SemaDecl.cpp revision 0ed844b04ea4387caa4e1cf3dc375d269657536b
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Lex/HeaderSearch.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/DenseSet.h"
33using namespace clang;
34
35Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
36  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
37
38  if (IIDecl && (isa<TypedefDecl>(IIDecl) || isa<ObjCInterfaceDecl>(IIDecl)))
39    return IIDecl;
40  return 0;
41}
42
43void Sema::PushContextDecl(ContextDecl *CD) {
44  assert(CD->getParent() == CurContext &&
45      "The next ContextDecl should be directly contained in the current one.");
46  CurContext = CD;
47}
48
49void Sema::PopContextDecl() {
50  assert(CurContext && "ContextDecl imbalance!");
51  CurContext = CurContext->getParent();
52}
53
54void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
55  if (S->decl_empty()) return;
56  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
57
58  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
59       I != E; ++I) {
60    Decl *TmpD = static_cast<Decl*>(*I);
61    assert(TmpD && "This decl didn't get pushed??");
62    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
63    assert(D && "This decl isn't a ScopedDecl?");
64
65    IdentifierInfo *II = D->getIdentifier();
66    if (!II) continue;
67
68    // Unlink this decl from the identifier.  Because the scope contains decls
69    // in an unordered collection, and because we have multiple identifier
70    // namespaces (e.g. tag, normal, label),the decl may not be the first entry.
71    if (II->getFETokenInfo<Decl>() == D) {
72      // Normal case, no multiple decls in different namespaces.
73      II->setFETokenInfo(D->getNext());
74    } else {
75      // Scan ahead.  There are only three namespaces in C, so this loop can
76      // never execute more than 3 times.
77      ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>();
78      while (SomeDecl->getNext() != D) {
79        SomeDecl = SomeDecl->getNext();
80        assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
81      }
82      SomeDecl->setNext(D->getNext());
83    }
84
85    // This will have to be revisited for C++: there we want to nest stuff in
86    // namespace decls etc.  Even for C, we might want a top-level translation
87    // unit decl or something.
88    if (!CurFunctionDecl)
89      continue;
90
91    // Chain this decl to the containing function, it now owns the memory for
92    // the decl.
93    D->setNext(CurFunctionDecl->getDeclChain());
94    CurFunctionDecl->setDeclChain(D);
95  }
96}
97
98/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
99/// return 0 if one not found.
100ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
101  // The third "scope" argument is 0 since we aren't enabling lazy built-in
102  // creation from this context.
103  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
104
105  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
106}
107
108/// LookupDecl - Look up the inner-most declaration in the specified
109/// namespace.
110Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
111                       Scope *S, bool enableLazyBuiltinCreation) {
112  if (II == 0) return 0;
113  Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
114
115  // Scan up the scope chain looking for a decl that matches this identifier
116  // that is in the appropriate namespace.  This search should not take long, as
117  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
118  for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext())
119    if (D->getIdentifierNamespace() == NS)
120      return D;
121
122  // If we didn't find a use of this identifier, and if the identifier
123  // corresponds to a compiler builtin, create the decl object for the builtin
124  // now, injecting it into translation unit scope, and return it.
125  if (NS == Decl::IDNS_Ordinary) {
126    if (enableLazyBuiltinCreation) {
127      // If this is a builtin on this (or all) targets, create the decl.
128      if (unsigned BuiltinID = II->getBuiltinID())
129        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
130    }
131    if (getLangOptions().ObjC1) {
132      // @interface and @compatibility_alias introduce typedef-like names.
133      // Unlike typedef's, they can only be introduced at file-scope (and are
134      // therefore not scoped decls). They can, however, be shadowed by
135      // other names in IDNS_Ordinary.
136      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
137      if (IDI != ObjCInterfaceDecls.end())
138        return IDI->second;
139      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
140      if (I != ObjCAliasDecls.end())
141        return I->second->getClassInterface();
142    }
143  }
144  return 0;
145}
146
147void Sema::InitBuiltinVaListType()
148{
149  if (!Context.getBuiltinVaListType().isNull())
150    return;
151
152  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
153  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
154  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
155  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
156}
157
158/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
159/// lazily create a decl for it.
160ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
161                                      Scope *S) {
162  Builtin::ID BID = (Builtin::ID)bid;
163
164  if (BID == Builtin::BI__builtin_va_start ||
165       BID == Builtin::BI__builtin_va_copy ||
166       BID == Builtin::BI__builtin_va_end)
167    InitBuiltinVaListType();
168
169  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
170  FunctionDecl *New = FunctionDecl::Create(Context, CurContext,
171                                           SourceLocation(), II, R,
172                                           FunctionDecl::Extern, false, 0);
173
174  // Find translation-unit scope to insert this function into.
175  if (Scope *FnS = S->getFnParent())
176    S = FnS->getParent();   // Skip all scopes in a function at once.
177  while (S->getParent())
178    S = S->getParent();
179  S->AddDecl(New);
180
181  // Add this decl to the end of the identifier info.
182  if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) {
183    // Scan until we find the last (outermost) decl in the id chain.
184    while (LastDecl->getNext())
185      LastDecl = LastDecl->getNext();
186    // Insert before (outside) it.
187    LastDecl->setNext(New);
188  } else {
189    II->setFETokenInfo(New);
190  }
191  return New;
192}
193
194/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
195/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
196/// situation, merging decls or emitting diagnostics as appropriate.
197///
198TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
199  // Verify the old decl was also a typedef.
200  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
201  if (!Old) {
202    Diag(New->getLocation(), diag::err_redefinition_different_kind,
203         New->getName());
204    Diag(OldD->getLocation(), diag::err_previous_definition);
205    return New;
206  }
207
208  // Allow multiple definitions for ObjC built-in typedefs.
209  // FIXME: Verify the underlying types are equivalent!
210  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
211    return Old;
212
213  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
214  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
215  // *either* declaration is in a system header. The code below implements
216  // this adhoc compatibility rule. FIXME: The following code will not
217  // work properly when compiling ".i" files (containing preprocessed output).
218  SourceManager &SrcMgr = Context.getSourceManager();
219  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
220  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
221  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
222  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
223  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
224
225  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
226  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
227       NewDirType != DirectoryLookup::NormalHeaderDir) ||
228      getLangOptions().Microsoft)
229    return New;
230
231  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
232  // TODO: This is totally simplistic.  It should handle merging functions
233  // together etc, merging extern int X; int X; ...
234  Diag(New->getLocation(), diag::err_redefinition, New->getName());
235  Diag(Old->getLocation(), diag::err_previous_definition);
236  return New;
237}
238
239/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
240static bool DeclHasAttr(const Decl *decl, const Attr *target) {
241  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
242    if (attr->getKind() == target->getKind())
243      return true;
244
245  return false;
246}
247
248/// MergeAttributes - append attributes from the Old decl to the New one.
249static void MergeAttributes(Decl *New, Decl *Old) {
250  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
251
252// FIXME: fix this code to cleanup the Old attrs correctly
253  while (attr) {
254     tmp = attr;
255     attr = attr->getNext();
256
257    if (!DeclHasAttr(New, tmp)) {
258       New->addAttr(tmp);
259    } else {
260       tmp->setNext(0);
261       delete(tmp);
262    }
263  }
264}
265
266/// MergeFunctionDecl - We just parsed a function 'New' which has the same name
267/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
268/// situation, merging decls or emitting diagnostics as appropriate.
269///
270FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
271  // Verify the old decl was also a function.
272  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
273  if (!Old) {
274    Diag(New->getLocation(), diag::err_redefinition_different_kind,
275         New->getName());
276    Diag(OldD->getLocation(), diag::err_previous_definition);
277    return New;
278  }
279
280  MergeAttributes(New, Old);
281
282
283  QualType OldQType = Old->getCanonicalType();
284  QualType NewQType = New->getCanonicalType();
285
286  // Function types need to be compatible, not identical. This handles
287  // duplicate function decls like "void f(int); void f(enum X);" properly.
288  if (Context.functionTypesAreCompatible(OldQType, NewQType))
289    return New;
290
291  // A function that has already been declared has been redeclared or defined
292  // with a different type- show appropriate diagnostic
293  diag::kind PrevDiag = Old->getBody() ? diag::err_previous_definition :
294                                         diag::err_previous_declaration;
295
296  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
297  // TODO: This is totally simplistic.  It should handle merging functions
298  // together etc, merging extern int X; int X; ...
299  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
300  Diag(Old->getLocation(), PrevDiag);
301  return New;
302}
303
304/// equivalentArrayTypes - Used to determine whether two array types are
305/// equivalent.
306/// We need to check this explicitly as an incomplete array definition is
307/// considered a VariableArrayType, so will not match a complete array
308/// definition that would be otherwise equivalent.
309static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
310  const ArrayType *NewAT = NewQType->getAsArrayType();
311  const ArrayType *OldAT = OldQType->getAsArrayType();
312
313  if (!NewAT || !OldAT)
314    return false;
315
316  // If either (or both) array types in incomplete we need to strip off the
317  // outer VariableArrayType.  Once the outer VAT is removed the remaining
318  // types must be identical if the array types are to be considered
319  // equivalent.
320  // eg. int[][1] and int[1][1] become
321  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
322  // removing the outermost VAT gives
323  //     CAT(1, int) and CAT(1, int)
324  // which are equal, therefore the array types are equivalent.
325  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
326    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
327      return false;
328    NewQType = NewAT->getElementType().getCanonicalType();
329    OldQType = OldAT->getElementType().getCanonicalType();
330  }
331
332  return NewQType == OldQType;
333}
334
335/// MergeVarDecl - We just parsed a variable 'New' which has the same name
336/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
337/// situation, merging decls or emitting diagnostics as appropriate.
338///
339/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
340/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
341///
342VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
343  // Verify the old decl was also a variable.
344  VarDecl *Old = dyn_cast<VarDecl>(OldD);
345  if (!Old) {
346    Diag(New->getLocation(), diag::err_redefinition_different_kind,
347         New->getName());
348    Diag(OldD->getLocation(), diag::err_previous_definition);
349    return New;
350  }
351
352  MergeAttributes(New, Old);
353
354  // Verify the types match.
355  if (Old->getCanonicalType() != New->getCanonicalType() &&
356      !areEquivalentArrayTypes(New->getCanonicalType(), Old->getCanonicalType())) {
357    Diag(New->getLocation(), diag::err_redefinition, New->getName());
358    Diag(Old->getLocation(), diag::err_previous_definition);
359    return New;
360  }
361  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
362  if (New->getStorageClass() == VarDecl::Static &&
363      (Old->getStorageClass() == VarDecl::None ||
364       Old->getStorageClass() == VarDecl::Extern)) {
365    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
366    Diag(Old->getLocation(), diag::err_previous_definition);
367    return New;
368  }
369  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
370  if (New->getStorageClass() != VarDecl::Static &&
371      Old->getStorageClass() == VarDecl::Static) {
372    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
373    Diag(Old->getLocation(), diag::err_previous_definition);
374    return New;
375  }
376  // We've verified the types match, now handle "tentative" definitions.
377  FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old);
378  FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New);
379
380  if (OldFSDecl && NewFSDecl) {
381    // Handle C "tentative" external object definitions (C99 6.9.2).
382    bool OldIsTentative = false;
383    bool NewIsTentative = false;
384
385    if (!OldFSDecl->getInit() &&
386        (OldFSDecl->getStorageClass() == VarDecl::None ||
387         OldFSDecl->getStorageClass() == VarDecl::Static))
388      OldIsTentative = true;
389
390    // FIXME: this check doesn't work (since the initializer hasn't been
391    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
392    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
393    // thrown out the old decl.
394    if (!NewFSDecl->getInit() &&
395        (NewFSDecl->getStorageClass() == VarDecl::None ||
396         NewFSDecl->getStorageClass() == VarDecl::Static))
397      ; // change to NewIsTentative = true; once the code is moved.
398
399    if (NewIsTentative || OldIsTentative)
400      return New;
401  }
402  if (Old->getStorageClass() != VarDecl::Extern &&
403      New->getStorageClass() != VarDecl::Extern) {
404    Diag(New->getLocation(), diag::err_redefinition, New->getName());
405    Diag(Old->getLocation(), diag::err_previous_definition);
406  }
407  return New;
408}
409
410/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
411/// no declarator (e.g. "struct foo;") is parsed.
412Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
413  // TODO: emit error on 'int;' or 'const enum foo;'.
414  // TODO: emit error on 'typedef int;'
415  // if (!DS.isMissingDeclaratorOk()) Diag(...);
416
417  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
418}
419
420bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
421  // Get the type before calling CheckSingleAssignmentConstraints(), since
422  // it can promote the expression.
423  QualType InitType = Init->getType();
424
425  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
426  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
427                                  InitType, Init, "initializing");
428}
429
430bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
431                         QualType ElementType) {
432  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
433  if (CheckSingleInitializer(expr, ElementType))
434    return true; // types weren't compatible.
435
436  if (savExpr != expr) // The type was promoted, update initializer list.
437    IList->setInit(slot, expr);
438  return false;
439}
440
441bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
442  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
443    // C99 6.7.8p14. We have an array of character type with unknown size
444    // being initialized to a string literal.
445    llvm::APSInt ConstVal(32);
446    ConstVal = strLiteral->getByteLength() + 1;
447    // Return a new array type (C99 6.7.8p22).
448    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
449                                         ArrayType::Normal, 0);
450  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
451    // C99 6.7.8p14. We have an array of character type with known size.
452    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
453      Diag(strLiteral->getSourceRange().getBegin(),
454           diag::warn_initializer_string_for_char_array_too_long,
455           strLiteral->getSourceRange());
456  } else {
457    assert(0 && "HandleStringLiteralInit(): Invalid array type");
458  }
459  // Set type from "char *" to "constant array of char".
460  strLiteral->setType(DeclT);
461  // For now, we always return false (meaning success).
462  return false;
463}
464
465StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
466  const ArrayType *AT = DeclType->getAsArrayType();
467  if (AT && AT->getElementType()->isCharType()) {
468    return dyn_cast<StringLiteral>(Init);
469  }
470  return 0;
471}
472
473// CheckInitializerListTypes - Checks the types of elements of an initializer
474// list. This function is recursive: it calls itself to initialize subelements
475// of aggregate types.  Note that the topLevel parameter essentially refers to
476// whether this expression "owns" the initializer list passed in, or if this
477// initialization is taking elements out of a parent initializer.  Each
478// call to this function adds zero or more to startIndex, reports any errors,
479// and returns true if it found any inconsistent types.
480bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
481                                     bool topLevel, unsigned& startIndex) {
482  bool hadError = false;
483
484  if (DeclType->isScalarType()) {
485    // The simplest case: initializing a single scalar
486    if (topLevel) {
487      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
488           IList->getSourceRange());
489    }
490    if (startIndex < IList->getNumInits()) {
491      Expr* expr = IList->getInit(startIndex);
492      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
493        // FIXME: Should an error be reported here instead?
494        unsigned newIndex = 0;
495        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
496      } else {
497        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
498      }
499      ++startIndex;
500    }
501    // FIXME: Should an error be reported for empty initializer list + scalar?
502  } else if (DeclType->isVectorType()) {
503    if (startIndex < IList->getNumInits()) {
504      const VectorType *VT = DeclType->getAsVectorType();
505      int maxElements = VT->getNumElements();
506      QualType elementType = VT->getElementType();
507
508      for (int i = 0; i < maxElements; ++i) {
509        // Don't attempt to go past the end of the init list
510        if (startIndex >= IList->getNumInits())
511          break;
512        Expr* expr = IList->getInit(startIndex);
513        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
514          unsigned newIndex = 0;
515          hadError |= CheckInitializerListTypes(SubInitList, elementType,
516                                                true, newIndex);
517          ++startIndex;
518        } else {
519          hadError |= CheckInitializerListTypes(IList, elementType,
520                                                false, startIndex);
521        }
522      }
523    }
524  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
525    if (DeclType->isStructureType() || DeclType->isUnionType()) {
526      if (startIndex < IList->getNumInits() && !topLevel &&
527          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
528                                     DeclType)) {
529        // We found a compatible struct; per the standard, this initializes the
530        // struct.  (The C standard technically says that this only applies for
531        // initializers for declarations with automatic scope; however, this
532        // construct is unambiguous anyway because a struct cannot contain
533        // a type compatible with itself. We'll output an error when we check
534        // if the initializer is constant.)
535        // FIXME: Is a call to CheckSingleInitializer required here?
536        ++startIndex;
537      } else {
538        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
539
540        // If the record is invalid, some of it's members are invalid. To avoid
541        // confusion, we forgo checking the intializer for the entire record.
542        if (structDecl->isInvalidDecl())
543          return true;
544
545        // If structDecl is a forward declaration, this loop won't do anything;
546        // That's okay, because an error should get printed out elsewhere. It
547        // might be worthwhile to skip over the rest of the initializer, though.
548        int numMembers = structDecl->getNumMembers() -
549                         structDecl->hasFlexibleArrayMember();
550        for (int i = 0; i < numMembers; i++) {
551          // Don't attempt to go past the end of the init list
552          if (startIndex >= IList->getNumInits())
553            break;
554          FieldDecl * curField = structDecl->getMember(i);
555          if (!curField->getIdentifier()) {
556            // Don't initialize unnamed fields, e.g. "int : 20;"
557            continue;
558          }
559          QualType fieldType = curField->getType();
560          Expr* expr = IList->getInit(startIndex);
561          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
562            unsigned newStart = 0;
563            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
564                                                  true, newStart);
565            ++startIndex;
566          } else {
567            hadError |= CheckInitializerListTypes(IList, fieldType,
568                                                  false, startIndex);
569          }
570          if (DeclType->isUnionType())
571            break;
572        }
573        // FIXME: Implement flexible array initialization GCC extension (it's a
574        // really messy extension to implement, unfortunately...the necessary
575        // information isn't actually even here!)
576      }
577    } else if (DeclType->isArrayType()) {
578      // Check for the special-case of initializing an array with a string.
579      if (startIndex < IList->getNumInits()) {
580        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
581                                                     DeclType)) {
582          CheckStringLiteralInit(lit, DeclType);
583          ++startIndex;
584          if (topLevel && startIndex < IList->getNumInits()) {
585            // We have leftover initializers; warn
586            Diag(IList->getInit(startIndex)->getLocStart(),
587                 diag::err_excess_initializers_in_char_array_initializer,
588                 IList->getInit(startIndex)->getSourceRange());
589          }
590          return false;
591        }
592      }
593      int maxElements;
594      if (DeclType->isIncompleteArrayType()) {
595        // FIXME: use a proper constant
596        maxElements = 0x7FFFFFFF;
597      } else if (const VariableArrayType *VAT =
598                                DeclType->getAsVariableArrayType()) {
599        // Check for VLAs; in standard C it would be possible to check this
600        // earlier, but I don't know where clang accepts VLAs (gcc accepts
601        // them in all sorts of strange places).
602        Diag(VAT->getSizeExpr()->getLocStart(),
603             diag::err_variable_object_no_init,
604             VAT->getSizeExpr()->getSourceRange());
605        hadError = true;
606        maxElements = 0x7FFFFFFF;
607      } else {
608        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
609        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
610      }
611      QualType elementType = DeclType->getAsArrayType()->getElementType();
612      int numElements = 0;
613      for (int i = 0; i < maxElements; ++i, ++numElements) {
614        // Don't attempt to go past the end of the init list
615        if (startIndex >= IList->getNumInits())
616          break;
617        Expr* expr = IList->getInit(startIndex);
618        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
619          unsigned newIndex = 0;
620          hadError |= CheckInitializerListTypes(SubInitList, elementType,
621                                                true, newIndex);
622          ++startIndex;
623        } else {
624          hadError |= CheckInitializerListTypes(IList, elementType,
625                                                false, startIndex);
626        }
627      }
628      if (DeclType->isIncompleteArrayType()) {
629        // If this is an incomplete array type, the actual type needs to
630        // be calculated here
631        if (numElements == 0) {
632          // Sizing an array implicitly to zero is not allowed
633          // (It could in theory be allowed, but it doesn't really matter.)
634          Diag(IList->getLocStart(),
635               diag::err_at_least_one_initializer_needed_to_size_array);
636          hadError = true;
637        } else {
638          llvm::APSInt ConstVal(32);
639          ConstVal = numElements;
640          DeclType = Context.getConstantArrayType(elementType, ConstVal,
641                                                  ArrayType::Normal, 0);
642        }
643      }
644    } else {
645      assert(0 && "Aggregate that isn't a function or array?!");
646    }
647  } else {
648    // In C, all types are either scalars or aggregates, but
649    // additional handling is needed here for C++ (and possibly others?).
650    assert(0 && "Unsupported initializer type");
651  }
652
653  // If this init list is a base list, we set the type; an initializer doesn't
654  // fundamentally have a type, but this makes the ASTs a bit easier to read
655  if (topLevel)
656    IList->setType(DeclType);
657
658  if (topLevel && startIndex < IList->getNumInits()) {
659    // We have leftover initializers; warn
660    Diag(IList->getInit(startIndex)->getLocStart(),
661         diag::warn_excess_initializers,
662         IList->getInit(startIndex)->getSourceRange());
663  }
664  return hadError;
665}
666
667bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
668  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
669  // of unknown size ("[]") or an object type that is not a variable array type.
670  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
671    return Diag(VAT->getSizeExpr()->getLocStart(),
672                diag::err_variable_object_no_init,
673                VAT->getSizeExpr()->getSourceRange());
674
675  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
676  if (!InitList) {
677    // FIXME: Handle wide strings
678    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
679      return CheckStringLiteralInit(strLiteral, DeclType);
680
681    if (DeclType->isArrayType())
682      return Diag(Init->getLocStart(),
683                  diag::err_array_init_list_required,
684                  Init->getSourceRange());
685
686    return CheckSingleInitializer(Init, DeclType);
687  }
688  unsigned newIndex = 0;
689  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
690}
691
692Sema::DeclTy *
693Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
694  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
695  IdentifierInfo *II = D.getIdentifier();
696
697  // All of these full declarators require an identifier.  If it doesn't have
698  // one, the ParsedFreeStandingDeclSpec action should be used.
699  if (II == 0) {
700    Diag(D.getDeclSpec().getSourceRange().getBegin(),
701         diag::err_declarator_need_ident,
702         D.getDeclSpec().getSourceRange(), D.getSourceRange());
703    return 0;
704  }
705
706  // The scope passed in may not be a decl scope.  Zip up the scope tree until
707  // we find one that is.
708  while ((S->getFlags() & Scope::DeclScope) == 0)
709    S = S->getParent();
710
711  // See if this is a redefinition of a variable in the same scope.
712  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
713  ScopedDecl *New;
714  bool InvalidDecl = false;
715
716  QualType R = GetTypeForDeclarator(D, S);
717  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
718
719  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
720    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
721    if (!NewTD) return 0;
722
723    // Handle attributes prior to checking for duplicates in MergeVarDecl
724    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
725                         D.getAttributes());
726    // Merge the decl with the existing one if appropriate. If the decl is
727    // in an outer scope, it isn't the same thing.
728    if (PrevDecl && S->isDeclScope(PrevDecl)) {
729      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
730      if (NewTD == 0) return 0;
731    }
732    New = NewTD;
733    if (S->getParent() == 0) {
734      // C99 6.7.7p2: If a typedef name specifies a variably modified type
735      // then it shall have block scope.
736      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
737        // FIXME: Diagnostic needs to be fixed.
738        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
739        InvalidDecl = true;
740      }
741    }
742  } else if (R.getTypePtr()->isFunctionType()) {
743    FunctionDecl::StorageClass SC = FunctionDecl::None;
744    switch (D.getDeclSpec().getStorageClassSpec()) {
745      default: assert(0 && "Unknown storage class!");
746      case DeclSpec::SCS_auto:
747      case DeclSpec::SCS_register:
748        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
749             R.getAsString());
750        InvalidDecl = true;
751        break;
752      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
753      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
754      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
755      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
756    }
757
758    bool isInline = D.getDeclSpec().isInlineSpecified();
759    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
760                                               D.getIdentifierLoc(),
761                                               II, R, SC, isInline,
762                                               LastDeclarator);
763    // Handle attributes.
764    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
765                         D.getAttributes());
766
767    // Merge the decl with the existing one if appropriate. Since C functions
768    // are in a flat namespace, make sure we consider decls in outer scopes.
769    if (PrevDecl) {
770      NewFD = MergeFunctionDecl(NewFD, PrevDecl);
771      if (NewFD == 0) return 0;
772    }
773    New = NewFD;
774  } else {
775    if (R.getTypePtr()->isObjCInterfaceType()) {
776      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
777           D.getIdentifier()->getName());
778      InvalidDecl = true;
779    }
780
781    VarDecl *NewVD;
782    VarDecl::StorageClass SC;
783    switch (D.getDeclSpec().getStorageClassSpec()) {
784    default: assert(0 && "Unknown storage class!");
785    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
786    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
787    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
788    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
789    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
790    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
791    }
792    if (S->getParent() == 0) {
793      // C99 6.9p2: The storage-class specifiers auto and register shall not
794      // appear in the declaration specifiers in an external declaration.
795      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
796        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
797             R.getAsString());
798        InvalidDecl = true;
799      }
800      NewVD = FileVarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
801                                  II, R, SC,
802                                  LastDeclarator);
803    } else {
804      NewVD = BlockVarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
805                                   II, R, SC,
806                                   LastDeclarator);
807    }
808    // Handle attributes prior to checking for duplicates in MergeVarDecl
809    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
810                         D.getAttributes());
811
812    // Emit an error if an address space was applied to decl with local storage.
813    // This includes arrays of objects with address space qualifiers, but not
814    // automatic variables that point to other address spaces.
815    // ISO/IEC TR 18037 S5.1.2
816    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
817      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
818      InvalidDecl = true;
819    }
820    // Merge the decl with the existing one if appropriate. If the decl is
821    // in an outer scope, it isn't the same thing.
822    if (PrevDecl && S->isDeclScope(PrevDecl)) {
823      NewVD = MergeVarDecl(NewVD, PrevDecl);
824      if (NewVD == 0) return 0;
825    }
826    New = NewVD;
827  }
828
829  // If this has an identifier, add it to the scope stack.
830  if (II) {
831    New->setNext(II->getFETokenInfo<ScopedDecl>());
832    II->setFETokenInfo(New);
833    S->AddDecl(New);
834  }
835  // If any semantic error occurred, mark the decl as invalid.
836  if (D.getInvalidType() || InvalidDecl)
837    New->setInvalidDecl();
838
839  return New;
840}
841
842bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
843  SourceLocation loc;
844  // FIXME: Remove the isReference check and handle assignment to a reference.
845  if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
846    assert(loc.isValid() && "isConstantExpr didn't return a loc!");
847    Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
848    return true;
849  }
850  return false;
851}
852
853void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
854  Decl *RealDecl = static_cast<Decl *>(dcl);
855  Expr *Init = static_cast<Expr *>(init);
856  assert(Init && "missing initializer");
857
858  // If there is no declaration, there was an error parsing it.  Just ignore
859  // the initializer.
860  if (RealDecl == 0) {
861    delete Init;
862    return;
863  }
864
865  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
866  if (!VDecl) {
867    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
868         diag::err_illegal_initializer);
869    RealDecl->setInvalidDecl();
870    return;
871  }
872  // Get the decls type and save a reference for later, since
873  // CheckInitializerTypes may change it.
874  QualType DclT = VDecl->getType(), SavT = DclT;
875  if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) {
876    VarDecl::StorageClass SC = BVD->getStorageClass();
877    if (SC == VarDecl::Extern) { // C99 6.7.8p5
878      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
879      BVD->setInvalidDecl();
880    } else if (!BVD->isInvalidDecl()) {
881      if (CheckInitializerTypes(Init, DclT))
882        BVD->setInvalidDecl();
883      if (SC == VarDecl::Static) // C99 6.7.8p4.
884        CheckForConstantInitializer(Init, DclT);
885    }
886  } else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) {
887    if (FVD->getStorageClass() == VarDecl::Extern)
888      Diag(VDecl->getLocation(), diag::warn_extern_init);
889    if (!FVD->isInvalidDecl())
890      if (CheckInitializerTypes(Init, DclT))
891        FVD->setInvalidDecl();
892
893    // C99 6.7.8p4. All file scoped initializers need to be constant.
894    CheckForConstantInitializer(Init, DclT);
895  }
896  // If the type changed, it means we had an incomplete type that was
897  // completed by the initializer. For example:
898  //   int ary[] = { 1, 3, 5 };
899  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
900  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
901    VDecl->setType(DclT);
902    Init->setType(DclT);
903  }
904
905  // Attach the initializer to the decl.
906  VDecl->setInit(Init);
907  return;
908}
909
910/// The declarators are chained together backwards, reverse the list.
911Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
912  // Often we have single declarators, handle them quickly.
913  Decl *GroupDecl = static_cast<Decl*>(group);
914  if (GroupDecl == 0)
915    return 0;
916
917  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
918  ScopedDecl *NewGroup = 0;
919  if (Group->getNextDeclarator() == 0)
920    NewGroup = Group;
921  else { // reverse the list.
922    while (Group) {
923      ScopedDecl *Next = Group->getNextDeclarator();
924      Group->setNextDeclarator(NewGroup);
925      NewGroup = Group;
926      Group = Next;
927    }
928  }
929  // Perform semantic analysis that depends on having fully processed both
930  // the declarator and initializer.
931  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
932    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
933    if (!IDecl)
934      continue;
935    FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl);
936    BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl);
937    QualType T = IDecl->getType();
938
939    // C99 6.7.5.2p2: If an identifier is declared to be an object with
940    // static storage duration, it shall not have a variable length array.
941    if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) {
942      if (T->getAsVariableArrayType()) {
943        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
944        IDecl->setInvalidDecl();
945      }
946    }
947    // Block scope. C99 6.7p7: If an identifier for an object is declared with
948    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
949    if (BVD && IDecl->getStorageClass() != VarDecl::Extern) {
950      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
951        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
952             T.getAsString());
953        IDecl->setInvalidDecl();
954      }
955    }
956    // File scope. C99 6.9.2p2: A declaration of an identifier for and
957    // object that has file scope without an initializer, and without a
958    // storage-class specifier or with the storage-class specifier "static",
959    // constitutes a tentative definition. Note: A tentative definition with
960    // external linkage is valid (C99 6.2.2p5).
961    if (FVD && !FVD->getInit() && (FVD->getStorageClass() == VarDecl::Static ||
962                                   FVD->getStorageClass() == VarDecl::None)) {
963      if (T->isIncompleteArrayType()) {
964        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
965        // array to be completed. Don't issue a diagnostic.
966      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
967        // C99 6.9.2p3: If the declaration of an identifier for an object is
968        // a tentative definition and has internal linkage (C99 6.2.2p3), the
969        // declared type shall not be an incomplete type.
970        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
971             T.getAsString());
972        IDecl->setInvalidDecl();
973      }
974    }
975  }
976  return NewGroup;
977}
978
979// Called from Sema::ParseStartOfFunctionDef().
980ParmVarDecl *
981Sema::ActOnParamDeclarator(struct DeclaratorChunk::ParamInfo &PI,
982                           Scope *FnScope) {
983  IdentifierInfo *II = PI.Ident;
984  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
985  // Can this happen for params?  We already checked that they don't conflict
986  // among each other.  Here they can only shadow globals, which is ok.
987  if (/*Decl *PrevDecl = */LookupDecl(II, Decl::IDNS_Ordinary, FnScope)) {
988
989  }
990
991  // FIXME: Handle storage class (auto, register). No declarator?
992  // TODO: Chain to previous parameter with the prevdeclarator chain?
993
994  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
995  // Doing the promotion here has a win and a loss. The win is the type for
996  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
997  // code generator). The loss is the orginal type isn't preserved. For example:
998  //
999  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1000  //    int blockvardecl[5];
1001  //    sizeof(parmvardecl);  // size == 4
1002  //    sizeof(blockvardecl); // size == 20
1003  // }
1004  //
1005  // For expressions, all implicit conversions are captured using the
1006  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1007  //
1008  // FIXME: If a source translation tool needs to see the original type, then
1009  // we need to consider storing both types (in ParmVarDecl)...
1010  //
1011  QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo);
1012  if (parmDeclType->isArrayType()) {
1013    // int x[restrict 4] ->  int *restrict
1014    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1015  } else if (parmDeclType->isFunctionType())
1016    parmDeclType = Context.getPointerType(parmDeclType);
1017
1018  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, PI.IdentLoc, II,
1019                                         parmDeclType,
1020                                         VarDecl::None, 0);
1021
1022  if (PI.InvalidType)
1023    New->setInvalidDecl();
1024
1025  // If this has an identifier, add it to the scope stack.
1026  if (II) {
1027    New->setNext(II->getFETokenInfo<ScopedDecl>());
1028    II->setFETokenInfo(New);
1029    FnScope->AddDecl(New);
1030  }
1031
1032  HandleDeclAttributes(New, PI.AttrList, 0);
1033  return New;
1034}
1035
1036Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1037  assert(CurFunctionDecl == 0 && "Function parsing confused");
1038  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1039         "Not a function declarator!");
1040  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1041
1042  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1043  // for a K&R function.
1044  if (!FTI.hasPrototype) {
1045    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1046      if (FTI.ArgInfo[i].TypeInfo == 0) {
1047        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1048             FTI.ArgInfo[i].Ident->getName());
1049        // Implicitly declare the argument as type 'int' for lack of a better
1050        // type.
1051        FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
1052      }
1053    }
1054
1055    // Since this is a function definition, act as though we have information
1056    // about the arguments.
1057    if (FTI.NumArgs)
1058      FTI.hasPrototype = true;
1059  } else {
1060    // FIXME: Diagnose arguments without names in C.
1061
1062  }
1063
1064  Scope *GlobalScope = FnBodyScope->getParent();
1065
1066  // See if this is a redefinition.
1067  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1068                             GlobalScope);
1069  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) {
1070    if (FD->getBody()) {
1071      Diag(D.getIdentifierLoc(), diag::err_redefinition,
1072           D.getIdentifier()->getName());
1073      Diag(FD->getLocation(), diag::err_previous_definition);
1074    }
1075  }
1076  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1077  FunctionDecl *FD = cast<FunctionDecl>(decl);
1078  CurFunctionDecl = FD;
1079  PushContextDecl(FD);
1080
1081  // Create Decl objects for each parameter, adding them to the FunctionDecl.
1082  llvm::SmallVector<ParmVarDecl*, 16> Params;
1083
1084  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
1085  // no arguments, not a function that takes a single void argument.
1086  if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1087      !QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo).getCVRQualifiers() &&
1088      QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo)->isVoidType()) {
1089    // empty arg list, don't push any params.
1090  } else {
1091    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1092      ParmVarDecl *parmDecl;
1093
1094      parmDecl = ActOnParamDeclarator(D.getTypeObject(0).Fun.ArgInfo[i],
1095                                      FnBodyScope);
1096      // C99 6.7.5.3p4: the parameters in a parameter type list in a function
1097      // declarator that is part of a function definition of that function
1098      // shall not have incomplete type.
1099      if (parmDecl->getType()->isIncompleteType() &&
1100          !parmDecl->isInvalidDecl()) {
1101        Diag(parmDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1102             parmDecl->getType().getAsString());
1103        parmDecl->setInvalidDecl();
1104      }
1105      Params.push_back(parmDecl);
1106    }
1107  }
1108
1109  FD->setParams(&Params[0], Params.size());
1110
1111  return FD;
1112}
1113
1114Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1115  Decl *dcl = static_cast<Decl *>(D);
1116  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1117    FD->setBody((Stmt*)Body);
1118    assert(FD == CurFunctionDecl && "Function parsing confused");
1119    CurFunctionDecl = 0;
1120  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1121    MD->setBody((Stmt*)Body);
1122    CurMethodDecl = 0;
1123  }
1124  PopContextDecl();
1125  // Verify and clean out per-function state.
1126
1127  // Check goto/label use.
1128  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1129       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1130    // Verify that we have no forward references left.  If so, there was a goto
1131    // or address of a label taken, but no definition of it.  Label fwd
1132    // definitions are indicated with a null substmt.
1133    if (I->second->getSubStmt() == 0) {
1134      LabelStmt *L = I->second;
1135      // Emit error.
1136      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1137
1138      // At this point, we have gotos that use the bogus label.  Stitch it into
1139      // the function body so that they aren't leaked and that the AST is well
1140      // formed.
1141      if (Body) {
1142        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1143        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1144      } else {
1145        // The whole function wasn't parsed correctly, just delete this.
1146        delete L;
1147      }
1148    }
1149  }
1150  LabelMap.clear();
1151
1152  return D;
1153}
1154
1155/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1156/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1157ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1158                                           IdentifierInfo &II, Scope *S) {
1159  if (getLangOptions().C99)  // Extension in C99.
1160    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1161  else  // Legal in C90, but warn about it.
1162    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1163
1164  // FIXME: handle stuff like:
1165  // void foo() { extern float X(); }
1166  // void bar() { X(); }  <-- implicit decl for X in another scope.
1167
1168  // Set a Declarator for the implicit definition: int foo();
1169  const char *Dummy;
1170  DeclSpec DS;
1171  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1172  Error = Error; // Silence warning.
1173  assert(!Error && "Error setting up implicit decl!");
1174  Declarator D(DS, Declarator::BlockContext);
1175  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1176  D.SetIdentifier(&II, Loc);
1177
1178  // Find translation-unit scope to insert this function into.
1179  if (Scope *FnS = S->getFnParent())
1180    S = FnS->getParent();   // Skip all scopes in a function at once.
1181  while (S->getParent())
1182    S = S->getParent();
1183
1184  return dyn_cast<ScopedDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0)));
1185}
1186
1187
1188TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1189                                    ScopedDecl *LastDeclarator) {
1190  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1191  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1192
1193  // Scope manipulation handled by caller.
1194  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1195                                           D.getIdentifierLoc(),
1196                                           D.getIdentifier(),
1197                                           T, LastDeclarator);
1198  if (D.getInvalidType())
1199    NewTD->setInvalidDecl();
1200  return NewTD;
1201}
1202
1203/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1204/// former case, Name will be non-null.  In the later case, Name will be null.
1205/// TagType indicates what kind of tag this is. TK indicates whether this is a
1206/// reference/declaration/definition of a tag.
1207Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1208                             SourceLocation KWLoc, IdentifierInfo *Name,
1209                             SourceLocation NameLoc, AttributeList *Attr) {
1210  // If this is a use of an existing tag, it must have a name.
1211  assert((Name != 0 || TK == TK_Definition) &&
1212         "Nameless record must be a definition!");
1213
1214  Decl::Kind Kind;
1215  switch (TagType) {
1216  default: assert(0 && "Unknown tag type!");
1217  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1218  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1219//case DeclSpec::TST_class:  Kind = Decl::Class; break;
1220  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1221  }
1222
1223  // If this is a named struct, check to see if there was a previous forward
1224  // declaration or definition.
1225  if (TagDecl *PrevDecl =
1226          dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1227
1228    // If this is a use of a previous tag, or if the tag is already declared in
1229    // the same scope (so that the definition/declaration completes or
1230    // rementions the tag), reuse the decl.
1231    if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
1232      // Make sure that this wasn't declared as an enum and now used as a struct
1233      // or something similar.
1234      if (PrevDecl->getKind() != Kind) {
1235        Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1236        Diag(PrevDecl->getLocation(), diag::err_previous_use);
1237      }
1238
1239      // If this is a use or a forward declaration, we're good.
1240      if (TK != TK_Definition)
1241        return PrevDecl;
1242
1243      // Diagnose attempts to redefine a tag.
1244      if (PrevDecl->isDefinition()) {
1245        Diag(NameLoc, diag::err_redefinition, Name->getName());
1246        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1247        // If this is a redefinition, recover by making this struct be
1248        // anonymous, which will make any later references get the previous
1249        // definition.
1250        Name = 0;
1251      } else {
1252        // Okay, this is definition of a previously declared or referenced tag.
1253        // Move the location of the decl to be the definition site.
1254        PrevDecl->setLocation(NameLoc);
1255        return PrevDecl;
1256      }
1257    }
1258    // If we get here, this is a definition of a new struct type in a nested
1259    // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1260    // type.
1261  }
1262
1263  // If there is an identifier, use the location of the identifier as the
1264  // location of the decl, otherwise use the location of the struct/union
1265  // keyword.
1266  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1267
1268  // Otherwise, if this is the first time we've seen this tag, create the decl.
1269  TagDecl *New;
1270  switch (Kind) {
1271  default: assert(0 && "Unknown tag kind!");
1272  case Decl::Enum:
1273    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1274    // enum X { A, B, C } D;    D should chain to X.
1275    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1276    // If this is an undefined enum, warn.
1277    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1278    break;
1279  case Decl::Union:
1280  case Decl::Struct:
1281  case Decl::Class:
1282    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1283    // struct X { int A; } D;    D should chain to X.
1284    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1285    break;
1286  }
1287
1288  // If this has an identifier, add it to the scope stack.
1289  if (Name) {
1290    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1291    // we find one that is.
1292    while ((S->getFlags() & Scope::DeclScope) == 0)
1293      S = S->getParent();
1294
1295    // Add it to the decl chain.
1296    New->setNext(Name->getFETokenInfo<ScopedDecl>());
1297    Name->setFETokenInfo(New);
1298    S->AddDecl(New);
1299  }
1300
1301  HandleDeclAttributes(New, Attr, 0);
1302  return New;
1303}
1304
1305/// ActOnField - Each field of a struct/union/class is passed into this in order
1306/// to create a FieldDecl object for it.
1307Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *tagDecl,
1308                               SourceLocation DeclStart,
1309                               Declarator &D, ExprTy *BitfieldWidth) {
1310  IdentifierInfo *II = D.getIdentifier();
1311  Expr *BitWidth = (Expr*)BitfieldWidth;
1312  Decl *TagDecl = static_cast<Decl *>(tagDecl);
1313  SourceLocation Loc = DeclStart;
1314  if (II) Loc = D.getIdentifierLoc();
1315
1316  // FIXME: Unnamed fields can be handled in various different ways, for
1317  // example, unnamed unions inject all members into the struct namespace!
1318
1319
1320  if (BitWidth) {
1321    // TODO: Validate.
1322    //printf("WARNING: BITFIELDS IGNORED!\n");
1323
1324    // 6.7.2.1p3
1325    // 6.7.2.1p4
1326
1327  } else {
1328    // Not a bitfield.
1329
1330    // validate II.
1331
1332  }
1333
1334  QualType T = GetTypeForDeclarator(D, S);
1335  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1336  bool InvalidDecl = false;
1337
1338  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1339  // than a variably modified type.
1340  if (T->isVariablyModifiedType()) {
1341    // FIXME: This diagnostic needs work
1342    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1343    InvalidDecl = true;
1344  }
1345  // FIXME: Chain fielddecls together.
1346  FieldDecl *NewFD;
1347
1348  if (RecordDecl *RD = dyn_cast<RecordDecl>(TagDecl))
1349    NewFD = FieldDecl::Create(Context, RD, Loc, II, T, BitWidth);
1350  else if (isa<ObjCInterfaceDecl>(TagDecl) ||
1351           isa<ObjCImplementationDecl>(TagDecl) ||
1352           isa<ObjCCategoryDecl>(TagDecl) ||
1353           // FIXME: ivars are currently used to model properties, and
1354           // properties can appear within a protocol.
1355           // See corresponding FIXME in DeclObjC.h:ObjCPropertyDecl.
1356           isa<ObjCProtocolDecl>(TagDecl))
1357    NewFD = ObjCIvarDecl::Create(Context, dyn_cast<ObjCInterfaceDecl>(TagDecl), Loc, II, T);
1358  else
1359    assert(0 && "Sema::ActOnField(): Unknown TagDecl");
1360
1361  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1362                       D.getAttributes());
1363
1364  if (D.getInvalidType() || InvalidDecl)
1365    NewFD->setInvalidDecl();
1366  return NewFD;
1367}
1368
1369/// TranslateIvarVisibility - Translate visibility from a token ID to an
1370///  AST enum value.
1371static ObjCIvarDecl::AccessControl
1372TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1373  switch (ivarVisibility) {
1374    case tok::objc_private: return ObjCIvarDecl::Private;
1375    case tok::objc_public: return ObjCIvarDecl::Public;
1376    case tok::objc_protected: return ObjCIvarDecl::Protected;
1377    case tok::objc_package: return ObjCIvarDecl::Package;
1378    default: assert(false && "Unknown visitibility kind");
1379  }
1380}
1381
1382void Sema::ActOnFields(Scope* S,
1383                       SourceLocation RecLoc, DeclTy *RecDecl,
1384                       DeclTy **Fields, unsigned NumFields,
1385                       SourceLocation LBrac, SourceLocation RBrac,
1386                       tok::ObjCKeywordKind *visibility) {
1387  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1388  assert(EnclosingDecl && "missing record or interface decl");
1389  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1390
1391  if (Record && Record->isDefinition()) {
1392    // Diagnose code like:
1393    //     struct S { struct S {} X; };
1394    // We discover this when we complete the outer S.  Reject and ignore the
1395    // outer S.
1396    Diag(Record->getLocation(), diag::err_nested_redefinition,
1397         Record->getKindName());
1398    Diag(RecLoc, diag::err_previous_definition);
1399    Record->setInvalidDecl();
1400    return;
1401  }
1402  // Verify that all the fields are okay.
1403  unsigned NumNamedMembers = 0;
1404  llvm::SmallVector<FieldDecl*, 32> RecFields;
1405  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1406
1407  for (unsigned i = 0; i != NumFields; ++i) {
1408
1409    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1410    assert(FD && "missing field decl");
1411
1412    // Remember all fields.
1413    RecFields.push_back(FD);
1414
1415    // Get the type for the field.
1416    Type *FDTy = FD->getType().getTypePtr();
1417
1418    // If we have visibility info, make sure the AST is set accordingly.
1419    if (visibility)
1420      cast<ObjCIvarDecl>(FD)->setAccessControl(
1421                                TranslateIvarVisibility(visibility[i]));
1422
1423    // C99 6.7.2.1p2 - A field may not be a function type.
1424    if (FDTy->isFunctionType()) {
1425      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1426           FD->getName());
1427      FD->setInvalidDecl();
1428      EnclosingDecl->setInvalidDecl();
1429      continue;
1430    }
1431    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1432    if (FDTy->isIncompleteType()) {
1433      if (!Record) {  // Incomplete ivar type is always an error.
1434        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1435        FD->setInvalidDecl();
1436        EnclosingDecl->setInvalidDecl();
1437        continue;
1438      }
1439      if (i != NumFields-1 ||                   // ... that the last member ...
1440          Record->getKind() != Decl::Struct ||  // ... of a structure ...
1441          !FDTy->isArrayType()) {         //... may have incomplete array type.
1442        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1443        FD->setInvalidDecl();
1444        EnclosingDecl->setInvalidDecl();
1445        continue;
1446      }
1447      if (NumNamedMembers < 1) {  //... must have more than named member ...
1448        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
1449             FD->getName());
1450        FD->setInvalidDecl();
1451        EnclosingDecl->setInvalidDecl();
1452        continue;
1453      }
1454      // Okay, we have a legal flexible array member at the end of the struct.
1455      if (Record)
1456        Record->setHasFlexibleArrayMember(true);
1457    }
1458    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
1459    /// field of another structure or the element of an array.
1460    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
1461      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
1462        // If this is a member of a union, then entire union becomes "flexible".
1463        if (Record && Record->getKind() == Decl::Union) {
1464          Record->setHasFlexibleArrayMember(true);
1465        } else {
1466          // If this is a struct/class and this is not the last element, reject
1467          // it.  Note that GCC supports variable sized arrays in the middle of
1468          // structures.
1469          if (i != NumFields-1) {
1470            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
1471                 FD->getName());
1472            FD->setInvalidDecl();
1473            EnclosingDecl->setInvalidDecl();
1474            continue;
1475          }
1476          // We support flexible arrays at the end of structs in other structs
1477          // as an extension.
1478          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
1479               FD->getName());
1480          if (Record)
1481            Record->setHasFlexibleArrayMember(true);
1482        }
1483      }
1484    }
1485    /// A field cannot be an Objective-c object
1486    if (FDTy->isObjCInterfaceType()) {
1487      Diag(FD->getLocation(), diag::err_statically_allocated_object,
1488           FD->getName());
1489      FD->setInvalidDecl();
1490      EnclosingDecl->setInvalidDecl();
1491      continue;
1492    }
1493    // Keep track of the number of named members.
1494    if (IdentifierInfo *II = FD->getIdentifier()) {
1495      // Detect duplicate member names.
1496      if (!FieldIDs.insert(II)) {
1497        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
1498        // Find the previous decl.
1499        SourceLocation PrevLoc;
1500        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
1501          assert(i != e && "Didn't find previous def!");
1502          if (RecFields[i]->getIdentifier() == II) {
1503            PrevLoc = RecFields[i]->getLocation();
1504            break;
1505          }
1506        }
1507        Diag(PrevLoc, diag::err_previous_definition);
1508        FD->setInvalidDecl();
1509        EnclosingDecl->setInvalidDecl();
1510        continue;
1511      }
1512      ++NumNamedMembers;
1513    }
1514  }
1515
1516  // Okay, we successfully defined 'Record'.
1517  if (Record) {
1518    Record->defineBody(&RecFields[0], RecFields.size());
1519    Consumer.HandleTagDeclDefinition(Record);
1520  } else {
1521    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
1522    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
1523      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
1524    else if (ObjCImplementationDecl *IMPDecl =
1525               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
1526      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
1527      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
1528      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
1529    }
1530  }
1531}
1532
1533Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
1534                                      DeclTy *lastEnumConst,
1535                                      SourceLocation IdLoc, IdentifierInfo *Id,
1536                                      SourceLocation EqualLoc, ExprTy *val) {
1537  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
1538  EnumConstantDecl *LastEnumConst =
1539    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
1540  Expr *Val = static_cast<Expr*>(val);
1541
1542  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1543  // we find one that is.
1544  while ((S->getFlags() & Scope::DeclScope) == 0)
1545    S = S->getParent();
1546
1547  // Verify that there isn't already something declared with this name in this
1548  // scope.
1549  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
1550    if (S->isDeclScope(PrevDecl)) {
1551      if (isa<EnumConstantDecl>(PrevDecl))
1552        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
1553      else
1554        Diag(IdLoc, diag::err_redefinition, Id->getName());
1555      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1556      delete Val;
1557      return 0;
1558    }
1559  }
1560
1561  llvm::APSInt EnumVal(32);
1562  QualType EltTy;
1563  if (Val) {
1564    // Make sure to promote the operand type to int.
1565    UsualUnaryConversions(Val);
1566
1567    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
1568    SourceLocation ExpLoc;
1569    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
1570      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
1571           Id->getName());
1572      delete Val;
1573      Val = 0;  // Just forget about it.
1574    } else {
1575      EltTy = Val->getType();
1576    }
1577  }
1578
1579  if (!Val) {
1580    if (LastEnumConst) {
1581      // Assign the last value + 1.
1582      EnumVal = LastEnumConst->getInitVal();
1583      ++EnumVal;
1584
1585      // Check for overflow on increment.
1586      if (EnumVal < LastEnumConst->getInitVal())
1587        Diag(IdLoc, diag::warn_enum_value_overflow);
1588
1589      EltTy = LastEnumConst->getType();
1590    } else {
1591      // First value, set to zero.
1592      EltTy = Context.IntTy;
1593      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
1594    }
1595  }
1596
1597  EnumConstantDecl *New =
1598    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
1599                             Val, EnumVal,
1600                             LastEnumConst);
1601
1602  // Register this decl in the current scope stack.
1603  New->setNext(Id->getFETokenInfo<ScopedDecl>());
1604  Id->setFETokenInfo(New);
1605  S->AddDecl(New);
1606  return New;
1607}
1608
1609void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
1610                         DeclTy **Elements, unsigned NumElements) {
1611  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
1612  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
1613
1614  // TODO: If the result value doesn't fit in an int, it must be a long or long
1615  // long value.  ISO C does not support this, but GCC does as an extension,
1616  // emit a warning.
1617  unsigned IntWidth = Context.Target.getIntWidth();
1618
1619  // Verify that all the values are okay, compute the size of the values, and
1620  // reverse the list.
1621  unsigned NumNegativeBits = 0;
1622  unsigned NumPositiveBits = 0;
1623
1624  // Keep track of whether all elements have type int.
1625  bool AllElementsInt = true;
1626
1627  EnumConstantDecl *EltList = 0;
1628  for (unsigned i = 0; i != NumElements; ++i) {
1629    EnumConstantDecl *ECD =
1630      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1631    if (!ECD) continue;  // Already issued a diagnostic.
1632
1633    // If the enum value doesn't fit in an int, emit an extension warning.
1634    const llvm::APSInt &InitVal = ECD->getInitVal();
1635    assert(InitVal.getBitWidth() >= IntWidth &&
1636           "Should have promoted value to int");
1637    if (InitVal.getBitWidth() > IntWidth) {
1638      llvm::APSInt V(InitVal);
1639      V.trunc(IntWidth);
1640      V.extend(InitVal.getBitWidth());
1641      if (V != InitVal)
1642        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
1643             InitVal.toString());
1644    }
1645
1646    // Keep track of the size of positive and negative values.
1647    if (InitVal.isUnsigned() || InitVal.isNonNegative())
1648      NumPositiveBits = std::max(NumPositiveBits,
1649                                 (unsigned)InitVal.getActiveBits());
1650    else
1651      NumNegativeBits = std::max(NumNegativeBits,
1652                                 (unsigned)InitVal.getMinSignedBits());
1653
1654    // Keep track of whether every enum element has type int (very commmon).
1655    if (AllElementsInt)
1656      AllElementsInt = ECD->getType() == Context.IntTy;
1657
1658    ECD->setNextDeclarator(EltList);
1659    EltList = ECD;
1660  }
1661
1662  // Figure out the type that should be used for this enum.
1663  // FIXME: Support attribute(packed) on enums and -fshort-enums.
1664  QualType BestType;
1665  unsigned BestWidth;
1666
1667  if (NumNegativeBits) {
1668    // If there is a negative value, figure out the smallest integer type (of
1669    // int/long/longlong) that fits.
1670    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
1671      BestType = Context.IntTy;
1672      BestWidth = IntWidth;
1673    } else {
1674      BestWidth = Context.Target.getLongWidth();
1675
1676      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
1677        BestType = Context.LongTy;
1678      else {
1679        BestWidth = Context.Target.getLongLongWidth();
1680
1681        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
1682          Diag(Enum->getLocation(), diag::warn_enum_too_large);
1683        BestType = Context.LongLongTy;
1684      }
1685    }
1686  } else {
1687    // If there is no negative value, figure out which of uint, ulong, ulonglong
1688    // fits.
1689    if (NumPositiveBits <= IntWidth) {
1690      BestType = Context.UnsignedIntTy;
1691      BestWidth = IntWidth;
1692    } else if (NumPositiveBits <=
1693               (BestWidth = Context.Target.getLongWidth())) {
1694      BestType = Context.UnsignedLongTy;
1695    } else {
1696      BestWidth = Context.Target.getLongLongWidth();
1697      assert(NumPositiveBits <= BestWidth &&
1698             "How could an initializer get larger than ULL?");
1699      BestType = Context.UnsignedLongLongTy;
1700    }
1701  }
1702
1703  // Loop over all of the enumerator constants, changing their types to match
1704  // the type of the enum if needed.
1705  for (unsigned i = 0; i != NumElements; ++i) {
1706    EnumConstantDecl *ECD =
1707      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1708    if (!ECD) continue;  // Already issued a diagnostic.
1709
1710    // Standard C says the enumerators have int type, but we allow, as an
1711    // extension, the enumerators to be larger than int size.  If each
1712    // enumerator value fits in an int, type it as an int, otherwise type it the
1713    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
1714    // that X has type 'int', not 'unsigned'.
1715    if (ECD->getType() == Context.IntTy) {
1716      // Make sure the init value is signed.
1717      llvm::APSInt IV = ECD->getInitVal();
1718      IV.setIsSigned(true);
1719      ECD->setInitVal(IV);
1720      continue;  // Already int type.
1721    }
1722
1723    // Determine whether the value fits into an int.
1724    llvm::APSInt InitVal = ECD->getInitVal();
1725    bool FitsInInt;
1726    if (InitVal.isUnsigned() || !InitVal.isNegative())
1727      FitsInInt = InitVal.getActiveBits() < IntWidth;
1728    else
1729      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
1730
1731    // If it fits into an integer type, force it.  Otherwise force it to match
1732    // the enum decl type.
1733    QualType NewTy;
1734    unsigned NewWidth;
1735    bool NewSign;
1736    if (FitsInInt) {
1737      NewTy = Context.IntTy;
1738      NewWidth = IntWidth;
1739      NewSign = true;
1740    } else if (ECD->getType() == BestType) {
1741      // Already the right type!
1742      continue;
1743    } else {
1744      NewTy = BestType;
1745      NewWidth = BestWidth;
1746      NewSign = BestType->isSignedIntegerType();
1747    }
1748
1749    // Adjust the APSInt value.
1750    InitVal.extOrTrunc(NewWidth);
1751    InitVal.setIsSigned(NewSign);
1752    ECD->setInitVal(InitVal);
1753
1754    // Adjust the Expr initializer and type.
1755    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
1756    ECD->setType(NewTy);
1757  }
1758
1759  Enum->defineElements(EltList, BestType);
1760  Consumer.HandleTagDeclDefinition(Enum);
1761}
1762
1763Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
1764                                          ExprTy *expr) {
1765  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
1766
1767  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
1768}
1769
1770Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
1771                                     SourceLocation LBrace,
1772                                     SourceLocation RBrace,
1773                                     const char *Lang,
1774                                     unsigned StrSize,
1775                                     DeclTy *D) {
1776  LinkageSpecDecl::LanguageIDs Language;
1777  Decl *dcl = static_cast<Decl *>(D);
1778  if (strncmp(Lang, "\"C\"", StrSize) == 0)
1779    Language = LinkageSpecDecl::lang_c;
1780  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
1781    Language = LinkageSpecDecl::lang_cxx;
1782  else {
1783    Diag(Loc, diag::err_bad_language);
1784    return 0;
1785  }
1786
1787  // FIXME: Add all the various semantics of linkage specifications
1788  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
1789}
1790
1791void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
1792
1793  switch (Attr->getKind()) {
1794  case AttributeList::AT_vector_size:
1795    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1796      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
1797      if (!newType.isNull()) // install the new vector type into the decl
1798        vDecl->setType(newType);
1799    }
1800    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1801      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
1802                                                   Attr);
1803      if (!newType.isNull()) // install the new vector type into the decl
1804        tDecl->setUnderlyingType(newType);
1805    }
1806    break;
1807  case AttributeList::AT_ocu_vector_type:
1808    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
1809      HandleOCUVectorTypeAttribute(tDecl, Attr);
1810    else
1811      Diag(Attr->getLoc(),
1812           diag::err_typecheck_ocu_vector_not_typedef);
1813    break;
1814  case AttributeList::AT_address_space:
1815    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1816      QualType newType = HandleAddressSpaceTypeAttribute(
1817                                                  tDecl->getUnderlyingType(),
1818                                                  Attr);
1819      tDecl->setUnderlyingType(newType);
1820    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1821      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
1822                                                         Attr);
1823      // install the new addr spaced type into the decl
1824      vDecl->setType(newType);
1825    }
1826    break;
1827  case AttributeList::AT_deprecated:
1828    HandleDeprecatedAttribute(New, Attr);
1829    break;
1830  case AttributeList::AT_visibility:
1831    HandleVisibilityAttribute(New, Attr);
1832    break;
1833  case AttributeList::AT_weak:
1834    HandleWeakAttribute(New, Attr);
1835    break;
1836  case AttributeList::AT_dllimport:
1837    HandleDLLImportAttribute(New, Attr);
1838    break;
1839  case AttributeList::AT_dllexport:
1840    HandleDLLExportAttribute(New, Attr);
1841    break;
1842  case AttributeList::AT_nothrow:
1843    HandleNothrowAttribute(New, Attr);
1844    break;
1845  case AttributeList::AT_stdcall:
1846    HandleStdCallAttribute(New, Attr);
1847    break;
1848  case AttributeList::AT_fastcall:
1849    HandleFastCallAttribute(New, Attr);
1850    break;
1851  case AttributeList::AT_aligned:
1852    HandleAlignedAttribute(New, Attr);
1853    break;
1854  case AttributeList::AT_packed:
1855    HandlePackedAttribute(New, Attr);
1856    break;
1857  case AttributeList::AT_annotate:
1858    HandleAnnotateAttribute(New, Attr);
1859    break;
1860  case AttributeList::AT_noreturn:
1861    HandleNoReturnAttribute(New, Attr);
1862    break;
1863  case AttributeList::AT_format:
1864    HandleFormatAttribute(New, Attr);
1865    break;
1866  default:
1867#if 0
1868    // TODO: when we have the full set of attributes, warn about unknown ones.
1869    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
1870         Attr->getName()->getName());
1871#endif
1872    break;
1873  }
1874}
1875
1876void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
1877                                AttributeList *declarator_postfix) {
1878  while (declspec_prefix) {
1879    HandleDeclAttribute(New, declspec_prefix);
1880    declspec_prefix = declspec_prefix->getNext();
1881  }
1882  while (declarator_postfix) {
1883    HandleDeclAttribute(New, declarator_postfix);
1884    declarator_postfix = declarator_postfix->getNext();
1885  }
1886}
1887
1888void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
1889                                        AttributeList *rawAttr) {
1890  QualType curType = tDecl->getUnderlyingType();
1891  // check the attribute arguments.
1892  if (rawAttr->getNumArgs() != 1) {
1893    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1894         std::string("1"));
1895    return;
1896  }
1897  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1898  llvm::APSInt vecSize(32);
1899  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1900    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
1901         "ocu_vector_type", sizeExpr->getSourceRange());
1902    return;
1903  }
1904  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1905  // in conjunction with complex types (pointers, arrays, functions, etc.).
1906  Type *canonType = curType.getCanonicalType().getTypePtr();
1907  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1908    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
1909         curType.getCanonicalType().getAsString());
1910    return;
1911  }
1912  // unlike gcc's vector_size attribute, the size is specified as the
1913  // number of elements, not the number of bytes.
1914  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1915
1916  if (vectorSize == 0) {
1917    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
1918         sizeExpr->getSourceRange());
1919    return;
1920  }
1921  // Instantiate/Install the vector type, the number of elements is > 0.
1922  tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
1923  // Remember this typedef decl, we will need it later for diagnostics.
1924  OCUVectorDecls.push_back(tDecl);
1925}
1926
1927QualType Sema::HandleVectorTypeAttribute(QualType curType,
1928                                         AttributeList *rawAttr) {
1929  // check the attribute arugments.
1930  if (rawAttr->getNumArgs() != 1) {
1931    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1932         std::string("1"));
1933    return QualType();
1934  }
1935  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1936  llvm::APSInt vecSize(32);
1937  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1938    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
1939         "vector_size", sizeExpr->getSourceRange());
1940    return QualType();
1941  }
1942  // navigate to the base type - we need to provide for vector pointers,
1943  // vector arrays, and functions returning vectors.
1944  Type *canonType = curType.getCanonicalType().getTypePtr();
1945
1946  if (canonType->isPointerType() || canonType->isArrayType() ||
1947      canonType->isFunctionType()) {
1948    assert(0 && "HandleVector(): Complex type construction unimplemented");
1949    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
1950        do {
1951          if (PointerType *PT = dyn_cast<PointerType>(canonType))
1952            canonType = PT->getPointeeType().getTypePtr();
1953          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
1954            canonType = AT->getElementType().getTypePtr();
1955          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
1956            canonType = FT->getResultType().getTypePtr();
1957        } while (canonType->isPointerType() || canonType->isArrayType() ||
1958                 canonType->isFunctionType());
1959    */
1960  }
1961  // the base type must be integer or float.
1962  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1963    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
1964         curType.getCanonicalType().getAsString());
1965    return QualType();
1966  }
1967  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
1968  // vecSize is specified in bytes - convert to bits.
1969  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1970
1971  // the vector size needs to be an integral multiple of the type size.
1972  if (vectorSize % typeSize) {
1973    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
1974         sizeExpr->getSourceRange());
1975    return QualType();
1976  }
1977  if (vectorSize == 0) {
1978    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
1979         sizeExpr->getSourceRange());
1980    return QualType();
1981  }
1982  // Instantiate the vector type, the number of elements is > 0, and not
1983  // required to be a power of 2, unlike GCC.
1984  return Context.getVectorType(curType, vectorSize/typeSize);
1985}
1986
1987void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
1988  // check the attribute arguments.
1989  if (rawAttr->getNumArgs() > 0) {
1990    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1991         std::string("0"));
1992    return;
1993  }
1994
1995  if (TagDecl *TD = dyn_cast<TagDecl>(d))
1996    TD->addAttr(new PackedAttr);
1997  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
1998    // If the alignment is less than or equal to 8 bits, the packed attribute
1999    // has no effect.
2000    if (Context.getTypeAlign(FD->getType()) <= 8)
2001      Diag(rawAttr->getLoc(),
2002           diag::warn_attribute_ignored_for_field_of_type,
2003           rawAttr->getName()->getName(), FD->getType().getAsString());
2004    else
2005      FD->addAttr(new PackedAttr);
2006  } else
2007    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2008         rawAttr->getName()->getName());
2009}
2010
2011void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2012  // check the attribute arguments.
2013  if (rawAttr->getNumArgs() != 0) {
2014    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2015         std::string("0"));
2016    return;
2017  }
2018
2019  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2020
2021  if (!Fn) {
2022    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2023         "noreturn", "function");
2024    return;
2025  }
2026
2027  d->addAttr(new NoReturnAttr());
2028}
2029
2030void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2031  // check the attribute arguments.
2032  if (rawAttr->getNumArgs() != 0) {
2033    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2034         std::string("0"));
2035    return;
2036  }
2037
2038  d->addAttr(new DeprecatedAttr());
2039}
2040
2041void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2042  // check the attribute arguments.
2043  if (rawAttr->getNumArgs() != 1) {
2044    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2045         std::string("1"));
2046    return;
2047  }
2048
2049  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2050  Arg = Arg->IgnoreParenCasts();
2051  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2052
2053  if (Str == 0 || Str->isWide()) {
2054    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2055         "visibility", std::string("1"));
2056    return;
2057  }
2058
2059  const char *TypeStr = Str->getStrData();
2060  unsigned TypeLen = Str->getByteLength();
2061  llvm::GlobalValue::VisibilityTypes type;
2062
2063  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2064    type = llvm::GlobalValue::DefaultVisibility;
2065  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2066    type = llvm::GlobalValue::HiddenVisibility;
2067  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2068    type = llvm::GlobalValue::HiddenVisibility; // FIXME
2069  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2070    type = llvm::GlobalValue::ProtectedVisibility;
2071  else {
2072    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2073           "visibility", TypeStr);
2074    return;
2075  }
2076
2077  d->addAttr(new VisibilityAttr(type));
2078}
2079
2080void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2081  // check the attribute arguments.
2082  if (rawAttr->getNumArgs() != 0) {
2083    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2084         std::string("0"));
2085    return;
2086  }
2087
2088  d->addAttr(new WeakAttr());
2089}
2090
2091void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2092  // check the attribute arguments.
2093  if (rawAttr->getNumArgs() != 0) {
2094    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2095         std::string("0"));
2096    return;
2097  }
2098
2099  d->addAttr(new DLLImportAttr());
2100}
2101
2102void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2103  // check the attribute arguments.
2104  if (rawAttr->getNumArgs() != 0) {
2105    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2106         std::string("0"));
2107    return;
2108  }
2109
2110  d->addAttr(new DLLExportAttr());
2111}
2112
2113void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2114  // check the attribute arguments.
2115  if (rawAttr->getNumArgs() != 0) {
2116    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2117         std::string("0"));
2118    return;
2119  }
2120
2121  d->addAttr(new StdCallAttr());
2122}
2123
2124void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2125  // check the attribute arguments.
2126  if (rawAttr->getNumArgs() != 0) {
2127    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2128         std::string("0"));
2129    return;
2130  }
2131
2132  d->addAttr(new FastCallAttr());
2133}
2134
2135void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2136  // check the attribute arguments.
2137  if (rawAttr->getNumArgs() != 0) {
2138    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2139         std::string("0"));
2140    return;
2141  }
2142
2143  d->addAttr(new NoThrowAttr());
2144}
2145
2146static const FunctionTypeProto *getFunctionProto(Decl *d) {
2147  ValueDecl *decl = dyn_cast<ValueDecl>(d);
2148  if (!decl) return 0;
2149
2150  QualType Ty = decl->getType();
2151
2152  if (Ty->isFunctionPointerType()) {
2153    const PointerType *PtrTy = Ty->getAsPointerType();
2154    Ty = PtrTy->getPointeeType();
2155  }
2156
2157  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2158    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2159
2160  return 0;
2161}
2162
2163
2164/// Handle __attribute__((format(type,idx,firstarg))) attributes
2165/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2166void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2167
2168  if (!rawAttr->getParameterName()) {
2169    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2170           "format", std::string("1"));
2171    return;
2172  }
2173
2174  if (rawAttr->getNumArgs() != 2) {
2175    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2176         std::string("3"));
2177    return;
2178  }
2179
2180  // GCC ignores the format attribute on K&R style function
2181  // prototypes, so we ignore it as well
2182  const FunctionTypeProto *proto = getFunctionProto(d);
2183
2184  if (!proto) {
2185    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2186           "format", "function");
2187    return;
2188  }
2189
2190  // FIXME: in C++ the implicit 'this' function parameter also counts.
2191  // this is needed in order to be compatible with GCC
2192  // the index must start in 1 and the limit is numargs+1
2193  unsigned NumArgs  = proto->getNumArgs();
2194  unsigned FirstIdx = 1;
2195
2196  const char *Format = rawAttr->getParameterName()->getName();
2197  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2198
2199  // Normalize the argument, __foo__ becomes foo.
2200  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2201      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2202    Format += 2;
2203    FormatLen -= 4;
2204  }
2205
2206  if (!((FormatLen == 5 && !memcmp(Format, "scanf", 5))
2207     || (FormatLen == 6 && !memcmp(Format, "printf", 6))
2208     || (FormatLen == 7 && !memcmp(Format, "strfmon", 7))
2209     || (FormatLen == 8 && !memcmp(Format, "strftime", 8)))) {
2210    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2211           "format", rawAttr->getParameterName()->getName());
2212    return;
2213  }
2214
2215  // checks for the 2nd argument
2216  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2217  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2218  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2219    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2220           "format", std::string("2"), IdxExpr->getSourceRange());
2221    return;
2222  }
2223
2224  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2225    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2226           "format", std::string("2"), IdxExpr->getSourceRange());
2227    return;
2228  }
2229
2230  // make sure the format string is really a string
2231  QualType Ty = proto->getArgType(Idx.getZExtValue()-1);
2232  if (!Ty->isPointerType() ||
2233      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2234    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2235         IdxExpr->getSourceRange());
2236    return;
2237  }
2238
2239
2240  // check the 3rd argument
2241  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2242  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2243  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2244    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2245           "format", std::string("3"), FirstArgExpr->getSourceRange());
2246    return;
2247  }
2248
2249  // check if the function is variadic if the 3rd argument non-zero
2250  if (FirstArg != 0) {
2251    if (proto->isVariadic()) {
2252      ++NumArgs; // +1 for ...
2253    } else {
2254      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2255      return;
2256    }
2257  }
2258
2259  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2260  // the input is just the current time + the format string
2261  if (FormatLen == 8 && !memcmp(Format, "strftime", 8)) {
2262    if (FirstArg != 0) {
2263      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2264             FirstArgExpr->getSourceRange());
2265      return;
2266    }
2267  // if 0 it disables parameter checking (to use with e.g. va_list)
2268  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2269    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2270           "format", std::string("3"), FirstArgExpr->getSourceRange());
2271    return;
2272  }
2273
2274  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2275                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2276}
2277
2278void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2279  // check the attribute arguments.
2280  if (rawAttr->getNumArgs() != 1) {
2281    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2282         std::string("1"));
2283    return;
2284  }
2285  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2286  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2287
2288  // Make sure that there is a string literal as the annotation's single
2289  // argument.
2290  if (!SE) {
2291    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2292    return;
2293  }
2294  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2295                                          SE->getByteLength())));
2296}
2297
2298void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2299{
2300  // check the attribute arguments.
2301  if (rawAttr->getNumArgs() > 1) {
2302    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2303         std::string("1"));
2304    return;
2305  }
2306
2307  unsigned Align = 0;
2308
2309  if (rawAttr->getNumArgs() == 0) {
2310    // FIXME: This should be the target specific maximum alignment.
2311    // (For now we just use 128 bits which is the maximum on X86.
2312    Align = 128;
2313    return;
2314  } else {
2315    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2316    llvm::APSInt alignment(32);
2317    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2318      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2319           "aligned", alignmentExpr->getSourceRange());
2320      return;
2321    }
2322
2323    Align = alignment.getZExtValue() * 8;
2324  }
2325
2326  d->addAttr(new AlignedAttr(Align));
2327}
2328