SemaDecl.cpp revision 0fe2256a5f250149806a989986758a2af96ba281
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/PathSensitive/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Parse/DeclSpec.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Parse/Template.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
35#include "clang/Lex/Preprocessor.h"
36#include "clang/Lex/HeaderSearch.h"
37#include "llvm/ADT/BitVector.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43#include <queue>
44using namespace clang;
45
46/// getDeclName - Return a pretty name for the specified decl if possible, or
47/// an empty string if not.  This is used for pretty crash reporting.
48std::string Sema::getDeclName(DeclPtrTy d) {
49  Decl *D = d.getAs<Decl>();
50  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
51    return DN->getQualifiedNameAsString();
52  return "";
53}
54
55Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                                Scope *S, const CXXScopeSpec *SS,
72                                bool isClassName,
73                                TypeTy *ObjectTypePtr) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isSet()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return 0;
96
97        // We know from the grammar that this name refers to a type, so build a
98        // TypenameType node to describe the type.
99        // FIXME: Record somewhere that this TypenameType node has no "typename"
100        // keyword associated with it.
101        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
102                                 II, SS->getRange()).getAsOpaquePtr();
103      }
104
105      return 0;
106    }
107
108    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
109      return 0;
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::FoundOverloaded:
142  case LookupResult::FoundUnresolvedValue:
143    return 0;
144
145  case LookupResult::Ambiguous:
146    // Recover from type-hiding ambiguities by hiding the type.  We'll
147    // do the lookup again when looking for an object, and we can
148    // diagnose the error then.  If we don't do this, then the error
149    // about hiding the type will be immediately followed by an error
150    // that only makes sense if the identifier was treated like a type.
151    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
152      Result.suppressDiagnostics();
153      return 0;
154    }
155
156    // Look to see if we have a type anywhere in the list of results.
157    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
158         Res != ResEnd; ++Res) {
159      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
160        if (!IIDecl ||
161            (*Res)->getLocation().getRawEncoding() <
162              IIDecl->getLocation().getRawEncoding())
163          IIDecl = *Res;
164      }
165    }
166
167    if (!IIDecl) {
168      // None of the entities we found is a type, so there is no way
169      // to even assume that the result is a type. In this case, don't
170      // complain about the ambiguity. The parser will either try to
171      // perform this lookup again (e.g., as an object name), which
172      // will produce the ambiguity, or will complain that it expected
173      // a type name.
174      Result.suppressDiagnostics();
175      return 0;
176    }
177
178    // We found a type within the ambiguous lookup; diagnose the
179    // ambiguity and then return that type. This might be the right
180    // answer, or it might not be, but it suppresses any attempt to
181    // perform the name lookup again.
182    break;
183
184  case LookupResult::Found:
185    IIDecl = Result.getFoundDecl();
186    break;
187  }
188
189  assert(IIDecl && "Didn't find decl");
190
191  QualType T;
192  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
193    DiagnoseUseOfDecl(IIDecl, NameLoc);
194
195    // C++ [temp.local]p2:
196    //   Within the scope of a class template specialization or
197    //   partial specialization, when the injected-class-name is
198    //   not followed by a <, it is equivalent to the
199    //   injected-class-name followed by the template-argument s
200    //   of the class template specialization or partial
201    //   specialization enclosed in <>.
202    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
203      if (RD->isInjectedClassName())
204        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
205          T = Template->getInjectedClassNameType(Context);
206
207    if (T.isNull())
208      T = Context.getTypeDeclType(TD);
209
210    if (SS)
211      T = getQualifiedNameType(*SS, T);
212
213  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
214    T = Context.getObjCInterfaceType(IDecl);
215  } else if (UnresolvedUsingTypenameDecl *UUDecl =
216               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
217    // FIXME: preserve source structure information.
218    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
219  } else {
220    // If it's not plausibly a type, suppress diagnostics.
221    Result.suppressDiagnostics();
222    return 0;
223  }
224
225  return T.getAsOpaquePtr();
226}
227
228/// isTagName() - This method is called *for error recovery purposes only*
229/// to determine if the specified name is a valid tag name ("struct foo").  If
230/// so, this returns the TST for the tag corresponding to it (TST_enum,
231/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
232/// where the user forgot to specify the tag.
233DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
234  // Do a tag name lookup in this scope.
235  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
236  LookupName(R, S, false);
237  R.suppressDiagnostics();
238  if (R.getResultKind() == LookupResult::Found)
239    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
240      switch (TD->getTagKind()) {
241      case TagDecl::TK_struct: return DeclSpec::TST_struct;
242      case TagDecl::TK_union:  return DeclSpec::TST_union;
243      case TagDecl::TK_class:  return DeclSpec::TST_class;
244      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
245      }
246    }
247
248  return DeclSpec::TST_unspecified;
249}
250
251bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
252                                   SourceLocation IILoc,
253                                   Scope *S,
254                                   const CXXScopeSpec *SS,
255                                   TypeTy *&SuggestedType) {
256  // We don't have anything to suggest (yet).
257  SuggestedType = 0;
258
259  // There may have been a typo in the name of the type. Look up typo
260  // results, in case we have something that we can suggest.
261  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
262                      NotForRedeclaration);
263
264  // FIXME: It would be nice if we could correct for typos in built-in
265  // names, such as "itn" for "int".
266
267  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
268    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
269    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
270        !Result->isInvalidDecl()) {
271      // We found a similarly-named type or interface; suggest that.
272      if (!SS || !SS->isSet())
273        Diag(IILoc, diag::err_unknown_typename_suggest)
274          << &II << Lookup.getLookupName()
275          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
276                                                     Result->getNameAsString());
277      else if (DeclContext *DC = computeDeclContext(*SS, false))
278        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
279          << &II << DC << Lookup.getLookupName() << SS->getRange()
280          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
281                                                     Result->getNameAsString());
282      else
283        llvm_unreachable("could not have corrected a typo here");
284
285      Diag(Result->getLocation(), diag::note_previous_decl)
286        << Result->getDeclName();
287
288      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
289      return true;
290    }
291  }
292
293  // FIXME: Should we move the logic that tries to recover from a missing tag
294  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
295
296  if (!SS || (!SS->isSet() && !SS->isInvalid()))
297    Diag(IILoc, diag::err_unknown_typename) << &II;
298  else if (DeclContext *DC = computeDeclContext(*SS, false))
299    Diag(IILoc, diag::err_typename_nested_not_found)
300      << &II << DC << SS->getRange();
301  else if (isDependentScopeSpecifier(*SS)) {
302    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
303      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
304      << SourceRange(SS->getRange().getBegin(), IILoc)
305      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
306                                               "typename ");
307    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
308  } else {
309    assert(SS && SS->isInvalid() &&
310           "Invalid scope specifier has already been diagnosed");
311  }
312
313  return true;
314}
315
316// Determines the context to return to after temporarily entering a
317// context.  This depends in an unnecessarily complicated way on the
318// exact ordering of callbacks from the parser.
319DeclContext *Sema::getContainingDC(DeclContext *DC) {
320
321  // Functions defined inline within classes aren't parsed until we've
322  // finished parsing the top-level class, so the top-level class is
323  // the context we'll need to return to.
324  if (isa<FunctionDecl>(DC)) {
325    DC = DC->getLexicalParent();
326
327    // A function not defined within a class will always return to its
328    // lexical context.
329    if (!isa<CXXRecordDecl>(DC))
330      return DC;
331
332    // A C++ inline method/friend is parsed *after* the topmost class
333    // it was declared in is fully parsed ("complete");  the topmost
334    // class is the context we need to return to.
335    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
336      DC = RD;
337
338    // Return the declaration context of the topmost class the inline method is
339    // declared in.
340    return DC;
341  }
342
343  if (isa<ObjCMethodDecl>(DC))
344    return Context.getTranslationUnitDecl();
345
346  return DC->getLexicalParent();
347}
348
349void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
350  assert(getContainingDC(DC) == CurContext &&
351      "The next DeclContext should be lexically contained in the current one.");
352  CurContext = DC;
353  S->setEntity(DC);
354}
355
356void Sema::PopDeclContext() {
357  assert(CurContext && "DeclContext imbalance!");
358
359  CurContext = getContainingDC(CurContext);
360}
361
362/// EnterDeclaratorContext - Used when we must lookup names in the context
363/// of a declarator's nested name specifier.
364///
365void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
366  // C++0x [basic.lookup.unqual]p13:
367  //   A name used in the definition of a static data member of class
368  //   X (after the qualified-id of the static member) is looked up as
369  //   if the name was used in a member function of X.
370  // C++0x [basic.lookup.unqual]p14:
371  //   If a variable member of a namespace is defined outside of the
372  //   scope of its namespace then any name used in the definition of
373  //   the variable member (after the declarator-id) is looked up as
374  //   if the definition of the variable member occurred in its
375  //   namespace.
376  // Both of these imply that we should push a scope whose context
377  // is the semantic context of the declaration.  We can't use
378  // PushDeclContext here because that context is not necessarily
379  // lexically contained in the current context.  Fortunately,
380  // the containing scope should have the appropriate information.
381
382  assert(!S->getEntity() && "scope already has entity");
383
384#ifndef NDEBUG
385  Scope *Ancestor = S->getParent();
386  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
387  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
388#endif
389
390  CurContext = DC;
391  S->setEntity(DC);
392}
393
394void Sema::ExitDeclaratorContext(Scope *S) {
395  assert(S->getEntity() == CurContext && "Context imbalance!");
396
397  // Switch back to the lexical context.  The safety of this is
398  // enforced by an assert in EnterDeclaratorContext.
399  Scope *Ancestor = S->getParent();
400  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
401  CurContext = (DeclContext*) Ancestor->getEntity();
402
403  // We don't need to do anything with the scope, which is going to
404  // disappear.
405}
406
407/// \brief Determine whether we allow overloading of the function
408/// PrevDecl with another declaration.
409///
410/// This routine determines whether overloading is possible, not
411/// whether some new function is actually an overload. It will return
412/// true in C++ (where we can always provide overloads) or, as an
413/// extension, in C when the previous function is already an
414/// overloaded function declaration or has the "overloadable"
415/// attribute.
416static bool AllowOverloadingOfFunction(LookupResult &Previous,
417                                       ASTContext &Context) {
418  if (Context.getLangOptions().CPlusPlus)
419    return true;
420
421  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
422    return true;
423
424  return (Previous.getResultKind() == LookupResult::Found
425          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
426}
427
428/// Add this decl to the scope shadowed decl chains.
429void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
430  // Move up the scope chain until we find the nearest enclosing
431  // non-transparent context. The declaration will be introduced into this
432  // scope.
433  while (S->getEntity() &&
434         ((DeclContext *)S->getEntity())->isTransparentContext())
435    S = S->getParent();
436
437  // Add scoped declarations into their context, so that they can be
438  // found later. Declarations without a context won't be inserted
439  // into any context.
440  if (AddToContext)
441    CurContext->addDecl(D);
442
443  // Out-of-line function and variable definitions should not be pushed into
444  // scope.
445  if ((isa<FunctionTemplateDecl>(D) &&
446       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
447      (isa<FunctionDecl>(D) &&
448       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
449        cast<FunctionDecl>(D)->isOutOfLine())) ||
450      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
451    return;
452
453  // If this replaces anything in the current scope,
454  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
455                               IEnd = IdResolver.end();
456  for (; I != IEnd; ++I) {
457    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
458      S->RemoveDecl(DeclPtrTy::make(*I));
459      IdResolver.RemoveDecl(*I);
460
461      // Should only need to replace one decl.
462      break;
463    }
464  }
465
466  S->AddDecl(DeclPtrTy::make(D));
467  IdResolver.AddDecl(D);
468}
469
470bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
471  return IdResolver.isDeclInScope(D, Ctx, Context, S);
472}
473
474static bool isOutOfScopePreviousDeclaration(NamedDecl *,
475                                            DeclContext*,
476                                            ASTContext&);
477
478/// Filters out lookup results that don't fall within the given scope
479/// as determined by isDeclInScope.
480static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
481                                 DeclContext *Ctx, Scope *S,
482                                 bool ConsiderLinkage) {
483  LookupResult::Filter F = R.makeFilter();
484  while (F.hasNext()) {
485    NamedDecl *D = F.next();
486
487    if (SemaRef.isDeclInScope(D, Ctx, S))
488      continue;
489
490    if (ConsiderLinkage &&
491        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
492      continue;
493
494    F.erase();
495  }
496
497  F.done();
498}
499
500static bool isUsingDecl(NamedDecl *D) {
501  return isa<UsingShadowDecl>(D) ||
502         isa<UnresolvedUsingTypenameDecl>(D) ||
503         isa<UnresolvedUsingValueDecl>(D);
504}
505
506/// Removes using shadow declarations from the lookup results.
507static void RemoveUsingDecls(LookupResult &R) {
508  LookupResult::Filter F = R.makeFilter();
509  while (F.hasNext())
510    if (isUsingDecl(F.next()))
511      F.erase();
512
513  F.done();
514}
515
516static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
517  if (D->isUsed() || D->hasAttr<UnusedAttr>())
518    return false;
519
520  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
521    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
522      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
523        if (!RD->hasTrivialConstructor())
524          return false;
525        if (!RD->hasTrivialDestructor())
526          return false;
527      }
528    }
529  }
530
531  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
532          !isa<ImplicitParamDecl>(D) &&
533          D->getDeclContext()->isFunctionOrMethod());
534}
535
536void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
537  if (S->decl_empty()) return;
538  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
539         "Scope shouldn't contain decls!");
540
541  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
542       I != E; ++I) {
543    Decl *TmpD = (*I).getAs<Decl>();
544    assert(TmpD && "This decl didn't get pushed??");
545
546    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
547    NamedDecl *D = cast<NamedDecl>(TmpD);
548
549    if (!D->getDeclName()) continue;
550
551    // Diagnose unused variables in this scope.
552    if (ShouldDiagnoseUnusedDecl(D))
553      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
554
555    // Remove this name from our lexical scope.
556    IdResolver.RemoveDecl(D);
557  }
558}
559
560/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
561/// return 0 if one not found.
562///
563/// \param Id the name of the Objective-C class we're looking for. If
564/// typo-correction fixes this name, the Id will be updated
565/// to the fixed name.
566///
567/// \param RecoverLoc if provided, this routine will attempt to
568/// recover from a typo in the name of an existing Objective-C class
569/// and, if successful, will return the lookup that results from
570/// typo-correction.
571ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
572                                              SourceLocation RecoverLoc) {
573  // The third "scope" argument is 0 since we aren't enabling lazy built-in
574  // creation from this context.
575  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
576
577  if (!IDecl && !RecoverLoc.isInvalid()) {
578    // Perform typo correction at the given location, but only if we
579    // find an Objective-C class name.
580    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
581    if (CorrectTypo(R, TUScope, 0) &&
582        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
583      Diag(RecoverLoc, diag::err_undef_interface_suggest)
584        << Id << IDecl->getDeclName()
585        << CodeModificationHint::CreateReplacement(RecoverLoc,
586                                                   IDecl->getNameAsString());
587      Diag(IDecl->getLocation(), diag::note_previous_decl)
588        << IDecl->getDeclName();
589
590      Id = IDecl->getIdentifier();
591    }
592  }
593
594  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
595}
596
597/// getNonFieldDeclScope - Retrieves the innermost scope, starting
598/// from S, where a non-field would be declared. This routine copes
599/// with the difference between C and C++ scoping rules in structs and
600/// unions. For example, the following code is well-formed in C but
601/// ill-formed in C++:
602/// @code
603/// struct S6 {
604///   enum { BAR } e;
605/// };
606///
607/// void test_S6() {
608///   struct S6 a;
609///   a.e = BAR;
610/// }
611/// @endcode
612/// For the declaration of BAR, this routine will return a different
613/// scope. The scope S will be the scope of the unnamed enumeration
614/// within S6. In C++, this routine will return the scope associated
615/// with S6, because the enumeration's scope is a transparent
616/// context but structures can contain non-field names. In C, this
617/// routine will return the translation unit scope, since the
618/// enumeration's scope is a transparent context and structures cannot
619/// contain non-field names.
620Scope *Sema::getNonFieldDeclScope(Scope *S) {
621  while (((S->getFlags() & Scope::DeclScope) == 0) ||
622         (S->getEntity() &&
623          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
624         (S->isClassScope() && !getLangOptions().CPlusPlus))
625    S = S->getParent();
626  return S;
627}
628
629void Sema::InitBuiltinVaListType() {
630  if (!Context.getBuiltinVaListType().isNull())
631    return;
632
633  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
634  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
635  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
636  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
637}
638
639/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
640/// file scope.  lazily create a decl for it. ForRedeclaration is true
641/// if we're creating this built-in in anticipation of redeclaring the
642/// built-in.
643NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
644                                     Scope *S, bool ForRedeclaration,
645                                     SourceLocation Loc) {
646  Builtin::ID BID = (Builtin::ID)bid;
647
648  if (Context.BuiltinInfo.hasVAListUse(BID))
649    InitBuiltinVaListType();
650
651  ASTContext::GetBuiltinTypeError Error;
652  QualType R = Context.GetBuiltinType(BID, Error);
653  switch (Error) {
654  case ASTContext::GE_None:
655    // Okay
656    break;
657
658  case ASTContext::GE_Missing_stdio:
659    if (ForRedeclaration)
660      Diag(Loc, diag::err_implicit_decl_requires_stdio)
661        << Context.BuiltinInfo.GetName(BID);
662    return 0;
663
664  case ASTContext::GE_Missing_setjmp:
665    if (ForRedeclaration)
666      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
667        << Context.BuiltinInfo.GetName(BID);
668    return 0;
669  }
670
671  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
672    Diag(Loc, diag::ext_implicit_lib_function_decl)
673      << Context.BuiltinInfo.GetName(BID)
674      << R;
675    if (Context.BuiltinInfo.getHeaderName(BID) &&
676        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
677          != Diagnostic::Ignored)
678      Diag(Loc, diag::note_please_include_header)
679        << Context.BuiltinInfo.getHeaderName(BID)
680        << Context.BuiltinInfo.GetName(BID);
681  }
682
683  FunctionDecl *New = FunctionDecl::Create(Context,
684                                           Context.getTranslationUnitDecl(),
685                                           Loc, II, R, /*TInfo=*/0,
686                                           FunctionDecl::Extern, false,
687                                           /*hasPrototype=*/true);
688  New->setImplicit();
689
690  // Create Decl objects for each parameter, adding them to the
691  // FunctionDecl.
692  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
693    llvm::SmallVector<ParmVarDecl*, 16> Params;
694    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
695      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
696                                           FT->getArgType(i), /*TInfo=*/0,
697                                           VarDecl::None, 0));
698    New->setParams(Context, Params.data(), Params.size());
699  }
700
701  AddKnownFunctionAttributes(New);
702
703  // TUScope is the translation-unit scope to insert this function into.
704  // FIXME: This is hideous. We need to teach PushOnScopeChains to
705  // relate Scopes to DeclContexts, and probably eliminate CurContext
706  // entirely, but we're not there yet.
707  DeclContext *SavedContext = CurContext;
708  CurContext = Context.getTranslationUnitDecl();
709  PushOnScopeChains(New, TUScope);
710  CurContext = SavedContext;
711  return New;
712}
713
714/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
715/// same name and scope as a previous declaration 'Old'.  Figure out
716/// how to resolve this situation, merging decls or emitting
717/// diagnostics as appropriate. If there was an error, set New to be invalid.
718///
719void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
720  // If the new decl is known invalid already, don't bother doing any
721  // merging checks.
722  if (New->isInvalidDecl()) return;
723
724  // Allow multiple definitions for ObjC built-in typedefs.
725  // FIXME: Verify the underlying types are equivalent!
726  if (getLangOptions().ObjC1) {
727    const IdentifierInfo *TypeID = New->getIdentifier();
728    switch (TypeID->getLength()) {
729    default: break;
730    case 2:
731      if (!TypeID->isStr("id"))
732        break;
733      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
734      // Install the built-in type for 'id', ignoring the current definition.
735      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
736      return;
737    case 5:
738      if (!TypeID->isStr("Class"))
739        break;
740      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
741      // Install the built-in type for 'Class', ignoring the current definition.
742      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
743      return;
744    case 3:
745      if (!TypeID->isStr("SEL"))
746        break;
747      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
748      // Install the built-in type for 'SEL', ignoring the current definition.
749      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
750      return;
751    case 8:
752      if (!TypeID->isStr("Protocol"))
753        break;
754      Context.setObjCProtoType(New->getUnderlyingType());
755      return;
756    }
757    // Fall through - the typedef name was not a builtin type.
758  }
759
760  // Verify the old decl was also a type.
761  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
762  if (!Old) {
763    Diag(New->getLocation(), diag::err_redefinition_different_kind)
764      << New->getDeclName();
765
766    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
767    if (OldD->getLocation().isValid())
768      Diag(OldD->getLocation(), diag::note_previous_definition);
769
770    return New->setInvalidDecl();
771  }
772
773  // If the old declaration is invalid, just give up here.
774  if (Old->isInvalidDecl())
775    return New->setInvalidDecl();
776
777  // Determine the "old" type we'll use for checking and diagnostics.
778  QualType OldType;
779  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
780    OldType = OldTypedef->getUnderlyingType();
781  else
782    OldType = Context.getTypeDeclType(Old);
783
784  // If the typedef types are not identical, reject them in all languages and
785  // with any extensions enabled.
786
787  if (OldType != New->getUnderlyingType() &&
788      Context.getCanonicalType(OldType) !=
789      Context.getCanonicalType(New->getUnderlyingType())) {
790    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
791      << New->getUnderlyingType() << OldType;
792    if (Old->getLocation().isValid())
793      Diag(Old->getLocation(), diag::note_previous_definition);
794    return New->setInvalidDecl();
795  }
796
797  // The types match.  Link up the redeclaration chain if the old
798  // declaration was a typedef.
799  // FIXME: this is a potential source of wierdness if the type
800  // spellings don't match exactly.
801  if (isa<TypedefDecl>(Old))
802    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
803
804  if (getLangOptions().Microsoft)
805    return;
806
807  if (getLangOptions().CPlusPlus) {
808    // C++ [dcl.typedef]p2:
809    //   In a given non-class scope, a typedef specifier can be used to
810    //   redefine the name of any type declared in that scope to refer
811    //   to the type to which it already refers.
812    if (!isa<CXXRecordDecl>(CurContext))
813      return;
814
815    // C++0x [dcl.typedef]p4:
816    //   In a given class scope, a typedef specifier can be used to redefine
817    //   any class-name declared in that scope that is not also a typedef-name
818    //   to refer to the type to which it already refers.
819    //
820    // This wording came in via DR424, which was a correction to the
821    // wording in DR56, which accidentally banned code like:
822    //
823    //   struct S {
824    //     typedef struct A { } A;
825    //   };
826    //
827    // in the C++03 standard. We implement the C++0x semantics, which
828    // allow the above but disallow
829    //
830    //   struct S {
831    //     typedef int I;
832    //     typedef int I;
833    //   };
834    //
835    // since that was the intent of DR56.
836    if (!isa<TypedefDecl >(Old))
837      return;
838
839    Diag(New->getLocation(), diag::err_redefinition)
840      << New->getDeclName();
841    Diag(Old->getLocation(), diag::note_previous_definition);
842    return New->setInvalidDecl();
843  }
844
845  // If we have a redefinition of a typedef in C, emit a warning.  This warning
846  // is normally mapped to an error, but can be controlled with
847  // -Wtypedef-redefinition.  If either the original or the redefinition is
848  // in a system header, don't emit this for compatibility with GCC.
849  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
850      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
851       Context.getSourceManager().isInSystemHeader(New->getLocation())))
852    return;
853
854  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
855    << New->getDeclName();
856  Diag(Old->getLocation(), diag::note_previous_definition);
857  return;
858}
859
860/// DeclhasAttr - returns true if decl Declaration already has the target
861/// attribute.
862static bool
863DeclHasAttr(const Decl *decl, const Attr *target) {
864  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
865    if (attr->getKind() == target->getKind())
866      return true;
867
868  return false;
869}
870
871/// MergeAttributes - append attributes from the Old decl to the New one.
872static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
873  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
874    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
875      Attr *NewAttr = attr->clone(C);
876      NewAttr->setInherited(true);
877      New->addAttr(NewAttr);
878    }
879  }
880}
881
882/// Used in MergeFunctionDecl to keep track of function parameters in
883/// C.
884struct GNUCompatibleParamWarning {
885  ParmVarDecl *OldParm;
886  ParmVarDecl *NewParm;
887  QualType PromotedType;
888};
889
890
891/// getSpecialMember - get the special member enum for a method.
892static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
893                                               const CXXMethodDecl *MD) {
894  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
895    if (Ctor->isDefaultConstructor())
896      return Sema::CXXDefaultConstructor;
897    if (Ctor->isCopyConstructor())
898      return Sema::CXXCopyConstructor;
899  }
900
901  if (isa<CXXDestructorDecl>(MD))
902    return Sema::CXXDestructor;
903
904  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
905  return Sema::CXXCopyAssignment;
906}
907
908/// MergeFunctionDecl - We just parsed a function 'New' from
909/// declarator D which has the same name and scope as a previous
910/// declaration 'Old'.  Figure out how to resolve this situation,
911/// merging decls or emitting diagnostics as appropriate.
912///
913/// In C++, New and Old must be declarations that are not
914/// overloaded. Use IsOverload to determine whether New and Old are
915/// overloaded, and to select the Old declaration that New should be
916/// merged with.
917///
918/// Returns true if there was an error, false otherwise.
919bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
920  // Verify the old decl was also a function.
921  FunctionDecl *Old = 0;
922  if (FunctionTemplateDecl *OldFunctionTemplate
923        = dyn_cast<FunctionTemplateDecl>(OldD))
924    Old = OldFunctionTemplate->getTemplatedDecl();
925  else
926    Old = dyn_cast<FunctionDecl>(OldD);
927  if (!Old) {
928    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
929      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
930      Diag(Shadow->getTargetDecl()->getLocation(),
931           diag::note_using_decl_target);
932      Diag(Shadow->getUsingDecl()->getLocation(),
933           diag::note_using_decl) << 0;
934      return true;
935    }
936
937    Diag(New->getLocation(), diag::err_redefinition_different_kind)
938      << New->getDeclName();
939    Diag(OldD->getLocation(), diag::note_previous_definition);
940    return true;
941  }
942
943  // Determine whether the previous declaration was a definition,
944  // implicit declaration, or a declaration.
945  diag::kind PrevDiag;
946  if (Old->isThisDeclarationADefinition())
947    PrevDiag = diag::note_previous_definition;
948  else if (Old->isImplicit())
949    PrevDiag = diag::note_previous_implicit_declaration;
950  else
951    PrevDiag = diag::note_previous_declaration;
952
953  QualType OldQType = Context.getCanonicalType(Old->getType());
954  QualType NewQType = Context.getCanonicalType(New->getType());
955
956  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
957      New->getStorageClass() == FunctionDecl::Static &&
958      Old->getStorageClass() != FunctionDecl::Static) {
959    Diag(New->getLocation(), diag::err_static_non_static)
960      << New;
961    Diag(Old->getLocation(), PrevDiag);
962    return true;
963  }
964
965  if (getLangOptions().CPlusPlus) {
966    // (C++98 13.1p2):
967    //   Certain function declarations cannot be overloaded:
968    //     -- Function declarations that differ only in the return type
969    //        cannot be overloaded.
970    QualType OldReturnType
971      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
972    QualType NewReturnType
973      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
974    if (OldReturnType != NewReturnType) {
975      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
976      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
977      return true;
978    }
979
980    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
981    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
982    if (OldMethod && NewMethod) {
983      if (!NewMethod->getFriendObjectKind() &&
984          NewMethod->getLexicalDeclContext()->isRecord()) {
985        //    -- Member function declarations with the same name and the
986        //       same parameter types cannot be overloaded if any of them
987        //       is a static member function declaration.
988        if (OldMethod->isStatic() || NewMethod->isStatic()) {
989          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
990          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
991          return true;
992        }
993
994        // C++ [class.mem]p1:
995        //   [...] A member shall not be declared twice in the
996        //   member-specification, except that a nested class or member
997        //   class template can be declared and then later defined.
998        unsigned NewDiag;
999        if (isa<CXXConstructorDecl>(OldMethod))
1000          NewDiag = diag::err_constructor_redeclared;
1001        else if (isa<CXXDestructorDecl>(NewMethod))
1002          NewDiag = diag::err_destructor_redeclared;
1003        else if (isa<CXXConversionDecl>(NewMethod))
1004          NewDiag = diag::err_conv_function_redeclared;
1005        else
1006          NewDiag = diag::err_member_redeclared;
1007
1008        Diag(New->getLocation(), NewDiag);
1009        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1010      } else {
1011        if (OldMethod->isImplicit()) {
1012          Diag(NewMethod->getLocation(),
1013               diag::err_definition_of_implicitly_declared_member)
1014          << New << getSpecialMember(Context, OldMethod);
1015
1016          Diag(OldMethod->getLocation(),
1017               diag::note_previous_implicit_declaration);
1018          return true;
1019        }
1020      }
1021    }
1022
1023    // (C++98 8.3.5p3):
1024    //   All declarations for a function shall agree exactly in both the
1025    //   return type and the parameter-type-list.
1026    // attributes should be ignored when comparing.
1027    if (Context.getNoReturnType(OldQType, false) ==
1028        Context.getNoReturnType(NewQType, false))
1029      return MergeCompatibleFunctionDecls(New, Old);
1030
1031    // Fall through for conflicting redeclarations and redefinitions.
1032  }
1033
1034  // C: Function types need to be compatible, not identical. This handles
1035  // duplicate function decls like "void f(int); void f(enum X);" properly.
1036  if (!getLangOptions().CPlusPlus &&
1037      Context.typesAreCompatible(OldQType, NewQType)) {
1038    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1039    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1040    const FunctionProtoType *OldProto = 0;
1041    if (isa<FunctionNoProtoType>(NewFuncType) &&
1042        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1043      // The old declaration provided a function prototype, but the
1044      // new declaration does not. Merge in the prototype.
1045      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1046      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1047                                                 OldProto->arg_type_end());
1048      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1049                                         ParamTypes.data(), ParamTypes.size(),
1050                                         OldProto->isVariadic(),
1051                                         OldProto->getTypeQuals());
1052      New->setType(NewQType);
1053      New->setHasInheritedPrototype();
1054
1055      // Synthesize a parameter for each argument type.
1056      llvm::SmallVector<ParmVarDecl*, 16> Params;
1057      for (FunctionProtoType::arg_type_iterator
1058             ParamType = OldProto->arg_type_begin(),
1059             ParamEnd = OldProto->arg_type_end();
1060           ParamType != ParamEnd; ++ParamType) {
1061        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1062                                                 SourceLocation(), 0,
1063                                                 *ParamType, /*TInfo=*/0,
1064                                                 VarDecl::None, 0);
1065        Param->setImplicit();
1066        Params.push_back(Param);
1067      }
1068
1069      New->setParams(Context, Params.data(), Params.size());
1070    }
1071
1072    return MergeCompatibleFunctionDecls(New, Old);
1073  }
1074
1075  // GNU C permits a K&R definition to follow a prototype declaration
1076  // if the declared types of the parameters in the K&R definition
1077  // match the types in the prototype declaration, even when the
1078  // promoted types of the parameters from the K&R definition differ
1079  // from the types in the prototype. GCC then keeps the types from
1080  // the prototype.
1081  //
1082  // If a variadic prototype is followed by a non-variadic K&R definition,
1083  // the K&R definition becomes variadic.  This is sort of an edge case, but
1084  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1085  // C99 6.9.1p8.
1086  if (!getLangOptions().CPlusPlus &&
1087      Old->hasPrototype() && !New->hasPrototype() &&
1088      New->getType()->getAs<FunctionProtoType>() &&
1089      Old->getNumParams() == New->getNumParams()) {
1090    llvm::SmallVector<QualType, 16> ArgTypes;
1091    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1092    const FunctionProtoType *OldProto
1093      = Old->getType()->getAs<FunctionProtoType>();
1094    const FunctionProtoType *NewProto
1095      = New->getType()->getAs<FunctionProtoType>();
1096
1097    // Determine whether this is the GNU C extension.
1098    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1099                                               NewProto->getResultType());
1100    bool LooseCompatible = !MergedReturn.isNull();
1101    for (unsigned Idx = 0, End = Old->getNumParams();
1102         LooseCompatible && Idx != End; ++Idx) {
1103      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1104      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1105      if (Context.typesAreCompatible(OldParm->getType(),
1106                                     NewProto->getArgType(Idx))) {
1107        ArgTypes.push_back(NewParm->getType());
1108      } else if (Context.typesAreCompatible(OldParm->getType(),
1109                                            NewParm->getType())) {
1110        GNUCompatibleParamWarning Warn
1111          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1112        Warnings.push_back(Warn);
1113        ArgTypes.push_back(NewParm->getType());
1114      } else
1115        LooseCompatible = false;
1116    }
1117
1118    if (LooseCompatible) {
1119      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1120        Diag(Warnings[Warn].NewParm->getLocation(),
1121             diag::ext_param_promoted_not_compatible_with_prototype)
1122          << Warnings[Warn].PromotedType
1123          << Warnings[Warn].OldParm->getType();
1124        Diag(Warnings[Warn].OldParm->getLocation(),
1125             diag::note_previous_declaration);
1126      }
1127
1128      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1129                                           ArgTypes.size(),
1130                                           OldProto->isVariadic(), 0));
1131      return MergeCompatibleFunctionDecls(New, Old);
1132    }
1133
1134    // Fall through to diagnose conflicting types.
1135  }
1136
1137  // A function that has already been declared has been redeclared or defined
1138  // with a different type- show appropriate diagnostic
1139  if (unsigned BuiltinID = Old->getBuiltinID()) {
1140    // The user has declared a builtin function with an incompatible
1141    // signature.
1142    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1143      // The function the user is redeclaring is a library-defined
1144      // function like 'malloc' or 'printf'. Warn about the
1145      // redeclaration, then pretend that we don't know about this
1146      // library built-in.
1147      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1148      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1149        << Old << Old->getType();
1150      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1151      Old->setInvalidDecl();
1152      return false;
1153    }
1154
1155    PrevDiag = diag::note_previous_builtin_declaration;
1156  }
1157
1158  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1159  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1160  return true;
1161}
1162
1163/// \brief Completes the merge of two function declarations that are
1164/// known to be compatible.
1165///
1166/// This routine handles the merging of attributes and other
1167/// properties of function declarations form the old declaration to
1168/// the new declaration, once we know that New is in fact a
1169/// redeclaration of Old.
1170///
1171/// \returns false
1172bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1173  // Merge the attributes
1174  MergeAttributes(New, Old, Context);
1175
1176  // Merge the storage class.
1177  if (Old->getStorageClass() != FunctionDecl::Extern &&
1178      Old->getStorageClass() != FunctionDecl::None)
1179    New->setStorageClass(Old->getStorageClass());
1180
1181  // Merge "pure" flag.
1182  if (Old->isPure())
1183    New->setPure();
1184
1185  // Merge the "deleted" flag.
1186  if (Old->isDeleted())
1187    New->setDeleted();
1188
1189  if (getLangOptions().CPlusPlus)
1190    return MergeCXXFunctionDecl(New, Old);
1191
1192  return false;
1193}
1194
1195/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1196/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1197/// situation, merging decls or emitting diagnostics as appropriate.
1198///
1199/// Tentative definition rules (C99 6.9.2p2) are checked by
1200/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1201/// definitions here, since the initializer hasn't been attached.
1202///
1203void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1204  // If the new decl is already invalid, don't do any other checking.
1205  if (New->isInvalidDecl())
1206    return;
1207
1208  // Verify the old decl was also a variable.
1209  VarDecl *Old = 0;
1210  if (!Previous.isSingleResult() ||
1211      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1212    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1213      << New->getDeclName();
1214    Diag(Previous.getRepresentativeDecl()->getLocation(),
1215         diag::note_previous_definition);
1216    return New->setInvalidDecl();
1217  }
1218
1219  MergeAttributes(New, Old, Context);
1220
1221  // Merge the types
1222  QualType MergedT;
1223  if (getLangOptions().CPlusPlus) {
1224    if (Context.hasSameType(New->getType(), Old->getType()))
1225      MergedT = New->getType();
1226    // C++ [basic.link]p10:
1227    //   [...] the types specified by all declarations referring to a given
1228    //   object or function shall be identical, except that declarations for an
1229    //   array object can specify array types that differ by the presence or
1230    //   absence of a major array bound (8.3.4).
1231    else if (Old->getType()->isIncompleteArrayType() &&
1232             New->getType()->isArrayType()) {
1233      CanQual<ArrayType> OldArray
1234        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1235      CanQual<ArrayType> NewArray
1236        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1237      if (OldArray->getElementType() == NewArray->getElementType())
1238        MergedT = New->getType();
1239    } else if (Old->getType()->isArrayType() &&
1240             New->getType()->isIncompleteArrayType()) {
1241      CanQual<ArrayType> OldArray
1242        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1243      CanQual<ArrayType> NewArray
1244        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1245      if (OldArray->getElementType() == NewArray->getElementType())
1246        MergedT = Old->getType();
1247    }
1248  } else {
1249    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1250  }
1251  if (MergedT.isNull()) {
1252    Diag(New->getLocation(), diag::err_redefinition_different_type)
1253      << New->getDeclName();
1254    Diag(Old->getLocation(), diag::note_previous_definition);
1255    return New->setInvalidDecl();
1256  }
1257  New->setType(MergedT);
1258
1259  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1260  if (New->getStorageClass() == VarDecl::Static &&
1261      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1262    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1263    Diag(Old->getLocation(), diag::note_previous_definition);
1264    return New->setInvalidDecl();
1265  }
1266  // C99 6.2.2p4:
1267  //   For an identifier declared with the storage-class specifier
1268  //   extern in a scope in which a prior declaration of that
1269  //   identifier is visible,23) if the prior declaration specifies
1270  //   internal or external linkage, the linkage of the identifier at
1271  //   the later declaration is the same as the linkage specified at
1272  //   the prior declaration. If no prior declaration is visible, or
1273  //   if the prior declaration specifies no linkage, then the
1274  //   identifier has external linkage.
1275  if (New->hasExternalStorage() && Old->hasLinkage())
1276    /* Okay */;
1277  else if (New->getStorageClass() != VarDecl::Static &&
1278           Old->getStorageClass() == VarDecl::Static) {
1279    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1280    Diag(Old->getLocation(), diag::note_previous_definition);
1281    return New->setInvalidDecl();
1282  }
1283
1284  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1285
1286  // FIXME: The test for external storage here seems wrong? We still
1287  // need to check for mismatches.
1288  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1289      // Don't complain about out-of-line definitions of static members.
1290      !(Old->getLexicalDeclContext()->isRecord() &&
1291        !New->getLexicalDeclContext()->isRecord())) {
1292    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1293    Diag(Old->getLocation(), diag::note_previous_definition);
1294    return New->setInvalidDecl();
1295  }
1296
1297  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1298    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1299    Diag(Old->getLocation(), diag::note_previous_definition);
1300  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1301    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1302    Diag(Old->getLocation(), diag::note_previous_definition);
1303  }
1304
1305  // Keep a chain of previous declarations.
1306  New->setPreviousDeclaration(Old);
1307}
1308
1309static void MarkLive(CFGBlock *e, llvm::BitVector &live) {
1310  std::queue<CFGBlock*> workq;
1311  // Prep work queue
1312  workq.push(e);
1313  // Solve
1314  while (!workq.empty()) {
1315    CFGBlock *item = workq.front();
1316    workq.pop();
1317    live.set(item->getBlockID());
1318    for (CFGBlock::succ_iterator I=item->succ_begin(),
1319           E=item->succ_end();
1320         I != E;
1321         ++I) {
1322      if ((*I) && !live[(*I)->getBlockID()]) {
1323        live.set((*I)->getBlockID());
1324        workq.push(*I);
1325      }
1326    }
1327  }
1328}
1329
1330/// CheckUnreachable - Check for unreachable code.
1331void Sema::CheckUnreachable(AnalysisContext &AC) {
1332  // We avoid checking when there are errors, as the CFG won't faithfully match
1333  // the user's code.
1334  if (getDiagnostics().hasErrorOccurred())
1335    return;
1336  if (Diags.getDiagnosticLevel(diag::warn_unreachable) == Diagnostic::Ignored)
1337    return;
1338
1339  CFG *cfg = AC.getCFG();
1340  if (cfg == 0)
1341    return;
1342
1343  llvm::BitVector live(cfg->getNumBlockIDs());
1344  // Mark all live things first.
1345  MarkLive(&cfg->getEntry(), live);
1346
1347  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
1348    CFGBlock &b = **I;
1349    if (!live[b.getBlockID()]) {
1350      if (!b.empty())
1351        Diag(b[0].getStmt()->getLocStart(), diag::warn_unreachable);
1352      // Avoid excessive errors by marking everything reachable from here
1353      MarkLive(&b, live);
1354    }
1355  }
1356}
1357
1358/// CheckFallThrough - Check that we don't fall off the end of a
1359/// Statement that should return a value.
1360///
1361/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1362/// MaybeFallThrough iff we might or might not fall off the end,
1363/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1364/// return.  We assume NeverFallThrough iff we never fall off the end of the
1365/// statement but we may return.  We assume that functions not marked noreturn
1366/// will return.
1367Sema::ControlFlowKind Sema::CheckFallThrough(AnalysisContext &AC) {
1368  CFG *cfg = AC.getCFG();
1369  if (cfg == 0)
1370    // FIXME: This should be NeverFallThrough
1371    return NeverFallThroughOrReturn;
1372
1373  // The CFG leaves in dead things, and we don't want to dead code paths to
1374  // confuse us, so we mark all live things first.
1375  std::queue<CFGBlock*> workq;
1376  llvm::BitVector live(cfg->getNumBlockIDs());
1377  MarkLive(&cfg->getEntry(), live);
1378
1379  // Now we know what is live, we check the live precessors of the exit block
1380  // and look for fall through paths, being careful to ignore normal returns,
1381  // and exceptional paths.
1382  bool HasLiveReturn = false;
1383  bool HasFakeEdge = false;
1384  bool HasPlainEdge = false;
1385  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1386         E = cfg->getExit().pred_end();
1387       I != E;
1388       ++I) {
1389    CFGBlock& B = **I;
1390    if (!live[B.getBlockID()])
1391      continue;
1392    if (B.size() == 0) {
1393      // A labeled empty statement, or the entry block...
1394      HasPlainEdge = true;
1395      continue;
1396    }
1397    Stmt *S = B[B.size()-1];
1398    if (isa<ReturnStmt>(S)) {
1399      HasLiveReturn = true;
1400      continue;
1401    }
1402    if (isa<ObjCAtThrowStmt>(S)) {
1403      HasFakeEdge = true;
1404      continue;
1405    }
1406    if (isa<CXXThrowExpr>(S)) {
1407      HasFakeEdge = true;
1408      continue;
1409    }
1410    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
1411      if (AS->isMSAsm()) {
1412        HasFakeEdge = true;
1413        HasLiveReturn = true;
1414        continue;
1415      }
1416    }
1417
1418    bool NoReturnEdge = false;
1419    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1420      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1421      if (CEE->getType().getNoReturnAttr()) {
1422        NoReturnEdge = true;
1423        HasFakeEdge = true;
1424      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1425        ValueDecl *VD = DRE->getDecl();
1426        if (VD->hasAttr<NoReturnAttr>()) {
1427          NoReturnEdge = true;
1428          HasFakeEdge = true;
1429        }
1430      }
1431    }
1432    // FIXME: Add noreturn message sends.
1433    if (NoReturnEdge == false)
1434      HasPlainEdge = true;
1435  }
1436  if (!HasPlainEdge) {
1437    if (HasLiveReturn)
1438      return NeverFallThrough;
1439    return NeverFallThroughOrReturn;
1440  }
1441  if (HasFakeEdge || HasLiveReturn)
1442    return MaybeFallThrough;
1443  // This says AlwaysFallThrough for calls to functions that are not marked
1444  // noreturn, that don't return.  If people would like this warning to be more
1445  // accurate, such functions should be marked as noreturn.
1446  return AlwaysFallThrough;
1447}
1448
1449/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1450/// function that should return a value.  Check that we don't fall off the end
1451/// of a noreturn function.  We assume that functions and blocks not marked
1452/// noreturn will return.
1453void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body,
1454                                          AnalysisContext &AC) {
1455  // FIXME: Would be nice if we had a better way to control cascading errors,
1456  // but for now, avoid them.  The problem is that when Parse sees:
1457  //   int foo() { return a; }
1458  // The return is eaten and the Sema code sees just:
1459  //   int foo() { }
1460  // which this code would then warn about.
1461  if (getDiagnostics().hasErrorOccurred())
1462    return;
1463
1464  bool ReturnsVoid = false;
1465  bool HasNoReturn = false;
1466  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1467    // If the result type of the function is a dependent type, we don't know
1468    // whether it will be void or not, so don't
1469    if (FD->getResultType()->isDependentType())
1470      return;
1471    if (FD->getResultType()->isVoidType())
1472      ReturnsVoid = true;
1473    if (FD->hasAttr<NoReturnAttr>())
1474      HasNoReturn = true;
1475  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1476    if (MD->getResultType()->isVoidType())
1477      ReturnsVoid = true;
1478    if (MD->hasAttr<NoReturnAttr>())
1479      HasNoReturn = true;
1480  }
1481
1482  // Short circuit for compilation speed.
1483  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1484       == Diagnostic::Ignored || ReturnsVoid)
1485      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1486          == Diagnostic::Ignored || !HasNoReturn)
1487      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1488          == Diagnostic::Ignored || !ReturnsVoid))
1489    return;
1490  // FIXME: Function try block
1491  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1492    switch (CheckFallThrough(AC)) {
1493    case MaybeFallThrough:
1494      if (HasNoReturn)
1495        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1496      else if (!ReturnsVoid)
1497        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1498      break;
1499    case AlwaysFallThrough:
1500      if (HasNoReturn)
1501        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1502      else if (!ReturnsVoid)
1503        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1504      break;
1505    case NeverFallThroughOrReturn:
1506      if (ReturnsVoid && !HasNoReturn)
1507        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1508      break;
1509    case NeverFallThrough:
1510      break;
1511    }
1512  }
1513}
1514
1515/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1516/// that should return a value.  Check that we don't fall off the end of a
1517/// noreturn block.  We assume that functions and blocks not marked noreturn
1518/// will return.
1519void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body,
1520                                    AnalysisContext &AC) {
1521  // FIXME: Would be nice if we had a better way to control cascading errors,
1522  // but for now, avoid them.  The problem is that when Parse sees:
1523  //   int foo() { return a; }
1524  // The return is eaten and the Sema code sees just:
1525  //   int foo() { }
1526  // which this code would then warn about.
1527  if (getDiagnostics().hasErrorOccurred())
1528    return;
1529  bool ReturnsVoid = false;
1530  bool HasNoReturn = false;
1531  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1532    if (FT->getResultType()->isVoidType())
1533      ReturnsVoid = true;
1534    if (FT->getNoReturnAttr())
1535      HasNoReturn = true;
1536  }
1537
1538  // Short circuit for compilation speed.
1539  if (ReturnsVoid
1540      && !HasNoReturn
1541      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1542          == Diagnostic::Ignored || !ReturnsVoid))
1543    return;
1544  // FIXME: Funtion try block
1545  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1546    switch (CheckFallThrough(AC)) {
1547    case MaybeFallThrough:
1548      if (HasNoReturn)
1549        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1550      else if (!ReturnsVoid)
1551        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1552      break;
1553    case AlwaysFallThrough:
1554      if (HasNoReturn)
1555        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1556      else if (!ReturnsVoid)
1557        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1558      break;
1559    case NeverFallThroughOrReturn:
1560      if (ReturnsVoid)
1561        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1562      break;
1563    case NeverFallThrough:
1564      break;
1565    }
1566  }
1567}
1568
1569/// CheckParmsForFunctionDef - Check that the parameters of the given
1570/// function are appropriate for the definition of a function. This
1571/// takes care of any checks that cannot be performed on the
1572/// declaration itself, e.g., that the types of each of the function
1573/// parameters are complete.
1574bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1575  bool HasInvalidParm = false;
1576  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1577    ParmVarDecl *Param = FD->getParamDecl(p);
1578
1579    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1580    // function declarator that is part of a function definition of
1581    // that function shall not have incomplete type.
1582    //
1583    // This is also C++ [dcl.fct]p6.
1584    if (!Param->isInvalidDecl() &&
1585        RequireCompleteType(Param->getLocation(), Param->getType(),
1586                               diag::err_typecheck_decl_incomplete_type)) {
1587      Param->setInvalidDecl();
1588      HasInvalidParm = true;
1589    }
1590
1591    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1592    // declaration of each parameter shall include an identifier.
1593    if (Param->getIdentifier() == 0 &&
1594        !Param->isImplicit() &&
1595        !getLangOptions().CPlusPlus)
1596      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1597  }
1598
1599  return HasInvalidParm;
1600}
1601
1602/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1603/// no declarator (e.g. "struct foo;") is parsed.
1604Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1605  // FIXME: Error on auto/register at file scope
1606  // FIXME: Error on inline/virtual/explicit
1607  // FIXME: Warn on useless __thread
1608  // FIXME: Warn on useless const/volatile
1609  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1610  // FIXME: Warn on useless attributes
1611  Decl *TagD = 0;
1612  TagDecl *Tag = 0;
1613  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1614      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1615      DS.getTypeSpecType() == DeclSpec::TST_union ||
1616      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1617    TagD = static_cast<Decl *>(DS.getTypeRep());
1618
1619    if (!TagD) // We probably had an error
1620      return DeclPtrTy();
1621
1622    // Note that the above type specs guarantee that the
1623    // type rep is a Decl, whereas in many of the others
1624    // it's a Type.
1625    Tag = dyn_cast<TagDecl>(TagD);
1626  }
1627
1628  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1629    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1630    // or incomplete types shall not be restrict-qualified."
1631    if (TypeQuals & DeclSpec::TQ_restrict)
1632      Diag(DS.getRestrictSpecLoc(),
1633           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1634           << DS.getSourceRange();
1635  }
1636
1637  if (DS.isFriendSpecified()) {
1638    // If we're dealing with a class template decl, assume that the
1639    // template routines are handling it.
1640    if (TagD && isa<ClassTemplateDecl>(TagD))
1641      return DeclPtrTy();
1642    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1643  }
1644
1645  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1646    // If there are attributes in the DeclSpec, apply them to the record.
1647    if (const AttributeList *AL = DS.getAttributes())
1648      ProcessDeclAttributeList(S, Record, AL);
1649
1650    if (!Record->getDeclName() && Record->isDefinition() &&
1651        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1652      if (getLangOptions().CPlusPlus ||
1653          Record->getDeclContext()->isRecord())
1654        return BuildAnonymousStructOrUnion(S, DS, Record);
1655
1656      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1657        << DS.getSourceRange();
1658    }
1659
1660    // Microsoft allows unnamed struct/union fields. Don't complain
1661    // about them.
1662    // FIXME: Should we support Microsoft's extensions in this area?
1663    if (Record->getDeclName() && getLangOptions().Microsoft)
1664      return DeclPtrTy::make(Tag);
1665  }
1666
1667  if (!DS.isMissingDeclaratorOk() &&
1668      DS.getTypeSpecType() != DeclSpec::TST_error) {
1669    // Warn about typedefs of enums without names, since this is an
1670    // extension in both Microsoft an GNU.
1671    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1672        Tag && isa<EnumDecl>(Tag)) {
1673      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1674        << DS.getSourceRange();
1675      return DeclPtrTy::make(Tag);
1676    }
1677
1678    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1679      << DS.getSourceRange();
1680    return DeclPtrTy();
1681  }
1682
1683  return DeclPtrTy::make(Tag);
1684}
1685
1686/// We are trying to inject an anonymous member into the given scope;
1687/// check if there's an existing declaration that can't be overloaded.
1688///
1689/// \return true if this is a forbidden redeclaration
1690static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1691                                         Scope *S,
1692                                         DeclarationName Name,
1693                                         SourceLocation NameLoc,
1694                                         unsigned diagnostic) {
1695  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1696                 Sema::ForRedeclaration);
1697  if (!SemaRef.LookupName(R, S)) return false;
1698
1699  if (R.getAsSingle<TagDecl>())
1700    return false;
1701
1702  // Pick a representative declaration.
1703  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1704
1705  SemaRef.Diag(NameLoc, diagnostic) << Name;
1706  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1707
1708  return true;
1709}
1710
1711/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1712/// anonymous struct or union AnonRecord into the owning context Owner
1713/// and scope S. This routine will be invoked just after we realize
1714/// that an unnamed union or struct is actually an anonymous union or
1715/// struct, e.g.,
1716///
1717/// @code
1718/// union {
1719///   int i;
1720///   float f;
1721/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1722///    // f into the surrounding scope.x
1723/// @endcode
1724///
1725/// This routine is recursive, injecting the names of nested anonymous
1726/// structs/unions into the owning context and scope as well.
1727bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1728                                               RecordDecl *AnonRecord) {
1729  unsigned diagKind
1730    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1731                            : diag::err_anonymous_struct_member_redecl;
1732
1733  bool Invalid = false;
1734  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1735                               FEnd = AnonRecord->field_end();
1736       F != FEnd; ++F) {
1737    if ((*F)->getDeclName()) {
1738      if (CheckAnonMemberRedeclaration(*this, S, (*F)->getDeclName(),
1739                                       (*F)->getLocation(), diagKind)) {
1740        // C++ [class.union]p2:
1741        //   The names of the members of an anonymous union shall be
1742        //   distinct from the names of any other entity in the
1743        //   scope in which the anonymous union is declared.
1744        Invalid = true;
1745      } else {
1746        // C++ [class.union]p2:
1747        //   For the purpose of name lookup, after the anonymous union
1748        //   definition, the members of the anonymous union are
1749        //   considered to have been defined in the scope in which the
1750        //   anonymous union is declared.
1751        Owner->makeDeclVisibleInContext(*F);
1752        S->AddDecl(DeclPtrTy::make(*F));
1753        IdResolver.AddDecl(*F);
1754      }
1755    } else if (const RecordType *InnerRecordType
1756                 = (*F)->getType()->getAs<RecordType>()) {
1757      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1758      if (InnerRecord->isAnonymousStructOrUnion())
1759        Invalid = Invalid ||
1760          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1761    }
1762  }
1763
1764  return Invalid;
1765}
1766
1767/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1768/// anonymous structure or union. Anonymous unions are a C++ feature
1769/// (C++ [class.union]) and a GNU C extension; anonymous structures
1770/// are a GNU C and GNU C++ extension.
1771Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1772                                                  RecordDecl *Record) {
1773  DeclContext *Owner = Record->getDeclContext();
1774
1775  // Diagnose whether this anonymous struct/union is an extension.
1776  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1777    Diag(Record->getLocation(), diag::ext_anonymous_union);
1778  else if (!Record->isUnion())
1779    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1780
1781  // C and C++ require different kinds of checks for anonymous
1782  // structs/unions.
1783  bool Invalid = false;
1784  if (getLangOptions().CPlusPlus) {
1785    const char* PrevSpec = 0;
1786    unsigned DiagID;
1787    // C++ [class.union]p3:
1788    //   Anonymous unions declared in a named namespace or in the
1789    //   global namespace shall be declared static.
1790    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1791        (isa<TranslationUnitDecl>(Owner) ||
1792         (isa<NamespaceDecl>(Owner) &&
1793          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1794      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1795      Invalid = true;
1796
1797      // Recover by adding 'static'.
1798      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1799                             PrevSpec, DiagID);
1800    }
1801    // C++ [class.union]p3:
1802    //   A storage class is not allowed in a declaration of an
1803    //   anonymous union in a class scope.
1804    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1805             isa<RecordDecl>(Owner)) {
1806      Diag(DS.getStorageClassSpecLoc(),
1807           diag::err_anonymous_union_with_storage_spec);
1808      Invalid = true;
1809
1810      // Recover by removing the storage specifier.
1811      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1812                             PrevSpec, DiagID);
1813    }
1814
1815    // C++ [class.union]p2:
1816    //   The member-specification of an anonymous union shall only
1817    //   define non-static data members. [Note: nested types and
1818    //   functions cannot be declared within an anonymous union. ]
1819    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1820                                 MemEnd = Record->decls_end();
1821         Mem != MemEnd; ++Mem) {
1822      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1823        // C++ [class.union]p3:
1824        //   An anonymous union shall not have private or protected
1825        //   members (clause 11).
1826        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1827          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1828            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1829          Invalid = true;
1830        }
1831      } else if ((*Mem)->isImplicit()) {
1832        // Any implicit members are fine.
1833      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1834        // This is a type that showed up in an
1835        // elaborated-type-specifier inside the anonymous struct or
1836        // union, but which actually declares a type outside of the
1837        // anonymous struct or union. It's okay.
1838      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1839        if (!MemRecord->isAnonymousStructOrUnion() &&
1840            MemRecord->getDeclName()) {
1841          // This is a nested type declaration.
1842          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1843            << (int)Record->isUnion();
1844          Invalid = true;
1845        }
1846      } else {
1847        // We have something that isn't a non-static data
1848        // member. Complain about it.
1849        unsigned DK = diag::err_anonymous_record_bad_member;
1850        if (isa<TypeDecl>(*Mem))
1851          DK = diag::err_anonymous_record_with_type;
1852        else if (isa<FunctionDecl>(*Mem))
1853          DK = diag::err_anonymous_record_with_function;
1854        else if (isa<VarDecl>(*Mem))
1855          DK = diag::err_anonymous_record_with_static;
1856        Diag((*Mem)->getLocation(), DK)
1857            << (int)Record->isUnion();
1858          Invalid = true;
1859      }
1860    }
1861  }
1862
1863  if (!Record->isUnion() && !Owner->isRecord()) {
1864    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1865      << (int)getLangOptions().CPlusPlus;
1866    Invalid = true;
1867  }
1868
1869  // Mock up a declarator.
1870  Declarator Dc(DS, Declarator::TypeNameContext);
1871  TypeSourceInfo *TInfo = 0;
1872  GetTypeForDeclarator(Dc, S, &TInfo);
1873  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1874
1875  // Create a declaration for this anonymous struct/union.
1876  NamedDecl *Anon = 0;
1877  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1878    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1879                             /*IdentifierInfo=*/0,
1880                             Context.getTypeDeclType(Record),
1881                             TInfo,
1882                             /*BitWidth=*/0, /*Mutable=*/false);
1883    Anon->setAccess(AS_public);
1884    if (getLangOptions().CPlusPlus)
1885      FieldCollector->Add(cast<FieldDecl>(Anon));
1886  } else {
1887    VarDecl::StorageClass SC;
1888    switch (DS.getStorageClassSpec()) {
1889    default: assert(0 && "Unknown storage class!");
1890    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1891    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1892    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1893    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1894    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1895    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1896    case DeclSpec::SCS_mutable:
1897      // mutable can only appear on non-static class members, so it's always
1898      // an error here
1899      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1900      Invalid = true;
1901      SC = VarDecl::None;
1902      break;
1903    }
1904
1905    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1906                           /*IdentifierInfo=*/0,
1907                           Context.getTypeDeclType(Record),
1908                           TInfo,
1909                           SC);
1910  }
1911  Anon->setImplicit();
1912
1913  // Add the anonymous struct/union object to the current
1914  // context. We'll be referencing this object when we refer to one of
1915  // its members.
1916  Owner->addDecl(Anon);
1917
1918  // Inject the members of the anonymous struct/union into the owning
1919  // context and into the identifier resolver chain for name lookup
1920  // purposes.
1921  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1922    Invalid = true;
1923
1924  // Mark this as an anonymous struct/union type. Note that we do not
1925  // do this until after we have already checked and injected the
1926  // members of this anonymous struct/union type, because otherwise
1927  // the members could be injected twice: once by DeclContext when it
1928  // builds its lookup table, and once by
1929  // InjectAnonymousStructOrUnionMembers.
1930  Record->setAnonymousStructOrUnion(true);
1931
1932  if (Invalid)
1933    Anon->setInvalidDecl();
1934
1935  return DeclPtrTy::make(Anon);
1936}
1937
1938
1939/// GetNameForDeclarator - Determine the full declaration name for the
1940/// given Declarator.
1941DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1942  return GetNameFromUnqualifiedId(D.getName());
1943}
1944
1945/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1946DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1947  switch (Name.getKind()) {
1948    case UnqualifiedId::IK_Identifier:
1949      return DeclarationName(Name.Identifier);
1950
1951    case UnqualifiedId::IK_OperatorFunctionId:
1952      return Context.DeclarationNames.getCXXOperatorName(
1953                                              Name.OperatorFunctionId.Operator);
1954
1955    case UnqualifiedId::IK_LiteralOperatorId:
1956      return Context.DeclarationNames.getCXXLiteralOperatorName(
1957                                                               Name.Identifier);
1958
1959    case UnqualifiedId::IK_ConversionFunctionId: {
1960      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1961      if (Ty.isNull())
1962        return DeclarationName();
1963
1964      return Context.DeclarationNames.getCXXConversionFunctionName(
1965                                                  Context.getCanonicalType(Ty));
1966    }
1967
1968    case UnqualifiedId::IK_ConstructorName: {
1969      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1970      if (Ty.isNull())
1971        return DeclarationName();
1972
1973      return Context.DeclarationNames.getCXXConstructorName(
1974                                                  Context.getCanonicalType(Ty));
1975    }
1976
1977    case UnqualifiedId::IK_ConstructorTemplateId: {
1978      // In well-formed code, we can only have a constructor
1979      // template-id that refers to the current context, so go there
1980      // to find the actual type being constructed.
1981      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1982      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1983        return DeclarationName();
1984
1985      // Determine the type of the class being constructed.
1986      QualType CurClassType;
1987      if (ClassTemplateDecl *ClassTemplate
1988            = CurClass->getDescribedClassTemplate())
1989        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
1990      else
1991        CurClassType = Context.getTypeDeclType(CurClass);
1992
1993      // FIXME: Check two things: that the template-id names the same type as
1994      // CurClassType, and that the template-id does not occur when the name
1995      // was qualified.
1996
1997      return Context.DeclarationNames.getCXXConstructorName(
1998                                       Context.getCanonicalType(CurClassType));
1999    }
2000
2001    case UnqualifiedId::IK_DestructorName: {
2002      QualType Ty = GetTypeFromParser(Name.DestructorName);
2003      if (Ty.isNull())
2004        return DeclarationName();
2005
2006      return Context.DeclarationNames.getCXXDestructorName(
2007                                                           Context.getCanonicalType(Ty));
2008    }
2009
2010    case UnqualifiedId::IK_TemplateId: {
2011      TemplateName TName
2012        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
2013      return Context.getNameForTemplate(TName);
2014    }
2015  }
2016
2017  assert(false && "Unknown name kind");
2018  return DeclarationName();
2019}
2020
2021/// isNearlyMatchingFunction - Determine whether the C++ functions
2022/// Declaration and Definition are "nearly" matching. This heuristic
2023/// is used to improve diagnostics in the case where an out-of-line
2024/// function definition doesn't match any declaration within
2025/// the class or namespace.
2026static bool isNearlyMatchingFunction(ASTContext &Context,
2027                                     FunctionDecl *Declaration,
2028                                     FunctionDecl *Definition) {
2029  if (Declaration->param_size() != Definition->param_size())
2030    return false;
2031  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2032    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2033    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2034
2035    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2036                                        DefParamTy.getNonReferenceType()))
2037      return false;
2038  }
2039
2040  return true;
2041}
2042
2043Sema::DeclPtrTy
2044Sema::HandleDeclarator(Scope *S, Declarator &D,
2045                       MultiTemplateParamsArg TemplateParamLists,
2046                       bool IsFunctionDefinition) {
2047  DeclarationName Name = GetNameForDeclarator(D);
2048
2049  // All of these full declarators require an identifier.  If it doesn't have
2050  // one, the ParsedFreeStandingDeclSpec action should be used.
2051  if (!Name) {
2052    if (!D.isInvalidType())  // Reject this if we think it is valid.
2053      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2054           diag::err_declarator_need_ident)
2055        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2056    return DeclPtrTy();
2057  }
2058
2059  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2060  // we find one that is.
2061  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2062         (S->getFlags() & Scope::TemplateParamScope) != 0)
2063    S = S->getParent();
2064
2065  // If this is an out-of-line definition of a member of a class template
2066  // or class template partial specialization, we may need to rebuild the
2067  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
2068  // for more information.
2069  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
2070  // handle expressions properly.
2071  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
2072  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
2073      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
2074      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
2075       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
2076       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
2077       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
2078    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
2079      // FIXME: Preserve type source info.
2080      QualType T = GetTypeFromParser(DS.getTypeRep());
2081
2082      DeclContext *SavedContext = CurContext;
2083      CurContext = DC;
2084      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
2085      CurContext = SavedContext;
2086
2087      if (T.isNull())
2088        return DeclPtrTy();
2089      DS.UpdateTypeRep(T.getAsOpaquePtr());
2090    }
2091  }
2092
2093  DeclContext *DC;
2094  NamedDecl *New;
2095
2096  TypeSourceInfo *TInfo = 0;
2097  QualType R = GetTypeForDeclarator(D, S, &TInfo);
2098
2099  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2100                        ForRedeclaration);
2101
2102  // See if this is a redefinition of a variable in the same scope.
2103  if (D.getCXXScopeSpec().isInvalid()) {
2104    DC = CurContext;
2105    D.setInvalidType();
2106  } else if (!D.getCXXScopeSpec().isSet()) {
2107    bool IsLinkageLookup = false;
2108
2109    // If the declaration we're planning to build will be a function
2110    // or object with linkage, then look for another declaration with
2111    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2112    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2113      /* Do nothing*/;
2114    else if (R->isFunctionType()) {
2115      if (CurContext->isFunctionOrMethod() ||
2116          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2117        IsLinkageLookup = true;
2118    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2119      IsLinkageLookup = true;
2120    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2121             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2122      IsLinkageLookup = true;
2123
2124    if (IsLinkageLookup)
2125      Previous.clear(LookupRedeclarationWithLinkage);
2126
2127    DC = CurContext;
2128    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2129  } else { // Something like "int foo::x;"
2130    DC = computeDeclContext(D.getCXXScopeSpec(), true);
2131
2132    if (!DC) {
2133      // If we could not compute the declaration context, it's because the
2134      // declaration context is dependent but does not refer to a class,
2135      // class template, or class template partial specialization. Complain
2136      // and return early, to avoid the coming semantic disaster.
2137      Diag(D.getIdentifierLoc(),
2138           diag::err_template_qualified_declarator_no_match)
2139        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2140        << D.getCXXScopeSpec().getRange();
2141      return DeclPtrTy();
2142    }
2143
2144    if (!DC->isDependentContext() &&
2145        RequireCompleteDeclContext(D.getCXXScopeSpec()))
2146      return DeclPtrTy();
2147
2148    LookupQualifiedName(Previous, DC);
2149
2150    // Don't consider using declarations as previous declarations for
2151    // out-of-line members.
2152    RemoveUsingDecls(Previous);
2153
2154    // C++ 7.3.1.2p2:
2155    // Members (including explicit specializations of templates) of a named
2156    // namespace can also be defined outside that namespace by explicit
2157    // qualification of the name being defined, provided that the entity being
2158    // defined was already declared in the namespace and the definition appears
2159    // after the point of declaration in a namespace that encloses the
2160    // declarations namespace.
2161    //
2162    // Note that we only check the context at this point. We don't yet
2163    // have enough information to make sure that PrevDecl is actually
2164    // the declaration we want to match. For example, given:
2165    //
2166    //   class X {
2167    //     void f();
2168    //     void f(float);
2169    //   };
2170    //
2171    //   void X::f(int) { } // ill-formed
2172    //
2173    // In this case, PrevDecl will point to the overload set
2174    // containing the two f's declared in X, but neither of them
2175    // matches.
2176
2177    // First check whether we named the global scope.
2178    if (isa<TranslationUnitDecl>(DC)) {
2179      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2180        << Name << D.getCXXScopeSpec().getRange();
2181    } else {
2182      DeclContext *Cur = CurContext;
2183      while (isa<LinkageSpecDecl>(Cur))
2184        Cur = Cur->getParent();
2185      if (!Cur->Encloses(DC)) {
2186        // The qualifying scope doesn't enclose the original declaration.
2187        // Emit diagnostic based on current scope.
2188        SourceLocation L = D.getIdentifierLoc();
2189        SourceRange R = D.getCXXScopeSpec().getRange();
2190        if (isa<FunctionDecl>(Cur))
2191          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2192        else
2193          Diag(L, diag::err_invalid_declarator_scope)
2194            << Name << cast<NamedDecl>(DC) << R;
2195        D.setInvalidType();
2196      }
2197    }
2198  }
2199
2200  if (Previous.isSingleResult() &&
2201      Previous.getFoundDecl()->isTemplateParameter()) {
2202    // Maybe we will complain about the shadowed template parameter.
2203    if (!D.isInvalidType())
2204      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2205                                          Previous.getFoundDecl()))
2206        D.setInvalidType();
2207
2208    // Just pretend that we didn't see the previous declaration.
2209    Previous.clear();
2210  }
2211
2212  // In C++, the previous declaration we find might be a tag type
2213  // (class or enum). In this case, the new declaration will hide the
2214  // tag type. Note that this does does not apply if we're declaring a
2215  // typedef (C++ [dcl.typedef]p4).
2216  if (Previous.isSingleTagDecl() &&
2217      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2218    Previous.clear();
2219
2220  bool Redeclaration = false;
2221  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2222    if (TemplateParamLists.size()) {
2223      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2224      return DeclPtrTy();
2225    }
2226
2227    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2228  } else if (R->isFunctionType()) {
2229    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2230                                  move(TemplateParamLists),
2231                                  IsFunctionDefinition, Redeclaration);
2232  } else {
2233    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2234                                  move(TemplateParamLists),
2235                                  Redeclaration);
2236  }
2237
2238  if (New == 0)
2239    return DeclPtrTy();
2240
2241  // If this has an identifier and is not an invalid redeclaration or
2242  // function template specialization, add it to the scope stack.
2243  if (Name && !(Redeclaration && New->isInvalidDecl()))
2244    PushOnScopeChains(New, S);
2245
2246  return DeclPtrTy::make(New);
2247}
2248
2249/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2250/// types into constant array types in certain situations which would otherwise
2251/// be errors (for GCC compatibility).
2252static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2253                                                    ASTContext &Context,
2254                                                    bool &SizeIsNegative) {
2255  // This method tries to turn a variable array into a constant
2256  // array even when the size isn't an ICE.  This is necessary
2257  // for compatibility with code that depends on gcc's buggy
2258  // constant expression folding, like struct {char x[(int)(char*)2];}
2259  SizeIsNegative = false;
2260
2261  QualifierCollector Qs;
2262  const Type *Ty = Qs.strip(T);
2263
2264  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2265    QualType Pointee = PTy->getPointeeType();
2266    QualType FixedType =
2267        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2268    if (FixedType.isNull()) return FixedType;
2269    FixedType = Context.getPointerType(FixedType);
2270    return Qs.apply(FixedType);
2271  }
2272
2273  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2274  if (!VLATy)
2275    return QualType();
2276  // FIXME: We should probably handle this case
2277  if (VLATy->getElementType()->isVariablyModifiedType())
2278    return QualType();
2279
2280  Expr::EvalResult EvalResult;
2281  if (!VLATy->getSizeExpr() ||
2282      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2283      !EvalResult.Val.isInt())
2284    return QualType();
2285
2286  llvm::APSInt &Res = EvalResult.Val.getInt();
2287  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2288    // TODO: preserve the size expression in declarator info
2289    return Context.getConstantArrayType(VLATy->getElementType(),
2290                                        Res, ArrayType::Normal, 0);
2291  }
2292
2293  SizeIsNegative = true;
2294  return QualType();
2295}
2296
2297/// \brief Register the given locally-scoped external C declaration so
2298/// that it can be found later for redeclarations
2299void
2300Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2301                                       const LookupResult &Previous,
2302                                       Scope *S) {
2303  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2304         "Decl is not a locally-scoped decl!");
2305  // Note that we have a locally-scoped external with this name.
2306  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2307
2308  if (!Previous.isSingleResult())
2309    return;
2310
2311  NamedDecl *PrevDecl = Previous.getFoundDecl();
2312
2313  // If there was a previous declaration of this variable, it may be
2314  // in our identifier chain. Update the identifier chain with the new
2315  // declaration.
2316  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2317    // The previous declaration was found on the identifer resolver
2318    // chain, so remove it from its scope.
2319    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2320      S = S->getParent();
2321
2322    if (S)
2323      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2324  }
2325}
2326
2327/// \brief Diagnose function specifiers on a declaration of an identifier that
2328/// does not identify a function.
2329void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2330  // FIXME: We should probably indicate the identifier in question to avoid
2331  // confusion for constructs like "inline int a(), b;"
2332  if (D.getDeclSpec().isInlineSpecified())
2333    Diag(D.getDeclSpec().getInlineSpecLoc(),
2334         diag::err_inline_non_function);
2335
2336  if (D.getDeclSpec().isVirtualSpecified())
2337    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2338         diag::err_virtual_non_function);
2339
2340  if (D.getDeclSpec().isExplicitSpecified())
2341    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2342         diag::err_explicit_non_function);
2343}
2344
2345NamedDecl*
2346Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2347                             QualType R,  TypeSourceInfo *TInfo,
2348                             LookupResult &Previous, bool &Redeclaration) {
2349  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2350  if (D.getCXXScopeSpec().isSet()) {
2351    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2352      << D.getCXXScopeSpec().getRange();
2353    D.setInvalidType();
2354    // Pretend we didn't see the scope specifier.
2355    DC = 0;
2356  }
2357
2358  if (getLangOptions().CPlusPlus) {
2359    // Check that there are no default arguments (C++ only).
2360    CheckExtraCXXDefaultArguments(D);
2361  }
2362
2363  DiagnoseFunctionSpecifiers(D);
2364
2365  if (D.getDeclSpec().isThreadSpecified())
2366    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2367
2368  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2369  if (!NewTD) return 0;
2370
2371  // Handle attributes prior to checking for duplicates in MergeVarDecl
2372  ProcessDeclAttributes(S, NewTD, D);
2373
2374  // Merge the decl with the existing one if appropriate. If the decl is
2375  // in an outer scope, it isn't the same thing.
2376  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2377  if (!Previous.empty()) {
2378    Redeclaration = true;
2379    MergeTypeDefDecl(NewTD, Previous);
2380  }
2381
2382  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2383  // then it shall have block scope.
2384  QualType T = NewTD->getUnderlyingType();
2385  if (T->isVariablyModifiedType()) {
2386    CurFunctionNeedsScopeChecking = true;
2387
2388    if (S->getFnParent() == 0) {
2389      bool SizeIsNegative;
2390      QualType FixedTy =
2391          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2392      if (!FixedTy.isNull()) {
2393        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2394        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2395      } else {
2396        if (SizeIsNegative)
2397          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2398        else if (T->isVariableArrayType())
2399          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2400        else
2401          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2402        NewTD->setInvalidDecl();
2403      }
2404    }
2405  }
2406
2407  // If this is the C FILE type, notify the AST context.
2408  if (IdentifierInfo *II = NewTD->getIdentifier())
2409    if (!NewTD->isInvalidDecl() &&
2410        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2411      if (II->isStr("FILE"))
2412        Context.setFILEDecl(NewTD);
2413      else if (II->isStr("jmp_buf"))
2414        Context.setjmp_bufDecl(NewTD);
2415      else if (II->isStr("sigjmp_buf"))
2416        Context.setsigjmp_bufDecl(NewTD);
2417    }
2418
2419  return NewTD;
2420}
2421
2422/// \brief Determines whether the given declaration is an out-of-scope
2423/// previous declaration.
2424///
2425/// This routine should be invoked when name lookup has found a
2426/// previous declaration (PrevDecl) that is not in the scope where a
2427/// new declaration by the same name is being introduced. If the new
2428/// declaration occurs in a local scope, previous declarations with
2429/// linkage may still be considered previous declarations (C99
2430/// 6.2.2p4-5, C++ [basic.link]p6).
2431///
2432/// \param PrevDecl the previous declaration found by name
2433/// lookup
2434///
2435/// \param DC the context in which the new declaration is being
2436/// declared.
2437///
2438/// \returns true if PrevDecl is an out-of-scope previous declaration
2439/// for a new delcaration with the same name.
2440static bool
2441isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2442                                ASTContext &Context) {
2443  if (!PrevDecl)
2444    return 0;
2445
2446  if (!PrevDecl->hasLinkage())
2447    return false;
2448
2449  if (Context.getLangOptions().CPlusPlus) {
2450    // C++ [basic.link]p6:
2451    //   If there is a visible declaration of an entity with linkage
2452    //   having the same name and type, ignoring entities declared
2453    //   outside the innermost enclosing namespace scope, the block
2454    //   scope declaration declares that same entity and receives the
2455    //   linkage of the previous declaration.
2456    DeclContext *OuterContext = DC->getLookupContext();
2457    if (!OuterContext->isFunctionOrMethod())
2458      // This rule only applies to block-scope declarations.
2459      return false;
2460    else {
2461      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2462      if (PrevOuterContext->isRecord())
2463        // We found a member function: ignore it.
2464        return false;
2465      else {
2466        // Find the innermost enclosing namespace for the new and
2467        // previous declarations.
2468        while (!OuterContext->isFileContext())
2469          OuterContext = OuterContext->getParent();
2470        while (!PrevOuterContext->isFileContext())
2471          PrevOuterContext = PrevOuterContext->getParent();
2472
2473        // The previous declaration is in a different namespace, so it
2474        // isn't the same function.
2475        if (OuterContext->getPrimaryContext() !=
2476            PrevOuterContext->getPrimaryContext())
2477          return false;
2478      }
2479    }
2480  }
2481
2482  return true;
2483}
2484
2485NamedDecl*
2486Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2487                              QualType R, TypeSourceInfo *TInfo,
2488                              LookupResult &Previous,
2489                              MultiTemplateParamsArg TemplateParamLists,
2490                              bool &Redeclaration) {
2491  DeclarationName Name = GetNameForDeclarator(D);
2492
2493  // Check that there are no default arguments (C++ only).
2494  if (getLangOptions().CPlusPlus)
2495    CheckExtraCXXDefaultArguments(D);
2496
2497  VarDecl *NewVD;
2498  VarDecl::StorageClass SC;
2499  switch (D.getDeclSpec().getStorageClassSpec()) {
2500  default: assert(0 && "Unknown storage class!");
2501  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2502  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2503  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2504  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2505  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2506  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2507  case DeclSpec::SCS_mutable:
2508    // mutable can only appear on non-static class members, so it's always
2509    // an error here
2510    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2511    D.setInvalidType();
2512    SC = VarDecl::None;
2513    break;
2514  }
2515
2516  IdentifierInfo *II = Name.getAsIdentifierInfo();
2517  if (!II) {
2518    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2519      << Name.getAsString();
2520    return 0;
2521  }
2522
2523  DiagnoseFunctionSpecifiers(D);
2524
2525  if (!DC->isRecord() && S->getFnParent() == 0) {
2526    // C99 6.9p2: The storage-class specifiers auto and register shall not
2527    // appear in the declaration specifiers in an external declaration.
2528    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2529
2530      // If this is a register variable with an asm label specified, then this
2531      // is a GNU extension.
2532      if (SC == VarDecl::Register && D.getAsmLabel())
2533        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2534      else
2535        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2536      D.setInvalidType();
2537    }
2538  }
2539  if (DC->isRecord() && !CurContext->isRecord()) {
2540    // This is an out-of-line definition of a static data member.
2541    if (SC == VarDecl::Static) {
2542      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2543           diag::err_static_out_of_line)
2544        << CodeModificationHint::CreateRemoval(
2545                                      D.getDeclSpec().getStorageClassSpecLoc());
2546    } else if (SC == VarDecl::None)
2547      SC = VarDecl::Static;
2548  }
2549  if (SC == VarDecl::Static) {
2550    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2551      if (RD->isLocalClass())
2552        Diag(D.getIdentifierLoc(),
2553             diag::err_static_data_member_not_allowed_in_local_class)
2554          << Name << RD->getDeclName();
2555    }
2556  }
2557
2558  // Match up the template parameter lists with the scope specifier, then
2559  // determine whether we have a template or a template specialization.
2560  bool isExplicitSpecialization = false;
2561  if (TemplateParameterList *TemplateParams
2562        = MatchTemplateParametersToScopeSpecifier(
2563                                  D.getDeclSpec().getSourceRange().getBegin(),
2564                                                  D.getCXXScopeSpec(),
2565                        (TemplateParameterList**)TemplateParamLists.get(),
2566                                                   TemplateParamLists.size(),
2567                                                  isExplicitSpecialization)) {
2568    if (TemplateParams->size() > 0) {
2569      // There is no such thing as a variable template.
2570      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2571        << II
2572        << SourceRange(TemplateParams->getTemplateLoc(),
2573                       TemplateParams->getRAngleLoc());
2574      return 0;
2575    } else {
2576      // There is an extraneous 'template<>' for this variable. Complain
2577      // about it, but allow the declaration of the variable.
2578      Diag(TemplateParams->getTemplateLoc(),
2579           diag::err_template_variable_noparams)
2580        << II
2581        << SourceRange(TemplateParams->getTemplateLoc(),
2582                       TemplateParams->getRAngleLoc());
2583
2584      isExplicitSpecialization = true;
2585    }
2586  }
2587
2588  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2589                          II, R, TInfo, SC);
2590
2591  if (D.isInvalidType())
2592    NewVD->setInvalidDecl();
2593
2594  if (D.getDeclSpec().isThreadSpecified()) {
2595    if (NewVD->hasLocalStorage())
2596      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2597    else if (!Context.Target.isTLSSupported())
2598      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2599    else
2600      NewVD->setThreadSpecified(true);
2601  }
2602
2603  // Set the lexical context. If the declarator has a C++ scope specifier, the
2604  // lexical context will be different from the semantic context.
2605  NewVD->setLexicalDeclContext(CurContext);
2606
2607  // Handle attributes prior to checking for duplicates in MergeVarDecl
2608  ProcessDeclAttributes(S, NewVD, D);
2609
2610  // Handle GNU asm-label extension (encoded as an attribute).
2611  if (Expr *E = (Expr*) D.getAsmLabel()) {
2612    // The parser guarantees this is a string.
2613    StringLiteral *SE = cast<StringLiteral>(E);
2614    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2615  }
2616
2617  // Don't consider existing declarations that are in a different
2618  // scope and are out-of-semantic-context declarations (if the new
2619  // declaration has linkage).
2620  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2621
2622  // Merge the decl with the existing one if appropriate.
2623  if (!Previous.empty()) {
2624    if (Previous.isSingleResult() &&
2625        isa<FieldDecl>(Previous.getFoundDecl()) &&
2626        D.getCXXScopeSpec().isSet()) {
2627      // The user tried to define a non-static data member
2628      // out-of-line (C++ [dcl.meaning]p1).
2629      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2630        << D.getCXXScopeSpec().getRange();
2631      Previous.clear();
2632      NewVD->setInvalidDecl();
2633    }
2634  } else if (D.getCXXScopeSpec().isSet()) {
2635    // No previous declaration in the qualifying scope.
2636    Diag(D.getIdentifierLoc(), diag::err_no_member)
2637      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2638      << D.getCXXScopeSpec().getRange();
2639    NewVD->setInvalidDecl();
2640  }
2641
2642  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2643
2644  // This is an explicit specialization of a static data member. Check it.
2645  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2646      CheckMemberSpecialization(NewVD, Previous))
2647    NewVD->setInvalidDecl();
2648
2649  // attributes declared post-definition are currently ignored
2650  if (Previous.isSingleResult()) {
2651    const VarDecl *Def = 0;
2652    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2653    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2654      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2655      Diag(Def->getLocation(), diag::note_previous_definition);
2656    }
2657  }
2658
2659  // If this is a locally-scoped extern C variable, update the map of
2660  // such variables.
2661  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2662      !NewVD->isInvalidDecl())
2663    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2664
2665  return NewVD;
2666}
2667
2668/// \brief Perform semantic checking on a newly-created variable
2669/// declaration.
2670///
2671/// This routine performs all of the type-checking required for a
2672/// variable declaration once it has been built. It is used both to
2673/// check variables after they have been parsed and their declarators
2674/// have been translated into a declaration, and to check variables
2675/// that have been instantiated from a template.
2676///
2677/// Sets NewVD->isInvalidDecl() if an error was encountered.
2678void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2679                                    LookupResult &Previous,
2680                                    bool &Redeclaration) {
2681  // If the decl is already known invalid, don't check it.
2682  if (NewVD->isInvalidDecl())
2683    return;
2684
2685  QualType T = NewVD->getType();
2686
2687  if (T->isObjCInterfaceType()) {
2688    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2689    return NewVD->setInvalidDecl();
2690  }
2691
2692  // Emit an error if an address space was applied to decl with local storage.
2693  // This includes arrays of objects with address space qualifiers, but not
2694  // automatic variables that point to other address spaces.
2695  // ISO/IEC TR 18037 S5.1.2
2696  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2697    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2698    return NewVD->setInvalidDecl();
2699  }
2700
2701  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2702      && !NewVD->hasAttr<BlocksAttr>())
2703    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2704
2705  bool isVM = T->isVariablyModifiedType();
2706  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2707      NewVD->hasAttr<BlocksAttr>())
2708    CurFunctionNeedsScopeChecking = true;
2709
2710  if ((isVM && NewVD->hasLinkage()) ||
2711      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2712    bool SizeIsNegative;
2713    QualType FixedTy =
2714        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2715
2716    if (FixedTy.isNull() && T->isVariableArrayType()) {
2717      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2718      // FIXME: This won't give the correct result for
2719      // int a[10][n];
2720      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2721
2722      if (NewVD->isFileVarDecl())
2723        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2724        << SizeRange;
2725      else if (NewVD->getStorageClass() == VarDecl::Static)
2726        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2727        << SizeRange;
2728      else
2729        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2730        << SizeRange;
2731      return NewVD->setInvalidDecl();
2732    }
2733
2734    if (FixedTy.isNull()) {
2735      if (NewVD->isFileVarDecl())
2736        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2737      else
2738        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2739      return NewVD->setInvalidDecl();
2740    }
2741
2742    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2743    NewVD->setType(FixedTy);
2744  }
2745
2746  if (Previous.empty() && NewVD->isExternC()) {
2747    // Since we did not find anything by this name and we're declaring
2748    // an extern "C" variable, look for a non-visible extern "C"
2749    // declaration with the same name.
2750    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2751      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2752    if (Pos != LocallyScopedExternalDecls.end())
2753      Previous.addDecl(Pos->second);
2754  }
2755
2756  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2757    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2758      << T;
2759    return NewVD->setInvalidDecl();
2760  }
2761
2762  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2763    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2764    return NewVD->setInvalidDecl();
2765  }
2766
2767  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2768    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2769    return NewVD->setInvalidDecl();
2770  }
2771
2772  if (!Previous.empty()) {
2773    Redeclaration = true;
2774    MergeVarDecl(NewVD, Previous);
2775  }
2776}
2777
2778/// \brief Data used with FindOverriddenMethod
2779struct FindOverriddenMethodData {
2780  Sema *S;
2781  CXXMethodDecl *Method;
2782};
2783
2784/// \brief Member lookup function that determines whether a given C++
2785/// method overrides a method in a base class, to be used with
2786/// CXXRecordDecl::lookupInBases().
2787static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2788                                 CXXBasePath &Path,
2789                                 void *UserData) {
2790  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2791
2792  FindOverriddenMethodData *Data
2793    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2794
2795  DeclarationName Name = Data->Method->getDeclName();
2796
2797  // FIXME: Do we care about other names here too?
2798  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2799    // We really want to find the base class constructor here.
2800    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2801    CanQualType CT = Data->S->Context.getCanonicalType(T);
2802
2803    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2804  }
2805
2806  for (Path.Decls = BaseRecord->lookup(Name);
2807       Path.Decls.first != Path.Decls.second;
2808       ++Path.Decls.first) {
2809    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2810      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2811        return true;
2812    }
2813  }
2814
2815  return false;
2816}
2817
2818/// AddOverriddenMethods - See if a method overrides any in the base classes,
2819/// and if so, check that it's a valid override and remember it.
2820void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2821  // Look for virtual methods in base classes that this method might override.
2822  CXXBasePaths Paths;
2823  FindOverriddenMethodData Data;
2824  Data.Method = MD;
2825  Data.S = this;
2826  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2827    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2828         E = Paths.found_decls_end(); I != E; ++I) {
2829      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2830        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2831            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2832            !CheckOverridingFunctionAttributes(MD, OldMD))
2833          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2834      }
2835    }
2836  }
2837}
2838
2839NamedDecl*
2840Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2841                              QualType R, TypeSourceInfo *TInfo,
2842                              LookupResult &Previous,
2843                              MultiTemplateParamsArg TemplateParamLists,
2844                              bool IsFunctionDefinition, bool &Redeclaration) {
2845  assert(R.getTypePtr()->isFunctionType());
2846
2847  DeclarationName Name = GetNameForDeclarator(D);
2848  FunctionDecl::StorageClass SC = FunctionDecl::None;
2849  switch (D.getDeclSpec().getStorageClassSpec()) {
2850  default: assert(0 && "Unknown storage class!");
2851  case DeclSpec::SCS_auto:
2852  case DeclSpec::SCS_register:
2853  case DeclSpec::SCS_mutable:
2854    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2855         diag::err_typecheck_sclass_func);
2856    D.setInvalidType();
2857    break;
2858  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2859  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2860  case DeclSpec::SCS_static: {
2861    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2862      // C99 6.7.1p5:
2863      //   The declaration of an identifier for a function that has
2864      //   block scope shall have no explicit storage-class specifier
2865      //   other than extern
2866      // See also (C++ [dcl.stc]p4).
2867      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2868           diag::err_static_block_func);
2869      SC = FunctionDecl::None;
2870    } else
2871      SC = FunctionDecl::Static;
2872    break;
2873  }
2874  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2875  }
2876
2877  if (D.getDeclSpec().isThreadSpecified())
2878    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2879
2880  bool isFriend = D.getDeclSpec().isFriendSpecified();
2881  bool isInline = D.getDeclSpec().isInlineSpecified();
2882  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2883  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2884
2885  // Check that the return type is not an abstract class type.
2886  // For record types, this is done by the AbstractClassUsageDiagnoser once
2887  // the class has been completely parsed.
2888  if (!DC->isRecord() &&
2889      RequireNonAbstractType(D.getIdentifierLoc(),
2890                             R->getAs<FunctionType>()->getResultType(),
2891                             diag::err_abstract_type_in_decl,
2892                             AbstractReturnType))
2893    D.setInvalidType();
2894
2895  // Do not allow returning a objc interface by-value.
2896  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2897    Diag(D.getIdentifierLoc(),
2898         diag::err_object_cannot_be_passed_returned_by_value) << 0
2899      << R->getAs<FunctionType>()->getResultType();
2900    D.setInvalidType();
2901  }
2902
2903  bool isVirtualOkay = false;
2904  FunctionDecl *NewFD;
2905
2906  if (isFriend) {
2907    // C++ [class.friend]p5
2908    //   A function can be defined in a friend declaration of a
2909    //   class . . . . Such a function is implicitly inline.
2910    isInline |= IsFunctionDefinition;
2911  }
2912
2913  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2914    // This is a C++ constructor declaration.
2915    assert(DC->isRecord() &&
2916           "Constructors can only be declared in a member context");
2917
2918    R = CheckConstructorDeclarator(D, R, SC);
2919
2920    // Create the new declaration
2921    NewFD = CXXConstructorDecl::Create(Context,
2922                                       cast<CXXRecordDecl>(DC),
2923                                       D.getIdentifierLoc(), Name, R, TInfo,
2924                                       isExplicit, isInline,
2925                                       /*isImplicitlyDeclared=*/false);
2926  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2927    // This is a C++ destructor declaration.
2928    if (DC->isRecord()) {
2929      R = CheckDestructorDeclarator(D, SC);
2930
2931      NewFD = CXXDestructorDecl::Create(Context,
2932                                        cast<CXXRecordDecl>(DC),
2933                                        D.getIdentifierLoc(), Name, R,
2934                                        isInline,
2935                                        /*isImplicitlyDeclared=*/false);
2936
2937      isVirtualOkay = true;
2938    } else {
2939      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2940
2941      // Create a FunctionDecl to satisfy the function definition parsing
2942      // code path.
2943      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2944                                   Name, R, TInfo, SC, isInline,
2945                                   /*hasPrototype=*/true);
2946      D.setInvalidType();
2947    }
2948  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2949    if (!DC->isRecord()) {
2950      Diag(D.getIdentifierLoc(),
2951           diag::err_conv_function_not_member);
2952      return 0;
2953    }
2954
2955    CheckConversionDeclarator(D, R, SC);
2956    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2957                                      D.getIdentifierLoc(), Name, R, TInfo,
2958                                      isInline, isExplicit);
2959
2960    isVirtualOkay = true;
2961  } else if (DC->isRecord()) {
2962    // If the of the function is the same as the name of the record, then this
2963    // must be an invalid constructor that has a return type.
2964    // (The parser checks for a return type and makes the declarator a
2965    // constructor if it has no return type).
2966    // must have an invalid constructor that has a return type
2967    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2968      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2969        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2970        << SourceRange(D.getIdentifierLoc());
2971      return 0;
2972    }
2973
2974    bool isStatic = SC == FunctionDecl::Static;
2975
2976    // [class.free]p1:
2977    // Any allocation function for a class T is a static member
2978    // (even if not explicitly declared static).
2979    if (Name.getCXXOverloadedOperator() == OO_New ||
2980        Name.getCXXOverloadedOperator() == OO_Array_New)
2981      isStatic = true;
2982
2983    // [class.free]p6 Any deallocation function for a class X is a static member
2984    // (even if not explicitly declared static).
2985    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2986        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2987      isStatic = true;
2988
2989    // This is a C++ method declaration.
2990    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2991                                  D.getIdentifierLoc(), Name, R, TInfo,
2992                                  isStatic, isInline);
2993
2994    isVirtualOkay = !isStatic;
2995  } else {
2996    // Determine whether the function was written with a
2997    // prototype. This true when:
2998    //   - we're in C++ (where every function has a prototype),
2999    //   - there is a prototype in the declarator, or
3000    //   - the type R of the function is some kind of typedef or other reference
3001    //     to a type name (which eventually refers to a function type).
3002    bool HasPrototype =
3003       getLangOptions().CPlusPlus ||
3004       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3005       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3006
3007    NewFD = FunctionDecl::Create(Context, DC,
3008                                 D.getIdentifierLoc(),
3009                                 Name, R, TInfo, SC, isInline, HasPrototype);
3010  }
3011
3012  if (D.isInvalidType())
3013    NewFD->setInvalidDecl();
3014
3015  // Set the lexical context. If the declarator has a C++
3016  // scope specifier, or is the object of a friend declaration, the
3017  // lexical context will be different from the semantic context.
3018  NewFD->setLexicalDeclContext(CurContext);
3019
3020  // Match up the template parameter lists with the scope specifier, then
3021  // determine whether we have a template or a template specialization.
3022  FunctionTemplateDecl *FunctionTemplate = 0;
3023  bool isExplicitSpecialization = false;
3024  bool isFunctionTemplateSpecialization = false;
3025  if (TemplateParameterList *TemplateParams
3026        = MatchTemplateParametersToScopeSpecifier(
3027                                  D.getDeclSpec().getSourceRange().getBegin(),
3028                                  D.getCXXScopeSpec(),
3029                           (TemplateParameterList**)TemplateParamLists.get(),
3030                                                  TemplateParamLists.size(),
3031                                                  isExplicitSpecialization)) {
3032    if (TemplateParams->size() > 0) {
3033      // This is a function template
3034
3035      // Check that we can declare a template here.
3036      if (CheckTemplateDeclScope(S, TemplateParams))
3037        return 0;
3038
3039      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3040                                                      NewFD->getLocation(),
3041                                                      Name, TemplateParams,
3042                                                      NewFD);
3043      FunctionTemplate->setLexicalDeclContext(CurContext);
3044      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3045    } else {
3046      // This is a function template specialization.
3047      isFunctionTemplateSpecialization = true;
3048    }
3049
3050    // FIXME: Free this memory properly.
3051    TemplateParamLists.release();
3052  }
3053
3054  // C++ [dcl.fct.spec]p5:
3055  //   The virtual specifier shall only be used in declarations of
3056  //   nonstatic class member functions that appear within a
3057  //   member-specification of a class declaration; see 10.3.
3058  //
3059  if (isVirtual && !NewFD->isInvalidDecl()) {
3060    if (!isVirtualOkay) {
3061       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3062           diag::err_virtual_non_function);
3063    } else if (!CurContext->isRecord()) {
3064      // 'virtual' was specified outside of the class.
3065      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3066        << CodeModificationHint::CreateRemoval(
3067                                           D.getDeclSpec().getVirtualSpecLoc());
3068    } else {
3069      // Okay: Add virtual to the method.
3070      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3071      CurClass->setMethodAsVirtual(NewFD);
3072    }
3073  }
3074
3075  // Filter out previous declarations that don't match the scope.
3076  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3077
3078  if (isFriend) {
3079    // DC is the namespace in which the function is being declared.
3080    assert((DC->isFileContext() || !Previous.empty()) &&
3081           "previously-undeclared friend function being created "
3082           "in a non-namespace context");
3083
3084    if (FunctionTemplate) {
3085      FunctionTemplate->setObjectOfFriendDecl(
3086                                   /* PreviouslyDeclared= */ !Previous.empty());
3087      FunctionTemplate->setAccess(AS_public);
3088    }
3089    else
3090      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
3091
3092    NewFD->setAccess(AS_public);
3093  }
3094
3095  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3096      !CurContext->isRecord()) {
3097    // C++ [class.static]p1:
3098    //   A data or function member of a class may be declared static
3099    //   in a class definition, in which case it is a static member of
3100    //   the class.
3101
3102    // Complain about the 'static' specifier if it's on an out-of-line
3103    // member function definition.
3104    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3105         diag::err_static_out_of_line)
3106      << CodeModificationHint::CreateRemoval(
3107                                      D.getDeclSpec().getStorageClassSpecLoc());
3108  }
3109
3110  // Handle GNU asm-label extension (encoded as an attribute).
3111  if (Expr *E = (Expr*) D.getAsmLabel()) {
3112    // The parser guarantees this is a string.
3113    StringLiteral *SE = cast<StringLiteral>(E);
3114    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
3115  }
3116
3117  // Copy the parameter declarations from the declarator D to the function
3118  // declaration NewFD, if they are available.  First scavenge them into Params.
3119  llvm::SmallVector<ParmVarDecl*, 16> Params;
3120  if (D.getNumTypeObjects() > 0) {
3121    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3122
3123    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3124    // function that takes no arguments, not a function that takes a
3125    // single void argument.
3126    // We let through "const void" here because Sema::GetTypeForDeclarator
3127    // already checks for that case.
3128    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3129        FTI.ArgInfo[0].Param &&
3130        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3131      // Empty arg list, don't push any params.
3132      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3133
3134      // In C++, the empty parameter-type-list must be spelled "void"; a
3135      // typedef of void is not permitted.
3136      if (getLangOptions().CPlusPlus &&
3137          Param->getType().getUnqualifiedType() != Context.VoidTy)
3138        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3139      // FIXME: Leaks decl?
3140    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3141      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3142        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3143        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3144        Param->setDeclContext(NewFD);
3145        Params.push_back(Param);
3146      }
3147    }
3148
3149  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3150    // When we're declaring a function with a typedef, typeof, etc as in the
3151    // following example, we'll need to synthesize (unnamed)
3152    // parameters for use in the declaration.
3153    //
3154    // @code
3155    // typedef void fn(int);
3156    // fn f;
3157    // @endcode
3158
3159    // Synthesize a parameter for each argument type.
3160    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3161         AE = FT->arg_type_end(); AI != AE; ++AI) {
3162      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
3163                                               SourceLocation(), 0,
3164                                               *AI, /*TInfo=*/0,
3165                                               VarDecl::None, 0);
3166      Param->setImplicit();
3167      Params.push_back(Param);
3168    }
3169  } else {
3170    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3171           "Should not need args for typedef of non-prototype fn");
3172  }
3173  // Finally, we know we have the right number of parameters, install them.
3174  NewFD->setParams(Context, Params.data(), Params.size());
3175
3176  // If the declarator is a template-id, translate the parser's template
3177  // argument list into our AST format.
3178  bool HasExplicitTemplateArgs = false;
3179  TemplateArgumentListInfo TemplateArgs;
3180  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3181    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3182    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3183    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3184    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3185                                       TemplateId->getTemplateArgs(),
3186                                       TemplateId->NumArgs);
3187    translateTemplateArguments(TemplateArgsPtr,
3188                               TemplateArgs);
3189    TemplateArgsPtr.release();
3190
3191    HasExplicitTemplateArgs = true;
3192
3193    if (FunctionTemplate) {
3194      // FIXME: Diagnose function template with explicit template
3195      // arguments.
3196      HasExplicitTemplateArgs = false;
3197    } else if (!isFunctionTemplateSpecialization &&
3198               !D.getDeclSpec().isFriendSpecified()) {
3199      // We have encountered something that the user meant to be a
3200      // specialization (because it has explicitly-specified template
3201      // arguments) but that was not introduced with a "template<>" (or had
3202      // too few of them).
3203      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3204        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3205        << CodeModificationHint::CreateInsertion(
3206                                   D.getDeclSpec().getSourceRange().getBegin(),
3207                                                 "template<> ");
3208      isFunctionTemplateSpecialization = true;
3209    }
3210  }
3211
3212  if (isFunctionTemplateSpecialization) {
3213      if (CheckFunctionTemplateSpecialization(NewFD,
3214                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3215                                              Previous))
3216        NewFD->setInvalidDecl();
3217  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3218             CheckMemberSpecialization(NewFD, Previous))
3219    NewFD->setInvalidDecl();
3220
3221  // Perform semantic checking on the function declaration.
3222  bool OverloadableAttrRequired = false; // FIXME: HACK!
3223  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3224                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3225
3226  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3227          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3228         "previous declaration set still overloaded");
3229
3230  // If we have a function template, check the template parameter
3231  // list. This will check and merge default template arguments.
3232  if (FunctionTemplate) {
3233    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3234    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3235                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3236             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3237                                                : TPC_FunctionTemplate);
3238  }
3239
3240  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3241    // An out-of-line member function declaration must also be a
3242    // definition (C++ [dcl.meaning]p1).
3243    // Note that this is not the case for explicit specializations of
3244    // function templates or member functions of class templates, per
3245    // C++ [temp.expl.spec]p2.
3246    if (!IsFunctionDefinition && !isFriend &&
3247        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3248      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3249        << D.getCXXScopeSpec().getRange();
3250      NewFD->setInvalidDecl();
3251    } else if (!Redeclaration) {
3252      // The user tried to provide an out-of-line definition for a
3253      // function that is a member of a class or namespace, but there
3254      // was no such member function declared (C++ [class.mfct]p2,
3255      // C++ [namespace.memdef]p2). For example:
3256      //
3257      // class X {
3258      //   void f() const;
3259      // };
3260      //
3261      // void X::f() { } // ill-formed
3262      //
3263      // Complain about this problem, and attempt to suggest close
3264      // matches (e.g., those that differ only in cv-qualifiers and
3265      // whether the parameter types are references).
3266      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3267        << Name << DC << D.getCXXScopeSpec().getRange();
3268      NewFD->setInvalidDecl();
3269
3270      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3271                        ForRedeclaration);
3272      LookupQualifiedName(Prev, DC);
3273      assert(!Prev.isAmbiguous() &&
3274             "Cannot have an ambiguity in previous-declaration lookup");
3275      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3276           Func != FuncEnd; ++Func) {
3277        if (isa<FunctionDecl>(*Func) &&
3278            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3279          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3280      }
3281    }
3282  }
3283
3284  // Handle attributes. We need to have merged decls when handling attributes
3285  // (for example to check for conflicts, etc).
3286  // FIXME: This needs to happen before we merge declarations. Then,
3287  // let attribute merging cope with attribute conflicts.
3288  ProcessDeclAttributes(S, NewFD, D);
3289
3290  // attributes declared post-definition are currently ignored
3291  if (Redeclaration && Previous.isSingleResult()) {
3292    const FunctionDecl *Def;
3293    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3294    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3295      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3296      Diag(Def->getLocation(), diag::note_previous_definition);
3297    }
3298  }
3299
3300  AddKnownFunctionAttributes(NewFD);
3301
3302  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3303    // If a function name is overloadable in C, then every function
3304    // with that name must be marked "overloadable".
3305    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3306      << Redeclaration << NewFD;
3307    if (!Previous.empty())
3308      Diag(Previous.getRepresentativeDecl()->getLocation(),
3309           diag::note_attribute_overloadable_prev_overload);
3310    NewFD->addAttr(::new (Context) OverloadableAttr());
3311  }
3312
3313  // If this is a locally-scoped extern C function, update the
3314  // map of such names.
3315  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3316      && !NewFD->isInvalidDecl())
3317    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3318
3319  // Set this FunctionDecl's range up to the right paren.
3320  NewFD->setLocEnd(D.getSourceRange().getEnd());
3321
3322  if (FunctionTemplate && NewFD->isInvalidDecl())
3323    FunctionTemplate->setInvalidDecl();
3324
3325  if (FunctionTemplate)
3326    return FunctionTemplate;
3327
3328  return NewFD;
3329}
3330
3331/// \brief Perform semantic checking of a new function declaration.
3332///
3333/// Performs semantic analysis of the new function declaration
3334/// NewFD. This routine performs all semantic checking that does not
3335/// require the actual declarator involved in the declaration, and is
3336/// used both for the declaration of functions as they are parsed
3337/// (called via ActOnDeclarator) and for the declaration of functions
3338/// that have been instantiated via C++ template instantiation (called
3339/// via InstantiateDecl).
3340///
3341/// \param IsExplicitSpecialiation whether this new function declaration is
3342/// an explicit specialization of the previous declaration.
3343///
3344/// This sets NewFD->isInvalidDecl() to true if there was an error.
3345void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3346                                    LookupResult &Previous,
3347                                    bool IsExplicitSpecialization,
3348                                    bool &Redeclaration,
3349                                    bool &OverloadableAttrRequired) {
3350  // If NewFD is already known erroneous, don't do any of this checking.
3351  if (NewFD->isInvalidDecl())
3352    return;
3353
3354  if (NewFD->getResultType()->isVariablyModifiedType()) {
3355    // Functions returning a variably modified type violate C99 6.7.5.2p2
3356    // because all functions have linkage.
3357    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3358    return NewFD->setInvalidDecl();
3359  }
3360
3361  if (NewFD->isMain())
3362    CheckMain(NewFD);
3363
3364  // Check for a previous declaration of this name.
3365  if (Previous.empty() && NewFD->isExternC()) {
3366    // Since we did not find anything by this name and we're declaring
3367    // an extern "C" function, look for a non-visible extern "C"
3368    // declaration with the same name.
3369    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3370      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3371    if (Pos != LocallyScopedExternalDecls.end())
3372      Previous.addDecl(Pos->second);
3373  }
3374
3375  // Merge or overload the declaration with an existing declaration of
3376  // the same name, if appropriate.
3377  if (!Previous.empty()) {
3378    // Determine whether NewFD is an overload of PrevDecl or
3379    // a declaration that requires merging. If it's an overload,
3380    // there's no more work to do here; we'll just add the new
3381    // function to the scope.
3382
3383    NamedDecl *OldDecl = 0;
3384    if (!AllowOverloadingOfFunction(Previous, Context)) {
3385      Redeclaration = true;
3386      OldDecl = Previous.getFoundDecl();
3387    } else {
3388      if (!getLangOptions().CPlusPlus) {
3389        OverloadableAttrRequired = true;
3390
3391        // Functions marked "overloadable" must have a prototype (that
3392        // we can't get through declaration merging).
3393        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3394          Diag(NewFD->getLocation(),
3395               diag::err_attribute_overloadable_no_prototype)
3396            << NewFD;
3397          Redeclaration = true;
3398
3399          // Turn this into a variadic function with no parameters.
3400          QualType R = Context.getFunctionType(
3401                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3402                     0, 0, true, 0);
3403          NewFD->setType(R);
3404          return NewFD->setInvalidDecl();
3405        }
3406      }
3407
3408      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3409      case Ovl_Match:
3410        Redeclaration = true;
3411        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3412          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3413          Redeclaration = false;
3414        }
3415        break;
3416
3417      case Ovl_NonFunction:
3418        Redeclaration = true;
3419        break;
3420
3421      case Ovl_Overload:
3422        Redeclaration = false;
3423        break;
3424      }
3425    }
3426
3427    if (Redeclaration) {
3428      // NewFD and OldDecl represent declarations that need to be
3429      // merged.
3430      if (MergeFunctionDecl(NewFD, OldDecl))
3431        return NewFD->setInvalidDecl();
3432
3433      Previous.clear();
3434      Previous.addDecl(OldDecl);
3435
3436      if (FunctionTemplateDecl *OldTemplateDecl
3437                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3438        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3439        FunctionTemplateDecl *NewTemplateDecl
3440          = NewFD->getDescribedFunctionTemplate();
3441        assert(NewTemplateDecl && "Template/non-template mismatch");
3442        if (CXXMethodDecl *Method
3443              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3444          Method->setAccess(OldTemplateDecl->getAccess());
3445          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3446        }
3447
3448        // If this is an explicit specialization of a member that is a function
3449        // template, mark it as a member specialization.
3450        if (IsExplicitSpecialization &&
3451            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3452          NewTemplateDecl->setMemberSpecialization();
3453          assert(OldTemplateDecl->isMemberSpecialization());
3454        }
3455      } else {
3456        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3457          NewFD->setAccess(OldDecl->getAccess());
3458        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3459      }
3460    }
3461  }
3462
3463  // Semantic checking for this function declaration (in isolation).
3464  if (getLangOptions().CPlusPlus) {
3465    // C++-specific checks.
3466    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3467      CheckConstructor(Constructor);
3468    } else if (CXXDestructorDecl *Destructor =
3469                dyn_cast<CXXDestructorDecl>(NewFD)) {
3470      CXXRecordDecl *Record = Destructor->getParent();
3471      QualType ClassType = Context.getTypeDeclType(Record);
3472
3473      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3474      // type is dependent? Both gcc and edg can handle that.
3475      if (!ClassType->isDependentType()) {
3476        DeclarationName Name
3477          = Context.DeclarationNames.getCXXDestructorName(
3478                                        Context.getCanonicalType(ClassType));
3479        if (NewFD->getDeclName() != Name) {
3480          Diag(NewFD->getLocation(), diag::err_destructor_name);
3481          return NewFD->setInvalidDecl();
3482        }
3483      }
3484
3485      Record->setUserDeclaredDestructor(true);
3486      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3487      // user-defined destructor.
3488      Record->setPOD(false);
3489
3490      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3491      // declared destructor.
3492      // FIXME: C++0x: don't do this for "= default" destructors
3493      Record->setHasTrivialDestructor(false);
3494    } else if (CXXConversionDecl *Conversion
3495               = dyn_cast<CXXConversionDecl>(NewFD)) {
3496      ActOnConversionDeclarator(Conversion);
3497    }
3498
3499    // Find any virtual functions that this function overrides.
3500    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3501      if (!Method->isFunctionTemplateSpecialization() &&
3502          !Method->getDescribedFunctionTemplate())
3503        AddOverriddenMethods(Method->getParent(), Method);
3504    }
3505
3506    // Additional checks for the destructor; make sure we do this after we
3507    // figure out whether the destructor is virtual.
3508    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3509      if (!Destructor->getParent()->isDependentType())
3510        CheckDestructor(Destructor);
3511
3512    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3513    if (NewFD->isOverloadedOperator() &&
3514        CheckOverloadedOperatorDeclaration(NewFD))
3515      return NewFD->setInvalidDecl();
3516
3517    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3518    if (NewFD->getLiteralIdentifier() &&
3519        CheckLiteralOperatorDeclaration(NewFD))
3520      return NewFD->setInvalidDecl();
3521
3522    // In C++, check default arguments now that we have merged decls. Unless
3523    // the lexical context is the class, because in this case this is done
3524    // during delayed parsing anyway.
3525    if (!CurContext->isRecord())
3526      CheckCXXDefaultArguments(NewFD);
3527  }
3528}
3529
3530void Sema::CheckMain(FunctionDecl* FD) {
3531  // C++ [basic.start.main]p3:  A program that declares main to be inline
3532  //   or static is ill-formed.
3533  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3534  //   shall not appear in a declaration of main.
3535  // static main is not an error under C99, but we should warn about it.
3536  bool isInline = FD->isInlineSpecified();
3537  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3538  if (isInline || isStatic) {
3539    unsigned diagID = diag::warn_unusual_main_decl;
3540    if (isInline || getLangOptions().CPlusPlus)
3541      diagID = diag::err_unusual_main_decl;
3542
3543    int which = isStatic + (isInline << 1) - 1;
3544    Diag(FD->getLocation(), diagID) << which;
3545  }
3546
3547  QualType T = FD->getType();
3548  assert(T->isFunctionType() && "function decl is not of function type");
3549  const FunctionType* FT = T->getAs<FunctionType>();
3550
3551  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3552    // TODO: add a replacement fixit to turn the return type into 'int'.
3553    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3554    FD->setInvalidDecl(true);
3555  }
3556
3557  // Treat protoless main() as nullary.
3558  if (isa<FunctionNoProtoType>(FT)) return;
3559
3560  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3561  unsigned nparams = FTP->getNumArgs();
3562  assert(FD->getNumParams() == nparams);
3563
3564  bool HasExtraParameters = (nparams > 3);
3565
3566  // Darwin passes an undocumented fourth argument of type char**.  If
3567  // other platforms start sprouting these, the logic below will start
3568  // getting shifty.
3569  if (nparams == 4 &&
3570      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3571    HasExtraParameters = false;
3572
3573  if (HasExtraParameters) {
3574    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3575    FD->setInvalidDecl(true);
3576    nparams = 3;
3577  }
3578
3579  // FIXME: a lot of the following diagnostics would be improved
3580  // if we had some location information about types.
3581
3582  QualType CharPP =
3583    Context.getPointerType(Context.getPointerType(Context.CharTy));
3584  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3585
3586  for (unsigned i = 0; i < nparams; ++i) {
3587    QualType AT = FTP->getArgType(i);
3588
3589    bool mismatch = true;
3590
3591    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3592      mismatch = false;
3593    else if (Expected[i] == CharPP) {
3594      // As an extension, the following forms are okay:
3595      //   char const **
3596      //   char const * const *
3597      //   char * const *
3598
3599      QualifierCollector qs;
3600      const PointerType* PT;
3601      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3602          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3603          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3604        qs.removeConst();
3605        mismatch = !qs.empty();
3606      }
3607    }
3608
3609    if (mismatch) {
3610      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3611      // TODO: suggest replacing given type with expected type
3612      FD->setInvalidDecl(true);
3613    }
3614  }
3615
3616  if (nparams == 1 && !FD->isInvalidDecl()) {
3617    Diag(FD->getLocation(), diag::warn_main_one_arg);
3618  }
3619}
3620
3621bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3622  // FIXME: Need strict checking.  In C89, we need to check for
3623  // any assignment, increment, decrement, function-calls, or
3624  // commas outside of a sizeof.  In C99, it's the same list,
3625  // except that the aforementioned are allowed in unevaluated
3626  // expressions.  Everything else falls under the
3627  // "may accept other forms of constant expressions" exception.
3628  // (We never end up here for C++, so the constant expression
3629  // rules there don't matter.)
3630  if (Init->isConstantInitializer(Context))
3631    return false;
3632  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3633    << Init->getSourceRange();
3634  return true;
3635}
3636
3637void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3638  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3639}
3640
3641/// AddInitializerToDecl - Adds the initializer Init to the
3642/// declaration dcl. If DirectInit is true, this is C++ direct
3643/// initialization rather than copy initialization.
3644void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3645  Decl *RealDecl = dcl.getAs<Decl>();
3646  // If there is no declaration, there was an error parsing it.  Just ignore
3647  // the initializer.
3648  if (RealDecl == 0)
3649    return;
3650
3651  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3652    // With declarators parsed the way they are, the parser cannot
3653    // distinguish between a normal initializer and a pure-specifier.
3654    // Thus this grotesque test.
3655    IntegerLiteral *IL;
3656    Expr *Init = static_cast<Expr *>(init.get());
3657    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3658        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3659      CheckPureMethod(Method, Init->getSourceRange());
3660    else {
3661      Diag(Method->getLocation(), diag::err_member_function_initialization)
3662        << Method->getDeclName() << Init->getSourceRange();
3663      Method->setInvalidDecl();
3664    }
3665    return;
3666  }
3667
3668  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3669  if (!VDecl) {
3670    if (getLangOptions().CPlusPlus &&
3671        RealDecl->getLexicalDeclContext()->isRecord() &&
3672        isa<NamedDecl>(RealDecl))
3673      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3674        << cast<NamedDecl>(RealDecl)->getDeclName();
3675    else
3676      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3677    RealDecl->setInvalidDecl();
3678    return;
3679  }
3680
3681  // A definition must end up with a complete type, which means it must be
3682  // complete with the restriction that an array type might be completed by the
3683  // initializer; note that later code assumes this restriction.
3684  QualType BaseDeclType = VDecl->getType();
3685  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3686    BaseDeclType = Array->getElementType();
3687  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3688                          diag::err_typecheck_decl_incomplete_type)) {
3689    RealDecl->setInvalidDecl();
3690    return;
3691  }
3692
3693  // The variable can not have an abstract class type.
3694  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3695                             diag::err_abstract_type_in_decl,
3696                             AbstractVariableType))
3697    VDecl->setInvalidDecl();
3698
3699  const VarDecl *Def = 0;
3700  if (VDecl->getDefinition(Def)) {
3701    Diag(VDecl->getLocation(), diag::err_redefinition)
3702      << VDecl->getDeclName();
3703    Diag(Def->getLocation(), diag::note_previous_definition);
3704    VDecl->setInvalidDecl();
3705    return;
3706  }
3707
3708  // Take ownership of the expression, now that we're sure we have somewhere
3709  // to put it.
3710  Expr *Init = init.takeAs<Expr>();
3711  assert(Init && "missing initializer");
3712
3713  // Capture the variable that is being initialized and the style of
3714  // initialization.
3715  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3716
3717  // FIXME: Poor source location information.
3718  InitializationKind Kind
3719    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3720                                                   Init->getLocStart(),
3721                                                   Init->getLocEnd())
3722                : InitializationKind::CreateCopy(VDecl->getLocation(),
3723                                                 Init->getLocStart());
3724
3725  // Get the decls type and save a reference for later, since
3726  // CheckInitializerTypes may change it.
3727  QualType DclT = VDecl->getType(), SavT = DclT;
3728  if (VDecl->isBlockVarDecl()) {
3729    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3730      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3731      VDecl->setInvalidDecl();
3732    } else if (!VDecl->isInvalidDecl()) {
3733      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3734      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3735                                          MultiExprArg(*this, (void**)&Init, 1),
3736                                                &DclT);
3737      if (Result.isInvalid()) {
3738        VDecl->setInvalidDecl();
3739        return;
3740      }
3741
3742      Init = Result.takeAs<Expr>();
3743
3744      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3745      // Don't check invalid declarations to avoid emitting useless diagnostics.
3746      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3747        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3748          CheckForConstantInitializer(Init, DclT);
3749      }
3750    }
3751  } else if (VDecl->isStaticDataMember() &&
3752             VDecl->getLexicalDeclContext()->isRecord()) {
3753    // This is an in-class initialization for a static data member, e.g.,
3754    //
3755    // struct S {
3756    //   static const int value = 17;
3757    // };
3758
3759    // Attach the initializer
3760    VDecl->setInit(Context, Init);
3761
3762    // C++ [class.mem]p4:
3763    //   A member-declarator can contain a constant-initializer only
3764    //   if it declares a static member (9.4) of const integral or
3765    //   const enumeration type, see 9.4.2.
3766    QualType T = VDecl->getType();
3767    if (!T->isDependentType() &&
3768        (!Context.getCanonicalType(T).isConstQualified() ||
3769         !T->isIntegralType())) {
3770      Diag(VDecl->getLocation(), diag::err_member_initialization)
3771        << VDecl->getDeclName() << Init->getSourceRange();
3772      VDecl->setInvalidDecl();
3773    } else {
3774      // C++ [class.static.data]p4:
3775      //   If a static data member is of const integral or const
3776      //   enumeration type, its declaration in the class definition
3777      //   can specify a constant-initializer which shall be an
3778      //   integral constant expression (5.19).
3779      if (!Init->isTypeDependent() &&
3780          !Init->getType()->isIntegralType()) {
3781        // We have a non-dependent, non-integral or enumeration type.
3782        Diag(Init->getSourceRange().getBegin(),
3783             diag::err_in_class_initializer_non_integral_type)
3784          << Init->getType() << Init->getSourceRange();
3785        VDecl->setInvalidDecl();
3786      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3787        // Check whether the expression is a constant expression.
3788        llvm::APSInt Value;
3789        SourceLocation Loc;
3790        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3791          Diag(Loc, diag::err_in_class_initializer_non_constant)
3792            << Init->getSourceRange();
3793          VDecl->setInvalidDecl();
3794        } else if (!VDecl->getType()->isDependentType())
3795          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3796      }
3797    }
3798  } else if (VDecl->isFileVarDecl()) {
3799    if (VDecl->getStorageClass() == VarDecl::Extern)
3800      Diag(VDecl->getLocation(), diag::warn_extern_init);
3801    if (!VDecl->isInvalidDecl()) {
3802      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3803      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3804                                          MultiExprArg(*this, (void**)&Init, 1),
3805                                                &DclT);
3806      if (Result.isInvalid()) {
3807        VDecl->setInvalidDecl();
3808        return;
3809      }
3810
3811      Init = Result.takeAs<Expr>();
3812    }
3813
3814    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3815    // Don't check invalid declarations to avoid emitting useless diagnostics.
3816    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3817      // C99 6.7.8p4. All file scoped initializers need to be constant.
3818      CheckForConstantInitializer(Init, DclT);
3819    }
3820  }
3821  // If the type changed, it means we had an incomplete type that was
3822  // completed by the initializer. For example:
3823  //   int ary[] = { 1, 3, 5 };
3824  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3825  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3826    VDecl->setType(DclT);
3827    Init->setType(DclT);
3828  }
3829
3830  Init = MaybeCreateCXXExprWithTemporaries(Init);
3831  // Attach the initializer to the decl.
3832  VDecl->setInit(Context, Init);
3833
3834  // If the previous declaration of VDecl was a tentative definition,
3835  // remove it from the set of tentative definitions.
3836  if (VDecl->getPreviousDeclaration() &&
3837      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3838    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3839    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3840  }
3841
3842  if (getLangOptions().CPlusPlus) {
3843    // Make sure we mark the destructor as used if necessary.
3844    QualType InitType = VDecl->getType();
3845    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3846      InitType = Context.getBaseElementType(Array);
3847    if (InitType->isRecordType())
3848      FinalizeVarWithDestructor(VDecl, InitType);
3849  }
3850
3851  return;
3852}
3853
3854void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3855                                  bool TypeContainsUndeducedAuto) {
3856  Decl *RealDecl = dcl.getAs<Decl>();
3857
3858  // If there is no declaration, there was an error parsing it. Just ignore it.
3859  if (RealDecl == 0)
3860    return;
3861
3862  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3863    QualType Type = Var->getType();
3864
3865    // Record tentative definitions.
3866    if (Var->isTentativeDefinition(Context)) {
3867      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3868        InsertPair =
3869           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3870
3871      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3872      // want the second one in the map.
3873      InsertPair.first->second = Var;
3874
3875      // However, for the list, we don't care about the order, just make sure
3876      // that there are no dupes for a given declaration name.
3877      if (InsertPair.second)
3878        TentativeDefinitionList.push_back(Var->getDeclName());
3879    }
3880
3881    // C++ [dcl.init.ref]p3:
3882    //   The initializer can be omitted for a reference only in a
3883    //   parameter declaration (8.3.5), in the declaration of a
3884    //   function return type, in the declaration of a class member
3885    //   within its class declaration (9.2), and where the extern
3886    //   specifier is explicitly used.
3887    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3888      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3889        << Var->getDeclName()
3890        << SourceRange(Var->getLocation(), Var->getLocation());
3891      Var->setInvalidDecl();
3892      return;
3893    }
3894
3895    // C++0x [dcl.spec.auto]p3
3896    if (TypeContainsUndeducedAuto) {
3897      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3898        << Var->getDeclName() << Type;
3899      Var->setInvalidDecl();
3900      return;
3901    }
3902
3903    // An array without size is an incomplete type, and there are no special
3904    // rules in C++ to make such a definition acceptable.
3905    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3906        !Var->hasExternalStorage()) {
3907      Diag(Var->getLocation(),
3908           diag::err_typecheck_incomplete_array_needs_initializer);
3909      Var->setInvalidDecl();
3910      return;
3911    }
3912
3913    // C++ [temp.expl.spec]p15:
3914    //   An explicit specialization of a static data member of a template is a
3915    //   definition if the declaration includes an initializer; otherwise, it
3916    //   is a declaration.
3917    if (Var->isStaticDataMember() &&
3918        Var->getInstantiatedFromStaticDataMember() &&
3919        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3920      return;
3921
3922    // C++ [dcl.init]p9:
3923    //   If no initializer is specified for an object, and the object
3924    //   is of (possibly cv-qualified) non-POD class type (or array
3925    //   thereof), the object shall be default-initialized; if the
3926    //   object is of const-qualified type, the underlying class type
3927    //   shall have a user-declared default constructor.
3928    //
3929    // FIXME: Diagnose the "user-declared default constructor" bit.
3930    if (getLangOptions().CPlusPlus) {
3931      QualType InitType = Type;
3932      if (const ArrayType *Array = Context.getAsArrayType(Type))
3933        InitType = Context.getBaseElementType(Array);
3934      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3935          InitType->isRecordType() && !InitType->isDependentType()) {
3936        if (!RequireCompleteType(Var->getLocation(), InitType,
3937                                 diag::err_invalid_incomplete_type_use)) {
3938          InitializedEntity Entity
3939            = InitializedEntity::InitializeVariable(Var);
3940          InitializationKind Kind
3941            = InitializationKind::CreateDefault(Var->getLocation());
3942
3943          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3944          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3945                                                  MultiExprArg(*this, 0, 0));
3946          if (Init.isInvalid())
3947            Var->setInvalidDecl();
3948          else {
3949            Var->setInit(Context,
3950                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3951            FinalizeVarWithDestructor(Var, InitType);
3952          }
3953        } else {
3954          Var->setInvalidDecl();
3955        }
3956      }
3957
3958      // The variable can not have an abstract class type.
3959      if (RequireNonAbstractType(Var->getLocation(), Type,
3960                                 diag::err_abstract_type_in_decl,
3961                                 AbstractVariableType))
3962        Var->setInvalidDecl();
3963    }
3964
3965#if 0
3966    // FIXME: Temporarily disabled because we are not properly parsing
3967    // linkage specifications on declarations, e.g.,
3968    //
3969    //   extern "C" const CGPoint CGPointerZero;
3970    //
3971    // C++ [dcl.init]p9:
3972    //
3973    //     If no initializer is specified for an object, and the
3974    //     object is of (possibly cv-qualified) non-POD class type (or
3975    //     array thereof), the object shall be default-initialized; if
3976    //     the object is of const-qualified type, the underlying class
3977    //     type shall have a user-declared default
3978    //     constructor. Otherwise, if no initializer is specified for
3979    //     an object, the object and its subobjects, if any, have an
3980    //     indeterminate initial value; if the object or any of its
3981    //     subobjects are of const-qualified type, the program is
3982    //     ill-formed.
3983    //
3984    // This isn't technically an error in C, so we don't diagnose it.
3985    //
3986    // FIXME: Actually perform the POD/user-defined default
3987    // constructor check.
3988    if (getLangOptions().CPlusPlus &&
3989        Context.getCanonicalType(Type).isConstQualified() &&
3990        !Var->hasExternalStorage())
3991      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3992        << Var->getName()
3993        << SourceRange(Var->getLocation(), Var->getLocation());
3994#endif
3995  }
3996}
3997
3998Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3999                                                   DeclPtrTy *Group,
4000                                                   unsigned NumDecls) {
4001  llvm::SmallVector<Decl*, 8> Decls;
4002
4003  if (DS.isTypeSpecOwned())
4004    Decls.push_back((Decl*)DS.getTypeRep());
4005
4006  for (unsigned i = 0; i != NumDecls; ++i)
4007    if (Decl *D = Group[i].getAs<Decl>())
4008      Decls.push_back(D);
4009
4010  // Perform semantic analysis that depends on having fully processed both
4011  // the declarator and initializer.
4012  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
4013    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
4014    if (!IDecl)
4015      continue;
4016    QualType T = IDecl->getType();
4017
4018    // Block scope. C99 6.7p7: If an identifier for an object is declared with
4019    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
4020    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
4021      if (T->isDependentType()) {
4022        // If T is dependent, we should not require a complete type.
4023        // (RequireCompleteType shouldn't be called with dependent types.)
4024        // But we still can at least check if we've got an array of unspecified
4025        // size without an initializer.
4026        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
4027            !IDecl->getInit()) {
4028          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
4029            << T;
4030          IDecl->setInvalidDecl();
4031        }
4032      } else if (!IDecl->isInvalidDecl()) {
4033        // If T is an incomplete array type with an initializer list that is
4034        // dependent on something, its size has not been fixed. We could attempt
4035        // to fix the size for such arrays, but we would still have to check
4036        // here for initializers containing a C++0x vararg expansion, e.g.
4037        // template <typename... Args> void f(Args... args) {
4038        //   int vals[] = { args };
4039        // }
4040        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
4041        Expr *Init = IDecl->getInit();
4042        if (IAT && Init &&
4043            (Init->isTypeDependent() || Init->isValueDependent())) {
4044          // Check that the member type of the array is complete, at least.
4045          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
4046                                  diag::err_typecheck_decl_incomplete_type))
4047            IDecl->setInvalidDecl();
4048        } else if (RequireCompleteType(IDecl->getLocation(), T,
4049                                      diag::err_typecheck_decl_incomplete_type))
4050          IDecl->setInvalidDecl();
4051      }
4052    }
4053    // File scope. C99 6.9.2p2: A declaration of an identifier for an
4054    // object that has file scope without an initializer, and without a
4055    // storage-class specifier or with the storage-class specifier "static",
4056    // constitutes a tentative definition. Note: A tentative definition with
4057    // external linkage is valid (C99 6.2.2p5).
4058    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
4059      if (const IncompleteArrayType *ArrayT
4060          = Context.getAsIncompleteArrayType(T)) {
4061        if (RequireCompleteType(IDecl->getLocation(),
4062                                ArrayT->getElementType(),
4063                                diag::err_illegal_decl_array_incomplete_type))
4064          IDecl->setInvalidDecl();
4065      } else if (IDecl->getStorageClass() == VarDecl::Static) {
4066        // C99 6.9.2p3: If the declaration of an identifier for an object is
4067        // a tentative definition and has internal linkage (C99 6.2.2p3), the
4068        // declared type shall not be an incomplete type.
4069        // NOTE: code such as the following
4070        //     static struct s;
4071        //     struct s { int a; };
4072        // is accepted by gcc. Hence here we issue a warning instead of
4073        // an error and we do not invalidate the static declaration.
4074        // NOTE: to avoid multiple warnings, only check the first declaration.
4075        if (IDecl->getPreviousDeclaration() == 0)
4076          RequireCompleteType(IDecl->getLocation(), T,
4077                              diag::ext_typecheck_decl_incomplete_type);
4078      }
4079    }
4080  }
4081  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4082                                                   Decls.data(), Decls.size()));
4083}
4084
4085
4086/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4087/// to introduce parameters into function prototype scope.
4088Sema::DeclPtrTy
4089Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4090  const DeclSpec &DS = D.getDeclSpec();
4091
4092  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4093  VarDecl::StorageClass StorageClass = VarDecl::None;
4094  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4095    StorageClass = VarDecl::Register;
4096  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4097    Diag(DS.getStorageClassSpecLoc(),
4098         diag::err_invalid_storage_class_in_func_decl);
4099    D.getMutableDeclSpec().ClearStorageClassSpecs();
4100  }
4101
4102  if (D.getDeclSpec().isThreadSpecified())
4103    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4104
4105  DiagnoseFunctionSpecifiers(D);
4106
4107  // Check that there are no default arguments inside the type of this
4108  // parameter (C++ only).
4109  if (getLangOptions().CPlusPlus)
4110    CheckExtraCXXDefaultArguments(D);
4111
4112  TypeSourceInfo *TInfo = 0;
4113  TagDecl *OwnedDecl = 0;
4114  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4115
4116  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4117    // C++ [dcl.fct]p6:
4118    //   Types shall not be defined in return or parameter types.
4119    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4120      << Context.getTypeDeclType(OwnedDecl);
4121  }
4122
4123  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
4124  // Can this happen for params?  We already checked that they don't conflict
4125  // among each other.  Here they can only shadow globals, which is ok.
4126  IdentifierInfo *II = D.getIdentifier();
4127  if (II) {
4128    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4129      if (PrevDecl->isTemplateParameter()) {
4130        // Maybe we will complain about the shadowed template parameter.
4131        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4132        // Just pretend that we didn't see the previous declaration.
4133        PrevDecl = 0;
4134      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4135        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4136
4137        // Recover by removing the name
4138        II = 0;
4139        D.SetIdentifier(0, D.getIdentifierLoc());
4140      }
4141    }
4142  }
4143
4144  // Parameters can not be abstract class types.
4145  // For record types, this is done by the AbstractClassUsageDiagnoser once
4146  // the class has been completely parsed.
4147  if (!CurContext->isRecord() &&
4148      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4149                             diag::err_abstract_type_in_decl,
4150                             AbstractParamType))
4151    D.setInvalidType(true);
4152
4153  QualType T = adjustParameterType(parmDeclType);
4154
4155  ParmVarDecl *New
4156    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
4157                          T, TInfo, StorageClass, 0);
4158
4159  if (D.isInvalidType())
4160    New->setInvalidDecl();
4161
4162  // Parameter declarators cannot be interface types. All ObjC objects are
4163  // passed by reference.
4164  if (T->isObjCInterfaceType()) {
4165    Diag(D.getIdentifierLoc(),
4166         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4167    New->setInvalidDecl();
4168  }
4169
4170  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4171  if (D.getCXXScopeSpec().isSet()) {
4172    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4173      << D.getCXXScopeSpec().getRange();
4174    New->setInvalidDecl();
4175  }
4176
4177  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4178  // duration shall not be qualified by an address-space qualifier."
4179  // Since all parameters have automatic store duration, they can not have
4180  // an address space.
4181  if (T.getAddressSpace() != 0) {
4182    Diag(D.getIdentifierLoc(),
4183         diag::err_arg_with_address_space);
4184    New->setInvalidDecl();
4185  }
4186
4187
4188  // Add the parameter declaration into this scope.
4189  S->AddDecl(DeclPtrTy::make(New));
4190  if (II)
4191    IdResolver.AddDecl(New);
4192
4193  ProcessDeclAttributes(S, New, D);
4194
4195  if (New->hasAttr<BlocksAttr>()) {
4196    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4197  }
4198  return DeclPtrTy::make(New);
4199}
4200
4201void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4202                                           SourceLocation LocAfterDecls) {
4203  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4204         "Not a function declarator!");
4205  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4206
4207  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4208  // for a K&R function.
4209  if (!FTI.hasPrototype) {
4210    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4211      --i;
4212      if (FTI.ArgInfo[i].Param == 0) {
4213        llvm::SmallString<256> Code;
4214        llvm::raw_svector_ostream(Code) << "  int "
4215                                        << FTI.ArgInfo[i].Ident->getName()
4216                                        << ";\n";
4217        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4218          << FTI.ArgInfo[i].Ident
4219          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4220
4221        // Implicitly declare the argument as type 'int' for lack of a better
4222        // type.
4223        DeclSpec DS;
4224        const char* PrevSpec; // unused
4225        unsigned DiagID; // unused
4226        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4227                           PrevSpec, DiagID);
4228        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4229        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4230        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4231      }
4232    }
4233  }
4234}
4235
4236Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4237                                              Declarator &D) {
4238  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4239  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4240         "Not a function declarator!");
4241  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4242
4243  if (FTI.hasPrototype) {
4244    // FIXME: Diagnose arguments without names in C.
4245  }
4246
4247  Scope *ParentScope = FnBodyScope->getParent();
4248
4249  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4250                                  MultiTemplateParamsArg(*this),
4251                                  /*IsFunctionDefinition=*/true);
4252  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4253}
4254
4255static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4256  // Don't warn about invalid declarations.
4257  if (FD->isInvalidDecl())
4258    return false;
4259
4260  // Or declarations that aren't global.
4261  if (!FD->isGlobal())
4262    return false;
4263
4264  // Don't warn about C++ member functions.
4265  if (isa<CXXMethodDecl>(FD))
4266    return false;
4267
4268  // Don't warn about 'main'.
4269  if (FD->isMain())
4270    return false;
4271
4272  // Don't warn about inline functions.
4273  if (FD->isInlineSpecified())
4274    return false;
4275
4276  // Don't warn about function templates.
4277  if (FD->getDescribedFunctionTemplate())
4278    return false;
4279
4280  // Don't warn about function template specializations.
4281  if (FD->isFunctionTemplateSpecialization())
4282    return false;
4283
4284  bool MissingPrototype = true;
4285  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4286       Prev; Prev = Prev->getPreviousDeclaration()) {
4287    // Ignore any declarations that occur in function or method
4288    // scope, because they aren't visible from the header.
4289    if (Prev->getDeclContext()->isFunctionOrMethod())
4290      continue;
4291
4292    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4293    break;
4294  }
4295
4296  return MissingPrototype;
4297}
4298
4299Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4300  // Clear the last template instantiation error context.
4301  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4302
4303  if (!D)
4304    return D;
4305  FunctionDecl *FD = 0;
4306
4307  if (FunctionTemplateDecl *FunTmpl
4308        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4309    FD = FunTmpl->getTemplatedDecl();
4310  else
4311    FD = cast<FunctionDecl>(D.getAs<Decl>());
4312
4313  CurFunctionNeedsScopeChecking = false;
4314
4315  // See if this is a redefinition.
4316  const FunctionDecl *Definition;
4317  if (FD->getBody(Definition)) {
4318    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4319    Diag(Definition->getLocation(), diag::note_previous_definition);
4320  }
4321
4322  // Builtin functions cannot be defined.
4323  if (unsigned BuiltinID = FD->getBuiltinID()) {
4324    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4325      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4326      FD->setInvalidDecl();
4327    }
4328  }
4329
4330  // The return type of a function definition must be complete
4331  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4332  QualType ResultType = FD->getResultType();
4333  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4334      !FD->isInvalidDecl() &&
4335      RequireCompleteType(FD->getLocation(), ResultType,
4336                          diag::err_func_def_incomplete_result))
4337    FD->setInvalidDecl();
4338
4339  // GNU warning -Wmissing-prototypes:
4340  //   Warn if a global function is defined without a previous
4341  //   prototype declaration. This warning is issued even if the
4342  //   definition itself provides a prototype. The aim is to detect
4343  //   global functions that fail to be declared in header files.
4344  if (ShouldWarnAboutMissingPrototype(FD))
4345    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4346
4347  if (FnBodyScope)
4348    PushDeclContext(FnBodyScope, FD);
4349
4350  // Check the validity of our function parameters
4351  CheckParmsForFunctionDef(FD);
4352
4353  // Introduce our parameters into the function scope
4354  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4355    ParmVarDecl *Param = FD->getParamDecl(p);
4356    Param->setOwningFunction(FD);
4357
4358    // If this has an identifier, add it to the scope stack.
4359    if (Param->getIdentifier() && FnBodyScope)
4360      PushOnScopeChains(Param, FnBodyScope);
4361  }
4362
4363  // Checking attributes of current function definition
4364  // dllimport attribute.
4365  if (FD->getAttr<DLLImportAttr>() &&
4366      (!FD->getAttr<DLLExportAttr>())) {
4367    // dllimport attribute cannot be applied to definition.
4368    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4369      Diag(FD->getLocation(),
4370           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4371        << "dllimport";
4372      FD->setInvalidDecl();
4373      return DeclPtrTy::make(FD);
4374    } else {
4375      // If a symbol previously declared dllimport is later defined, the
4376      // attribute is ignored in subsequent references, and a warning is
4377      // emitted.
4378      Diag(FD->getLocation(),
4379           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4380        << FD->getNameAsCString() << "dllimport";
4381    }
4382  }
4383  return DeclPtrTy::make(FD);
4384}
4385
4386Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4387  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4388}
4389
4390Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4391                                              bool IsInstantiation) {
4392  Decl *dcl = D.getAs<Decl>();
4393  Stmt *Body = BodyArg.takeAs<Stmt>();
4394
4395  AnalysisContext AC(dcl);
4396  FunctionDecl *FD = 0;
4397  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4398  if (FunTmpl)
4399    FD = FunTmpl->getTemplatedDecl();
4400  else
4401    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4402
4403  if (FD) {
4404    FD->setBody(Body);
4405    if (FD->isMain())
4406      // C and C++ allow for main to automagically return 0.
4407      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4408      FD->setHasImplicitReturnZero(true);
4409    else
4410      CheckFallThroughForFunctionDef(FD, Body, AC);
4411
4412    if (!FD->isInvalidDecl())
4413      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4414
4415    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4416      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4417
4418    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4419  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4420    assert(MD == getCurMethodDecl() && "Method parsing confused");
4421    MD->setBody(Body);
4422    CheckFallThroughForFunctionDef(MD, Body, AC);
4423    MD->setEndLoc(Body->getLocEnd());
4424
4425    if (!MD->isInvalidDecl())
4426      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4427  } else {
4428    Body->Destroy(Context);
4429    return DeclPtrTy();
4430  }
4431  if (!IsInstantiation)
4432    PopDeclContext();
4433
4434  // Verify and clean out per-function state.
4435
4436  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4437
4438  // Check goto/label use.
4439  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4440       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4441    LabelStmt *L = I->second;
4442
4443    // Verify that we have no forward references left.  If so, there was a goto
4444    // or address of a label taken, but no definition of it.  Label fwd
4445    // definitions are indicated with a null substmt.
4446    if (L->getSubStmt() != 0)
4447      continue;
4448
4449    // Emit error.
4450    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4451
4452    // At this point, we have gotos that use the bogus label.  Stitch it into
4453    // the function body so that they aren't leaked and that the AST is well
4454    // formed.
4455    if (Body == 0) {
4456      // The whole function wasn't parsed correctly, just delete this.
4457      L->Destroy(Context);
4458      continue;
4459    }
4460
4461    // Otherwise, the body is valid: we want to stitch the label decl into the
4462    // function somewhere so that it is properly owned and so that the goto
4463    // has a valid target.  Do this by creating a new compound stmt with the
4464    // label in it.
4465
4466    // Give the label a sub-statement.
4467    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4468
4469    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4470                               cast<CXXTryStmt>(Body)->getTryBlock() :
4471                               cast<CompoundStmt>(Body);
4472    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4473    Elements.push_back(L);
4474    Compound->setStmts(Context, &Elements[0], Elements.size());
4475  }
4476  FunctionLabelMap.clear();
4477
4478  if (!Body) return D;
4479
4480  CheckUnreachable(AC);
4481
4482  // Verify that that gotos and switch cases don't jump into scopes illegally.
4483  if (CurFunctionNeedsScopeChecking)
4484    DiagnoseInvalidJumps(Body);
4485
4486  // C++ constructors that have function-try-blocks can't have return
4487  // statements in the handlers of that block. (C++ [except.handle]p14)
4488  // Verify this.
4489  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4490    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4491
4492  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4493    MarkBaseAndMemberDestructorsReferenced(Destructor);
4494
4495  // If any errors have occurred, clear out any temporaries that may have
4496  // been leftover. This ensures that these temporaries won't be picked up for
4497  // deletion in some later function.
4498  if (PP.getDiagnostics().hasErrorOccurred())
4499    ExprTemporaries.clear();
4500
4501  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4502  return D;
4503}
4504
4505/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4506/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4507NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4508                                          IdentifierInfo &II, Scope *S) {
4509  // Before we produce a declaration for an implicitly defined
4510  // function, see whether there was a locally-scoped declaration of
4511  // this name as a function or variable. If so, use that
4512  // (non-visible) declaration, and complain about it.
4513  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4514    = LocallyScopedExternalDecls.find(&II);
4515  if (Pos != LocallyScopedExternalDecls.end()) {
4516    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4517    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4518    return Pos->second;
4519  }
4520
4521  // Extension in C99.  Legal in C90, but warn about it.
4522  if (II.getName().startswith("__builtin_"))
4523    Diag(Loc, diag::warn_builtin_unknown) << &II;
4524  else if (getLangOptions().C99)
4525    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4526  else
4527    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4528
4529  // Set a Declarator for the implicit definition: int foo();
4530  const char *Dummy;
4531  DeclSpec DS;
4532  unsigned DiagID;
4533  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4534  Error = Error; // Silence warning.
4535  assert(!Error && "Error setting up implicit decl!");
4536  Declarator D(DS, Declarator::BlockContext);
4537  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4538                                             0, 0, false, SourceLocation(),
4539                                             false, 0,0,0, Loc, Loc, D),
4540                SourceLocation());
4541  D.SetIdentifier(&II, Loc);
4542
4543  // Insert this function into translation-unit scope.
4544
4545  DeclContext *PrevDC = CurContext;
4546  CurContext = Context.getTranslationUnitDecl();
4547
4548  FunctionDecl *FD =
4549 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4550  FD->setImplicit();
4551
4552  CurContext = PrevDC;
4553
4554  AddKnownFunctionAttributes(FD);
4555
4556  return FD;
4557}
4558
4559/// \brief Adds any function attributes that we know a priori based on
4560/// the declaration of this function.
4561///
4562/// These attributes can apply both to implicitly-declared builtins
4563/// (like __builtin___printf_chk) or to library-declared functions
4564/// like NSLog or printf.
4565void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4566  if (FD->isInvalidDecl())
4567    return;
4568
4569  // If this is a built-in function, map its builtin attributes to
4570  // actual attributes.
4571  if (unsigned BuiltinID = FD->getBuiltinID()) {
4572    // Handle printf-formatting attributes.
4573    unsigned FormatIdx;
4574    bool HasVAListArg;
4575    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4576      if (!FD->getAttr<FormatAttr>())
4577        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4578                                             HasVAListArg ? 0 : FormatIdx + 2));
4579    }
4580
4581    // Mark const if we don't care about errno and that is the only
4582    // thing preventing the function from being const. This allows
4583    // IRgen to use LLVM intrinsics for such functions.
4584    if (!getLangOptions().MathErrno &&
4585        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4586      if (!FD->getAttr<ConstAttr>())
4587        FD->addAttr(::new (Context) ConstAttr());
4588    }
4589
4590    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4591      FD->addAttr(::new (Context) NoReturnAttr());
4592    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4593      FD->addAttr(::new (Context) NoThrowAttr());
4594    if (Context.BuiltinInfo.isConst(BuiltinID))
4595      FD->addAttr(::new (Context) ConstAttr());
4596  }
4597
4598  IdentifierInfo *Name = FD->getIdentifier();
4599  if (!Name)
4600    return;
4601  if ((!getLangOptions().CPlusPlus &&
4602       FD->getDeclContext()->isTranslationUnit()) ||
4603      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4604       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4605       LinkageSpecDecl::lang_c)) {
4606    // Okay: this could be a libc/libm/Objective-C function we know
4607    // about.
4608  } else
4609    return;
4610
4611  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4612    // FIXME: NSLog and NSLogv should be target specific
4613    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4614      // FIXME: We known better than our headers.
4615      const_cast<FormatAttr *>(Format)->setType("printf");
4616    } else
4617      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4618                                             Name->isStr("NSLogv") ? 0 : 2));
4619  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4620    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4621    // target-specific builtins, perhaps?
4622    if (!FD->getAttr<FormatAttr>())
4623      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4624                                             Name->isStr("vasprintf") ? 0 : 3));
4625  }
4626}
4627
4628TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4629                                    TypeSourceInfo *TInfo) {
4630  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4631  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4632
4633  if (!TInfo) {
4634    assert(D.isInvalidType() && "no declarator info for valid type");
4635    TInfo = Context.getTrivialTypeSourceInfo(T);
4636  }
4637
4638  // Scope manipulation handled by caller.
4639  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4640                                           D.getIdentifierLoc(),
4641                                           D.getIdentifier(),
4642                                           TInfo);
4643
4644  if (const TagType *TT = T->getAs<TagType>()) {
4645    TagDecl *TD = TT->getDecl();
4646
4647    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4648    // keep track of the TypedefDecl.
4649    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4650      TD->setTypedefForAnonDecl(NewTD);
4651  }
4652
4653  if (D.isInvalidType())
4654    NewTD->setInvalidDecl();
4655  return NewTD;
4656}
4657
4658
4659/// \brief Determine whether a tag with a given kind is acceptable
4660/// as a redeclaration of the given tag declaration.
4661///
4662/// \returns true if the new tag kind is acceptable, false otherwise.
4663bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4664                                        TagDecl::TagKind NewTag,
4665                                        SourceLocation NewTagLoc,
4666                                        const IdentifierInfo &Name) {
4667  // C++ [dcl.type.elab]p3:
4668  //   The class-key or enum keyword present in the
4669  //   elaborated-type-specifier shall agree in kind with the
4670  //   declaration to which the name in theelaborated-type-specifier
4671  //   refers. This rule also applies to the form of
4672  //   elaborated-type-specifier that declares a class-name or
4673  //   friend class since it can be construed as referring to the
4674  //   definition of the class. Thus, in any
4675  //   elaborated-type-specifier, the enum keyword shall be used to
4676  //   refer to an enumeration (7.2), the union class-keyshall be
4677  //   used to refer to a union (clause 9), and either the class or
4678  //   struct class-key shall be used to refer to a class (clause 9)
4679  //   declared using the class or struct class-key.
4680  TagDecl::TagKind OldTag = Previous->getTagKind();
4681  if (OldTag == NewTag)
4682    return true;
4683
4684  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4685      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4686    // Warn about the struct/class tag mismatch.
4687    bool isTemplate = false;
4688    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4689      isTemplate = Record->getDescribedClassTemplate();
4690
4691    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4692      << (NewTag == TagDecl::TK_class)
4693      << isTemplate << &Name
4694      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4695                              OldTag == TagDecl::TK_class? "class" : "struct");
4696    Diag(Previous->getLocation(), diag::note_previous_use);
4697    return true;
4698  }
4699  return false;
4700}
4701
4702/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4703/// former case, Name will be non-null.  In the later case, Name will be null.
4704/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4705/// reference/declaration/definition of a tag.
4706Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4707                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4708                               IdentifierInfo *Name, SourceLocation NameLoc,
4709                               AttributeList *Attr, AccessSpecifier AS,
4710                               MultiTemplateParamsArg TemplateParameterLists,
4711                               bool &OwnedDecl, bool &IsDependent) {
4712  // If this is not a definition, it must have a name.
4713  assert((Name != 0 || TUK == TUK_Definition) &&
4714         "Nameless record must be a definition!");
4715
4716  OwnedDecl = false;
4717  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4718
4719  // FIXME: Check explicit specializations more carefully.
4720  bool isExplicitSpecialization = false;
4721  if (TUK != TUK_Reference) {
4722    if (TemplateParameterList *TemplateParams
4723          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4724                        (TemplateParameterList**)TemplateParameterLists.get(),
4725                                              TemplateParameterLists.size(),
4726                                                    isExplicitSpecialization)) {
4727      if (TemplateParams->size() > 0) {
4728        // This is a declaration or definition of a class template (which may
4729        // be a member of another template).
4730        OwnedDecl = false;
4731        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4732                                               SS, Name, NameLoc, Attr,
4733                                               TemplateParams,
4734                                               AS);
4735        TemplateParameterLists.release();
4736        return Result.get();
4737      } else {
4738        // The "template<>" header is extraneous.
4739        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4740          << ElaboratedType::getNameForTagKind(Kind) << Name;
4741        isExplicitSpecialization = true;
4742      }
4743    }
4744
4745    TemplateParameterLists.release();
4746  }
4747
4748  DeclContext *SearchDC = CurContext;
4749  DeclContext *DC = CurContext;
4750  bool isStdBadAlloc = false;
4751  bool Invalid = false;
4752
4753  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4754                                                   : NotForRedeclaration);
4755
4756  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4757
4758  if (Name && SS.isNotEmpty()) {
4759    // We have a nested-name tag ('struct foo::bar').
4760
4761    // Check for invalid 'foo::'.
4762    if (SS.isInvalid()) {
4763      Name = 0;
4764      goto CreateNewDecl;
4765    }
4766
4767    // If this is a friend or a reference to a class in a dependent
4768    // context, don't try to make a decl for it.
4769    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4770      DC = computeDeclContext(SS, false);
4771      if (!DC) {
4772        IsDependent = true;
4773        return DeclPtrTy();
4774      }
4775    }
4776
4777    if (RequireCompleteDeclContext(SS))
4778      return DeclPtrTy::make((Decl *)0);
4779
4780    DC = computeDeclContext(SS, true);
4781    SearchDC = DC;
4782    // Look-up name inside 'foo::'.
4783    LookupQualifiedName(Previous, DC);
4784
4785    if (Previous.isAmbiguous())
4786      return DeclPtrTy();
4787
4788    if (Previous.empty()) {
4789      // Name lookup did not find anything. However, if the
4790      // nested-name-specifier refers to the current instantiation,
4791      // and that current instantiation has any dependent base
4792      // classes, we might find something at instantiation time: treat
4793      // this as a dependent elaborated-type-specifier.
4794      if (isCurrentInstantiationWithDependentBases(SS)) {
4795        IsDependent = true;
4796        return DeclPtrTy();
4797      }
4798
4799      // A tag 'foo::bar' must already exist.
4800      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4801      Name = 0;
4802      Invalid = true;
4803      goto CreateNewDecl;
4804    }
4805  } else if (Name) {
4806    // If this is a named struct, check to see if there was a previous forward
4807    // declaration or definition.
4808    // FIXME: We're looking into outer scopes here, even when we
4809    // shouldn't be. Doing so can result in ambiguities that we
4810    // shouldn't be diagnosing.
4811    LookupName(Previous, S);
4812
4813    // Note:  there used to be some attempt at recovery here.
4814    if (Previous.isAmbiguous())
4815      return DeclPtrTy();
4816
4817    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4818      // FIXME: This makes sure that we ignore the contexts associated
4819      // with C structs, unions, and enums when looking for a matching
4820      // tag declaration or definition. See the similar lookup tweak
4821      // in Sema::LookupName; is there a better way to deal with this?
4822      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4823        SearchDC = SearchDC->getParent();
4824    }
4825  }
4826
4827  if (Previous.isSingleResult() &&
4828      Previous.getFoundDecl()->isTemplateParameter()) {
4829    // Maybe we will complain about the shadowed template parameter.
4830    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4831    // Just pretend that we didn't see the previous declaration.
4832    Previous.clear();
4833  }
4834
4835  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4836      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4837    // This is a declaration of or a reference to "std::bad_alloc".
4838    isStdBadAlloc = true;
4839
4840    if (Previous.empty() && StdBadAlloc) {
4841      // std::bad_alloc has been implicitly declared (but made invisible to
4842      // name lookup). Fill in this implicit declaration as the previous
4843      // declaration, so that the declarations get chained appropriately.
4844      Previous.addDecl(StdBadAlloc);
4845    }
4846  }
4847
4848  if (!Previous.empty()) {
4849    assert(Previous.isSingleResult());
4850    NamedDecl *PrevDecl = Previous.getFoundDecl();
4851    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4852      // If this is a use of a previous tag, or if the tag is already declared
4853      // in the same scope (so that the definition/declaration completes or
4854      // rementions the tag), reuse the decl.
4855      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4856          isDeclInScope(PrevDecl, SearchDC, S)) {
4857        // Make sure that this wasn't declared as an enum and now used as a
4858        // struct or something similar.
4859        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4860          bool SafeToContinue
4861            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4862               Kind != TagDecl::TK_enum);
4863          if (SafeToContinue)
4864            Diag(KWLoc, diag::err_use_with_wrong_tag)
4865              << Name
4866              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4867                                                  PrevTagDecl->getKindName());
4868          else
4869            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4870          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4871
4872          if (SafeToContinue)
4873            Kind = PrevTagDecl->getTagKind();
4874          else {
4875            // Recover by making this an anonymous redefinition.
4876            Name = 0;
4877            Previous.clear();
4878            Invalid = true;
4879          }
4880        }
4881
4882        if (!Invalid) {
4883          // If this is a use, just return the declaration we found.
4884
4885          // FIXME: In the future, return a variant or some other clue
4886          // for the consumer of this Decl to know it doesn't own it.
4887          // For our current ASTs this shouldn't be a problem, but will
4888          // need to be changed with DeclGroups.
4889          if (TUK == TUK_Reference || TUK == TUK_Friend)
4890            return DeclPtrTy::make(PrevTagDecl);
4891
4892          // Diagnose attempts to redefine a tag.
4893          if (TUK == TUK_Definition) {
4894            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4895              // If we're defining a specialization and the previous definition
4896              // is from an implicit instantiation, don't emit an error
4897              // here; we'll catch this in the general case below.
4898              if (!isExplicitSpecialization ||
4899                  !isa<CXXRecordDecl>(Def) ||
4900                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4901                                               == TSK_ExplicitSpecialization) {
4902                Diag(NameLoc, diag::err_redefinition) << Name;
4903                Diag(Def->getLocation(), diag::note_previous_definition);
4904                // If this is a redefinition, recover by making this
4905                // struct be anonymous, which will make any later
4906                // references get the previous definition.
4907                Name = 0;
4908                Previous.clear();
4909                Invalid = true;
4910              }
4911            } else {
4912              // If the type is currently being defined, complain
4913              // about a nested redefinition.
4914              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4915              if (Tag->isBeingDefined()) {
4916                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4917                Diag(PrevTagDecl->getLocation(),
4918                     diag::note_previous_definition);
4919                Name = 0;
4920                Previous.clear();
4921                Invalid = true;
4922              }
4923            }
4924
4925            // Okay, this is definition of a previously declared or referenced
4926            // tag PrevDecl. We're going to create a new Decl for it.
4927          }
4928        }
4929        // If we get here we have (another) forward declaration or we
4930        // have a definition.  Just create a new decl.
4931
4932      } else {
4933        // If we get here, this is a definition of a new tag type in a nested
4934        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4935        // new decl/type.  We set PrevDecl to NULL so that the entities
4936        // have distinct types.
4937        Previous.clear();
4938      }
4939      // If we get here, we're going to create a new Decl. If PrevDecl
4940      // is non-NULL, it's a definition of the tag declared by
4941      // PrevDecl. If it's NULL, we have a new definition.
4942    } else {
4943      // PrevDecl is a namespace, template, or anything else
4944      // that lives in the IDNS_Tag identifier namespace.
4945      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4946        // The tag name clashes with a namespace name, issue an error and
4947        // recover by making this tag be anonymous.
4948        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4949        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4950        Name = 0;
4951        Previous.clear();
4952        Invalid = true;
4953      } else {
4954        // The existing declaration isn't relevant to us; we're in a
4955        // new scope, so clear out the previous declaration.
4956        Previous.clear();
4957      }
4958    }
4959  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4960    // C++ [basic.scope.pdecl]p5:
4961    //   -- for an elaborated-type-specifier of the form
4962    //
4963    //          class-key identifier
4964    //
4965    //      if the elaborated-type-specifier is used in the
4966    //      decl-specifier-seq or parameter-declaration-clause of a
4967    //      function defined in namespace scope, the identifier is
4968    //      declared as a class-name in the namespace that contains
4969    //      the declaration; otherwise, except as a friend
4970    //      declaration, the identifier is declared in the smallest
4971    //      non-class, non-function-prototype scope that contains the
4972    //      declaration.
4973    //
4974    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4975    // C structs and unions.
4976    //
4977    // It is an error in C++ to declare (rather than define) an enum
4978    // type, including via an elaborated type specifier.  We'll
4979    // diagnose that later; for now, declare the enum in the same
4980    // scope as we would have picked for any other tag type.
4981    //
4982    // GNU C also supports this behavior as part of its incomplete
4983    // enum types extension, while GNU C++ does not.
4984    //
4985    // Find the context where we'll be declaring the tag.
4986    // FIXME: We would like to maintain the current DeclContext as the
4987    // lexical context,
4988    while (SearchDC->isRecord())
4989      SearchDC = SearchDC->getParent();
4990
4991    // Find the scope where we'll be declaring the tag.
4992    while (S->isClassScope() ||
4993           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4994           ((S->getFlags() & Scope::DeclScope) == 0) ||
4995           (S->getEntity() &&
4996            ((DeclContext *)S->getEntity())->isTransparentContext()))
4997      S = S->getParent();
4998
4999  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
5000    // C++ [namespace.memdef]p3:
5001    //   If a friend declaration in a non-local class first declares a
5002    //   class or function, the friend class or function is a member of
5003    //   the innermost enclosing namespace.
5004    while (!SearchDC->isFileContext())
5005      SearchDC = SearchDC->getParent();
5006
5007    // The entity of a decl scope is a DeclContext; see PushDeclContext.
5008    while (S->getEntity() != SearchDC)
5009      S = S->getParent();
5010  }
5011
5012CreateNewDecl:
5013
5014  TagDecl *PrevDecl = 0;
5015  if (Previous.isSingleResult())
5016    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5017
5018  // If there is an identifier, use the location of the identifier as the
5019  // location of the decl, otherwise use the location of the struct/union
5020  // keyword.
5021  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5022
5023  // Otherwise, create a new declaration. If there is a previous
5024  // declaration of the same entity, the two will be linked via
5025  // PrevDecl.
5026  TagDecl *New;
5027
5028  if (Kind == TagDecl::TK_enum) {
5029    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5030    // enum X { A, B, C } D;    D should chain to X.
5031    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5032                           cast_or_null<EnumDecl>(PrevDecl));
5033    // If this is an undefined enum, warn.
5034    if (TUK != TUK_Definition && !Invalid)  {
5035      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5036                                              : diag::ext_forward_ref_enum;
5037      Diag(Loc, DK);
5038    }
5039  } else {
5040    // struct/union/class
5041
5042    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5043    // struct X { int A; } D;    D should chain to X.
5044    if (getLangOptions().CPlusPlus) {
5045      // FIXME: Look for a way to use RecordDecl for simple structs.
5046      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5047                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5048
5049      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5050        StdBadAlloc = cast<CXXRecordDecl>(New);
5051    } else
5052      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5053                               cast_or_null<RecordDecl>(PrevDecl));
5054  }
5055
5056  if (Kind != TagDecl::TK_enum) {
5057    // Handle #pragma pack: if the #pragma pack stack has non-default
5058    // alignment, make up a packed attribute for this decl. These
5059    // attributes are checked when the ASTContext lays out the
5060    // structure.
5061    //
5062    // It is important for implementing the correct semantics that this
5063    // happen here (in act on tag decl). The #pragma pack stack is
5064    // maintained as a result of parser callbacks which can occur at
5065    // many points during the parsing of a struct declaration (because
5066    // the #pragma tokens are effectively skipped over during the
5067    // parsing of the struct).
5068    if (unsigned Alignment = getPragmaPackAlignment())
5069      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5070  }
5071
5072  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5073    // C++ [dcl.typedef]p3:
5074    //   [...] Similarly, in a given scope, a class or enumeration
5075    //   shall not be declared with the same name as a typedef-name
5076    //   that is declared in that scope and refers to a type other
5077    //   than the class or enumeration itself.
5078    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5079                        ForRedeclaration);
5080    LookupName(Lookup, S);
5081    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5082    NamedDecl *PrevTypedefNamed = PrevTypedef;
5083    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5084        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5085          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5086      Diag(Loc, diag::err_tag_definition_of_typedef)
5087        << Context.getTypeDeclType(New)
5088        << PrevTypedef->getUnderlyingType();
5089      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5090      Invalid = true;
5091    }
5092  }
5093
5094  // If this is a specialization of a member class (of a class template),
5095  // check the specialization.
5096  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5097    Invalid = true;
5098
5099  if (Invalid)
5100    New->setInvalidDecl();
5101
5102  if (Attr)
5103    ProcessDeclAttributeList(S, New, Attr);
5104
5105  // If we're declaring or defining a tag in function prototype scope
5106  // in C, note that this type can only be used within the function.
5107  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5108    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5109
5110  // Set the lexical context. If the tag has a C++ scope specifier, the
5111  // lexical context will be different from the semantic context.
5112  New->setLexicalDeclContext(CurContext);
5113
5114  // Mark this as a friend decl if applicable.
5115  if (TUK == TUK_Friend)
5116    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5117
5118  // Set the access specifier.
5119  if (!Invalid && TUK != TUK_Friend)
5120    SetMemberAccessSpecifier(New, PrevDecl, AS);
5121
5122  if (TUK == TUK_Definition)
5123    New->startDefinition();
5124
5125  // If this has an identifier, add it to the scope stack.
5126  if (TUK == TUK_Friend) {
5127    // We might be replacing an existing declaration in the lookup tables;
5128    // if so, borrow its access specifier.
5129    if (PrevDecl)
5130      New->setAccess(PrevDecl->getAccess());
5131
5132    // Friend tag decls are visible in fairly strange ways.
5133    if (!CurContext->isDependentContext()) {
5134      DeclContext *DC = New->getDeclContext()->getLookupContext();
5135      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5136      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5137        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5138    }
5139  } else if (Name) {
5140    S = getNonFieldDeclScope(S);
5141    PushOnScopeChains(New, S);
5142  } else {
5143    CurContext->addDecl(New);
5144  }
5145
5146  // If this is the C FILE type, notify the AST context.
5147  if (IdentifierInfo *II = New->getIdentifier())
5148    if (!New->isInvalidDecl() &&
5149        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5150        II->isStr("FILE"))
5151      Context.setFILEDecl(New);
5152
5153  OwnedDecl = true;
5154  return DeclPtrTy::make(New);
5155}
5156
5157void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5158  AdjustDeclIfTemplate(TagD);
5159  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5160
5161  // Enter the tag context.
5162  PushDeclContext(S, Tag);
5163}
5164
5165void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5166                                           SourceLocation LBraceLoc) {
5167  AdjustDeclIfTemplate(TagD);
5168  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5169
5170  FieldCollector->StartClass();
5171
5172  if (!Record->getIdentifier())
5173    return;
5174
5175  // C++ [class]p2:
5176  //   [...] The class-name is also inserted into the scope of the
5177  //   class itself; this is known as the injected-class-name. For
5178  //   purposes of access checking, the injected-class-name is treated
5179  //   as if it were a public member name.
5180  CXXRecordDecl *InjectedClassName
5181    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5182                            CurContext, Record->getLocation(),
5183                            Record->getIdentifier(),
5184                            Record->getTagKeywordLoc(),
5185                            Record);
5186  InjectedClassName->setImplicit();
5187  InjectedClassName->setAccess(AS_public);
5188  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5189      InjectedClassName->setDescribedClassTemplate(Template);
5190  PushOnScopeChains(InjectedClassName, S);
5191  assert(InjectedClassName->isInjectedClassName() &&
5192         "Broken injected-class-name");
5193}
5194
5195// Traverses the class and any nested classes, making a note of any
5196// dynamic classes that have no key function so that we can mark all of
5197// their virtual member functions as "used" at the end of the translation
5198// unit. This ensures that all functions needed by the vtable will get
5199// instantiated/synthesized.
5200static void
5201RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5202                                      SourceLocation Loc) {
5203  // We don't look at dependent or undefined classes.
5204  if (Record->isDependentContext() || !Record->isDefinition())
5205    return;
5206
5207  if (Record->isDynamicClass() && !S.Context.getKeyFunction(Record))
5208    S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record, Loc));
5209
5210  for (DeclContext::decl_iterator D = Record->decls_begin(),
5211                               DEnd = Record->decls_end();
5212       D != DEnd; ++D) {
5213    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5214      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5215  }
5216}
5217
5218void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5219                                    SourceLocation RBraceLoc) {
5220  AdjustDeclIfTemplate(TagD);
5221  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5222  Tag->setRBraceLoc(RBraceLoc);
5223
5224  if (isa<CXXRecordDecl>(Tag))
5225    FieldCollector->FinishClass();
5226
5227  // Exit this scope of this tag's definition.
5228  PopDeclContext();
5229
5230  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
5231    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5232                                          RBraceLoc);
5233
5234  // Notify the consumer that we've defined a tag.
5235  Consumer.HandleTagDeclDefinition(Tag);
5236}
5237
5238// Note that FieldName may be null for anonymous bitfields.
5239bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5240                          QualType FieldTy, const Expr *BitWidth,
5241                          bool *ZeroWidth) {
5242  // Default to true; that shouldn't confuse checks for emptiness
5243  if (ZeroWidth)
5244    *ZeroWidth = true;
5245
5246  // C99 6.7.2.1p4 - verify the field type.
5247  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5248  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5249    // Handle incomplete types with specific error.
5250    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5251      return true;
5252    if (FieldName)
5253      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5254        << FieldName << FieldTy << BitWidth->getSourceRange();
5255    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5256      << FieldTy << BitWidth->getSourceRange();
5257  }
5258
5259  // If the bit-width is type- or value-dependent, don't try to check
5260  // it now.
5261  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5262    return false;
5263
5264  llvm::APSInt Value;
5265  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5266    return true;
5267
5268  if (Value != 0 && ZeroWidth)
5269    *ZeroWidth = false;
5270
5271  // Zero-width bitfield is ok for anonymous field.
5272  if (Value == 0 && FieldName)
5273    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5274
5275  if (Value.isSigned() && Value.isNegative()) {
5276    if (FieldName)
5277      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5278               << FieldName << Value.toString(10);
5279    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5280      << Value.toString(10);
5281  }
5282
5283  if (!FieldTy->isDependentType()) {
5284    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5285    if (Value.getZExtValue() > TypeSize) {
5286      if (FieldName)
5287        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5288          << FieldName << (unsigned)TypeSize;
5289      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5290        << (unsigned)TypeSize;
5291    }
5292  }
5293
5294  return false;
5295}
5296
5297/// ActOnField - Each field of a struct/union/class is passed into this in order
5298/// to create a FieldDecl object for it.
5299Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5300                                 SourceLocation DeclStart,
5301                                 Declarator &D, ExprTy *BitfieldWidth) {
5302  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5303                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5304                               AS_public);
5305  return DeclPtrTy::make(Res);
5306}
5307
5308/// HandleField - Analyze a field of a C struct or a C++ data member.
5309///
5310FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5311                             SourceLocation DeclStart,
5312                             Declarator &D, Expr *BitWidth,
5313                             AccessSpecifier AS) {
5314  IdentifierInfo *II = D.getIdentifier();
5315  SourceLocation Loc = DeclStart;
5316  if (II) Loc = D.getIdentifierLoc();
5317
5318  TypeSourceInfo *TInfo = 0;
5319  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5320  if (getLangOptions().CPlusPlus)
5321    CheckExtraCXXDefaultArguments(D);
5322
5323  DiagnoseFunctionSpecifiers(D);
5324
5325  if (D.getDeclSpec().isThreadSpecified())
5326    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5327
5328  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5329                                         ForRedeclaration);
5330
5331  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5332    // Maybe we will complain about the shadowed template parameter.
5333    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5334    // Just pretend that we didn't see the previous declaration.
5335    PrevDecl = 0;
5336  }
5337
5338  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5339    PrevDecl = 0;
5340
5341  bool Mutable
5342    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5343  SourceLocation TSSL = D.getSourceRange().getBegin();
5344  FieldDecl *NewFD
5345    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5346                     AS, PrevDecl, &D);
5347  if (NewFD->isInvalidDecl() && PrevDecl) {
5348    // Don't introduce NewFD into scope; there's already something
5349    // with the same name in the same scope.
5350  } else if (II) {
5351    PushOnScopeChains(NewFD, S);
5352  } else
5353    Record->addDecl(NewFD);
5354
5355  return NewFD;
5356}
5357
5358/// \brief Build a new FieldDecl and check its well-formedness.
5359///
5360/// This routine builds a new FieldDecl given the fields name, type,
5361/// record, etc. \p PrevDecl should refer to any previous declaration
5362/// with the same name and in the same scope as the field to be
5363/// created.
5364///
5365/// \returns a new FieldDecl.
5366///
5367/// \todo The Declarator argument is a hack. It will be removed once
5368FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5369                                TypeSourceInfo *TInfo,
5370                                RecordDecl *Record, SourceLocation Loc,
5371                                bool Mutable, Expr *BitWidth,
5372                                SourceLocation TSSL,
5373                                AccessSpecifier AS, NamedDecl *PrevDecl,
5374                                Declarator *D) {
5375  IdentifierInfo *II = Name.getAsIdentifierInfo();
5376  bool InvalidDecl = false;
5377  if (D) InvalidDecl = D->isInvalidType();
5378
5379  // If we receive a broken type, recover by assuming 'int' and
5380  // marking this declaration as invalid.
5381  if (T.isNull()) {
5382    InvalidDecl = true;
5383    T = Context.IntTy;
5384  }
5385
5386  QualType EltTy = Context.getBaseElementType(T);
5387  if (!EltTy->isDependentType() &&
5388      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5389    InvalidDecl = true;
5390
5391  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5392  // than a variably modified type.
5393  if (!InvalidDecl && T->isVariablyModifiedType()) {
5394    bool SizeIsNegative;
5395    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5396                                                           SizeIsNegative);
5397    if (!FixedTy.isNull()) {
5398      Diag(Loc, diag::warn_illegal_constant_array_size);
5399      T = FixedTy;
5400    } else {
5401      if (SizeIsNegative)
5402        Diag(Loc, diag::err_typecheck_negative_array_size);
5403      else
5404        Diag(Loc, diag::err_typecheck_field_variable_size);
5405      InvalidDecl = true;
5406    }
5407  }
5408
5409  // Fields can not have abstract class types
5410  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5411                                             diag::err_abstract_type_in_decl,
5412                                             AbstractFieldType))
5413    InvalidDecl = true;
5414
5415  bool ZeroWidth = false;
5416  // If this is declared as a bit-field, check the bit-field.
5417  if (!InvalidDecl && BitWidth &&
5418      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5419    InvalidDecl = true;
5420    DeleteExpr(BitWidth);
5421    BitWidth = 0;
5422    ZeroWidth = false;
5423  }
5424
5425  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5426                                       BitWidth, Mutable);
5427  if (InvalidDecl)
5428    NewFD->setInvalidDecl();
5429
5430  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5431    Diag(Loc, diag::err_duplicate_member) << II;
5432    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5433    NewFD->setInvalidDecl();
5434  }
5435
5436  if (getLangOptions().CPlusPlus) {
5437    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5438
5439    if (!T->isPODType())
5440      CXXRecord->setPOD(false);
5441    if (!ZeroWidth)
5442      CXXRecord->setEmpty(false);
5443
5444    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5445      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5446
5447      if (!RDecl->hasTrivialConstructor())
5448        CXXRecord->setHasTrivialConstructor(false);
5449      if (!RDecl->hasTrivialCopyConstructor())
5450        CXXRecord->setHasTrivialCopyConstructor(false);
5451      if (!RDecl->hasTrivialCopyAssignment())
5452        CXXRecord->setHasTrivialCopyAssignment(false);
5453      if (!RDecl->hasTrivialDestructor())
5454        CXXRecord->setHasTrivialDestructor(false);
5455
5456      // C++ 9.5p1: An object of a class with a non-trivial
5457      // constructor, a non-trivial copy constructor, a non-trivial
5458      // destructor, or a non-trivial copy assignment operator
5459      // cannot be a member of a union, nor can an array of such
5460      // objects.
5461      // TODO: C++0x alters this restriction significantly.
5462      if (Record->isUnion()) {
5463        // We check for copy constructors before constructors
5464        // because otherwise we'll never get complaints about
5465        // copy constructors.
5466
5467        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5468
5469        CXXSpecialMember member;
5470        if (!RDecl->hasTrivialCopyConstructor())
5471          member = CXXCopyConstructor;
5472        else if (!RDecl->hasTrivialConstructor())
5473          member = CXXDefaultConstructor;
5474        else if (!RDecl->hasTrivialCopyAssignment())
5475          member = CXXCopyAssignment;
5476        else if (!RDecl->hasTrivialDestructor())
5477          member = CXXDestructor;
5478        else
5479          member = invalid;
5480
5481        if (member != invalid) {
5482          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5483          DiagnoseNontrivial(RT, member);
5484          NewFD->setInvalidDecl();
5485        }
5486      }
5487    }
5488  }
5489
5490  // FIXME: We need to pass in the attributes given an AST
5491  // representation, not a parser representation.
5492  if (D)
5493    // FIXME: What to pass instead of TUScope?
5494    ProcessDeclAttributes(TUScope, NewFD, *D);
5495
5496  if (T.isObjCGCWeak())
5497    Diag(Loc, diag::warn_attribute_weak_on_field);
5498
5499  NewFD->setAccess(AS);
5500
5501  // C++ [dcl.init.aggr]p1:
5502  //   An aggregate is an array or a class (clause 9) with [...] no
5503  //   private or protected non-static data members (clause 11).
5504  // A POD must be an aggregate.
5505  if (getLangOptions().CPlusPlus &&
5506      (AS == AS_private || AS == AS_protected)) {
5507    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5508    CXXRecord->setAggregate(false);
5509    CXXRecord->setPOD(false);
5510  }
5511
5512  return NewFD;
5513}
5514
5515/// DiagnoseNontrivial - Given that a class has a non-trivial
5516/// special member, figure out why.
5517void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5518  QualType QT(T, 0U);
5519  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5520
5521  // Check whether the member was user-declared.
5522  switch (member) {
5523  case CXXDefaultConstructor:
5524    if (RD->hasUserDeclaredConstructor()) {
5525      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5526      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5527        const FunctionDecl *body = 0;
5528        ci->getBody(body);
5529        if (!body ||
5530            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5531          SourceLocation CtorLoc = ci->getLocation();
5532          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5533          return;
5534        }
5535      }
5536
5537      assert(0 && "found no user-declared constructors");
5538      return;
5539    }
5540    break;
5541
5542  case CXXCopyConstructor:
5543    if (RD->hasUserDeclaredCopyConstructor()) {
5544      SourceLocation CtorLoc =
5545        RD->getCopyConstructor(Context, 0)->getLocation();
5546      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5547      return;
5548    }
5549    break;
5550
5551  case CXXCopyAssignment:
5552    if (RD->hasUserDeclaredCopyAssignment()) {
5553      // FIXME: this should use the location of the copy
5554      // assignment, not the type.
5555      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5556      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5557      return;
5558    }
5559    break;
5560
5561  case CXXDestructor:
5562    if (RD->hasUserDeclaredDestructor()) {
5563      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5564      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5565      return;
5566    }
5567    break;
5568  }
5569
5570  typedef CXXRecordDecl::base_class_iterator base_iter;
5571
5572  // Virtual bases and members inhibit trivial copying/construction,
5573  // but not trivial destruction.
5574  if (member != CXXDestructor) {
5575    // Check for virtual bases.  vbases includes indirect virtual bases,
5576    // so we just iterate through the direct bases.
5577    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5578      if (bi->isVirtual()) {
5579        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5580        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5581        return;
5582      }
5583
5584    // Check for virtual methods.
5585    typedef CXXRecordDecl::method_iterator meth_iter;
5586    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5587         ++mi) {
5588      if (mi->isVirtual()) {
5589        SourceLocation MLoc = mi->getSourceRange().getBegin();
5590        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5591        return;
5592      }
5593    }
5594  }
5595
5596  bool (CXXRecordDecl::*hasTrivial)() const;
5597  switch (member) {
5598  case CXXDefaultConstructor:
5599    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5600  case CXXCopyConstructor:
5601    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5602  case CXXCopyAssignment:
5603    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5604  case CXXDestructor:
5605    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5606  default:
5607    assert(0 && "unexpected special member"); return;
5608  }
5609
5610  // Check for nontrivial bases (and recurse).
5611  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5612    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5613    assert(BaseRT && "Don't know how to handle dependent bases");
5614    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5615    if (!(BaseRecTy->*hasTrivial)()) {
5616      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5617      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5618      DiagnoseNontrivial(BaseRT, member);
5619      return;
5620    }
5621  }
5622
5623  // Check for nontrivial members (and recurse).
5624  typedef RecordDecl::field_iterator field_iter;
5625  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5626       ++fi) {
5627    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5628    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5629      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5630
5631      if (!(EltRD->*hasTrivial)()) {
5632        SourceLocation FLoc = (*fi)->getLocation();
5633        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5634        DiagnoseNontrivial(EltRT, member);
5635        return;
5636      }
5637    }
5638  }
5639
5640  assert(0 && "found no explanation for non-trivial member");
5641}
5642
5643/// TranslateIvarVisibility - Translate visibility from a token ID to an
5644///  AST enum value.
5645static ObjCIvarDecl::AccessControl
5646TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5647  switch (ivarVisibility) {
5648  default: assert(0 && "Unknown visitibility kind");
5649  case tok::objc_private: return ObjCIvarDecl::Private;
5650  case tok::objc_public: return ObjCIvarDecl::Public;
5651  case tok::objc_protected: return ObjCIvarDecl::Protected;
5652  case tok::objc_package: return ObjCIvarDecl::Package;
5653  }
5654}
5655
5656/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5657/// in order to create an IvarDecl object for it.
5658Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5659                                SourceLocation DeclStart,
5660                                DeclPtrTy IntfDecl,
5661                                Declarator &D, ExprTy *BitfieldWidth,
5662                                tok::ObjCKeywordKind Visibility) {
5663
5664  IdentifierInfo *II = D.getIdentifier();
5665  Expr *BitWidth = (Expr*)BitfieldWidth;
5666  SourceLocation Loc = DeclStart;
5667  if (II) Loc = D.getIdentifierLoc();
5668
5669  // FIXME: Unnamed fields can be handled in various different ways, for
5670  // example, unnamed unions inject all members into the struct namespace!
5671
5672  TypeSourceInfo *TInfo = 0;
5673  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5674
5675  if (BitWidth) {
5676    // 6.7.2.1p3, 6.7.2.1p4
5677    if (VerifyBitField(Loc, II, T, BitWidth)) {
5678      D.setInvalidType();
5679      DeleteExpr(BitWidth);
5680      BitWidth = 0;
5681    }
5682  } else {
5683    // Not a bitfield.
5684
5685    // validate II.
5686
5687  }
5688
5689  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5690  // than a variably modified type.
5691  if (T->isVariablyModifiedType()) {
5692    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5693    D.setInvalidType();
5694  }
5695
5696  // Get the visibility (access control) for this ivar.
5697  ObjCIvarDecl::AccessControl ac =
5698    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5699                                        : ObjCIvarDecl::None;
5700  // Must set ivar's DeclContext to its enclosing interface.
5701  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5702  DeclContext *EnclosingContext;
5703  if (ObjCImplementationDecl *IMPDecl =
5704      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5705    // Case of ivar declared in an implementation. Context is that of its class.
5706    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5707    assert(IDecl && "No class- ActOnIvar");
5708    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5709  } else
5710    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5711  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5712
5713  // Construct the decl.
5714  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5715                                             EnclosingContext, Loc, II, T,
5716                                             TInfo, ac, (Expr *)BitfieldWidth);
5717
5718  if (II) {
5719    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5720                                           ForRedeclaration);
5721    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5722        && !isa<TagDecl>(PrevDecl)) {
5723      Diag(Loc, diag::err_duplicate_member) << II;
5724      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5725      NewID->setInvalidDecl();
5726    }
5727  }
5728
5729  // Process attributes attached to the ivar.
5730  ProcessDeclAttributes(S, NewID, D);
5731
5732  if (D.isInvalidType())
5733    NewID->setInvalidDecl();
5734
5735  if (II) {
5736    // FIXME: When interfaces are DeclContexts, we'll need to add
5737    // these to the interface.
5738    S->AddDecl(DeclPtrTy::make(NewID));
5739    IdResolver.AddDecl(NewID);
5740  }
5741
5742  return DeclPtrTy::make(NewID);
5743}
5744
5745void Sema::ActOnFields(Scope* S,
5746                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5747                       DeclPtrTy *Fields, unsigned NumFields,
5748                       SourceLocation LBrac, SourceLocation RBrac,
5749                       AttributeList *Attr) {
5750  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5751  assert(EnclosingDecl && "missing record or interface decl");
5752
5753  // If the decl this is being inserted into is invalid, then it may be a
5754  // redeclaration or some other bogus case.  Don't try to add fields to it.
5755  if (EnclosingDecl->isInvalidDecl()) {
5756    // FIXME: Deallocate fields?
5757    return;
5758  }
5759
5760
5761  // Verify that all the fields are okay.
5762  unsigned NumNamedMembers = 0;
5763  llvm::SmallVector<FieldDecl*, 32> RecFields;
5764
5765  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5766  for (unsigned i = 0; i != NumFields; ++i) {
5767    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5768
5769    // Get the type for the field.
5770    Type *FDTy = FD->getType().getTypePtr();
5771
5772    if (!FD->isAnonymousStructOrUnion()) {
5773      // Remember all fields written by the user.
5774      RecFields.push_back(FD);
5775    }
5776
5777    // If the field is already invalid for some reason, don't emit more
5778    // diagnostics about it.
5779    if (FD->isInvalidDecl()) {
5780      EnclosingDecl->setInvalidDecl();
5781      continue;
5782    }
5783
5784    // C99 6.7.2.1p2:
5785    //   A structure or union shall not contain a member with
5786    //   incomplete or function type (hence, a structure shall not
5787    //   contain an instance of itself, but may contain a pointer to
5788    //   an instance of itself), except that the last member of a
5789    //   structure with more than one named member may have incomplete
5790    //   array type; such a structure (and any union containing,
5791    //   possibly recursively, a member that is such a structure)
5792    //   shall not be a member of a structure or an element of an
5793    //   array.
5794    if (FDTy->isFunctionType()) {
5795      // Field declared as a function.
5796      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5797        << FD->getDeclName();
5798      FD->setInvalidDecl();
5799      EnclosingDecl->setInvalidDecl();
5800      continue;
5801    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5802               Record && Record->isStruct()) {
5803      // Flexible array member.
5804      if (NumNamedMembers < 1) {
5805        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5806          << FD->getDeclName();
5807        FD->setInvalidDecl();
5808        EnclosingDecl->setInvalidDecl();
5809        continue;
5810      }
5811      // Okay, we have a legal flexible array member at the end of the struct.
5812      if (Record)
5813        Record->setHasFlexibleArrayMember(true);
5814    } else if (!FDTy->isDependentType() &&
5815               RequireCompleteType(FD->getLocation(), FD->getType(),
5816                                   diag::err_field_incomplete)) {
5817      // Incomplete type
5818      FD->setInvalidDecl();
5819      EnclosingDecl->setInvalidDecl();
5820      continue;
5821    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5822      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5823        // If this is a member of a union, then entire union becomes "flexible".
5824        if (Record && Record->isUnion()) {
5825          Record->setHasFlexibleArrayMember(true);
5826        } else {
5827          // If this is a struct/class and this is not the last element, reject
5828          // it.  Note that GCC supports variable sized arrays in the middle of
5829          // structures.
5830          if (i != NumFields-1)
5831            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5832              << FD->getDeclName() << FD->getType();
5833          else {
5834            // We support flexible arrays at the end of structs in
5835            // other structs as an extension.
5836            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5837              << FD->getDeclName();
5838            if (Record)
5839              Record->setHasFlexibleArrayMember(true);
5840          }
5841        }
5842      }
5843      if (Record && FDTTy->getDecl()->hasObjectMember())
5844        Record->setHasObjectMember(true);
5845    } else if (FDTy->isObjCInterfaceType()) {
5846      /// A field cannot be an Objective-c object
5847      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5848      FD->setInvalidDecl();
5849      EnclosingDecl->setInvalidDecl();
5850      continue;
5851    } else if (getLangOptions().ObjC1 &&
5852               getLangOptions().getGCMode() != LangOptions::NonGC &&
5853               Record &&
5854               (FD->getType()->isObjCObjectPointerType() ||
5855                FD->getType().isObjCGCStrong()))
5856      Record->setHasObjectMember(true);
5857    // Keep track of the number of named members.
5858    if (FD->getIdentifier())
5859      ++NumNamedMembers;
5860  }
5861
5862  // Okay, we successfully defined 'Record'.
5863  if (Record) {
5864    Record->completeDefinition(Context);
5865  } else {
5866    ObjCIvarDecl **ClsFields =
5867      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5868    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5869      ID->setIVarList(ClsFields, RecFields.size(), Context);
5870      ID->setLocEnd(RBrac);
5871      // Add ivar's to class's DeclContext.
5872      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5873        ClsFields[i]->setLexicalDeclContext(ID);
5874        ID->addDecl(ClsFields[i]);
5875      }
5876      // Must enforce the rule that ivars in the base classes may not be
5877      // duplicates.
5878      if (ID->getSuperClass()) {
5879        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5880             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5881          ObjCIvarDecl* Ivar = (*IVI);
5882
5883          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5884            ObjCIvarDecl* prevIvar =
5885              ID->getSuperClass()->lookupInstanceVariable(II);
5886            if (prevIvar) {
5887              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5888              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5889            }
5890          }
5891        }
5892      }
5893    } else if (ObjCImplementationDecl *IMPDecl =
5894                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5895      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5896      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5897        // Ivar declared in @implementation never belongs to the implementation.
5898        // Only it is in implementation's lexical context.
5899        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5900      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5901    }
5902  }
5903
5904  if (Attr)
5905    ProcessDeclAttributeList(S, Record, Attr);
5906}
5907
5908EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5909                                          EnumConstantDecl *LastEnumConst,
5910                                          SourceLocation IdLoc,
5911                                          IdentifierInfo *Id,
5912                                          ExprArg val) {
5913  Expr *Val = (Expr *)val.get();
5914
5915  llvm::APSInt EnumVal(32);
5916  QualType EltTy;
5917  if (Val) {
5918    if (Enum->isDependentType())
5919      EltTy = Context.DependentTy;
5920    else {
5921      // Make sure to promote the operand type to int.
5922      UsualUnaryConversions(Val);
5923      if (Val != val.get()) {
5924        val.release();
5925        val = Val;
5926      }
5927
5928      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5929      SourceLocation ExpLoc;
5930      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5931        Val = 0;
5932      } else {
5933        EltTy = Val->getType();
5934      }
5935    }
5936  }
5937
5938  if (!Val) {
5939    if (Enum->isDependentType())
5940      EltTy = Context.DependentTy;
5941    else if (LastEnumConst) {
5942      // Assign the last value + 1.
5943      EnumVal = LastEnumConst->getInitVal();
5944      ++EnumVal;
5945
5946      // Check for overflow on increment.
5947      if (EnumVal < LastEnumConst->getInitVal())
5948        Diag(IdLoc, diag::warn_enum_value_overflow);
5949
5950      EltTy = LastEnumConst->getType();
5951    } else {
5952      // First value, set to zero.
5953      EltTy = Context.IntTy;
5954      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5955      EnumVal.setIsSigned(true);
5956    }
5957  }
5958
5959  assert(!EltTy.isNull() && "Enum constant with NULL type");
5960
5961  val.release();
5962  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5963                                  Val, EnumVal);
5964}
5965
5966
5967Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5968                                        DeclPtrTy lastEnumConst,
5969                                        SourceLocation IdLoc,
5970                                        IdentifierInfo *Id,
5971                                        SourceLocation EqualLoc, ExprTy *val) {
5972  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5973  EnumConstantDecl *LastEnumConst =
5974    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5975  Expr *Val = static_cast<Expr*>(val);
5976
5977  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5978  // we find one that is.
5979  S = getNonFieldDeclScope(S);
5980
5981  // Verify that there isn't already something declared with this name in this
5982  // scope.
5983  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5984  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5985    // Maybe we will complain about the shadowed template parameter.
5986    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5987    // Just pretend that we didn't see the previous declaration.
5988    PrevDecl = 0;
5989  }
5990
5991  if (PrevDecl) {
5992    // When in C++, we may get a TagDecl with the same name; in this case the
5993    // enum constant will 'hide' the tag.
5994    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5995           "Received TagDecl when not in C++!");
5996    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5997      if (isa<EnumConstantDecl>(PrevDecl))
5998        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5999      else
6000        Diag(IdLoc, diag::err_redefinition) << Id;
6001      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6002      if (Val) Val->Destroy(Context);
6003      return DeclPtrTy();
6004    }
6005  }
6006
6007  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6008                                            IdLoc, Id, Owned(Val));
6009
6010  // Register this decl in the current scope stack.
6011  if (New)
6012    PushOnScopeChains(New, S);
6013
6014  return DeclPtrTy::make(New);
6015}
6016
6017void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6018                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6019                         DeclPtrTy *Elements, unsigned NumElements,
6020                         Scope *S, AttributeList *Attr) {
6021  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6022  QualType EnumType = Context.getTypeDeclType(Enum);
6023
6024  if (Attr)
6025    ProcessDeclAttributeList(S, Enum, Attr);
6026
6027  if (Enum->isDependentType()) {
6028    for (unsigned i = 0; i != NumElements; ++i) {
6029      EnumConstantDecl *ECD =
6030        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6031      if (!ECD) continue;
6032
6033      ECD->setType(EnumType);
6034    }
6035
6036    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
6037    return;
6038  }
6039
6040  // TODO: If the result value doesn't fit in an int, it must be a long or long
6041  // long value.  ISO C does not support this, but GCC does as an extension,
6042  // emit a warning.
6043  unsigned IntWidth = Context.Target.getIntWidth();
6044  unsigned CharWidth = Context.Target.getCharWidth();
6045  unsigned ShortWidth = Context.Target.getShortWidth();
6046
6047  // Verify that all the values are okay, compute the size of the values, and
6048  // reverse the list.
6049  unsigned NumNegativeBits = 0;
6050  unsigned NumPositiveBits = 0;
6051
6052  // Keep track of whether all elements have type int.
6053  bool AllElementsInt = true;
6054
6055  for (unsigned i = 0; i != NumElements; ++i) {
6056    EnumConstantDecl *ECD =
6057      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6058    if (!ECD) continue;  // Already issued a diagnostic.
6059
6060    // If the enum value doesn't fit in an int, emit an extension warning.
6061    const llvm::APSInt &InitVal = ECD->getInitVal();
6062    assert(InitVal.getBitWidth() >= IntWidth &&
6063           "Should have promoted value to int");
6064    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
6065      llvm::APSInt V(InitVal);
6066      V.trunc(IntWidth);
6067      V.extend(InitVal.getBitWidth());
6068      if (V != InitVal)
6069        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
6070          << InitVal.toString(10);
6071    }
6072
6073    // Keep track of the size of positive and negative values.
6074    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6075      NumPositiveBits = std::max(NumPositiveBits,
6076                                 (unsigned)InitVal.getActiveBits());
6077    else
6078      NumNegativeBits = std::max(NumNegativeBits,
6079                                 (unsigned)InitVal.getMinSignedBits());
6080
6081    // Keep track of whether every enum element has type int (very commmon).
6082    if (AllElementsInt)
6083      AllElementsInt = ECD->getType() == Context.IntTy;
6084  }
6085
6086  // Figure out the type that should be used for this enum.
6087  // FIXME: Support -fshort-enums.
6088  QualType BestType;
6089  unsigned BestWidth;
6090
6091  // C++0x N3000 [conv.prom]p3:
6092  //   An rvalue of an unscoped enumeration type whose underlying
6093  //   type is not fixed can be converted to an rvalue of the first
6094  //   of the following types that can represent all the values of
6095  //   the enumeration: int, unsigned int, long int, unsigned long
6096  //   int, long long int, or unsigned long long int.
6097  // C99 6.4.4.3p2:
6098  //   An identifier declared as an enumeration constant has type int.
6099  // The C99 rule is modified by a gcc extension
6100  QualType BestPromotionType;
6101
6102  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6103
6104  if (NumNegativeBits) {
6105    // If there is a negative value, figure out the smallest integer type (of
6106    // int/long/longlong) that fits.
6107    // If it's packed, check also if it fits a char or a short.
6108    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6109      BestType = Context.SignedCharTy;
6110      BestWidth = CharWidth;
6111    } else if (Packed && NumNegativeBits <= ShortWidth &&
6112               NumPositiveBits < ShortWidth) {
6113      BestType = Context.ShortTy;
6114      BestWidth = ShortWidth;
6115    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6116      BestType = Context.IntTy;
6117      BestWidth = IntWidth;
6118    } else {
6119      BestWidth = Context.Target.getLongWidth();
6120
6121      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6122        BestType = Context.LongTy;
6123      } else {
6124        BestWidth = Context.Target.getLongLongWidth();
6125
6126        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6127          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6128        BestType = Context.LongLongTy;
6129      }
6130    }
6131    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6132  } else {
6133    // If there is no negative value, figure out which of uint, ulong, ulonglong
6134    // fits.
6135    // If it's packed, check also if it fits a char or a short.
6136    if (Packed && NumPositiveBits <= CharWidth) {
6137      BestType = Context.UnsignedCharTy;
6138      BestPromotionType = Context.IntTy;
6139      BestWidth = CharWidth;
6140    } else if (Packed && NumPositiveBits <= ShortWidth) {
6141      BestType = Context.UnsignedShortTy;
6142      BestPromotionType = Context.IntTy;
6143      BestWidth = ShortWidth;
6144    } else if (NumPositiveBits <= IntWidth) {
6145      BestType = Context.UnsignedIntTy;
6146      BestWidth = IntWidth;
6147      BestPromotionType = (NumPositiveBits == BestWidth
6148                           ? Context.UnsignedIntTy : Context.IntTy);
6149    } else if (NumPositiveBits <=
6150               (BestWidth = Context.Target.getLongWidth())) {
6151      BestType = Context.UnsignedLongTy;
6152      BestPromotionType = (NumPositiveBits == BestWidth
6153                           ? Context.UnsignedLongTy : Context.LongTy);
6154    } else {
6155      BestWidth = Context.Target.getLongLongWidth();
6156      assert(NumPositiveBits <= BestWidth &&
6157             "How could an initializer get larger than ULL?");
6158      BestType = Context.UnsignedLongLongTy;
6159      BestPromotionType = (NumPositiveBits == BestWidth
6160                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
6161    }
6162  }
6163
6164  // If we're in C and the promotion type is larger than an int, just
6165  // use the underlying type, which is generally the unsigned integer
6166  // type of the same rank as the promotion type.  This is how the gcc
6167  // extension works.
6168  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
6169    BestPromotionType = BestType;
6170
6171  // Loop over all of the enumerator constants, changing their types to match
6172  // the type of the enum if needed.
6173  for (unsigned i = 0; i != NumElements; ++i) {
6174    EnumConstantDecl *ECD =
6175      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6176    if (!ECD) continue;  // Already issued a diagnostic.
6177
6178    // Standard C says the enumerators have int type, but we allow, as an
6179    // extension, the enumerators to be larger than int size.  If each
6180    // enumerator value fits in an int, type it as an int, otherwise type it the
6181    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6182    // that X has type 'int', not 'unsigned'.
6183    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
6184      continue;
6185
6186    // Determine whether the value fits into an int.
6187    llvm::APSInt InitVal = ECD->getInitVal();
6188    bool FitsInInt;
6189    if (InitVal.isUnsigned() || !InitVal.isNegative())
6190      FitsInInt = InitVal.getActiveBits() < IntWidth;
6191    else
6192      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
6193
6194    // If it fits into an integer type, force it.  Otherwise force it to match
6195    // the enum decl type.
6196    QualType NewTy;
6197    unsigned NewWidth;
6198    bool NewSign;
6199    if (FitsInInt && !getLangOptions().CPlusPlus) {
6200      NewTy = Context.IntTy;
6201      NewWidth = IntWidth;
6202      NewSign = true;
6203    } else if (ECD->getType() == BestType) {
6204      // Already the right type!
6205      if (getLangOptions().CPlusPlus)
6206        // C++ [dcl.enum]p4: Following the closing brace of an
6207        // enum-specifier, each enumerator has the type of its
6208        // enumeration.
6209        ECD->setType(EnumType);
6210      continue;
6211    } else {
6212      NewTy = BestType;
6213      NewWidth = BestWidth;
6214      NewSign = BestType->isSignedIntegerType();
6215    }
6216
6217    // Adjust the APSInt value.
6218    InitVal.extOrTrunc(NewWidth);
6219    InitVal.setIsSigned(NewSign);
6220    ECD->setInitVal(InitVal);
6221
6222    // Adjust the Expr initializer and type.
6223    if (ECD->getInitExpr())
6224      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6225                                                      CastExpr::CK_IntegralCast,
6226                                                      ECD->getInitExpr(),
6227                                                      /*isLvalue=*/false));
6228    if (getLangOptions().CPlusPlus)
6229      // C++ [dcl.enum]p4: Following the closing brace of an
6230      // enum-specifier, each enumerator has the type of its
6231      // enumeration.
6232      ECD->setType(EnumType);
6233    else
6234      ECD->setType(NewTy);
6235  }
6236
6237  Enum->completeDefinition(Context, BestType, BestPromotionType);
6238}
6239
6240Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6241                                            ExprArg expr) {
6242  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6243
6244  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6245                                                   Loc, AsmString);
6246  CurContext->addDecl(New);
6247  return DeclPtrTy::make(New);
6248}
6249
6250void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6251                             SourceLocation PragmaLoc,
6252                             SourceLocation NameLoc) {
6253  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6254
6255  if (PrevDecl) {
6256    PrevDecl->addAttr(::new (Context) WeakAttr());
6257  } else {
6258    (void)WeakUndeclaredIdentifiers.insert(
6259      std::pair<IdentifierInfo*,WeakInfo>
6260        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6261  }
6262}
6263
6264void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6265                                IdentifierInfo* AliasName,
6266                                SourceLocation PragmaLoc,
6267                                SourceLocation NameLoc,
6268                                SourceLocation AliasNameLoc) {
6269  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6270  WeakInfo W = WeakInfo(Name, NameLoc);
6271
6272  if (PrevDecl) {
6273    if (!PrevDecl->hasAttr<AliasAttr>())
6274      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6275        DeclApplyPragmaWeak(TUScope, ND, W);
6276  } else {
6277    (void)WeakUndeclaredIdentifiers.insert(
6278      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6279  }
6280}
6281