middle of
2190          // structures.
2191          if (i != NumFields-1) {
2192            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2193                 FD->getName());
2194            FD->setInvalidDecl();
2195            EnclosingDecl->setInvalidDecl();
2196            continue;
2197          }
2198          // We support flexible arrays at the end of structs in other structs
2199          // as an extension.
2200          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2201               FD->getName());
2202          if (Record)
2203            Record->setHasFlexibleArrayMember(true);
2204        }
2205      }
2206    }
2207    /// A field cannot be an Objective-c object
2208    if (FDTy->isObjCInterfaceType()) {
2209      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2210           FD->getName());
2211      FD->setInvalidDecl();
2212      EnclosingDecl->setInvalidDecl();
2213      continue;
2214    }
2215    // Keep track of the number of named members.
2216    if (IdentifierInfo *II = FD->getIdentifier()) {
2217      // Detect duplicate member names.
2218      if (!FieldIDs.insert(II)) {
2219        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2220        // Find the previous decl.
2221        SourceLocation PrevLoc;
2222        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2223          assert(i != e && "Didn't find previous def!");
2224          if (RecFields[i]->getIdentifier() == II) {
2225            PrevLoc = RecFields[i]->getLocation();
2226            break;
2227          }
2228        }
2229        Diag(PrevLoc, diag::err_previous_definition);
2230        FD->setInvalidDecl();
2231        EnclosingDecl->setInvalidDecl();
2232        continue;
2233      }
2234      ++NumNamedMembers;
2235    }
2236  }
2237
2238  // Okay, we successfully defined 'Record'.
2239  if (Record) {
2240    Record->defineBody(Context, &RecFields[0], RecFields.size());
2241    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2242    // Sema::ActOnFinishCXXClassDef.
2243    if (!isa<CXXRecordDecl>(Record))
2244      Consumer.HandleTagDeclDefinition(Record);
2245  } else {
2246    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2247    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2248      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2249    else if (ObjCImplementationDecl *IMPDecl =
2250               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2251      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2252      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2253      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2254    }
2255  }
2256}
2257
2258Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2259                                      DeclTy *lastEnumConst,
2260                                      SourceLocation IdLoc, IdentifierInfo *Id,
2261                                      SourceLocation EqualLoc, ExprTy *val) {
2262  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2263  EnumConstantDecl *LastEnumConst =
2264    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2265  Expr *Val = static_cast<Expr*>(val);
2266
2267  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2268  // we find one that is.
2269  while ((S->getFlags() & Scope::DeclScope) == 0)
2270    S = S->getParent();
2271
2272  // Verify that there isn't already something declared with this name in this
2273  // scope.
2274  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2275    // When in C++, we may get a TagDecl with the same name; in this case the
2276    // enum constant will 'hide' the tag.
2277    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2278           "Received TagDecl when not in C++!");
2279    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2280      if (isa<EnumConstantDecl>(PrevDecl))
2281        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2282      else
2283        Diag(IdLoc, diag::err_redefinition, Id->getName());
2284      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2285      delete Val;
2286      return 0;
2287    }
2288  }
2289
2290  llvm::APSInt EnumVal(32);
2291  QualType EltTy;
2292  if (Val) {
2293    // Make sure to promote the operand type to int.
2294    UsualUnaryConversions(Val);
2295
2296    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2297    SourceLocation ExpLoc;
2298    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2299      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2300           Id->getName());
2301      delete Val;
2302      Val = 0;  // Just forget about it.
2303    } else {
2304      EltTy = Val->getType();
2305    }
2306  }
2307
2308  if (!Val) {
2309    if (LastEnumConst) {
2310      // Assign the last value + 1.
2311      EnumVal = LastEnumConst->getInitVal();
2312      ++EnumVal;
2313
2314      // Check for overflow on increment.
2315      if (EnumVal < LastEnumConst->getInitVal())
2316        Diag(IdLoc, diag::warn_enum_value_overflow);
2317
2318      EltTy = LastEnumConst->getType();
2319    } else {
2320      // First value, set to zero.
2321      EltTy = Context.IntTy;
2322      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2323    }
2324  }
2325
2326  EnumConstantDecl *New =
2327    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2328                             Val, EnumVal,
2329                             LastEnumConst);
2330
2331  // Register this decl in the current scope stack.
2332  PushOnScopeChains(New, S);
2333  return New;
2334}
2335
2336// FIXME: For consistency with ActOnFields(), we should have the parser
2337// pass in the source location for the left/right braces.
2338void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2339                         DeclTy **Elements, unsigned NumElements) {
2340  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2341
2342  if (Enum && Enum->isDefinition()) {
2343    // Diagnose code like:
2344    //   enum e0 {
2345    //     E0 = sizeof(enum e0 { E1 })
2346    //   };
2347    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2348         Enum->getName());
2349    Diag(EnumLoc, diag::err_previous_definition);
2350    Enum->setInvalidDecl();
2351    return;
2352  }
2353  // TODO: If the result value doesn't fit in an int, it must be a long or long
2354  // long value.  ISO C does not support this, but GCC does as an extension,
2355  // emit a warning.
2356  unsigned IntWidth = Context.Target.getIntWidth();
2357
2358  // Verify that all the values are okay, compute the size of the values, and
2359  // reverse the list.
2360  unsigned NumNegativeBits = 0;
2361  unsigned NumPositiveBits = 0;
2362
2363  // Keep track of whether all elements have type int.
2364  bool AllElementsInt = true;
2365
2366  EnumConstantDecl *EltList = 0;
2367  for (unsigned i = 0; i != NumElements; ++i) {
2368    EnumConstantDecl *ECD =
2369      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2370    if (!ECD) continue;  // Already issued a diagnostic.
2371
2372    // If the enum value doesn't fit in an int, emit an extension warning.
2373    const llvm::APSInt &InitVal = ECD->getInitVal();
2374    assert(InitVal.getBitWidth() >= IntWidth &&
2375           "Should have promoted value to int");
2376    if (InitVal.getBitWidth() > IntWidth) {
2377      llvm::APSInt V(InitVal);
2378      V.trunc(IntWidth);
2379      V.extend(InitVal.getBitWidth());
2380      if (V != InitVal)
2381        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2382             InitVal.toString(10));
2383    }
2384
2385    // Keep track of the size of positive and negative values.
2386    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2387      NumPositiveBits = std::max(NumPositiveBits,
2388                                 (unsigned)InitVal.getActiveBits());
2389    else
2390      NumNegativeBits = std::max(NumNegativeBits,
2391                                 (unsigned)InitVal.getMinSignedBits());
2392
2393    // Keep track of whether every enum element has type int (very commmon).
2394    if (AllElementsInt)
2395      AllElementsInt = ECD->getType() == Context.IntTy;
2396
2397    ECD->setNextDeclarator(EltList);
2398    EltList = ECD;
2399  }
2400
2401  // Figure out the type that should be used for this enum.
2402  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2403  QualType BestType;
2404  unsigned BestWidth;
2405
2406  if (NumNegativeBits) {
2407    // If there is a negative value, figure out the smallest integer type (of
2408    // int/long/longlong) that fits.
2409    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2410      BestType = Context.IntTy;
2411      BestWidth = IntWidth;
2412    } else {
2413      BestWidth = Context.Target.getLongWidth();
2414
2415      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2416        BestType = Context.LongTy;
2417      else {
2418        BestWidth = Context.Target.getLongLongWidth();
2419
2420        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2421          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2422        BestType = Context.LongLongTy;
2423      }
2424    }
2425  } else {
2426    // If there is no negative value, figure out which of uint, ulong, ulonglong
2427    // fits.
2428    if (NumPositiveBits <= IntWidth) {
2429      BestType = Context.UnsignedIntTy;
2430      BestWidth = IntWidth;
2431    } else if (NumPositiveBits <=
2432               (BestWidth = Context.Target.getLongWidth())) {
2433      BestType = Context.UnsignedLongTy;
2434    } else {
2435      BestWidth = Context.Target.getLongLongWidth();
2436      assert(NumPositiveBits <= BestWidth &&
2437             "How could an initializer get larger than ULL?");
2438      BestType = Context.UnsignedLongLongTy;
2439    }
2440  }
2441
2442  // Loop over all of the enumerator constants, changing their types to match
2443  // the type of the enum if needed.
2444  for (unsigned i = 0; i != NumElements; ++i) {
2445    EnumConstantDecl *ECD =
2446      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2447    if (!ECD) continue;  // Already issued a diagnostic.
2448
2449    // Standard C says the enumerators have int type, but we allow, as an
2450    // extension, the enumerators to be larger than int size.  If each
2451    // enumerator value fits in an int, type it as an int, otherwise type it the
2452    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2453    // that X has type 'int', not 'unsigned'.
2454    if (ECD->getType() == Context.IntTy) {
2455      // Make sure the init value is signed.
2456      llvm::APSInt IV = ECD->getInitVal();
2457      IV.setIsSigned(true);
2458      ECD->setInitVal(IV);
2459      continue;  // Already int type.
2460    }
2461
2462    // Determine whether the value fits into an int.
2463    llvm::APSInt InitVal = ECD->getInitVal();
2464    bool FitsInInt;
2465    if (InitVal.isUnsigned() || !InitVal.isNegative())
2466      FitsInInt = InitVal.getActiveBits() < IntWidth;
2467    else
2468      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2469
2470    // If it fits into an integer type, force it.  Otherwise force it to match
2471    // the enum decl type.
2472    QualType NewTy;
2473    unsigned NewWidth;
2474    bool NewSign;
2475    if (FitsInInt) {
2476      NewTy = Context.IntTy;
2477      NewWidth = IntWidth;
2478      NewSign = true;
2479    } else if (ECD->getType() == BestType) {
2480      // Already the right type!
2481      continue;
2482    } else {
2483      NewTy = BestType;
2484      NewWidth = BestWidth;
2485      NewSign = BestType->isSignedIntegerType();
2486    }
2487
2488    // Adjust the APSInt value.
2489    InitVal.extOrTrunc(NewWidth);
2490    InitVal.setIsSigned(NewSign);
2491    ECD->setInitVal(InitVal);
2492
2493    // Adjust the Expr initializer and type.
2494    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2495    ECD->setType(NewTy);
2496  }
2497
2498  Enum->defineElements(EltList, BestType);
2499  Consumer.HandleTagDeclDefinition(Enum);
2500}
2501
2502Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2503                                          ExprTy *expr) {
2504  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2505
2506  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2507}
2508
2509Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2510                                     SourceLocation LBrace,
2511                                     SourceLocation RBrace,
2512                                     const char *Lang,
2513                                     unsigned StrSize,
2514                                     DeclTy *D) {
2515  LinkageSpecDecl::LanguageIDs Language;
2516  Decl *dcl = static_cast<Decl *>(D);
2517  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2518    Language = LinkageSpecDecl::lang_c;
2519  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2520    Language = LinkageSpecDecl::lang_cxx;
2521  else {
2522    Diag(Loc, diag::err_bad_language);
2523    return 0;
2524  }
2525
2526  // FIXME: Add all the various semantics of linkage specifications
2527  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2528}
2529