SemaDecl.cpp revision 0b7e678a11ece4288dc01aebb5b17e5eef8f8d2d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
38#include "clang/Lex/Preprocessor.h"
39#include "clang/Lex/HeaderSearch.h"
40#include "llvm/ADT/Triple.h"
41#include <algorithm>
42#include <cstring>
43#include <functional>
44using namespace clang;
45using namespace sema;
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                             Scope *S, CXXScopeSpec *SS,
64                             bool isClassName, bool HasTrailingDot,
65                             ParsedType ObjectTypePtr,
66                             bool WantNontrivialTypeSourceInfo) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = ObjectTypePtr.get();
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return ParsedType();
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        if (WantNontrivialTypeSourceInfo)
93          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
94
95        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
96        QualType T =
97          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
98                            II, NameLoc);
99
100          return ParsedType::make(T);
101      }
102
103      return ParsedType();
104    }
105
106    if (!LookupCtx->isDependentContext() &&
107        RequireCompleteDeclContext(*SS, LookupCtx))
108      return ParsedType();
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::NotFoundInCurrentInstantiation:
141  case LookupResult::FoundOverloaded:
142  case LookupResult::FoundUnresolvedValue:
143    Result.suppressDiagnostics();
144    return ParsedType();
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return ParsedType();
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return ParsedType();
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    if (T.isNull())
197      T = Context.getTypeDeclType(TD);
198
199    if (SS && SS->isNotEmpty()) {
200      if (WantNontrivialTypeSourceInfo) {
201        // Construct a type with type-source information.
202        TypeLocBuilder Builder;
203        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
204
205        T = getElaboratedType(ETK_None, *SS, T);
206        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
207        ElabTL.setKeywordLoc(SourceLocation());
208        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
209        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
210      } else {
211        T = getElaboratedType(ETK_None, *SS, T);
212      }
213    }
214  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
215    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
216    if (!HasTrailingDot)
217      T = Context.getObjCInterfaceType(IDecl);
218  }
219
220  if (T.isNull()) {
221    // If it's not plausibly a type, suppress diagnostics.
222    Result.suppressDiagnostics();
223    return ParsedType();
224  }
225  return ParsedType::make(T);
226}
227
228/// isTagName() - This method is called *for error recovery purposes only*
229/// to determine if the specified name is a valid tag name ("struct foo").  If
230/// so, this returns the TST for the tag corresponding to it (TST_enum,
231/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
232/// where the user forgot to specify the tag.
233DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
234  // Do a tag name lookup in this scope.
235  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
236  LookupName(R, S, false);
237  R.suppressDiagnostics();
238  if (R.getResultKind() == LookupResult::Found)
239    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
240      switch (TD->getTagKind()) {
241      default:         return DeclSpec::TST_unspecified;
242      case TTK_Struct: return DeclSpec::TST_struct;
243      case TTK_Union:  return DeclSpec::TST_union;
244      case TTK_Class:  return DeclSpec::TST_class;
245      case TTK_Enum:   return DeclSpec::TST_enum;
246      }
247    }
248
249  return DeclSpec::TST_unspecified;
250}
251
252bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
253                                   SourceLocation IILoc,
254                                   Scope *S,
255                                   CXXScopeSpec *SS,
256                                   ParsedType &SuggestedType) {
257  // We don't have anything to suggest (yet).
258  SuggestedType = ParsedType();
259
260  // There may have been a typo in the name of the type. Look up typo
261  // results, in case we have something that we can suggest.
262  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
263                      NotForRedeclaration);
264
265  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
266    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
267      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
268          !Result->isInvalidDecl()) {
269        // We found a similarly-named type or interface; suggest that.
270        if (!SS || !SS->isSet())
271          Diag(IILoc, diag::err_unknown_typename_suggest)
272            << &II << Lookup.getLookupName()
273            << FixItHint::CreateReplacement(SourceRange(IILoc),
274                                            Result->getNameAsString());
275        else if (DeclContext *DC = computeDeclContext(*SS, false))
276          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
277            << &II << DC << Lookup.getLookupName() << SS->getRange()
278            << FixItHint::CreateReplacement(SourceRange(IILoc),
279                                            Result->getNameAsString());
280        else
281          llvm_unreachable("could not have corrected a typo here");
282
283        Diag(Result->getLocation(), diag::note_previous_decl)
284          << Result->getDeclName();
285
286        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
287                                    false, false, ParsedType(),
288                                    /*NonTrivialTypeSourceInfo=*/true);
289        return true;
290      }
291    } else if (Lookup.empty()) {
292      // We corrected to a keyword.
293      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
294      Diag(IILoc, diag::err_unknown_typename_suggest)
295        << &II << Corrected;
296      return true;
297    }
298  }
299
300  if (getLangOptions().CPlusPlus) {
301    // See if II is a class template that the user forgot to pass arguments to.
302    UnqualifiedId Name;
303    Name.setIdentifier(&II, IILoc);
304    CXXScopeSpec EmptySS;
305    TemplateTy TemplateResult;
306    bool MemberOfUnknownSpecialization;
307    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
308                       Name, ParsedType(), true, TemplateResult,
309                       MemberOfUnknownSpecialization) == TNK_Type_template) {
310      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
311      Diag(IILoc, diag::err_template_missing_args) << TplName;
312      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
313        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
314          << TplDecl->getTemplateParameters()->getSourceRange();
315      }
316      return true;
317    }
318  }
319
320  // FIXME: Should we move the logic that tries to recover from a missing tag
321  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
322
323  if (!SS || (!SS->isSet() && !SS->isInvalid()))
324    Diag(IILoc, diag::err_unknown_typename) << &II;
325  else if (DeclContext *DC = computeDeclContext(*SS, false))
326    Diag(IILoc, diag::err_typename_nested_not_found)
327      << &II << DC << SS->getRange();
328  else if (isDependentScopeSpecifier(*SS)) {
329    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
330      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
331      << SourceRange(SS->getRange().getBegin(), IILoc)
332      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
333    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
334  } else {
335    assert(SS && SS->isInvalid() &&
336           "Invalid scope specifier has already been diagnosed");
337  }
338
339  return true;
340}
341
342// Determines the context to return to after temporarily entering a
343// context.  This depends in an unnecessarily complicated way on the
344// exact ordering of callbacks from the parser.
345DeclContext *Sema::getContainingDC(DeclContext *DC) {
346
347  // Functions defined inline within classes aren't parsed until we've
348  // finished parsing the top-level class, so the top-level class is
349  // the context we'll need to return to.
350  if (isa<FunctionDecl>(DC)) {
351    DC = DC->getLexicalParent();
352
353    // A function not defined within a class will always return to its
354    // lexical context.
355    if (!isa<CXXRecordDecl>(DC))
356      return DC;
357
358    // A C++ inline method/friend is parsed *after* the topmost class
359    // it was declared in is fully parsed ("complete");  the topmost
360    // class is the context we need to return to.
361    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
362      DC = RD;
363
364    // Return the declaration context of the topmost class the inline method is
365    // declared in.
366    return DC;
367  }
368
369  // ObjCMethodDecls are parsed (for some reason) outside the context
370  // of the class.
371  if (isa<ObjCMethodDecl>(DC))
372    return DC->getLexicalParent()->getLexicalParent();
373
374  return DC->getLexicalParent();
375}
376
377void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
378  assert(getContainingDC(DC) == CurContext &&
379      "The next DeclContext should be lexically contained in the current one.");
380  CurContext = DC;
381  S->setEntity(DC);
382}
383
384void Sema::PopDeclContext() {
385  assert(CurContext && "DeclContext imbalance!");
386
387  CurContext = getContainingDC(CurContext);
388  assert(CurContext && "Popped translation unit!");
389}
390
391/// EnterDeclaratorContext - Used when we must lookup names in the context
392/// of a declarator's nested name specifier.
393///
394void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
395  // C++0x [basic.lookup.unqual]p13:
396  //   A name used in the definition of a static data member of class
397  //   X (after the qualified-id of the static member) is looked up as
398  //   if the name was used in a member function of X.
399  // C++0x [basic.lookup.unqual]p14:
400  //   If a variable member of a namespace is defined outside of the
401  //   scope of its namespace then any name used in the definition of
402  //   the variable member (after the declarator-id) is looked up as
403  //   if the definition of the variable member occurred in its
404  //   namespace.
405  // Both of these imply that we should push a scope whose context
406  // is the semantic context of the declaration.  We can't use
407  // PushDeclContext here because that context is not necessarily
408  // lexically contained in the current context.  Fortunately,
409  // the containing scope should have the appropriate information.
410
411  assert(!S->getEntity() && "scope already has entity");
412
413#ifndef NDEBUG
414  Scope *Ancestor = S->getParent();
415  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
416  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
417#endif
418
419  CurContext = DC;
420  S->setEntity(DC);
421}
422
423void Sema::ExitDeclaratorContext(Scope *S) {
424  assert(S->getEntity() == CurContext && "Context imbalance!");
425
426  // Switch back to the lexical context.  The safety of this is
427  // enforced by an assert in EnterDeclaratorContext.
428  Scope *Ancestor = S->getParent();
429  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
430  CurContext = (DeclContext*) Ancestor->getEntity();
431
432  // We don't need to do anything with the scope, which is going to
433  // disappear.
434}
435
436/// \brief Determine whether we allow overloading of the function
437/// PrevDecl with another declaration.
438///
439/// This routine determines whether overloading is possible, not
440/// whether some new function is actually an overload. It will return
441/// true in C++ (where we can always provide overloads) or, as an
442/// extension, in C when the previous function is already an
443/// overloaded function declaration or has the "overloadable"
444/// attribute.
445static bool AllowOverloadingOfFunction(LookupResult &Previous,
446                                       ASTContext &Context) {
447  if (Context.getLangOptions().CPlusPlus)
448    return true;
449
450  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
451    return true;
452
453  return (Previous.getResultKind() == LookupResult::Found
454          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
455}
456
457/// Add this decl to the scope shadowed decl chains.
458void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
459  // Move up the scope chain until we find the nearest enclosing
460  // non-transparent context. The declaration will be introduced into this
461  // scope.
462  while (S->getEntity() &&
463         ((DeclContext *)S->getEntity())->isTransparentContext())
464    S = S->getParent();
465
466  // Add scoped declarations into their context, so that they can be
467  // found later. Declarations without a context won't be inserted
468  // into any context.
469  if (AddToContext)
470    CurContext->addDecl(D);
471
472  // Out-of-line definitions shouldn't be pushed into scope in C++.
473  // Out-of-line variable and function definitions shouldn't even in C.
474  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
475      D->isOutOfLine())
476    return;
477
478  // Template instantiations should also not be pushed into scope.
479  if (isa<FunctionDecl>(D) &&
480      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
481    return;
482
483  // If this replaces anything in the current scope,
484  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
485                               IEnd = IdResolver.end();
486  for (; I != IEnd; ++I) {
487    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
488      S->RemoveDecl(*I);
489      IdResolver.RemoveDecl(*I);
490
491      // Should only need to replace one decl.
492      break;
493    }
494  }
495
496  S->AddDecl(D);
497
498  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
499    // Implicitly-generated labels may end up getting generated in an order that
500    // isn't strictly lexical, which breaks name lookup. Be careful to insert
501    // the label at the appropriate place in the identifier chain.
502    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
503      DeclContext *IDC = (*I)->getLexicalDeclContext();
504      if (IDC == CurContext) {
505        if (!S->isDeclScope(*I))
506          continue;
507      } else if (IDC->Encloses(CurContext))
508        break;
509    }
510
511    IdResolver.InsertDeclAfter(I, D);
512  } else {
513    IdResolver.AddDecl(D);
514  }
515}
516
517bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
518                         bool ExplicitInstantiationOrSpecialization) {
519  return IdResolver.isDeclInScope(D, Ctx, Context, S,
520                                  ExplicitInstantiationOrSpecialization);
521}
522
523Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
524  DeclContext *TargetDC = DC->getPrimaryContext();
525  do {
526    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
527      if (ScopeDC->getPrimaryContext() == TargetDC)
528        return S;
529  } while ((S = S->getParent()));
530
531  return 0;
532}
533
534static bool isOutOfScopePreviousDeclaration(NamedDecl *,
535                                            DeclContext*,
536                                            ASTContext&);
537
538/// Filters out lookup results that don't fall within the given scope
539/// as determined by isDeclInScope.
540static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
541                                 DeclContext *Ctx, Scope *S,
542                                 bool ConsiderLinkage,
543                                 bool ExplicitInstantiationOrSpecialization) {
544  LookupResult::Filter F = R.makeFilter();
545  while (F.hasNext()) {
546    NamedDecl *D = F.next();
547
548    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
549      continue;
550
551    if (ConsiderLinkage &&
552        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
553      continue;
554
555    F.erase();
556  }
557
558  F.done();
559}
560
561static bool isUsingDecl(NamedDecl *D) {
562  return isa<UsingShadowDecl>(D) ||
563         isa<UnresolvedUsingTypenameDecl>(D) ||
564         isa<UnresolvedUsingValueDecl>(D);
565}
566
567/// Removes using shadow declarations from the lookup results.
568static void RemoveUsingDecls(LookupResult &R) {
569  LookupResult::Filter F = R.makeFilter();
570  while (F.hasNext())
571    if (isUsingDecl(F.next()))
572      F.erase();
573
574  F.done();
575}
576
577/// \brief Check for this common pattern:
578/// @code
579/// class S {
580///   S(const S&); // DO NOT IMPLEMENT
581///   void operator=(const S&); // DO NOT IMPLEMENT
582/// };
583/// @endcode
584static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
585  // FIXME: Should check for private access too but access is set after we get
586  // the decl here.
587  if (D->isThisDeclarationADefinition())
588    return false;
589
590  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
591    return CD->isCopyConstructor();
592  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
593    return Method->isCopyAssignmentOperator();
594  return false;
595}
596
597bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
598  assert(D);
599
600  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
601    return false;
602
603  // Ignore class templates.
604  if (D->getDeclContext()->isDependentContext() ||
605      D->getLexicalDeclContext()->isDependentContext())
606    return false;
607
608  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
609    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
610      return false;
611
612    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
613      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
614        return false;
615    } else {
616      // 'static inline' functions are used in headers; don't warn.
617      if (FD->getStorageClass() == SC_Static &&
618          FD->isInlineSpecified())
619        return false;
620    }
621
622    if (FD->isThisDeclarationADefinition() &&
623        Context.DeclMustBeEmitted(FD))
624      return false;
625
626  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
627    if (!VD->isFileVarDecl() ||
628        VD->getType().isConstant(Context) ||
629        Context.DeclMustBeEmitted(VD))
630      return false;
631
632    if (VD->isStaticDataMember() &&
633        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
634      return false;
635
636  } else {
637    return false;
638  }
639
640  // Only warn for unused decls internal to the translation unit.
641  if (D->getLinkage() == ExternalLinkage)
642    return false;
643
644  return true;
645}
646
647void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
648  if (!D)
649    return;
650
651  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
652    const FunctionDecl *First = FD->getFirstDeclaration();
653    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
654      return; // First should already be in the vector.
655  }
656
657  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
658    const VarDecl *First = VD->getFirstDeclaration();
659    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
660      return; // First should already be in the vector.
661  }
662
663   if (ShouldWarnIfUnusedFileScopedDecl(D))
664     UnusedFileScopedDecls.push_back(D);
665 }
666
667static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
668  if (D->isInvalidDecl())
669    return false;
670
671  if (D->isUsed() || D->hasAttr<UnusedAttr>())
672    return false;
673
674  if (isa<LabelDecl>(D))
675    return true;
676
677  // White-list anything that isn't a local variable.
678  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
679      !D->getDeclContext()->isFunctionOrMethod())
680    return false;
681
682  // Types of valid local variables should be complete, so this should succeed.
683  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
684
685    // White-list anything with an __attribute__((unused)) type.
686    QualType Ty = VD->getType();
687
688    // Only look at the outermost level of typedef.
689    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
690      if (TT->getDecl()->hasAttr<UnusedAttr>())
691        return false;
692    }
693
694    // If we failed to complete the type for some reason, or if the type is
695    // dependent, don't diagnose the variable.
696    if (Ty->isIncompleteType() || Ty->isDependentType())
697      return false;
698
699    if (const TagType *TT = Ty->getAs<TagType>()) {
700      const TagDecl *Tag = TT->getDecl();
701      if (Tag->hasAttr<UnusedAttr>())
702        return false;
703
704      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
705        // FIXME: Checking for the presence of a user-declared constructor
706        // isn't completely accurate; we'd prefer to check that the initializer
707        // has no side effects.
708        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
709          return false;
710      }
711    }
712
713    // TODO: __attribute__((unused)) templates?
714  }
715
716  return true;
717}
718
719/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
720/// unless they are marked attr(unused).
721void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
722  if (!ShouldDiagnoseUnusedDecl(D))
723    return;
724
725  unsigned DiagID;
726  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
727    DiagID = diag::warn_unused_exception_param;
728  else if (isa<LabelDecl>(D))
729    DiagID = diag::warn_unused_label;
730  else
731    DiagID = diag::warn_unused_variable;
732
733  Diag(D->getLocation(), DiagID) << D->getDeclName();
734}
735
736static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
737  // Verify that we have no forward references left.  If so, there was a goto
738  // or address of a label taken, but no definition of it.  Label fwd
739  // definitions are indicated with a null substmt.
740  if (L->getStmt() == 0)
741    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
742}
743
744void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
745  if (S->decl_empty()) return;
746  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
747         "Scope shouldn't contain decls!");
748
749  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
750       I != E; ++I) {
751    Decl *TmpD = (*I);
752    assert(TmpD && "This decl didn't get pushed??");
753
754    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
755    NamedDecl *D = cast<NamedDecl>(TmpD);
756
757    if (!D->getDeclName()) continue;
758
759    // Diagnose unused variables in this scope.
760    if (!S->hasErrorOccurred())
761      DiagnoseUnusedDecl(D);
762
763    // If this was a forward reference to a label, verify it was defined.
764    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
765      CheckPoppedLabel(LD, *this);
766
767    // Remove this name from our lexical scope.
768    IdResolver.RemoveDecl(D);
769  }
770}
771
772/// \brief Look for an Objective-C class in the translation unit.
773///
774/// \param Id The name of the Objective-C class we're looking for. If
775/// typo-correction fixes this name, the Id will be updated
776/// to the fixed name.
777///
778/// \param IdLoc The location of the name in the translation unit.
779///
780/// \param TypoCorrection If true, this routine will attempt typo correction
781/// if there is no class with the given name.
782///
783/// \returns The declaration of the named Objective-C class, or NULL if the
784/// class could not be found.
785ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
786                                              SourceLocation IdLoc,
787                                              bool TypoCorrection) {
788  // The third "scope" argument is 0 since we aren't enabling lazy built-in
789  // creation from this context.
790  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
791
792  if (!IDecl && TypoCorrection) {
793    // Perform typo correction at the given location, but only if we
794    // find an Objective-C class name.
795    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
796    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
797        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
798      Diag(IdLoc, diag::err_undef_interface_suggest)
799        << Id << IDecl->getDeclName()
800        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
801      Diag(IDecl->getLocation(), diag::note_previous_decl)
802        << IDecl->getDeclName();
803
804      Id = IDecl->getIdentifier();
805    }
806  }
807
808  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
809}
810
811/// getNonFieldDeclScope - Retrieves the innermost scope, starting
812/// from S, where a non-field would be declared. This routine copes
813/// with the difference between C and C++ scoping rules in structs and
814/// unions. For example, the following code is well-formed in C but
815/// ill-formed in C++:
816/// @code
817/// struct S6 {
818///   enum { BAR } e;
819/// };
820///
821/// void test_S6() {
822///   struct S6 a;
823///   a.e = BAR;
824/// }
825/// @endcode
826/// For the declaration of BAR, this routine will return a different
827/// scope. The scope S will be the scope of the unnamed enumeration
828/// within S6. In C++, this routine will return the scope associated
829/// with S6, because the enumeration's scope is a transparent
830/// context but structures can contain non-field names. In C, this
831/// routine will return the translation unit scope, since the
832/// enumeration's scope is a transparent context and structures cannot
833/// contain non-field names.
834Scope *Sema::getNonFieldDeclScope(Scope *S) {
835  while (((S->getFlags() & Scope::DeclScope) == 0) ||
836         (S->getEntity() &&
837          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
838         (S->isClassScope() && !getLangOptions().CPlusPlus))
839    S = S->getParent();
840  return S;
841}
842
843/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
844/// file scope.  lazily create a decl for it. ForRedeclaration is true
845/// if we're creating this built-in in anticipation of redeclaring the
846/// built-in.
847NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
848                                     Scope *S, bool ForRedeclaration,
849                                     SourceLocation Loc) {
850  Builtin::ID BID = (Builtin::ID)bid;
851
852  ASTContext::GetBuiltinTypeError Error;
853  QualType R = Context.GetBuiltinType(BID, Error);
854  switch (Error) {
855  case ASTContext::GE_None:
856    // Okay
857    break;
858
859  case ASTContext::GE_Missing_stdio:
860    if (ForRedeclaration)
861      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
862        << Context.BuiltinInfo.GetName(BID);
863    return 0;
864
865  case ASTContext::GE_Missing_setjmp:
866    if (ForRedeclaration)
867      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
868        << Context.BuiltinInfo.GetName(BID);
869    return 0;
870  }
871
872  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
873    Diag(Loc, diag::ext_implicit_lib_function_decl)
874      << Context.BuiltinInfo.GetName(BID)
875      << R;
876    if (Context.BuiltinInfo.getHeaderName(BID) &&
877        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
878          != Diagnostic::Ignored)
879      Diag(Loc, diag::note_please_include_header)
880        << Context.BuiltinInfo.getHeaderName(BID)
881        << Context.BuiltinInfo.GetName(BID);
882  }
883
884  FunctionDecl *New = FunctionDecl::Create(Context,
885                                           Context.getTranslationUnitDecl(),
886                                           Loc, Loc, II, R, /*TInfo=*/0,
887                                           SC_Extern,
888                                           SC_None, false,
889                                           /*hasPrototype=*/true);
890  New->setImplicit();
891
892  // Create Decl objects for each parameter, adding them to the
893  // FunctionDecl.
894  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
895    llvm::SmallVector<ParmVarDecl*, 16> Params;
896    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
897      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
898                                           SourceLocation(), 0,
899                                           FT->getArgType(i), /*TInfo=*/0,
900                                           SC_None, SC_None, 0));
901    New->setParams(Params.data(), Params.size());
902  }
903
904  AddKnownFunctionAttributes(New);
905
906  // TUScope is the translation-unit scope to insert this function into.
907  // FIXME: This is hideous. We need to teach PushOnScopeChains to
908  // relate Scopes to DeclContexts, and probably eliminate CurContext
909  // entirely, but we're not there yet.
910  DeclContext *SavedContext = CurContext;
911  CurContext = Context.getTranslationUnitDecl();
912  PushOnScopeChains(New, TUScope);
913  CurContext = SavedContext;
914  return New;
915}
916
917/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
918/// same name and scope as a previous declaration 'Old'.  Figure out
919/// how to resolve this situation, merging decls or emitting
920/// diagnostics as appropriate. If there was an error, set New to be invalid.
921///
922void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
923  // If the new decl is known invalid already, don't bother doing any
924  // merging checks.
925  if (New->isInvalidDecl()) return;
926
927  // Allow multiple definitions for ObjC built-in typedefs.
928  // FIXME: Verify the underlying types are equivalent!
929  if (getLangOptions().ObjC1) {
930    const IdentifierInfo *TypeID = New->getIdentifier();
931    switch (TypeID->getLength()) {
932    default: break;
933    case 2:
934      if (!TypeID->isStr("id"))
935        break;
936      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
937      // Install the built-in type for 'id', ignoring the current definition.
938      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
939      return;
940    case 5:
941      if (!TypeID->isStr("Class"))
942        break;
943      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
944      // Install the built-in type for 'Class', ignoring the current definition.
945      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
946      return;
947    case 3:
948      if (!TypeID->isStr("SEL"))
949        break;
950      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
951      // Install the built-in type for 'SEL', ignoring the current definition.
952      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
953      return;
954    case 8:
955      if (!TypeID->isStr("Protocol"))
956        break;
957      Context.setObjCProtoType(New->getUnderlyingType());
958      return;
959    }
960    // Fall through - the typedef name was not a builtin type.
961  }
962
963  // Verify the old decl was also a type.
964  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
965  if (!Old) {
966    Diag(New->getLocation(), diag::err_redefinition_different_kind)
967      << New->getDeclName();
968
969    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
970    if (OldD->getLocation().isValid())
971      Diag(OldD->getLocation(), diag::note_previous_definition);
972
973    return New->setInvalidDecl();
974  }
975
976  // If the old declaration is invalid, just give up here.
977  if (Old->isInvalidDecl())
978    return New->setInvalidDecl();
979
980  // Determine the "old" type we'll use for checking and diagnostics.
981  QualType OldType;
982  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
983    OldType = OldTypedef->getUnderlyingType();
984  else
985    OldType = Context.getTypeDeclType(Old);
986
987  // If the typedef types are not identical, reject them in all languages and
988  // with any extensions enabled.
989
990  if (OldType != New->getUnderlyingType() &&
991      Context.getCanonicalType(OldType) !=
992      Context.getCanonicalType(New->getUnderlyingType())) {
993    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
994      << New->getUnderlyingType() << OldType;
995    if (Old->getLocation().isValid())
996      Diag(Old->getLocation(), diag::note_previous_definition);
997    return New->setInvalidDecl();
998  }
999
1000  // The types match.  Link up the redeclaration chain if the old
1001  // declaration was a typedef.
1002  // FIXME: this is a potential source of wierdness if the type
1003  // spellings don't match exactly.
1004  if (isa<TypedefDecl>(Old))
1005    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
1006
1007  if (getLangOptions().Microsoft)
1008    return;
1009
1010  if (getLangOptions().CPlusPlus) {
1011    // C++ [dcl.typedef]p2:
1012    //   In a given non-class scope, a typedef specifier can be used to
1013    //   redefine the name of any type declared in that scope to refer
1014    //   to the type to which it already refers.
1015    if (!isa<CXXRecordDecl>(CurContext))
1016      return;
1017
1018    // C++0x [dcl.typedef]p4:
1019    //   In a given class scope, a typedef specifier can be used to redefine
1020    //   any class-name declared in that scope that is not also a typedef-name
1021    //   to refer to the type to which it already refers.
1022    //
1023    // This wording came in via DR424, which was a correction to the
1024    // wording in DR56, which accidentally banned code like:
1025    //
1026    //   struct S {
1027    //     typedef struct A { } A;
1028    //   };
1029    //
1030    // in the C++03 standard. We implement the C++0x semantics, which
1031    // allow the above but disallow
1032    //
1033    //   struct S {
1034    //     typedef int I;
1035    //     typedef int I;
1036    //   };
1037    //
1038    // since that was the intent of DR56.
1039    if (!isa<TypedefDecl >(Old))
1040      return;
1041
1042    Diag(New->getLocation(), diag::err_redefinition)
1043      << New->getDeclName();
1044    Diag(Old->getLocation(), diag::note_previous_definition);
1045    return New->setInvalidDecl();
1046  }
1047
1048  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1049  // is normally mapped to an error, but can be controlled with
1050  // -Wtypedef-redefinition.  If either the original or the redefinition is
1051  // in a system header, don't emit this for compatibility with GCC.
1052  if (getDiagnostics().getSuppressSystemWarnings() &&
1053      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1054       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1055    return;
1056
1057  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1058    << New->getDeclName();
1059  Diag(Old->getLocation(), diag::note_previous_definition);
1060  return;
1061}
1062
1063/// DeclhasAttr - returns true if decl Declaration already has the target
1064/// attribute.
1065static bool
1066DeclHasAttr(const Decl *D, const Attr *A) {
1067  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1068  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1069    if ((*i)->getKind() == A->getKind()) {
1070      // FIXME: Don't hardcode this check
1071      if (OA && isa<OwnershipAttr>(*i))
1072        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1073      return true;
1074    }
1075
1076  return false;
1077}
1078
1079/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1080static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1081                                ASTContext &C) {
1082  if (!oldDecl->hasAttrs())
1083    return;
1084
1085  bool foundAny = newDecl->hasAttrs();
1086
1087  // Ensure that any moving of objects within the allocated map is done before
1088  // we process them.
1089  if (!foundAny) newDecl->setAttrs(AttrVec());
1090
1091  for (specific_attr_iterator<InheritableAttr>
1092       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1093       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1094    if (!DeclHasAttr(newDecl, *i)) {
1095      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1096      newAttr->setInherited(true);
1097      newDecl->addAttr(newAttr);
1098      foundAny = true;
1099    }
1100  }
1101
1102  if (!foundAny) newDecl->dropAttrs();
1103}
1104
1105/// mergeParamDeclAttributes - Copy attributes from the old parameter
1106/// to the new one.
1107static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1108                                     const ParmVarDecl *oldDecl,
1109                                     ASTContext &C) {
1110  if (!oldDecl->hasAttrs())
1111    return;
1112
1113  bool foundAny = newDecl->hasAttrs();
1114
1115  // Ensure that any moving of objects within the allocated map is
1116  // done before we process them.
1117  if (!foundAny) newDecl->setAttrs(AttrVec());
1118
1119  for (specific_attr_iterator<InheritableParamAttr>
1120       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1121       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1122    if (!DeclHasAttr(newDecl, *i)) {
1123      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1124      newAttr->setInherited(true);
1125      newDecl->addAttr(newAttr);
1126      foundAny = true;
1127    }
1128  }
1129
1130  if (!foundAny) newDecl->dropAttrs();
1131}
1132
1133namespace {
1134
1135/// Used in MergeFunctionDecl to keep track of function parameters in
1136/// C.
1137struct GNUCompatibleParamWarning {
1138  ParmVarDecl *OldParm;
1139  ParmVarDecl *NewParm;
1140  QualType PromotedType;
1141};
1142
1143}
1144
1145/// getSpecialMember - get the special member enum for a method.
1146Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1147  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1148    if (Ctor->isCopyConstructor())
1149      return Sema::CXXCopyConstructor;
1150
1151    return Sema::CXXConstructor;
1152  }
1153
1154  if (isa<CXXDestructorDecl>(MD))
1155    return Sema::CXXDestructor;
1156
1157  assert(MD->isCopyAssignmentOperator() &&
1158         "Must have copy assignment operator");
1159  return Sema::CXXCopyAssignment;
1160}
1161
1162/// canRedefineFunction - checks if a function can be redefined. Currently,
1163/// only extern inline functions can be redefined, and even then only in
1164/// GNU89 mode.
1165static bool canRedefineFunction(const FunctionDecl *FD,
1166                                const LangOptions& LangOpts) {
1167  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1168          FD->isInlineSpecified() &&
1169          FD->getStorageClass() == SC_Extern);
1170}
1171
1172/// MergeFunctionDecl - We just parsed a function 'New' from
1173/// declarator D which has the same name and scope as a previous
1174/// declaration 'Old'.  Figure out how to resolve this situation,
1175/// merging decls or emitting diagnostics as appropriate.
1176///
1177/// In C++, New and Old must be declarations that are not
1178/// overloaded. Use IsOverload to determine whether New and Old are
1179/// overloaded, and to select the Old declaration that New should be
1180/// merged with.
1181///
1182/// Returns true if there was an error, false otherwise.
1183bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1184  // Verify the old decl was also a function.
1185  FunctionDecl *Old = 0;
1186  if (FunctionTemplateDecl *OldFunctionTemplate
1187        = dyn_cast<FunctionTemplateDecl>(OldD))
1188    Old = OldFunctionTemplate->getTemplatedDecl();
1189  else
1190    Old = dyn_cast<FunctionDecl>(OldD);
1191  if (!Old) {
1192    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1193      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1194      Diag(Shadow->getTargetDecl()->getLocation(),
1195           diag::note_using_decl_target);
1196      Diag(Shadow->getUsingDecl()->getLocation(),
1197           diag::note_using_decl) << 0;
1198      return true;
1199    }
1200
1201    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1202      << New->getDeclName();
1203    Diag(OldD->getLocation(), diag::note_previous_definition);
1204    return true;
1205  }
1206
1207  // Determine whether the previous declaration was a definition,
1208  // implicit declaration, or a declaration.
1209  diag::kind PrevDiag;
1210  if (Old->isThisDeclarationADefinition())
1211    PrevDiag = diag::note_previous_definition;
1212  else if (Old->isImplicit())
1213    PrevDiag = diag::note_previous_implicit_declaration;
1214  else
1215    PrevDiag = diag::note_previous_declaration;
1216
1217  QualType OldQType = Context.getCanonicalType(Old->getType());
1218  QualType NewQType = Context.getCanonicalType(New->getType());
1219
1220  // Don't complain about this if we're in GNU89 mode and the old function
1221  // is an extern inline function.
1222  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1223      New->getStorageClass() == SC_Static &&
1224      Old->getStorageClass() != SC_Static &&
1225      !canRedefineFunction(Old, getLangOptions())) {
1226    Diag(New->getLocation(), diag::err_static_non_static)
1227      << New;
1228    Diag(Old->getLocation(), PrevDiag);
1229    return true;
1230  }
1231
1232  // If a function is first declared with a calling convention, but is
1233  // later declared or defined without one, the second decl assumes the
1234  // calling convention of the first.
1235  //
1236  // For the new decl, we have to look at the NON-canonical type to tell the
1237  // difference between a function that really doesn't have a calling
1238  // convention and one that is declared cdecl. That's because in
1239  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1240  // because it is the default calling convention.
1241  //
1242  // Note also that we DO NOT return at this point, because we still have
1243  // other tests to run.
1244  const FunctionType *OldType = cast<FunctionType>(OldQType);
1245  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1246  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1247  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1248  bool RequiresAdjustment = false;
1249  if (OldTypeInfo.getCC() != CC_Default &&
1250      NewTypeInfo.getCC() == CC_Default) {
1251    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1252    RequiresAdjustment = true;
1253  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1254                                     NewTypeInfo.getCC())) {
1255    // Calling conventions really aren't compatible, so complain.
1256    Diag(New->getLocation(), diag::err_cconv_change)
1257      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1258      << (OldTypeInfo.getCC() == CC_Default)
1259      << (OldTypeInfo.getCC() == CC_Default ? "" :
1260          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1261    Diag(Old->getLocation(), diag::note_previous_declaration);
1262    return true;
1263  }
1264
1265  // FIXME: diagnose the other way around?
1266  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1267    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1268    RequiresAdjustment = true;
1269  }
1270
1271  // Merge regparm attribute.
1272  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1273    if (NewTypeInfo.getRegParm()) {
1274      Diag(New->getLocation(), diag::err_regparm_mismatch)
1275        << NewType->getRegParmType()
1276        << OldType->getRegParmType();
1277      Diag(Old->getLocation(), diag::note_previous_declaration);
1278      return true;
1279    }
1280
1281    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1282    RequiresAdjustment = true;
1283  }
1284
1285  if (RequiresAdjustment) {
1286    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1287    New->setType(QualType(NewType, 0));
1288    NewQType = Context.getCanonicalType(New->getType());
1289  }
1290
1291  if (getLangOptions().CPlusPlus) {
1292    // (C++98 13.1p2):
1293    //   Certain function declarations cannot be overloaded:
1294    //     -- Function declarations that differ only in the return type
1295    //        cannot be overloaded.
1296    QualType OldReturnType = OldType->getResultType();
1297    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1298    QualType ResQT;
1299    if (OldReturnType != NewReturnType) {
1300      if (NewReturnType->isObjCObjectPointerType()
1301          && OldReturnType->isObjCObjectPointerType())
1302        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1303      if (ResQT.isNull()) {
1304        if (New->isCXXClassMember() && New->isOutOfLine())
1305          Diag(New->getLocation(),
1306               diag::err_member_def_does_not_match_ret_type) << New;
1307        else
1308          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1309        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1310        return true;
1311      }
1312      else
1313        NewQType = ResQT;
1314    }
1315
1316    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1317    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1318    if (OldMethod && NewMethod) {
1319      // Preserve triviality.
1320      NewMethod->setTrivial(OldMethod->isTrivial());
1321
1322      bool isFriend = NewMethod->getFriendObjectKind();
1323
1324      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1325        //    -- Member function declarations with the same name and the
1326        //       same parameter types cannot be overloaded if any of them
1327        //       is a static member function declaration.
1328        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1329          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1330          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1331          return true;
1332        }
1333
1334        // C++ [class.mem]p1:
1335        //   [...] A member shall not be declared twice in the
1336        //   member-specification, except that a nested class or member
1337        //   class template can be declared and then later defined.
1338        unsigned NewDiag;
1339        if (isa<CXXConstructorDecl>(OldMethod))
1340          NewDiag = diag::err_constructor_redeclared;
1341        else if (isa<CXXDestructorDecl>(NewMethod))
1342          NewDiag = diag::err_destructor_redeclared;
1343        else if (isa<CXXConversionDecl>(NewMethod))
1344          NewDiag = diag::err_conv_function_redeclared;
1345        else
1346          NewDiag = diag::err_member_redeclared;
1347
1348        Diag(New->getLocation(), NewDiag);
1349        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1350
1351      // Complain if this is an explicit declaration of a special
1352      // member that was initially declared implicitly.
1353      //
1354      // As an exception, it's okay to befriend such methods in order
1355      // to permit the implicit constructor/destructor/operator calls.
1356      } else if (OldMethod->isImplicit()) {
1357        if (isFriend) {
1358          NewMethod->setImplicit();
1359        } else {
1360          Diag(NewMethod->getLocation(),
1361               diag::err_definition_of_implicitly_declared_member)
1362            << New << getSpecialMember(OldMethod);
1363          return true;
1364        }
1365      }
1366    }
1367
1368    // (C++98 8.3.5p3):
1369    //   All declarations for a function shall agree exactly in both the
1370    //   return type and the parameter-type-list.
1371    // We also want to respect all the extended bits except noreturn.
1372
1373    // noreturn should now match unless the old type info didn't have it.
1374    QualType OldQTypeForComparison = OldQType;
1375    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1376      assert(OldQType == QualType(OldType, 0));
1377      const FunctionType *OldTypeForComparison
1378        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1379      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1380      assert(OldQTypeForComparison.isCanonical());
1381    }
1382
1383    if (OldQTypeForComparison == NewQType)
1384      return MergeCompatibleFunctionDecls(New, Old);
1385
1386    // Fall through for conflicting redeclarations and redefinitions.
1387  }
1388
1389  // C: Function types need to be compatible, not identical. This handles
1390  // duplicate function decls like "void f(int); void f(enum X);" properly.
1391  if (!getLangOptions().CPlusPlus &&
1392      Context.typesAreCompatible(OldQType, NewQType)) {
1393    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1394    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1395    const FunctionProtoType *OldProto = 0;
1396    if (isa<FunctionNoProtoType>(NewFuncType) &&
1397        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1398      // The old declaration provided a function prototype, but the
1399      // new declaration does not. Merge in the prototype.
1400      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1401      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1402                                                 OldProto->arg_type_end());
1403      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1404                                         ParamTypes.data(), ParamTypes.size(),
1405                                         OldProto->getExtProtoInfo());
1406      New->setType(NewQType);
1407      New->setHasInheritedPrototype();
1408
1409      // Synthesize a parameter for each argument type.
1410      llvm::SmallVector<ParmVarDecl*, 16> Params;
1411      for (FunctionProtoType::arg_type_iterator
1412             ParamType = OldProto->arg_type_begin(),
1413             ParamEnd = OldProto->arg_type_end();
1414           ParamType != ParamEnd; ++ParamType) {
1415        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1416                                                 SourceLocation(),
1417                                                 SourceLocation(), 0,
1418                                                 *ParamType, /*TInfo=*/0,
1419                                                 SC_None, SC_None,
1420                                                 0);
1421        Param->setImplicit();
1422        Params.push_back(Param);
1423      }
1424
1425      New->setParams(Params.data(), Params.size());
1426    }
1427
1428    return MergeCompatibleFunctionDecls(New, Old);
1429  }
1430
1431  // GNU C permits a K&R definition to follow a prototype declaration
1432  // if the declared types of the parameters in the K&R definition
1433  // match the types in the prototype declaration, even when the
1434  // promoted types of the parameters from the K&R definition differ
1435  // from the types in the prototype. GCC then keeps the types from
1436  // the prototype.
1437  //
1438  // If a variadic prototype is followed by a non-variadic K&R definition,
1439  // the K&R definition becomes variadic.  This is sort of an edge case, but
1440  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1441  // C99 6.9.1p8.
1442  if (!getLangOptions().CPlusPlus &&
1443      Old->hasPrototype() && !New->hasPrototype() &&
1444      New->getType()->getAs<FunctionProtoType>() &&
1445      Old->getNumParams() == New->getNumParams()) {
1446    llvm::SmallVector<QualType, 16> ArgTypes;
1447    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1448    const FunctionProtoType *OldProto
1449      = Old->getType()->getAs<FunctionProtoType>();
1450    const FunctionProtoType *NewProto
1451      = New->getType()->getAs<FunctionProtoType>();
1452
1453    // Determine whether this is the GNU C extension.
1454    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1455                                               NewProto->getResultType());
1456    bool LooseCompatible = !MergedReturn.isNull();
1457    for (unsigned Idx = 0, End = Old->getNumParams();
1458         LooseCompatible && Idx != End; ++Idx) {
1459      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1460      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1461      if (Context.typesAreCompatible(OldParm->getType(),
1462                                     NewProto->getArgType(Idx))) {
1463        ArgTypes.push_back(NewParm->getType());
1464      } else if (Context.typesAreCompatible(OldParm->getType(),
1465                                            NewParm->getType(),
1466                                            /*CompareUnqualified=*/true)) {
1467        GNUCompatibleParamWarning Warn
1468          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1469        Warnings.push_back(Warn);
1470        ArgTypes.push_back(NewParm->getType());
1471      } else
1472        LooseCompatible = false;
1473    }
1474
1475    if (LooseCompatible) {
1476      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1477        Diag(Warnings[Warn].NewParm->getLocation(),
1478             diag::ext_param_promoted_not_compatible_with_prototype)
1479          << Warnings[Warn].PromotedType
1480          << Warnings[Warn].OldParm->getType();
1481        if (Warnings[Warn].OldParm->getLocation().isValid())
1482          Diag(Warnings[Warn].OldParm->getLocation(),
1483               diag::note_previous_declaration);
1484      }
1485
1486      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1487                                           ArgTypes.size(),
1488                                           OldProto->getExtProtoInfo()));
1489      return MergeCompatibleFunctionDecls(New, Old);
1490    }
1491
1492    // Fall through to diagnose conflicting types.
1493  }
1494
1495  // A function that has already been declared has been redeclared or defined
1496  // with a different type- show appropriate diagnostic
1497  if (unsigned BuiltinID = Old->getBuiltinID()) {
1498    // The user has declared a builtin function with an incompatible
1499    // signature.
1500    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1501      // The function the user is redeclaring is a library-defined
1502      // function like 'malloc' or 'printf'. Warn about the
1503      // redeclaration, then pretend that we don't know about this
1504      // library built-in.
1505      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1506      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1507        << Old << Old->getType();
1508      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1509      Old->setInvalidDecl();
1510      return false;
1511    }
1512
1513    PrevDiag = diag::note_previous_builtin_declaration;
1514  }
1515
1516  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1517  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1518  return true;
1519}
1520
1521/// \brief Completes the merge of two function declarations that are
1522/// known to be compatible.
1523///
1524/// This routine handles the merging of attributes and other
1525/// properties of function declarations form the old declaration to
1526/// the new declaration, once we know that New is in fact a
1527/// redeclaration of Old.
1528///
1529/// \returns false
1530bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1531  // Merge the attributes
1532  mergeDeclAttributes(New, Old, Context);
1533
1534  // Merge the storage class.
1535  if (Old->getStorageClass() != SC_Extern &&
1536      Old->getStorageClass() != SC_None)
1537    New->setStorageClass(Old->getStorageClass());
1538
1539  // Merge "pure" flag.
1540  if (Old->isPure())
1541    New->setPure();
1542
1543  // Merge the "deleted" flag.
1544  if (Old->isDeleted())
1545    New->setDeleted();
1546
1547  // Merge attributes from the parameters.  These can mismatch with K&R
1548  // declarations.
1549  if (New->getNumParams() == Old->getNumParams())
1550    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1551      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1552                               Context);
1553
1554  if (getLangOptions().CPlusPlus)
1555    return MergeCXXFunctionDecl(New, Old);
1556
1557  return false;
1558}
1559
1560void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1561                                const ObjCMethodDecl *oldMethod) {
1562  // Merge the attributes.
1563  mergeDeclAttributes(newMethod, oldMethod, Context);
1564
1565  // Merge attributes from the parameters.
1566  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1567         ni = newMethod->param_begin(), ne = newMethod->param_end();
1568       ni != ne; ++ni, ++oi)
1569    mergeParamDeclAttributes(*ni, *oi, Context);
1570}
1571
1572/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1573/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1574/// emitting diagnostics as appropriate.
1575///
1576/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1577/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1578/// check them before the initializer is attached.
1579///
1580void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1581  if (New->isInvalidDecl() || Old->isInvalidDecl())
1582    return;
1583
1584  QualType MergedT;
1585  if (getLangOptions().CPlusPlus) {
1586    AutoType *AT = New->getType()->getContainedAutoType();
1587    if (AT && !AT->isDeduced()) {
1588      // We don't know what the new type is until the initializer is attached.
1589      return;
1590    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1591      // These could still be something that needs exception specs checked.
1592      return MergeVarDeclExceptionSpecs(New, Old);
1593    }
1594    // C++ [basic.link]p10:
1595    //   [...] the types specified by all declarations referring to a given
1596    //   object or function shall be identical, except that declarations for an
1597    //   array object can specify array types that differ by the presence or
1598    //   absence of a major array bound (8.3.4).
1599    else if (Old->getType()->isIncompleteArrayType() &&
1600             New->getType()->isArrayType()) {
1601      CanQual<ArrayType> OldArray
1602        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1603      CanQual<ArrayType> NewArray
1604        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1605      if (OldArray->getElementType() == NewArray->getElementType())
1606        MergedT = New->getType();
1607    } else if (Old->getType()->isArrayType() &&
1608             New->getType()->isIncompleteArrayType()) {
1609      CanQual<ArrayType> OldArray
1610        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1611      CanQual<ArrayType> NewArray
1612        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1613      if (OldArray->getElementType() == NewArray->getElementType())
1614        MergedT = Old->getType();
1615    } else if (New->getType()->isObjCObjectPointerType()
1616               && Old->getType()->isObjCObjectPointerType()) {
1617        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1618                                                        Old->getType());
1619    }
1620  } else {
1621    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1622  }
1623  if (MergedT.isNull()) {
1624    Diag(New->getLocation(), diag::err_redefinition_different_type)
1625      << New->getDeclName();
1626    Diag(Old->getLocation(), diag::note_previous_definition);
1627    return New->setInvalidDecl();
1628  }
1629  New->setType(MergedT);
1630}
1631
1632/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1633/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1634/// situation, merging decls or emitting diagnostics as appropriate.
1635///
1636/// Tentative definition rules (C99 6.9.2p2) are checked by
1637/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1638/// definitions here, since the initializer hasn't been attached.
1639///
1640void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1641  // If the new decl is already invalid, don't do any other checking.
1642  if (New->isInvalidDecl())
1643    return;
1644
1645  // Verify the old decl was also a variable.
1646  VarDecl *Old = 0;
1647  if (!Previous.isSingleResult() ||
1648      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1649    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1650      << New->getDeclName();
1651    Diag(Previous.getRepresentativeDecl()->getLocation(),
1652         diag::note_previous_definition);
1653    return New->setInvalidDecl();
1654  }
1655
1656  // C++ [class.mem]p1:
1657  //   A member shall not be declared twice in the member-specification [...]
1658  //
1659  // Here, we need only consider static data members.
1660  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1661    Diag(New->getLocation(), diag::err_duplicate_member)
1662      << New->getIdentifier();
1663    Diag(Old->getLocation(), diag::note_previous_declaration);
1664    New->setInvalidDecl();
1665  }
1666
1667  mergeDeclAttributes(New, Old, Context);
1668
1669  // Merge the types.
1670  MergeVarDeclTypes(New, Old);
1671  if (New->isInvalidDecl())
1672    return;
1673
1674  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1675  if (New->getStorageClass() == SC_Static &&
1676      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1677    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1678    Diag(Old->getLocation(), diag::note_previous_definition);
1679    return New->setInvalidDecl();
1680  }
1681  // C99 6.2.2p4:
1682  //   For an identifier declared with the storage-class specifier
1683  //   extern in a scope in which a prior declaration of that
1684  //   identifier is visible,23) if the prior declaration specifies
1685  //   internal or external linkage, the linkage of the identifier at
1686  //   the later declaration is the same as the linkage specified at
1687  //   the prior declaration. If no prior declaration is visible, or
1688  //   if the prior declaration specifies no linkage, then the
1689  //   identifier has external linkage.
1690  if (New->hasExternalStorage() && Old->hasLinkage())
1691    /* Okay */;
1692  else if (New->getStorageClass() != SC_Static &&
1693           Old->getStorageClass() == SC_Static) {
1694    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1695    Diag(Old->getLocation(), diag::note_previous_definition);
1696    return New->setInvalidDecl();
1697  }
1698
1699  // Check if extern is followed by non-extern and vice-versa.
1700  if (New->hasExternalStorage() &&
1701      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1702    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1703    Diag(Old->getLocation(), diag::note_previous_definition);
1704    return New->setInvalidDecl();
1705  }
1706  if (Old->hasExternalStorage() &&
1707      !New->hasLinkage() && New->isLocalVarDecl()) {
1708    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1709    Diag(Old->getLocation(), diag::note_previous_definition);
1710    return New->setInvalidDecl();
1711  }
1712
1713  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1714
1715  // FIXME: The test for external storage here seems wrong? We still
1716  // need to check for mismatches.
1717  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1718      // Don't complain about out-of-line definitions of static members.
1719      !(Old->getLexicalDeclContext()->isRecord() &&
1720        !New->getLexicalDeclContext()->isRecord())) {
1721    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1722    Diag(Old->getLocation(), diag::note_previous_definition);
1723    return New->setInvalidDecl();
1724  }
1725
1726  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1727    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1728    Diag(Old->getLocation(), diag::note_previous_definition);
1729  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1730    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1731    Diag(Old->getLocation(), diag::note_previous_definition);
1732  }
1733
1734  // C++ doesn't have tentative definitions, so go right ahead and check here.
1735  const VarDecl *Def;
1736  if (getLangOptions().CPlusPlus &&
1737      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1738      (Def = Old->getDefinition())) {
1739    Diag(New->getLocation(), diag::err_redefinition)
1740      << New->getDeclName();
1741    Diag(Def->getLocation(), diag::note_previous_definition);
1742    New->setInvalidDecl();
1743    return;
1744  }
1745  // c99 6.2.2 P4.
1746  // For an identifier declared with the storage-class specifier extern in a
1747  // scope in which a prior declaration of that identifier is visible, if
1748  // the prior declaration specifies internal or external linkage, the linkage
1749  // of the identifier at the later declaration is the same as the linkage
1750  // specified at the prior declaration.
1751  // FIXME. revisit this code.
1752  if (New->hasExternalStorage() &&
1753      Old->getLinkage() == InternalLinkage &&
1754      New->getDeclContext() == Old->getDeclContext())
1755    New->setStorageClass(Old->getStorageClass());
1756
1757  // Keep a chain of previous declarations.
1758  New->setPreviousDeclaration(Old);
1759
1760  // Inherit access appropriately.
1761  New->setAccess(Old->getAccess());
1762}
1763
1764/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1765/// no declarator (e.g. "struct foo;") is parsed.
1766Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1767                                       DeclSpec &DS) {
1768  Decl *TagD = 0;
1769  TagDecl *Tag = 0;
1770  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1771      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1772      DS.getTypeSpecType() == DeclSpec::TST_union ||
1773      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1774    TagD = DS.getRepAsDecl();
1775
1776    if (!TagD) // We probably had an error
1777      return 0;
1778
1779    // Note that the above type specs guarantee that the
1780    // type rep is a Decl, whereas in many of the others
1781    // it's a Type.
1782    Tag = dyn_cast<TagDecl>(TagD);
1783  }
1784
1785  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1786    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1787    // or incomplete types shall not be restrict-qualified."
1788    if (TypeQuals & DeclSpec::TQ_restrict)
1789      Diag(DS.getRestrictSpecLoc(),
1790           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1791           << DS.getSourceRange();
1792  }
1793
1794  if (DS.isFriendSpecified()) {
1795    // If we're dealing with a decl but not a TagDecl, assume that
1796    // whatever routines created it handled the friendship aspect.
1797    if (TagD && !Tag)
1798      return 0;
1799    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1800  }
1801
1802  // Track whether we warned about the fact that there aren't any
1803  // declarators.
1804  bool emittedWarning = false;
1805
1806  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1807    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1808
1809    if (!Record->getDeclName() && Record->isDefinition() &&
1810        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1811      if (getLangOptions().CPlusPlus ||
1812          Record->getDeclContext()->isRecord())
1813        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1814
1815      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1816        << DS.getSourceRange();
1817      emittedWarning = true;
1818    }
1819  }
1820
1821  // Check for Microsoft C extension: anonymous struct.
1822  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1823      CurContext->isRecord() &&
1824      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1825    // Handle 2 kinds of anonymous struct:
1826    //   struct STRUCT;
1827    // and
1828    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1829    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1830    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1831        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1832         DS.getRepAsType().get()->isStructureType())) {
1833      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1834        << DS.getSourceRange();
1835      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1836    }
1837  }
1838
1839  if (getLangOptions().CPlusPlus &&
1840      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1841    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1842      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1843          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
1844        Diag(Enum->getLocation(), diag::ext_no_declarators)
1845          << DS.getSourceRange();
1846        emittedWarning = true;
1847      }
1848
1849  // Skip all the checks below if we have a type error.
1850  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
1851
1852  if (!DS.isMissingDeclaratorOk()) {
1853    // Warn about typedefs of enums without names, since this is an
1854    // extension in both Microsoft and GNU.
1855    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1856        Tag && isa<EnumDecl>(Tag)) {
1857      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1858        << DS.getSourceRange();
1859      return Tag;
1860    }
1861
1862    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1863      << DS.getSourceRange();
1864    emittedWarning = true;
1865  }
1866
1867  // We're going to complain about a bunch of spurious specifiers;
1868  // only do this if we're declaring a tag, because otherwise we
1869  // should be getting diag::ext_no_declarators.
1870  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
1871    return TagD;
1872
1873  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
1874    Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
1875      << DeclSpec::getSpecifierName(scs);
1876  if (DS.isThreadSpecified())
1877    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
1878  if (DS.getTypeQualifiers()) {
1879    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1880      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
1881    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1882      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
1883    // Restrict is covered above.
1884  }
1885  if (DS.isInlineSpecified())
1886    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
1887  if (DS.isVirtualSpecified())
1888    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
1889  if (DS.isExplicitSpecified())
1890    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
1891
1892  // FIXME: Warn on useless attributes
1893
1894  return TagD;
1895}
1896
1897/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1898/// builds a statement for it and returns it so it is evaluated.
1899StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1900  StmtResult R;
1901  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1902    Expr *Exp = DS.getRepAsExpr();
1903    QualType Ty = Exp->getType();
1904    if (Ty->isPointerType()) {
1905      do
1906        Ty = Ty->getAs<PointerType>()->getPointeeType();
1907      while (Ty->isPointerType());
1908    }
1909    if (Ty->isVariableArrayType()) {
1910      R = ActOnExprStmt(MakeFullExpr(Exp));
1911    }
1912  }
1913  return R;
1914}
1915
1916/// We are trying to inject an anonymous member into the given scope;
1917/// check if there's an existing declaration that can't be overloaded.
1918///
1919/// \return true if this is a forbidden redeclaration
1920static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1921                                         Scope *S,
1922                                         DeclContext *Owner,
1923                                         DeclarationName Name,
1924                                         SourceLocation NameLoc,
1925                                         unsigned diagnostic) {
1926  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1927                 Sema::ForRedeclaration);
1928  if (!SemaRef.LookupName(R, S)) return false;
1929
1930  if (R.getAsSingle<TagDecl>())
1931    return false;
1932
1933  // Pick a representative declaration.
1934  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1935  assert(PrevDecl && "Expected a non-null Decl");
1936
1937  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1938    return false;
1939
1940  SemaRef.Diag(NameLoc, diagnostic) << Name;
1941  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1942
1943  return true;
1944}
1945
1946/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1947/// anonymous struct or union AnonRecord into the owning context Owner
1948/// and scope S. This routine will be invoked just after we realize
1949/// that an unnamed union or struct is actually an anonymous union or
1950/// struct, e.g.,
1951///
1952/// @code
1953/// union {
1954///   int i;
1955///   float f;
1956/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1957///    // f into the surrounding scope.x
1958/// @endcode
1959///
1960/// This routine is recursive, injecting the names of nested anonymous
1961/// structs/unions into the owning context and scope as well.
1962static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1963                                                DeclContext *Owner,
1964                                                RecordDecl *AnonRecord,
1965                                                AccessSpecifier AS,
1966                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1967                                                      bool MSAnonStruct) {
1968  unsigned diagKind
1969    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1970                            : diag::err_anonymous_struct_member_redecl;
1971
1972  bool Invalid = false;
1973
1974  // Look every FieldDecl and IndirectFieldDecl with a name.
1975  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1976                               DEnd = AnonRecord->decls_end();
1977       D != DEnd; ++D) {
1978    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1979        cast<NamedDecl>(*D)->getDeclName()) {
1980      ValueDecl *VD = cast<ValueDecl>(*D);
1981      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1982                                       VD->getLocation(), diagKind)) {
1983        // C++ [class.union]p2:
1984        //   The names of the members of an anonymous union shall be
1985        //   distinct from the names of any other entity in the
1986        //   scope in which the anonymous union is declared.
1987        Invalid = true;
1988      } else {
1989        // C++ [class.union]p2:
1990        //   For the purpose of name lookup, after the anonymous union
1991        //   definition, the members of the anonymous union are
1992        //   considered to have been defined in the scope in which the
1993        //   anonymous union is declared.
1994        unsigned OldChainingSize = Chaining.size();
1995        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1996          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1997               PE = IF->chain_end(); PI != PE; ++PI)
1998            Chaining.push_back(*PI);
1999        else
2000          Chaining.push_back(VD);
2001
2002        assert(Chaining.size() >= 2);
2003        NamedDecl **NamedChain =
2004          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2005        for (unsigned i = 0; i < Chaining.size(); i++)
2006          NamedChain[i] = Chaining[i];
2007
2008        IndirectFieldDecl* IndirectField =
2009          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2010                                    VD->getIdentifier(), VD->getType(),
2011                                    NamedChain, Chaining.size());
2012
2013        IndirectField->setAccess(AS);
2014        IndirectField->setImplicit();
2015        SemaRef.PushOnScopeChains(IndirectField, S);
2016
2017        // That includes picking up the appropriate access specifier.
2018        if (AS != AS_none) IndirectField->setAccess(AS);
2019
2020        Chaining.resize(OldChainingSize);
2021      }
2022    }
2023  }
2024
2025  return Invalid;
2026}
2027
2028/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2029/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2030/// illegal input values are mapped to SC_None.
2031static StorageClass
2032StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2033  switch (StorageClassSpec) {
2034  case DeclSpec::SCS_unspecified:    return SC_None;
2035  case DeclSpec::SCS_extern:         return SC_Extern;
2036  case DeclSpec::SCS_static:         return SC_Static;
2037  case DeclSpec::SCS_auto:           return SC_Auto;
2038  case DeclSpec::SCS_register:       return SC_Register;
2039  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2040    // Illegal SCSs map to None: error reporting is up to the caller.
2041  case DeclSpec::SCS_mutable:        // Fall through.
2042  case DeclSpec::SCS_typedef:        return SC_None;
2043  }
2044  llvm_unreachable("unknown storage class specifier");
2045}
2046
2047/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2048/// a StorageClass. Any error reporting is up to the caller:
2049/// illegal input values are mapped to SC_None.
2050static StorageClass
2051StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2052  switch (StorageClassSpec) {
2053  case DeclSpec::SCS_unspecified:    return SC_None;
2054  case DeclSpec::SCS_extern:         return SC_Extern;
2055  case DeclSpec::SCS_static:         return SC_Static;
2056  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2057    // Illegal SCSs map to None: error reporting is up to the caller.
2058  case DeclSpec::SCS_auto:           // Fall through.
2059  case DeclSpec::SCS_mutable:        // Fall through.
2060  case DeclSpec::SCS_register:       // Fall through.
2061  case DeclSpec::SCS_typedef:        return SC_None;
2062  }
2063  llvm_unreachable("unknown storage class specifier");
2064}
2065
2066/// BuildAnonymousStructOrUnion - Handle the declaration of an
2067/// anonymous structure or union. Anonymous unions are a C++ feature
2068/// (C++ [class.union]) and a GNU C extension; anonymous structures
2069/// are a GNU C and GNU C++ extension.
2070Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2071                                             AccessSpecifier AS,
2072                                             RecordDecl *Record) {
2073  DeclContext *Owner = Record->getDeclContext();
2074
2075  // Diagnose whether this anonymous struct/union is an extension.
2076  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2077    Diag(Record->getLocation(), diag::ext_anonymous_union);
2078  else if (!Record->isUnion())
2079    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2080
2081  // C and C++ require different kinds of checks for anonymous
2082  // structs/unions.
2083  bool Invalid = false;
2084  if (getLangOptions().CPlusPlus) {
2085    const char* PrevSpec = 0;
2086    unsigned DiagID;
2087    // C++ [class.union]p3:
2088    //   Anonymous unions declared in a named namespace or in the
2089    //   global namespace shall be declared static.
2090    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2091        (isa<TranslationUnitDecl>(Owner) ||
2092         (isa<NamespaceDecl>(Owner) &&
2093          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2094      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2095      Invalid = true;
2096
2097      // Recover by adding 'static'.
2098      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2099                             PrevSpec, DiagID, getLangOptions());
2100    }
2101    // C++ [class.union]p3:
2102    //   A storage class is not allowed in a declaration of an
2103    //   anonymous union in a class scope.
2104    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2105             isa<RecordDecl>(Owner)) {
2106      Diag(DS.getStorageClassSpecLoc(),
2107           diag::err_anonymous_union_with_storage_spec);
2108      Invalid = true;
2109
2110      // Recover by removing the storage specifier.
2111      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2112                             PrevSpec, DiagID, getLangOptions());
2113    }
2114
2115    // C++ [class.union]p2:
2116    //   The member-specification of an anonymous union shall only
2117    //   define non-static data members. [Note: nested types and
2118    //   functions cannot be declared within an anonymous union. ]
2119    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2120                                 MemEnd = Record->decls_end();
2121         Mem != MemEnd; ++Mem) {
2122      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2123        // C++ [class.union]p3:
2124        //   An anonymous union shall not have private or protected
2125        //   members (clause 11).
2126        assert(FD->getAccess() != AS_none);
2127        if (FD->getAccess() != AS_public) {
2128          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2129            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2130          Invalid = true;
2131        }
2132
2133        if (CheckNontrivialField(FD))
2134          Invalid = true;
2135      } else if ((*Mem)->isImplicit()) {
2136        // Any implicit members are fine.
2137      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2138        // This is a type that showed up in an
2139        // elaborated-type-specifier inside the anonymous struct or
2140        // union, but which actually declares a type outside of the
2141        // anonymous struct or union. It's okay.
2142      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2143        if (!MemRecord->isAnonymousStructOrUnion() &&
2144            MemRecord->getDeclName()) {
2145          // Visual C++ allows type definition in anonymous struct or union.
2146          if (getLangOptions().Microsoft)
2147            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2148              << (int)Record->isUnion();
2149          else {
2150            // This is a nested type declaration.
2151            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2152              << (int)Record->isUnion();
2153            Invalid = true;
2154          }
2155        }
2156      } else if (isa<AccessSpecDecl>(*Mem)) {
2157        // Any access specifier is fine.
2158      } else {
2159        // We have something that isn't a non-static data
2160        // member. Complain about it.
2161        unsigned DK = diag::err_anonymous_record_bad_member;
2162        if (isa<TypeDecl>(*Mem))
2163          DK = diag::err_anonymous_record_with_type;
2164        else if (isa<FunctionDecl>(*Mem))
2165          DK = diag::err_anonymous_record_with_function;
2166        else if (isa<VarDecl>(*Mem))
2167          DK = diag::err_anonymous_record_with_static;
2168
2169        // Visual C++ allows type definition in anonymous struct or union.
2170        if (getLangOptions().Microsoft &&
2171            DK == diag::err_anonymous_record_with_type)
2172          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2173            << (int)Record->isUnion();
2174        else {
2175          Diag((*Mem)->getLocation(), DK)
2176              << (int)Record->isUnion();
2177          Invalid = true;
2178        }
2179      }
2180    }
2181  }
2182
2183  if (!Record->isUnion() && !Owner->isRecord()) {
2184    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2185      << (int)getLangOptions().CPlusPlus;
2186    Invalid = true;
2187  }
2188
2189  // Mock up a declarator.
2190  Declarator Dc(DS, Declarator::TypeNameContext);
2191  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2192  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2193
2194  // Create a declaration for this anonymous struct/union.
2195  NamedDecl *Anon = 0;
2196  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2197    Anon = FieldDecl::Create(Context, OwningClass,
2198                             DS.getSourceRange().getBegin(),
2199                             Record->getLocation(),
2200                             /*IdentifierInfo=*/0,
2201                             Context.getTypeDeclType(Record),
2202                             TInfo,
2203                             /*BitWidth=*/0, /*Mutable=*/false);
2204    Anon->setAccess(AS);
2205    if (getLangOptions().CPlusPlus)
2206      FieldCollector->Add(cast<FieldDecl>(Anon));
2207  } else {
2208    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2209    assert(SCSpec != DeclSpec::SCS_typedef &&
2210           "Parser allowed 'typedef' as storage class VarDecl.");
2211    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2212    if (SCSpec == DeclSpec::SCS_mutable) {
2213      // mutable can only appear on non-static class members, so it's always
2214      // an error here
2215      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2216      Invalid = true;
2217      SC = SC_None;
2218    }
2219    SCSpec = DS.getStorageClassSpecAsWritten();
2220    VarDecl::StorageClass SCAsWritten
2221      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2222
2223    Anon = VarDecl::Create(Context, Owner,
2224                           DS.getSourceRange().getBegin(),
2225                           Record->getLocation(), /*IdentifierInfo=*/0,
2226                           Context.getTypeDeclType(Record),
2227                           TInfo, SC, SCAsWritten);
2228  }
2229  Anon->setImplicit();
2230
2231  // Add the anonymous struct/union object to the current
2232  // context. We'll be referencing this object when we refer to one of
2233  // its members.
2234  Owner->addDecl(Anon);
2235
2236  // Inject the members of the anonymous struct/union into the owning
2237  // context and into the identifier resolver chain for name lookup
2238  // purposes.
2239  llvm::SmallVector<NamedDecl*, 2> Chain;
2240  Chain.push_back(Anon);
2241
2242  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2243                                          Chain, false))
2244    Invalid = true;
2245
2246  // Mark this as an anonymous struct/union type. Note that we do not
2247  // do this until after we have already checked and injected the
2248  // members of this anonymous struct/union type, because otherwise
2249  // the members could be injected twice: once by DeclContext when it
2250  // builds its lookup table, and once by
2251  // InjectAnonymousStructOrUnionMembers.
2252  Record->setAnonymousStructOrUnion(true);
2253
2254  if (Invalid)
2255    Anon->setInvalidDecl();
2256
2257  return Anon;
2258}
2259
2260/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2261/// Microsoft C anonymous structure.
2262/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2263/// Example:
2264///
2265/// struct A { int a; };
2266/// struct B { struct A; int b; };
2267///
2268/// void foo() {
2269///   B var;
2270///   var.a = 3;
2271/// }
2272///
2273Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2274                                           RecordDecl *Record) {
2275
2276  // If there is no Record, get the record via the typedef.
2277  if (!Record)
2278    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2279
2280  // Mock up a declarator.
2281  Declarator Dc(DS, Declarator::TypeNameContext);
2282  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2283  assert(TInfo && "couldn't build declarator info for anonymous struct");
2284
2285  // Create a declaration for this anonymous struct.
2286  NamedDecl* Anon = FieldDecl::Create(Context,
2287                             cast<RecordDecl>(CurContext),
2288                             DS.getSourceRange().getBegin(),
2289                             DS.getSourceRange().getBegin(),
2290                             /*IdentifierInfo=*/0,
2291                             Context.getTypeDeclType(Record),
2292                             TInfo,
2293                             /*BitWidth=*/0, /*Mutable=*/false);
2294  Anon->setImplicit();
2295
2296  // Add the anonymous struct object to the current context.
2297  CurContext->addDecl(Anon);
2298
2299  // Inject the members of the anonymous struct into the current
2300  // context and into the identifier resolver chain for name lookup
2301  // purposes.
2302  llvm::SmallVector<NamedDecl*, 2> Chain;
2303  Chain.push_back(Anon);
2304
2305  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2306                                          Record->getDefinition(),
2307                                          AS_none, Chain, true))
2308    Anon->setInvalidDecl();
2309
2310  return Anon;
2311}
2312
2313/// GetNameForDeclarator - Determine the full declaration name for the
2314/// given Declarator.
2315DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2316  return GetNameFromUnqualifiedId(D.getName());
2317}
2318
2319/// \brief Retrieves the declaration name from a parsed unqualified-id.
2320DeclarationNameInfo
2321Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2322  DeclarationNameInfo NameInfo;
2323  NameInfo.setLoc(Name.StartLocation);
2324
2325  switch (Name.getKind()) {
2326
2327  case UnqualifiedId::IK_Identifier:
2328    NameInfo.setName(Name.Identifier);
2329    NameInfo.setLoc(Name.StartLocation);
2330    return NameInfo;
2331
2332  case UnqualifiedId::IK_OperatorFunctionId:
2333    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2334                                           Name.OperatorFunctionId.Operator));
2335    NameInfo.setLoc(Name.StartLocation);
2336    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2337      = Name.OperatorFunctionId.SymbolLocations[0];
2338    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2339      = Name.EndLocation.getRawEncoding();
2340    return NameInfo;
2341
2342  case UnqualifiedId::IK_LiteralOperatorId:
2343    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2344                                                           Name.Identifier));
2345    NameInfo.setLoc(Name.StartLocation);
2346    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2347    return NameInfo;
2348
2349  case UnqualifiedId::IK_ConversionFunctionId: {
2350    TypeSourceInfo *TInfo;
2351    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2352    if (Ty.isNull())
2353      return DeclarationNameInfo();
2354    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2355                                               Context.getCanonicalType(Ty)));
2356    NameInfo.setLoc(Name.StartLocation);
2357    NameInfo.setNamedTypeInfo(TInfo);
2358    return NameInfo;
2359  }
2360
2361  case UnqualifiedId::IK_ConstructorName: {
2362    TypeSourceInfo *TInfo;
2363    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2364    if (Ty.isNull())
2365      return DeclarationNameInfo();
2366    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2367                                              Context.getCanonicalType(Ty)));
2368    NameInfo.setLoc(Name.StartLocation);
2369    NameInfo.setNamedTypeInfo(TInfo);
2370    return NameInfo;
2371  }
2372
2373  case UnqualifiedId::IK_ConstructorTemplateId: {
2374    // In well-formed code, we can only have a constructor
2375    // template-id that refers to the current context, so go there
2376    // to find the actual type being constructed.
2377    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2378    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2379      return DeclarationNameInfo();
2380
2381    // Determine the type of the class being constructed.
2382    QualType CurClassType = Context.getTypeDeclType(CurClass);
2383
2384    // FIXME: Check two things: that the template-id names the same type as
2385    // CurClassType, and that the template-id does not occur when the name
2386    // was qualified.
2387
2388    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2389                                    Context.getCanonicalType(CurClassType)));
2390    NameInfo.setLoc(Name.StartLocation);
2391    // FIXME: should we retrieve TypeSourceInfo?
2392    NameInfo.setNamedTypeInfo(0);
2393    return NameInfo;
2394  }
2395
2396  case UnqualifiedId::IK_DestructorName: {
2397    TypeSourceInfo *TInfo;
2398    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2399    if (Ty.isNull())
2400      return DeclarationNameInfo();
2401    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2402                                              Context.getCanonicalType(Ty)));
2403    NameInfo.setLoc(Name.StartLocation);
2404    NameInfo.setNamedTypeInfo(TInfo);
2405    return NameInfo;
2406  }
2407
2408  case UnqualifiedId::IK_TemplateId: {
2409    TemplateName TName = Name.TemplateId->Template.get();
2410    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2411    return Context.getNameForTemplate(TName, TNameLoc);
2412  }
2413
2414  } // switch (Name.getKind())
2415
2416  assert(false && "Unknown name kind");
2417  return DeclarationNameInfo();
2418}
2419
2420/// isNearlyMatchingFunction - Determine whether the C++ functions
2421/// Declaration and Definition are "nearly" matching. This heuristic
2422/// is used to improve diagnostics in the case where an out-of-line
2423/// function definition doesn't match any declaration within
2424/// the class or namespace.
2425static bool isNearlyMatchingFunction(ASTContext &Context,
2426                                     FunctionDecl *Declaration,
2427                                     FunctionDecl *Definition) {
2428  if (Declaration->param_size() != Definition->param_size())
2429    return false;
2430  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2431    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2432    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2433
2434    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2435                                        DefParamTy.getNonReferenceType()))
2436      return false;
2437  }
2438
2439  return true;
2440}
2441
2442/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2443/// declarator needs to be rebuilt in the current instantiation.
2444/// Any bits of declarator which appear before the name are valid for
2445/// consideration here.  That's specifically the type in the decl spec
2446/// and the base type in any member-pointer chunks.
2447static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2448                                                    DeclarationName Name) {
2449  // The types we specifically need to rebuild are:
2450  //   - typenames, typeofs, and decltypes
2451  //   - types which will become injected class names
2452  // Of course, we also need to rebuild any type referencing such a
2453  // type.  It's safest to just say "dependent", but we call out a
2454  // few cases here.
2455
2456  DeclSpec &DS = D.getMutableDeclSpec();
2457  switch (DS.getTypeSpecType()) {
2458  case DeclSpec::TST_typename:
2459  case DeclSpec::TST_typeofType:
2460  case DeclSpec::TST_decltype: {
2461    // Grab the type from the parser.
2462    TypeSourceInfo *TSI = 0;
2463    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2464    if (T.isNull() || !T->isDependentType()) break;
2465
2466    // Make sure there's a type source info.  This isn't really much
2467    // of a waste; most dependent types should have type source info
2468    // attached already.
2469    if (!TSI)
2470      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2471
2472    // Rebuild the type in the current instantiation.
2473    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2474    if (!TSI) return true;
2475
2476    // Store the new type back in the decl spec.
2477    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2478    DS.UpdateTypeRep(LocType);
2479    break;
2480  }
2481
2482  case DeclSpec::TST_typeofExpr: {
2483    Expr *E = DS.getRepAsExpr();
2484    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2485    if (Result.isInvalid()) return true;
2486    DS.UpdateExprRep(Result.get());
2487    break;
2488  }
2489
2490  default:
2491    // Nothing to do for these decl specs.
2492    break;
2493  }
2494
2495  // It doesn't matter what order we do this in.
2496  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2497    DeclaratorChunk &Chunk = D.getTypeObject(I);
2498
2499    // The only type information in the declarator which can come
2500    // before the declaration name is the base type of a member
2501    // pointer.
2502    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2503      continue;
2504
2505    // Rebuild the scope specifier in-place.
2506    CXXScopeSpec &SS = Chunk.Mem.Scope();
2507    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2508      return true;
2509  }
2510
2511  return false;
2512}
2513
2514Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2515  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2516}
2517
2518Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2519                             MultiTemplateParamsArg TemplateParamLists,
2520                             bool IsFunctionDefinition) {
2521  // TODO: consider using NameInfo for diagnostic.
2522  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2523  DeclarationName Name = NameInfo.getName();
2524
2525  // All of these full declarators require an identifier.  If it doesn't have
2526  // one, the ParsedFreeStandingDeclSpec action should be used.
2527  if (!Name) {
2528    if (!D.isInvalidType())  // Reject this if we think it is valid.
2529      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2530           diag::err_declarator_need_ident)
2531        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2532    return 0;
2533  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2534    return 0;
2535
2536  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2537  // we find one that is.
2538  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2539         (S->getFlags() & Scope::TemplateParamScope) != 0)
2540    S = S->getParent();
2541
2542  DeclContext *DC = CurContext;
2543  if (D.getCXXScopeSpec().isInvalid())
2544    D.setInvalidType();
2545  else if (D.getCXXScopeSpec().isSet()) {
2546    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2547                                        UPPC_DeclarationQualifier))
2548      return 0;
2549
2550    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2551    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2552    if (!DC) {
2553      // If we could not compute the declaration context, it's because the
2554      // declaration context is dependent but does not refer to a class,
2555      // class template, or class template partial specialization. Complain
2556      // and return early, to avoid the coming semantic disaster.
2557      Diag(D.getIdentifierLoc(),
2558           diag::err_template_qualified_declarator_no_match)
2559        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2560        << D.getCXXScopeSpec().getRange();
2561      return 0;
2562    }
2563
2564    bool IsDependentContext = DC->isDependentContext();
2565
2566    if (!IsDependentContext &&
2567        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2568      return 0;
2569
2570    if (isa<CXXRecordDecl>(DC)) {
2571      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2572        Diag(D.getIdentifierLoc(),
2573             diag::err_member_def_undefined_record)
2574          << Name << DC << D.getCXXScopeSpec().getRange();
2575        D.setInvalidType();
2576      } else if (isa<CXXRecordDecl>(CurContext) &&
2577                 !D.getDeclSpec().isFriendSpecified()) {
2578        // The user provided a superfluous scope specifier inside a class
2579        // definition:
2580        //
2581        // class X {
2582        //   void X::f();
2583        // };
2584        if (CurContext->Equals(DC))
2585          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2586            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2587        else
2588          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2589            << Name << D.getCXXScopeSpec().getRange();
2590
2591        // Pretend that this qualifier was not here.
2592        D.getCXXScopeSpec().clear();
2593      }
2594    }
2595
2596    // Check whether we need to rebuild the type of the given
2597    // declaration in the current instantiation.
2598    if (EnteringContext && IsDependentContext &&
2599        TemplateParamLists.size() != 0) {
2600      ContextRAII SavedContext(*this, DC);
2601      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2602        D.setInvalidType();
2603    }
2604  }
2605
2606  // C++ [class.mem]p13:
2607  //   If T is the name of a class, then each of the following shall have a
2608  //   name different from T:
2609  //     - every static data member of class T;
2610  //     - every member function of class T
2611  //     - every member of class T that is itself a type;
2612  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2613    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2614      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2615        << Name;
2616
2617      // If this is a typedef, we'll end up spewing multiple diagnostics.
2618      // Just return early; it's safer.
2619      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2620        return 0;
2621    }
2622
2623  NamedDecl *New;
2624
2625  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2626  QualType R = TInfo->getType();
2627
2628  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2629                                      UPPC_DeclarationType))
2630    D.setInvalidType();
2631
2632  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2633                        ForRedeclaration);
2634
2635  // See if this is a redefinition of a variable in the same scope.
2636  if (!D.getCXXScopeSpec().isSet()) {
2637    bool IsLinkageLookup = false;
2638
2639    // If the declaration we're planning to build will be a function
2640    // or object with linkage, then look for another declaration with
2641    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2642    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2643      /* Do nothing*/;
2644    else if (R->isFunctionType()) {
2645      if (CurContext->isFunctionOrMethod() ||
2646          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2647        IsLinkageLookup = true;
2648    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2649      IsLinkageLookup = true;
2650    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2651             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2652      IsLinkageLookup = true;
2653
2654    if (IsLinkageLookup)
2655      Previous.clear(LookupRedeclarationWithLinkage);
2656
2657    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2658  } else { // Something like "int foo::x;"
2659    LookupQualifiedName(Previous, DC);
2660
2661    // Don't consider using declarations as previous declarations for
2662    // out-of-line members.
2663    RemoveUsingDecls(Previous);
2664
2665    // C++ 7.3.1.2p2:
2666    // Members (including explicit specializations of templates) of a named
2667    // namespace can also be defined outside that namespace by explicit
2668    // qualification of the name being defined, provided that the entity being
2669    // defined was already declared in the namespace and the definition appears
2670    // after the point of declaration in a namespace that encloses the
2671    // declarations namespace.
2672    //
2673    // Note that we only check the context at this point. We don't yet
2674    // have enough information to make sure that PrevDecl is actually
2675    // the declaration we want to match. For example, given:
2676    //
2677    //   class X {
2678    //     void f();
2679    //     void f(float);
2680    //   };
2681    //
2682    //   void X::f(int) { } // ill-formed
2683    //
2684    // In this case, PrevDecl will point to the overload set
2685    // containing the two f's declared in X, but neither of them
2686    // matches.
2687
2688    // First check whether we named the global scope.
2689    if (isa<TranslationUnitDecl>(DC)) {
2690      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2691        << Name << D.getCXXScopeSpec().getRange();
2692    } else {
2693      DeclContext *Cur = CurContext;
2694      while (isa<LinkageSpecDecl>(Cur))
2695        Cur = Cur->getParent();
2696      if (!Cur->Encloses(DC)) {
2697        // The qualifying scope doesn't enclose the original declaration.
2698        // Emit diagnostic based on current scope.
2699        SourceLocation L = D.getIdentifierLoc();
2700        SourceRange R = D.getCXXScopeSpec().getRange();
2701        if (isa<FunctionDecl>(Cur))
2702          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2703        else
2704          Diag(L, diag::err_invalid_declarator_scope)
2705            << Name << cast<NamedDecl>(DC) << R;
2706        D.setInvalidType();
2707      }
2708    }
2709  }
2710
2711  if (Previous.isSingleResult() &&
2712      Previous.getFoundDecl()->isTemplateParameter()) {
2713    // Maybe we will complain about the shadowed template parameter.
2714    if (!D.isInvalidType())
2715      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2716                                          Previous.getFoundDecl()))
2717        D.setInvalidType();
2718
2719    // Just pretend that we didn't see the previous declaration.
2720    Previous.clear();
2721  }
2722
2723  // In C++, the previous declaration we find might be a tag type
2724  // (class or enum). In this case, the new declaration will hide the
2725  // tag type. Note that this does does not apply if we're declaring a
2726  // typedef (C++ [dcl.typedef]p4).
2727  if (Previous.isSingleTagDecl() &&
2728      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2729    Previous.clear();
2730
2731  bool Redeclaration = false;
2732  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2733    if (TemplateParamLists.size()) {
2734      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2735      return 0;
2736    }
2737
2738    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2739  } else if (R->isFunctionType()) {
2740    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2741                                  move(TemplateParamLists),
2742                                  IsFunctionDefinition, Redeclaration);
2743  } else {
2744    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2745                                  move(TemplateParamLists),
2746                                  Redeclaration);
2747  }
2748
2749  if (New == 0)
2750    return 0;
2751
2752  // If this has an identifier and is not an invalid redeclaration or
2753  // function template specialization, add it to the scope stack.
2754  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2755    PushOnScopeChains(New, S);
2756
2757  return New;
2758}
2759
2760/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2761/// types into constant array types in certain situations which would otherwise
2762/// be errors (for GCC compatibility).
2763static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2764                                                    ASTContext &Context,
2765                                                    bool &SizeIsNegative,
2766                                                    llvm::APSInt &Oversized) {
2767  // This method tries to turn a variable array into a constant
2768  // array even when the size isn't an ICE.  This is necessary
2769  // for compatibility with code that depends on gcc's buggy
2770  // constant expression folding, like struct {char x[(int)(char*)2];}
2771  SizeIsNegative = false;
2772  Oversized = 0;
2773
2774  if (T->isDependentType())
2775    return QualType();
2776
2777  QualifierCollector Qs;
2778  const Type *Ty = Qs.strip(T);
2779
2780  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2781    QualType Pointee = PTy->getPointeeType();
2782    QualType FixedType =
2783        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2784                                            Oversized);
2785    if (FixedType.isNull()) return FixedType;
2786    FixedType = Context.getPointerType(FixedType);
2787    return Qs.apply(Context, FixedType);
2788  }
2789  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2790    QualType Inner = PTy->getInnerType();
2791    QualType FixedType =
2792        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2793                                            Oversized);
2794    if (FixedType.isNull()) return FixedType;
2795    FixedType = Context.getParenType(FixedType);
2796    return Qs.apply(Context, FixedType);
2797  }
2798
2799  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2800  if (!VLATy)
2801    return QualType();
2802  // FIXME: We should probably handle this case
2803  if (VLATy->getElementType()->isVariablyModifiedType())
2804    return QualType();
2805
2806  Expr::EvalResult EvalResult;
2807  if (!VLATy->getSizeExpr() ||
2808      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2809      !EvalResult.Val.isInt())
2810    return QualType();
2811
2812  // Check whether the array size is negative.
2813  llvm::APSInt &Res = EvalResult.Val.getInt();
2814  if (Res.isSigned() && Res.isNegative()) {
2815    SizeIsNegative = true;
2816    return QualType();
2817  }
2818
2819  // Check whether the array is too large to be addressed.
2820  unsigned ActiveSizeBits
2821    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2822                                              Res);
2823  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2824    Oversized = Res;
2825    return QualType();
2826  }
2827
2828  return Context.getConstantArrayType(VLATy->getElementType(),
2829                                      Res, ArrayType::Normal, 0);
2830}
2831
2832/// \brief Register the given locally-scoped external C declaration so
2833/// that it can be found later for redeclarations
2834void
2835Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2836                                       const LookupResult &Previous,
2837                                       Scope *S) {
2838  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2839         "Decl is not a locally-scoped decl!");
2840  // Note that we have a locally-scoped external with this name.
2841  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2842
2843  if (!Previous.isSingleResult())
2844    return;
2845
2846  NamedDecl *PrevDecl = Previous.getFoundDecl();
2847
2848  // If there was a previous declaration of this variable, it may be
2849  // in our identifier chain. Update the identifier chain with the new
2850  // declaration.
2851  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2852    // The previous declaration was found on the identifer resolver
2853    // chain, so remove it from its scope.
2854    while (S && !S->isDeclScope(PrevDecl))
2855      S = S->getParent();
2856
2857    if (S)
2858      S->RemoveDecl(PrevDecl);
2859  }
2860}
2861
2862/// \brief Diagnose function specifiers on a declaration of an identifier that
2863/// does not identify a function.
2864void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2865  // FIXME: We should probably indicate the identifier in question to avoid
2866  // confusion for constructs like "inline int a(), b;"
2867  if (D.getDeclSpec().isInlineSpecified())
2868    Diag(D.getDeclSpec().getInlineSpecLoc(),
2869         diag::err_inline_non_function);
2870
2871  if (D.getDeclSpec().isVirtualSpecified())
2872    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2873         diag::err_virtual_non_function);
2874
2875  if (D.getDeclSpec().isExplicitSpecified())
2876    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2877         diag::err_explicit_non_function);
2878}
2879
2880NamedDecl*
2881Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2882                             QualType R,  TypeSourceInfo *TInfo,
2883                             LookupResult &Previous, bool &Redeclaration) {
2884  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2885  if (D.getCXXScopeSpec().isSet()) {
2886    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2887      << D.getCXXScopeSpec().getRange();
2888    D.setInvalidType();
2889    // Pretend we didn't see the scope specifier.
2890    DC = CurContext;
2891    Previous.clear();
2892  }
2893
2894  if (getLangOptions().CPlusPlus) {
2895    // Check that there are no default arguments (C++ only).
2896    CheckExtraCXXDefaultArguments(D);
2897  }
2898
2899  DiagnoseFunctionSpecifiers(D);
2900
2901  if (D.getDeclSpec().isThreadSpecified())
2902    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2903
2904  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2905    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2906      << D.getName().getSourceRange();
2907    return 0;
2908  }
2909
2910  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2911  if (!NewTD) return 0;
2912
2913  // Handle attributes prior to checking for duplicates in MergeVarDecl
2914  ProcessDeclAttributes(S, NewTD, D);
2915
2916  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2917  // then it shall have block scope.
2918  // Note that variably modified types must be fixed before merging the decl so
2919  // that redeclarations will match.
2920  QualType T = NewTD->getUnderlyingType();
2921  if (T->isVariablyModifiedType()) {
2922    getCurFunction()->setHasBranchProtectedScope();
2923
2924    if (S->getFnParent() == 0) {
2925      bool SizeIsNegative;
2926      llvm::APSInt Oversized;
2927      QualType FixedTy =
2928          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2929                                              Oversized);
2930      if (!FixedTy.isNull()) {
2931        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2932        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2933      } else {
2934        if (SizeIsNegative)
2935          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2936        else if (T->isVariableArrayType())
2937          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2938        else if (Oversized.getBoolValue())
2939          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2940            << Oversized.toString(10);
2941        else
2942          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2943        NewTD->setInvalidDecl();
2944      }
2945    }
2946  }
2947
2948  // Merge the decl with the existing one if appropriate. If the decl is
2949  // in an outer scope, it isn't the same thing.
2950  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
2951                       /*ExplicitInstantiationOrSpecialization=*/false);
2952  if (!Previous.empty()) {
2953    Redeclaration = true;
2954    MergeTypeDefDecl(NewTD, Previous);
2955  }
2956
2957  // If this is the C FILE type, notify the AST context.
2958  if (IdentifierInfo *II = NewTD->getIdentifier())
2959    if (!NewTD->isInvalidDecl() &&
2960        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2961      if (II->isStr("FILE"))
2962        Context.setFILEDecl(NewTD);
2963      else if (II->isStr("jmp_buf"))
2964        Context.setjmp_bufDecl(NewTD);
2965      else if (II->isStr("sigjmp_buf"))
2966        Context.setsigjmp_bufDecl(NewTD);
2967      else if (II->isStr("__builtin_va_list"))
2968        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2969    }
2970
2971  return NewTD;
2972}
2973
2974/// \brief Determines whether the given declaration is an out-of-scope
2975/// previous declaration.
2976///
2977/// This routine should be invoked when name lookup has found a
2978/// previous declaration (PrevDecl) that is not in the scope where a
2979/// new declaration by the same name is being introduced. If the new
2980/// declaration occurs in a local scope, previous declarations with
2981/// linkage may still be considered previous declarations (C99
2982/// 6.2.2p4-5, C++ [basic.link]p6).
2983///
2984/// \param PrevDecl the previous declaration found by name
2985/// lookup
2986///
2987/// \param DC the context in which the new declaration is being
2988/// declared.
2989///
2990/// \returns true if PrevDecl is an out-of-scope previous declaration
2991/// for a new delcaration with the same name.
2992static bool
2993isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2994                                ASTContext &Context) {
2995  if (!PrevDecl)
2996    return false;
2997
2998  if (!PrevDecl->hasLinkage())
2999    return false;
3000
3001  if (Context.getLangOptions().CPlusPlus) {
3002    // C++ [basic.link]p6:
3003    //   If there is a visible declaration of an entity with linkage
3004    //   having the same name and type, ignoring entities declared
3005    //   outside the innermost enclosing namespace scope, the block
3006    //   scope declaration declares that same entity and receives the
3007    //   linkage of the previous declaration.
3008    DeclContext *OuterContext = DC->getRedeclContext();
3009    if (!OuterContext->isFunctionOrMethod())
3010      // This rule only applies to block-scope declarations.
3011      return false;
3012
3013    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3014    if (PrevOuterContext->isRecord())
3015      // We found a member function: ignore it.
3016      return false;
3017
3018    // Find the innermost enclosing namespace for the new and
3019    // previous declarations.
3020    OuterContext = OuterContext->getEnclosingNamespaceContext();
3021    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3022
3023    // The previous declaration is in a different namespace, so it
3024    // isn't the same function.
3025    if (!OuterContext->Equals(PrevOuterContext))
3026      return false;
3027  }
3028
3029  return true;
3030}
3031
3032static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3033  CXXScopeSpec &SS = D.getCXXScopeSpec();
3034  if (!SS.isSet()) return;
3035  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3036}
3037
3038NamedDecl*
3039Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3040                              QualType R, TypeSourceInfo *TInfo,
3041                              LookupResult &Previous,
3042                              MultiTemplateParamsArg TemplateParamLists,
3043                              bool &Redeclaration) {
3044  DeclarationName Name = GetNameForDeclarator(D).getName();
3045
3046  // Check that there are no default arguments (C++ only).
3047  if (getLangOptions().CPlusPlus)
3048    CheckExtraCXXDefaultArguments(D);
3049
3050  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3051  assert(SCSpec != DeclSpec::SCS_typedef &&
3052         "Parser allowed 'typedef' as storage class VarDecl.");
3053  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3054  if (SCSpec == DeclSpec::SCS_mutable) {
3055    // mutable can only appear on non-static class members, so it's always
3056    // an error here
3057    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3058    D.setInvalidType();
3059    SC = SC_None;
3060  }
3061  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3062  VarDecl::StorageClass SCAsWritten
3063    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3064
3065  IdentifierInfo *II = Name.getAsIdentifierInfo();
3066  if (!II) {
3067    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3068      << Name.getAsString();
3069    return 0;
3070  }
3071
3072  DiagnoseFunctionSpecifiers(D);
3073
3074  if (!DC->isRecord() && S->getFnParent() == 0) {
3075    // C99 6.9p2: The storage-class specifiers auto and register shall not
3076    // appear in the declaration specifiers in an external declaration.
3077    if (SC == SC_Auto || SC == SC_Register) {
3078
3079      // If this is a register variable with an asm label specified, then this
3080      // is a GNU extension.
3081      if (SC == SC_Register && D.getAsmLabel())
3082        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3083      else
3084        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3085      D.setInvalidType();
3086    }
3087  }
3088
3089  bool isExplicitSpecialization = false;
3090  VarDecl *NewVD;
3091  if (!getLangOptions().CPlusPlus) {
3092    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3093                            D.getIdentifierLoc(), II,
3094                            R, TInfo, SC, SCAsWritten);
3095
3096    if (D.isInvalidType())
3097      NewVD->setInvalidDecl();
3098  } else {
3099    if (DC->isRecord() && !CurContext->isRecord()) {
3100      // This is an out-of-line definition of a static data member.
3101      if (SC == SC_Static) {
3102        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3103             diag::err_static_out_of_line)
3104          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3105      } else if (SC == SC_None)
3106        SC = SC_Static;
3107    }
3108    if (SC == SC_Static) {
3109      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3110        if (RD->isLocalClass())
3111          Diag(D.getIdentifierLoc(),
3112               diag::err_static_data_member_not_allowed_in_local_class)
3113            << Name << RD->getDeclName();
3114
3115        // C++ [class.union]p1: If a union contains a static data member,
3116        // the program is ill-formed.
3117        //
3118        // We also disallow static data members in anonymous structs.
3119        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3120          Diag(D.getIdentifierLoc(),
3121               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3122            << Name << RD->isUnion();
3123      }
3124    }
3125
3126    // Match up the template parameter lists with the scope specifier, then
3127    // determine whether we have a template or a template specialization.
3128    isExplicitSpecialization = false;
3129    bool Invalid = false;
3130    if (TemplateParameterList *TemplateParams
3131        = MatchTemplateParametersToScopeSpecifier(
3132                                                  D.getDeclSpec().getSourceRange().getBegin(),
3133                                                  D.getCXXScopeSpec(),
3134                                                  TemplateParamLists.get(),
3135                                                  TemplateParamLists.size(),
3136                                                  /*never a friend*/ false,
3137                                                  isExplicitSpecialization,
3138                                                  Invalid)) {
3139      if (TemplateParams->size() > 0) {
3140        // There is no such thing as a variable template.
3141        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3142          << II
3143          << SourceRange(TemplateParams->getTemplateLoc(),
3144                         TemplateParams->getRAngleLoc());
3145        return 0;
3146      } else {
3147        // There is an extraneous 'template<>' for this variable. Complain
3148        // about it, but allow the declaration of the variable.
3149        Diag(TemplateParams->getTemplateLoc(),
3150             diag::err_template_variable_noparams)
3151          << II
3152          << SourceRange(TemplateParams->getTemplateLoc(),
3153                         TemplateParams->getRAngleLoc());
3154        isExplicitSpecialization = true;
3155      }
3156    }
3157
3158    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3159                            D.getIdentifierLoc(), II,
3160                            R, TInfo, SC, SCAsWritten);
3161
3162    // If this decl has an auto type in need of deduction, make a note of the
3163    // Decl so we can diagnose uses of it in its own initializer.
3164    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3165        R->getContainedAutoType())
3166      ParsingInitForAutoVars.insert(NewVD);
3167
3168    if (D.isInvalidType() || Invalid)
3169      NewVD->setInvalidDecl();
3170
3171    SetNestedNameSpecifier(NewVD, D);
3172
3173    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3174      NewVD->setTemplateParameterListsInfo(Context,
3175                                           TemplateParamLists.size(),
3176                                           TemplateParamLists.release());
3177    }
3178  }
3179
3180  if (D.getDeclSpec().isThreadSpecified()) {
3181    if (NewVD->hasLocalStorage())
3182      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3183    else if (!Context.Target.isTLSSupported())
3184      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3185    else
3186      NewVD->setThreadSpecified(true);
3187  }
3188
3189  // Set the lexical context. If the declarator has a C++ scope specifier, the
3190  // lexical context will be different from the semantic context.
3191  NewVD->setLexicalDeclContext(CurContext);
3192
3193  // Handle attributes prior to checking for duplicates in MergeVarDecl
3194  ProcessDeclAttributes(S, NewVD, D);
3195
3196  // Handle GNU asm-label extension (encoded as an attribute).
3197  if (Expr *E = (Expr*)D.getAsmLabel()) {
3198    // The parser guarantees this is a string.
3199    StringLiteral *SE = cast<StringLiteral>(E);
3200    llvm::StringRef Label = SE->getString();
3201    if (S->getFnParent() != 0) {
3202      switch (SC) {
3203      case SC_None:
3204      case SC_Auto:
3205        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3206        break;
3207      case SC_Register:
3208        if (!Context.Target.isValidGCCRegisterName(Label))
3209          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3210        break;
3211      case SC_Static:
3212      case SC_Extern:
3213      case SC_PrivateExtern:
3214        break;
3215      }
3216    }
3217
3218    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3219                                                Context, Label));
3220  }
3221
3222  // Diagnose shadowed variables before filtering for scope.
3223  if (!D.getCXXScopeSpec().isSet())
3224    CheckShadow(S, NewVD, Previous);
3225
3226  // Don't consider existing declarations that are in a different
3227  // scope and are out-of-semantic-context declarations (if the new
3228  // declaration has linkage).
3229  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3230                       isExplicitSpecialization);
3231
3232  if (!getLangOptions().CPlusPlus)
3233    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3234  else {
3235    // Merge the decl with the existing one if appropriate.
3236    if (!Previous.empty()) {
3237      if (Previous.isSingleResult() &&
3238          isa<FieldDecl>(Previous.getFoundDecl()) &&
3239          D.getCXXScopeSpec().isSet()) {
3240        // The user tried to define a non-static data member
3241        // out-of-line (C++ [dcl.meaning]p1).
3242        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3243          << D.getCXXScopeSpec().getRange();
3244        Previous.clear();
3245        NewVD->setInvalidDecl();
3246      }
3247    } else if (D.getCXXScopeSpec().isSet()) {
3248      // No previous declaration in the qualifying scope.
3249      Diag(D.getIdentifierLoc(), diag::err_no_member)
3250        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3251        << D.getCXXScopeSpec().getRange();
3252      NewVD->setInvalidDecl();
3253    }
3254
3255    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3256
3257    // This is an explicit specialization of a static data member. Check it.
3258    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3259        CheckMemberSpecialization(NewVD, Previous))
3260      NewVD->setInvalidDecl();
3261  }
3262
3263  // attributes declared post-definition are currently ignored
3264  // FIXME: This should be handled in attribute merging, not
3265  // here.
3266  if (Previous.isSingleResult()) {
3267    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3268    if (Def && (Def = Def->getDefinition()) &&
3269        Def != NewVD && D.hasAttributes()) {
3270      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3271      Diag(Def->getLocation(), diag::note_previous_definition);
3272    }
3273  }
3274
3275  // If this is a locally-scoped extern C variable, update the map of
3276  // such variables.
3277  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3278      !NewVD->isInvalidDecl())
3279    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3280
3281  // If there's a #pragma GCC visibility in scope, and this isn't a class
3282  // member, set the visibility of this variable.
3283  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3284    AddPushedVisibilityAttribute(NewVD);
3285
3286  MarkUnusedFileScopedDecl(NewVD);
3287
3288  return NewVD;
3289}
3290
3291/// \brief Diagnose variable or built-in function shadowing.  Implements
3292/// -Wshadow.
3293///
3294/// This method is called whenever a VarDecl is added to a "useful"
3295/// scope.
3296///
3297/// \param S the scope in which the shadowing name is being declared
3298/// \param R the lookup of the name
3299///
3300void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3301  // Return if warning is ignored.
3302  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3303        Diagnostic::Ignored)
3304    return;
3305
3306  // Don't diagnose declarations at file scope.
3307  DeclContext *NewDC = D->getDeclContext();
3308  if (NewDC->isFileContext())
3309    return;
3310
3311  // Only diagnose if we're shadowing an unambiguous field or variable.
3312  if (R.getResultKind() != LookupResult::Found)
3313    return;
3314
3315  NamedDecl* ShadowedDecl = R.getFoundDecl();
3316  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3317    return;
3318
3319  // Fields are not shadowed by variables in C++ static methods.
3320  if (isa<FieldDecl>(ShadowedDecl))
3321    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3322      if (MD->isStatic())
3323        return;
3324
3325  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3326    if (shadowedVar->isExternC()) {
3327      // Don't warn for this case:
3328      //
3329      // @code
3330      // extern int bob;
3331      // void f() {
3332      //   extern int bob;
3333      // }
3334      // @endcode
3335      if (D->isExternC())
3336        return;
3337
3338      // For shadowing external vars, make sure that we point to the global
3339      // declaration, not a locally scoped extern declaration.
3340      for (VarDecl::redecl_iterator
3341             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3342           I != E; ++I)
3343        if (I->isFileVarDecl()) {
3344          ShadowedDecl = *I;
3345          break;
3346        }
3347    }
3348
3349  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3350
3351  // Only warn about certain kinds of shadowing for class members.
3352  if (NewDC && NewDC->isRecord()) {
3353    // In particular, don't warn about shadowing non-class members.
3354    if (!OldDC->isRecord())
3355      return;
3356
3357    // TODO: should we warn about static data members shadowing
3358    // static data members from base classes?
3359
3360    // TODO: don't diagnose for inaccessible shadowed members.
3361    // This is hard to do perfectly because we might friend the
3362    // shadowing context, but that's just a false negative.
3363  }
3364
3365  // Determine what kind of declaration we're shadowing.
3366  unsigned Kind;
3367  if (isa<RecordDecl>(OldDC)) {
3368    if (isa<FieldDecl>(ShadowedDecl))
3369      Kind = 3; // field
3370    else
3371      Kind = 2; // static data member
3372  } else if (OldDC->isFileContext())
3373    Kind = 1; // global
3374  else
3375    Kind = 0; // local
3376
3377  DeclarationName Name = R.getLookupName();
3378
3379  // Emit warning and note.
3380  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3381  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3382}
3383
3384/// \brief Check -Wshadow without the advantage of a previous lookup.
3385void Sema::CheckShadow(Scope *S, VarDecl *D) {
3386  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3387        Diagnostic::Ignored)
3388    return;
3389
3390  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3391                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3392  LookupName(R, S);
3393  CheckShadow(S, D, R);
3394}
3395
3396/// \brief Perform semantic checking on a newly-created variable
3397/// declaration.
3398///
3399/// This routine performs all of the type-checking required for a
3400/// variable declaration once it has been built. It is used both to
3401/// check variables after they have been parsed and their declarators
3402/// have been translated into a declaration, and to check variables
3403/// that have been instantiated from a template.
3404///
3405/// Sets NewVD->isInvalidDecl() if an error was encountered.
3406void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3407                                    LookupResult &Previous,
3408                                    bool &Redeclaration) {
3409  // If the decl is already known invalid, don't check it.
3410  if (NewVD->isInvalidDecl())
3411    return;
3412
3413  QualType T = NewVD->getType();
3414
3415  if (T->isObjCObjectType()) {
3416    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3417    return NewVD->setInvalidDecl();
3418  }
3419
3420  // Emit an error if an address space was applied to decl with local storage.
3421  // This includes arrays of objects with address space qualifiers, but not
3422  // automatic variables that point to other address spaces.
3423  // ISO/IEC TR 18037 S5.1.2
3424  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3425    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3426    return NewVD->setInvalidDecl();
3427  }
3428
3429  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3430      && !NewVD->hasAttr<BlocksAttr>())
3431    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3432
3433  bool isVM = T->isVariablyModifiedType();
3434  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3435      NewVD->hasAttr<BlocksAttr>())
3436    getCurFunction()->setHasBranchProtectedScope();
3437
3438  if ((isVM && NewVD->hasLinkage()) ||
3439      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3440    bool SizeIsNegative;
3441    llvm::APSInt Oversized;
3442    QualType FixedTy =
3443        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3444                                            Oversized);
3445
3446    if (FixedTy.isNull() && T->isVariableArrayType()) {
3447      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3448      // FIXME: This won't give the correct result for
3449      // int a[10][n];
3450      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3451
3452      if (NewVD->isFileVarDecl())
3453        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3454        << SizeRange;
3455      else if (NewVD->getStorageClass() == SC_Static)
3456        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3457        << SizeRange;
3458      else
3459        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3460        << SizeRange;
3461      return NewVD->setInvalidDecl();
3462    }
3463
3464    if (FixedTy.isNull()) {
3465      if (NewVD->isFileVarDecl())
3466        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3467      else
3468        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3469      return NewVD->setInvalidDecl();
3470    }
3471
3472    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3473    NewVD->setType(FixedTy);
3474  }
3475
3476  if (Previous.empty() && NewVD->isExternC()) {
3477    // Since we did not find anything by this name and we're declaring
3478    // an extern "C" variable, look for a non-visible extern "C"
3479    // declaration with the same name.
3480    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3481      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3482    if (Pos != LocallyScopedExternalDecls.end())
3483      Previous.addDecl(Pos->second);
3484  }
3485
3486  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3487    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3488      << T;
3489    return NewVD->setInvalidDecl();
3490  }
3491
3492  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3493    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3494    return NewVD->setInvalidDecl();
3495  }
3496
3497  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3498    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3499    return NewVD->setInvalidDecl();
3500  }
3501
3502  // Function pointers and references cannot have qualified function type, only
3503  // function pointer-to-members can do that.
3504  QualType Pointee;
3505  unsigned PtrOrRef = 0;
3506  if (const PointerType *Ptr = T->getAs<PointerType>())
3507    Pointee = Ptr->getPointeeType();
3508  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3509    Pointee = Ref->getPointeeType();
3510    PtrOrRef = 1;
3511  }
3512  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3513      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3514    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3515        << PtrOrRef;
3516    return NewVD->setInvalidDecl();
3517  }
3518
3519  if (!Previous.empty()) {
3520    Redeclaration = true;
3521    MergeVarDecl(NewVD, Previous);
3522  }
3523}
3524
3525/// \brief Data used with FindOverriddenMethod
3526struct FindOverriddenMethodData {
3527  Sema *S;
3528  CXXMethodDecl *Method;
3529};
3530
3531/// \brief Member lookup function that determines whether a given C++
3532/// method overrides a method in a base class, to be used with
3533/// CXXRecordDecl::lookupInBases().
3534static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3535                                 CXXBasePath &Path,
3536                                 void *UserData) {
3537  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3538
3539  FindOverriddenMethodData *Data
3540    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3541
3542  DeclarationName Name = Data->Method->getDeclName();
3543
3544  // FIXME: Do we care about other names here too?
3545  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3546    // We really want to find the base class destructor here.
3547    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3548    CanQualType CT = Data->S->Context.getCanonicalType(T);
3549
3550    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3551  }
3552
3553  for (Path.Decls = BaseRecord->lookup(Name);
3554       Path.Decls.first != Path.Decls.second;
3555       ++Path.Decls.first) {
3556    NamedDecl *D = *Path.Decls.first;
3557    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3558      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3559        return true;
3560    }
3561  }
3562
3563  return false;
3564}
3565
3566/// AddOverriddenMethods - See if a method overrides any in the base classes,
3567/// and if so, check that it's a valid override and remember it.
3568bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3569  // Look for virtual methods in base classes that this method might override.
3570  CXXBasePaths Paths;
3571  FindOverriddenMethodData Data;
3572  Data.Method = MD;
3573  Data.S = this;
3574  bool AddedAny = false;
3575  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3576    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3577         E = Paths.found_decls_end(); I != E; ++I) {
3578      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3579        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3580            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3581            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3582          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3583          AddedAny = true;
3584        }
3585      }
3586    }
3587  }
3588
3589  return AddedAny;
3590}
3591
3592static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3593  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3594                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3595  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3596  assert(!Prev.isAmbiguous() &&
3597         "Cannot have an ambiguity in previous-declaration lookup");
3598  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3599       Func != FuncEnd; ++Func) {
3600    if (isa<FunctionDecl>(*Func) &&
3601        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3602      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3603  }
3604}
3605
3606NamedDecl*
3607Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3608                              QualType R, TypeSourceInfo *TInfo,
3609                              LookupResult &Previous,
3610                              MultiTemplateParamsArg TemplateParamLists,
3611                              bool IsFunctionDefinition, bool &Redeclaration) {
3612  assert(R.getTypePtr()->isFunctionType());
3613
3614  // TODO: consider using NameInfo for diagnostic.
3615  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3616  DeclarationName Name = NameInfo.getName();
3617  FunctionDecl::StorageClass SC = SC_None;
3618  switch (D.getDeclSpec().getStorageClassSpec()) {
3619  default: assert(0 && "Unknown storage class!");
3620  case DeclSpec::SCS_auto:
3621  case DeclSpec::SCS_register:
3622  case DeclSpec::SCS_mutable:
3623    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3624         diag::err_typecheck_sclass_func);
3625    D.setInvalidType();
3626    break;
3627  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3628  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3629  case DeclSpec::SCS_static: {
3630    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3631      // C99 6.7.1p5:
3632      //   The declaration of an identifier for a function that has
3633      //   block scope shall have no explicit storage-class specifier
3634      //   other than extern
3635      // See also (C++ [dcl.stc]p4).
3636      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3637           diag::err_static_block_func);
3638      SC = SC_None;
3639    } else
3640      SC = SC_Static;
3641    break;
3642  }
3643  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3644  }
3645
3646  if (D.getDeclSpec().isThreadSpecified())
3647    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3648
3649  // Do not allow returning a objc interface by-value.
3650  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3651    Diag(D.getIdentifierLoc(),
3652         diag::err_object_cannot_be_passed_returned_by_value) << 0
3653    << R->getAs<FunctionType>()->getResultType();
3654    D.setInvalidType();
3655  }
3656
3657  FunctionDecl *NewFD;
3658  bool isInline = D.getDeclSpec().isInlineSpecified();
3659  bool isFriend = false;
3660  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3661  FunctionDecl::StorageClass SCAsWritten
3662    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3663  FunctionTemplateDecl *FunctionTemplate = 0;
3664  bool isExplicitSpecialization = false;
3665  bool isFunctionTemplateSpecialization = false;
3666
3667  if (!getLangOptions().CPlusPlus) {
3668    // Determine whether the function was written with a
3669    // prototype. This true when:
3670    //   - there is a prototype in the declarator, or
3671    //   - the type R of the function is some kind of typedef or other reference
3672    //     to a type name (which eventually refers to a function type).
3673    bool HasPrototype =
3674    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3675    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3676
3677    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3678                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3679                                 HasPrototype);
3680    if (D.isInvalidType())
3681      NewFD->setInvalidDecl();
3682
3683    // Set the lexical context.
3684    NewFD->setLexicalDeclContext(CurContext);
3685    // Filter out previous declarations that don't match the scope.
3686    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3687                         /*ExplicitInstantiationOrSpecialization=*/false);
3688  } else {
3689    isFriend = D.getDeclSpec().isFriendSpecified();
3690    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3691    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3692    bool isVirtualOkay = false;
3693
3694    // Check that the return type is not an abstract class type.
3695    // For record types, this is done by the AbstractClassUsageDiagnoser once
3696    // the class has been completely parsed.
3697    if (!DC->isRecord() &&
3698      RequireNonAbstractType(D.getIdentifierLoc(),
3699                             R->getAs<FunctionType>()->getResultType(),
3700                             diag::err_abstract_type_in_decl,
3701                             AbstractReturnType))
3702      D.setInvalidType();
3703
3704    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3705      // This is a C++ constructor declaration.
3706      assert(DC->isRecord() &&
3707             "Constructors can only be declared in a member context");
3708
3709      R = CheckConstructorDeclarator(D, R, SC);
3710
3711      // Create the new declaration
3712      NewFD = CXXConstructorDecl::Create(Context,
3713                                         cast<CXXRecordDecl>(DC),
3714                                         D.getSourceRange().getBegin(),
3715                                         NameInfo, R, TInfo,
3716                                         isExplicit, isInline,
3717                                         /*isImplicitlyDeclared=*/false);
3718    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3719      // This is a C++ destructor declaration.
3720      if (DC->isRecord()) {
3721        R = CheckDestructorDeclarator(D, R, SC);
3722
3723        NewFD = CXXDestructorDecl::Create(Context,
3724                                          cast<CXXRecordDecl>(DC),
3725                                          D.getSourceRange().getBegin(),
3726                                          NameInfo, R, TInfo,
3727                                          isInline,
3728                                          /*isImplicitlyDeclared=*/false);
3729        isVirtualOkay = true;
3730      } else {
3731        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3732
3733        // Create a FunctionDecl to satisfy the function definition parsing
3734        // code path.
3735        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3736                                     D.getIdentifierLoc(), Name, R, TInfo,
3737                                     SC, SCAsWritten, isInline,
3738                                     /*hasPrototype=*/true);
3739        D.setInvalidType();
3740      }
3741    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3742      if (!DC->isRecord()) {
3743        Diag(D.getIdentifierLoc(),
3744             diag::err_conv_function_not_member);
3745        return 0;
3746      }
3747
3748      CheckConversionDeclarator(D, R, SC);
3749      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3750                                        D.getSourceRange().getBegin(),
3751                                        NameInfo, R, TInfo,
3752                                        isInline, isExplicit,
3753                                        SourceLocation());
3754
3755      isVirtualOkay = true;
3756    } else if (DC->isRecord()) {
3757      // If the of the function is the same as the name of the record, then this
3758      // must be an invalid constructor that has a return type.
3759      // (The parser checks for a return type and makes the declarator a
3760      // constructor if it has no return type).
3761      // must have an invalid constructor that has a return type
3762      if (Name.getAsIdentifierInfo() &&
3763          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3764        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3765          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3766          << SourceRange(D.getIdentifierLoc());
3767        return 0;
3768      }
3769
3770      bool isStatic = SC == SC_Static;
3771
3772      // [class.free]p1:
3773      // Any allocation function for a class T is a static member
3774      // (even if not explicitly declared static).
3775      if (Name.getCXXOverloadedOperator() == OO_New ||
3776          Name.getCXXOverloadedOperator() == OO_Array_New)
3777        isStatic = true;
3778
3779      // [class.free]p6 Any deallocation function for a class X is a static member
3780      // (even if not explicitly declared static).
3781      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3782          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3783        isStatic = true;
3784
3785      // This is a C++ method declaration.
3786      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3787                                    D.getSourceRange().getBegin(),
3788                                    NameInfo, R, TInfo,
3789                                    isStatic, SCAsWritten, isInline,
3790                                    SourceLocation());
3791
3792      isVirtualOkay = !isStatic;
3793    } else {
3794      // Determine whether the function was written with a
3795      // prototype. This true when:
3796      //   - we're in C++ (where every function has a prototype),
3797      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3798                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3799                                   true/*HasPrototype*/);
3800    }
3801
3802    if (isFriend && !isInline && IsFunctionDefinition) {
3803      // C++ [class.friend]p5
3804      //   A function can be defined in a friend declaration of a
3805      //   class . . . . Such a function is implicitly inline.
3806      NewFD->setImplicitlyInline();
3807    }
3808
3809    SetNestedNameSpecifier(NewFD, D);
3810    isExplicitSpecialization = false;
3811    isFunctionTemplateSpecialization = false;
3812    if (D.isInvalidType())
3813      NewFD->setInvalidDecl();
3814
3815    // Set the lexical context. If the declarator has a C++
3816    // scope specifier, or is the object of a friend declaration, the
3817    // lexical context will be different from the semantic context.
3818    NewFD->setLexicalDeclContext(CurContext);
3819
3820    // Match up the template parameter lists with the scope specifier, then
3821    // determine whether we have a template or a template specialization.
3822    bool Invalid = false;
3823    if (TemplateParameterList *TemplateParams
3824          = MatchTemplateParametersToScopeSpecifier(
3825                                  D.getDeclSpec().getSourceRange().getBegin(),
3826                                  D.getCXXScopeSpec(),
3827                                  TemplateParamLists.get(),
3828                                  TemplateParamLists.size(),
3829                                  isFriend,
3830                                  isExplicitSpecialization,
3831                                  Invalid)) {
3832      if (TemplateParams->size() > 0) {
3833        // This is a function template
3834
3835        // Check that we can declare a template here.
3836        if (CheckTemplateDeclScope(S, TemplateParams))
3837          return 0;
3838
3839        // A destructor cannot be a template.
3840        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3841          Diag(NewFD->getLocation(), diag::err_destructor_template);
3842          return 0;
3843        }
3844
3845        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3846                                                        NewFD->getLocation(),
3847                                                        Name, TemplateParams,
3848                                                        NewFD);
3849        FunctionTemplate->setLexicalDeclContext(CurContext);
3850        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3851
3852        // For source fidelity, store the other template param lists.
3853        if (TemplateParamLists.size() > 1) {
3854          NewFD->setTemplateParameterListsInfo(Context,
3855                                               TemplateParamLists.size() - 1,
3856                                               TemplateParamLists.release());
3857        }
3858      } else {
3859        // This is a function template specialization.
3860        isFunctionTemplateSpecialization = true;
3861        // For source fidelity, store all the template param lists.
3862        NewFD->setTemplateParameterListsInfo(Context,
3863                                             TemplateParamLists.size(),
3864                                             TemplateParamLists.release());
3865
3866        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3867        if (isFriend) {
3868          // We want to remove the "template<>", found here.
3869          SourceRange RemoveRange = TemplateParams->getSourceRange();
3870
3871          // If we remove the template<> and the name is not a
3872          // template-id, we're actually silently creating a problem:
3873          // the friend declaration will refer to an untemplated decl,
3874          // and clearly the user wants a template specialization.  So
3875          // we need to insert '<>' after the name.
3876          SourceLocation InsertLoc;
3877          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3878            InsertLoc = D.getName().getSourceRange().getEnd();
3879            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3880          }
3881
3882          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3883            << Name << RemoveRange
3884            << FixItHint::CreateRemoval(RemoveRange)
3885            << FixItHint::CreateInsertion(InsertLoc, "<>");
3886        }
3887      }
3888    }
3889    else {
3890      // All template param lists were matched against the scope specifier:
3891      // this is NOT (an explicit specialization of) a template.
3892      if (TemplateParamLists.size() > 0)
3893        // For source fidelity, store all the template param lists.
3894        NewFD->setTemplateParameterListsInfo(Context,
3895                                             TemplateParamLists.size(),
3896                                             TemplateParamLists.release());
3897    }
3898
3899    if (Invalid) {
3900      NewFD->setInvalidDecl();
3901      if (FunctionTemplate)
3902        FunctionTemplate->setInvalidDecl();
3903    }
3904
3905    // C++ [dcl.fct.spec]p5:
3906    //   The virtual specifier shall only be used in declarations of
3907    //   nonstatic class member functions that appear within a
3908    //   member-specification of a class declaration; see 10.3.
3909    //
3910    if (isVirtual && !NewFD->isInvalidDecl()) {
3911      if (!isVirtualOkay) {
3912        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3913             diag::err_virtual_non_function);
3914      } else if (!CurContext->isRecord()) {
3915        // 'virtual' was specified outside of the class.
3916        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3917             diag::err_virtual_out_of_class)
3918          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3919      } else if (NewFD->getDescribedFunctionTemplate()) {
3920        // C++ [temp.mem]p3:
3921        //  A member function template shall not be virtual.
3922        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3923             diag::err_virtual_member_function_template)
3924          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3925      } else {
3926        // Okay: Add virtual to the method.
3927        NewFD->setVirtualAsWritten(true);
3928      }
3929    }
3930
3931    // C++ [dcl.fct.spec]p3:
3932    //  The inline specifier shall not appear on a block scope function declaration.
3933    if (isInline && !NewFD->isInvalidDecl()) {
3934      if (CurContext->isFunctionOrMethod()) {
3935        // 'inline' is not allowed on block scope function declaration.
3936        Diag(D.getDeclSpec().getInlineSpecLoc(),
3937             diag::err_inline_declaration_block_scope) << Name
3938          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3939      }
3940    }
3941
3942    // C++ [dcl.fct.spec]p6:
3943    //  The explicit specifier shall be used only in the declaration of a
3944    //  constructor or conversion function within its class definition; see 12.3.1
3945    //  and 12.3.2.
3946    if (isExplicit && !NewFD->isInvalidDecl()) {
3947      if (!CurContext->isRecord()) {
3948        // 'explicit' was specified outside of the class.
3949        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3950             diag::err_explicit_out_of_class)
3951          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3952      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3953                 !isa<CXXConversionDecl>(NewFD)) {
3954        // 'explicit' was specified on a function that wasn't a constructor
3955        // or conversion function.
3956        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3957             diag::err_explicit_non_ctor_or_conv_function)
3958          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3959      }
3960    }
3961
3962    // Filter out previous declarations that don't match the scope.
3963    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3964                         isExplicitSpecialization ||
3965                         isFunctionTemplateSpecialization);
3966
3967    if (isFriend) {
3968      // For now, claim that the objects have no previous declaration.
3969      if (FunctionTemplate) {
3970        FunctionTemplate->setObjectOfFriendDecl(false);
3971        FunctionTemplate->setAccess(AS_public);
3972      }
3973      NewFD->setObjectOfFriendDecl(false);
3974      NewFD->setAccess(AS_public);
3975    }
3976
3977    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3978      // A method is implicitly inline if it's defined in its class
3979      // definition.
3980      NewFD->setImplicitlyInline();
3981    }
3982
3983    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3984        !CurContext->isRecord()) {
3985      // C++ [class.static]p1:
3986      //   A data or function member of a class may be declared static
3987      //   in a class definition, in which case it is a static member of
3988      //   the class.
3989
3990      // Complain about the 'static' specifier if it's on an out-of-line
3991      // member function definition.
3992      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3993           diag::err_static_out_of_line)
3994        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3995    }
3996  }
3997
3998  // Handle GNU asm-label extension (encoded as an attribute).
3999  if (Expr *E = (Expr*) D.getAsmLabel()) {
4000    // The parser guarantees this is a string.
4001    StringLiteral *SE = cast<StringLiteral>(E);
4002    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4003                                                SE->getString()));
4004  }
4005
4006  // Copy the parameter declarations from the declarator D to the function
4007  // declaration NewFD, if they are available.  First scavenge them into Params.
4008  llvm::SmallVector<ParmVarDecl*, 16> Params;
4009  if (D.isFunctionDeclarator()) {
4010    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4011
4012    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4013    // function that takes no arguments, not a function that takes a
4014    // single void argument.
4015    // We let through "const void" here because Sema::GetTypeForDeclarator
4016    // already checks for that case.
4017    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4018        FTI.ArgInfo[0].Param &&
4019        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4020      // Empty arg list, don't push any params.
4021      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4022
4023      // In C++, the empty parameter-type-list must be spelled "void"; a
4024      // typedef of void is not permitted.
4025      if (getLangOptions().CPlusPlus &&
4026          Param->getType().getUnqualifiedType() != Context.VoidTy)
4027        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
4028    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4029      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4030        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4031        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4032        Param->setDeclContext(NewFD);
4033        Params.push_back(Param);
4034
4035        if (Param->isInvalidDecl())
4036          NewFD->setInvalidDecl();
4037      }
4038    }
4039
4040  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4041    // When we're declaring a function with a typedef, typeof, etc as in the
4042    // following example, we'll need to synthesize (unnamed)
4043    // parameters for use in the declaration.
4044    //
4045    // @code
4046    // typedef void fn(int);
4047    // fn f;
4048    // @endcode
4049
4050    // Synthesize a parameter for each argument type.
4051    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4052         AE = FT->arg_type_end(); AI != AE; ++AI) {
4053      ParmVarDecl *Param =
4054        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4055      Params.push_back(Param);
4056    }
4057  } else {
4058    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4059           "Should not need args for typedef of non-prototype fn");
4060  }
4061  // Finally, we know we have the right number of parameters, install them.
4062  NewFD->setParams(Params.data(), Params.size());
4063
4064  // Process the non-inheritable attributes on this declaration.
4065  ProcessDeclAttributes(S, NewFD, D,
4066                        /*NonInheritable=*/true, /*Inheritable=*/false);
4067
4068  if (!getLangOptions().CPlusPlus) {
4069    // Perform semantic checking on the function declaration.
4070    bool isExplctSpecialization=false;
4071    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4072                             Redeclaration);
4073    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4074            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4075           "previous declaration set still overloaded");
4076  } else {
4077    // If the declarator is a template-id, translate the parser's template
4078    // argument list into our AST format.
4079    bool HasExplicitTemplateArgs = false;
4080    TemplateArgumentListInfo TemplateArgs;
4081    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4082      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4083      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4084      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4085      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4086                                         TemplateId->getTemplateArgs(),
4087                                         TemplateId->NumArgs);
4088      translateTemplateArguments(TemplateArgsPtr,
4089                                 TemplateArgs);
4090      TemplateArgsPtr.release();
4091
4092      HasExplicitTemplateArgs = true;
4093
4094      if (FunctionTemplate) {
4095        // Function template with explicit template arguments.
4096        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4097          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4098
4099        HasExplicitTemplateArgs = false;
4100      } else if (!isFunctionTemplateSpecialization &&
4101                 !D.getDeclSpec().isFriendSpecified()) {
4102        // We have encountered something that the user meant to be a
4103        // specialization (because it has explicitly-specified template
4104        // arguments) but that was not introduced with a "template<>" (or had
4105        // too few of them).
4106        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4107          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4108          << FixItHint::CreateInsertion(
4109                                        D.getDeclSpec().getSourceRange().getBegin(),
4110                                                  "template<> ");
4111        isFunctionTemplateSpecialization = true;
4112      } else {
4113        // "friend void foo<>(int);" is an implicit specialization decl.
4114        isFunctionTemplateSpecialization = true;
4115      }
4116    } else if (isFriend && isFunctionTemplateSpecialization) {
4117      // This combination is only possible in a recovery case;  the user
4118      // wrote something like:
4119      //   template <> friend void foo(int);
4120      // which we're recovering from as if the user had written:
4121      //   friend void foo<>(int);
4122      // Go ahead and fake up a template id.
4123      HasExplicitTemplateArgs = true;
4124        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4125      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4126    }
4127
4128    // If it's a friend (and only if it's a friend), it's possible
4129    // that either the specialized function type or the specialized
4130    // template is dependent, and therefore matching will fail.  In
4131    // this case, don't check the specialization yet.
4132    if (isFunctionTemplateSpecialization && isFriend &&
4133        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4134      assert(HasExplicitTemplateArgs &&
4135             "friend function specialization without template args");
4136      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4137                                                       Previous))
4138        NewFD->setInvalidDecl();
4139    } else if (isFunctionTemplateSpecialization) {
4140      if (CurContext->isDependentContext() && CurContext->isRecord()
4141          && !isFriend) {
4142        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4143          << NewFD->getDeclName();
4144        NewFD->setInvalidDecl();
4145        return 0;
4146      } else if (CheckFunctionTemplateSpecialization(NewFD,
4147                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4148                                                     Previous))
4149        NewFD->setInvalidDecl();
4150    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4151      if (CheckMemberSpecialization(NewFD, Previous))
4152          NewFD->setInvalidDecl();
4153    }
4154
4155    // Perform semantic checking on the function declaration.
4156    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4157                             Redeclaration);
4158
4159    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4160            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4161           "previous declaration set still overloaded");
4162
4163    NamedDecl *PrincipalDecl = (FunctionTemplate
4164                                ? cast<NamedDecl>(FunctionTemplate)
4165                                : NewFD);
4166
4167    if (isFriend && Redeclaration) {
4168      AccessSpecifier Access = AS_public;
4169      if (!NewFD->isInvalidDecl())
4170        Access = NewFD->getPreviousDeclaration()->getAccess();
4171
4172      NewFD->setAccess(Access);
4173      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4174
4175      PrincipalDecl->setObjectOfFriendDecl(true);
4176    }
4177
4178    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4179        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4180      PrincipalDecl->setNonMemberOperator();
4181
4182    // If we have a function template, check the template parameter
4183    // list. This will check and merge default template arguments.
4184    if (FunctionTemplate) {
4185      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4186      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4187                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4188                            D.getDeclSpec().isFriendSpecified()
4189                              ? (IsFunctionDefinition
4190                                   ? TPC_FriendFunctionTemplateDefinition
4191                                   : TPC_FriendFunctionTemplate)
4192                              : (D.getCXXScopeSpec().isSet() &&
4193                                 DC && DC->isRecord() &&
4194                                 DC->isDependentContext())
4195                                  ? TPC_ClassTemplateMember
4196                                  : TPC_FunctionTemplate);
4197    }
4198
4199    if (NewFD->isInvalidDecl()) {
4200      // Ignore all the rest of this.
4201    } else if (!Redeclaration) {
4202      // Fake up an access specifier if it's supposed to be a class member.
4203      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4204        NewFD->setAccess(AS_public);
4205
4206      // Qualified decls generally require a previous declaration.
4207      if (D.getCXXScopeSpec().isSet()) {
4208        // ...with the major exception of templated-scope or
4209        // dependent-scope friend declarations.
4210
4211        // TODO: we currently also suppress this check in dependent
4212        // contexts because (1) the parameter depth will be off when
4213        // matching friend templates and (2) we might actually be
4214        // selecting a friend based on a dependent factor.  But there
4215        // are situations where these conditions don't apply and we
4216        // can actually do this check immediately.
4217        if (isFriend &&
4218            (TemplateParamLists.size() ||
4219             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4220             CurContext->isDependentContext())) {
4221              // ignore these
4222            } else {
4223              // The user tried to provide an out-of-line definition for a
4224              // function that is a member of a class or namespace, but there
4225              // was no such member function declared (C++ [class.mfct]p2,
4226              // C++ [namespace.memdef]p2). For example:
4227              //
4228              // class X {
4229              //   void f() const;
4230              // };
4231              //
4232              // void X::f() { } // ill-formed
4233              //
4234              // Complain about this problem, and attempt to suggest close
4235              // matches (e.g., those that differ only in cv-qualifiers and
4236              // whether the parameter types are references).
4237              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4238              << Name << DC << D.getCXXScopeSpec().getRange();
4239              NewFD->setInvalidDecl();
4240
4241              DiagnoseInvalidRedeclaration(*this, NewFD);
4242            }
4243
4244        // Unqualified local friend declarations are required to resolve
4245        // to something.
4246        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4247          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4248          NewFD->setInvalidDecl();
4249          DiagnoseInvalidRedeclaration(*this, NewFD);
4250        }
4251
4252    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4253               !isFriend && !isFunctionTemplateSpecialization &&
4254               !isExplicitSpecialization) {
4255      // An out-of-line member function declaration must also be a
4256      // definition (C++ [dcl.meaning]p1).
4257      // Note that this is not the case for explicit specializations of
4258      // function templates or member functions of class templates, per
4259      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4260      // for compatibility with old SWIG code which likes to generate them.
4261      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4262        << D.getCXXScopeSpec().getRange();
4263    }
4264  }
4265
4266
4267  // Handle attributes. We need to have merged decls when handling attributes
4268  // (for example to check for conflicts, etc).
4269  // FIXME: This needs to happen before we merge declarations. Then,
4270  // let attribute merging cope with attribute conflicts.
4271  ProcessDeclAttributes(S, NewFD, D,
4272                        /*NonInheritable=*/false, /*Inheritable=*/true);
4273
4274  // attributes declared post-definition are currently ignored
4275  // FIXME: This should happen during attribute merging
4276  if (Redeclaration && Previous.isSingleResult()) {
4277    const FunctionDecl *Def;
4278    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4279    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4280      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4281      Diag(Def->getLocation(), diag::note_previous_definition);
4282    }
4283  }
4284
4285  AddKnownFunctionAttributes(NewFD);
4286
4287  if (NewFD->hasAttr<OverloadableAttr>() &&
4288      !NewFD->getType()->getAs<FunctionProtoType>()) {
4289    Diag(NewFD->getLocation(),
4290         diag::err_attribute_overloadable_no_prototype)
4291      << NewFD;
4292
4293    // Turn this into a variadic function with no parameters.
4294    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4295    FunctionProtoType::ExtProtoInfo EPI;
4296    EPI.Variadic = true;
4297    EPI.ExtInfo = FT->getExtInfo();
4298
4299    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4300    NewFD->setType(R);
4301  }
4302
4303  // If there's a #pragma GCC visibility in scope, and this isn't a class
4304  // member, set the visibility of this function.
4305  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4306    AddPushedVisibilityAttribute(NewFD);
4307
4308  // If this is a locally-scoped extern C function, update the
4309  // map of such names.
4310  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4311      && !NewFD->isInvalidDecl())
4312    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4313
4314  // Set this FunctionDecl's range up to the right paren.
4315  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4316
4317  if (getLangOptions().CPlusPlus) {
4318    if (FunctionTemplate) {
4319      if (NewFD->isInvalidDecl())
4320        FunctionTemplate->setInvalidDecl();
4321      return FunctionTemplate;
4322    }
4323  }
4324
4325  MarkUnusedFileScopedDecl(NewFD);
4326
4327  if (getLangOptions().CUDA)
4328    if (IdentifierInfo *II = NewFD->getIdentifier())
4329      if (!NewFD->isInvalidDecl() &&
4330          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4331        if (II->isStr("cudaConfigureCall")) {
4332          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4333            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4334
4335          Context.setcudaConfigureCallDecl(NewFD);
4336        }
4337      }
4338
4339  return NewFD;
4340}
4341
4342/// \brief Perform semantic checking of a new function declaration.
4343///
4344/// Performs semantic analysis of the new function declaration
4345/// NewFD. This routine performs all semantic checking that does not
4346/// require the actual declarator involved in the declaration, and is
4347/// used both for the declaration of functions as they are parsed
4348/// (called via ActOnDeclarator) and for the declaration of functions
4349/// that have been instantiated via C++ template instantiation (called
4350/// via InstantiateDecl).
4351///
4352/// \param IsExplicitSpecialiation whether this new function declaration is
4353/// an explicit specialization of the previous declaration.
4354///
4355/// This sets NewFD->isInvalidDecl() to true if there was an error.
4356void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4357                                    LookupResult &Previous,
4358                                    bool IsExplicitSpecialization,
4359                                    bool &Redeclaration) {
4360  // If NewFD is already known erroneous, don't do any of this checking.
4361  if (NewFD->isInvalidDecl()) {
4362    // If this is a class member, mark the class invalid immediately.
4363    // This avoids some consistency errors later.
4364    if (isa<CXXMethodDecl>(NewFD))
4365      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4366
4367    return;
4368  }
4369
4370  if (NewFD->getResultType()->isVariablyModifiedType()) {
4371    // Functions returning a variably modified type violate C99 6.7.5.2p2
4372    // because all functions have linkage.
4373    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4374    return NewFD->setInvalidDecl();
4375  }
4376
4377  if (NewFD->isMain())
4378    CheckMain(NewFD);
4379
4380  // Check for a previous declaration of this name.
4381  if (Previous.empty() && NewFD->isExternC()) {
4382    // Since we did not find anything by this name and we're declaring
4383    // an extern "C" function, look for a non-visible extern "C"
4384    // declaration with the same name.
4385    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4386      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4387    if (Pos != LocallyScopedExternalDecls.end())
4388      Previous.addDecl(Pos->second);
4389  }
4390
4391  // Merge or overload the declaration with an existing declaration of
4392  // the same name, if appropriate.
4393  if (!Previous.empty()) {
4394    // Determine whether NewFD is an overload of PrevDecl or
4395    // a declaration that requires merging. If it's an overload,
4396    // there's no more work to do here; we'll just add the new
4397    // function to the scope.
4398
4399    NamedDecl *OldDecl = 0;
4400    if (!AllowOverloadingOfFunction(Previous, Context)) {
4401      Redeclaration = true;
4402      OldDecl = Previous.getFoundDecl();
4403    } else {
4404      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4405                            /*NewIsUsingDecl*/ false)) {
4406      case Ovl_Match:
4407        Redeclaration = true;
4408        break;
4409
4410      case Ovl_NonFunction:
4411        Redeclaration = true;
4412        break;
4413
4414      case Ovl_Overload:
4415        Redeclaration = false;
4416        break;
4417      }
4418
4419      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4420        // If a function name is overloadable in C, then every function
4421        // with that name must be marked "overloadable".
4422        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4423          << Redeclaration << NewFD;
4424        NamedDecl *OverloadedDecl = 0;
4425        if (Redeclaration)
4426          OverloadedDecl = OldDecl;
4427        else if (!Previous.empty())
4428          OverloadedDecl = Previous.getRepresentativeDecl();
4429        if (OverloadedDecl)
4430          Diag(OverloadedDecl->getLocation(),
4431               diag::note_attribute_overloadable_prev_overload);
4432        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4433                                                        Context));
4434      }
4435    }
4436
4437    if (Redeclaration) {
4438      // NewFD and OldDecl represent declarations that need to be
4439      // merged.
4440      if (MergeFunctionDecl(NewFD, OldDecl))
4441        return NewFD->setInvalidDecl();
4442
4443      Previous.clear();
4444      Previous.addDecl(OldDecl);
4445
4446      if (FunctionTemplateDecl *OldTemplateDecl
4447                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4448        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4449        FunctionTemplateDecl *NewTemplateDecl
4450          = NewFD->getDescribedFunctionTemplate();
4451        assert(NewTemplateDecl && "Template/non-template mismatch");
4452        if (CXXMethodDecl *Method
4453              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4454          Method->setAccess(OldTemplateDecl->getAccess());
4455          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4456        }
4457
4458        // If this is an explicit specialization of a member that is a function
4459        // template, mark it as a member specialization.
4460        if (IsExplicitSpecialization &&
4461            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4462          NewTemplateDecl->setMemberSpecialization();
4463          assert(OldTemplateDecl->isMemberSpecialization());
4464        }
4465      } else {
4466        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4467          NewFD->setAccess(OldDecl->getAccess());
4468        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4469      }
4470    }
4471  }
4472
4473  // Semantic checking for this function declaration (in isolation).
4474  if (getLangOptions().CPlusPlus) {
4475    // C++-specific checks.
4476    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4477      CheckConstructor(Constructor);
4478    } else if (CXXDestructorDecl *Destructor =
4479                dyn_cast<CXXDestructorDecl>(NewFD)) {
4480      CXXRecordDecl *Record = Destructor->getParent();
4481      QualType ClassType = Context.getTypeDeclType(Record);
4482
4483      // FIXME: Shouldn't we be able to perform this check even when the class
4484      // type is dependent? Both gcc and edg can handle that.
4485      if (!ClassType->isDependentType()) {
4486        DeclarationName Name
4487          = Context.DeclarationNames.getCXXDestructorName(
4488                                        Context.getCanonicalType(ClassType));
4489        if (NewFD->getDeclName() != Name) {
4490          Diag(NewFD->getLocation(), diag::err_destructor_name);
4491          return NewFD->setInvalidDecl();
4492        }
4493      }
4494    } else if (CXXConversionDecl *Conversion
4495               = dyn_cast<CXXConversionDecl>(NewFD)) {
4496      ActOnConversionDeclarator(Conversion);
4497    }
4498
4499    // Find any virtual functions that this function overrides.
4500    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4501      if (!Method->isFunctionTemplateSpecialization() &&
4502          !Method->getDescribedFunctionTemplate()) {
4503        if (AddOverriddenMethods(Method->getParent(), Method)) {
4504          // If the function was marked as "static", we have a problem.
4505          if (NewFD->getStorageClass() == SC_Static) {
4506            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4507              << NewFD->getDeclName();
4508            for (CXXMethodDecl::method_iterator
4509                      Overridden = Method->begin_overridden_methods(),
4510                   OverriddenEnd = Method->end_overridden_methods();
4511                 Overridden != OverriddenEnd;
4512                 ++Overridden) {
4513              Diag((*Overridden)->getLocation(),
4514                   diag::note_overridden_virtual_function);
4515            }
4516          }
4517        }
4518      }
4519    }
4520
4521    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4522    if (NewFD->isOverloadedOperator() &&
4523        CheckOverloadedOperatorDeclaration(NewFD))
4524      return NewFD->setInvalidDecl();
4525
4526    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4527    if (NewFD->getLiteralIdentifier() &&
4528        CheckLiteralOperatorDeclaration(NewFD))
4529      return NewFD->setInvalidDecl();
4530
4531    // In C++, check default arguments now that we have merged decls. Unless
4532    // the lexical context is the class, because in this case this is done
4533    // during delayed parsing anyway.
4534    if (!CurContext->isRecord())
4535      CheckCXXDefaultArguments(NewFD);
4536
4537    // If this function declares a builtin function, check the type of this
4538    // declaration against the expected type for the builtin.
4539    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4540      ASTContext::GetBuiltinTypeError Error;
4541      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4542      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4543        // The type of this function differs from the type of the builtin,
4544        // so forget about the builtin entirely.
4545        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4546      }
4547    }
4548  }
4549}
4550
4551void Sema::CheckMain(FunctionDecl* FD) {
4552  // C++ [basic.start.main]p3:  A program that declares main to be inline
4553  //   or static is ill-formed.
4554  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4555  //   shall not appear in a declaration of main.
4556  // static main is not an error under C99, but we should warn about it.
4557  bool isInline = FD->isInlineSpecified();
4558  bool isStatic = FD->getStorageClass() == SC_Static;
4559  if (isInline || isStatic) {
4560    unsigned diagID = diag::warn_unusual_main_decl;
4561    if (isInline || getLangOptions().CPlusPlus)
4562      diagID = diag::err_unusual_main_decl;
4563
4564    int which = isStatic + (isInline << 1) - 1;
4565    Diag(FD->getLocation(), diagID) << which;
4566  }
4567
4568  QualType T = FD->getType();
4569  assert(T->isFunctionType() && "function decl is not of function type");
4570  const FunctionType* FT = T->getAs<FunctionType>();
4571
4572  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4573    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4574    FD->setInvalidDecl(true);
4575  }
4576
4577  // Treat protoless main() as nullary.
4578  if (isa<FunctionNoProtoType>(FT)) return;
4579
4580  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4581  unsigned nparams = FTP->getNumArgs();
4582  assert(FD->getNumParams() == nparams);
4583
4584  bool HasExtraParameters = (nparams > 3);
4585
4586  // Darwin passes an undocumented fourth argument of type char**.  If
4587  // other platforms start sprouting these, the logic below will start
4588  // getting shifty.
4589  if (nparams == 4 &&
4590      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4591    HasExtraParameters = false;
4592
4593  if (HasExtraParameters) {
4594    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4595    FD->setInvalidDecl(true);
4596    nparams = 3;
4597  }
4598
4599  // FIXME: a lot of the following diagnostics would be improved
4600  // if we had some location information about types.
4601
4602  QualType CharPP =
4603    Context.getPointerType(Context.getPointerType(Context.CharTy));
4604  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4605
4606  for (unsigned i = 0; i < nparams; ++i) {
4607    QualType AT = FTP->getArgType(i);
4608
4609    bool mismatch = true;
4610
4611    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4612      mismatch = false;
4613    else if (Expected[i] == CharPP) {
4614      // As an extension, the following forms are okay:
4615      //   char const **
4616      //   char const * const *
4617      //   char * const *
4618
4619      QualifierCollector qs;
4620      const PointerType* PT;
4621      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4622          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4623          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4624        qs.removeConst();
4625        mismatch = !qs.empty();
4626      }
4627    }
4628
4629    if (mismatch) {
4630      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4631      // TODO: suggest replacing given type with expected type
4632      FD->setInvalidDecl(true);
4633    }
4634  }
4635
4636  if (nparams == 1 && !FD->isInvalidDecl()) {
4637    Diag(FD->getLocation(), diag::warn_main_one_arg);
4638  }
4639
4640  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4641    Diag(FD->getLocation(), diag::err_main_template_decl);
4642    FD->setInvalidDecl();
4643  }
4644}
4645
4646bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4647  // FIXME: Need strict checking.  In C89, we need to check for
4648  // any assignment, increment, decrement, function-calls, or
4649  // commas outside of a sizeof.  In C99, it's the same list,
4650  // except that the aforementioned are allowed in unevaluated
4651  // expressions.  Everything else falls under the
4652  // "may accept other forms of constant expressions" exception.
4653  // (We never end up here for C++, so the constant expression
4654  // rules there don't matter.)
4655  if (Init->isConstantInitializer(Context, false))
4656    return false;
4657  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4658    << Init->getSourceRange();
4659  return true;
4660}
4661
4662/// AddInitializerToDecl - Adds the initializer Init to the
4663/// declaration dcl. If DirectInit is true, this is C++ direct
4664/// initialization rather than copy initialization.
4665void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4666                                bool DirectInit, bool TypeMayContainAuto) {
4667  // If there is no declaration, there was an error parsing it.  Just ignore
4668  // the initializer.
4669  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4670    return;
4671
4672  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4673    // With declarators parsed the way they are, the parser cannot
4674    // distinguish between a normal initializer and a pure-specifier.
4675    // Thus this grotesque test.
4676    IntegerLiteral *IL;
4677    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4678        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4679      CheckPureMethod(Method, Init->getSourceRange());
4680    else {
4681      Diag(Method->getLocation(), diag::err_member_function_initialization)
4682        << Method->getDeclName() << Init->getSourceRange();
4683      Method->setInvalidDecl();
4684    }
4685    return;
4686  }
4687
4688  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4689  if (!VDecl) {
4690    if (getLangOptions().CPlusPlus &&
4691        RealDecl->getLexicalDeclContext()->isRecord() &&
4692        isa<NamedDecl>(RealDecl))
4693      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4694    else
4695      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4696    RealDecl->setInvalidDecl();
4697    return;
4698  }
4699
4700  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4701  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4702    TypeSourceInfo *DeducedType = 0;
4703    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
4704      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4705        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4706        << Init->getSourceRange();
4707    if (!DeducedType) {
4708      RealDecl->setInvalidDecl();
4709      return;
4710    }
4711    VDecl->setTypeSourceInfo(DeducedType);
4712    VDecl->setType(DeducedType->getType());
4713
4714    // If this is a redeclaration, check that the type we just deduced matches
4715    // the previously declared type.
4716    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4717      MergeVarDeclTypes(VDecl, Old);
4718  }
4719
4720
4721  // A definition must end up with a complete type, which means it must be
4722  // complete with the restriction that an array type might be completed by the
4723  // initializer; note that later code assumes this restriction.
4724  QualType BaseDeclType = VDecl->getType();
4725  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4726    BaseDeclType = Array->getElementType();
4727  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4728                          diag::err_typecheck_decl_incomplete_type)) {
4729    RealDecl->setInvalidDecl();
4730    return;
4731  }
4732
4733  // The variable can not have an abstract class type.
4734  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4735                             diag::err_abstract_type_in_decl,
4736                             AbstractVariableType))
4737    VDecl->setInvalidDecl();
4738
4739  const VarDecl *Def;
4740  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4741    Diag(VDecl->getLocation(), diag::err_redefinition)
4742      << VDecl->getDeclName();
4743    Diag(Def->getLocation(), diag::note_previous_definition);
4744    VDecl->setInvalidDecl();
4745    return;
4746  }
4747
4748  const VarDecl* PrevInit = 0;
4749  if (getLangOptions().CPlusPlus) {
4750    // C++ [class.static.data]p4
4751    //   If a static data member is of const integral or const
4752    //   enumeration type, its declaration in the class definition can
4753    //   specify a constant-initializer which shall be an integral
4754    //   constant expression (5.19). In that case, the member can appear
4755    //   in integral constant expressions. The member shall still be
4756    //   defined in a namespace scope if it is used in the program and the
4757    //   namespace scope definition shall not contain an initializer.
4758    //
4759    // We already performed a redefinition check above, but for static
4760    // data members we also need to check whether there was an in-class
4761    // declaration with an initializer.
4762    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4763      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4764      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4765      return;
4766    }
4767
4768    if (VDecl->hasLocalStorage())
4769      getCurFunction()->setHasBranchProtectedScope();
4770
4771    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4772      VDecl->setInvalidDecl();
4773      return;
4774    }
4775  }
4776
4777  // Capture the variable that is being initialized and the style of
4778  // initialization.
4779  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4780
4781  // FIXME: Poor source location information.
4782  InitializationKind Kind
4783    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4784                                                   Init->getLocStart(),
4785                                                   Init->getLocEnd())
4786                : InitializationKind::CreateCopy(VDecl->getLocation(),
4787                                                 Init->getLocStart());
4788
4789  // Get the decls type and save a reference for later, since
4790  // CheckInitializerTypes may change it.
4791  QualType DclT = VDecl->getType(), SavT = DclT;
4792  if (VDecl->isLocalVarDecl()) {
4793    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4794      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4795      VDecl->setInvalidDecl();
4796    } else if (!VDecl->isInvalidDecl()) {
4797      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4798      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4799                                                MultiExprArg(*this, &Init, 1),
4800                                                &DclT);
4801      if (Result.isInvalid()) {
4802        VDecl->setInvalidDecl();
4803        return;
4804      }
4805
4806      Init = Result.takeAs<Expr>();
4807
4808      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4809      // Don't check invalid declarations to avoid emitting useless diagnostics.
4810      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4811        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4812          CheckForConstantInitializer(Init, DclT);
4813      }
4814    }
4815  } else if (VDecl->isStaticDataMember() &&
4816             VDecl->getLexicalDeclContext()->isRecord()) {
4817    // This is an in-class initialization for a static data member, e.g.,
4818    //
4819    // struct S {
4820    //   static const int value = 17;
4821    // };
4822
4823    // Try to perform the initialization regardless.
4824    if (!VDecl->isInvalidDecl()) {
4825      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4826      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4827                                          MultiExprArg(*this, &Init, 1),
4828                                          &DclT);
4829      if (Result.isInvalid()) {
4830        VDecl->setInvalidDecl();
4831        return;
4832      }
4833
4834      Init = Result.takeAs<Expr>();
4835    }
4836
4837    // C++ [class.mem]p4:
4838    //   A member-declarator can contain a constant-initializer only
4839    //   if it declares a static member (9.4) of const integral or
4840    //   const enumeration type, see 9.4.2.
4841    QualType T = VDecl->getType();
4842
4843    // Do nothing on dependent types.
4844    if (T->isDependentType()) {
4845
4846    // Require constness.
4847    } else if (!T.isConstQualified()) {
4848      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4849        << Init->getSourceRange();
4850      VDecl->setInvalidDecl();
4851
4852    // We allow integer constant expressions in all cases.
4853    } else if (T->isIntegralOrEnumerationType()) {
4854      if (!Init->isValueDependent()) {
4855        // Check whether the expression is a constant expression.
4856        llvm::APSInt Value;
4857        SourceLocation Loc;
4858        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4859          Diag(Loc, diag::err_in_class_initializer_non_constant)
4860            << Init->getSourceRange();
4861          VDecl->setInvalidDecl();
4862        }
4863      }
4864
4865    // We allow floating-point constants as an extension in C++03, and
4866    // C++0x has far more complicated rules that we don't really
4867    // implement fully.
4868    } else {
4869      bool Allowed = false;
4870      if (getLangOptions().CPlusPlus0x) {
4871        Allowed = T->isLiteralType();
4872      } else if (T->isFloatingType()) { // also permits complex, which is ok
4873        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4874          << T << Init->getSourceRange();
4875        Allowed = true;
4876      }
4877
4878      if (!Allowed) {
4879        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4880          << T << Init->getSourceRange();
4881        VDecl->setInvalidDecl();
4882
4883      // TODO: there are probably expressions that pass here that shouldn't.
4884      } else if (!Init->isValueDependent() &&
4885                 !Init->isConstantInitializer(Context, false)) {
4886        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4887          << Init->getSourceRange();
4888        VDecl->setInvalidDecl();
4889      }
4890    }
4891  } else if (VDecl->isFileVarDecl()) {
4892    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4893        (!getLangOptions().CPlusPlus ||
4894         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4895      Diag(VDecl->getLocation(), diag::warn_extern_init);
4896    if (!VDecl->isInvalidDecl()) {
4897      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4898      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4899                                                MultiExprArg(*this, &Init, 1),
4900                                                &DclT);
4901      if (Result.isInvalid()) {
4902        VDecl->setInvalidDecl();
4903        return;
4904      }
4905
4906      Init = Result.takeAs<Expr>();
4907    }
4908
4909    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4910    // Don't check invalid declarations to avoid emitting useless diagnostics.
4911    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4912      // C99 6.7.8p4. All file scoped initializers need to be constant.
4913      CheckForConstantInitializer(Init, DclT);
4914    }
4915  }
4916  // If the type changed, it means we had an incomplete type that was
4917  // completed by the initializer. For example:
4918  //   int ary[] = { 1, 3, 5 };
4919  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4920  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4921    VDecl->setType(DclT);
4922    Init->setType(DclT);
4923  }
4924
4925
4926  // If this variable is a local declaration with record type, make sure it
4927  // doesn't have a flexible member initialization.  We only support this as a
4928  // global/static definition.
4929  if (VDecl->hasLocalStorage())
4930    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4931      if (RT->getDecl()->hasFlexibleArrayMember()) {
4932        // Check whether the initializer tries to initialize the flexible
4933        // array member itself to anything other than an empty initializer list.
4934        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4935          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4936                                         RT->getDecl()->field_end()) - 1;
4937          if (Index < ILE->getNumInits() &&
4938              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4939                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4940            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4941            VDecl->setInvalidDecl();
4942          }
4943        }
4944      }
4945
4946  // Check any implicit conversions within the expression.
4947  CheckImplicitConversions(Init, VDecl->getLocation());
4948
4949  Init = MaybeCreateExprWithCleanups(Init);
4950  // Attach the initializer to the decl.
4951  VDecl->setInit(Init);
4952
4953  CheckCompleteVariableDeclaration(VDecl);
4954}
4955
4956/// ActOnInitializerError - Given that there was an error parsing an
4957/// initializer for the given declaration, try to return to some form
4958/// of sanity.
4959void Sema::ActOnInitializerError(Decl *D) {
4960  // Our main concern here is re-establishing invariants like "a
4961  // variable's type is either dependent or complete".
4962  if (!D || D->isInvalidDecl()) return;
4963
4964  VarDecl *VD = dyn_cast<VarDecl>(D);
4965  if (!VD) return;
4966
4967  // Auto types are meaningless if we can't make sense of the initializer.
4968  if (ParsingInitForAutoVars.count(D)) {
4969    D->setInvalidDecl();
4970    return;
4971  }
4972
4973  QualType Ty = VD->getType();
4974  if (Ty->isDependentType()) return;
4975
4976  // Require a complete type.
4977  if (RequireCompleteType(VD->getLocation(),
4978                          Context.getBaseElementType(Ty),
4979                          diag::err_typecheck_decl_incomplete_type)) {
4980    VD->setInvalidDecl();
4981    return;
4982  }
4983
4984  // Require an abstract type.
4985  if (RequireNonAbstractType(VD->getLocation(), Ty,
4986                             diag::err_abstract_type_in_decl,
4987                             AbstractVariableType)) {
4988    VD->setInvalidDecl();
4989    return;
4990  }
4991
4992  // Don't bother complaining about constructors or destructors,
4993  // though.
4994}
4995
4996void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4997                                  bool TypeMayContainAuto) {
4998  // If there is no declaration, there was an error parsing it. Just ignore it.
4999  if (RealDecl == 0)
5000    return;
5001
5002  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5003    QualType Type = Var->getType();
5004
5005    // C++0x [dcl.spec.auto]p3
5006    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5007      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5008        << Var->getDeclName() << Type;
5009      Var->setInvalidDecl();
5010      return;
5011    }
5012
5013    switch (Var->isThisDeclarationADefinition()) {
5014    case VarDecl::Definition:
5015      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5016        break;
5017
5018      // We have an out-of-line definition of a static data member
5019      // that has an in-class initializer, so we type-check this like
5020      // a declaration.
5021      //
5022      // Fall through
5023
5024    case VarDecl::DeclarationOnly:
5025      // It's only a declaration.
5026
5027      // Block scope. C99 6.7p7: If an identifier for an object is
5028      // declared with no linkage (C99 6.2.2p6), the type for the
5029      // object shall be complete.
5030      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5031          !Var->getLinkage() && !Var->isInvalidDecl() &&
5032          RequireCompleteType(Var->getLocation(), Type,
5033                              diag::err_typecheck_decl_incomplete_type))
5034        Var->setInvalidDecl();
5035
5036      // Make sure that the type is not abstract.
5037      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5038          RequireNonAbstractType(Var->getLocation(), Type,
5039                                 diag::err_abstract_type_in_decl,
5040                                 AbstractVariableType))
5041        Var->setInvalidDecl();
5042      return;
5043
5044    case VarDecl::TentativeDefinition:
5045      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5046      // object that has file scope without an initializer, and without a
5047      // storage-class specifier or with the storage-class specifier "static",
5048      // constitutes a tentative definition. Note: A tentative definition with
5049      // external linkage is valid (C99 6.2.2p5).
5050      if (!Var->isInvalidDecl()) {
5051        if (const IncompleteArrayType *ArrayT
5052                                    = Context.getAsIncompleteArrayType(Type)) {
5053          if (RequireCompleteType(Var->getLocation(),
5054                                  ArrayT->getElementType(),
5055                                  diag::err_illegal_decl_array_incomplete_type))
5056            Var->setInvalidDecl();
5057        } else if (Var->getStorageClass() == SC_Static) {
5058          // C99 6.9.2p3: If the declaration of an identifier for an object is
5059          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5060          // declared type shall not be an incomplete type.
5061          // NOTE: code such as the following
5062          //     static struct s;
5063          //     struct s { int a; };
5064          // is accepted by gcc. Hence here we issue a warning instead of
5065          // an error and we do not invalidate the static declaration.
5066          // NOTE: to avoid multiple warnings, only check the first declaration.
5067          if (Var->getPreviousDeclaration() == 0)
5068            RequireCompleteType(Var->getLocation(), Type,
5069                                diag::ext_typecheck_decl_incomplete_type);
5070        }
5071      }
5072
5073      // Record the tentative definition; we're done.
5074      if (!Var->isInvalidDecl())
5075        TentativeDefinitions.push_back(Var);
5076      return;
5077    }
5078
5079    // Provide a specific diagnostic for uninitialized variable
5080    // definitions with incomplete array type.
5081    if (Type->isIncompleteArrayType()) {
5082      Diag(Var->getLocation(),
5083           diag::err_typecheck_incomplete_array_needs_initializer);
5084      Var->setInvalidDecl();
5085      return;
5086    }
5087
5088    // Provide a specific diagnostic for uninitialized variable
5089    // definitions with reference type.
5090    if (Type->isReferenceType()) {
5091      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5092        << Var->getDeclName()
5093        << SourceRange(Var->getLocation(), Var->getLocation());
5094      Var->setInvalidDecl();
5095      return;
5096    }
5097
5098    // Do not attempt to type-check the default initializer for a
5099    // variable with dependent type.
5100    if (Type->isDependentType())
5101      return;
5102
5103    if (Var->isInvalidDecl())
5104      return;
5105
5106    if (RequireCompleteType(Var->getLocation(),
5107                            Context.getBaseElementType(Type),
5108                            diag::err_typecheck_decl_incomplete_type)) {
5109      Var->setInvalidDecl();
5110      return;
5111    }
5112
5113    // The variable can not have an abstract class type.
5114    if (RequireNonAbstractType(Var->getLocation(), Type,
5115                               diag::err_abstract_type_in_decl,
5116                               AbstractVariableType)) {
5117      Var->setInvalidDecl();
5118      return;
5119    }
5120
5121    const RecordType *Record
5122      = Context.getBaseElementType(Type)->getAs<RecordType>();
5123    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5124        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5125      // C++03 [dcl.init]p9:
5126      //   If no initializer is specified for an object, and the
5127      //   object is of (possibly cv-qualified) non-POD class type (or
5128      //   array thereof), the object shall be default-initialized; if
5129      //   the object is of const-qualified type, the underlying class
5130      //   type shall have a user-declared default
5131      //   constructor. Otherwise, if no initializer is specified for
5132      //   a non- static object, the object and its subobjects, if
5133      //   any, have an indeterminate initial value); if the object
5134      //   or any of its subobjects are of const-qualified type, the
5135      //   program is ill-formed.
5136      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5137    } else {
5138      // Check for jumps past the implicit initializer.  C++0x
5139      // clarifies that this applies to a "variable with automatic
5140      // storage duration", not a "local variable".
5141      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5142        getCurFunction()->setHasBranchProtectedScope();
5143
5144      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5145      InitializationKind Kind
5146        = InitializationKind::CreateDefault(Var->getLocation());
5147
5148      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5149      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5150                                        MultiExprArg(*this, 0, 0));
5151      if (Init.isInvalid())
5152        Var->setInvalidDecl();
5153      else if (Init.get())
5154        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5155    }
5156
5157    CheckCompleteVariableDeclaration(Var);
5158  }
5159}
5160
5161void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5162  if (var->isInvalidDecl()) return;
5163
5164  // All the following checks are C++ only.
5165  if (!getLangOptions().CPlusPlus) return;
5166
5167  QualType baseType = Context.getBaseElementType(var->getType());
5168  if (baseType->isDependentType()) return;
5169
5170  // __block variables might require us to capture a copy-initializer.
5171  if (var->hasAttr<BlocksAttr>()) {
5172    // It's currently invalid to ever have a __block variable with an
5173    // array type; should we diagnose that here?
5174
5175    // Regardless, we don't want to ignore array nesting when
5176    // constructing this copy.
5177    QualType type = var->getType();
5178
5179    if (type->isStructureOrClassType()) {
5180      SourceLocation poi = var->getLocation();
5181      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5182      ExprResult result =
5183        PerformCopyInitialization(
5184                        InitializedEntity::InitializeBlock(poi, type, false),
5185                                  poi, Owned(varRef));
5186      if (!result.isInvalid()) {
5187        result = MaybeCreateExprWithCleanups(result);
5188        Expr *init = result.takeAs<Expr>();
5189        Context.setBlockVarCopyInits(var, init);
5190      }
5191    }
5192  }
5193
5194  // Check for global constructors.
5195  if (!var->getDeclContext()->isDependentContext() &&
5196      var->hasGlobalStorage() &&
5197      !var->isStaticLocal() &&
5198      var->getInit() &&
5199      !var->getInit()->isConstantInitializer(Context,
5200                                             baseType->isReferenceType()))
5201    Diag(var->getLocation(), diag::warn_global_constructor)
5202      << var->getInit()->getSourceRange();
5203
5204  // Require the destructor.
5205  if (const RecordType *recordType = baseType->getAs<RecordType>())
5206    FinalizeVarWithDestructor(var, recordType);
5207}
5208
5209/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5210/// any semantic actions necessary after any initializer has been attached.
5211void
5212Sema::FinalizeDeclaration(Decl *ThisDecl) {
5213  // Note that we are no longer parsing the initializer for this declaration.
5214  ParsingInitForAutoVars.erase(ThisDecl);
5215}
5216
5217Sema::DeclGroupPtrTy
5218Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5219                              Decl **Group, unsigned NumDecls) {
5220  llvm::SmallVector<Decl*, 8> Decls;
5221
5222  if (DS.isTypeSpecOwned())
5223    Decls.push_back(DS.getRepAsDecl());
5224
5225  for (unsigned i = 0; i != NumDecls; ++i)
5226    if (Decl *D = Group[i])
5227      Decls.push_back(D);
5228
5229  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5230                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5231}
5232
5233/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5234/// group, performing any necessary semantic checking.
5235Sema::DeclGroupPtrTy
5236Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5237                           bool TypeMayContainAuto) {
5238  // C++0x [dcl.spec.auto]p7:
5239  //   If the type deduced for the template parameter U is not the same in each
5240  //   deduction, the program is ill-formed.
5241  // FIXME: When initializer-list support is added, a distinction is needed
5242  // between the deduced type U and the deduced type which 'auto' stands for.
5243  //   auto a = 0, b = { 1, 2, 3 };
5244  // is legal because the deduced type U is 'int' in both cases.
5245  if (TypeMayContainAuto && NumDecls > 1) {
5246    QualType Deduced;
5247    CanQualType DeducedCanon;
5248    VarDecl *DeducedDecl = 0;
5249    for (unsigned i = 0; i != NumDecls; ++i) {
5250      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5251        AutoType *AT = D->getType()->getContainedAutoType();
5252        // Don't reissue diagnostics when instantiating a template.
5253        if (AT && D->isInvalidDecl())
5254          break;
5255        if (AT && AT->isDeduced()) {
5256          QualType U = AT->getDeducedType();
5257          CanQualType UCanon = Context.getCanonicalType(U);
5258          if (Deduced.isNull()) {
5259            Deduced = U;
5260            DeducedCanon = UCanon;
5261            DeducedDecl = D;
5262          } else if (DeducedCanon != UCanon) {
5263            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5264                 diag::err_auto_different_deductions)
5265              << Deduced << DeducedDecl->getDeclName()
5266              << U << D->getDeclName()
5267              << DeducedDecl->getInit()->getSourceRange()
5268              << D->getInit()->getSourceRange();
5269            D->setInvalidDecl();
5270            break;
5271          }
5272        }
5273      }
5274    }
5275  }
5276
5277  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5278}
5279
5280
5281/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5282/// to introduce parameters into function prototype scope.
5283Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5284  const DeclSpec &DS = D.getDeclSpec();
5285
5286  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5287  VarDecl::StorageClass StorageClass = SC_None;
5288  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5289  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5290    StorageClass = SC_Register;
5291    StorageClassAsWritten = SC_Register;
5292  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5293    Diag(DS.getStorageClassSpecLoc(),
5294         diag::err_invalid_storage_class_in_func_decl);
5295    D.getMutableDeclSpec().ClearStorageClassSpecs();
5296  }
5297
5298  if (D.getDeclSpec().isThreadSpecified())
5299    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5300
5301  DiagnoseFunctionSpecifiers(D);
5302
5303  TagDecl *OwnedDecl = 0;
5304  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5305  QualType parmDeclType = TInfo->getType();
5306
5307  if (getLangOptions().CPlusPlus) {
5308    // Check that there are no default arguments inside the type of this
5309    // parameter.
5310    CheckExtraCXXDefaultArguments(D);
5311
5312    if (OwnedDecl && OwnedDecl->isDefinition()) {
5313      // C++ [dcl.fct]p6:
5314      //   Types shall not be defined in return or parameter types.
5315      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5316        << Context.getTypeDeclType(OwnedDecl);
5317    }
5318
5319    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5320    if (D.getCXXScopeSpec().isSet()) {
5321      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5322        << D.getCXXScopeSpec().getRange();
5323      D.getCXXScopeSpec().clear();
5324    }
5325  }
5326
5327  // Ensure we have a valid name
5328  IdentifierInfo *II = 0;
5329  if (D.hasName()) {
5330    II = D.getIdentifier();
5331    if (!II) {
5332      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5333        << GetNameForDeclarator(D).getName().getAsString();
5334      D.setInvalidType(true);
5335    }
5336  }
5337
5338  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5339  if (II) {
5340    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5341                   ForRedeclaration);
5342    LookupName(R, S);
5343    if (R.isSingleResult()) {
5344      NamedDecl *PrevDecl = R.getFoundDecl();
5345      if (PrevDecl->isTemplateParameter()) {
5346        // Maybe we will complain about the shadowed template parameter.
5347        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5348        // Just pretend that we didn't see the previous declaration.
5349        PrevDecl = 0;
5350      } else if (S->isDeclScope(PrevDecl)) {
5351        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5352        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5353
5354        // Recover by removing the name
5355        II = 0;
5356        D.SetIdentifier(0, D.getIdentifierLoc());
5357        D.setInvalidType(true);
5358      }
5359    }
5360  }
5361
5362  // Temporarily put parameter variables in the translation unit, not
5363  // the enclosing context.  This prevents them from accidentally
5364  // looking like class members in C++.
5365  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5366                                    D.getSourceRange().getBegin(),
5367                                    D.getIdentifierLoc(), II,
5368                                    parmDeclType, TInfo,
5369                                    StorageClass, StorageClassAsWritten);
5370
5371  if (D.isInvalidType())
5372    New->setInvalidDecl();
5373
5374  // Add the parameter declaration into this scope.
5375  S->AddDecl(New);
5376  if (II)
5377    IdResolver.AddDecl(New);
5378
5379  ProcessDeclAttributes(S, New, D);
5380
5381  if (New->hasAttr<BlocksAttr>()) {
5382    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5383  }
5384  return New;
5385}
5386
5387/// \brief Synthesizes a variable for a parameter arising from a
5388/// typedef.
5389ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5390                                              SourceLocation Loc,
5391                                              QualType T) {
5392  /* FIXME: setting StartLoc == Loc.
5393     Would it be worth to modify callers so as to provide proper source
5394     location for the unnamed parameters, embedding the parameter's type? */
5395  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5396                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5397                                           SC_None, SC_None, 0);
5398  Param->setImplicit();
5399  return Param;
5400}
5401
5402void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5403                                    ParmVarDecl * const *ParamEnd) {
5404  // Don't diagnose unused-parameter errors in template instantiations; we
5405  // will already have done so in the template itself.
5406  if (!ActiveTemplateInstantiations.empty())
5407    return;
5408
5409  for (; Param != ParamEnd; ++Param) {
5410    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5411        !(*Param)->hasAttr<UnusedAttr>()) {
5412      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5413        << (*Param)->getDeclName();
5414    }
5415  }
5416}
5417
5418void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5419                                                  ParmVarDecl * const *ParamEnd,
5420                                                  QualType ReturnTy,
5421                                                  NamedDecl *D) {
5422  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5423    return;
5424
5425  // Warn if the return value is pass-by-value and larger than the specified
5426  // threshold.
5427  if (ReturnTy->isPODType()) {
5428    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5429    if (Size > LangOpts.NumLargeByValueCopy)
5430      Diag(D->getLocation(), diag::warn_return_value_size)
5431          << D->getDeclName() << Size;
5432  }
5433
5434  // Warn if any parameter is pass-by-value and larger than the specified
5435  // threshold.
5436  for (; Param != ParamEnd; ++Param) {
5437    QualType T = (*Param)->getType();
5438    if (!T->isPODType())
5439      continue;
5440    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5441    if (Size > LangOpts.NumLargeByValueCopy)
5442      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5443          << (*Param)->getDeclName() << Size;
5444  }
5445}
5446
5447ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5448                                  SourceLocation NameLoc, IdentifierInfo *Name,
5449                                  QualType T, TypeSourceInfo *TSInfo,
5450                                  VarDecl::StorageClass StorageClass,
5451                                  VarDecl::StorageClass StorageClassAsWritten) {
5452  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5453                                         adjustParameterType(T), TSInfo,
5454                                         StorageClass, StorageClassAsWritten,
5455                                         0);
5456
5457  // Parameters can not be abstract class types.
5458  // For record types, this is done by the AbstractClassUsageDiagnoser once
5459  // the class has been completely parsed.
5460  if (!CurContext->isRecord() &&
5461      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5462                             AbstractParamType))
5463    New->setInvalidDecl();
5464
5465  // Parameter declarators cannot be interface types. All ObjC objects are
5466  // passed by reference.
5467  if (T->isObjCObjectType()) {
5468    Diag(NameLoc,
5469         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5470    New->setInvalidDecl();
5471  }
5472
5473  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5474  // duration shall not be qualified by an address-space qualifier."
5475  // Since all parameters have automatic store duration, they can not have
5476  // an address space.
5477  if (T.getAddressSpace() != 0) {
5478    Diag(NameLoc, diag::err_arg_with_address_space);
5479    New->setInvalidDecl();
5480  }
5481
5482  return New;
5483}
5484
5485void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5486                                           SourceLocation LocAfterDecls) {
5487  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5488
5489  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5490  // for a K&R function.
5491  if (!FTI.hasPrototype) {
5492    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5493      --i;
5494      if (FTI.ArgInfo[i].Param == 0) {
5495        llvm::SmallString<256> Code;
5496        llvm::raw_svector_ostream(Code) << "  int "
5497                                        << FTI.ArgInfo[i].Ident->getName()
5498                                        << ";\n";
5499        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5500          << FTI.ArgInfo[i].Ident
5501          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5502
5503        // Implicitly declare the argument as type 'int' for lack of a better
5504        // type.
5505        AttributeFactory attrs;
5506        DeclSpec DS(attrs);
5507        const char* PrevSpec; // unused
5508        unsigned DiagID; // unused
5509        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5510                           PrevSpec, DiagID);
5511        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5512        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5513        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5514      }
5515    }
5516  }
5517}
5518
5519Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5520                                         Declarator &D) {
5521  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5522  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5523  Scope *ParentScope = FnBodyScope->getParent();
5524
5525  Decl *DP = HandleDeclarator(ParentScope, D,
5526                              MultiTemplateParamsArg(*this),
5527                              /*IsFunctionDefinition=*/true);
5528  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5529}
5530
5531static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5532  // Don't warn about invalid declarations.
5533  if (FD->isInvalidDecl())
5534    return false;
5535
5536  // Or declarations that aren't global.
5537  if (!FD->isGlobal())
5538    return false;
5539
5540  // Don't warn about C++ member functions.
5541  if (isa<CXXMethodDecl>(FD))
5542    return false;
5543
5544  // Don't warn about 'main'.
5545  if (FD->isMain())
5546    return false;
5547
5548  // Don't warn about inline functions.
5549  if (FD->isInlined())
5550    return false;
5551
5552  // Don't warn about function templates.
5553  if (FD->getDescribedFunctionTemplate())
5554    return false;
5555
5556  // Don't warn about function template specializations.
5557  if (FD->isFunctionTemplateSpecialization())
5558    return false;
5559
5560  bool MissingPrototype = true;
5561  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5562       Prev; Prev = Prev->getPreviousDeclaration()) {
5563    // Ignore any declarations that occur in function or method
5564    // scope, because they aren't visible from the header.
5565    if (Prev->getDeclContext()->isFunctionOrMethod())
5566      continue;
5567
5568    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5569    break;
5570  }
5571
5572  return MissingPrototype;
5573}
5574
5575Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5576  // Clear the last template instantiation error context.
5577  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5578
5579  if (!D)
5580    return D;
5581  FunctionDecl *FD = 0;
5582
5583  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5584    FD = FunTmpl->getTemplatedDecl();
5585  else
5586    FD = cast<FunctionDecl>(D);
5587
5588  // Enter a new function scope
5589  PushFunctionScope();
5590
5591  // See if this is a redefinition.
5592  // But don't complain if we're in GNU89 mode and the previous definition
5593  // was an extern inline function.
5594  const FunctionDecl *Definition;
5595  if (FD->hasBody(Definition) &&
5596      !canRedefineFunction(Definition, getLangOptions())) {
5597    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5598        Definition->getStorageClass() == SC_Extern)
5599      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5600        << FD->getDeclName() << getLangOptions().CPlusPlus;
5601    else
5602      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5603    Diag(Definition->getLocation(), diag::note_previous_definition);
5604  }
5605
5606  // Builtin functions cannot be defined.
5607  if (unsigned BuiltinID = FD->getBuiltinID()) {
5608    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5609      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5610      FD->setInvalidDecl();
5611    }
5612  }
5613
5614  // The return type of a function definition must be complete
5615  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5616  QualType ResultType = FD->getResultType();
5617  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5618      !FD->isInvalidDecl() &&
5619      RequireCompleteType(FD->getLocation(), ResultType,
5620                          diag::err_func_def_incomplete_result))
5621    FD->setInvalidDecl();
5622
5623  // GNU warning -Wmissing-prototypes:
5624  //   Warn if a global function is defined without a previous
5625  //   prototype declaration. This warning is issued even if the
5626  //   definition itself provides a prototype. The aim is to detect
5627  //   global functions that fail to be declared in header files.
5628  if (ShouldWarnAboutMissingPrototype(FD))
5629    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5630
5631  if (FnBodyScope)
5632    PushDeclContext(FnBodyScope, FD);
5633
5634  // Check the validity of our function parameters
5635  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5636                           /*CheckParameterNames=*/true);
5637
5638  // Introduce our parameters into the function scope
5639  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5640    ParmVarDecl *Param = FD->getParamDecl(p);
5641    Param->setOwningFunction(FD);
5642
5643    // If this has an identifier, add it to the scope stack.
5644    if (Param->getIdentifier() && FnBodyScope) {
5645      CheckShadow(FnBodyScope, Param);
5646
5647      PushOnScopeChains(Param, FnBodyScope);
5648    }
5649  }
5650
5651  // Checking attributes of current function definition
5652  // dllimport attribute.
5653  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5654  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5655    // dllimport attribute cannot be directly applied to definition.
5656    if (!DA->isInherited()) {
5657      Diag(FD->getLocation(),
5658           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5659        << "dllimport";
5660      FD->setInvalidDecl();
5661      return FD;
5662    }
5663
5664    // Visual C++ appears to not think this is an issue, so only issue
5665    // a warning when Microsoft extensions are disabled.
5666    if (!LangOpts.Microsoft) {
5667      // If a symbol previously declared dllimport is later defined, the
5668      // attribute is ignored in subsequent references, and a warning is
5669      // emitted.
5670      Diag(FD->getLocation(),
5671           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5672        << FD->getName() << "dllimport";
5673    }
5674  }
5675  return FD;
5676}
5677
5678/// \brief Given the set of return statements within a function body,
5679/// compute the variables that are subject to the named return value
5680/// optimization.
5681///
5682/// Each of the variables that is subject to the named return value
5683/// optimization will be marked as NRVO variables in the AST, and any
5684/// return statement that has a marked NRVO variable as its NRVO candidate can
5685/// use the named return value optimization.
5686///
5687/// This function applies a very simplistic algorithm for NRVO: if every return
5688/// statement in the function has the same NRVO candidate, that candidate is
5689/// the NRVO variable.
5690///
5691/// FIXME: Employ a smarter algorithm that accounts for multiple return
5692/// statements and the lifetimes of the NRVO candidates. We should be able to
5693/// find a maximal set of NRVO variables.
5694static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5695  ReturnStmt **Returns = Scope->Returns.data();
5696
5697  const VarDecl *NRVOCandidate = 0;
5698  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5699    if (!Returns[I]->getNRVOCandidate())
5700      return;
5701
5702    if (!NRVOCandidate)
5703      NRVOCandidate = Returns[I]->getNRVOCandidate();
5704    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5705      return;
5706  }
5707
5708  if (NRVOCandidate)
5709    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5710}
5711
5712Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5713  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5714}
5715
5716Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5717                                    bool IsInstantiation) {
5718  FunctionDecl *FD = 0;
5719  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5720  if (FunTmpl)
5721    FD = FunTmpl->getTemplatedDecl();
5722  else
5723    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5724
5725  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5726  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5727
5728  if (FD) {
5729    FD->setBody(Body);
5730    if (FD->isMain()) {
5731      // C and C++ allow for main to automagically return 0.
5732      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5733      FD->setHasImplicitReturnZero(true);
5734      WP.disableCheckFallThrough();
5735    }
5736
5737    if (!FD->isInvalidDecl()) {
5738      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5739      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5740                                             FD->getResultType(), FD);
5741
5742      // If this is a constructor, we need a vtable.
5743      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5744        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5745
5746      ComputeNRVO(Body, getCurFunction());
5747    }
5748
5749    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5750  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5751    assert(MD == getCurMethodDecl() && "Method parsing confused");
5752    MD->setBody(Body);
5753    if (Body)
5754      MD->setEndLoc(Body->getLocEnd());
5755    if (!MD->isInvalidDecl()) {
5756      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5757      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5758                                             MD->getResultType(), MD);
5759    }
5760  } else {
5761    return 0;
5762  }
5763
5764  // Verify and clean out per-function state.
5765  if (Body) {
5766    // C++ constructors that have function-try-blocks can't have return
5767    // statements in the handlers of that block. (C++ [except.handle]p14)
5768    // Verify this.
5769    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5770      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5771
5772    // Verify that that gotos and switch cases don't jump into scopes illegally.
5773    // Verify that that gotos and switch cases don't jump into scopes illegally.
5774    if (getCurFunction()->NeedsScopeChecking() &&
5775        !dcl->isInvalidDecl() &&
5776        !hasAnyErrorsInThisFunction())
5777      DiagnoseInvalidJumps(Body);
5778
5779    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5780      if (!Destructor->getParent()->isDependentType())
5781        CheckDestructor(Destructor);
5782
5783      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5784                                             Destructor->getParent());
5785    }
5786
5787    // If any errors have occurred, clear out any temporaries that may have
5788    // been leftover. This ensures that these temporaries won't be picked up for
5789    // deletion in some later function.
5790    if (PP.getDiagnostics().hasErrorOccurred() ||
5791        PP.getDiagnostics().getSuppressAllDiagnostics())
5792      ExprTemporaries.clear();
5793    else if (!isa<FunctionTemplateDecl>(dcl)) {
5794      // Since the body is valid, issue any analysis-based warnings that are
5795      // enabled.
5796      ActivePolicy = &WP;
5797    }
5798
5799    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5800  }
5801
5802  if (!IsInstantiation)
5803    PopDeclContext();
5804
5805  PopFunctionOrBlockScope(ActivePolicy, dcl);
5806
5807  // If any errors have occurred, clear out any temporaries that may have
5808  // been leftover. This ensures that these temporaries won't be picked up for
5809  // deletion in some later function.
5810  if (getDiagnostics().hasErrorOccurred())
5811    ExprTemporaries.clear();
5812
5813  return dcl;
5814}
5815
5816/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5817/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5818NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5819                                          IdentifierInfo &II, Scope *S) {
5820  // Before we produce a declaration for an implicitly defined
5821  // function, see whether there was a locally-scoped declaration of
5822  // this name as a function or variable. If so, use that
5823  // (non-visible) declaration, and complain about it.
5824  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5825    = LocallyScopedExternalDecls.find(&II);
5826  if (Pos != LocallyScopedExternalDecls.end()) {
5827    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5828    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5829    return Pos->second;
5830  }
5831
5832  // Extension in C99.  Legal in C90, but warn about it.
5833  if (II.getName().startswith("__builtin_"))
5834    Diag(Loc, diag::warn_builtin_unknown) << &II;
5835  else if (getLangOptions().C99)
5836    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5837  else
5838    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5839
5840  // Set a Declarator for the implicit definition: int foo();
5841  const char *Dummy;
5842  AttributeFactory attrFactory;
5843  DeclSpec DS(attrFactory);
5844  unsigned DiagID;
5845  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5846  (void)Error; // Silence warning.
5847  assert(!Error && "Error setting up implicit decl!");
5848  Declarator D(DS, Declarator::BlockContext);
5849  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5850                                             0, 0, true, SourceLocation(),
5851                                             EST_None, SourceLocation(),
5852                                             0, 0, 0, 0, Loc, Loc, D),
5853                DS.getAttributes(),
5854                SourceLocation());
5855  D.SetIdentifier(&II, Loc);
5856
5857  // Insert this function into translation-unit scope.
5858
5859  DeclContext *PrevDC = CurContext;
5860  CurContext = Context.getTranslationUnitDecl();
5861
5862  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5863  FD->setImplicit();
5864
5865  CurContext = PrevDC;
5866
5867  AddKnownFunctionAttributes(FD);
5868
5869  return FD;
5870}
5871
5872/// \brief Adds any function attributes that we know a priori based on
5873/// the declaration of this function.
5874///
5875/// These attributes can apply both to implicitly-declared builtins
5876/// (like __builtin___printf_chk) or to library-declared functions
5877/// like NSLog or printf.
5878void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5879  if (FD->isInvalidDecl())
5880    return;
5881
5882  // If this is a built-in function, map its builtin attributes to
5883  // actual attributes.
5884  if (unsigned BuiltinID = FD->getBuiltinID()) {
5885    // Handle printf-formatting attributes.
5886    unsigned FormatIdx;
5887    bool HasVAListArg;
5888    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5889      if (!FD->getAttr<FormatAttr>())
5890        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5891                                                "printf", FormatIdx+1,
5892                                               HasVAListArg ? 0 : FormatIdx+2));
5893    }
5894    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5895                                             HasVAListArg)) {
5896     if (!FD->getAttr<FormatAttr>())
5897       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5898                                              "scanf", FormatIdx+1,
5899                                              HasVAListArg ? 0 : FormatIdx+2));
5900    }
5901
5902    // Mark const if we don't care about errno and that is the only
5903    // thing preventing the function from being const. This allows
5904    // IRgen to use LLVM intrinsics for such functions.
5905    if (!getLangOptions().MathErrno &&
5906        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5907      if (!FD->getAttr<ConstAttr>())
5908        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5909    }
5910
5911    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5912      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5913    if (Context.BuiltinInfo.isConst(BuiltinID))
5914      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5915  }
5916
5917  IdentifierInfo *Name = FD->getIdentifier();
5918  if (!Name)
5919    return;
5920  if ((!getLangOptions().CPlusPlus &&
5921       FD->getDeclContext()->isTranslationUnit()) ||
5922      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5923       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5924       LinkageSpecDecl::lang_c)) {
5925    // Okay: this could be a libc/libm/Objective-C function we know
5926    // about.
5927  } else
5928    return;
5929
5930  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5931    // FIXME: NSLog and NSLogv should be target specific
5932    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5933      // FIXME: We known better than our headers.
5934      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5935    } else
5936      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5937                                             "printf", 1,
5938                                             Name->isStr("NSLogv") ? 0 : 2));
5939  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5940    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5941    // target-specific builtins, perhaps?
5942    if (!FD->getAttr<FormatAttr>())
5943      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5944                                             "printf", 2,
5945                                             Name->isStr("vasprintf") ? 0 : 3));
5946  }
5947}
5948
5949TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5950                                    TypeSourceInfo *TInfo) {
5951  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5952  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5953
5954  if (!TInfo) {
5955    assert(D.isInvalidType() && "no declarator info for valid type");
5956    TInfo = Context.getTrivialTypeSourceInfo(T);
5957  }
5958
5959  // Scope manipulation handled by caller.
5960  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5961                                           D.getSourceRange().getBegin(),
5962                                           D.getIdentifierLoc(),
5963                                           D.getIdentifier(),
5964                                           TInfo);
5965
5966  // Bail out immediately if we have an invalid declaration.
5967  if (D.isInvalidType()) {
5968    NewTD->setInvalidDecl();
5969    return NewTD;
5970  }
5971
5972  // C++ [dcl.typedef]p8:
5973  //   If the typedef declaration defines an unnamed class (or
5974  //   enum), the first typedef-name declared by the declaration
5975  //   to be that class type (or enum type) is used to denote the
5976  //   class type (or enum type) for linkage purposes only.
5977  // We need to check whether the type was declared in the declaration.
5978  switch (D.getDeclSpec().getTypeSpecType()) {
5979  case TST_enum:
5980  case TST_struct:
5981  case TST_union:
5982  case TST_class: {
5983    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5984
5985    // Do nothing if the tag is not anonymous or already has an
5986    // associated typedef (from an earlier typedef in this decl group).
5987    if (tagFromDeclSpec->getIdentifier()) break;
5988    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
5989
5990    // A well-formed anonymous tag must always be a TUK_Definition.
5991    assert(tagFromDeclSpec->isThisDeclarationADefinition());
5992
5993    // The type must match the tag exactly;  no qualifiers allowed.
5994    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
5995      break;
5996
5997    // Otherwise, set this is the anon-decl typedef for the tag.
5998    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
5999    break;
6000  }
6001
6002  default:
6003    break;
6004  }
6005
6006  return NewTD;
6007}
6008
6009
6010/// \brief Determine whether a tag with a given kind is acceptable
6011/// as a redeclaration of the given tag declaration.
6012///
6013/// \returns true if the new tag kind is acceptable, false otherwise.
6014bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6015                                        TagTypeKind NewTag,
6016                                        SourceLocation NewTagLoc,
6017                                        const IdentifierInfo &Name) {
6018  // C++ [dcl.type.elab]p3:
6019  //   The class-key or enum keyword present in the
6020  //   elaborated-type-specifier shall agree in kind with the
6021  //   declaration to which the name in the elaborated-type-specifier
6022  //   refers. This rule also applies to the form of
6023  //   elaborated-type-specifier that declares a class-name or
6024  //   friend class since it can be construed as referring to the
6025  //   definition of the class. Thus, in any
6026  //   elaborated-type-specifier, the enum keyword shall be used to
6027  //   refer to an enumeration (7.2), the union class-key shall be
6028  //   used to refer to a union (clause 9), and either the class or
6029  //   struct class-key shall be used to refer to a class (clause 9)
6030  //   declared using the class or struct class-key.
6031  TagTypeKind OldTag = Previous->getTagKind();
6032  if (OldTag == NewTag)
6033    return true;
6034
6035  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6036      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6037    // Warn about the struct/class tag mismatch.
6038    bool isTemplate = false;
6039    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6040      isTemplate = Record->getDescribedClassTemplate();
6041
6042    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6043      << (NewTag == TTK_Class)
6044      << isTemplate << &Name
6045      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6046                              OldTag == TTK_Class? "class" : "struct");
6047    Diag(Previous->getLocation(), diag::note_previous_use);
6048    return true;
6049  }
6050  return false;
6051}
6052
6053/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6054/// former case, Name will be non-null.  In the later case, Name will be null.
6055/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6056/// reference/declaration/definition of a tag.
6057Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6058                     SourceLocation KWLoc, CXXScopeSpec &SS,
6059                     IdentifierInfo *Name, SourceLocation NameLoc,
6060                     AttributeList *Attr, AccessSpecifier AS,
6061                     MultiTemplateParamsArg TemplateParameterLists,
6062                     bool &OwnedDecl, bool &IsDependent,
6063                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6064                     TypeResult UnderlyingType) {
6065  // If this is not a definition, it must have a name.
6066  assert((Name != 0 || TUK == TUK_Definition) &&
6067         "Nameless record must be a definition!");
6068  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6069
6070  OwnedDecl = false;
6071  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6072
6073  // FIXME: Check explicit specializations more carefully.
6074  bool isExplicitSpecialization = false;
6075  bool Invalid = false;
6076
6077  // We only need to do this matching if we have template parameters
6078  // or a scope specifier, which also conveniently avoids this work
6079  // for non-C++ cases.
6080  if (TemplateParameterLists.size() > 0 ||
6081      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6082    if (TemplateParameterList *TemplateParams
6083          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6084                                                TemplateParameterLists.get(),
6085                                                TemplateParameterLists.size(),
6086                                                    TUK == TUK_Friend,
6087                                                    isExplicitSpecialization,
6088                                                    Invalid)) {
6089      if (TemplateParams->size() > 0) {
6090        // This is a declaration or definition of a class template (which may
6091        // be a member of another template).
6092
6093        if (Invalid)
6094          return 0;
6095
6096        OwnedDecl = false;
6097        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6098                                               SS, Name, NameLoc, Attr,
6099                                               TemplateParams, AS,
6100                                           TemplateParameterLists.size() - 1,
6101                 (TemplateParameterList**) TemplateParameterLists.release());
6102        return Result.get();
6103      } else {
6104        // The "template<>" header is extraneous.
6105        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6106          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6107        isExplicitSpecialization = true;
6108      }
6109    }
6110  }
6111
6112  // Figure out the underlying type if this a enum declaration. We need to do
6113  // this early, because it's needed to detect if this is an incompatible
6114  // redeclaration.
6115  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6116
6117  if (Kind == TTK_Enum) {
6118    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6119      // No underlying type explicitly specified, or we failed to parse the
6120      // type, default to int.
6121      EnumUnderlying = Context.IntTy.getTypePtr();
6122    else if (UnderlyingType.get()) {
6123      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6124      // integral type; any cv-qualification is ignored.
6125      TypeSourceInfo *TI = 0;
6126      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6127      EnumUnderlying = TI;
6128
6129      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6130
6131      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6132        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6133          << T;
6134        // Recover by falling back to int.
6135        EnumUnderlying = Context.IntTy.getTypePtr();
6136      }
6137
6138      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6139                                          UPPC_FixedUnderlyingType))
6140        EnumUnderlying = Context.IntTy.getTypePtr();
6141
6142    } else if (getLangOptions().Microsoft)
6143      // Microsoft enums are always of int type.
6144      EnumUnderlying = Context.IntTy.getTypePtr();
6145  }
6146
6147  DeclContext *SearchDC = CurContext;
6148  DeclContext *DC = CurContext;
6149  bool isStdBadAlloc = false;
6150
6151  RedeclarationKind Redecl = ForRedeclaration;
6152  if (TUK == TUK_Friend || TUK == TUK_Reference)
6153    Redecl = NotForRedeclaration;
6154
6155  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6156
6157  if (Name && SS.isNotEmpty()) {
6158    // We have a nested-name tag ('struct foo::bar').
6159
6160    // Check for invalid 'foo::'.
6161    if (SS.isInvalid()) {
6162      Name = 0;
6163      goto CreateNewDecl;
6164    }
6165
6166    // If this is a friend or a reference to a class in a dependent
6167    // context, don't try to make a decl for it.
6168    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6169      DC = computeDeclContext(SS, false);
6170      if (!DC) {
6171        IsDependent = true;
6172        return 0;
6173      }
6174    } else {
6175      DC = computeDeclContext(SS, true);
6176      if (!DC) {
6177        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6178          << SS.getRange();
6179        return 0;
6180      }
6181    }
6182
6183    if (RequireCompleteDeclContext(SS, DC))
6184      return 0;
6185
6186    SearchDC = DC;
6187    // Look-up name inside 'foo::'.
6188    LookupQualifiedName(Previous, DC);
6189
6190    if (Previous.isAmbiguous())
6191      return 0;
6192
6193    if (Previous.empty()) {
6194      // Name lookup did not find anything. However, if the
6195      // nested-name-specifier refers to the current instantiation,
6196      // and that current instantiation has any dependent base
6197      // classes, we might find something at instantiation time: treat
6198      // this as a dependent elaborated-type-specifier.
6199      // But this only makes any sense for reference-like lookups.
6200      if (Previous.wasNotFoundInCurrentInstantiation() &&
6201          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6202        IsDependent = true;
6203        return 0;
6204      }
6205
6206      // A tag 'foo::bar' must already exist.
6207      Diag(NameLoc, diag::err_not_tag_in_scope)
6208        << Kind << Name << DC << SS.getRange();
6209      Name = 0;
6210      Invalid = true;
6211      goto CreateNewDecl;
6212    }
6213  } else if (Name) {
6214    // If this is a named struct, check to see if there was a previous forward
6215    // declaration or definition.
6216    // FIXME: We're looking into outer scopes here, even when we
6217    // shouldn't be. Doing so can result in ambiguities that we
6218    // shouldn't be diagnosing.
6219    LookupName(Previous, S);
6220
6221    // Note:  there used to be some attempt at recovery here.
6222    if (Previous.isAmbiguous())
6223      return 0;
6224
6225    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6226      // FIXME: This makes sure that we ignore the contexts associated
6227      // with C structs, unions, and enums when looking for a matching
6228      // tag declaration or definition. See the similar lookup tweak
6229      // in Sema::LookupName; is there a better way to deal with this?
6230      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6231        SearchDC = SearchDC->getParent();
6232    }
6233  } else if (S->isFunctionPrototypeScope()) {
6234    // If this is an enum declaration in function prototype scope, set its
6235    // initial context to the translation unit.
6236    SearchDC = Context.getTranslationUnitDecl();
6237  }
6238
6239  if (Previous.isSingleResult() &&
6240      Previous.getFoundDecl()->isTemplateParameter()) {
6241    // Maybe we will complain about the shadowed template parameter.
6242    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6243    // Just pretend that we didn't see the previous declaration.
6244    Previous.clear();
6245  }
6246
6247  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6248      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6249    // This is a declaration of or a reference to "std::bad_alloc".
6250    isStdBadAlloc = true;
6251
6252    if (Previous.empty() && StdBadAlloc) {
6253      // std::bad_alloc has been implicitly declared (but made invisible to
6254      // name lookup). Fill in this implicit declaration as the previous
6255      // declaration, so that the declarations get chained appropriately.
6256      Previous.addDecl(getStdBadAlloc());
6257    }
6258  }
6259
6260  // If we didn't find a previous declaration, and this is a reference
6261  // (or friend reference), move to the correct scope.  In C++, we
6262  // also need to do a redeclaration lookup there, just in case
6263  // there's a shadow friend decl.
6264  if (Name && Previous.empty() &&
6265      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6266    if (Invalid) goto CreateNewDecl;
6267    assert(SS.isEmpty());
6268
6269    if (TUK == TUK_Reference) {
6270      // C++ [basic.scope.pdecl]p5:
6271      //   -- for an elaborated-type-specifier of the form
6272      //
6273      //          class-key identifier
6274      //
6275      //      if the elaborated-type-specifier is used in the
6276      //      decl-specifier-seq or parameter-declaration-clause of a
6277      //      function defined in namespace scope, the identifier is
6278      //      declared as a class-name in the namespace that contains
6279      //      the declaration; otherwise, except as a friend
6280      //      declaration, the identifier is declared in the smallest
6281      //      non-class, non-function-prototype scope that contains the
6282      //      declaration.
6283      //
6284      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6285      // C structs and unions.
6286      //
6287      // It is an error in C++ to declare (rather than define) an enum
6288      // type, including via an elaborated type specifier.  We'll
6289      // diagnose that later; for now, declare the enum in the same
6290      // scope as we would have picked for any other tag type.
6291      //
6292      // GNU C also supports this behavior as part of its incomplete
6293      // enum types extension, while GNU C++ does not.
6294      //
6295      // Find the context where we'll be declaring the tag.
6296      // FIXME: We would like to maintain the current DeclContext as the
6297      // lexical context,
6298      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6299        SearchDC = SearchDC->getParent();
6300
6301      // Find the scope where we'll be declaring the tag.
6302      while (S->isClassScope() ||
6303             (getLangOptions().CPlusPlus &&
6304              S->isFunctionPrototypeScope()) ||
6305             ((S->getFlags() & Scope::DeclScope) == 0) ||
6306             (S->getEntity() &&
6307              ((DeclContext *)S->getEntity())->isTransparentContext()))
6308        S = S->getParent();
6309    } else {
6310      assert(TUK == TUK_Friend);
6311      // C++ [namespace.memdef]p3:
6312      //   If a friend declaration in a non-local class first declares a
6313      //   class or function, the friend class or function is a member of
6314      //   the innermost enclosing namespace.
6315      SearchDC = SearchDC->getEnclosingNamespaceContext();
6316    }
6317
6318    // In C++, we need to do a redeclaration lookup to properly
6319    // diagnose some problems.
6320    if (getLangOptions().CPlusPlus) {
6321      Previous.setRedeclarationKind(ForRedeclaration);
6322      LookupQualifiedName(Previous, SearchDC);
6323    }
6324  }
6325
6326  if (!Previous.empty()) {
6327    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6328
6329    // It's okay to have a tag decl in the same scope as a typedef
6330    // which hides a tag decl in the same scope.  Finding this
6331    // insanity with a redeclaration lookup can only actually happen
6332    // in C++.
6333    //
6334    // This is also okay for elaborated-type-specifiers, which is
6335    // technically forbidden by the current standard but which is
6336    // okay according to the likely resolution of an open issue;
6337    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6338    if (getLangOptions().CPlusPlus) {
6339      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6340        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6341          TagDecl *Tag = TT->getDecl();
6342          if (Tag->getDeclName() == Name &&
6343              Tag->getDeclContext()->getRedeclContext()
6344                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6345            PrevDecl = Tag;
6346            Previous.clear();
6347            Previous.addDecl(Tag);
6348            Previous.resolveKind();
6349          }
6350        }
6351      }
6352    }
6353
6354    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6355      // If this is a use of a previous tag, or if the tag is already declared
6356      // in the same scope (so that the definition/declaration completes or
6357      // rementions the tag), reuse the decl.
6358      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6359          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6360        // Make sure that this wasn't declared as an enum and now used as a
6361        // struct or something similar.
6362        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6363          bool SafeToContinue
6364            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6365               Kind != TTK_Enum);
6366          if (SafeToContinue)
6367            Diag(KWLoc, diag::err_use_with_wrong_tag)
6368              << Name
6369              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6370                                              PrevTagDecl->getKindName());
6371          else
6372            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6373          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6374
6375          if (SafeToContinue)
6376            Kind = PrevTagDecl->getTagKind();
6377          else {
6378            // Recover by making this an anonymous redefinition.
6379            Name = 0;
6380            Previous.clear();
6381            Invalid = true;
6382          }
6383        }
6384
6385        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6386          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6387
6388          // All conflicts with previous declarations are recovered by
6389          // returning the previous declaration.
6390          if (ScopedEnum != PrevEnum->isScoped()) {
6391            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6392              << PrevEnum->isScoped();
6393            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6394            return PrevTagDecl;
6395          }
6396          else if (EnumUnderlying && PrevEnum->isFixed()) {
6397            QualType T;
6398            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6399                T = TI->getType();
6400            else
6401                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6402
6403            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6404              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6405                   diag::err_enum_redeclare_type_mismatch)
6406                << T
6407                << PrevEnum->getIntegerType();
6408              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6409              return PrevTagDecl;
6410            }
6411          }
6412          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6413            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6414              << PrevEnum->isFixed();
6415            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6416            return PrevTagDecl;
6417          }
6418        }
6419
6420        if (!Invalid) {
6421          // If this is a use, just return the declaration we found.
6422
6423          // FIXME: In the future, return a variant or some other clue
6424          // for the consumer of this Decl to know it doesn't own it.
6425          // For our current ASTs this shouldn't be a problem, but will
6426          // need to be changed with DeclGroups.
6427          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6428              TUK == TUK_Friend)
6429            return PrevTagDecl;
6430
6431          // Diagnose attempts to redefine a tag.
6432          if (TUK == TUK_Definition) {
6433            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6434              // If we're defining a specialization and the previous definition
6435              // is from an implicit instantiation, don't emit an error
6436              // here; we'll catch this in the general case below.
6437              if (!isExplicitSpecialization ||
6438                  !isa<CXXRecordDecl>(Def) ||
6439                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6440                                               == TSK_ExplicitSpecialization) {
6441                Diag(NameLoc, diag::err_redefinition) << Name;
6442                Diag(Def->getLocation(), diag::note_previous_definition);
6443                // If this is a redefinition, recover by making this
6444                // struct be anonymous, which will make any later
6445                // references get the previous definition.
6446                Name = 0;
6447                Previous.clear();
6448                Invalid = true;
6449              }
6450            } else {
6451              // If the type is currently being defined, complain
6452              // about a nested redefinition.
6453              const TagType *Tag
6454                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6455              if (Tag->isBeingDefined()) {
6456                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6457                Diag(PrevTagDecl->getLocation(),
6458                     diag::note_previous_definition);
6459                Name = 0;
6460                Previous.clear();
6461                Invalid = true;
6462              }
6463            }
6464
6465            // Okay, this is definition of a previously declared or referenced
6466            // tag PrevDecl. We're going to create a new Decl for it.
6467          }
6468        }
6469        // If we get here we have (another) forward declaration or we
6470        // have a definition.  Just create a new decl.
6471
6472      } else {
6473        // If we get here, this is a definition of a new tag type in a nested
6474        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6475        // new decl/type.  We set PrevDecl to NULL so that the entities
6476        // have distinct types.
6477        Previous.clear();
6478      }
6479      // If we get here, we're going to create a new Decl. If PrevDecl
6480      // is non-NULL, it's a definition of the tag declared by
6481      // PrevDecl. If it's NULL, we have a new definition.
6482
6483
6484    // Otherwise, PrevDecl is not a tag, but was found with tag
6485    // lookup.  This is only actually possible in C++, where a few
6486    // things like templates still live in the tag namespace.
6487    } else {
6488      assert(getLangOptions().CPlusPlus);
6489
6490      // Use a better diagnostic if an elaborated-type-specifier
6491      // found the wrong kind of type on the first
6492      // (non-redeclaration) lookup.
6493      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6494          !Previous.isForRedeclaration()) {
6495        unsigned Kind = 0;
6496        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6497        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6498        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6499        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6500        Invalid = true;
6501
6502      // Otherwise, only diagnose if the declaration is in scope.
6503      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6504                                isExplicitSpecialization)) {
6505        // do nothing
6506
6507      // Diagnose implicit declarations introduced by elaborated types.
6508      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6509        unsigned Kind = 0;
6510        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6511        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6512        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6513        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6514        Invalid = true;
6515
6516      // Otherwise it's a declaration.  Call out a particularly common
6517      // case here.
6518      } else if (isa<TypedefDecl>(PrevDecl)) {
6519        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6520          << Name
6521          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6522        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6523        Invalid = true;
6524
6525      // Otherwise, diagnose.
6526      } else {
6527        // The tag name clashes with something else in the target scope,
6528        // issue an error and recover by making this tag be anonymous.
6529        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6530        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6531        Name = 0;
6532        Invalid = true;
6533      }
6534
6535      // The existing declaration isn't relevant to us; we're in a
6536      // new scope, so clear out the previous declaration.
6537      Previous.clear();
6538    }
6539  }
6540
6541CreateNewDecl:
6542
6543  TagDecl *PrevDecl = 0;
6544  if (Previous.isSingleResult())
6545    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6546
6547  // If there is an identifier, use the location of the identifier as the
6548  // location of the decl, otherwise use the location of the struct/union
6549  // keyword.
6550  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6551
6552  // Otherwise, create a new declaration. If there is a previous
6553  // declaration of the same entity, the two will be linked via
6554  // PrevDecl.
6555  TagDecl *New;
6556
6557  bool IsForwardReference = false;
6558  if (Kind == TTK_Enum) {
6559    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6560    // enum X { A, B, C } D;    D should chain to X.
6561    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
6562                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6563                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6564    // If this is an undefined enum, warn.
6565    if (TUK != TUK_Definition && !Invalid) {
6566      TagDecl *Def;
6567      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6568        // C++0x: 7.2p2: opaque-enum-declaration.
6569        // Conflicts are diagnosed above. Do nothing.
6570      }
6571      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6572        Diag(Loc, diag::ext_forward_ref_enum_def)
6573          << New;
6574        Diag(Def->getLocation(), diag::note_previous_definition);
6575      } else {
6576        unsigned DiagID = diag::ext_forward_ref_enum;
6577        if (getLangOptions().Microsoft)
6578          DiagID = diag::ext_ms_forward_ref_enum;
6579        else if (getLangOptions().CPlusPlus)
6580          DiagID = diag::err_forward_ref_enum;
6581        Diag(Loc, DiagID);
6582
6583        // If this is a forward-declared reference to an enumeration, make a
6584        // note of it; we won't actually be introducing the declaration into
6585        // the declaration context.
6586        if (TUK == TUK_Reference)
6587          IsForwardReference = true;
6588      }
6589    }
6590
6591    if (EnumUnderlying) {
6592      EnumDecl *ED = cast<EnumDecl>(New);
6593      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6594        ED->setIntegerTypeSourceInfo(TI);
6595      else
6596        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6597      ED->setPromotionType(ED->getIntegerType());
6598    }
6599
6600  } else {
6601    // struct/union/class
6602
6603    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6604    // struct X { int A; } D;    D should chain to X.
6605    if (getLangOptions().CPlusPlus) {
6606      // FIXME: Look for a way to use RecordDecl for simple structs.
6607      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6608                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6609
6610      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6611        StdBadAlloc = cast<CXXRecordDecl>(New);
6612    } else
6613      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6614                               cast_or_null<RecordDecl>(PrevDecl));
6615  }
6616
6617  // Maybe add qualifier info.
6618  if (SS.isNotEmpty()) {
6619    if (SS.isSet()) {
6620      New->setQualifierInfo(SS.getWithLocInContext(Context));
6621      if (TemplateParameterLists.size() > 0) {
6622        New->setTemplateParameterListsInfo(Context,
6623                                           TemplateParameterLists.size(),
6624                    (TemplateParameterList**) TemplateParameterLists.release());
6625      }
6626    }
6627    else
6628      Invalid = true;
6629  }
6630
6631  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6632    // Add alignment attributes if necessary; these attributes are checked when
6633    // the ASTContext lays out the structure.
6634    //
6635    // It is important for implementing the correct semantics that this
6636    // happen here (in act on tag decl). The #pragma pack stack is
6637    // maintained as a result of parser callbacks which can occur at
6638    // many points during the parsing of a struct declaration (because
6639    // the #pragma tokens are effectively skipped over during the
6640    // parsing of the struct).
6641    AddAlignmentAttributesForRecord(RD);
6642  }
6643
6644  // If this is a specialization of a member class (of a class template),
6645  // check the specialization.
6646  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6647    Invalid = true;
6648
6649  if (Invalid)
6650    New->setInvalidDecl();
6651
6652  if (Attr)
6653    ProcessDeclAttributeList(S, New, Attr);
6654
6655  // If we're declaring or defining a tag in function prototype scope
6656  // in C, note that this type can only be used within the function.
6657  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6658    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6659
6660  // Set the lexical context. If the tag has a C++ scope specifier, the
6661  // lexical context will be different from the semantic context.
6662  New->setLexicalDeclContext(CurContext);
6663
6664  // Mark this as a friend decl if applicable.
6665  if (TUK == TUK_Friend)
6666    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6667
6668  // Set the access specifier.
6669  if (!Invalid && SearchDC->isRecord())
6670    SetMemberAccessSpecifier(New, PrevDecl, AS);
6671
6672  if (TUK == TUK_Definition)
6673    New->startDefinition();
6674
6675  // If this has an identifier, add it to the scope stack.
6676  if (TUK == TUK_Friend) {
6677    // We might be replacing an existing declaration in the lookup tables;
6678    // if so, borrow its access specifier.
6679    if (PrevDecl)
6680      New->setAccess(PrevDecl->getAccess());
6681
6682    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6683    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6684    if (Name) // can be null along some error paths
6685      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6686        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6687  } else if (Name) {
6688    S = getNonFieldDeclScope(S);
6689    PushOnScopeChains(New, S, !IsForwardReference);
6690    if (IsForwardReference)
6691      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6692
6693  } else {
6694    CurContext->addDecl(New);
6695  }
6696
6697  // If this is the C FILE type, notify the AST context.
6698  if (IdentifierInfo *II = New->getIdentifier())
6699    if (!New->isInvalidDecl() &&
6700        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6701        II->isStr("FILE"))
6702      Context.setFILEDecl(New);
6703
6704  OwnedDecl = true;
6705  return New;
6706}
6707
6708void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6709  AdjustDeclIfTemplate(TagD);
6710  TagDecl *Tag = cast<TagDecl>(TagD);
6711
6712  // Enter the tag context.
6713  PushDeclContext(S, Tag);
6714}
6715
6716void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6717                                           ClassVirtSpecifiers &CVS,
6718                                           SourceLocation LBraceLoc) {
6719  AdjustDeclIfTemplate(TagD);
6720  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6721
6722  FieldCollector->StartClass();
6723
6724  if (!Record->getIdentifier())
6725    return;
6726
6727  if (CVS.isFinalSpecified())
6728    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6729  if (CVS.isExplicitSpecified())
6730    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6731
6732  // C++ [class]p2:
6733  //   [...] The class-name is also inserted into the scope of the
6734  //   class itself; this is known as the injected-class-name. For
6735  //   purposes of access checking, the injected-class-name is treated
6736  //   as if it were a public member name.
6737  CXXRecordDecl *InjectedClassName
6738    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
6739                            Record->getLocStart(), Record->getLocation(),
6740                            Record->getIdentifier(),
6741                            /*PrevDecl=*/0,
6742                            /*DelayTypeCreation=*/true);
6743  Context.getTypeDeclType(InjectedClassName, Record);
6744  InjectedClassName->setImplicit();
6745  InjectedClassName->setAccess(AS_public);
6746  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6747      InjectedClassName->setDescribedClassTemplate(Template);
6748  PushOnScopeChains(InjectedClassName, S);
6749  assert(InjectedClassName->isInjectedClassName() &&
6750         "Broken injected-class-name");
6751}
6752
6753void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6754                                    SourceLocation RBraceLoc) {
6755  AdjustDeclIfTemplate(TagD);
6756  TagDecl *Tag = cast<TagDecl>(TagD);
6757  Tag->setRBraceLoc(RBraceLoc);
6758
6759  if (isa<CXXRecordDecl>(Tag))
6760    FieldCollector->FinishClass();
6761
6762  // Exit this scope of this tag's definition.
6763  PopDeclContext();
6764
6765  // Notify the consumer that we've defined a tag.
6766  Consumer.HandleTagDeclDefinition(Tag);
6767}
6768
6769void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6770  AdjustDeclIfTemplate(TagD);
6771  TagDecl *Tag = cast<TagDecl>(TagD);
6772  Tag->setInvalidDecl();
6773
6774  // We're undoing ActOnTagStartDefinition here, not
6775  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6776  // the FieldCollector.
6777
6778  PopDeclContext();
6779}
6780
6781// Note that FieldName may be null for anonymous bitfields.
6782bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6783                          QualType FieldTy, const Expr *BitWidth,
6784                          bool *ZeroWidth) {
6785  // Default to true; that shouldn't confuse checks for emptiness
6786  if (ZeroWidth)
6787    *ZeroWidth = true;
6788
6789  // C99 6.7.2.1p4 - verify the field type.
6790  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6791  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6792    // Handle incomplete types with specific error.
6793    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6794      return true;
6795    if (FieldName)
6796      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6797        << FieldName << FieldTy << BitWidth->getSourceRange();
6798    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6799      << FieldTy << BitWidth->getSourceRange();
6800  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6801                                             UPPC_BitFieldWidth))
6802    return true;
6803
6804  // If the bit-width is type- or value-dependent, don't try to check
6805  // it now.
6806  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6807    return false;
6808
6809  llvm::APSInt Value;
6810  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6811    return true;
6812
6813  if (Value != 0 && ZeroWidth)
6814    *ZeroWidth = false;
6815
6816  // Zero-width bitfield is ok for anonymous field.
6817  if (Value == 0 && FieldName)
6818    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6819
6820  if (Value.isSigned() && Value.isNegative()) {
6821    if (FieldName)
6822      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6823               << FieldName << Value.toString(10);
6824    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6825      << Value.toString(10);
6826  }
6827
6828  if (!FieldTy->isDependentType()) {
6829    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6830    if (Value.getZExtValue() > TypeSize) {
6831      if (!getLangOptions().CPlusPlus) {
6832        if (FieldName)
6833          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6834            << FieldName << (unsigned)Value.getZExtValue()
6835            << (unsigned)TypeSize;
6836
6837        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6838          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6839      }
6840
6841      if (FieldName)
6842        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6843          << FieldName << (unsigned)Value.getZExtValue()
6844          << (unsigned)TypeSize;
6845      else
6846        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6847          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6848    }
6849  }
6850
6851  return false;
6852}
6853
6854/// ActOnField - Each field of a struct/union/class is passed into this in order
6855/// to create a FieldDecl object for it.
6856Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6857                                 SourceLocation DeclStart,
6858                                 Declarator &D, ExprTy *BitfieldWidth) {
6859  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6860                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6861                               AS_public);
6862  return Res;
6863}
6864
6865/// HandleField - Analyze a field of a C struct or a C++ data member.
6866///
6867FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6868                             SourceLocation DeclStart,
6869                             Declarator &D, Expr *BitWidth,
6870                             AccessSpecifier AS) {
6871  IdentifierInfo *II = D.getIdentifier();
6872  SourceLocation Loc = DeclStart;
6873  if (II) Loc = D.getIdentifierLoc();
6874
6875  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6876  QualType T = TInfo->getType();
6877  if (getLangOptions().CPlusPlus) {
6878    CheckExtraCXXDefaultArguments(D);
6879
6880    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6881                                        UPPC_DataMemberType)) {
6882      D.setInvalidType();
6883      T = Context.IntTy;
6884      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6885    }
6886  }
6887
6888  DiagnoseFunctionSpecifiers(D);
6889
6890  if (D.getDeclSpec().isThreadSpecified())
6891    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6892
6893  // Check to see if this name was declared as a member previously
6894  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6895  LookupName(Previous, S);
6896  assert((Previous.empty() || Previous.isOverloadedResult() ||
6897          Previous.isSingleResult())
6898    && "Lookup of member name should be either overloaded, single or null");
6899
6900  // If the name is overloaded then get any declaration else get the single result
6901  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6902    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6903
6904  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6905    // Maybe we will complain about the shadowed template parameter.
6906    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6907    // Just pretend that we didn't see the previous declaration.
6908    PrevDecl = 0;
6909  }
6910
6911  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6912    PrevDecl = 0;
6913
6914  bool Mutable
6915    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6916  SourceLocation TSSL = D.getSourceRange().getBegin();
6917  FieldDecl *NewFD
6918    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6919                     AS, PrevDecl, &D);
6920
6921  if (NewFD->isInvalidDecl())
6922    Record->setInvalidDecl();
6923
6924  if (NewFD->isInvalidDecl() && PrevDecl) {
6925    // Don't introduce NewFD into scope; there's already something
6926    // with the same name in the same scope.
6927  } else if (II) {
6928    PushOnScopeChains(NewFD, S);
6929  } else
6930    Record->addDecl(NewFD);
6931
6932  return NewFD;
6933}
6934
6935/// \brief Build a new FieldDecl and check its well-formedness.
6936///
6937/// This routine builds a new FieldDecl given the fields name, type,
6938/// record, etc. \p PrevDecl should refer to any previous declaration
6939/// with the same name and in the same scope as the field to be
6940/// created.
6941///
6942/// \returns a new FieldDecl.
6943///
6944/// \todo The Declarator argument is a hack. It will be removed once
6945FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6946                                TypeSourceInfo *TInfo,
6947                                RecordDecl *Record, SourceLocation Loc,
6948                                bool Mutable, Expr *BitWidth,
6949                                SourceLocation TSSL,
6950                                AccessSpecifier AS, NamedDecl *PrevDecl,
6951                                Declarator *D) {
6952  IdentifierInfo *II = Name.getAsIdentifierInfo();
6953  bool InvalidDecl = false;
6954  if (D) InvalidDecl = D->isInvalidType();
6955
6956  // If we receive a broken type, recover by assuming 'int' and
6957  // marking this declaration as invalid.
6958  if (T.isNull()) {
6959    InvalidDecl = true;
6960    T = Context.IntTy;
6961  }
6962
6963  QualType EltTy = Context.getBaseElementType(T);
6964  if (!EltTy->isDependentType() &&
6965      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6966    // Fields of incomplete type force their record to be invalid.
6967    Record->setInvalidDecl();
6968    InvalidDecl = true;
6969  }
6970
6971  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6972  // than a variably modified type.
6973  if (!InvalidDecl && T->isVariablyModifiedType()) {
6974    bool SizeIsNegative;
6975    llvm::APSInt Oversized;
6976    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6977                                                           SizeIsNegative,
6978                                                           Oversized);
6979    if (!FixedTy.isNull()) {
6980      Diag(Loc, diag::warn_illegal_constant_array_size);
6981      T = FixedTy;
6982    } else {
6983      if (SizeIsNegative)
6984        Diag(Loc, diag::err_typecheck_negative_array_size);
6985      else if (Oversized.getBoolValue())
6986        Diag(Loc, diag::err_array_too_large)
6987          << Oversized.toString(10);
6988      else
6989        Diag(Loc, diag::err_typecheck_field_variable_size);
6990      InvalidDecl = true;
6991    }
6992  }
6993
6994  // Fields can not have abstract class types
6995  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6996                                             diag::err_abstract_type_in_decl,
6997                                             AbstractFieldType))
6998    InvalidDecl = true;
6999
7000  bool ZeroWidth = false;
7001  // If this is declared as a bit-field, check the bit-field.
7002  if (!InvalidDecl && BitWidth &&
7003      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7004    InvalidDecl = true;
7005    BitWidth = 0;
7006    ZeroWidth = false;
7007  }
7008
7009  // Check that 'mutable' is consistent with the type of the declaration.
7010  if (!InvalidDecl && Mutable) {
7011    unsigned DiagID = 0;
7012    if (T->isReferenceType())
7013      DiagID = diag::err_mutable_reference;
7014    else if (T.isConstQualified())
7015      DiagID = diag::err_mutable_const;
7016
7017    if (DiagID) {
7018      SourceLocation ErrLoc = Loc;
7019      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7020        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7021      Diag(ErrLoc, DiagID);
7022      Mutable = false;
7023      InvalidDecl = true;
7024    }
7025  }
7026
7027  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7028                                       BitWidth, Mutable);
7029  if (InvalidDecl)
7030    NewFD->setInvalidDecl();
7031
7032  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7033    Diag(Loc, diag::err_duplicate_member) << II;
7034    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7035    NewFD->setInvalidDecl();
7036  }
7037
7038  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7039    if (Record->isUnion()) {
7040      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7041        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7042        if (RDecl->getDefinition()) {
7043          // C++ [class.union]p1: An object of a class with a non-trivial
7044          // constructor, a non-trivial copy constructor, a non-trivial
7045          // destructor, or a non-trivial copy assignment operator
7046          // cannot be a member of a union, nor can an array of such
7047          // objects.
7048          // TODO: C++0x alters this restriction significantly.
7049          if (CheckNontrivialField(NewFD))
7050            NewFD->setInvalidDecl();
7051        }
7052      }
7053
7054      // C++ [class.union]p1: If a union contains a member of reference type,
7055      // the program is ill-formed.
7056      if (EltTy->isReferenceType()) {
7057        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7058          << NewFD->getDeclName() << EltTy;
7059        NewFD->setInvalidDecl();
7060      }
7061    }
7062  }
7063
7064  // FIXME: We need to pass in the attributes given an AST
7065  // representation, not a parser representation.
7066  if (D)
7067    // FIXME: What to pass instead of TUScope?
7068    ProcessDeclAttributes(TUScope, NewFD, *D);
7069
7070  if (T.isObjCGCWeak())
7071    Diag(Loc, diag::warn_attribute_weak_on_field);
7072
7073  NewFD->setAccess(AS);
7074  return NewFD;
7075}
7076
7077bool Sema::CheckNontrivialField(FieldDecl *FD) {
7078  assert(FD);
7079  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7080
7081  if (FD->isInvalidDecl())
7082    return true;
7083
7084  QualType EltTy = Context.getBaseElementType(FD->getType());
7085  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7086    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7087    if (RDecl->getDefinition()) {
7088      // We check for copy constructors before constructors
7089      // because otherwise we'll never get complaints about
7090      // copy constructors.
7091
7092      CXXSpecialMember member = CXXInvalid;
7093      if (!RDecl->hasTrivialCopyConstructor())
7094        member = CXXCopyConstructor;
7095      else if (!RDecl->hasTrivialConstructor())
7096        member = CXXConstructor;
7097      else if (!RDecl->hasTrivialCopyAssignment())
7098        member = CXXCopyAssignment;
7099      else if (!RDecl->hasTrivialDestructor())
7100        member = CXXDestructor;
7101
7102      if (member != CXXInvalid) {
7103        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7104              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7105        DiagnoseNontrivial(RT, member);
7106        return true;
7107      }
7108    }
7109  }
7110
7111  return false;
7112}
7113
7114/// DiagnoseNontrivial - Given that a class has a non-trivial
7115/// special member, figure out why.
7116void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7117  QualType QT(T, 0U);
7118  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7119
7120  // Check whether the member was user-declared.
7121  switch (member) {
7122  case CXXInvalid:
7123    break;
7124
7125  case CXXConstructor:
7126    if (RD->hasUserDeclaredConstructor()) {
7127      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7128      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7129        const FunctionDecl *body = 0;
7130        ci->hasBody(body);
7131        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7132          SourceLocation CtorLoc = ci->getLocation();
7133          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7134          return;
7135        }
7136      }
7137
7138      assert(0 && "found no user-declared constructors");
7139      return;
7140    }
7141    break;
7142
7143  case CXXCopyConstructor:
7144    if (RD->hasUserDeclaredCopyConstructor()) {
7145      SourceLocation CtorLoc =
7146        RD->getCopyConstructor(Context, 0)->getLocation();
7147      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7148      return;
7149    }
7150    break;
7151
7152  case CXXCopyAssignment:
7153    if (RD->hasUserDeclaredCopyAssignment()) {
7154      // FIXME: this should use the location of the copy
7155      // assignment, not the type.
7156      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7157      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7158      return;
7159    }
7160    break;
7161
7162  case CXXDestructor:
7163    if (RD->hasUserDeclaredDestructor()) {
7164      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7165      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7166      return;
7167    }
7168    break;
7169  }
7170
7171  typedef CXXRecordDecl::base_class_iterator base_iter;
7172
7173  // Virtual bases and members inhibit trivial copying/construction,
7174  // but not trivial destruction.
7175  if (member != CXXDestructor) {
7176    // Check for virtual bases.  vbases includes indirect virtual bases,
7177    // so we just iterate through the direct bases.
7178    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7179      if (bi->isVirtual()) {
7180        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7181        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7182        return;
7183      }
7184
7185    // Check for virtual methods.
7186    typedef CXXRecordDecl::method_iterator meth_iter;
7187    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7188         ++mi) {
7189      if (mi->isVirtual()) {
7190        SourceLocation MLoc = mi->getSourceRange().getBegin();
7191        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7192        return;
7193      }
7194    }
7195  }
7196
7197  bool (CXXRecordDecl::*hasTrivial)() const;
7198  switch (member) {
7199  case CXXConstructor:
7200    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7201  case CXXCopyConstructor:
7202    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7203  case CXXCopyAssignment:
7204    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7205  case CXXDestructor:
7206    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7207  default:
7208    assert(0 && "unexpected special member"); return;
7209  }
7210
7211  // Check for nontrivial bases (and recurse).
7212  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7213    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7214    assert(BaseRT && "Don't know how to handle dependent bases");
7215    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7216    if (!(BaseRecTy->*hasTrivial)()) {
7217      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7218      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7219      DiagnoseNontrivial(BaseRT, member);
7220      return;
7221    }
7222  }
7223
7224  // Check for nontrivial members (and recurse).
7225  typedef RecordDecl::field_iterator field_iter;
7226  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7227       ++fi) {
7228    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7229    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7230      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7231
7232      if (!(EltRD->*hasTrivial)()) {
7233        SourceLocation FLoc = (*fi)->getLocation();
7234        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7235        DiagnoseNontrivial(EltRT, member);
7236        return;
7237      }
7238    }
7239  }
7240
7241  assert(0 && "found no explanation for non-trivial member");
7242}
7243
7244/// TranslateIvarVisibility - Translate visibility from a token ID to an
7245///  AST enum value.
7246static ObjCIvarDecl::AccessControl
7247TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7248  switch (ivarVisibility) {
7249  default: assert(0 && "Unknown visitibility kind");
7250  case tok::objc_private: return ObjCIvarDecl::Private;
7251  case tok::objc_public: return ObjCIvarDecl::Public;
7252  case tok::objc_protected: return ObjCIvarDecl::Protected;
7253  case tok::objc_package: return ObjCIvarDecl::Package;
7254  }
7255}
7256
7257/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7258/// in order to create an IvarDecl object for it.
7259Decl *Sema::ActOnIvar(Scope *S,
7260                                SourceLocation DeclStart,
7261                                Decl *IntfDecl,
7262                                Declarator &D, ExprTy *BitfieldWidth,
7263                                tok::ObjCKeywordKind Visibility) {
7264
7265  IdentifierInfo *II = D.getIdentifier();
7266  Expr *BitWidth = (Expr*)BitfieldWidth;
7267  SourceLocation Loc = DeclStart;
7268  if (II) Loc = D.getIdentifierLoc();
7269
7270  // FIXME: Unnamed fields can be handled in various different ways, for
7271  // example, unnamed unions inject all members into the struct namespace!
7272
7273  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7274  QualType T = TInfo->getType();
7275
7276  if (BitWidth) {
7277    // 6.7.2.1p3, 6.7.2.1p4
7278    if (VerifyBitField(Loc, II, T, BitWidth)) {
7279      D.setInvalidType();
7280      BitWidth = 0;
7281    }
7282  } else {
7283    // Not a bitfield.
7284
7285    // validate II.
7286
7287  }
7288  if (T->isReferenceType()) {
7289    Diag(Loc, diag::err_ivar_reference_type);
7290    D.setInvalidType();
7291  }
7292  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7293  // than a variably modified type.
7294  else if (T->isVariablyModifiedType()) {
7295    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7296    D.setInvalidType();
7297  }
7298
7299  // Get the visibility (access control) for this ivar.
7300  ObjCIvarDecl::AccessControl ac =
7301    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7302                                        : ObjCIvarDecl::None;
7303  // Must set ivar's DeclContext to its enclosing interface.
7304  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7305  ObjCContainerDecl *EnclosingContext;
7306  if (ObjCImplementationDecl *IMPDecl =
7307      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7308    if (!LangOpts.ObjCNonFragileABI2) {
7309    // Case of ivar declared in an implementation. Context is that of its class.
7310      EnclosingContext = IMPDecl->getClassInterface();
7311      assert(EnclosingContext && "Implementation has no class interface!");
7312    }
7313    else
7314      EnclosingContext = EnclosingDecl;
7315  } else {
7316    if (ObjCCategoryDecl *CDecl =
7317        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7318      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7319        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7320        return 0;
7321      }
7322    }
7323    EnclosingContext = EnclosingDecl;
7324  }
7325
7326  // Construct the decl.
7327  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7328                                             DeclStart, Loc, II, T,
7329                                             TInfo, ac, (Expr *)BitfieldWidth);
7330
7331  if (II) {
7332    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7333                                           ForRedeclaration);
7334    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7335        && !isa<TagDecl>(PrevDecl)) {
7336      Diag(Loc, diag::err_duplicate_member) << II;
7337      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7338      NewID->setInvalidDecl();
7339    }
7340  }
7341
7342  // Process attributes attached to the ivar.
7343  ProcessDeclAttributes(S, NewID, D);
7344
7345  if (D.isInvalidType())
7346    NewID->setInvalidDecl();
7347
7348  if (II) {
7349    // FIXME: When interfaces are DeclContexts, we'll need to add
7350    // these to the interface.
7351    S->AddDecl(NewID);
7352    IdResolver.AddDecl(NewID);
7353  }
7354
7355  return NewID;
7356}
7357
7358/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7359/// class and class extensions. For every class @interface and class
7360/// extension @interface, if the last ivar is a bitfield of any type,
7361/// then add an implicit `char :0` ivar to the end of that interface.
7362void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7363                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7364  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7365    return;
7366
7367  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7368  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7369
7370  if (!Ivar->isBitField())
7371    return;
7372  uint64_t BitFieldSize =
7373    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7374  if (BitFieldSize == 0)
7375    return;
7376  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7377  if (!ID) {
7378    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7379      if (!CD->IsClassExtension())
7380        return;
7381    }
7382    // No need to add this to end of @implementation.
7383    else
7384      return;
7385  }
7386  // All conditions are met. Add a new bitfield to the tail end of ivars.
7387  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7388  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7389
7390  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7391                              DeclLoc, DeclLoc, 0,
7392                              Context.CharTy,
7393                              Context.CreateTypeSourceInfo(Context.CharTy),
7394                              ObjCIvarDecl::Private, BW,
7395                              true);
7396  AllIvarDecls.push_back(Ivar);
7397}
7398
7399void Sema::ActOnFields(Scope* S,
7400                       SourceLocation RecLoc, Decl *EnclosingDecl,
7401                       Decl **Fields, unsigned NumFields,
7402                       SourceLocation LBrac, SourceLocation RBrac,
7403                       AttributeList *Attr) {
7404  assert(EnclosingDecl && "missing record or interface decl");
7405
7406  // If the decl this is being inserted into is invalid, then it may be a
7407  // redeclaration or some other bogus case.  Don't try to add fields to it.
7408  if (EnclosingDecl->isInvalidDecl()) {
7409    // FIXME: Deallocate fields?
7410    return;
7411  }
7412
7413
7414  // Verify that all the fields are okay.
7415  unsigned NumNamedMembers = 0;
7416  llvm::SmallVector<FieldDecl*, 32> RecFields;
7417
7418  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7419  for (unsigned i = 0; i != NumFields; ++i) {
7420    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7421
7422    // Get the type for the field.
7423    const Type *FDTy = FD->getType().getTypePtr();
7424
7425    if (!FD->isAnonymousStructOrUnion()) {
7426      // Remember all fields written by the user.
7427      RecFields.push_back(FD);
7428    }
7429
7430    // If the field is already invalid for some reason, don't emit more
7431    // diagnostics about it.
7432    if (FD->isInvalidDecl()) {
7433      EnclosingDecl->setInvalidDecl();
7434      continue;
7435    }
7436
7437    // C99 6.7.2.1p2:
7438    //   A structure or union shall not contain a member with
7439    //   incomplete or function type (hence, a structure shall not
7440    //   contain an instance of itself, but may contain a pointer to
7441    //   an instance of itself), except that the last member of a
7442    //   structure with more than one named member may have incomplete
7443    //   array type; such a structure (and any union containing,
7444    //   possibly recursively, a member that is such a structure)
7445    //   shall not be a member of a structure or an element of an
7446    //   array.
7447    if (FDTy->isFunctionType()) {
7448      // Field declared as a function.
7449      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7450        << FD->getDeclName();
7451      FD->setInvalidDecl();
7452      EnclosingDecl->setInvalidDecl();
7453      continue;
7454    } else if (FDTy->isIncompleteArrayType() && Record &&
7455               ((i == NumFields - 1 && !Record->isUnion()) ||
7456                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7457                 (i == NumFields - 1 || Record->isUnion())))) {
7458      // Flexible array member.
7459      // Microsoft and g++ is more permissive regarding flexible array.
7460      // It will accept flexible array in union and also
7461      // as the sole element of a struct/class.
7462      if (getLangOptions().Microsoft) {
7463        if (Record->isUnion())
7464          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7465            << FD->getDeclName();
7466        else if (NumFields == 1)
7467          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7468            << FD->getDeclName() << Record->getTagKind();
7469      } else if (getLangOptions().CPlusPlus) {
7470        if (Record->isUnion())
7471          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7472            << FD->getDeclName();
7473        else if (NumFields == 1)
7474          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7475            << FD->getDeclName() << Record->getTagKind();
7476      } else if (NumNamedMembers < 1) {
7477        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7478          << FD->getDeclName();
7479        FD->setInvalidDecl();
7480        EnclosingDecl->setInvalidDecl();
7481        continue;
7482      }
7483      if (!FD->getType()->isDependentType() &&
7484          !Context.getBaseElementType(FD->getType())->isPODType()) {
7485        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7486          << FD->getDeclName() << FD->getType();
7487        FD->setInvalidDecl();
7488        EnclosingDecl->setInvalidDecl();
7489        continue;
7490      }
7491      // Okay, we have a legal flexible array member at the end of the struct.
7492      if (Record)
7493        Record->setHasFlexibleArrayMember(true);
7494    } else if (!FDTy->isDependentType() &&
7495               RequireCompleteType(FD->getLocation(), FD->getType(),
7496                                   diag::err_field_incomplete)) {
7497      // Incomplete type
7498      FD->setInvalidDecl();
7499      EnclosingDecl->setInvalidDecl();
7500      continue;
7501    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7502      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7503        // If this is a member of a union, then entire union becomes "flexible".
7504        if (Record && Record->isUnion()) {
7505          Record->setHasFlexibleArrayMember(true);
7506        } else {
7507          // If this is a struct/class and this is not the last element, reject
7508          // it.  Note that GCC supports variable sized arrays in the middle of
7509          // structures.
7510          if (i != NumFields-1)
7511            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7512              << FD->getDeclName() << FD->getType();
7513          else {
7514            // We support flexible arrays at the end of structs in
7515            // other structs as an extension.
7516            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7517              << FD->getDeclName();
7518            if (Record)
7519              Record->setHasFlexibleArrayMember(true);
7520          }
7521        }
7522      }
7523      if (Record && FDTTy->getDecl()->hasObjectMember())
7524        Record->setHasObjectMember(true);
7525    } else if (FDTy->isObjCObjectType()) {
7526      /// A field cannot be an Objective-c object
7527      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7528      FD->setInvalidDecl();
7529      EnclosingDecl->setInvalidDecl();
7530      continue;
7531    } else if (getLangOptions().ObjC1 &&
7532               getLangOptions().getGCMode() != LangOptions::NonGC &&
7533               Record &&
7534               (FD->getType()->isObjCObjectPointerType() ||
7535                FD->getType().isObjCGCStrong()))
7536      Record->setHasObjectMember(true);
7537    else if (Context.getAsArrayType(FD->getType())) {
7538      QualType BaseType = Context.getBaseElementType(FD->getType());
7539      if (Record && BaseType->isRecordType() &&
7540          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7541        Record->setHasObjectMember(true);
7542    }
7543    // Keep track of the number of named members.
7544    if (FD->getIdentifier())
7545      ++NumNamedMembers;
7546  }
7547
7548  // Okay, we successfully defined 'Record'.
7549  if (Record) {
7550    bool Completed = false;
7551    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7552      if (!CXXRecord->isInvalidDecl()) {
7553        // Set access bits correctly on the directly-declared conversions.
7554        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7555        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7556             I != E; ++I)
7557          Convs->setAccess(I, (*I)->getAccess());
7558
7559        if (!CXXRecord->isDependentType()) {
7560          // Add any implicitly-declared members to this class.
7561          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7562
7563          // If we have virtual base classes, we may end up finding multiple
7564          // final overriders for a given virtual function. Check for this
7565          // problem now.
7566          if (CXXRecord->getNumVBases()) {
7567            CXXFinalOverriderMap FinalOverriders;
7568            CXXRecord->getFinalOverriders(FinalOverriders);
7569
7570            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7571                                             MEnd = FinalOverriders.end();
7572                 M != MEnd; ++M) {
7573              for (OverridingMethods::iterator SO = M->second.begin(),
7574                                            SOEnd = M->second.end();
7575                   SO != SOEnd; ++SO) {
7576                assert(SO->second.size() > 0 &&
7577                       "Virtual function without overridding functions?");
7578                if (SO->second.size() == 1)
7579                  continue;
7580
7581                // C++ [class.virtual]p2:
7582                //   In a derived class, if a virtual member function of a base
7583                //   class subobject has more than one final overrider the
7584                //   program is ill-formed.
7585                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7586                  << (NamedDecl *)M->first << Record;
7587                Diag(M->first->getLocation(),
7588                     diag::note_overridden_virtual_function);
7589                for (OverridingMethods::overriding_iterator
7590                          OM = SO->second.begin(),
7591                       OMEnd = SO->second.end();
7592                     OM != OMEnd; ++OM)
7593                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7594                    << (NamedDecl *)M->first << OM->Method->getParent();
7595
7596                Record->setInvalidDecl();
7597              }
7598            }
7599            CXXRecord->completeDefinition(&FinalOverriders);
7600            Completed = true;
7601          }
7602        }
7603      }
7604    }
7605
7606    if (!Completed)
7607      Record->completeDefinition();
7608  } else {
7609    ObjCIvarDecl **ClsFields =
7610      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7611    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7612      ID->setLocEnd(RBrac);
7613      // Add ivar's to class's DeclContext.
7614      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7615        ClsFields[i]->setLexicalDeclContext(ID);
7616        ID->addDecl(ClsFields[i]);
7617      }
7618      // Must enforce the rule that ivars in the base classes may not be
7619      // duplicates.
7620      if (ID->getSuperClass())
7621        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7622    } else if (ObjCImplementationDecl *IMPDecl =
7623                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7624      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7625      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7626        // Ivar declared in @implementation never belongs to the implementation.
7627        // Only it is in implementation's lexical context.
7628        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7629      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7630    } else if (ObjCCategoryDecl *CDecl =
7631                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7632      // case of ivars in class extension; all other cases have been
7633      // reported as errors elsewhere.
7634      // FIXME. Class extension does not have a LocEnd field.
7635      // CDecl->setLocEnd(RBrac);
7636      // Add ivar's to class extension's DeclContext.
7637      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7638        ClsFields[i]->setLexicalDeclContext(CDecl);
7639        CDecl->addDecl(ClsFields[i]);
7640      }
7641    }
7642  }
7643
7644  if (Attr)
7645    ProcessDeclAttributeList(S, Record, Attr);
7646
7647  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7648  // set the visibility of this record.
7649  if (Record && !Record->getDeclContext()->isRecord())
7650    AddPushedVisibilityAttribute(Record);
7651}
7652
7653/// \brief Determine whether the given integral value is representable within
7654/// the given type T.
7655static bool isRepresentableIntegerValue(ASTContext &Context,
7656                                        llvm::APSInt &Value,
7657                                        QualType T) {
7658  assert(T->isIntegralType(Context) && "Integral type required!");
7659  unsigned BitWidth = Context.getIntWidth(T);
7660
7661  if (Value.isUnsigned() || Value.isNonNegative()) {
7662    if (T->isSignedIntegerType())
7663      --BitWidth;
7664    return Value.getActiveBits() <= BitWidth;
7665  }
7666  return Value.getMinSignedBits() <= BitWidth;
7667}
7668
7669// \brief Given an integral type, return the next larger integral type
7670// (or a NULL type of no such type exists).
7671static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7672  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7673  // enum checking below.
7674  assert(T->isIntegralType(Context) && "Integral type required!");
7675  const unsigned NumTypes = 4;
7676  QualType SignedIntegralTypes[NumTypes] = {
7677    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7678  };
7679  QualType UnsignedIntegralTypes[NumTypes] = {
7680    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7681    Context.UnsignedLongLongTy
7682  };
7683
7684  unsigned BitWidth = Context.getTypeSize(T);
7685  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7686                                            : UnsignedIntegralTypes;
7687  for (unsigned I = 0; I != NumTypes; ++I)
7688    if (Context.getTypeSize(Types[I]) > BitWidth)
7689      return Types[I];
7690
7691  return QualType();
7692}
7693
7694EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7695                                          EnumConstantDecl *LastEnumConst,
7696                                          SourceLocation IdLoc,
7697                                          IdentifierInfo *Id,
7698                                          Expr *Val) {
7699  unsigned IntWidth = Context.Target.getIntWidth();
7700  llvm::APSInt EnumVal(IntWidth);
7701  QualType EltTy;
7702
7703  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7704    Val = 0;
7705
7706  if (Val) {
7707    if (Enum->isDependentType() || Val->isTypeDependent())
7708      EltTy = Context.DependentTy;
7709    else {
7710      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7711      SourceLocation ExpLoc;
7712      if (!Val->isValueDependent() &&
7713          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7714        Val = 0;
7715      } else {
7716        if (!getLangOptions().CPlusPlus) {
7717          // C99 6.7.2.2p2:
7718          //   The expression that defines the value of an enumeration constant
7719          //   shall be an integer constant expression that has a value
7720          //   representable as an int.
7721
7722          // Complain if the value is not representable in an int.
7723          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7724            Diag(IdLoc, diag::ext_enum_value_not_int)
7725              << EnumVal.toString(10) << Val->getSourceRange()
7726              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7727          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7728            // Force the type of the expression to 'int'.
7729            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7730          }
7731        }
7732
7733        if (Enum->isFixed()) {
7734          EltTy = Enum->getIntegerType();
7735
7736          // C++0x [dcl.enum]p5:
7737          //   ... if the initializing value of an enumerator cannot be
7738          //   represented by the underlying type, the program is ill-formed.
7739          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7740            if (getLangOptions().Microsoft) {
7741              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7742              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7743            } else
7744              Diag(IdLoc, diag::err_enumerator_too_large)
7745                << EltTy;
7746          } else
7747            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7748        }
7749        else {
7750          // C++0x [dcl.enum]p5:
7751          //   If the underlying type is not fixed, the type of each enumerator
7752          //   is the type of its initializing value:
7753          //     - If an initializer is specified for an enumerator, the
7754          //       initializing value has the same type as the expression.
7755          EltTy = Val->getType();
7756        }
7757      }
7758    }
7759  }
7760
7761  if (!Val) {
7762    if (Enum->isDependentType())
7763      EltTy = Context.DependentTy;
7764    else if (!LastEnumConst) {
7765      // C++0x [dcl.enum]p5:
7766      //   If the underlying type is not fixed, the type of each enumerator
7767      //   is the type of its initializing value:
7768      //     - If no initializer is specified for the first enumerator, the
7769      //       initializing value has an unspecified integral type.
7770      //
7771      // GCC uses 'int' for its unspecified integral type, as does
7772      // C99 6.7.2.2p3.
7773      if (Enum->isFixed()) {
7774        EltTy = Enum->getIntegerType();
7775      }
7776      else {
7777        EltTy = Context.IntTy;
7778      }
7779    } else {
7780      // Assign the last value + 1.
7781      EnumVal = LastEnumConst->getInitVal();
7782      ++EnumVal;
7783      EltTy = LastEnumConst->getType();
7784
7785      // Check for overflow on increment.
7786      if (EnumVal < LastEnumConst->getInitVal()) {
7787        // C++0x [dcl.enum]p5:
7788        //   If the underlying type is not fixed, the type of each enumerator
7789        //   is the type of its initializing value:
7790        //
7791        //     - Otherwise the type of the initializing value is the same as
7792        //       the type of the initializing value of the preceding enumerator
7793        //       unless the incremented value is not representable in that type,
7794        //       in which case the type is an unspecified integral type
7795        //       sufficient to contain the incremented value. If no such type
7796        //       exists, the program is ill-formed.
7797        QualType T = getNextLargerIntegralType(Context, EltTy);
7798        if (T.isNull() || Enum->isFixed()) {
7799          // There is no integral type larger enough to represent this
7800          // value. Complain, then allow the value to wrap around.
7801          EnumVal = LastEnumConst->getInitVal();
7802          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7803          ++EnumVal;
7804          if (Enum->isFixed())
7805            // When the underlying type is fixed, this is ill-formed.
7806            Diag(IdLoc, diag::err_enumerator_wrapped)
7807              << EnumVal.toString(10)
7808              << EltTy;
7809          else
7810            Diag(IdLoc, diag::warn_enumerator_too_large)
7811              << EnumVal.toString(10);
7812        } else {
7813          EltTy = T;
7814        }
7815
7816        // Retrieve the last enumerator's value, extent that type to the
7817        // type that is supposed to be large enough to represent the incremented
7818        // value, then increment.
7819        EnumVal = LastEnumConst->getInitVal();
7820        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7821        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7822        ++EnumVal;
7823
7824        // If we're not in C++, diagnose the overflow of enumerator values,
7825        // which in C99 means that the enumerator value is not representable in
7826        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7827        // permits enumerator values that are representable in some larger
7828        // integral type.
7829        if (!getLangOptions().CPlusPlus && !T.isNull())
7830          Diag(IdLoc, diag::warn_enum_value_overflow);
7831      } else if (!getLangOptions().CPlusPlus &&
7832                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7833        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7834        Diag(IdLoc, diag::ext_enum_value_not_int)
7835          << EnumVal.toString(10) << 1;
7836      }
7837    }
7838  }
7839
7840  if (!EltTy->isDependentType()) {
7841    // Make the enumerator value match the signedness and size of the
7842    // enumerator's type.
7843    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7844    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7845  }
7846
7847  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7848                                  Val, EnumVal);
7849}
7850
7851
7852Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7853                              SourceLocation IdLoc, IdentifierInfo *Id,
7854                              AttributeList *Attr,
7855                              SourceLocation EqualLoc, ExprTy *val) {
7856  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7857  EnumConstantDecl *LastEnumConst =
7858    cast_or_null<EnumConstantDecl>(lastEnumConst);
7859  Expr *Val = static_cast<Expr*>(val);
7860
7861  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7862  // we find one that is.
7863  S = getNonFieldDeclScope(S);
7864
7865  // Verify that there isn't already something declared with this name in this
7866  // scope.
7867  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7868                                         ForRedeclaration);
7869  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7870    // Maybe we will complain about the shadowed template parameter.
7871    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7872    // Just pretend that we didn't see the previous declaration.
7873    PrevDecl = 0;
7874  }
7875
7876  if (PrevDecl) {
7877    // When in C++, we may get a TagDecl with the same name; in this case the
7878    // enum constant will 'hide' the tag.
7879    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7880           "Received TagDecl when not in C++!");
7881    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7882      if (isa<EnumConstantDecl>(PrevDecl))
7883        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7884      else
7885        Diag(IdLoc, diag::err_redefinition) << Id;
7886      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7887      return 0;
7888    }
7889  }
7890
7891  // C++ [class.mem]p13:
7892  //   If T is the name of a class, then each of the following shall have a
7893  //   name different from T:
7894  //     - every enumerator of every member of class T that is an enumerated
7895  //       type
7896  if (CXXRecordDecl *Record
7897                      = dyn_cast<CXXRecordDecl>(
7898                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7899    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7900      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7901
7902  EnumConstantDecl *New =
7903    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7904
7905  if (New) {
7906    // Process attributes.
7907    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7908
7909    // Register this decl in the current scope stack.
7910    New->setAccess(TheEnumDecl->getAccess());
7911    PushOnScopeChains(New, S);
7912  }
7913
7914  return New;
7915}
7916
7917void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7918                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7919                         Decl **Elements, unsigned NumElements,
7920                         Scope *S, AttributeList *Attr) {
7921  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7922  QualType EnumType = Context.getTypeDeclType(Enum);
7923
7924  if (Attr)
7925    ProcessDeclAttributeList(S, Enum, Attr);
7926
7927  if (Enum->isDependentType()) {
7928    for (unsigned i = 0; i != NumElements; ++i) {
7929      EnumConstantDecl *ECD =
7930        cast_or_null<EnumConstantDecl>(Elements[i]);
7931      if (!ECD) continue;
7932
7933      ECD->setType(EnumType);
7934    }
7935
7936    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7937    return;
7938  }
7939
7940  // TODO: If the result value doesn't fit in an int, it must be a long or long
7941  // long value.  ISO C does not support this, but GCC does as an extension,
7942  // emit a warning.
7943  unsigned IntWidth = Context.Target.getIntWidth();
7944  unsigned CharWidth = Context.Target.getCharWidth();
7945  unsigned ShortWidth = Context.Target.getShortWidth();
7946
7947  // Verify that all the values are okay, compute the size of the values, and
7948  // reverse the list.
7949  unsigned NumNegativeBits = 0;
7950  unsigned NumPositiveBits = 0;
7951
7952  // Keep track of whether all elements have type int.
7953  bool AllElementsInt = true;
7954
7955  for (unsigned i = 0; i != NumElements; ++i) {
7956    EnumConstantDecl *ECD =
7957      cast_or_null<EnumConstantDecl>(Elements[i]);
7958    if (!ECD) continue;  // Already issued a diagnostic.
7959
7960    const llvm::APSInt &InitVal = ECD->getInitVal();
7961
7962    // Keep track of the size of positive and negative values.
7963    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7964      NumPositiveBits = std::max(NumPositiveBits,
7965                                 (unsigned)InitVal.getActiveBits());
7966    else
7967      NumNegativeBits = std::max(NumNegativeBits,
7968                                 (unsigned)InitVal.getMinSignedBits());
7969
7970    // Keep track of whether every enum element has type int (very commmon).
7971    if (AllElementsInt)
7972      AllElementsInt = ECD->getType() == Context.IntTy;
7973  }
7974
7975  // Figure out the type that should be used for this enum.
7976  QualType BestType;
7977  unsigned BestWidth;
7978
7979  // C++0x N3000 [conv.prom]p3:
7980  //   An rvalue of an unscoped enumeration type whose underlying
7981  //   type is not fixed can be converted to an rvalue of the first
7982  //   of the following types that can represent all the values of
7983  //   the enumeration: int, unsigned int, long int, unsigned long
7984  //   int, long long int, or unsigned long long int.
7985  // C99 6.4.4.3p2:
7986  //   An identifier declared as an enumeration constant has type int.
7987  // The C99 rule is modified by a gcc extension
7988  QualType BestPromotionType;
7989
7990  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7991  // -fshort-enums is the equivalent to specifying the packed attribute on all
7992  // enum definitions.
7993  if (LangOpts.ShortEnums)
7994    Packed = true;
7995
7996  if (Enum->isFixed()) {
7997    BestType = BestPromotionType = Enum->getIntegerType();
7998    // We don't need to set BestWidth, because BestType is going to be the type
7999    // of the enumerators, but we do anyway because otherwise some compilers
8000    // warn that it might be used uninitialized.
8001    BestWidth = CharWidth;
8002  }
8003  else if (NumNegativeBits) {
8004    // If there is a negative value, figure out the smallest integer type (of
8005    // int/long/longlong) that fits.
8006    // If it's packed, check also if it fits a char or a short.
8007    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8008      BestType = Context.SignedCharTy;
8009      BestWidth = CharWidth;
8010    } else if (Packed && NumNegativeBits <= ShortWidth &&
8011               NumPositiveBits < ShortWidth) {
8012      BestType = Context.ShortTy;
8013      BestWidth = ShortWidth;
8014    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8015      BestType = Context.IntTy;
8016      BestWidth = IntWidth;
8017    } else {
8018      BestWidth = Context.Target.getLongWidth();
8019
8020      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8021        BestType = Context.LongTy;
8022      } else {
8023        BestWidth = Context.Target.getLongLongWidth();
8024
8025        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8026          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8027        BestType = Context.LongLongTy;
8028      }
8029    }
8030    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8031  } else {
8032    // If there is no negative value, figure out the smallest type that fits
8033    // all of the enumerator values.
8034    // If it's packed, check also if it fits a char or a short.
8035    if (Packed && NumPositiveBits <= CharWidth) {
8036      BestType = Context.UnsignedCharTy;
8037      BestPromotionType = Context.IntTy;
8038      BestWidth = CharWidth;
8039    } else if (Packed && NumPositiveBits <= ShortWidth) {
8040      BestType = Context.UnsignedShortTy;
8041      BestPromotionType = Context.IntTy;
8042      BestWidth = ShortWidth;
8043    } else if (NumPositiveBits <= IntWidth) {
8044      BestType = Context.UnsignedIntTy;
8045      BestWidth = IntWidth;
8046      BestPromotionType
8047        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8048                           ? Context.UnsignedIntTy : Context.IntTy;
8049    } else if (NumPositiveBits <=
8050               (BestWidth = Context.Target.getLongWidth())) {
8051      BestType = Context.UnsignedLongTy;
8052      BestPromotionType
8053        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8054                           ? Context.UnsignedLongTy : Context.LongTy;
8055    } else {
8056      BestWidth = Context.Target.getLongLongWidth();
8057      assert(NumPositiveBits <= BestWidth &&
8058             "How could an initializer get larger than ULL?");
8059      BestType = Context.UnsignedLongLongTy;
8060      BestPromotionType
8061        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8062                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8063    }
8064  }
8065
8066  // Loop over all of the enumerator constants, changing their types to match
8067  // the type of the enum if needed.
8068  for (unsigned i = 0; i != NumElements; ++i) {
8069    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8070    if (!ECD) continue;  // Already issued a diagnostic.
8071
8072    // Standard C says the enumerators have int type, but we allow, as an
8073    // extension, the enumerators to be larger than int size.  If each
8074    // enumerator value fits in an int, type it as an int, otherwise type it the
8075    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8076    // that X has type 'int', not 'unsigned'.
8077
8078    // Determine whether the value fits into an int.
8079    llvm::APSInt InitVal = ECD->getInitVal();
8080
8081    // If it fits into an integer type, force it.  Otherwise force it to match
8082    // the enum decl type.
8083    QualType NewTy;
8084    unsigned NewWidth;
8085    bool NewSign;
8086    if (!getLangOptions().CPlusPlus &&
8087        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8088      NewTy = Context.IntTy;
8089      NewWidth = IntWidth;
8090      NewSign = true;
8091    } else if (ECD->getType() == BestType) {
8092      // Already the right type!
8093      if (getLangOptions().CPlusPlus)
8094        // C++ [dcl.enum]p4: Following the closing brace of an
8095        // enum-specifier, each enumerator has the type of its
8096        // enumeration.
8097        ECD->setType(EnumType);
8098      continue;
8099    } else {
8100      NewTy = BestType;
8101      NewWidth = BestWidth;
8102      NewSign = BestType->isSignedIntegerType();
8103    }
8104
8105    // Adjust the APSInt value.
8106    InitVal = InitVal.extOrTrunc(NewWidth);
8107    InitVal.setIsSigned(NewSign);
8108    ECD->setInitVal(InitVal);
8109
8110    // Adjust the Expr initializer and type.
8111    if (ECD->getInitExpr() &&
8112	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8113      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8114                                                CK_IntegralCast,
8115                                                ECD->getInitExpr(),
8116                                                /*base paths*/ 0,
8117                                                VK_RValue));
8118    if (getLangOptions().CPlusPlus)
8119      // C++ [dcl.enum]p4: Following the closing brace of an
8120      // enum-specifier, each enumerator has the type of its
8121      // enumeration.
8122      ECD->setType(EnumType);
8123    else
8124      ECD->setType(NewTy);
8125  }
8126
8127  Enum->completeDefinition(BestType, BestPromotionType,
8128                           NumPositiveBits, NumNegativeBits);
8129}
8130
8131Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8132                                  SourceLocation StartLoc,
8133                                  SourceLocation EndLoc) {
8134  StringLiteral *AsmString = cast<StringLiteral>(expr);
8135
8136  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8137                                                   AsmString, StartLoc,
8138                                                   EndLoc);
8139  CurContext->addDecl(New);
8140  return New;
8141}
8142
8143void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8144                             SourceLocation PragmaLoc,
8145                             SourceLocation NameLoc) {
8146  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8147
8148  if (PrevDecl) {
8149    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8150  } else {
8151    (void)WeakUndeclaredIdentifiers.insert(
8152      std::pair<IdentifierInfo*,WeakInfo>
8153        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8154  }
8155}
8156
8157void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8158                                IdentifierInfo* AliasName,
8159                                SourceLocation PragmaLoc,
8160                                SourceLocation NameLoc,
8161                                SourceLocation AliasNameLoc) {
8162  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8163                                    LookupOrdinaryName);
8164  WeakInfo W = WeakInfo(Name, NameLoc);
8165
8166  if (PrevDecl) {
8167    if (!PrevDecl->hasAttr<AliasAttr>())
8168      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8169        DeclApplyPragmaWeak(TUScope, ND, W);
8170  } else {
8171    (void)WeakUndeclaredIdentifiers.insert(
8172      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8173  }
8174}
8175