SemaDecl.cpp revision 10dc0f8c355c6a726f206aefcb249cb2fafbce17
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // DependentNameType node to describe the type.
92        // FIXME: Record somewhere that this DependentNameType node has no "typename"
93        // keyword associated with it.
94        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
95                                 II, SS->getRange()).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getQualifiedNameType(*SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200    // FIXME: preserve source structure information.
201    T = Context.getDependentNameType(ETK_None,
202                                     UUDecl->getTargetNestedNameSpecifier(),
203                                     &II);
204  } else {
205    // If it's not plausibly a type, suppress diagnostics.
206    Result.suppressDiagnostics();
207    return 0;
208  }
209
210  return T.getAsOpaquePtr();
211}
212
213/// isTagName() - This method is called *for error recovery purposes only*
214/// to determine if the specified name is a valid tag name ("struct foo").  If
215/// so, this returns the TST for the tag corresponding to it (TST_enum,
216/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
217/// where the user forgot to specify the tag.
218DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
219  // Do a tag name lookup in this scope.
220  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
221  LookupName(R, S, false);
222  R.suppressDiagnostics();
223  if (R.getResultKind() == LookupResult::Found)
224    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
225      switch (TD->getTagKind()) {
226      case TagDecl::TK_struct: return DeclSpec::TST_struct;
227      case TagDecl::TK_union:  return DeclSpec::TST_union;
228      case TagDecl::TK_class:  return DeclSpec::TST_class;
229      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
230      }
231    }
232
233  return DeclSpec::TST_unspecified;
234}
235
236bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
237                                   SourceLocation IILoc,
238                                   Scope *S,
239                                   CXXScopeSpec *SS,
240                                   TypeTy *&SuggestedType) {
241  // We don't have anything to suggest (yet).
242  SuggestedType = 0;
243
244  // There may have been a typo in the name of the type. Look up typo
245  // results, in case we have something that we can suggest.
246  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
247                      NotForRedeclaration);
248
249  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
250    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
251      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
252          !Result->isInvalidDecl()) {
253        // We found a similarly-named type or interface; suggest that.
254        if (!SS || !SS->isSet())
255          Diag(IILoc, diag::err_unknown_typename_suggest)
256            << &II << Lookup.getLookupName()
257            << FixItHint::CreateReplacement(SourceRange(IILoc),
258                                            Result->getNameAsString());
259        else if (DeclContext *DC = computeDeclContext(*SS, false))
260          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
261            << &II << DC << Lookup.getLookupName() << SS->getRange()
262            << FixItHint::CreateReplacement(SourceRange(IILoc),
263                                            Result->getNameAsString());
264        else
265          llvm_unreachable("could not have corrected a typo here");
266
267        Diag(Result->getLocation(), diag::note_previous_decl)
268          << Result->getDeclName();
269
270        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
271        return true;
272      }
273    } else if (Lookup.empty()) {
274      // We corrected to a keyword.
275      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
276      Diag(IILoc, diag::err_unknown_typename_suggest)
277        << &II << Corrected;
278      return true;
279    }
280  }
281
282  if (getLangOptions().CPlusPlus) {
283    // See if II is a class template that the user forgot to pass arguments to.
284    UnqualifiedId Name;
285    Name.setIdentifier(&II, IILoc);
286    CXXScopeSpec EmptySS;
287    TemplateTy TemplateResult;
288    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult)
289        == TNK_Type_template) {
290      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
291      Diag(IILoc, diag::err_template_missing_args) << TplName;
292      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
293        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
294          << TplDecl->getTemplateParameters()->getSourceRange();
295      }
296      return true;
297    }
298  }
299
300  // FIXME: Should we move the logic that tries to recover from a missing tag
301  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
302
303  if (!SS || (!SS->isSet() && !SS->isInvalid()))
304    Diag(IILoc, diag::err_unknown_typename) << &II;
305  else if (DeclContext *DC = computeDeclContext(*SS, false))
306    Diag(IILoc, diag::err_typename_nested_not_found)
307      << &II << DC << SS->getRange();
308  else if (isDependentScopeSpecifier(*SS)) {
309    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
310      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
311      << SourceRange(SS->getRange().getBegin(), IILoc)
312      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
313    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
314  } else {
315    assert(SS && SS->isInvalid() &&
316           "Invalid scope specifier has already been diagnosed");
317  }
318
319  return true;
320}
321
322// Determines the context to return to after temporarily entering a
323// context.  This depends in an unnecessarily complicated way on the
324// exact ordering of callbacks from the parser.
325DeclContext *Sema::getContainingDC(DeclContext *DC) {
326
327  // Functions defined inline within classes aren't parsed until we've
328  // finished parsing the top-level class, so the top-level class is
329  // the context we'll need to return to.
330  if (isa<FunctionDecl>(DC)) {
331    DC = DC->getLexicalParent();
332
333    // A function not defined within a class will always return to its
334    // lexical context.
335    if (!isa<CXXRecordDecl>(DC))
336      return DC;
337
338    // A C++ inline method/friend is parsed *after* the topmost class
339    // it was declared in is fully parsed ("complete");  the topmost
340    // class is the context we need to return to.
341    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
342      DC = RD;
343
344    // Return the declaration context of the topmost class the inline method is
345    // declared in.
346    return DC;
347  }
348
349  if (isa<ObjCMethodDecl>(DC))
350    return Context.getTranslationUnitDecl();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366}
367
368/// EnterDeclaratorContext - Used when we must lookup names in the context
369/// of a declarator's nested name specifier.
370///
371void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
372  // C++0x [basic.lookup.unqual]p13:
373  //   A name used in the definition of a static data member of class
374  //   X (after the qualified-id of the static member) is looked up as
375  //   if the name was used in a member function of X.
376  // C++0x [basic.lookup.unqual]p14:
377  //   If a variable member of a namespace is defined outside of the
378  //   scope of its namespace then any name used in the definition of
379  //   the variable member (after the declarator-id) is looked up as
380  //   if the definition of the variable member occurred in its
381  //   namespace.
382  // Both of these imply that we should push a scope whose context
383  // is the semantic context of the declaration.  We can't use
384  // PushDeclContext here because that context is not necessarily
385  // lexically contained in the current context.  Fortunately,
386  // the containing scope should have the appropriate information.
387
388  assert(!S->getEntity() && "scope already has entity");
389
390#ifndef NDEBUG
391  Scope *Ancestor = S->getParent();
392  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
393  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
394#endif
395
396  CurContext = DC;
397  S->setEntity(DC);
398}
399
400void Sema::ExitDeclaratorContext(Scope *S) {
401  assert(S->getEntity() == CurContext && "Context imbalance!");
402
403  // Switch back to the lexical context.  The safety of this is
404  // enforced by an assert in EnterDeclaratorContext.
405  Scope *Ancestor = S->getParent();
406  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
407  CurContext = (DeclContext*) Ancestor->getEntity();
408
409  // We don't need to do anything with the scope, which is going to
410  // disappear.
411}
412
413/// \brief Determine whether we allow overloading of the function
414/// PrevDecl with another declaration.
415///
416/// This routine determines whether overloading is possible, not
417/// whether some new function is actually an overload. It will return
418/// true in C++ (where we can always provide overloads) or, as an
419/// extension, in C when the previous function is already an
420/// overloaded function declaration or has the "overloadable"
421/// attribute.
422static bool AllowOverloadingOfFunction(LookupResult &Previous,
423                                       ASTContext &Context) {
424  if (Context.getLangOptions().CPlusPlus)
425    return true;
426
427  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
428    return true;
429
430  return (Previous.getResultKind() == LookupResult::Found
431          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
432}
433
434/// Add this decl to the scope shadowed decl chains.
435void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
436  // Move up the scope chain until we find the nearest enclosing
437  // non-transparent context. The declaration will be introduced into this
438  // scope.
439  while (S->getEntity() &&
440         ((DeclContext *)S->getEntity())->isTransparentContext())
441    S = S->getParent();
442
443  // Add scoped declarations into their context, so that they can be
444  // found later. Declarations without a context won't be inserted
445  // into any context.
446  if (AddToContext)
447    CurContext->addDecl(D);
448
449  // Out-of-line definitions shouldn't be pushed into scope in C++.
450  // Out-of-line variable and function definitions shouldn't even in C.
451  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
452      D->isOutOfLine())
453    return;
454
455  // Template instantiations should also not be pushed into scope.
456  if (isa<FunctionDecl>(D) &&
457      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
458    return;
459
460  // If this replaces anything in the current scope,
461  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
462                               IEnd = IdResolver.end();
463  for (; I != IEnd; ++I) {
464    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
465      S->RemoveDecl(DeclPtrTy::make(*I));
466      IdResolver.RemoveDecl(*I);
467
468      // Should only need to replace one decl.
469      break;
470    }
471  }
472
473  S->AddDecl(DeclPtrTy::make(D));
474  IdResolver.AddDecl(D);
475}
476
477bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
478  return IdResolver.isDeclInScope(D, Ctx, Context, S);
479}
480
481static bool isOutOfScopePreviousDeclaration(NamedDecl *,
482                                            DeclContext*,
483                                            ASTContext&);
484
485/// Filters out lookup results that don't fall within the given scope
486/// as determined by isDeclInScope.
487static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
488                                 DeclContext *Ctx, Scope *S,
489                                 bool ConsiderLinkage) {
490  LookupResult::Filter F = R.makeFilter();
491  while (F.hasNext()) {
492    NamedDecl *D = F.next();
493
494    if (SemaRef.isDeclInScope(D, Ctx, S))
495      continue;
496
497    if (ConsiderLinkage &&
498        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
499      continue;
500
501    F.erase();
502  }
503
504  F.done();
505}
506
507static bool isUsingDecl(NamedDecl *D) {
508  return isa<UsingShadowDecl>(D) ||
509         isa<UnresolvedUsingTypenameDecl>(D) ||
510         isa<UnresolvedUsingValueDecl>(D);
511}
512
513/// Removes using shadow declarations from the lookup results.
514static void RemoveUsingDecls(LookupResult &R) {
515  LookupResult::Filter F = R.makeFilter();
516  while (F.hasNext())
517    if (isUsingDecl(F.next()))
518      F.erase();
519
520  F.done();
521}
522
523static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
524  if (D->isInvalidDecl())
525    return false;
526
527  if (D->isUsed() || D->hasAttr<UnusedAttr>())
528    return false;
529
530  // White-list anything that isn't a local variable.
531  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
532      !D->getDeclContext()->isFunctionOrMethod())
533    return false;
534
535  // Types of valid local variables should be complete, so this should succeed.
536  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
537
538    // White-list anything with an __attribute__((unused)) type.
539    QualType Ty = VD->getType();
540
541    // Only look at the outermost level of typedef.
542    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
543      if (TT->getDecl()->hasAttr<UnusedAttr>())
544        return false;
545    }
546
547    if (const TagType *TT = Ty->getAs<TagType>()) {
548      const TagDecl *Tag = TT->getDecl();
549      if (Tag->hasAttr<UnusedAttr>())
550        return false;
551
552      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
553        if (!RD->hasTrivialConstructor())
554          return false;
555        if (!RD->hasTrivialDestructor())
556          return false;
557      }
558    }
559
560    // TODO: __attribute__((unused)) templates?
561  }
562
563  return true;
564}
565
566void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
567  if (S->decl_empty()) return;
568  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
569         "Scope shouldn't contain decls!");
570
571  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
572       I != E; ++I) {
573    Decl *TmpD = (*I).getAs<Decl>();
574    assert(TmpD && "This decl didn't get pushed??");
575
576    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
577    NamedDecl *D = cast<NamedDecl>(TmpD);
578
579    if (!D->getDeclName()) continue;
580
581    // Diagnose unused variables in this scope.
582    if (ShouldDiagnoseUnusedDecl(D) &&
583        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
584      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
585
586    // Remove this name from our lexical scope.
587    IdResolver.RemoveDecl(D);
588  }
589}
590
591/// \brief Look for an Objective-C class in the translation unit.
592///
593/// \param Id The name of the Objective-C class we're looking for. If
594/// typo-correction fixes this name, the Id will be updated
595/// to the fixed name.
596///
597/// \param IdLoc The location of the name in the translation unit.
598///
599/// \param TypoCorrection If true, this routine will attempt typo correction
600/// if there is no class with the given name.
601///
602/// \returns The declaration of the named Objective-C class, or NULL if the
603/// class could not be found.
604ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
605                                              SourceLocation IdLoc,
606                                              bool TypoCorrection) {
607  // The third "scope" argument is 0 since we aren't enabling lazy built-in
608  // creation from this context.
609  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
610
611  if (!IDecl && TypoCorrection) {
612    // Perform typo correction at the given location, but only if we
613    // find an Objective-C class name.
614    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
615    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
616        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
617      Diag(IdLoc, diag::err_undef_interface_suggest)
618        << Id << IDecl->getDeclName()
619        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
620      Diag(IDecl->getLocation(), diag::note_previous_decl)
621        << IDecl->getDeclName();
622
623      Id = IDecl->getIdentifier();
624    }
625  }
626
627  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
628}
629
630/// getNonFieldDeclScope - Retrieves the innermost scope, starting
631/// from S, where a non-field would be declared. This routine copes
632/// with the difference between C and C++ scoping rules in structs and
633/// unions. For example, the following code is well-formed in C but
634/// ill-formed in C++:
635/// @code
636/// struct S6 {
637///   enum { BAR } e;
638/// };
639///
640/// void test_S6() {
641///   struct S6 a;
642///   a.e = BAR;
643/// }
644/// @endcode
645/// For the declaration of BAR, this routine will return a different
646/// scope. The scope S will be the scope of the unnamed enumeration
647/// within S6. In C++, this routine will return the scope associated
648/// with S6, because the enumeration's scope is a transparent
649/// context but structures can contain non-field names. In C, this
650/// routine will return the translation unit scope, since the
651/// enumeration's scope is a transparent context and structures cannot
652/// contain non-field names.
653Scope *Sema::getNonFieldDeclScope(Scope *S) {
654  while (((S->getFlags() & Scope::DeclScope) == 0) ||
655         (S->getEntity() &&
656          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
657         (S->isClassScope() && !getLangOptions().CPlusPlus))
658    S = S->getParent();
659  return S;
660}
661
662void Sema::InitBuiltinVaListType() {
663  if (!Context.getBuiltinVaListType().isNull())
664    return;
665
666  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
667  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
668                                       LookupOrdinaryName, ForRedeclaration);
669  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
670  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
671}
672
673/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
674/// file scope.  lazily create a decl for it. ForRedeclaration is true
675/// if we're creating this built-in in anticipation of redeclaring the
676/// built-in.
677NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
678                                     Scope *S, bool ForRedeclaration,
679                                     SourceLocation Loc) {
680  Builtin::ID BID = (Builtin::ID)bid;
681
682  if (Context.BuiltinInfo.hasVAListUse(BID))
683    InitBuiltinVaListType();
684
685  ASTContext::GetBuiltinTypeError Error;
686  QualType R = Context.GetBuiltinType(BID, Error);
687  switch (Error) {
688  case ASTContext::GE_None:
689    // Okay
690    break;
691
692  case ASTContext::GE_Missing_stdio:
693    if (ForRedeclaration)
694      Diag(Loc, diag::err_implicit_decl_requires_stdio)
695        << Context.BuiltinInfo.GetName(BID);
696    return 0;
697
698  case ASTContext::GE_Missing_setjmp:
699    if (ForRedeclaration)
700      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
701        << Context.BuiltinInfo.GetName(BID);
702    return 0;
703  }
704
705  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
706    Diag(Loc, diag::ext_implicit_lib_function_decl)
707      << Context.BuiltinInfo.GetName(BID)
708      << R;
709    if (Context.BuiltinInfo.getHeaderName(BID) &&
710        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
711          != Diagnostic::Ignored)
712      Diag(Loc, diag::note_please_include_header)
713        << Context.BuiltinInfo.getHeaderName(BID)
714        << Context.BuiltinInfo.GetName(BID);
715  }
716
717  FunctionDecl *New = FunctionDecl::Create(Context,
718                                           Context.getTranslationUnitDecl(),
719                                           Loc, II, R, /*TInfo=*/0,
720                                           FunctionDecl::Extern,
721                                           FunctionDecl::None, false,
722                                           /*hasPrototype=*/true);
723  New->setImplicit();
724
725  // Create Decl objects for each parameter, adding them to the
726  // FunctionDecl.
727  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
728    llvm::SmallVector<ParmVarDecl*, 16> Params;
729    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
730      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
731                                           FT->getArgType(i), /*TInfo=*/0,
732                                           VarDecl::None, VarDecl::None, 0));
733    New->setParams(Params.data(), Params.size());
734  }
735
736  AddKnownFunctionAttributes(New);
737
738  // TUScope is the translation-unit scope to insert this function into.
739  // FIXME: This is hideous. We need to teach PushOnScopeChains to
740  // relate Scopes to DeclContexts, and probably eliminate CurContext
741  // entirely, but we're not there yet.
742  DeclContext *SavedContext = CurContext;
743  CurContext = Context.getTranslationUnitDecl();
744  PushOnScopeChains(New, TUScope);
745  CurContext = SavedContext;
746  return New;
747}
748
749/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
750/// same name and scope as a previous declaration 'Old'.  Figure out
751/// how to resolve this situation, merging decls or emitting
752/// diagnostics as appropriate. If there was an error, set New to be invalid.
753///
754void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
755  // If the new decl is known invalid already, don't bother doing any
756  // merging checks.
757  if (New->isInvalidDecl()) return;
758
759  // Allow multiple definitions for ObjC built-in typedefs.
760  // FIXME: Verify the underlying types are equivalent!
761  if (getLangOptions().ObjC1) {
762    const IdentifierInfo *TypeID = New->getIdentifier();
763    switch (TypeID->getLength()) {
764    default: break;
765    case 2:
766      if (!TypeID->isStr("id"))
767        break;
768      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
769      // Install the built-in type for 'id', ignoring the current definition.
770      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
771      return;
772    case 5:
773      if (!TypeID->isStr("Class"))
774        break;
775      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
776      // Install the built-in type for 'Class', ignoring the current definition.
777      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
778      return;
779    case 3:
780      if (!TypeID->isStr("SEL"))
781        break;
782      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
783      // Install the built-in type for 'SEL', ignoring the current definition.
784      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
785      return;
786    case 8:
787      if (!TypeID->isStr("Protocol"))
788        break;
789      Context.setObjCProtoType(New->getUnderlyingType());
790      return;
791    }
792    // Fall through - the typedef name was not a builtin type.
793  }
794
795  // Verify the old decl was also a type.
796  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
797  if (!Old) {
798    Diag(New->getLocation(), diag::err_redefinition_different_kind)
799      << New->getDeclName();
800
801    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
802    if (OldD->getLocation().isValid())
803      Diag(OldD->getLocation(), diag::note_previous_definition);
804
805    return New->setInvalidDecl();
806  }
807
808  // If the old declaration is invalid, just give up here.
809  if (Old->isInvalidDecl())
810    return New->setInvalidDecl();
811
812  // Determine the "old" type we'll use for checking and diagnostics.
813  QualType OldType;
814  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
815    OldType = OldTypedef->getUnderlyingType();
816  else
817    OldType = Context.getTypeDeclType(Old);
818
819  // If the typedef types are not identical, reject them in all languages and
820  // with any extensions enabled.
821
822  if (OldType != New->getUnderlyingType() &&
823      Context.getCanonicalType(OldType) !=
824      Context.getCanonicalType(New->getUnderlyingType())) {
825    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
826      << New->getUnderlyingType() << OldType;
827    if (Old->getLocation().isValid())
828      Diag(Old->getLocation(), diag::note_previous_definition);
829    return New->setInvalidDecl();
830  }
831
832  // The types match.  Link up the redeclaration chain if the old
833  // declaration was a typedef.
834  // FIXME: this is a potential source of wierdness if the type
835  // spellings don't match exactly.
836  if (isa<TypedefDecl>(Old))
837    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
838
839  if (getLangOptions().Microsoft)
840    return;
841
842  if (getLangOptions().CPlusPlus) {
843    // C++ [dcl.typedef]p2:
844    //   In a given non-class scope, a typedef specifier can be used to
845    //   redefine the name of any type declared in that scope to refer
846    //   to the type to which it already refers.
847    if (!isa<CXXRecordDecl>(CurContext))
848      return;
849
850    // C++0x [dcl.typedef]p4:
851    //   In a given class scope, a typedef specifier can be used to redefine
852    //   any class-name declared in that scope that is not also a typedef-name
853    //   to refer to the type to which it already refers.
854    //
855    // This wording came in via DR424, which was a correction to the
856    // wording in DR56, which accidentally banned code like:
857    //
858    //   struct S {
859    //     typedef struct A { } A;
860    //   };
861    //
862    // in the C++03 standard. We implement the C++0x semantics, which
863    // allow the above but disallow
864    //
865    //   struct S {
866    //     typedef int I;
867    //     typedef int I;
868    //   };
869    //
870    // since that was the intent of DR56.
871    if (!isa<TypedefDecl >(Old))
872      return;
873
874    Diag(New->getLocation(), diag::err_redefinition)
875      << New->getDeclName();
876    Diag(Old->getLocation(), diag::note_previous_definition);
877    return New->setInvalidDecl();
878  }
879
880  // If we have a redefinition of a typedef in C, emit a warning.  This warning
881  // is normally mapped to an error, but can be controlled with
882  // -Wtypedef-redefinition.  If either the original or the redefinition is
883  // in a system header, don't emit this for compatibility with GCC.
884  if (getDiagnostics().getSuppressSystemWarnings() &&
885      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
886       Context.getSourceManager().isInSystemHeader(New->getLocation())))
887    return;
888
889  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
890    << New->getDeclName();
891  Diag(Old->getLocation(), diag::note_previous_definition);
892  return;
893}
894
895/// DeclhasAttr - returns true if decl Declaration already has the target
896/// attribute.
897static bool
898DeclHasAttr(const Decl *decl, const Attr *target) {
899  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
900    if (attr->getKind() == target->getKind())
901      return true;
902
903  return false;
904}
905
906/// MergeAttributes - append attributes from the Old decl to the New one.
907static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
908  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
909    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
910      Attr *NewAttr = attr->clone(C);
911      NewAttr->setInherited(true);
912      New->addAttr(NewAttr);
913    }
914  }
915}
916
917/// Used in MergeFunctionDecl to keep track of function parameters in
918/// C.
919struct GNUCompatibleParamWarning {
920  ParmVarDecl *OldParm;
921  ParmVarDecl *NewParm;
922  QualType PromotedType;
923};
924
925
926/// getSpecialMember - get the special member enum for a method.
927static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
928                                               const CXXMethodDecl *MD) {
929  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
930    if (Ctor->isDefaultConstructor())
931      return Sema::CXXDefaultConstructor;
932    if (Ctor->isCopyConstructor())
933      return Sema::CXXCopyConstructor;
934  }
935
936  if (isa<CXXDestructorDecl>(MD))
937    return Sema::CXXDestructor;
938
939  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
940  return Sema::CXXCopyAssignment;
941}
942
943/// canREdefineFunction - checks if a function can be redefined. Currently,
944/// only extern inline functions can be redefined, and even then only in
945/// GNU89 mode.
946static bool canRedefineFunction(const FunctionDecl *FD,
947                                const LangOptions& LangOpts) {
948  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
949          FD->isInlineSpecified() &&
950          FD->getStorageClass() == FunctionDecl::Extern);
951}
952
953/// MergeFunctionDecl - We just parsed a function 'New' from
954/// declarator D which has the same name and scope as a previous
955/// declaration 'Old'.  Figure out how to resolve this situation,
956/// merging decls or emitting diagnostics as appropriate.
957///
958/// In C++, New and Old must be declarations that are not
959/// overloaded. Use IsOverload to determine whether New and Old are
960/// overloaded, and to select the Old declaration that New should be
961/// merged with.
962///
963/// Returns true if there was an error, false otherwise.
964bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
965  // Verify the old decl was also a function.
966  FunctionDecl *Old = 0;
967  if (FunctionTemplateDecl *OldFunctionTemplate
968        = dyn_cast<FunctionTemplateDecl>(OldD))
969    Old = OldFunctionTemplate->getTemplatedDecl();
970  else
971    Old = dyn_cast<FunctionDecl>(OldD);
972  if (!Old) {
973    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
974      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
975      Diag(Shadow->getTargetDecl()->getLocation(),
976           diag::note_using_decl_target);
977      Diag(Shadow->getUsingDecl()->getLocation(),
978           diag::note_using_decl) << 0;
979      return true;
980    }
981
982    Diag(New->getLocation(), diag::err_redefinition_different_kind)
983      << New->getDeclName();
984    Diag(OldD->getLocation(), diag::note_previous_definition);
985    return true;
986  }
987
988  // Determine whether the previous declaration was a definition,
989  // implicit declaration, or a declaration.
990  diag::kind PrevDiag;
991  if (Old->isThisDeclarationADefinition())
992    PrevDiag = diag::note_previous_definition;
993  else if (Old->isImplicit())
994    PrevDiag = diag::note_previous_implicit_declaration;
995  else
996    PrevDiag = diag::note_previous_declaration;
997
998  QualType OldQType = Context.getCanonicalType(Old->getType());
999  QualType NewQType = Context.getCanonicalType(New->getType());
1000
1001  // Don't complain about this if we're in GNU89 mode and the old function
1002  // is an extern inline function.
1003  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1004      New->getStorageClass() == FunctionDecl::Static &&
1005      Old->getStorageClass() != FunctionDecl::Static &&
1006      !canRedefineFunction(Old, getLangOptions())) {
1007    Diag(New->getLocation(), diag::err_static_non_static)
1008      << New;
1009    Diag(Old->getLocation(), PrevDiag);
1010    return true;
1011  }
1012
1013  // If a function is first declared with a calling convention, but is
1014  // later declared or defined without one, the second decl assumes the
1015  // calling convention of the first.
1016  //
1017  // For the new decl, we have to look at the NON-canonical type to tell the
1018  // difference between a function that really doesn't have a calling
1019  // convention and one that is declared cdecl. That's because in
1020  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1021  // because it is the default calling convention.
1022  //
1023  // Note also that we DO NOT return at this point, because we still have
1024  // other tests to run.
1025  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1026  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1027  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1028  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1029  if (OldTypeInfo.getCC() != CC_Default &&
1030      NewTypeInfo.getCC() == CC_Default) {
1031    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1032    New->setType(NewQType);
1033    NewQType = Context.getCanonicalType(NewQType);
1034  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1035                                     NewTypeInfo.getCC())) {
1036    // Calling conventions really aren't compatible, so complain.
1037    Diag(New->getLocation(), diag::err_cconv_change)
1038      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1039      << (OldTypeInfo.getCC() == CC_Default)
1040      << (OldTypeInfo.getCC() == CC_Default ? "" :
1041          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1042    Diag(Old->getLocation(), diag::note_previous_declaration);
1043    return true;
1044  }
1045
1046  // FIXME: diagnose the other way around?
1047  if (OldType->getNoReturnAttr() &&
1048      !NewType->getNoReturnAttr()) {
1049    NewQType = Context.getNoReturnType(NewQType);
1050    New->setType(NewQType);
1051    assert(NewQType.isCanonical());
1052  }
1053
1054  if (getLangOptions().CPlusPlus) {
1055    // (C++98 13.1p2):
1056    //   Certain function declarations cannot be overloaded:
1057    //     -- Function declarations that differ only in the return type
1058    //        cannot be overloaded.
1059    QualType OldReturnType
1060      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1061    QualType NewReturnType
1062      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1063    if (OldReturnType != NewReturnType) {
1064      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1065      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1066      return true;
1067    }
1068
1069    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1070    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1071    if (OldMethod && NewMethod) {
1072      // Preserve triviality.
1073      NewMethod->setTrivial(OldMethod->isTrivial());
1074
1075      bool isFriend = NewMethod->getFriendObjectKind();
1076
1077      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1078        //    -- Member function declarations with the same name and the
1079        //       same parameter types cannot be overloaded if any of them
1080        //       is a static member function declaration.
1081        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1082          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1083          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1084          return true;
1085        }
1086
1087        // C++ [class.mem]p1:
1088        //   [...] A member shall not be declared twice in the
1089        //   member-specification, except that a nested class or member
1090        //   class template can be declared and then later defined.
1091        unsigned NewDiag;
1092        if (isa<CXXConstructorDecl>(OldMethod))
1093          NewDiag = diag::err_constructor_redeclared;
1094        else if (isa<CXXDestructorDecl>(NewMethod))
1095          NewDiag = diag::err_destructor_redeclared;
1096        else if (isa<CXXConversionDecl>(NewMethod))
1097          NewDiag = diag::err_conv_function_redeclared;
1098        else
1099          NewDiag = diag::err_member_redeclared;
1100
1101        Diag(New->getLocation(), NewDiag);
1102        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1103
1104      // Complain if this is an explicit declaration of a special
1105      // member that was initially declared implicitly.
1106      //
1107      // As an exception, it's okay to befriend such methods in order
1108      // to permit the implicit constructor/destructor/operator calls.
1109      } else if (OldMethod->isImplicit()) {
1110        if (isFriend) {
1111          NewMethod->setImplicit();
1112        } else {
1113          Diag(NewMethod->getLocation(),
1114               diag::err_definition_of_implicitly_declared_member)
1115            << New << getSpecialMember(Context, OldMethod);
1116          return true;
1117        }
1118      }
1119    }
1120
1121    // (C++98 8.3.5p3):
1122    //   All declarations for a function shall agree exactly in both the
1123    //   return type and the parameter-type-list.
1124    // attributes should be ignored when comparing.
1125    if (Context.getNoReturnType(OldQType, false) ==
1126        Context.getNoReturnType(NewQType, false))
1127      return MergeCompatibleFunctionDecls(New, Old);
1128
1129    // Fall through for conflicting redeclarations and redefinitions.
1130  }
1131
1132  // C: Function types need to be compatible, not identical. This handles
1133  // duplicate function decls like "void f(int); void f(enum X);" properly.
1134  if (!getLangOptions().CPlusPlus &&
1135      Context.typesAreCompatible(OldQType, NewQType)) {
1136    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1137    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1138    const FunctionProtoType *OldProto = 0;
1139    if (isa<FunctionNoProtoType>(NewFuncType) &&
1140        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1141      // The old declaration provided a function prototype, but the
1142      // new declaration does not. Merge in the prototype.
1143      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1144      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1145                                                 OldProto->arg_type_end());
1146      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1147                                         ParamTypes.data(), ParamTypes.size(),
1148                                         OldProto->isVariadic(),
1149                                         OldProto->getTypeQuals(),
1150                                         false, false, 0, 0,
1151                                         OldProto->getExtInfo());
1152      New->setType(NewQType);
1153      New->setHasInheritedPrototype();
1154
1155      // Synthesize a parameter for each argument type.
1156      llvm::SmallVector<ParmVarDecl*, 16> Params;
1157      for (FunctionProtoType::arg_type_iterator
1158             ParamType = OldProto->arg_type_begin(),
1159             ParamEnd = OldProto->arg_type_end();
1160           ParamType != ParamEnd; ++ParamType) {
1161        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1162                                                 SourceLocation(), 0,
1163                                                 *ParamType, /*TInfo=*/0,
1164                                                 VarDecl::None, VarDecl::None,
1165                                                 0);
1166        Param->setImplicit();
1167        Params.push_back(Param);
1168      }
1169
1170      New->setParams(Params.data(), Params.size());
1171    }
1172
1173    return MergeCompatibleFunctionDecls(New, Old);
1174  }
1175
1176  // GNU C permits a K&R definition to follow a prototype declaration
1177  // if the declared types of the parameters in the K&R definition
1178  // match the types in the prototype declaration, even when the
1179  // promoted types of the parameters from the K&R definition differ
1180  // from the types in the prototype. GCC then keeps the types from
1181  // the prototype.
1182  //
1183  // If a variadic prototype is followed by a non-variadic K&R definition,
1184  // the K&R definition becomes variadic.  This is sort of an edge case, but
1185  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1186  // C99 6.9.1p8.
1187  if (!getLangOptions().CPlusPlus &&
1188      Old->hasPrototype() && !New->hasPrototype() &&
1189      New->getType()->getAs<FunctionProtoType>() &&
1190      Old->getNumParams() == New->getNumParams()) {
1191    llvm::SmallVector<QualType, 16> ArgTypes;
1192    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1193    const FunctionProtoType *OldProto
1194      = Old->getType()->getAs<FunctionProtoType>();
1195    const FunctionProtoType *NewProto
1196      = New->getType()->getAs<FunctionProtoType>();
1197
1198    // Determine whether this is the GNU C extension.
1199    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1200                                               NewProto->getResultType());
1201    bool LooseCompatible = !MergedReturn.isNull();
1202    for (unsigned Idx = 0, End = Old->getNumParams();
1203         LooseCompatible && Idx != End; ++Idx) {
1204      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1205      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1206      if (Context.typesAreCompatible(OldParm->getType(),
1207                                     NewProto->getArgType(Idx))) {
1208        ArgTypes.push_back(NewParm->getType());
1209      } else if (Context.typesAreCompatible(OldParm->getType(),
1210                                            NewParm->getType())) {
1211        GNUCompatibleParamWarning Warn
1212          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1213        Warnings.push_back(Warn);
1214        ArgTypes.push_back(NewParm->getType());
1215      } else
1216        LooseCompatible = false;
1217    }
1218
1219    if (LooseCompatible) {
1220      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1221        Diag(Warnings[Warn].NewParm->getLocation(),
1222             diag::ext_param_promoted_not_compatible_with_prototype)
1223          << Warnings[Warn].PromotedType
1224          << Warnings[Warn].OldParm->getType();
1225        Diag(Warnings[Warn].OldParm->getLocation(),
1226             diag::note_previous_declaration);
1227      }
1228
1229      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1230                                           ArgTypes.size(),
1231                                           OldProto->isVariadic(), 0,
1232                                           false, false, 0, 0,
1233                                           OldProto->getExtInfo()));
1234      return MergeCompatibleFunctionDecls(New, Old);
1235    }
1236
1237    // Fall through to diagnose conflicting types.
1238  }
1239
1240  // A function that has already been declared has been redeclared or defined
1241  // with a different type- show appropriate diagnostic
1242  if (unsigned BuiltinID = Old->getBuiltinID()) {
1243    // The user has declared a builtin function with an incompatible
1244    // signature.
1245    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1246      // The function the user is redeclaring is a library-defined
1247      // function like 'malloc' or 'printf'. Warn about the
1248      // redeclaration, then pretend that we don't know about this
1249      // library built-in.
1250      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1251      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1252        << Old << Old->getType();
1253      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1254      Old->setInvalidDecl();
1255      return false;
1256    }
1257
1258    PrevDiag = diag::note_previous_builtin_declaration;
1259  }
1260
1261  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1262  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1263  return true;
1264}
1265
1266/// \brief Completes the merge of two function declarations that are
1267/// known to be compatible.
1268///
1269/// This routine handles the merging of attributes and other
1270/// properties of function declarations form the old declaration to
1271/// the new declaration, once we know that New is in fact a
1272/// redeclaration of Old.
1273///
1274/// \returns false
1275bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1276  // Merge the attributes
1277  MergeAttributes(New, Old, Context);
1278
1279  // Merge the storage class.
1280  if (Old->getStorageClass() != FunctionDecl::Extern &&
1281      Old->getStorageClass() != FunctionDecl::None)
1282    New->setStorageClass(Old->getStorageClass());
1283
1284  // Merge "pure" flag.
1285  if (Old->isPure())
1286    New->setPure();
1287
1288  // Merge the "deleted" flag.
1289  if (Old->isDeleted())
1290    New->setDeleted();
1291
1292  if (getLangOptions().CPlusPlus)
1293    return MergeCXXFunctionDecl(New, Old);
1294
1295  return false;
1296}
1297
1298/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1299/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1300/// situation, merging decls or emitting diagnostics as appropriate.
1301///
1302/// Tentative definition rules (C99 6.9.2p2) are checked by
1303/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1304/// definitions here, since the initializer hasn't been attached.
1305///
1306void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1307  // If the new decl is already invalid, don't do any other checking.
1308  if (New->isInvalidDecl())
1309    return;
1310
1311  // Verify the old decl was also a variable.
1312  VarDecl *Old = 0;
1313  if (!Previous.isSingleResult() ||
1314      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1315    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1316      << New->getDeclName();
1317    Diag(Previous.getRepresentativeDecl()->getLocation(),
1318         diag::note_previous_definition);
1319    return New->setInvalidDecl();
1320  }
1321
1322  MergeAttributes(New, Old, Context);
1323
1324  // Merge the types
1325  QualType MergedT;
1326  if (getLangOptions().CPlusPlus) {
1327    if (Context.hasSameType(New->getType(), Old->getType()))
1328      MergedT = New->getType();
1329    // C++ [basic.link]p10:
1330    //   [...] the types specified by all declarations referring to a given
1331    //   object or function shall be identical, except that declarations for an
1332    //   array object can specify array types that differ by the presence or
1333    //   absence of a major array bound (8.3.4).
1334    else if (Old->getType()->isIncompleteArrayType() &&
1335             New->getType()->isArrayType()) {
1336      CanQual<ArrayType> OldArray
1337        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1338      CanQual<ArrayType> NewArray
1339        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1340      if (OldArray->getElementType() == NewArray->getElementType())
1341        MergedT = New->getType();
1342    } else if (Old->getType()->isArrayType() &&
1343             New->getType()->isIncompleteArrayType()) {
1344      CanQual<ArrayType> OldArray
1345        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1346      CanQual<ArrayType> NewArray
1347        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1348      if (OldArray->getElementType() == NewArray->getElementType())
1349        MergedT = Old->getType();
1350    }
1351  } else {
1352    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1353  }
1354  if (MergedT.isNull()) {
1355    Diag(New->getLocation(), diag::err_redefinition_different_type)
1356      << New->getDeclName();
1357    Diag(Old->getLocation(), diag::note_previous_definition);
1358    return New->setInvalidDecl();
1359  }
1360  New->setType(MergedT);
1361
1362  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1363  if (New->getStorageClass() == VarDecl::Static &&
1364      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1365    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1366    Diag(Old->getLocation(), diag::note_previous_definition);
1367    return New->setInvalidDecl();
1368  }
1369  // C99 6.2.2p4:
1370  //   For an identifier declared with the storage-class specifier
1371  //   extern in a scope in which a prior declaration of that
1372  //   identifier is visible,23) if the prior declaration specifies
1373  //   internal or external linkage, the linkage of the identifier at
1374  //   the later declaration is the same as the linkage specified at
1375  //   the prior declaration. If no prior declaration is visible, or
1376  //   if the prior declaration specifies no linkage, then the
1377  //   identifier has external linkage.
1378  if (New->hasExternalStorage() && Old->hasLinkage())
1379    /* Okay */;
1380  else if (New->getStorageClass() != VarDecl::Static &&
1381           Old->getStorageClass() == VarDecl::Static) {
1382    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1383    Diag(Old->getLocation(), diag::note_previous_definition);
1384    return New->setInvalidDecl();
1385  }
1386
1387  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1388
1389  // FIXME: The test for external storage here seems wrong? We still
1390  // need to check for mismatches.
1391  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1392      // Don't complain about out-of-line definitions of static members.
1393      !(Old->getLexicalDeclContext()->isRecord() &&
1394        !New->getLexicalDeclContext()->isRecord())) {
1395    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1396    Diag(Old->getLocation(), diag::note_previous_definition);
1397    return New->setInvalidDecl();
1398  }
1399
1400  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1401    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1402    Diag(Old->getLocation(), diag::note_previous_definition);
1403  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1404    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1405    Diag(Old->getLocation(), diag::note_previous_definition);
1406  }
1407
1408  // C++ doesn't have tentative definitions, so go right ahead and check here.
1409  const VarDecl *Def;
1410  if (getLangOptions().CPlusPlus &&
1411      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1412      (Def = Old->getDefinition())) {
1413    Diag(New->getLocation(), diag::err_redefinition)
1414      << New->getDeclName();
1415    Diag(Def->getLocation(), diag::note_previous_definition);
1416    New->setInvalidDecl();
1417    return;
1418  }
1419
1420  // Keep a chain of previous declarations.
1421  New->setPreviousDeclaration(Old);
1422
1423  // Inherit access appropriately.
1424  New->setAccess(Old->getAccess());
1425}
1426
1427/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1428/// no declarator (e.g. "struct foo;") is parsed.
1429Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1430  // FIXME: Error on auto/register at file scope
1431  // FIXME: Error on inline/virtual/explicit
1432  // FIXME: Warn on useless __thread
1433  // FIXME: Warn on useless const/volatile
1434  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1435  // FIXME: Warn on useless attributes
1436  Decl *TagD = 0;
1437  TagDecl *Tag = 0;
1438  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1439      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1440      DS.getTypeSpecType() == DeclSpec::TST_union ||
1441      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1442    TagD = static_cast<Decl *>(DS.getTypeRep());
1443
1444    if (!TagD) // We probably had an error
1445      return DeclPtrTy();
1446
1447    // Note that the above type specs guarantee that the
1448    // type rep is a Decl, whereas in many of the others
1449    // it's a Type.
1450    Tag = dyn_cast<TagDecl>(TagD);
1451  }
1452
1453  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1454    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1455    // or incomplete types shall not be restrict-qualified."
1456    if (TypeQuals & DeclSpec::TQ_restrict)
1457      Diag(DS.getRestrictSpecLoc(),
1458           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1459           << DS.getSourceRange();
1460  }
1461
1462  if (DS.isFriendSpecified()) {
1463    // If we're dealing with a class template decl, assume that the
1464    // template routines are handling it.
1465    if (TagD && isa<ClassTemplateDecl>(TagD))
1466      return DeclPtrTy();
1467    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1468  }
1469
1470  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1471    // If there are attributes in the DeclSpec, apply them to the record.
1472    if (const AttributeList *AL = DS.getAttributes())
1473      ProcessDeclAttributeList(S, Record, AL);
1474
1475    if (!Record->getDeclName() && Record->isDefinition() &&
1476        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1477      if (getLangOptions().CPlusPlus ||
1478          Record->getDeclContext()->isRecord())
1479        return BuildAnonymousStructOrUnion(S, DS, Record);
1480
1481      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1482        << DS.getSourceRange();
1483    }
1484
1485    // Microsoft allows unnamed struct/union fields. Don't complain
1486    // about them.
1487    // FIXME: Should we support Microsoft's extensions in this area?
1488    if (Record->getDeclName() && getLangOptions().Microsoft)
1489      return DeclPtrTy::make(Tag);
1490  }
1491
1492  if (!DS.isMissingDeclaratorOk() &&
1493      DS.getTypeSpecType() != DeclSpec::TST_error) {
1494    // Warn about typedefs of enums without names, since this is an
1495    // extension in both Microsoft an GNU.
1496    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1497        Tag && isa<EnumDecl>(Tag)) {
1498      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1499        << DS.getSourceRange();
1500      return DeclPtrTy::make(Tag);
1501    }
1502
1503    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1504      << DS.getSourceRange();
1505  }
1506
1507  return DeclPtrTy::make(Tag);
1508}
1509
1510/// We are trying to inject an anonymous member into the given scope;
1511/// check if there's an existing declaration that can't be overloaded.
1512///
1513/// \return true if this is a forbidden redeclaration
1514static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1515                                         Scope *S,
1516                                         DeclContext *Owner,
1517                                         DeclarationName Name,
1518                                         SourceLocation NameLoc,
1519                                         unsigned diagnostic) {
1520  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1521                 Sema::ForRedeclaration);
1522  if (!SemaRef.LookupName(R, S)) return false;
1523
1524  if (R.getAsSingle<TagDecl>())
1525    return false;
1526
1527  // Pick a representative declaration.
1528  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1529  if (PrevDecl && Owner->isRecord()) {
1530    RecordDecl *Record = cast<RecordDecl>(Owner);
1531    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1532      return false;
1533  }
1534
1535  SemaRef.Diag(NameLoc, diagnostic) << Name;
1536  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1537
1538  return true;
1539}
1540
1541/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1542/// anonymous struct or union AnonRecord into the owning context Owner
1543/// and scope S. This routine will be invoked just after we realize
1544/// that an unnamed union or struct is actually an anonymous union or
1545/// struct, e.g.,
1546///
1547/// @code
1548/// union {
1549///   int i;
1550///   float f;
1551/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1552///    // f into the surrounding scope.x
1553/// @endcode
1554///
1555/// This routine is recursive, injecting the names of nested anonymous
1556/// structs/unions into the owning context and scope as well.
1557bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1558                                               RecordDecl *AnonRecord) {
1559  unsigned diagKind
1560    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1561                            : diag::err_anonymous_struct_member_redecl;
1562
1563  bool Invalid = false;
1564  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1565                               FEnd = AnonRecord->field_end();
1566       F != FEnd; ++F) {
1567    if ((*F)->getDeclName()) {
1568      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1569                                       (*F)->getLocation(), diagKind)) {
1570        // C++ [class.union]p2:
1571        //   The names of the members of an anonymous union shall be
1572        //   distinct from the names of any other entity in the
1573        //   scope in which the anonymous union is declared.
1574        Invalid = true;
1575      } else {
1576        // C++ [class.union]p2:
1577        //   For the purpose of name lookup, after the anonymous union
1578        //   definition, the members of the anonymous union are
1579        //   considered to have been defined in the scope in which the
1580        //   anonymous union is declared.
1581        Owner->makeDeclVisibleInContext(*F);
1582        S->AddDecl(DeclPtrTy::make(*F));
1583        IdResolver.AddDecl(*F);
1584      }
1585    } else if (const RecordType *InnerRecordType
1586                 = (*F)->getType()->getAs<RecordType>()) {
1587      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1588      if (InnerRecord->isAnonymousStructOrUnion())
1589        Invalid = Invalid ||
1590          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1591    }
1592  }
1593
1594  return Invalid;
1595}
1596
1597/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1598/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1599/// illegal input values are mapped to VarDecl::None.
1600static VarDecl::StorageClass
1601StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1602  switch (StorageClassSpec) {
1603  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1604  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1605  case DeclSpec::SCS_static:         return VarDecl::Static;
1606  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1607  case DeclSpec::SCS_register:       return VarDecl::Register;
1608  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1609    // Illegal SCSs map to None: error reporting is up to the caller.
1610  case DeclSpec::SCS_mutable:        // Fall through.
1611  case DeclSpec::SCS_typedef:        return VarDecl::None;
1612  }
1613  llvm_unreachable("unknown storage class specifier");
1614}
1615
1616/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1617/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1618/// illegal input values are mapped to FunctionDecl::None.
1619static FunctionDecl::StorageClass
1620StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1621  switch (StorageClassSpec) {
1622  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1623  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1624  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1625  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1626    // Illegal SCSs map to None: error reporting is up to the caller.
1627  case DeclSpec::SCS_auto:           // Fall through.
1628  case DeclSpec::SCS_mutable:        // Fall through.
1629  case DeclSpec::SCS_register:       // Fall through.
1630  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1631  }
1632  llvm_unreachable("unknown storage class specifier");
1633}
1634
1635/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1636/// anonymous structure or union. Anonymous unions are a C++ feature
1637/// (C++ [class.union]) and a GNU C extension; anonymous structures
1638/// are a GNU C and GNU C++ extension.
1639Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1640                                                  RecordDecl *Record) {
1641  DeclContext *Owner = Record->getDeclContext();
1642
1643  // Diagnose whether this anonymous struct/union is an extension.
1644  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1645    Diag(Record->getLocation(), diag::ext_anonymous_union);
1646  else if (!Record->isUnion())
1647    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1648
1649  // C and C++ require different kinds of checks for anonymous
1650  // structs/unions.
1651  bool Invalid = false;
1652  if (getLangOptions().CPlusPlus) {
1653    const char* PrevSpec = 0;
1654    unsigned DiagID;
1655    // C++ [class.union]p3:
1656    //   Anonymous unions declared in a named namespace or in the
1657    //   global namespace shall be declared static.
1658    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1659        (isa<TranslationUnitDecl>(Owner) ||
1660         (isa<NamespaceDecl>(Owner) &&
1661          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1662      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1663      Invalid = true;
1664
1665      // Recover by adding 'static'.
1666      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1667                             PrevSpec, DiagID);
1668    }
1669    // C++ [class.union]p3:
1670    //   A storage class is not allowed in a declaration of an
1671    //   anonymous union in a class scope.
1672    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1673             isa<RecordDecl>(Owner)) {
1674      Diag(DS.getStorageClassSpecLoc(),
1675           diag::err_anonymous_union_with_storage_spec);
1676      Invalid = true;
1677
1678      // Recover by removing the storage specifier.
1679      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1680                             PrevSpec, DiagID);
1681    }
1682
1683    // C++ [class.union]p2:
1684    //   The member-specification of an anonymous union shall only
1685    //   define non-static data members. [Note: nested types and
1686    //   functions cannot be declared within an anonymous union. ]
1687    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1688                                 MemEnd = Record->decls_end();
1689         Mem != MemEnd; ++Mem) {
1690      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1691        // C++ [class.union]p3:
1692        //   An anonymous union shall not have private or protected
1693        //   members (clause 11).
1694        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1695          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1696            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1697          Invalid = true;
1698        }
1699      } else if ((*Mem)->isImplicit()) {
1700        // Any implicit members are fine.
1701      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1702        // This is a type that showed up in an
1703        // elaborated-type-specifier inside the anonymous struct or
1704        // union, but which actually declares a type outside of the
1705        // anonymous struct or union. It's okay.
1706      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1707        if (!MemRecord->isAnonymousStructOrUnion() &&
1708            MemRecord->getDeclName()) {
1709          // This is a nested type declaration.
1710          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1711            << (int)Record->isUnion();
1712          Invalid = true;
1713        }
1714      } else {
1715        // We have something that isn't a non-static data
1716        // member. Complain about it.
1717        unsigned DK = diag::err_anonymous_record_bad_member;
1718        if (isa<TypeDecl>(*Mem))
1719          DK = diag::err_anonymous_record_with_type;
1720        else if (isa<FunctionDecl>(*Mem))
1721          DK = diag::err_anonymous_record_with_function;
1722        else if (isa<VarDecl>(*Mem))
1723          DK = diag::err_anonymous_record_with_static;
1724        Diag((*Mem)->getLocation(), DK)
1725            << (int)Record->isUnion();
1726          Invalid = true;
1727      }
1728    }
1729  }
1730
1731  if (!Record->isUnion() && !Owner->isRecord()) {
1732    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1733      << (int)getLangOptions().CPlusPlus;
1734    Invalid = true;
1735  }
1736
1737  // Mock up a declarator.
1738  Declarator Dc(DS, Declarator::TypeNameContext);
1739  TypeSourceInfo *TInfo = 0;
1740  GetTypeForDeclarator(Dc, S, &TInfo);
1741  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1742
1743  // Create a declaration for this anonymous struct/union.
1744  NamedDecl *Anon = 0;
1745  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1746    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1747                             /*IdentifierInfo=*/0,
1748                             Context.getTypeDeclType(Record),
1749                             TInfo,
1750                             /*BitWidth=*/0, /*Mutable=*/false);
1751    Anon->setAccess(AS_public);
1752    if (getLangOptions().CPlusPlus)
1753      FieldCollector->Add(cast<FieldDecl>(Anon));
1754  } else {
1755    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1756    assert(SCSpec != DeclSpec::SCS_typedef &&
1757           "Parser allowed 'typedef' as storage class VarDecl.");
1758    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1759    if (SCSpec == DeclSpec::SCS_mutable) {
1760      // mutable can only appear on non-static class members, so it's always
1761      // an error here
1762      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1763      Invalid = true;
1764      SC = VarDecl::None;
1765    }
1766    SCSpec = DS.getStorageClassSpecAsWritten();
1767    VarDecl::StorageClass SCAsWritten
1768      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1769
1770    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1771                           /*IdentifierInfo=*/0,
1772                           Context.getTypeDeclType(Record),
1773                           TInfo, SC, SCAsWritten);
1774  }
1775  Anon->setImplicit();
1776
1777  // Add the anonymous struct/union object to the current
1778  // context. We'll be referencing this object when we refer to one of
1779  // its members.
1780  Owner->addDecl(Anon);
1781
1782  // Inject the members of the anonymous struct/union into the owning
1783  // context and into the identifier resolver chain for name lookup
1784  // purposes.
1785  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1786    Invalid = true;
1787
1788  // Mark this as an anonymous struct/union type. Note that we do not
1789  // do this until after we have already checked and injected the
1790  // members of this anonymous struct/union type, because otherwise
1791  // the members could be injected twice: once by DeclContext when it
1792  // builds its lookup table, and once by
1793  // InjectAnonymousStructOrUnionMembers.
1794  Record->setAnonymousStructOrUnion(true);
1795
1796  if (Invalid)
1797    Anon->setInvalidDecl();
1798
1799  return DeclPtrTy::make(Anon);
1800}
1801
1802
1803/// GetNameForDeclarator - Determine the full declaration name for the
1804/// given Declarator.
1805DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1806  return GetNameFromUnqualifiedId(D.getName());
1807}
1808
1809/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1810DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1811  switch (Name.getKind()) {
1812    case UnqualifiedId::IK_Identifier:
1813      return DeclarationName(Name.Identifier);
1814
1815    case UnqualifiedId::IK_OperatorFunctionId:
1816      return Context.DeclarationNames.getCXXOperatorName(
1817                                              Name.OperatorFunctionId.Operator);
1818
1819    case UnqualifiedId::IK_LiteralOperatorId:
1820      return Context.DeclarationNames.getCXXLiteralOperatorName(
1821                                                               Name.Identifier);
1822
1823    case UnqualifiedId::IK_ConversionFunctionId: {
1824      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1825      if (Ty.isNull())
1826        return DeclarationName();
1827
1828      return Context.DeclarationNames.getCXXConversionFunctionName(
1829                                                  Context.getCanonicalType(Ty));
1830    }
1831
1832    case UnqualifiedId::IK_ConstructorName: {
1833      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1834      if (Ty.isNull())
1835        return DeclarationName();
1836
1837      return Context.DeclarationNames.getCXXConstructorName(
1838                                                  Context.getCanonicalType(Ty));
1839    }
1840
1841    case UnqualifiedId::IK_ConstructorTemplateId: {
1842      // In well-formed code, we can only have a constructor
1843      // template-id that refers to the current context, so go there
1844      // to find the actual type being constructed.
1845      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1846      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1847        return DeclarationName();
1848
1849      // Determine the type of the class being constructed.
1850      QualType CurClassType = Context.getTypeDeclType(CurClass);
1851
1852      // FIXME: Check two things: that the template-id names the same type as
1853      // CurClassType, and that the template-id does not occur when the name
1854      // was qualified.
1855
1856      return Context.DeclarationNames.getCXXConstructorName(
1857                                       Context.getCanonicalType(CurClassType));
1858    }
1859
1860    case UnqualifiedId::IK_DestructorName: {
1861      QualType Ty = GetTypeFromParser(Name.DestructorName);
1862      if (Ty.isNull())
1863        return DeclarationName();
1864
1865      return Context.DeclarationNames.getCXXDestructorName(
1866                                                           Context.getCanonicalType(Ty));
1867    }
1868
1869    case UnqualifiedId::IK_TemplateId: {
1870      TemplateName TName
1871        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1872      return Context.getNameForTemplate(TName);
1873    }
1874  }
1875
1876  assert(false && "Unknown name kind");
1877  return DeclarationName();
1878}
1879
1880/// isNearlyMatchingFunction - Determine whether the C++ functions
1881/// Declaration and Definition are "nearly" matching. This heuristic
1882/// is used to improve diagnostics in the case where an out-of-line
1883/// function definition doesn't match any declaration within
1884/// the class or namespace.
1885static bool isNearlyMatchingFunction(ASTContext &Context,
1886                                     FunctionDecl *Declaration,
1887                                     FunctionDecl *Definition) {
1888  if (Declaration->param_size() != Definition->param_size())
1889    return false;
1890  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1891    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1892    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1893
1894    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1895                                        DefParamTy.getNonReferenceType()))
1896      return false;
1897  }
1898
1899  return true;
1900}
1901
1902Sema::DeclPtrTy
1903Sema::HandleDeclarator(Scope *S, Declarator &D,
1904                       MultiTemplateParamsArg TemplateParamLists,
1905                       bool IsFunctionDefinition) {
1906  DeclarationName Name = GetNameForDeclarator(D);
1907
1908  // All of these full declarators require an identifier.  If it doesn't have
1909  // one, the ParsedFreeStandingDeclSpec action should be used.
1910  if (!Name) {
1911    if (!D.isInvalidType())  // Reject this if we think it is valid.
1912      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1913           diag::err_declarator_need_ident)
1914        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1915    return DeclPtrTy();
1916  }
1917
1918  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1919  // we find one that is.
1920  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1921         (S->getFlags() & Scope::TemplateParamScope) != 0)
1922    S = S->getParent();
1923
1924  // If this is an out-of-line definition of a member of a class template
1925  // or class template partial specialization, we may need to rebuild the
1926  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1927  // for more information.
1928  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1929  // handle expressions properly.
1930  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1931  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1932      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1933      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1934       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1935       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1936       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1937    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1938      // FIXME: Preserve type source info.
1939      QualType T = GetTypeFromParser(DS.getTypeRep());
1940
1941      DeclContext *SavedContext = CurContext;
1942      CurContext = DC;
1943      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1944      CurContext = SavedContext;
1945
1946      if (T.isNull())
1947        return DeclPtrTy();
1948      DS.UpdateTypeRep(T.getAsOpaquePtr());
1949    }
1950  }
1951
1952  DeclContext *DC;
1953  NamedDecl *New;
1954
1955  TypeSourceInfo *TInfo = 0;
1956  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1957
1958  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1959                        ForRedeclaration);
1960
1961  // See if this is a redefinition of a variable in the same scope.
1962  if (D.getCXXScopeSpec().isInvalid()) {
1963    DC = CurContext;
1964    D.setInvalidType();
1965  } else if (!D.getCXXScopeSpec().isSet()) {
1966    bool IsLinkageLookup = false;
1967
1968    // If the declaration we're planning to build will be a function
1969    // or object with linkage, then look for another declaration with
1970    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1971    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1972      /* Do nothing*/;
1973    else if (R->isFunctionType()) {
1974      if (CurContext->isFunctionOrMethod() ||
1975          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1976        IsLinkageLookup = true;
1977    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1978      IsLinkageLookup = true;
1979    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1980             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1981      IsLinkageLookup = true;
1982
1983    if (IsLinkageLookup)
1984      Previous.clear(LookupRedeclarationWithLinkage);
1985
1986    DC = CurContext;
1987    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1988  } else { // Something like "int foo::x;"
1989    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1990
1991    if (!DC) {
1992      // If we could not compute the declaration context, it's because the
1993      // declaration context is dependent but does not refer to a class,
1994      // class template, or class template partial specialization. Complain
1995      // and return early, to avoid the coming semantic disaster.
1996      Diag(D.getIdentifierLoc(),
1997           diag::err_template_qualified_declarator_no_match)
1998        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1999        << D.getCXXScopeSpec().getRange();
2000      return DeclPtrTy();
2001    }
2002
2003    if (!DC->isDependentContext() &&
2004        RequireCompleteDeclContext(D.getCXXScopeSpec()))
2005      return DeclPtrTy();
2006
2007    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2008      Diag(D.getIdentifierLoc(),
2009           diag::err_member_def_undefined_record)
2010        << Name << DC << D.getCXXScopeSpec().getRange();
2011      D.setInvalidType();
2012    }
2013
2014    LookupQualifiedName(Previous, DC);
2015
2016    // Don't consider using declarations as previous declarations for
2017    // out-of-line members.
2018    RemoveUsingDecls(Previous);
2019
2020    // C++ 7.3.1.2p2:
2021    // Members (including explicit specializations of templates) of a named
2022    // namespace can also be defined outside that namespace by explicit
2023    // qualification of the name being defined, provided that the entity being
2024    // defined was already declared in the namespace and the definition appears
2025    // after the point of declaration in a namespace that encloses the
2026    // declarations namespace.
2027    //
2028    // Note that we only check the context at this point. We don't yet
2029    // have enough information to make sure that PrevDecl is actually
2030    // the declaration we want to match. For example, given:
2031    //
2032    //   class X {
2033    //     void f();
2034    //     void f(float);
2035    //   };
2036    //
2037    //   void X::f(int) { } // ill-formed
2038    //
2039    // In this case, PrevDecl will point to the overload set
2040    // containing the two f's declared in X, but neither of them
2041    // matches.
2042
2043    // First check whether we named the global scope.
2044    if (isa<TranslationUnitDecl>(DC)) {
2045      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2046        << Name << D.getCXXScopeSpec().getRange();
2047    } else {
2048      DeclContext *Cur = CurContext;
2049      while (isa<LinkageSpecDecl>(Cur))
2050        Cur = Cur->getParent();
2051      if (!Cur->Encloses(DC)) {
2052        // The qualifying scope doesn't enclose the original declaration.
2053        // Emit diagnostic based on current scope.
2054        SourceLocation L = D.getIdentifierLoc();
2055        SourceRange R = D.getCXXScopeSpec().getRange();
2056        if (isa<FunctionDecl>(Cur))
2057          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2058        else
2059          Diag(L, diag::err_invalid_declarator_scope)
2060            << Name << cast<NamedDecl>(DC) << R;
2061        D.setInvalidType();
2062      }
2063    }
2064  }
2065
2066  if (Previous.isSingleResult() &&
2067      Previous.getFoundDecl()->isTemplateParameter()) {
2068    // Maybe we will complain about the shadowed template parameter.
2069    if (!D.isInvalidType())
2070      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2071                                          Previous.getFoundDecl()))
2072        D.setInvalidType();
2073
2074    // Just pretend that we didn't see the previous declaration.
2075    Previous.clear();
2076  }
2077
2078  // In C++, the previous declaration we find might be a tag type
2079  // (class or enum). In this case, the new declaration will hide the
2080  // tag type. Note that this does does not apply if we're declaring a
2081  // typedef (C++ [dcl.typedef]p4).
2082  if (Previous.isSingleTagDecl() &&
2083      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2084    Previous.clear();
2085
2086  bool Redeclaration = false;
2087  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2088    if (TemplateParamLists.size()) {
2089      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2090      return DeclPtrTy();
2091    }
2092
2093    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2094  } else if (R->isFunctionType()) {
2095    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2096                                  move(TemplateParamLists),
2097                                  IsFunctionDefinition, Redeclaration);
2098  } else {
2099    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2100                                  move(TemplateParamLists),
2101                                  Redeclaration);
2102  }
2103
2104  if (New == 0)
2105    return DeclPtrTy();
2106
2107  // If this has an identifier and is not an invalid redeclaration or
2108  // function template specialization, add it to the scope stack.
2109  if (Name && !(Redeclaration && New->isInvalidDecl()))
2110    PushOnScopeChains(New, S);
2111
2112  return DeclPtrTy::make(New);
2113}
2114
2115/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2116/// types into constant array types in certain situations which would otherwise
2117/// be errors (for GCC compatibility).
2118static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2119                                                    ASTContext &Context,
2120                                                    bool &SizeIsNegative) {
2121  // This method tries to turn a variable array into a constant
2122  // array even when the size isn't an ICE.  This is necessary
2123  // for compatibility with code that depends on gcc's buggy
2124  // constant expression folding, like struct {char x[(int)(char*)2];}
2125  SizeIsNegative = false;
2126
2127  QualifierCollector Qs;
2128  const Type *Ty = Qs.strip(T);
2129
2130  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2131    QualType Pointee = PTy->getPointeeType();
2132    QualType FixedType =
2133        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2134    if (FixedType.isNull()) return FixedType;
2135    FixedType = Context.getPointerType(FixedType);
2136    return Qs.apply(FixedType);
2137  }
2138
2139  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2140  if (!VLATy)
2141    return QualType();
2142  // FIXME: We should probably handle this case
2143  if (VLATy->getElementType()->isVariablyModifiedType())
2144    return QualType();
2145
2146  Expr::EvalResult EvalResult;
2147  if (!VLATy->getSizeExpr() ||
2148      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2149      !EvalResult.Val.isInt())
2150    return QualType();
2151
2152  llvm::APSInt &Res = EvalResult.Val.getInt();
2153  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2154    // TODO: preserve the size expression in declarator info
2155    return Context.getConstantArrayType(VLATy->getElementType(),
2156                                        Res, ArrayType::Normal, 0);
2157  }
2158
2159  SizeIsNegative = true;
2160  return QualType();
2161}
2162
2163/// \brief Register the given locally-scoped external C declaration so
2164/// that it can be found later for redeclarations
2165void
2166Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2167                                       const LookupResult &Previous,
2168                                       Scope *S) {
2169  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2170         "Decl is not a locally-scoped decl!");
2171  // Note that we have a locally-scoped external with this name.
2172  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2173
2174  if (!Previous.isSingleResult())
2175    return;
2176
2177  NamedDecl *PrevDecl = Previous.getFoundDecl();
2178
2179  // If there was a previous declaration of this variable, it may be
2180  // in our identifier chain. Update the identifier chain with the new
2181  // declaration.
2182  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2183    // The previous declaration was found on the identifer resolver
2184    // chain, so remove it from its scope.
2185    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2186      S = S->getParent();
2187
2188    if (S)
2189      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2190  }
2191}
2192
2193/// \brief Diagnose function specifiers on a declaration of an identifier that
2194/// does not identify a function.
2195void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2196  // FIXME: We should probably indicate the identifier in question to avoid
2197  // confusion for constructs like "inline int a(), b;"
2198  if (D.getDeclSpec().isInlineSpecified())
2199    Diag(D.getDeclSpec().getInlineSpecLoc(),
2200         diag::err_inline_non_function);
2201
2202  if (D.getDeclSpec().isVirtualSpecified())
2203    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2204         diag::err_virtual_non_function);
2205
2206  if (D.getDeclSpec().isExplicitSpecified())
2207    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2208         diag::err_explicit_non_function);
2209}
2210
2211NamedDecl*
2212Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2213                             QualType R,  TypeSourceInfo *TInfo,
2214                             LookupResult &Previous, bool &Redeclaration) {
2215  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2216  if (D.getCXXScopeSpec().isSet()) {
2217    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2218      << D.getCXXScopeSpec().getRange();
2219    D.setInvalidType();
2220    // Pretend we didn't see the scope specifier.
2221    DC = CurContext;
2222    Previous.clear();
2223  }
2224
2225  if (getLangOptions().CPlusPlus) {
2226    // Check that there are no default arguments (C++ only).
2227    CheckExtraCXXDefaultArguments(D);
2228  }
2229
2230  DiagnoseFunctionSpecifiers(D);
2231
2232  if (D.getDeclSpec().isThreadSpecified())
2233    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2234
2235  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2236  if (!NewTD) return 0;
2237
2238  // Handle attributes prior to checking for duplicates in MergeVarDecl
2239  ProcessDeclAttributes(S, NewTD, D);
2240
2241  // Merge the decl with the existing one if appropriate. If the decl is
2242  // in an outer scope, it isn't the same thing.
2243  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2244  if (!Previous.empty()) {
2245    Redeclaration = true;
2246    MergeTypeDefDecl(NewTD, Previous);
2247  }
2248
2249  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2250  // then it shall have block scope.
2251  QualType T = NewTD->getUnderlyingType();
2252  if (T->isVariablyModifiedType()) {
2253    FunctionNeedsScopeChecking() = true;
2254
2255    if (S->getFnParent() == 0) {
2256      bool SizeIsNegative;
2257      QualType FixedTy =
2258          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2259      if (!FixedTy.isNull()) {
2260        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2261        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2262      } else {
2263        if (SizeIsNegative)
2264          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2265        else if (T->isVariableArrayType())
2266          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2267        else
2268          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2269        NewTD->setInvalidDecl();
2270      }
2271    }
2272  }
2273
2274  // If this is the C FILE type, notify the AST context.
2275  if (IdentifierInfo *II = NewTD->getIdentifier())
2276    if (!NewTD->isInvalidDecl() &&
2277        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2278      if (II->isStr("FILE"))
2279        Context.setFILEDecl(NewTD);
2280      else if (II->isStr("jmp_buf"))
2281        Context.setjmp_bufDecl(NewTD);
2282      else if (II->isStr("sigjmp_buf"))
2283        Context.setsigjmp_bufDecl(NewTD);
2284    }
2285
2286  return NewTD;
2287}
2288
2289/// \brief Determines whether the given declaration is an out-of-scope
2290/// previous declaration.
2291///
2292/// This routine should be invoked when name lookup has found a
2293/// previous declaration (PrevDecl) that is not in the scope where a
2294/// new declaration by the same name is being introduced. If the new
2295/// declaration occurs in a local scope, previous declarations with
2296/// linkage may still be considered previous declarations (C99
2297/// 6.2.2p4-5, C++ [basic.link]p6).
2298///
2299/// \param PrevDecl the previous declaration found by name
2300/// lookup
2301///
2302/// \param DC the context in which the new declaration is being
2303/// declared.
2304///
2305/// \returns true if PrevDecl is an out-of-scope previous declaration
2306/// for a new delcaration with the same name.
2307static bool
2308isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2309                                ASTContext &Context) {
2310  if (!PrevDecl)
2311    return 0;
2312
2313  if (!PrevDecl->hasLinkage())
2314    return false;
2315
2316  if (Context.getLangOptions().CPlusPlus) {
2317    // C++ [basic.link]p6:
2318    //   If there is a visible declaration of an entity with linkage
2319    //   having the same name and type, ignoring entities declared
2320    //   outside the innermost enclosing namespace scope, the block
2321    //   scope declaration declares that same entity and receives the
2322    //   linkage of the previous declaration.
2323    DeclContext *OuterContext = DC->getLookupContext();
2324    if (!OuterContext->isFunctionOrMethod())
2325      // This rule only applies to block-scope declarations.
2326      return false;
2327    else {
2328      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2329      if (PrevOuterContext->isRecord())
2330        // We found a member function: ignore it.
2331        return false;
2332      else {
2333        // Find the innermost enclosing namespace for the new and
2334        // previous declarations.
2335        while (!OuterContext->isFileContext())
2336          OuterContext = OuterContext->getParent();
2337        while (!PrevOuterContext->isFileContext())
2338          PrevOuterContext = PrevOuterContext->getParent();
2339
2340        // The previous declaration is in a different namespace, so it
2341        // isn't the same function.
2342        if (OuterContext->getPrimaryContext() !=
2343            PrevOuterContext->getPrimaryContext())
2344          return false;
2345      }
2346    }
2347  }
2348
2349  return true;
2350}
2351
2352static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2353  CXXScopeSpec &SS = D.getCXXScopeSpec();
2354  if (!SS.isSet()) return;
2355  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2356                       SS.getRange());
2357}
2358
2359NamedDecl*
2360Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2361                              QualType R, TypeSourceInfo *TInfo,
2362                              LookupResult &Previous,
2363                              MultiTemplateParamsArg TemplateParamLists,
2364                              bool &Redeclaration) {
2365  DeclarationName Name = GetNameForDeclarator(D);
2366
2367  // Check that there are no default arguments (C++ only).
2368  if (getLangOptions().CPlusPlus)
2369    CheckExtraCXXDefaultArguments(D);
2370
2371  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2372  assert(SCSpec != DeclSpec::SCS_typedef &&
2373         "Parser allowed 'typedef' as storage class VarDecl.");
2374  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2375  if (SCSpec == DeclSpec::SCS_mutable) {
2376    // mutable can only appear on non-static class members, so it's always
2377    // an error here
2378    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2379    D.setInvalidType();
2380    SC = VarDecl::None;
2381  }
2382  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2383  VarDecl::StorageClass SCAsWritten
2384    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2385
2386  IdentifierInfo *II = Name.getAsIdentifierInfo();
2387  if (!II) {
2388    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2389      << Name.getAsString();
2390    return 0;
2391  }
2392
2393  DiagnoseFunctionSpecifiers(D);
2394
2395  if (!DC->isRecord() && S->getFnParent() == 0) {
2396    // C99 6.9p2: The storage-class specifiers auto and register shall not
2397    // appear in the declaration specifiers in an external declaration.
2398    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2399
2400      // If this is a register variable with an asm label specified, then this
2401      // is a GNU extension.
2402      if (SC == VarDecl::Register && D.getAsmLabel())
2403        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2404      else
2405        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2406      D.setInvalidType();
2407    }
2408  }
2409  if (DC->isRecord() && !CurContext->isRecord()) {
2410    // This is an out-of-line definition of a static data member.
2411    if (SC == VarDecl::Static) {
2412      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2413           diag::err_static_out_of_line)
2414        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2415    } else if (SC == VarDecl::None)
2416      SC = VarDecl::Static;
2417  }
2418  if (SC == VarDecl::Static) {
2419    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2420      if (RD->isLocalClass())
2421        Diag(D.getIdentifierLoc(),
2422             diag::err_static_data_member_not_allowed_in_local_class)
2423          << Name << RD->getDeclName();
2424    }
2425  }
2426
2427  // Match up the template parameter lists with the scope specifier, then
2428  // determine whether we have a template or a template specialization.
2429  bool isExplicitSpecialization = false;
2430  if (TemplateParameterList *TemplateParams
2431        = MatchTemplateParametersToScopeSpecifier(
2432                                  D.getDeclSpec().getSourceRange().getBegin(),
2433                                                  D.getCXXScopeSpec(),
2434                        (TemplateParameterList**)TemplateParamLists.get(),
2435                                                   TemplateParamLists.size(),
2436                                                  /*never a friend*/ false,
2437                                                  isExplicitSpecialization)) {
2438    if (TemplateParams->size() > 0) {
2439      // There is no such thing as a variable template.
2440      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2441        << II
2442        << SourceRange(TemplateParams->getTemplateLoc(),
2443                       TemplateParams->getRAngleLoc());
2444      return 0;
2445    } else {
2446      // There is an extraneous 'template<>' for this variable. Complain
2447      // about it, but allow the declaration of the variable.
2448      Diag(TemplateParams->getTemplateLoc(),
2449           diag::err_template_variable_noparams)
2450        << II
2451        << SourceRange(TemplateParams->getTemplateLoc(),
2452                       TemplateParams->getRAngleLoc());
2453
2454      isExplicitSpecialization = true;
2455    }
2456  }
2457
2458  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2459                                   II, R, TInfo, SC, SCAsWritten);
2460
2461  if (D.isInvalidType())
2462    NewVD->setInvalidDecl();
2463
2464  SetNestedNameSpecifier(NewVD, D);
2465
2466  if (D.getDeclSpec().isThreadSpecified()) {
2467    if (NewVD->hasLocalStorage())
2468      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2469    else if (!Context.Target.isTLSSupported())
2470      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2471    else
2472      NewVD->setThreadSpecified(true);
2473  }
2474
2475  // Set the lexical context. If the declarator has a C++ scope specifier, the
2476  // lexical context will be different from the semantic context.
2477  NewVD->setLexicalDeclContext(CurContext);
2478
2479  // Handle attributes prior to checking for duplicates in MergeVarDecl
2480  ProcessDeclAttributes(S, NewVD, D);
2481
2482  // Handle GNU asm-label extension (encoded as an attribute).
2483  if (Expr *E = (Expr*) D.getAsmLabel()) {
2484    // The parser guarantees this is a string.
2485    StringLiteral *SE = cast<StringLiteral>(E);
2486    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2487  }
2488
2489  // Diagnose shadowed variables before filtering for scope.
2490  if (!D.getCXXScopeSpec().isSet())
2491    CheckShadow(S, NewVD, Previous);
2492
2493  // Don't consider existing declarations that are in a different
2494  // scope and are out-of-semantic-context declarations (if the new
2495  // declaration has linkage).
2496  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2497
2498  // Merge the decl with the existing one if appropriate.
2499  if (!Previous.empty()) {
2500    if (Previous.isSingleResult() &&
2501        isa<FieldDecl>(Previous.getFoundDecl()) &&
2502        D.getCXXScopeSpec().isSet()) {
2503      // The user tried to define a non-static data member
2504      // out-of-line (C++ [dcl.meaning]p1).
2505      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2506        << D.getCXXScopeSpec().getRange();
2507      Previous.clear();
2508      NewVD->setInvalidDecl();
2509    }
2510  } else if (D.getCXXScopeSpec().isSet()) {
2511    // No previous declaration in the qualifying scope.
2512    Diag(D.getIdentifierLoc(), diag::err_no_member)
2513      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2514      << D.getCXXScopeSpec().getRange();
2515    NewVD->setInvalidDecl();
2516  }
2517
2518  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2519
2520  // This is an explicit specialization of a static data member. Check it.
2521  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2522      CheckMemberSpecialization(NewVD, Previous))
2523    NewVD->setInvalidDecl();
2524
2525  // attributes declared post-definition are currently ignored
2526  if (Previous.isSingleResult()) {
2527    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2528    if (Def && (Def = Def->getDefinition()) &&
2529        Def != NewVD && D.hasAttributes()) {
2530      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2531      Diag(Def->getLocation(), diag::note_previous_definition);
2532    }
2533  }
2534
2535  // If this is a locally-scoped extern C variable, update the map of
2536  // such variables.
2537  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2538      !NewVD->isInvalidDecl())
2539    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2540
2541  return NewVD;
2542}
2543
2544/// \brief Diagnose variable or built-in function shadowing.  Implements
2545/// -Wshadow.
2546///
2547/// This method is called whenever a VarDecl is added to a "useful"
2548/// scope.
2549///
2550/// \param S the scope in which the shadowing name is being declared
2551/// \param R the lookup of the name
2552///
2553void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2554  // Return if warning is ignored.
2555  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2556    return;
2557
2558  // Don't diagnose declarations at file scope.  The scope might not
2559  // have a DeclContext if (e.g.) we're parsing a function prototype.
2560  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2561  if (NewDC && NewDC->isFileContext())
2562    return;
2563
2564  // Only diagnose if we're shadowing an unambiguous field or variable.
2565  if (R.getResultKind() != LookupResult::Found)
2566    return;
2567
2568  NamedDecl* ShadowedDecl = R.getFoundDecl();
2569  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2570    return;
2571
2572  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2573
2574  // Only warn about certain kinds of shadowing for class members.
2575  if (NewDC && NewDC->isRecord()) {
2576    // In particular, don't warn about shadowing non-class members.
2577    if (!OldDC->isRecord())
2578      return;
2579
2580    // TODO: should we warn about static data members shadowing
2581    // static data members from base classes?
2582
2583    // TODO: don't diagnose for inaccessible shadowed members.
2584    // This is hard to do perfectly because we might friend the
2585    // shadowing context, but that's just a false negative.
2586  }
2587
2588  // Determine what kind of declaration we're shadowing.
2589  unsigned Kind;
2590  if (isa<RecordDecl>(OldDC)) {
2591    if (isa<FieldDecl>(ShadowedDecl))
2592      Kind = 3; // field
2593    else
2594      Kind = 2; // static data member
2595  } else if (OldDC->isFileContext())
2596    Kind = 1; // global
2597  else
2598    Kind = 0; // local
2599
2600  DeclarationName Name = R.getLookupName();
2601
2602  // Emit warning and note.
2603  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2604  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2605}
2606
2607/// \brief Check -Wshadow without the advantage of a previous lookup.
2608void Sema::CheckShadow(Scope *S, VarDecl *D) {
2609  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2610                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2611  LookupName(R, S);
2612  CheckShadow(S, D, R);
2613}
2614
2615/// \brief Perform semantic checking on a newly-created variable
2616/// declaration.
2617///
2618/// This routine performs all of the type-checking required for a
2619/// variable declaration once it has been built. It is used both to
2620/// check variables after they have been parsed and their declarators
2621/// have been translated into a declaration, and to check variables
2622/// that have been instantiated from a template.
2623///
2624/// Sets NewVD->isInvalidDecl() if an error was encountered.
2625void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2626                                    LookupResult &Previous,
2627                                    bool &Redeclaration) {
2628  // If the decl is already known invalid, don't check it.
2629  if (NewVD->isInvalidDecl())
2630    return;
2631
2632  QualType T = NewVD->getType();
2633
2634  if (T->isObjCInterfaceType()) {
2635    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2636    return NewVD->setInvalidDecl();
2637  }
2638
2639  // Emit an error if an address space was applied to decl with local storage.
2640  // This includes arrays of objects with address space qualifiers, but not
2641  // automatic variables that point to other address spaces.
2642  // ISO/IEC TR 18037 S5.1.2
2643  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2644    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2645    return NewVD->setInvalidDecl();
2646  }
2647
2648  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2649      && !NewVD->hasAttr<BlocksAttr>())
2650    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2651
2652  bool isVM = T->isVariablyModifiedType();
2653  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2654      NewVD->hasAttr<BlocksAttr>() ||
2655      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2656      // However, this turns on the scope checker for everything with a variable
2657      // which may impact compile time.  See if we can find a better solution
2658      // to this, perhaps only checking functions that contain gotos in C++?
2659      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2660    FunctionNeedsScopeChecking() = true;
2661
2662  if ((isVM && NewVD->hasLinkage()) ||
2663      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2664    bool SizeIsNegative;
2665    QualType FixedTy =
2666        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2667
2668    if (FixedTy.isNull() && T->isVariableArrayType()) {
2669      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2670      // FIXME: This won't give the correct result for
2671      // int a[10][n];
2672      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2673
2674      if (NewVD->isFileVarDecl())
2675        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2676        << SizeRange;
2677      else if (NewVD->getStorageClass() == VarDecl::Static)
2678        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2679        << SizeRange;
2680      else
2681        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2682        << SizeRange;
2683      return NewVD->setInvalidDecl();
2684    }
2685
2686    if (FixedTy.isNull()) {
2687      if (NewVD->isFileVarDecl())
2688        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2689      else
2690        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2691      return NewVD->setInvalidDecl();
2692    }
2693
2694    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2695    NewVD->setType(FixedTy);
2696  }
2697
2698  if (Previous.empty() && NewVD->isExternC()) {
2699    // Since we did not find anything by this name and we're declaring
2700    // an extern "C" variable, look for a non-visible extern "C"
2701    // declaration with the same name.
2702    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2703      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2704    if (Pos != LocallyScopedExternalDecls.end())
2705      Previous.addDecl(Pos->second);
2706  }
2707
2708  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2709    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2710      << T;
2711    return NewVD->setInvalidDecl();
2712  }
2713
2714  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2715    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2716    return NewVD->setInvalidDecl();
2717  }
2718
2719  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2720    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2721    return NewVD->setInvalidDecl();
2722  }
2723
2724  if (!Previous.empty()) {
2725    Redeclaration = true;
2726    MergeVarDecl(NewVD, Previous);
2727  }
2728}
2729
2730/// \brief Data used with FindOverriddenMethod
2731struct FindOverriddenMethodData {
2732  Sema *S;
2733  CXXMethodDecl *Method;
2734};
2735
2736/// \brief Member lookup function that determines whether a given C++
2737/// method overrides a method in a base class, to be used with
2738/// CXXRecordDecl::lookupInBases().
2739static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2740                                 CXXBasePath &Path,
2741                                 void *UserData) {
2742  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2743
2744  FindOverriddenMethodData *Data
2745    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2746
2747  DeclarationName Name = Data->Method->getDeclName();
2748
2749  // FIXME: Do we care about other names here too?
2750  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2751    // We really want to find the base class constructor here.
2752    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2753    CanQualType CT = Data->S->Context.getCanonicalType(T);
2754
2755    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2756  }
2757
2758  for (Path.Decls = BaseRecord->lookup(Name);
2759       Path.Decls.first != Path.Decls.second;
2760       ++Path.Decls.first) {
2761    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2762      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2763        return true;
2764    }
2765  }
2766
2767  return false;
2768}
2769
2770/// AddOverriddenMethods - See if a method overrides any in the base classes,
2771/// and if so, check that it's a valid override and remember it.
2772void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2773  // Look for virtual methods in base classes that this method might override.
2774  CXXBasePaths Paths;
2775  FindOverriddenMethodData Data;
2776  Data.Method = MD;
2777  Data.S = this;
2778  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2779    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2780         E = Paths.found_decls_end(); I != E; ++I) {
2781      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2782        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2783            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2784            !CheckOverridingFunctionAttributes(MD, OldMD))
2785          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2786      }
2787    }
2788  }
2789}
2790
2791NamedDecl*
2792Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2793                              QualType R, TypeSourceInfo *TInfo,
2794                              LookupResult &Previous,
2795                              MultiTemplateParamsArg TemplateParamLists,
2796                              bool IsFunctionDefinition, bool &Redeclaration) {
2797  assert(R.getTypePtr()->isFunctionType());
2798
2799  DeclarationName Name = GetNameForDeclarator(D);
2800  FunctionDecl::StorageClass SC = FunctionDecl::None;
2801  switch (D.getDeclSpec().getStorageClassSpec()) {
2802  default: assert(0 && "Unknown storage class!");
2803  case DeclSpec::SCS_auto:
2804  case DeclSpec::SCS_register:
2805  case DeclSpec::SCS_mutable:
2806    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2807         diag::err_typecheck_sclass_func);
2808    D.setInvalidType();
2809    break;
2810  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2811  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2812  case DeclSpec::SCS_static: {
2813    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2814      // C99 6.7.1p5:
2815      //   The declaration of an identifier for a function that has
2816      //   block scope shall have no explicit storage-class specifier
2817      //   other than extern
2818      // See also (C++ [dcl.stc]p4).
2819      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2820           diag::err_static_block_func);
2821      SC = FunctionDecl::None;
2822    } else
2823      SC = FunctionDecl::Static;
2824    break;
2825  }
2826  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2827  }
2828
2829  if (D.getDeclSpec().isThreadSpecified())
2830    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2831
2832  bool isFriend = D.getDeclSpec().isFriendSpecified();
2833  bool isInline = D.getDeclSpec().isInlineSpecified();
2834  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2835  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2836
2837  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2838  FunctionDecl::StorageClass SCAsWritten
2839    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
2840
2841  // Check that the return type is not an abstract class type.
2842  // For record types, this is done by the AbstractClassUsageDiagnoser once
2843  // the class has been completely parsed.
2844  if (!DC->isRecord() &&
2845      RequireNonAbstractType(D.getIdentifierLoc(),
2846                             R->getAs<FunctionType>()->getResultType(),
2847                             diag::err_abstract_type_in_decl,
2848                             AbstractReturnType))
2849    D.setInvalidType();
2850
2851  // Do not allow returning a objc interface by-value.
2852  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2853    Diag(D.getIdentifierLoc(),
2854         diag::err_object_cannot_be_passed_returned_by_value) << 0
2855      << R->getAs<FunctionType>()->getResultType();
2856    D.setInvalidType();
2857  }
2858
2859  bool isVirtualOkay = false;
2860  FunctionDecl *NewFD;
2861
2862  if (isFriend) {
2863    // C++ [class.friend]p5
2864    //   A function can be defined in a friend declaration of a
2865    //   class . . . . Such a function is implicitly inline.
2866    isInline |= IsFunctionDefinition;
2867  }
2868
2869  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2870    // This is a C++ constructor declaration.
2871    assert(DC->isRecord() &&
2872           "Constructors can only be declared in a member context");
2873
2874    R = CheckConstructorDeclarator(D, R, SC);
2875
2876    // Create the new declaration
2877    NewFD = CXXConstructorDecl::Create(Context,
2878                                       cast<CXXRecordDecl>(DC),
2879                                       D.getIdentifierLoc(), Name, R, TInfo,
2880                                       isExplicit, isInline,
2881                                       /*isImplicitlyDeclared=*/false);
2882  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2883    // This is a C++ destructor declaration.
2884    if (DC->isRecord()) {
2885      R = CheckDestructorDeclarator(D, SC);
2886
2887      NewFD = CXXDestructorDecl::Create(Context,
2888                                        cast<CXXRecordDecl>(DC),
2889                                        D.getIdentifierLoc(), Name, R,
2890                                        isInline,
2891                                        /*isImplicitlyDeclared=*/false);
2892      NewFD->setTypeSourceInfo(TInfo);
2893
2894      isVirtualOkay = true;
2895    } else {
2896      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2897
2898      // Create a FunctionDecl to satisfy the function definition parsing
2899      // code path.
2900      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2901                                   Name, R, TInfo, SC, SCAsWritten, isInline,
2902                                   /*hasPrototype=*/true);
2903      D.setInvalidType();
2904    }
2905  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2906    if (!DC->isRecord()) {
2907      Diag(D.getIdentifierLoc(),
2908           diag::err_conv_function_not_member);
2909      return 0;
2910    }
2911
2912    CheckConversionDeclarator(D, R, SC);
2913    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2914                                      D.getIdentifierLoc(), Name, R, TInfo,
2915                                      isInline, isExplicit);
2916
2917    isVirtualOkay = true;
2918  } else if (DC->isRecord()) {
2919    // If the of the function is the same as the name of the record, then this
2920    // must be an invalid constructor that has a return type.
2921    // (The parser checks for a return type and makes the declarator a
2922    // constructor if it has no return type).
2923    // must have an invalid constructor that has a return type
2924    if (Name.getAsIdentifierInfo() &&
2925        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2926      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2927        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2928        << SourceRange(D.getIdentifierLoc());
2929      return 0;
2930    }
2931
2932    bool isStatic = SC == FunctionDecl::Static;
2933
2934    // [class.free]p1:
2935    // Any allocation function for a class T is a static member
2936    // (even if not explicitly declared static).
2937    if (Name.getCXXOverloadedOperator() == OO_New ||
2938        Name.getCXXOverloadedOperator() == OO_Array_New)
2939      isStatic = true;
2940
2941    // [class.free]p6 Any deallocation function for a class X is a static member
2942    // (even if not explicitly declared static).
2943    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2944        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2945      isStatic = true;
2946
2947    // This is a C++ method declaration.
2948    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2949                                  D.getIdentifierLoc(), Name, R, TInfo,
2950                                  isStatic, SCAsWritten, isInline);
2951
2952    isVirtualOkay = !isStatic;
2953  } else {
2954    // Determine whether the function was written with a
2955    // prototype. This true when:
2956    //   - we're in C++ (where every function has a prototype),
2957    //   - there is a prototype in the declarator, or
2958    //   - the type R of the function is some kind of typedef or other reference
2959    //     to a type name (which eventually refers to a function type).
2960    bool HasPrototype =
2961       getLangOptions().CPlusPlus ||
2962       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2963       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2964
2965    NewFD = FunctionDecl::Create(Context, DC,
2966                                 D.getIdentifierLoc(),
2967                                 Name, R, TInfo, SC, SCAsWritten, isInline,
2968                                 HasPrototype);
2969  }
2970
2971  if (D.isInvalidType())
2972    NewFD->setInvalidDecl();
2973
2974  SetNestedNameSpecifier(NewFD, D);
2975
2976  // Set the lexical context. If the declarator has a C++
2977  // scope specifier, or is the object of a friend declaration, the
2978  // lexical context will be different from the semantic context.
2979  NewFD->setLexicalDeclContext(CurContext);
2980
2981  // Match up the template parameter lists with the scope specifier, then
2982  // determine whether we have a template or a template specialization.
2983  FunctionTemplateDecl *FunctionTemplate = 0;
2984  bool isExplicitSpecialization = false;
2985  bool isFunctionTemplateSpecialization = false;
2986  if (TemplateParameterList *TemplateParams
2987        = MatchTemplateParametersToScopeSpecifier(
2988                                  D.getDeclSpec().getSourceRange().getBegin(),
2989                                  D.getCXXScopeSpec(),
2990                           (TemplateParameterList**)TemplateParamLists.get(),
2991                                                  TemplateParamLists.size(),
2992                                                  isFriend,
2993                                                  isExplicitSpecialization)) {
2994    if (TemplateParams->size() > 0) {
2995      // This is a function template
2996
2997      // Check that we can declare a template here.
2998      if (CheckTemplateDeclScope(S, TemplateParams))
2999        return 0;
3000
3001      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3002                                                      NewFD->getLocation(),
3003                                                      Name, TemplateParams,
3004                                                      NewFD);
3005      FunctionTemplate->setLexicalDeclContext(CurContext);
3006      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3007    } else {
3008      // This is a function template specialization.
3009      isFunctionTemplateSpecialization = true;
3010
3011      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3012      if (isFriend && isFunctionTemplateSpecialization) {
3013        // We want to remove the "template<>", found here.
3014        SourceRange RemoveRange = TemplateParams->getSourceRange();
3015
3016        // If we remove the template<> and the name is not a
3017        // template-id, we're actually silently creating a problem:
3018        // the friend declaration will refer to an untemplated decl,
3019        // and clearly the user wants a template specialization.  So
3020        // we need to insert '<>' after the name.
3021        SourceLocation InsertLoc;
3022        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3023          InsertLoc = D.getName().getSourceRange().getEnd();
3024          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3025        }
3026
3027        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3028          << Name << RemoveRange
3029          << FixItHint::CreateRemoval(RemoveRange)
3030          << FixItHint::CreateInsertion(InsertLoc, "<>");
3031      }
3032    }
3033
3034    // FIXME: Free this memory properly.
3035    TemplateParamLists.release();
3036  }
3037
3038  // C++ [dcl.fct.spec]p5:
3039  //   The virtual specifier shall only be used in declarations of
3040  //   nonstatic class member functions that appear within a
3041  //   member-specification of a class declaration; see 10.3.
3042  //
3043  if (isVirtual && !NewFD->isInvalidDecl()) {
3044    if (!isVirtualOkay) {
3045       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3046           diag::err_virtual_non_function);
3047    } else if (!CurContext->isRecord()) {
3048      // 'virtual' was specified outside of the class.
3049      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3050        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3051    } else {
3052      // Okay: Add virtual to the method.
3053      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3054      CurClass->setMethodAsVirtual(NewFD);
3055    }
3056  }
3057
3058  // C++ [dcl.fct.spec]p6:
3059  //  The explicit specifier shall be used only in the declaration of a
3060  //  constructor or conversion function within its class definition; see 12.3.1
3061  //  and 12.3.2.
3062  if (isExplicit && !NewFD->isInvalidDecl()) {
3063    if (!CurContext->isRecord()) {
3064      // 'explicit' was specified outside of the class.
3065      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3066           diag::err_explicit_out_of_class)
3067        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3068    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3069               !isa<CXXConversionDecl>(NewFD)) {
3070      // 'explicit' was specified on a function that wasn't a constructor
3071      // or conversion function.
3072      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3073           diag::err_explicit_non_ctor_or_conv_function)
3074        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3075    }
3076  }
3077
3078  // Filter out previous declarations that don't match the scope.
3079  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3080
3081  if (isFriend) {
3082    // DC is the namespace in which the function is being declared.
3083    assert((DC->isFileContext() || !Previous.empty()) &&
3084           "previously-undeclared friend function being created "
3085           "in a non-namespace context");
3086
3087    // For now, claim that the objects have no previous declaration.
3088    if (FunctionTemplate) {
3089      FunctionTemplate->setObjectOfFriendDecl(false);
3090      FunctionTemplate->setAccess(AS_public);
3091    }
3092    NewFD->setObjectOfFriendDecl(false);
3093    NewFD->setAccess(AS_public);
3094  }
3095
3096  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3097      !CurContext->isRecord()) {
3098    // C++ [class.static]p1:
3099    //   A data or function member of a class may be declared static
3100    //   in a class definition, in which case it is a static member of
3101    //   the class.
3102
3103    // Complain about the 'static' specifier if it's on an out-of-line
3104    // member function definition.
3105    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3106         diag::err_static_out_of_line)
3107      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3108  }
3109
3110  // Handle GNU asm-label extension (encoded as an attribute).
3111  if (Expr *E = (Expr*) D.getAsmLabel()) {
3112    // The parser guarantees this is a string.
3113    StringLiteral *SE = cast<StringLiteral>(E);
3114    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3115  }
3116
3117  // Copy the parameter declarations from the declarator D to the function
3118  // declaration NewFD, if they are available.  First scavenge them into Params.
3119  llvm::SmallVector<ParmVarDecl*, 16> Params;
3120  if (D.getNumTypeObjects() > 0) {
3121    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3122
3123    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3124    // function that takes no arguments, not a function that takes a
3125    // single void argument.
3126    // We let through "const void" here because Sema::GetTypeForDeclarator
3127    // already checks for that case.
3128    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3129        FTI.ArgInfo[0].Param &&
3130        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3131      // Empty arg list, don't push any params.
3132      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3133
3134      // In C++, the empty parameter-type-list must be spelled "void"; a
3135      // typedef of void is not permitted.
3136      if (getLangOptions().CPlusPlus &&
3137          Param->getType().getUnqualifiedType() != Context.VoidTy)
3138        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3139      // FIXME: Leaks decl?
3140    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3141      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3142        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3143        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3144        Param->setDeclContext(NewFD);
3145        Params.push_back(Param);
3146
3147        if (Param->isInvalidDecl())
3148          NewFD->setInvalidDecl();
3149      }
3150    }
3151
3152  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3153    // When we're declaring a function with a typedef, typeof, etc as in the
3154    // following example, we'll need to synthesize (unnamed)
3155    // parameters for use in the declaration.
3156    //
3157    // @code
3158    // typedef void fn(int);
3159    // fn f;
3160    // @endcode
3161
3162    // Synthesize a parameter for each argument type.
3163    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3164         AE = FT->arg_type_end(); AI != AE; ++AI) {
3165      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3166                                               SourceLocation(), 0,
3167                                               *AI, /*TInfo=*/0,
3168                                               VarDecl::None,
3169                                               VarDecl::None, 0);
3170      Param->setImplicit();
3171      Params.push_back(Param);
3172    }
3173  } else {
3174    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3175           "Should not need args for typedef of non-prototype fn");
3176  }
3177  // Finally, we know we have the right number of parameters, install them.
3178  NewFD->setParams(Params.data(), Params.size());
3179
3180  // If the declarator is a template-id, translate the parser's template
3181  // argument list into our AST format.
3182  bool HasExplicitTemplateArgs = false;
3183  TemplateArgumentListInfo TemplateArgs;
3184  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3185    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3186    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3187    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3188    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3189                                       TemplateId->getTemplateArgs(),
3190                                       TemplateId->NumArgs);
3191    translateTemplateArguments(TemplateArgsPtr,
3192                               TemplateArgs);
3193    TemplateArgsPtr.release();
3194
3195    HasExplicitTemplateArgs = true;
3196
3197    if (FunctionTemplate) {
3198      // FIXME: Diagnose function template with explicit template
3199      // arguments.
3200      HasExplicitTemplateArgs = false;
3201    } else if (!isFunctionTemplateSpecialization &&
3202               !D.getDeclSpec().isFriendSpecified()) {
3203      // We have encountered something that the user meant to be a
3204      // specialization (because it has explicitly-specified template
3205      // arguments) but that was not introduced with a "template<>" (or had
3206      // too few of them).
3207      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3208        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3209        << FixItHint::CreateInsertion(
3210                                   D.getDeclSpec().getSourceRange().getBegin(),
3211                                                 "template<> ");
3212      isFunctionTemplateSpecialization = true;
3213    } else {
3214      // "friend void foo<>(int);" is an implicit specialization decl.
3215      isFunctionTemplateSpecialization = true;
3216    }
3217  } else if (isFriend && isFunctionTemplateSpecialization) {
3218    // This combination is only possible in a recovery case;  the user
3219    // wrote something like:
3220    //   template <> friend void foo(int);
3221    // which we're recovering from as if the user had written:
3222    //   friend void foo<>(int);
3223    // Go ahead and fake up a template id.
3224    HasExplicitTemplateArgs = true;
3225    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3226    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3227  }
3228
3229  // If it's a friend (and only if it's a friend), it's possible
3230  // that either the specialized function type or the specialized
3231  // template is dependent, and therefore matching will fail.  In
3232  // this case, don't check the specialization yet.
3233  if (isFunctionTemplateSpecialization && isFriend &&
3234      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3235    assert(HasExplicitTemplateArgs &&
3236           "friend function specialization without template args");
3237    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3238                                                     Previous))
3239      NewFD->setInvalidDecl();
3240  } else if (isFunctionTemplateSpecialization) {
3241    if (CheckFunctionTemplateSpecialization(NewFD,
3242                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3243                                            Previous))
3244      NewFD->setInvalidDecl();
3245  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3246    if (CheckMemberSpecialization(NewFD, Previous))
3247      NewFD->setInvalidDecl();
3248  }
3249
3250  // Perform semantic checking on the function declaration.
3251  bool OverloadableAttrRequired = false; // FIXME: HACK!
3252  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3253                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3254
3255  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3256          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3257         "previous declaration set still overloaded");
3258
3259  if (isFriend && Redeclaration) {
3260    AccessSpecifier Access = AS_public;
3261    if (!NewFD->isInvalidDecl())
3262      Access = NewFD->getPreviousDeclaration()->getAccess();
3263
3264    if (FunctionTemplate) {
3265      FunctionTemplate->setObjectOfFriendDecl(true);
3266      FunctionTemplate->setAccess(Access);
3267    } else {
3268      NewFD->setObjectOfFriendDecl(true);
3269    }
3270    NewFD->setAccess(Access);
3271  }
3272
3273  // If we have a function template, check the template parameter
3274  // list. This will check and merge default template arguments.
3275  if (FunctionTemplate) {
3276    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3277    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3278                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3279             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3280                                                : TPC_FunctionTemplate);
3281  }
3282
3283  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3284    // Fake up an access specifier if it's supposed to be a class member.
3285    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3286      NewFD->setAccess(AS_public);
3287
3288    // An out-of-line member function declaration must also be a
3289    // definition (C++ [dcl.meaning]p1).
3290    // Note that this is not the case for explicit specializations of
3291    // function templates or member functions of class templates, per
3292    // C++ [temp.expl.spec]p2.
3293    if (!IsFunctionDefinition && !isFriend &&
3294        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3295      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3296        << D.getCXXScopeSpec().getRange();
3297      NewFD->setInvalidDecl();
3298    } else if (!Redeclaration &&
3299               !(isFriend && CurContext->isDependentContext())) {
3300      // The user tried to provide an out-of-line definition for a
3301      // function that is a member of a class or namespace, but there
3302      // was no such member function declared (C++ [class.mfct]p2,
3303      // C++ [namespace.memdef]p2). For example:
3304      //
3305      // class X {
3306      //   void f() const;
3307      // };
3308      //
3309      // void X::f() { } // ill-formed
3310      //
3311      // Complain about this problem, and attempt to suggest close
3312      // matches (e.g., those that differ only in cv-qualifiers and
3313      // whether the parameter types are references).
3314      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3315        << Name << DC << D.getCXXScopeSpec().getRange();
3316      NewFD->setInvalidDecl();
3317
3318      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3319                        ForRedeclaration);
3320      LookupQualifiedName(Prev, DC);
3321      assert(!Prev.isAmbiguous() &&
3322             "Cannot have an ambiguity in previous-declaration lookup");
3323      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3324           Func != FuncEnd; ++Func) {
3325        if (isa<FunctionDecl>(*Func) &&
3326            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3327          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3328      }
3329    }
3330  }
3331
3332  // Handle attributes. We need to have merged decls when handling attributes
3333  // (for example to check for conflicts, etc).
3334  // FIXME: This needs to happen before we merge declarations. Then,
3335  // let attribute merging cope with attribute conflicts.
3336  ProcessDeclAttributes(S, NewFD, D);
3337
3338  // attributes declared post-definition are currently ignored
3339  if (Redeclaration && Previous.isSingleResult()) {
3340    const FunctionDecl *Def;
3341    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3342    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3343      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3344      Diag(Def->getLocation(), diag::note_previous_definition);
3345    }
3346  }
3347
3348  AddKnownFunctionAttributes(NewFD);
3349
3350  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3351    // If a function name is overloadable in C, then every function
3352    // with that name must be marked "overloadable".
3353    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3354      << Redeclaration << NewFD;
3355    if (!Previous.empty())
3356      Diag(Previous.getRepresentativeDecl()->getLocation(),
3357           diag::note_attribute_overloadable_prev_overload);
3358    NewFD->addAttr(::new (Context) OverloadableAttr());
3359  }
3360
3361  // If this is a locally-scoped extern C function, update the
3362  // map of such names.
3363  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3364      && !NewFD->isInvalidDecl())
3365    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3366
3367  // Set this FunctionDecl's range up to the right paren.
3368  NewFD->setLocEnd(D.getSourceRange().getEnd());
3369
3370  if (FunctionTemplate && NewFD->isInvalidDecl())
3371    FunctionTemplate->setInvalidDecl();
3372
3373  if (FunctionTemplate)
3374    return FunctionTemplate;
3375
3376
3377  // Keep track of static, non-inlined function definitions that
3378  // have not been used. We will warn later.
3379  // FIXME: Also include static functions declared but not defined.
3380  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3381      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3382      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3383      && !NewFD->hasAttr<ConstructorAttr>()
3384      && !NewFD->hasAttr<DestructorAttr>())
3385    UnusedStaticFuncs.push_back(NewFD);
3386
3387  return NewFD;
3388}
3389
3390/// \brief Perform semantic checking of a new function declaration.
3391///
3392/// Performs semantic analysis of the new function declaration
3393/// NewFD. This routine performs all semantic checking that does not
3394/// require the actual declarator involved in the declaration, and is
3395/// used both for the declaration of functions as they are parsed
3396/// (called via ActOnDeclarator) and for the declaration of functions
3397/// that have been instantiated via C++ template instantiation (called
3398/// via InstantiateDecl).
3399///
3400/// \param IsExplicitSpecialiation whether this new function declaration is
3401/// an explicit specialization of the previous declaration.
3402///
3403/// This sets NewFD->isInvalidDecl() to true if there was an error.
3404void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3405                                    LookupResult &Previous,
3406                                    bool IsExplicitSpecialization,
3407                                    bool &Redeclaration,
3408                                    bool &OverloadableAttrRequired) {
3409  // If NewFD is already known erroneous, don't do any of this checking.
3410  if (NewFD->isInvalidDecl())
3411    return;
3412
3413  if (NewFD->getResultType()->isVariablyModifiedType()) {
3414    // Functions returning a variably modified type violate C99 6.7.5.2p2
3415    // because all functions have linkage.
3416    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3417    return NewFD->setInvalidDecl();
3418  }
3419
3420  if (NewFD->isMain())
3421    CheckMain(NewFD);
3422
3423  // Check for a previous declaration of this name.
3424  if (Previous.empty() && NewFD->isExternC()) {
3425    // Since we did not find anything by this name and we're declaring
3426    // an extern "C" function, look for a non-visible extern "C"
3427    // declaration with the same name.
3428    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3429      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3430    if (Pos != LocallyScopedExternalDecls.end())
3431      Previous.addDecl(Pos->second);
3432  }
3433
3434  // Merge or overload the declaration with an existing declaration of
3435  // the same name, if appropriate.
3436  if (!Previous.empty()) {
3437    // Determine whether NewFD is an overload of PrevDecl or
3438    // a declaration that requires merging. If it's an overload,
3439    // there's no more work to do here; we'll just add the new
3440    // function to the scope.
3441
3442    NamedDecl *OldDecl = 0;
3443    if (!AllowOverloadingOfFunction(Previous, Context)) {
3444      Redeclaration = true;
3445      OldDecl = Previous.getFoundDecl();
3446    } else {
3447      if (!getLangOptions().CPlusPlus) {
3448        OverloadableAttrRequired = true;
3449
3450        // Functions marked "overloadable" must have a prototype (that
3451        // we can't get through declaration merging).
3452        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3453          Diag(NewFD->getLocation(),
3454               diag::err_attribute_overloadable_no_prototype)
3455            << NewFD;
3456          Redeclaration = true;
3457
3458          // Turn this into a variadic function with no parameters.
3459          QualType R = Context.getFunctionType(
3460                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3461                     0, 0, true, 0, false, false, 0, 0,
3462                     FunctionType::ExtInfo());
3463          NewFD->setType(R);
3464          return NewFD->setInvalidDecl();
3465        }
3466      }
3467
3468      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3469      case Ovl_Match:
3470        Redeclaration = true;
3471        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3472          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3473          Redeclaration = false;
3474        }
3475        break;
3476
3477      case Ovl_NonFunction:
3478        Redeclaration = true;
3479        break;
3480
3481      case Ovl_Overload:
3482        Redeclaration = false;
3483        break;
3484      }
3485    }
3486
3487    if (Redeclaration) {
3488      // NewFD and OldDecl represent declarations that need to be
3489      // merged.
3490      if (MergeFunctionDecl(NewFD, OldDecl))
3491        return NewFD->setInvalidDecl();
3492
3493      Previous.clear();
3494      Previous.addDecl(OldDecl);
3495
3496      if (FunctionTemplateDecl *OldTemplateDecl
3497                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3498        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3499        FunctionTemplateDecl *NewTemplateDecl
3500          = NewFD->getDescribedFunctionTemplate();
3501        assert(NewTemplateDecl && "Template/non-template mismatch");
3502        if (CXXMethodDecl *Method
3503              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3504          Method->setAccess(OldTemplateDecl->getAccess());
3505          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3506        }
3507
3508        // If this is an explicit specialization of a member that is a function
3509        // template, mark it as a member specialization.
3510        if (IsExplicitSpecialization &&
3511            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3512          NewTemplateDecl->setMemberSpecialization();
3513          assert(OldTemplateDecl->isMemberSpecialization());
3514        }
3515      } else {
3516        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3517          NewFD->setAccess(OldDecl->getAccess());
3518        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3519      }
3520    }
3521  }
3522
3523  // Semantic checking for this function declaration (in isolation).
3524  if (getLangOptions().CPlusPlus) {
3525    // C++-specific checks.
3526    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3527      CheckConstructor(Constructor);
3528    } else if (CXXDestructorDecl *Destructor =
3529                dyn_cast<CXXDestructorDecl>(NewFD)) {
3530      CXXRecordDecl *Record = Destructor->getParent();
3531      QualType ClassType = Context.getTypeDeclType(Record);
3532
3533      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3534      // type is dependent? Both gcc and edg can handle that.
3535      if (!ClassType->isDependentType()) {
3536        DeclarationName Name
3537          = Context.DeclarationNames.getCXXDestructorName(
3538                                        Context.getCanonicalType(ClassType));
3539        if (NewFD->getDeclName() != Name) {
3540          Diag(NewFD->getLocation(), diag::err_destructor_name);
3541          return NewFD->setInvalidDecl();
3542        }
3543      }
3544
3545      Record->setUserDeclaredDestructor(true);
3546      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3547      // user-defined destructor.
3548      Record->setPOD(false);
3549
3550      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3551      // declared destructor.
3552      // FIXME: C++0x: don't do this for "= default" destructors
3553      Record->setHasTrivialDestructor(false);
3554    } else if (CXXConversionDecl *Conversion
3555               = dyn_cast<CXXConversionDecl>(NewFD)) {
3556      ActOnConversionDeclarator(Conversion);
3557    }
3558
3559    // Find any virtual functions that this function overrides.
3560    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3561      if (!Method->isFunctionTemplateSpecialization() &&
3562          !Method->getDescribedFunctionTemplate())
3563        AddOverriddenMethods(Method->getParent(), Method);
3564    }
3565
3566    // Additional checks for the destructor; make sure we do this after we
3567    // figure out whether the destructor is virtual.
3568    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3569      if (!Destructor->getParent()->isDependentType())
3570        CheckDestructor(Destructor);
3571
3572    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3573    if (NewFD->isOverloadedOperator() &&
3574        CheckOverloadedOperatorDeclaration(NewFD))
3575      return NewFD->setInvalidDecl();
3576
3577    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3578    if (NewFD->getLiteralIdentifier() &&
3579        CheckLiteralOperatorDeclaration(NewFD))
3580      return NewFD->setInvalidDecl();
3581
3582    // In C++, check default arguments now that we have merged decls. Unless
3583    // the lexical context is the class, because in this case this is done
3584    // during delayed parsing anyway.
3585    if (!CurContext->isRecord())
3586      CheckCXXDefaultArguments(NewFD);
3587  }
3588}
3589
3590void Sema::CheckMain(FunctionDecl* FD) {
3591  // C++ [basic.start.main]p3:  A program that declares main to be inline
3592  //   or static is ill-formed.
3593  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3594  //   shall not appear in a declaration of main.
3595  // static main is not an error under C99, but we should warn about it.
3596  bool isInline = FD->isInlineSpecified();
3597  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3598  if (isInline || isStatic) {
3599    unsigned diagID = diag::warn_unusual_main_decl;
3600    if (isInline || getLangOptions().CPlusPlus)
3601      diagID = diag::err_unusual_main_decl;
3602
3603    int which = isStatic + (isInline << 1) - 1;
3604    Diag(FD->getLocation(), diagID) << which;
3605  }
3606
3607  QualType T = FD->getType();
3608  assert(T->isFunctionType() && "function decl is not of function type");
3609  const FunctionType* FT = T->getAs<FunctionType>();
3610
3611  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3612    // TODO: add a replacement fixit to turn the return type into 'int'.
3613    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3614    FD->setInvalidDecl(true);
3615  }
3616
3617  // Treat protoless main() as nullary.
3618  if (isa<FunctionNoProtoType>(FT)) return;
3619
3620  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3621  unsigned nparams = FTP->getNumArgs();
3622  assert(FD->getNumParams() == nparams);
3623
3624  bool HasExtraParameters = (nparams > 3);
3625
3626  // Darwin passes an undocumented fourth argument of type char**.  If
3627  // other platforms start sprouting these, the logic below will start
3628  // getting shifty.
3629  if (nparams == 4 &&
3630      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3631    HasExtraParameters = false;
3632
3633  if (HasExtraParameters) {
3634    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3635    FD->setInvalidDecl(true);
3636    nparams = 3;
3637  }
3638
3639  // FIXME: a lot of the following diagnostics would be improved
3640  // if we had some location information about types.
3641
3642  QualType CharPP =
3643    Context.getPointerType(Context.getPointerType(Context.CharTy));
3644  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3645
3646  for (unsigned i = 0; i < nparams; ++i) {
3647    QualType AT = FTP->getArgType(i);
3648
3649    bool mismatch = true;
3650
3651    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3652      mismatch = false;
3653    else if (Expected[i] == CharPP) {
3654      // As an extension, the following forms are okay:
3655      //   char const **
3656      //   char const * const *
3657      //   char * const *
3658
3659      QualifierCollector qs;
3660      const PointerType* PT;
3661      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3662          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3663          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3664        qs.removeConst();
3665        mismatch = !qs.empty();
3666      }
3667    }
3668
3669    if (mismatch) {
3670      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3671      // TODO: suggest replacing given type with expected type
3672      FD->setInvalidDecl(true);
3673    }
3674  }
3675
3676  if (nparams == 1 && !FD->isInvalidDecl()) {
3677    Diag(FD->getLocation(), diag::warn_main_one_arg);
3678  }
3679}
3680
3681bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3682  // FIXME: Need strict checking.  In C89, we need to check for
3683  // any assignment, increment, decrement, function-calls, or
3684  // commas outside of a sizeof.  In C99, it's the same list,
3685  // except that the aforementioned are allowed in unevaluated
3686  // expressions.  Everything else falls under the
3687  // "may accept other forms of constant expressions" exception.
3688  // (We never end up here for C++, so the constant expression
3689  // rules there don't matter.)
3690  if (Init->isConstantInitializer(Context))
3691    return false;
3692  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3693    << Init->getSourceRange();
3694  return true;
3695}
3696
3697void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3698  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3699}
3700
3701/// AddInitializerToDecl - Adds the initializer Init to the
3702/// declaration dcl. If DirectInit is true, this is C++ direct
3703/// initialization rather than copy initialization.
3704void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3705  Decl *RealDecl = dcl.getAs<Decl>();
3706  // If there is no declaration, there was an error parsing it.  Just ignore
3707  // the initializer.
3708  if (RealDecl == 0)
3709    return;
3710
3711  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3712    // With declarators parsed the way they are, the parser cannot
3713    // distinguish between a normal initializer and a pure-specifier.
3714    // Thus this grotesque test.
3715    IntegerLiteral *IL;
3716    Expr *Init = static_cast<Expr *>(init.get());
3717    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3718        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3719      CheckPureMethod(Method, Init->getSourceRange());
3720    else {
3721      Diag(Method->getLocation(), diag::err_member_function_initialization)
3722        << Method->getDeclName() << Init->getSourceRange();
3723      Method->setInvalidDecl();
3724    }
3725    return;
3726  }
3727
3728  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3729  if (!VDecl) {
3730    if (getLangOptions().CPlusPlus &&
3731        RealDecl->getLexicalDeclContext()->isRecord() &&
3732        isa<NamedDecl>(RealDecl))
3733      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3734        << cast<NamedDecl>(RealDecl)->getDeclName();
3735    else
3736      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3737    RealDecl->setInvalidDecl();
3738    return;
3739  }
3740
3741  // A definition must end up with a complete type, which means it must be
3742  // complete with the restriction that an array type might be completed by the
3743  // initializer; note that later code assumes this restriction.
3744  QualType BaseDeclType = VDecl->getType();
3745  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3746    BaseDeclType = Array->getElementType();
3747  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3748                          diag::err_typecheck_decl_incomplete_type)) {
3749    RealDecl->setInvalidDecl();
3750    return;
3751  }
3752
3753  // The variable can not have an abstract class type.
3754  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3755                             diag::err_abstract_type_in_decl,
3756                             AbstractVariableType))
3757    VDecl->setInvalidDecl();
3758
3759  const VarDecl *Def;
3760  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3761    Diag(VDecl->getLocation(), diag::err_redefinition)
3762      << VDecl->getDeclName();
3763    Diag(Def->getLocation(), diag::note_previous_definition);
3764    VDecl->setInvalidDecl();
3765    return;
3766  }
3767
3768  // Take ownership of the expression, now that we're sure we have somewhere
3769  // to put it.
3770  Expr *Init = init.takeAs<Expr>();
3771  assert(Init && "missing initializer");
3772
3773  // Capture the variable that is being initialized and the style of
3774  // initialization.
3775  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3776
3777  // FIXME: Poor source location information.
3778  InitializationKind Kind
3779    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3780                                                   Init->getLocStart(),
3781                                                   Init->getLocEnd())
3782                : InitializationKind::CreateCopy(VDecl->getLocation(),
3783                                                 Init->getLocStart());
3784
3785  // Get the decls type and save a reference for later, since
3786  // CheckInitializerTypes may change it.
3787  QualType DclT = VDecl->getType(), SavT = DclT;
3788  if (VDecl->isBlockVarDecl()) {
3789    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3790      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3791      VDecl->setInvalidDecl();
3792    } else if (!VDecl->isInvalidDecl()) {
3793      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3794      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3795                                          MultiExprArg(*this, (void**)&Init, 1),
3796                                                &DclT);
3797      if (Result.isInvalid()) {
3798        VDecl->setInvalidDecl();
3799        return;
3800      }
3801
3802      Init = Result.takeAs<Expr>();
3803
3804      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3805      // Don't check invalid declarations to avoid emitting useless diagnostics.
3806      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3807        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3808          CheckForConstantInitializer(Init, DclT);
3809      }
3810    }
3811  } else if (VDecl->isStaticDataMember() &&
3812             VDecl->getLexicalDeclContext()->isRecord()) {
3813    // This is an in-class initialization for a static data member, e.g.,
3814    //
3815    // struct S {
3816    //   static const int value = 17;
3817    // };
3818
3819    // Attach the initializer
3820    VDecl->setInit(Init);
3821
3822    // C++ [class.mem]p4:
3823    //   A member-declarator can contain a constant-initializer only
3824    //   if it declares a static member (9.4) of const integral or
3825    //   const enumeration type, see 9.4.2.
3826    QualType T = VDecl->getType();
3827    if (!T->isDependentType() &&
3828        (!Context.getCanonicalType(T).isConstQualified() ||
3829         !T->isIntegralType())) {
3830      Diag(VDecl->getLocation(), diag::err_member_initialization)
3831        << VDecl->getDeclName() << Init->getSourceRange();
3832      VDecl->setInvalidDecl();
3833    } else {
3834      // C++ [class.static.data]p4:
3835      //   If a static data member is of const integral or const
3836      //   enumeration type, its declaration in the class definition
3837      //   can specify a constant-initializer which shall be an
3838      //   integral constant expression (5.19).
3839      if (!Init->isTypeDependent() &&
3840          !Init->getType()->isIntegralType()) {
3841        // We have a non-dependent, non-integral or enumeration type.
3842        Diag(Init->getSourceRange().getBegin(),
3843             diag::err_in_class_initializer_non_integral_type)
3844          << Init->getType() << Init->getSourceRange();
3845        VDecl->setInvalidDecl();
3846      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3847        // Check whether the expression is a constant expression.
3848        llvm::APSInt Value;
3849        SourceLocation Loc;
3850        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3851          Diag(Loc, diag::err_in_class_initializer_non_constant)
3852            << Init->getSourceRange();
3853          VDecl->setInvalidDecl();
3854        } else if (!VDecl->getType()->isDependentType())
3855          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3856      }
3857    }
3858  } else if (VDecl->isFileVarDecl()) {
3859    if (VDecl->getStorageClass() == VarDecl::Extern &&
3860        (!getLangOptions().CPlusPlus || !VDecl->getType().isConstQualified()))
3861      Diag(VDecl->getLocation(), diag::warn_extern_init);
3862    if (!VDecl->isInvalidDecl()) {
3863      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3864      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3865                                          MultiExprArg(*this, (void**)&Init, 1),
3866                                                &DclT);
3867      if (Result.isInvalid()) {
3868        VDecl->setInvalidDecl();
3869        return;
3870      }
3871
3872      Init = Result.takeAs<Expr>();
3873    }
3874
3875    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3876    // Don't check invalid declarations to avoid emitting useless diagnostics.
3877    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3878      // C99 6.7.8p4. All file scoped initializers need to be constant.
3879      CheckForConstantInitializer(Init, DclT);
3880    }
3881  }
3882  // If the type changed, it means we had an incomplete type that was
3883  // completed by the initializer. For example:
3884  //   int ary[] = { 1, 3, 5 };
3885  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3886  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3887    VDecl->setType(DclT);
3888    Init->setType(DclT);
3889  }
3890
3891  Init = MaybeCreateCXXExprWithTemporaries(Init);
3892  // Attach the initializer to the decl.
3893  VDecl->setInit(Init);
3894
3895  if (getLangOptions().CPlusPlus) {
3896    // Make sure we mark the destructor as used if necessary.
3897    QualType InitType = VDecl->getType();
3898    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3899      InitType = Context.getBaseElementType(Array);
3900    if (const RecordType *Record = InitType->getAs<RecordType>())
3901      FinalizeVarWithDestructor(VDecl, Record);
3902  }
3903
3904  return;
3905}
3906
3907/// ActOnInitializerError - Given that there was an error parsing an
3908/// initializer for the given declaration, try to return to some form
3909/// of sanity.
3910void Sema::ActOnInitializerError(DeclPtrTy dcl) {
3911  // Our main concern here is re-establishing invariants like "a
3912  // variable's type is either dependent or complete".
3913  Decl *D = dcl.getAs<Decl>();
3914  if (!D || D->isInvalidDecl()) return;
3915
3916  VarDecl *VD = dyn_cast<VarDecl>(D);
3917  if (!VD) return;
3918
3919  QualType Ty = VD->getType();
3920  if (Ty->isDependentType()) return;
3921
3922  // Require a complete type.
3923  if (RequireCompleteType(VD->getLocation(),
3924                          Context.getBaseElementType(Ty),
3925                          diag::err_typecheck_decl_incomplete_type)) {
3926    VD->setInvalidDecl();
3927    return;
3928  }
3929
3930  // Require an abstract type.
3931  if (RequireNonAbstractType(VD->getLocation(), Ty,
3932                             diag::err_abstract_type_in_decl,
3933                             AbstractVariableType)) {
3934    VD->setInvalidDecl();
3935    return;
3936  }
3937
3938  // Don't bother complaining about constructors or destructors,
3939  // though.
3940}
3941
3942void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3943                                  bool TypeContainsUndeducedAuto) {
3944  Decl *RealDecl = dcl.getAs<Decl>();
3945
3946  // If there is no declaration, there was an error parsing it. Just ignore it.
3947  if (RealDecl == 0)
3948    return;
3949
3950  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3951    QualType Type = Var->getType();
3952
3953    // C++0x [dcl.spec.auto]p3
3954    if (TypeContainsUndeducedAuto) {
3955      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3956        << Var->getDeclName() << Type;
3957      Var->setInvalidDecl();
3958      return;
3959    }
3960
3961    switch (Var->isThisDeclarationADefinition()) {
3962    case VarDecl::Definition:
3963      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3964        break;
3965
3966      // We have an out-of-line definition of a static data member
3967      // that has an in-class initializer, so we type-check this like
3968      // a declaration.
3969      //
3970      // Fall through
3971
3972    case VarDecl::DeclarationOnly:
3973      // It's only a declaration.
3974
3975      // Block scope. C99 6.7p7: If an identifier for an object is
3976      // declared with no linkage (C99 6.2.2p6), the type for the
3977      // object shall be complete.
3978      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3979          !Var->getLinkage() && !Var->isInvalidDecl() &&
3980          RequireCompleteType(Var->getLocation(), Type,
3981                              diag::err_typecheck_decl_incomplete_type))
3982        Var->setInvalidDecl();
3983
3984      // Make sure that the type is not abstract.
3985      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3986          RequireNonAbstractType(Var->getLocation(), Type,
3987                                 diag::err_abstract_type_in_decl,
3988                                 AbstractVariableType))
3989        Var->setInvalidDecl();
3990      return;
3991
3992    case VarDecl::TentativeDefinition:
3993      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3994      // object that has file scope without an initializer, and without a
3995      // storage-class specifier or with the storage-class specifier "static",
3996      // constitutes a tentative definition. Note: A tentative definition with
3997      // external linkage is valid (C99 6.2.2p5).
3998      if (!Var->isInvalidDecl()) {
3999        if (const IncompleteArrayType *ArrayT
4000                                    = Context.getAsIncompleteArrayType(Type)) {
4001          if (RequireCompleteType(Var->getLocation(),
4002                                  ArrayT->getElementType(),
4003                                  diag::err_illegal_decl_array_incomplete_type))
4004            Var->setInvalidDecl();
4005        } else if (Var->getStorageClass() == VarDecl::Static) {
4006          // C99 6.9.2p3: If the declaration of an identifier for an object is
4007          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4008          // declared type shall not be an incomplete type.
4009          // NOTE: code such as the following
4010          //     static struct s;
4011          //     struct s { int a; };
4012          // is accepted by gcc. Hence here we issue a warning instead of
4013          // an error and we do not invalidate the static declaration.
4014          // NOTE: to avoid multiple warnings, only check the first declaration.
4015          if (Var->getPreviousDeclaration() == 0)
4016            RequireCompleteType(Var->getLocation(), Type,
4017                                diag::ext_typecheck_decl_incomplete_type);
4018        }
4019      }
4020
4021      // Record the tentative definition; we're done.
4022      if (!Var->isInvalidDecl())
4023        TentativeDefinitions.push_back(Var);
4024      return;
4025    }
4026
4027    // Provide a specific diagnostic for uninitialized variable
4028    // definitions with incomplete array type.
4029    if (Type->isIncompleteArrayType()) {
4030      Diag(Var->getLocation(),
4031           diag::err_typecheck_incomplete_array_needs_initializer);
4032      Var->setInvalidDecl();
4033      return;
4034    }
4035
4036   // Provide a specific diagnostic for uninitialized variable
4037   // definitions with reference type.
4038   if (Type->isReferenceType()) {
4039     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4040       << Var->getDeclName()
4041       << SourceRange(Var->getLocation(), Var->getLocation());
4042     Var->setInvalidDecl();
4043     return;
4044   }
4045
4046    // Do not attempt to type-check the default initializer for a
4047    // variable with dependent type.
4048    if (Type->isDependentType())
4049      return;
4050
4051    if (Var->isInvalidDecl())
4052      return;
4053
4054    if (RequireCompleteType(Var->getLocation(),
4055                            Context.getBaseElementType(Type),
4056                            diag::err_typecheck_decl_incomplete_type)) {
4057      Var->setInvalidDecl();
4058      return;
4059    }
4060
4061    // The variable can not have an abstract class type.
4062    if (RequireNonAbstractType(Var->getLocation(), Type,
4063                               diag::err_abstract_type_in_decl,
4064                               AbstractVariableType)) {
4065      Var->setInvalidDecl();
4066      return;
4067    }
4068
4069    const RecordType *Record
4070      = Context.getBaseElementType(Type)->getAs<RecordType>();
4071    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4072        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4073      // C++03 [dcl.init]p9:
4074      //   If no initializer is specified for an object, and the
4075      //   object is of (possibly cv-qualified) non-POD class type (or
4076      //   array thereof), the object shall be default-initialized; if
4077      //   the object is of const-qualified type, the underlying class
4078      //   type shall have a user-declared default
4079      //   constructor. Otherwise, if no initializer is specified for
4080      //   a non- static object, the object and its subobjects, if
4081      //   any, have an indeterminate initial value); if the object
4082      //   or any of its subobjects are of const-qualified type, the
4083      //   program is ill-formed.
4084      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4085    } else {
4086      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4087      InitializationKind Kind
4088        = InitializationKind::CreateDefault(Var->getLocation());
4089
4090      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4091      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4092                                              MultiExprArg(*this, 0, 0));
4093      if (Init.isInvalid())
4094        Var->setInvalidDecl();
4095      else if (Init.get())
4096        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4097    }
4098
4099    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4100      FinalizeVarWithDestructor(Var, Record);
4101  }
4102}
4103
4104Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4105                                                   DeclPtrTy *Group,
4106                                                   unsigned NumDecls) {
4107  llvm::SmallVector<Decl*, 8> Decls;
4108
4109  if (DS.isTypeSpecOwned())
4110    Decls.push_back((Decl*)DS.getTypeRep());
4111
4112  for (unsigned i = 0; i != NumDecls; ++i)
4113    if (Decl *D = Group[i].getAs<Decl>())
4114      Decls.push_back(D);
4115
4116  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4117                                                   Decls.data(), Decls.size()));
4118}
4119
4120
4121/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4122/// to introduce parameters into function prototype scope.
4123Sema::DeclPtrTy
4124Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4125  const DeclSpec &DS = D.getDeclSpec();
4126
4127  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4128  VarDecl::StorageClass StorageClass = VarDecl::None;
4129  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4130  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4131    StorageClass = VarDecl::Register;
4132    StorageClassAsWritten = VarDecl::Register;
4133  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4134    Diag(DS.getStorageClassSpecLoc(),
4135         diag::err_invalid_storage_class_in_func_decl);
4136    D.getMutableDeclSpec().ClearStorageClassSpecs();
4137  }
4138
4139  if (D.getDeclSpec().isThreadSpecified())
4140    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4141
4142  DiagnoseFunctionSpecifiers(D);
4143
4144  // Check that there are no default arguments inside the type of this
4145  // parameter (C++ only).
4146  if (getLangOptions().CPlusPlus)
4147    CheckExtraCXXDefaultArguments(D);
4148
4149  TypeSourceInfo *TInfo = 0;
4150  TagDecl *OwnedDecl = 0;
4151  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4152
4153  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4154    // C++ [dcl.fct]p6:
4155    //   Types shall not be defined in return or parameter types.
4156    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4157      << Context.getTypeDeclType(OwnedDecl);
4158  }
4159
4160  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4161  IdentifierInfo *II = D.getIdentifier();
4162  if (II) {
4163    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4164                   ForRedeclaration);
4165    LookupName(R, S);
4166    if (R.isSingleResult()) {
4167      NamedDecl *PrevDecl = R.getFoundDecl();
4168      if (PrevDecl->isTemplateParameter()) {
4169        // Maybe we will complain about the shadowed template parameter.
4170        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4171        // Just pretend that we didn't see the previous declaration.
4172        PrevDecl = 0;
4173      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4174        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4175        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4176
4177        // Recover by removing the name
4178        II = 0;
4179        D.SetIdentifier(0, D.getIdentifierLoc());
4180        D.setInvalidType(true);
4181      }
4182    }
4183  }
4184
4185  // Temporarily put parameter variables in the translation unit, not
4186  // the enclosing context.  This prevents them from accidentally
4187  // looking like class members in C++.
4188  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4189                                    TInfo, parmDeclType, II,
4190                                    D.getIdentifierLoc(),
4191                                    StorageClass, StorageClassAsWritten);
4192
4193  if (D.isInvalidType())
4194    New->setInvalidDecl();
4195
4196  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4197  if (D.getCXXScopeSpec().isSet()) {
4198    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4199      << D.getCXXScopeSpec().getRange();
4200    New->setInvalidDecl();
4201  }
4202
4203  // Add the parameter declaration into this scope.
4204  S->AddDecl(DeclPtrTy::make(New));
4205  if (II)
4206    IdResolver.AddDecl(New);
4207
4208  ProcessDeclAttributes(S, New, D);
4209
4210  if (New->hasAttr<BlocksAttr>()) {
4211    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4212  }
4213  return DeclPtrTy::make(New);
4214}
4215
4216ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4217                                  TypeSourceInfo *TSInfo, QualType T,
4218                                  IdentifierInfo *Name,
4219                                  SourceLocation NameLoc,
4220                                  VarDecl::StorageClass StorageClass,
4221                                  VarDecl::StorageClass StorageClassAsWritten) {
4222  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4223                                         adjustParameterType(T), TSInfo,
4224                                         StorageClass, StorageClassAsWritten,
4225                                         0);
4226
4227  // Parameters can not be abstract class types.
4228  // For record types, this is done by the AbstractClassUsageDiagnoser once
4229  // the class has been completely parsed.
4230  if (!CurContext->isRecord() &&
4231      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4232                             AbstractParamType))
4233    New->setInvalidDecl();
4234
4235  // Parameter declarators cannot be interface types. All ObjC objects are
4236  // passed by reference.
4237  if (T->isObjCInterfaceType()) {
4238    Diag(NameLoc,
4239         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4240    New->setInvalidDecl();
4241  }
4242
4243  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4244  // duration shall not be qualified by an address-space qualifier."
4245  // Since all parameters have automatic store duration, they can not have
4246  // an address space.
4247  if (T.getAddressSpace() != 0) {
4248    Diag(NameLoc, diag::err_arg_with_address_space);
4249    New->setInvalidDecl();
4250  }
4251
4252  return New;
4253}
4254
4255void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
4256  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
4257  Param->setDeclContext(CurContext);
4258}
4259
4260void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4261                                           SourceLocation LocAfterDecls) {
4262  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4263         "Not a function declarator!");
4264  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4265
4266  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4267  // for a K&R function.
4268  if (!FTI.hasPrototype) {
4269    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4270      --i;
4271      if (FTI.ArgInfo[i].Param == 0) {
4272        llvm::SmallString<256> Code;
4273        llvm::raw_svector_ostream(Code) << "  int "
4274                                        << FTI.ArgInfo[i].Ident->getName()
4275                                        << ";\n";
4276        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4277          << FTI.ArgInfo[i].Ident
4278          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4279
4280        // Implicitly declare the argument as type 'int' for lack of a better
4281        // type.
4282        DeclSpec DS;
4283        const char* PrevSpec; // unused
4284        unsigned DiagID; // unused
4285        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4286                           PrevSpec, DiagID);
4287        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4288        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4289        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4290      }
4291    }
4292  }
4293}
4294
4295Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4296                                              Declarator &D) {
4297  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4298  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4299         "Not a function declarator!");
4300  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4301
4302  if (FTI.hasPrototype) {
4303    // FIXME: Diagnose arguments without names in C.
4304  }
4305
4306  Scope *ParentScope = FnBodyScope->getParent();
4307
4308  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4309                                  MultiTemplateParamsArg(*this),
4310                                  /*IsFunctionDefinition=*/true);
4311  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4312}
4313
4314static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4315  // Don't warn about invalid declarations.
4316  if (FD->isInvalidDecl())
4317    return false;
4318
4319  // Or declarations that aren't global.
4320  if (!FD->isGlobal())
4321    return false;
4322
4323  // Don't warn about C++ member functions.
4324  if (isa<CXXMethodDecl>(FD))
4325    return false;
4326
4327  // Don't warn about 'main'.
4328  if (FD->isMain())
4329    return false;
4330
4331  // Don't warn about inline functions.
4332  if (FD->isInlineSpecified())
4333    return false;
4334
4335  // Don't warn about function templates.
4336  if (FD->getDescribedFunctionTemplate())
4337    return false;
4338
4339  // Don't warn about function template specializations.
4340  if (FD->isFunctionTemplateSpecialization())
4341    return false;
4342
4343  bool MissingPrototype = true;
4344  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4345       Prev; Prev = Prev->getPreviousDeclaration()) {
4346    // Ignore any declarations that occur in function or method
4347    // scope, because they aren't visible from the header.
4348    if (Prev->getDeclContext()->isFunctionOrMethod())
4349      continue;
4350
4351    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4352    break;
4353  }
4354
4355  return MissingPrototype;
4356}
4357
4358Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4359  // Clear the last template instantiation error context.
4360  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4361
4362  if (!D)
4363    return D;
4364  FunctionDecl *FD = 0;
4365
4366  if (FunctionTemplateDecl *FunTmpl
4367        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4368    FD = FunTmpl->getTemplatedDecl();
4369  else
4370    FD = cast<FunctionDecl>(D.getAs<Decl>());
4371
4372  // Enter a new function scope
4373  PushFunctionScope();
4374
4375  // See if this is a redefinition.
4376  // But don't complain if we're in GNU89 mode and the previous definition
4377  // was an extern inline function.
4378  const FunctionDecl *Definition;
4379  if (FD->getBody(Definition) &&
4380      !canRedefineFunction(Definition, getLangOptions())) {
4381    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4382    Diag(Definition->getLocation(), diag::note_previous_definition);
4383  }
4384
4385  // Builtin functions cannot be defined.
4386  if (unsigned BuiltinID = FD->getBuiltinID()) {
4387    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4388      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4389      FD->setInvalidDecl();
4390    }
4391  }
4392
4393  // The return type of a function definition must be complete
4394  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4395  QualType ResultType = FD->getResultType();
4396  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4397      !FD->isInvalidDecl() &&
4398      RequireCompleteType(FD->getLocation(), ResultType,
4399                          diag::err_func_def_incomplete_result))
4400    FD->setInvalidDecl();
4401
4402  // GNU warning -Wmissing-prototypes:
4403  //   Warn if a global function is defined without a previous
4404  //   prototype declaration. This warning is issued even if the
4405  //   definition itself provides a prototype. The aim is to detect
4406  //   global functions that fail to be declared in header files.
4407  if (ShouldWarnAboutMissingPrototype(FD))
4408    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4409
4410  if (FnBodyScope)
4411    PushDeclContext(FnBodyScope, FD);
4412
4413  // Check the validity of our function parameters
4414  CheckParmsForFunctionDef(FD);
4415
4416  bool ShouldCheckShadow =
4417    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4418
4419  // Introduce our parameters into the function scope
4420  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4421    ParmVarDecl *Param = FD->getParamDecl(p);
4422    Param->setOwningFunction(FD);
4423
4424    // If this has an identifier, add it to the scope stack.
4425    if (Param->getIdentifier() && FnBodyScope) {
4426      if (ShouldCheckShadow)
4427        CheckShadow(FnBodyScope, Param);
4428
4429      PushOnScopeChains(Param, FnBodyScope);
4430    }
4431  }
4432
4433  // Checking attributes of current function definition
4434  // dllimport attribute.
4435  if (FD->getAttr<DLLImportAttr>() &&
4436      (!FD->getAttr<DLLExportAttr>())) {
4437    // dllimport attribute cannot be applied to definition.
4438    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4439      Diag(FD->getLocation(),
4440           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4441        << "dllimport";
4442      FD->setInvalidDecl();
4443      return DeclPtrTy::make(FD);
4444    }
4445
4446    // Visual C++ appears to not think this is an issue, so only issue
4447    // a warning when Microsoft extensions are disabled.
4448    if (!LangOpts.Microsoft) {
4449      // If a symbol previously declared dllimport is later defined, the
4450      // attribute is ignored in subsequent references, and a warning is
4451      // emitted.
4452      Diag(FD->getLocation(),
4453           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4454        << FD->getNameAsCString() << "dllimport";
4455    }
4456  }
4457  return DeclPtrTy::make(FD);
4458}
4459
4460Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4461  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4462}
4463
4464Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4465                                              bool IsInstantiation) {
4466  Decl *dcl = D.getAs<Decl>();
4467  Stmt *Body = BodyArg.takeAs<Stmt>();
4468
4469  FunctionDecl *FD = 0;
4470  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4471  if (FunTmpl)
4472    FD = FunTmpl->getTemplatedDecl();
4473  else
4474    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4475
4476  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4477
4478  if (FD) {
4479    FD->setBody(Body);
4480    if (FD->isMain()) {
4481      // C and C++ allow for main to automagically return 0.
4482      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4483      FD->setHasImplicitReturnZero(true);
4484      WP.disableCheckFallThrough();
4485    }
4486
4487    if (!FD->isInvalidDecl())
4488      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4489
4490    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4491      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4492
4493    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4494  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4495    assert(MD == getCurMethodDecl() && "Method parsing confused");
4496    MD->setBody(Body);
4497    MD->setEndLoc(Body->getLocEnd());
4498    if (!MD->isInvalidDecl())
4499      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4500  } else {
4501    Body->Destroy(Context);
4502    return DeclPtrTy();
4503  }
4504
4505  // Verify and clean out per-function state.
4506
4507  // Check goto/label use.
4508  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4509       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4510    LabelStmt *L = I->second;
4511
4512    // Verify that we have no forward references left.  If so, there was a goto
4513    // or address of a label taken, but no definition of it.  Label fwd
4514    // definitions are indicated with a null substmt.
4515    if (L->getSubStmt() != 0)
4516      continue;
4517
4518    // Emit error.
4519    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4520
4521    // At this point, we have gotos that use the bogus label.  Stitch it into
4522    // the function body so that they aren't leaked and that the AST is well
4523    // formed.
4524    if (Body == 0) {
4525      // The whole function wasn't parsed correctly, just delete this.
4526      L->Destroy(Context);
4527      continue;
4528    }
4529
4530    // Otherwise, the body is valid: we want to stitch the label decl into the
4531    // function somewhere so that it is properly owned and so that the goto
4532    // has a valid target.  Do this by creating a new compound stmt with the
4533    // label in it.
4534
4535    // Give the label a sub-statement.
4536    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4537
4538    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4539                               cast<CXXTryStmt>(Body)->getTryBlock() :
4540                               cast<CompoundStmt>(Body);
4541    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4542                                          Compound->body_end());
4543    Elements.push_back(L);
4544    Compound->setStmts(Context, Elements.data(), Elements.size());
4545  }
4546
4547  if (Body) {
4548    // C++ constructors that have function-try-blocks can't have return
4549    // statements in the handlers of that block. (C++ [except.handle]p14)
4550    // Verify this.
4551    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4552      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4553
4554    // Verify that that gotos and switch cases don't jump into scopes illegally.
4555    // Verify that that gotos and switch cases don't jump into scopes illegally.
4556    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4557      DiagnoseInvalidJumps(Body);
4558
4559    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4560      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4561                                             Destructor->getParent());
4562
4563    // If any errors have occurred, clear out any temporaries that may have
4564    // been leftover. This ensures that these temporaries won't be picked up for
4565    // deletion in some later function.
4566    if (PP.getDiagnostics().hasErrorOccurred())
4567      ExprTemporaries.clear();
4568    else if (!isa<FunctionTemplateDecl>(dcl)) {
4569      // Since the body is valid, issue any analysis-based warnings that are
4570      // enabled.
4571      QualType ResultType;
4572      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4573        ResultType = FD->getResultType();
4574      }
4575      else {
4576        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4577        ResultType = MD->getResultType();
4578      }
4579      AnalysisWarnings.IssueWarnings(WP, dcl);
4580    }
4581
4582    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4583  }
4584
4585  if (!IsInstantiation)
4586    PopDeclContext();
4587
4588  PopFunctionOrBlockScope();
4589
4590  // If any errors have occurred, clear out any temporaries that may have
4591  // been leftover. This ensures that these temporaries won't be picked up for
4592  // deletion in some later function.
4593  if (getDiagnostics().hasErrorOccurred())
4594    ExprTemporaries.clear();
4595
4596  return D;
4597}
4598
4599/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4600/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4601NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4602                                          IdentifierInfo &II, Scope *S) {
4603  // Before we produce a declaration for an implicitly defined
4604  // function, see whether there was a locally-scoped declaration of
4605  // this name as a function or variable. If so, use that
4606  // (non-visible) declaration, and complain about it.
4607  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4608    = LocallyScopedExternalDecls.find(&II);
4609  if (Pos != LocallyScopedExternalDecls.end()) {
4610    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4611    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4612    return Pos->second;
4613  }
4614
4615  // Extension in C99.  Legal in C90, but warn about it.
4616  if (II.getName().startswith("__builtin_"))
4617    Diag(Loc, diag::warn_builtin_unknown) << &II;
4618  else if (getLangOptions().C99)
4619    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4620  else
4621    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4622
4623  // Set a Declarator for the implicit definition: int foo();
4624  const char *Dummy;
4625  DeclSpec DS;
4626  unsigned DiagID;
4627  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4628  Error = Error; // Silence warning.
4629  assert(!Error && "Error setting up implicit decl!");
4630  Declarator D(DS, Declarator::BlockContext);
4631  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4632                                             0, 0, false, SourceLocation(),
4633                                             false, 0,0,0, Loc, Loc, D),
4634                SourceLocation());
4635  D.SetIdentifier(&II, Loc);
4636
4637  // Insert this function into translation-unit scope.
4638
4639  DeclContext *PrevDC = CurContext;
4640  CurContext = Context.getTranslationUnitDecl();
4641
4642  FunctionDecl *FD =
4643 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4644  FD->setImplicit();
4645
4646  CurContext = PrevDC;
4647
4648  AddKnownFunctionAttributes(FD);
4649
4650  return FD;
4651}
4652
4653/// \brief Adds any function attributes that we know a priori based on
4654/// the declaration of this function.
4655///
4656/// These attributes can apply both to implicitly-declared builtins
4657/// (like __builtin___printf_chk) or to library-declared functions
4658/// like NSLog or printf.
4659void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4660  if (FD->isInvalidDecl())
4661    return;
4662
4663  // If this is a built-in function, map its builtin attributes to
4664  // actual attributes.
4665  if (unsigned BuiltinID = FD->getBuiltinID()) {
4666    // Handle printf-formatting attributes.
4667    unsigned FormatIdx;
4668    bool HasVAListArg;
4669    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4670      if (!FD->getAttr<FormatAttr>())
4671        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4672                                               HasVAListArg ? 0 : FormatIdx+2));
4673    }
4674
4675    // Mark const if we don't care about errno and that is the only
4676    // thing preventing the function from being const. This allows
4677    // IRgen to use LLVM intrinsics for such functions.
4678    if (!getLangOptions().MathErrno &&
4679        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4680      if (!FD->getAttr<ConstAttr>())
4681        FD->addAttr(::new (Context) ConstAttr());
4682    }
4683
4684    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4685      FD->setType(Context.getNoReturnType(FD->getType()));
4686    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4687      FD->addAttr(::new (Context) NoThrowAttr());
4688    if (Context.BuiltinInfo.isConst(BuiltinID))
4689      FD->addAttr(::new (Context) ConstAttr());
4690  }
4691
4692  IdentifierInfo *Name = FD->getIdentifier();
4693  if (!Name)
4694    return;
4695  if ((!getLangOptions().CPlusPlus &&
4696       FD->getDeclContext()->isTranslationUnit()) ||
4697      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4698       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4699       LinkageSpecDecl::lang_c)) {
4700    // Okay: this could be a libc/libm/Objective-C function we know
4701    // about.
4702  } else
4703    return;
4704
4705  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4706    // FIXME: NSLog and NSLogv should be target specific
4707    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4708      // FIXME: We known better than our headers.
4709      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4710    } else
4711      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4712                                             Name->isStr("NSLogv") ? 0 : 2));
4713  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4714    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4715    // target-specific builtins, perhaps?
4716    if (!FD->getAttr<FormatAttr>())
4717      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4718                                             Name->isStr("vasprintf") ? 0 : 3));
4719  }
4720}
4721
4722TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4723                                    TypeSourceInfo *TInfo) {
4724  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4725  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4726
4727  if (!TInfo) {
4728    assert(D.isInvalidType() && "no declarator info for valid type");
4729    TInfo = Context.getTrivialTypeSourceInfo(T);
4730  }
4731
4732  // Scope manipulation handled by caller.
4733  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4734                                           D.getIdentifierLoc(),
4735                                           D.getIdentifier(),
4736                                           TInfo);
4737
4738  if (const TagType *TT = T->getAs<TagType>()) {
4739    TagDecl *TD = TT->getDecl();
4740
4741    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4742    // keep track of the TypedefDecl.
4743    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4744      TD->setTypedefForAnonDecl(NewTD);
4745  }
4746
4747  if (D.isInvalidType())
4748    NewTD->setInvalidDecl();
4749  return NewTD;
4750}
4751
4752
4753/// \brief Determine whether a tag with a given kind is acceptable
4754/// as a redeclaration of the given tag declaration.
4755///
4756/// \returns true if the new tag kind is acceptable, false otherwise.
4757bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4758                                        TagDecl::TagKind NewTag,
4759                                        SourceLocation NewTagLoc,
4760                                        const IdentifierInfo &Name) {
4761  // C++ [dcl.type.elab]p3:
4762  //   The class-key or enum keyword present in the
4763  //   elaborated-type-specifier shall agree in kind with the
4764  //   declaration to which the name in theelaborated-type-specifier
4765  //   refers. This rule also applies to the form of
4766  //   elaborated-type-specifier that declares a class-name or
4767  //   friend class since it can be construed as referring to the
4768  //   definition of the class. Thus, in any
4769  //   elaborated-type-specifier, the enum keyword shall be used to
4770  //   refer to an enumeration (7.2), the union class-keyshall be
4771  //   used to refer to a union (clause 9), and either the class or
4772  //   struct class-key shall be used to refer to a class (clause 9)
4773  //   declared using the class or struct class-key.
4774  TagDecl::TagKind OldTag = Previous->getTagKind();
4775  if (OldTag == NewTag)
4776    return true;
4777
4778  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4779      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4780    // Warn about the struct/class tag mismatch.
4781    bool isTemplate = false;
4782    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4783      isTemplate = Record->getDescribedClassTemplate();
4784
4785    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4786      << (NewTag == TagDecl::TK_class)
4787      << isTemplate << &Name
4788      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4789                              OldTag == TagDecl::TK_class? "class" : "struct");
4790    Diag(Previous->getLocation(), diag::note_previous_use);
4791    return true;
4792  }
4793  return false;
4794}
4795
4796/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4797/// former case, Name will be non-null.  In the later case, Name will be null.
4798/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4799/// reference/declaration/definition of a tag.
4800Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4801                               SourceLocation KWLoc, CXXScopeSpec &SS,
4802                               IdentifierInfo *Name, SourceLocation NameLoc,
4803                               AttributeList *Attr, AccessSpecifier AS,
4804                               MultiTemplateParamsArg TemplateParameterLists,
4805                               bool &OwnedDecl, bool &IsDependent) {
4806  // If this is not a definition, it must have a name.
4807  assert((Name != 0 || TUK == TUK_Definition) &&
4808         "Nameless record must be a definition!");
4809
4810  OwnedDecl = false;
4811  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4812
4813  // FIXME: Check explicit specializations more carefully.
4814  bool isExplicitSpecialization = false;
4815  if (TUK != TUK_Reference) {
4816    if (TemplateParameterList *TemplateParams
4817          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4818                        (TemplateParameterList**)TemplateParameterLists.get(),
4819                                              TemplateParameterLists.size(),
4820                                                    TUK == TUK_Friend,
4821                                                    isExplicitSpecialization)) {
4822      if (TemplateParams->size() > 0) {
4823        // This is a declaration or definition of a class template (which may
4824        // be a member of another template).
4825        OwnedDecl = false;
4826        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4827                                               SS, Name, NameLoc, Attr,
4828                                               TemplateParams,
4829                                               AS);
4830        TemplateParameterLists.release();
4831        return Result.get();
4832      } else {
4833        // The "template<>" header is extraneous.
4834        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4835          << ElaboratedType::getNameForTagKind(Kind) << Name;
4836        isExplicitSpecialization = true;
4837      }
4838    }
4839
4840    TemplateParameterLists.release();
4841  }
4842
4843  DeclContext *SearchDC = CurContext;
4844  DeclContext *DC = CurContext;
4845  bool isStdBadAlloc = false;
4846  bool Invalid = false;
4847
4848  RedeclarationKind Redecl = ForRedeclaration;
4849  if (TUK == TUK_Friend || TUK == TUK_Reference)
4850    Redecl = NotForRedeclaration;
4851
4852  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4853
4854  if (Name && SS.isNotEmpty()) {
4855    // We have a nested-name tag ('struct foo::bar').
4856
4857    // Check for invalid 'foo::'.
4858    if (SS.isInvalid()) {
4859      Name = 0;
4860      goto CreateNewDecl;
4861    }
4862
4863    // If this is a friend or a reference to a class in a dependent
4864    // context, don't try to make a decl for it.
4865    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4866      DC = computeDeclContext(SS, false);
4867      if (!DC) {
4868        IsDependent = true;
4869        return DeclPtrTy();
4870      }
4871    }
4872
4873    if (RequireCompleteDeclContext(SS))
4874      return DeclPtrTy::make((Decl *)0);
4875
4876    DC = computeDeclContext(SS, true);
4877    SearchDC = DC;
4878    // Look-up name inside 'foo::'.
4879    LookupQualifiedName(Previous, DC);
4880
4881    if (Previous.isAmbiguous())
4882      return DeclPtrTy();
4883
4884    if (Previous.empty()) {
4885      // Name lookup did not find anything. However, if the
4886      // nested-name-specifier refers to the current instantiation,
4887      // and that current instantiation has any dependent base
4888      // classes, we might find something at instantiation time: treat
4889      // this as a dependent elaborated-type-specifier.
4890      if (Previous.wasNotFoundInCurrentInstantiation()) {
4891        IsDependent = true;
4892        return DeclPtrTy();
4893      }
4894
4895      // A tag 'foo::bar' must already exist.
4896      Diag(NameLoc, diag::err_not_tag_in_scope)
4897        << Kind << Name << DC << SS.getRange();
4898      Name = 0;
4899      Invalid = true;
4900      goto CreateNewDecl;
4901    }
4902  } else if (Name) {
4903    // If this is a named struct, check to see if there was a previous forward
4904    // declaration or definition.
4905    // FIXME: We're looking into outer scopes here, even when we
4906    // shouldn't be. Doing so can result in ambiguities that we
4907    // shouldn't be diagnosing.
4908    LookupName(Previous, S);
4909
4910    // Note:  there used to be some attempt at recovery here.
4911    if (Previous.isAmbiguous())
4912      return DeclPtrTy();
4913
4914    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4915      // FIXME: This makes sure that we ignore the contexts associated
4916      // with C structs, unions, and enums when looking for a matching
4917      // tag declaration or definition. See the similar lookup tweak
4918      // in Sema::LookupName; is there a better way to deal with this?
4919      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4920        SearchDC = SearchDC->getParent();
4921    }
4922  }
4923
4924  if (Previous.isSingleResult() &&
4925      Previous.getFoundDecl()->isTemplateParameter()) {
4926    // Maybe we will complain about the shadowed template parameter.
4927    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4928    // Just pretend that we didn't see the previous declaration.
4929    Previous.clear();
4930  }
4931
4932  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4933      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4934    // This is a declaration of or a reference to "std::bad_alloc".
4935    isStdBadAlloc = true;
4936
4937    if (Previous.empty() && StdBadAlloc) {
4938      // std::bad_alloc has been implicitly declared (but made invisible to
4939      // name lookup). Fill in this implicit declaration as the previous
4940      // declaration, so that the declarations get chained appropriately.
4941      Previous.addDecl(StdBadAlloc);
4942    }
4943  }
4944
4945  // If we didn't find a previous declaration, and this is a reference
4946  // (or friend reference), move to the correct scope.  In C++, we
4947  // also need to do a redeclaration lookup there, just in case
4948  // there's a shadow friend decl.
4949  if (Name && Previous.empty() &&
4950      (TUK == TUK_Reference || TUK == TUK_Friend)) {
4951    if (Invalid) goto CreateNewDecl;
4952    assert(SS.isEmpty());
4953
4954    if (TUK == TUK_Reference) {
4955      // C++ [basic.scope.pdecl]p5:
4956      //   -- for an elaborated-type-specifier of the form
4957      //
4958      //          class-key identifier
4959      //
4960      //      if the elaborated-type-specifier is used in the
4961      //      decl-specifier-seq or parameter-declaration-clause of a
4962      //      function defined in namespace scope, the identifier is
4963      //      declared as a class-name in the namespace that contains
4964      //      the declaration; otherwise, except as a friend
4965      //      declaration, the identifier is declared in the smallest
4966      //      non-class, non-function-prototype scope that contains the
4967      //      declaration.
4968      //
4969      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4970      // C structs and unions.
4971      //
4972      // It is an error in C++ to declare (rather than define) an enum
4973      // type, including via an elaborated type specifier.  We'll
4974      // diagnose that later; for now, declare the enum in the same
4975      // scope as we would have picked for any other tag type.
4976      //
4977      // GNU C also supports this behavior as part of its incomplete
4978      // enum types extension, while GNU C++ does not.
4979      //
4980      // Find the context where we'll be declaring the tag.
4981      // FIXME: We would like to maintain the current DeclContext as the
4982      // lexical context,
4983      while (SearchDC->isRecord())
4984        SearchDC = SearchDC->getParent();
4985
4986      // Find the scope where we'll be declaring the tag.
4987      while (S->isClassScope() ||
4988             (getLangOptions().CPlusPlus &&
4989              S->isFunctionPrototypeScope()) ||
4990             ((S->getFlags() & Scope::DeclScope) == 0) ||
4991             (S->getEntity() &&
4992              ((DeclContext *)S->getEntity())->isTransparentContext()))
4993        S = S->getParent();
4994    } else {
4995      assert(TUK == TUK_Friend);
4996      // C++ [namespace.memdef]p3:
4997      //   If a friend declaration in a non-local class first declares a
4998      //   class or function, the friend class or function is a member of
4999      //   the innermost enclosing namespace.
5000      SearchDC = SearchDC->getEnclosingNamespaceContext();
5001    }
5002
5003    // In C++, look for a shadow friend decl.
5004    if (getLangOptions().CPlusPlus) {
5005      Previous.setRedeclarationKind(ForRedeclaration);
5006      LookupQualifiedName(Previous, SearchDC);
5007    }
5008  }
5009
5010  if (!Previous.empty()) {
5011    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5012    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5013      // If this is a use of a previous tag, or if the tag is already declared
5014      // in the same scope (so that the definition/declaration completes or
5015      // rementions the tag), reuse the decl.
5016      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5017          isDeclInScope(PrevDecl, SearchDC, S)) {
5018        // Make sure that this wasn't declared as an enum and now used as a
5019        // struct or something similar.
5020        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5021          bool SafeToContinue
5022            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
5023               Kind != TagDecl::TK_enum);
5024          if (SafeToContinue)
5025            Diag(KWLoc, diag::err_use_with_wrong_tag)
5026              << Name
5027              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5028                                              PrevTagDecl->getKindName());
5029          else
5030            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5031          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5032
5033          if (SafeToContinue)
5034            Kind = PrevTagDecl->getTagKind();
5035          else {
5036            // Recover by making this an anonymous redefinition.
5037            Name = 0;
5038            Previous.clear();
5039            Invalid = true;
5040          }
5041        }
5042
5043        if (!Invalid) {
5044          // If this is a use, just return the declaration we found.
5045
5046          // FIXME: In the future, return a variant or some other clue
5047          // for the consumer of this Decl to know it doesn't own it.
5048          // For our current ASTs this shouldn't be a problem, but will
5049          // need to be changed with DeclGroups.
5050          if (TUK == TUK_Reference || TUK == TUK_Friend)
5051            return DeclPtrTy::make(PrevTagDecl);
5052
5053          // Diagnose attempts to redefine a tag.
5054          if (TUK == TUK_Definition) {
5055            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5056              // If we're defining a specialization and the previous definition
5057              // is from an implicit instantiation, don't emit an error
5058              // here; we'll catch this in the general case below.
5059              if (!isExplicitSpecialization ||
5060                  !isa<CXXRecordDecl>(Def) ||
5061                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5062                                               == TSK_ExplicitSpecialization) {
5063                Diag(NameLoc, diag::err_redefinition) << Name;
5064                Diag(Def->getLocation(), diag::note_previous_definition);
5065                // If this is a redefinition, recover by making this
5066                // struct be anonymous, which will make any later
5067                // references get the previous definition.
5068                Name = 0;
5069                Previous.clear();
5070                Invalid = true;
5071              }
5072            } else {
5073              // If the type is currently being defined, complain
5074              // about a nested redefinition.
5075              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5076              if (Tag->isBeingDefined()) {
5077                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5078                Diag(PrevTagDecl->getLocation(),
5079                     diag::note_previous_definition);
5080                Name = 0;
5081                Previous.clear();
5082                Invalid = true;
5083              }
5084            }
5085
5086            // Okay, this is definition of a previously declared or referenced
5087            // tag PrevDecl. We're going to create a new Decl for it.
5088          }
5089        }
5090        // If we get here we have (another) forward declaration or we
5091        // have a definition.  Just create a new decl.
5092
5093      } else {
5094        // If we get here, this is a definition of a new tag type in a nested
5095        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5096        // new decl/type.  We set PrevDecl to NULL so that the entities
5097        // have distinct types.
5098        Previous.clear();
5099      }
5100      // If we get here, we're going to create a new Decl. If PrevDecl
5101      // is non-NULL, it's a definition of the tag declared by
5102      // PrevDecl. If it's NULL, we have a new definition.
5103    } else {
5104      // PrevDecl is a namespace, template, or anything else
5105      // that lives in the IDNS_Tag identifier namespace.
5106      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5107          isDeclInScope(PrevDecl, SearchDC, S)) {
5108        // The tag name clashes with a namespace name, issue an error and
5109        // recover by making this tag be anonymous.
5110        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5111        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5112        Name = 0;
5113        Previous.clear();
5114        Invalid = true;
5115      } else {
5116        // The existing declaration isn't relevant to us; we're in a
5117        // new scope, so clear out the previous declaration.
5118        Previous.clear();
5119      }
5120    }
5121  }
5122
5123CreateNewDecl:
5124
5125  TagDecl *PrevDecl = 0;
5126  if (Previous.isSingleResult())
5127    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5128
5129  // If there is an identifier, use the location of the identifier as the
5130  // location of the decl, otherwise use the location of the struct/union
5131  // keyword.
5132  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5133
5134  // Otherwise, create a new declaration. If there is a previous
5135  // declaration of the same entity, the two will be linked via
5136  // PrevDecl.
5137  TagDecl *New;
5138
5139  if (Kind == TagDecl::TK_enum) {
5140    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5141    // enum X { A, B, C } D;    D should chain to X.
5142    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5143                           cast_or_null<EnumDecl>(PrevDecl));
5144    // If this is an undefined enum, warn.
5145    if (TUK != TUK_Definition && !Invalid)  {
5146      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5147                                              : diag::ext_forward_ref_enum;
5148      Diag(Loc, DK);
5149    }
5150  } else {
5151    // struct/union/class
5152
5153    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5154    // struct X { int A; } D;    D should chain to X.
5155    if (getLangOptions().CPlusPlus) {
5156      // FIXME: Look for a way to use RecordDecl for simple structs.
5157      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5158                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5159
5160      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5161        StdBadAlloc = cast<CXXRecordDecl>(New);
5162    } else
5163      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5164                               cast_or_null<RecordDecl>(PrevDecl));
5165  }
5166
5167  // Maybe add qualifier info.
5168  if (SS.isNotEmpty()) {
5169    NestedNameSpecifier *NNS
5170      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5171    New->setQualifierInfo(NNS, SS.getRange());
5172  }
5173
5174  if (Kind != TagDecl::TK_enum) {
5175    // Handle #pragma pack: if the #pragma pack stack has non-default
5176    // alignment, make up a packed attribute for this decl. These
5177    // attributes are checked when the ASTContext lays out the
5178    // structure.
5179    //
5180    // It is important for implementing the correct semantics that this
5181    // happen here (in act on tag decl). The #pragma pack stack is
5182    // maintained as a result of parser callbacks which can occur at
5183    // many points during the parsing of a struct declaration (because
5184    // the #pragma tokens are effectively skipped over during the
5185    // parsing of the struct).
5186    if (unsigned Alignment = getPragmaPackAlignment())
5187      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5188  }
5189
5190  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5191    // C++ [dcl.typedef]p3:
5192    //   [...] Similarly, in a given scope, a class or enumeration
5193    //   shall not be declared with the same name as a typedef-name
5194    //   that is declared in that scope and refers to a type other
5195    //   than the class or enumeration itself.
5196    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5197                        ForRedeclaration);
5198    LookupName(Lookup, S);
5199    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5200    NamedDecl *PrevTypedefNamed = PrevTypedef;
5201    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5202        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5203          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5204      Diag(Loc, diag::err_tag_definition_of_typedef)
5205        << Context.getTypeDeclType(New)
5206        << PrevTypedef->getUnderlyingType();
5207      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5208      Invalid = true;
5209    }
5210  }
5211
5212  // If this is a specialization of a member class (of a class template),
5213  // check the specialization.
5214  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5215    Invalid = true;
5216
5217  if (Invalid)
5218    New->setInvalidDecl();
5219
5220  if (Attr)
5221    ProcessDeclAttributeList(S, New, Attr);
5222
5223  // If we're declaring or defining a tag in function prototype scope
5224  // in C, note that this type can only be used within the function.
5225  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5226    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5227
5228  // Set the lexical context. If the tag has a C++ scope specifier, the
5229  // lexical context will be different from the semantic context.
5230  New->setLexicalDeclContext(CurContext);
5231
5232  // Mark this as a friend decl if applicable.
5233  if (TUK == TUK_Friend)
5234    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5235
5236  // Set the access specifier.
5237  if (!Invalid && SearchDC->isRecord())
5238    SetMemberAccessSpecifier(New, PrevDecl, AS);
5239
5240  if (TUK == TUK_Definition)
5241    New->startDefinition();
5242
5243  // If this has an identifier, add it to the scope stack.
5244  if (TUK == TUK_Friend) {
5245    // We might be replacing an existing declaration in the lookup tables;
5246    // if so, borrow its access specifier.
5247    if (PrevDecl)
5248      New->setAccess(PrevDecl->getAccess());
5249
5250    DeclContext *DC = New->getDeclContext()->getLookupContext();
5251    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5252    if (Name) // can be null along some error paths
5253      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5254        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5255  } else if (Name) {
5256    S = getNonFieldDeclScope(S);
5257    PushOnScopeChains(New, S);
5258  } else {
5259    CurContext->addDecl(New);
5260  }
5261
5262  // If this is the C FILE type, notify the AST context.
5263  if (IdentifierInfo *II = New->getIdentifier())
5264    if (!New->isInvalidDecl() &&
5265        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5266        II->isStr("FILE"))
5267      Context.setFILEDecl(New);
5268
5269  OwnedDecl = true;
5270  return DeclPtrTy::make(New);
5271}
5272
5273void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5274  AdjustDeclIfTemplate(TagD);
5275  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5276
5277  // Enter the tag context.
5278  PushDeclContext(S, Tag);
5279}
5280
5281void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5282                                           SourceLocation LBraceLoc) {
5283  AdjustDeclIfTemplate(TagD);
5284  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5285
5286  FieldCollector->StartClass();
5287
5288  if (!Record->getIdentifier())
5289    return;
5290
5291  // C++ [class]p2:
5292  //   [...] The class-name is also inserted into the scope of the
5293  //   class itself; this is known as the injected-class-name. For
5294  //   purposes of access checking, the injected-class-name is treated
5295  //   as if it were a public member name.
5296  CXXRecordDecl *InjectedClassName
5297    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5298                            CurContext, Record->getLocation(),
5299                            Record->getIdentifier(),
5300                            Record->getTagKeywordLoc(),
5301                            Record);
5302  InjectedClassName->setImplicit();
5303  InjectedClassName->setAccess(AS_public);
5304  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5305      InjectedClassName->setDescribedClassTemplate(Template);
5306  PushOnScopeChains(InjectedClassName, S);
5307  assert(InjectedClassName->isInjectedClassName() &&
5308         "Broken injected-class-name");
5309}
5310
5311// Traverses the class and any nested classes, making a note of any
5312// dynamic classes that have no key function so that we can mark all of
5313// their virtual member functions as "used" at the end of the translation
5314// unit. This ensures that all functions needed by the vtable will get
5315// instantiated/synthesized.
5316static void
5317RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5318                                      SourceLocation Loc) {
5319  // We don't look at dependent or undefined classes.
5320  if (Record->isDependentContext() || !Record->isDefinition())
5321    return;
5322
5323  if (Record->isDynamicClass()) {
5324    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5325
5326    if (!KeyFunction)
5327      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5328                                                                   Loc));
5329
5330    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5331        && Record->getLinkage() == ExternalLinkage)
5332      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5333  }
5334  for (DeclContext::decl_iterator D = Record->decls_begin(),
5335                               DEnd = Record->decls_end();
5336       D != DEnd; ++D) {
5337    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5338      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5339  }
5340}
5341
5342void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5343                                    SourceLocation RBraceLoc) {
5344  AdjustDeclIfTemplate(TagD);
5345  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5346  Tag->setRBraceLoc(RBraceLoc);
5347
5348  if (isa<CXXRecordDecl>(Tag))
5349    FieldCollector->FinishClass();
5350
5351  // Exit this scope of this tag's definition.
5352  PopDeclContext();
5353
5354  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5355    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5356                                          RBraceLoc);
5357
5358  // Notify the consumer that we've defined a tag.
5359  Consumer.HandleTagDeclDefinition(Tag);
5360}
5361
5362void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5363  AdjustDeclIfTemplate(TagD);
5364  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5365  Tag->setInvalidDecl();
5366
5367  // We're undoing ActOnTagStartDefinition here, not
5368  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5369  // the FieldCollector.
5370
5371  PopDeclContext();
5372}
5373
5374// Note that FieldName may be null for anonymous bitfields.
5375bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5376                          QualType FieldTy, const Expr *BitWidth,
5377                          bool *ZeroWidth) {
5378  // Default to true; that shouldn't confuse checks for emptiness
5379  if (ZeroWidth)
5380    *ZeroWidth = true;
5381
5382  // C99 6.7.2.1p4 - verify the field type.
5383  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5384  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5385    // Handle incomplete types with specific error.
5386    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5387      return true;
5388    if (FieldName)
5389      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5390        << FieldName << FieldTy << BitWidth->getSourceRange();
5391    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5392      << FieldTy << BitWidth->getSourceRange();
5393  }
5394
5395  // If the bit-width is type- or value-dependent, don't try to check
5396  // it now.
5397  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5398    return false;
5399
5400  llvm::APSInt Value;
5401  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5402    return true;
5403
5404  if (Value != 0 && ZeroWidth)
5405    *ZeroWidth = false;
5406
5407  // Zero-width bitfield is ok for anonymous field.
5408  if (Value == 0 && FieldName)
5409    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5410
5411  if (Value.isSigned() && Value.isNegative()) {
5412    if (FieldName)
5413      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5414               << FieldName << Value.toString(10);
5415    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5416      << Value.toString(10);
5417  }
5418
5419  if (!FieldTy->isDependentType()) {
5420    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5421    if (Value.getZExtValue() > TypeSize) {
5422      if (!getLangOptions().CPlusPlus) {
5423        if (FieldName)
5424          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5425            << FieldName << (unsigned)Value.getZExtValue()
5426            << (unsigned)TypeSize;
5427
5428        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5429          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5430      }
5431
5432      if (FieldName)
5433        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5434          << FieldName << (unsigned)Value.getZExtValue()
5435          << (unsigned)TypeSize;
5436      else
5437        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5438          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5439    }
5440  }
5441
5442  return false;
5443}
5444
5445/// ActOnField - Each field of a struct/union/class is passed into this in order
5446/// to create a FieldDecl object for it.
5447Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5448                                 SourceLocation DeclStart,
5449                                 Declarator &D, ExprTy *BitfieldWidth) {
5450  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5451                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5452                               AS_public);
5453  return DeclPtrTy::make(Res);
5454}
5455
5456/// HandleField - Analyze a field of a C struct or a C++ data member.
5457///
5458FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5459                             SourceLocation DeclStart,
5460                             Declarator &D, Expr *BitWidth,
5461                             AccessSpecifier AS) {
5462  IdentifierInfo *II = D.getIdentifier();
5463  SourceLocation Loc = DeclStart;
5464  if (II) Loc = D.getIdentifierLoc();
5465
5466  TypeSourceInfo *TInfo = 0;
5467  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5468  if (getLangOptions().CPlusPlus)
5469    CheckExtraCXXDefaultArguments(D);
5470
5471  DiagnoseFunctionSpecifiers(D);
5472
5473  if (D.getDeclSpec().isThreadSpecified())
5474    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5475
5476  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5477                                         ForRedeclaration);
5478
5479  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5480    // Maybe we will complain about the shadowed template parameter.
5481    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5482    // Just pretend that we didn't see the previous declaration.
5483    PrevDecl = 0;
5484  }
5485
5486  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5487    PrevDecl = 0;
5488
5489  bool Mutable
5490    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5491  SourceLocation TSSL = D.getSourceRange().getBegin();
5492  FieldDecl *NewFD
5493    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5494                     AS, PrevDecl, &D);
5495
5496  if (NewFD->isInvalidDecl())
5497    Record->setInvalidDecl();
5498
5499  if (NewFD->isInvalidDecl() && PrevDecl) {
5500    // Don't introduce NewFD into scope; there's already something
5501    // with the same name in the same scope.
5502  } else if (II) {
5503    PushOnScopeChains(NewFD, S);
5504  } else
5505    Record->addDecl(NewFD);
5506
5507  return NewFD;
5508}
5509
5510/// \brief Build a new FieldDecl and check its well-formedness.
5511///
5512/// This routine builds a new FieldDecl given the fields name, type,
5513/// record, etc. \p PrevDecl should refer to any previous declaration
5514/// with the same name and in the same scope as the field to be
5515/// created.
5516///
5517/// \returns a new FieldDecl.
5518///
5519/// \todo The Declarator argument is a hack. It will be removed once
5520FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5521                                TypeSourceInfo *TInfo,
5522                                RecordDecl *Record, SourceLocation Loc,
5523                                bool Mutable, Expr *BitWidth,
5524                                SourceLocation TSSL,
5525                                AccessSpecifier AS, NamedDecl *PrevDecl,
5526                                Declarator *D) {
5527  IdentifierInfo *II = Name.getAsIdentifierInfo();
5528  bool InvalidDecl = false;
5529  if (D) InvalidDecl = D->isInvalidType();
5530
5531  // If we receive a broken type, recover by assuming 'int' and
5532  // marking this declaration as invalid.
5533  if (T.isNull()) {
5534    InvalidDecl = true;
5535    T = Context.IntTy;
5536  }
5537
5538  QualType EltTy = Context.getBaseElementType(T);
5539  if (!EltTy->isDependentType() &&
5540      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5541    InvalidDecl = true;
5542
5543  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5544  // than a variably modified type.
5545  if (!InvalidDecl && T->isVariablyModifiedType()) {
5546    bool SizeIsNegative;
5547    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5548                                                           SizeIsNegative);
5549    if (!FixedTy.isNull()) {
5550      Diag(Loc, diag::warn_illegal_constant_array_size);
5551      T = FixedTy;
5552    } else {
5553      if (SizeIsNegative)
5554        Diag(Loc, diag::err_typecheck_negative_array_size);
5555      else
5556        Diag(Loc, diag::err_typecheck_field_variable_size);
5557      InvalidDecl = true;
5558    }
5559  }
5560
5561  // Fields can not have abstract class types
5562  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5563                                             diag::err_abstract_type_in_decl,
5564                                             AbstractFieldType))
5565    InvalidDecl = true;
5566
5567  bool ZeroWidth = false;
5568  // If this is declared as a bit-field, check the bit-field.
5569  if (!InvalidDecl && BitWidth &&
5570      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5571    InvalidDecl = true;
5572    DeleteExpr(BitWidth);
5573    BitWidth = 0;
5574    ZeroWidth = false;
5575  }
5576
5577  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5578                                       BitWidth, Mutable);
5579  if (InvalidDecl)
5580    NewFD->setInvalidDecl();
5581
5582  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5583    Diag(Loc, diag::err_duplicate_member) << II;
5584    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5585    NewFD->setInvalidDecl();
5586  }
5587
5588  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5589    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5590
5591    if (!T->isPODType())
5592      CXXRecord->setPOD(false);
5593    if (!ZeroWidth)
5594      CXXRecord->setEmpty(false);
5595
5596    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5597      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5598
5599      if (!RDecl->hasTrivialConstructor())
5600        CXXRecord->setHasTrivialConstructor(false);
5601      if (!RDecl->hasTrivialCopyConstructor())
5602        CXXRecord->setHasTrivialCopyConstructor(false);
5603      if (!RDecl->hasTrivialCopyAssignment())
5604        CXXRecord->setHasTrivialCopyAssignment(false);
5605      if (!RDecl->hasTrivialDestructor())
5606        CXXRecord->setHasTrivialDestructor(false);
5607
5608      // C++ 9.5p1: An object of a class with a non-trivial
5609      // constructor, a non-trivial copy constructor, a non-trivial
5610      // destructor, or a non-trivial copy assignment operator
5611      // cannot be a member of a union, nor can an array of such
5612      // objects.
5613      // TODO: C++0x alters this restriction significantly.
5614      if (Record->isUnion()) {
5615        // We check for copy constructors before constructors
5616        // because otherwise we'll never get complaints about
5617        // copy constructors.
5618
5619        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5620
5621        CXXSpecialMember member;
5622        if (!RDecl->hasTrivialCopyConstructor())
5623          member = CXXCopyConstructor;
5624        else if (!RDecl->hasTrivialConstructor())
5625          member = CXXDefaultConstructor;
5626        else if (!RDecl->hasTrivialCopyAssignment())
5627          member = CXXCopyAssignment;
5628        else if (!RDecl->hasTrivialDestructor())
5629          member = CXXDestructor;
5630        else
5631          member = invalid;
5632
5633        if (member != invalid) {
5634          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5635          DiagnoseNontrivial(RT, member);
5636          NewFD->setInvalidDecl();
5637        }
5638      }
5639    }
5640  }
5641
5642  // FIXME: We need to pass in the attributes given an AST
5643  // representation, not a parser representation.
5644  if (D)
5645    // FIXME: What to pass instead of TUScope?
5646    ProcessDeclAttributes(TUScope, NewFD, *D);
5647
5648  if (T.isObjCGCWeak())
5649    Diag(Loc, diag::warn_attribute_weak_on_field);
5650
5651  NewFD->setAccess(AS);
5652
5653  // C++ [dcl.init.aggr]p1:
5654  //   An aggregate is an array or a class (clause 9) with [...] no
5655  //   private or protected non-static data members (clause 11).
5656  // A POD must be an aggregate.
5657  if (getLangOptions().CPlusPlus &&
5658      (AS == AS_private || AS == AS_protected)) {
5659    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5660    CXXRecord->setAggregate(false);
5661    CXXRecord->setPOD(false);
5662  }
5663
5664  return NewFD;
5665}
5666
5667/// DiagnoseNontrivial - Given that a class has a non-trivial
5668/// special member, figure out why.
5669void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5670  QualType QT(T, 0U);
5671  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5672
5673  // Check whether the member was user-declared.
5674  switch (member) {
5675  case CXXDefaultConstructor:
5676    if (RD->hasUserDeclaredConstructor()) {
5677      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5678      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5679        const FunctionDecl *body = 0;
5680        ci->getBody(body);
5681        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5682          SourceLocation CtorLoc = ci->getLocation();
5683          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5684          return;
5685        }
5686      }
5687
5688      assert(0 && "found no user-declared constructors");
5689      return;
5690    }
5691    break;
5692
5693  case CXXCopyConstructor:
5694    if (RD->hasUserDeclaredCopyConstructor()) {
5695      SourceLocation CtorLoc =
5696        RD->getCopyConstructor(Context, 0)->getLocation();
5697      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5698      return;
5699    }
5700    break;
5701
5702  case CXXCopyAssignment:
5703    if (RD->hasUserDeclaredCopyAssignment()) {
5704      // FIXME: this should use the location of the copy
5705      // assignment, not the type.
5706      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5707      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5708      return;
5709    }
5710    break;
5711
5712  case CXXDestructor:
5713    if (RD->hasUserDeclaredDestructor()) {
5714      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5715      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5716      return;
5717    }
5718    break;
5719  }
5720
5721  typedef CXXRecordDecl::base_class_iterator base_iter;
5722
5723  // Virtual bases and members inhibit trivial copying/construction,
5724  // but not trivial destruction.
5725  if (member != CXXDestructor) {
5726    // Check for virtual bases.  vbases includes indirect virtual bases,
5727    // so we just iterate through the direct bases.
5728    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5729      if (bi->isVirtual()) {
5730        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5731        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5732        return;
5733      }
5734
5735    // Check for virtual methods.
5736    typedef CXXRecordDecl::method_iterator meth_iter;
5737    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5738         ++mi) {
5739      if (mi->isVirtual()) {
5740        SourceLocation MLoc = mi->getSourceRange().getBegin();
5741        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5742        return;
5743      }
5744    }
5745  }
5746
5747  bool (CXXRecordDecl::*hasTrivial)() const;
5748  switch (member) {
5749  case CXXDefaultConstructor:
5750    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5751  case CXXCopyConstructor:
5752    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5753  case CXXCopyAssignment:
5754    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5755  case CXXDestructor:
5756    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5757  default:
5758    assert(0 && "unexpected special member"); return;
5759  }
5760
5761  // Check for nontrivial bases (and recurse).
5762  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5763    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5764    assert(BaseRT && "Don't know how to handle dependent bases");
5765    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5766    if (!(BaseRecTy->*hasTrivial)()) {
5767      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5768      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5769      DiagnoseNontrivial(BaseRT, member);
5770      return;
5771    }
5772  }
5773
5774  // Check for nontrivial members (and recurse).
5775  typedef RecordDecl::field_iterator field_iter;
5776  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5777       ++fi) {
5778    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5779    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5780      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5781
5782      if (!(EltRD->*hasTrivial)()) {
5783        SourceLocation FLoc = (*fi)->getLocation();
5784        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5785        DiagnoseNontrivial(EltRT, member);
5786        return;
5787      }
5788    }
5789  }
5790
5791  assert(0 && "found no explanation for non-trivial member");
5792}
5793
5794/// TranslateIvarVisibility - Translate visibility from a token ID to an
5795///  AST enum value.
5796static ObjCIvarDecl::AccessControl
5797TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5798  switch (ivarVisibility) {
5799  default: assert(0 && "Unknown visitibility kind");
5800  case tok::objc_private: return ObjCIvarDecl::Private;
5801  case tok::objc_public: return ObjCIvarDecl::Public;
5802  case tok::objc_protected: return ObjCIvarDecl::Protected;
5803  case tok::objc_package: return ObjCIvarDecl::Package;
5804  }
5805}
5806
5807/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5808/// in order to create an IvarDecl object for it.
5809Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5810                                SourceLocation DeclStart,
5811                                DeclPtrTy IntfDecl,
5812                                Declarator &D, ExprTy *BitfieldWidth,
5813                                tok::ObjCKeywordKind Visibility) {
5814
5815  IdentifierInfo *II = D.getIdentifier();
5816  Expr *BitWidth = (Expr*)BitfieldWidth;
5817  SourceLocation Loc = DeclStart;
5818  if (II) Loc = D.getIdentifierLoc();
5819
5820  // FIXME: Unnamed fields can be handled in various different ways, for
5821  // example, unnamed unions inject all members into the struct namespace!
5822
5823  TypeSourceInfo *TInfo = 0;
5824  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5825
5826  if (BitWidth) {
5827    // 6.7.2.1p3, 6.7.2.1p4
5828    if (VerifyBitField(Loc, II, T, BitWidth)) {
5829      D.setInvalidType();
5830      DeleteExpr(BitWidth);
5831      BitWidth = 0;
5832    }
5833  } else {
5834    // Not a bitfield.
5835
5836    // validate II.
5837
5838  }
5839
5840  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5841  // than a variably modified type.
5842  if (T->isVariablyModifiedType()) {
5843    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5844    D.setInvalidType();
5845  }
5846
5847  // Get the visibility (access control) for this ivar.
5848  ObjCIvarDecl::AccessControl ac =
5849    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5850                                        : ObjCIvarDecl::None;
5851  // Must set ivar's DeclContext to its enclosing interface.
5852  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
5853  ObjCContainerDecl *EnclosingContext;
5854  if (ObjCImplementationDecl *IMPDecl =
5855      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5856    // Case of ivar declared in an implementation. Context is that of its class.
5857    EnclosingContext = IMPDecl->getClassInterface();
5858    assert(EnclosingContext && "Implementation has no class interface!");
5859  } else {
5860    if (ObjCCategoryDecl *CDecl =
5861        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5862      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
5863        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5864        return DeclPtrTy();
5865      }
5866    }
5867    EnclosingContext = EnclosingDecl;
5868  }
5869
5870  // Construct the decl.
5871  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5872                                             EnclosingContext, Loc, II, T,
5873                                             TInfo, ac, (Expr *)BitfieldWidth);
5874
5875  if (II) {
5876    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5877                                           ForRedeclaration);
5878    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5879        && !isa<TagDecl>(PrevDecl)) {
5880      Diag(Loc, diag::err_duplicate_member) << II;
5881      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5882      NewID->setInvalidDecl();
5883    }
5884  }
5885
5886  // Process attributes attached to the ivar.
5887  ProcessDeclAttributes(S, NewID, D);
5888
5889  if (D.isInvalidType())
5890    NewID->setInvalidDecl();
5891
5892  if (II) {
5893    // FIXME: When interfaces are DeclContexts, we'll need to add
5894    // these to the interface.
5895    S->AddDecl(DeclPtrTy::make(NewID));
5896    IdResolver.AddDecl(NewID);
5897  }
5898
5899  return DeclPtrTy::make(NewID);
5900}
5901
5902void Sema::ActOnFields(Scope* S,
5903                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5904                       DeclPtrTy *Fields, unsigned NumFields,
5905                       SourceLocation LBrac, SourceLocation RBrac,
5906                       AttributeList *Attr) {
5907  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5908  assert(EnclosingDecl && "missing record or interface decl");
5909
5910  // If the decl this is being inserted into is invalid, then it may be a
5911  // redeclaration or some other bogus case.  Don't try to add fields to it.
5912  if (EnclosingDecl->isInvalidDecl()) {
5913    // FIXME: Deallocate fields?
5914    return;
5915  }
5916
5917
5918  // Verify that all the fields are okay.
5919  unsigned NumNamedMembers = 0;
5920  llvm::SmallVector<FieldDecl*, 32> RecFields;
5921
5922  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5923  for (unsigned i = 0; i != NumFields; ++i) {
5924    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5925
5926    // Get the type for the field.
5927    Type *FDTy = FD->getType().getTypePtr();
5928
5929    if (!FD->isAnonymousStructOrUnion()) {
5930      // Remember all fields written by the user.
5931      RecFields.push_back(FD);
5932    }
5933
5934    // If the field is already invalid for some reason, don't emit more
5935    // diagnostics about it.
5936    if (FD->isInvalidDecl()) {
5937      EnclosingDecl->setInvalidDecl();
5938      continue;
5939    }
5940
5941    // C99 6.7.2.1p2:
5942    //   A structure or union shall not contain a member with
5943    //   incomplete or function type (hence, a structure shall not
5944    //   contain an instance of itself, but may contain a pointer to
5945    //   an instance of itself), except that the last member of a
5946    //   structure with more than one named member may have incomplete
5947    //   array type; such a structure (and any union containing,
5948    //   possibly recursively, a member that is such a structure)
5949    //   shall not be a member of a structure or an element of an
5950    //   array.
5951    if (FDTy->isFunctionType()) {
5952      // Field declared as a function.
5953      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5954        << FD->getDeclName();
5955      FD->setInvalidDecl();
5956      EnclosingDecl->setInvalidDecl();
5957      continue;
5958    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5959               Record && Record->isStruct()) {
5960      // Flexible array member.
5961      if (NumNamedMembers < 1) {
5962        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5963          << FD->getDeclName();
5964        FD->setInvalidDecl();
5965        EnclosingDecl->setInvalidDecl();
5966        continue;
5967      }
5968      // Okay, we have a legal flexible array member at the end of the struct.
5969      if (Record)
5970        Record->setHasFlexibleArrayMember(true);
5971    } else if (!FDTy->isDependentType() &&
5972               RequireCompleteType(FD->getLocation(), FD->getType(),
5973                                   diag::err_field_incomplete)) {
5974      // Incomplete type
5975      FD->setInvalidDecl();
5976      EnclosingDecl->setInvalidDecl();
5977      continue;
5978    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5979      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5980        // If this is a member of a union, then entire union becomes "flexible".
5981        if (Record && Record->isUnion()) {
5982          Record->setHasFlexibleArrayMember(true);
5983        } else {
5984          // If this is a struct/class and this is not the last element, reject
5985          // it.  Note that GCC supports variable sized arrays in the middle of
5986          // structures.
5987          if (i != NumFields-1)
5988            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5989              << FD->getDeclName() << FD->getType();
5990          else {
5991            // We support flexible arrays at the end of structs in
5992            // other structs as an extension.
5993            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5994              << FD->getDeclName();
5995            if (Record)
5996              Record->setHasFlexibleArrayMember(true);
5997          }
5998        }
5999      }
6000      if (Record && FDTTy->getDecl()->hasObjectMember())
6001        Record->setHasObjectMember(true);
6002    } else if (FDTy->isObjCInterfaceType()) {
6003      /// A field cannot be an Objective-c object
6004      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6005      FD->setInvalidDecl();
6006      EnclosingDecl->setInvalidDecl();
6007      continue;
6008    } else if (getLangOptions().ObjC1 &&
6009               getLangOptions().getGCMode() != LangOptions::NonGC &&
6010               Record &&
6011               (FD->getType()->isObjCObjectPointerType() ||
6012                FD->getType().isObjCGCStrong()))
6013      Record->setHasObjectMember(true);
6014    // Keep track of the number of named members.
6015    if (FD->getIdentifier())
6016      ++NumNamedMembers;
6017  }
6018
6019  // Okay, we successfully defined 'Record'.
6020  if (Record) {
6021    Record->completeDefinition();
6022  } else {
6023    ObjCIvarDecl **ClsFields =
6024      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6025    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6026      ID->setLocEnd(RBrac);
6027      // Add ivar's to class's DeclContext.
6028      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6029        ClsFields[i]->setLexicalDeclContext(ID);
6030        ID->addDecl(ClsFields[i]);
6031      }
6032      // Must enforce the rule that ivars in the base classes may not be
6033      // duplicates.
6034      if (ID->getSuperClass())
6035        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6036    } else if (ObjCImplementationDecl *IMPDecl =
6037                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6038      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6039      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6040        // Ivar declared in @implementation never belongs to the implementation.
6041        // Only it is in implementation's lexical context.
6042        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6043      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6044    } else if (ObjCCategoryDecl *CDecl =
6045                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6046      // case of ivars in class extension; all other cases have been
6047      // reported as errors elsewhere.
6048      // FIXME. Class extension does not have a LocEnd field.
6049      // CDecl->setLocEnd(RBrac);
6050      // Add ivar's to class extension's DeclContext.
6051      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6052        ClsFields[i]->setLexicalDeclContext(CDecl);
6053        CDecl->addDecl(ClsFields[i]);
6054      }
6055    }
6056  }
6057
6058  if (Attr)
6059    ProcessDeclAttributeList(S, Record, Attr);
6060}
6061
6062/// \brief Determine whether the given integral value is representable within
6063/// the given type T.
6064static bool isRepresentableIntegerValue(ASTContext &Context,
6065                                        llvm::APSInt &Value,
6066                                        QualType T) {
6067  assert(T->isIntegralType() && "Integral type required!");
6068  unsigned BitWidth = Context.getIntWidth(T);
6069
6070  if (Value.isUnsigned() || Value.isNonNegative())
6071    return Value.getActiveBits() < BitWidth;
6072
6073  return Value.getMinSignedBits() <= BitWidth;
6074}
6075
6076// \brief Given an integral type, return the next larger integral type
6077// (or a NULL type of no such type exists).
6078static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6079  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6080  // enum checking below.
6081  assert(T->isIntegralType() && "Integral type required!");
6082  const unsigned NumTypes = 4;
6083  QualType SignedIntegralTypes[NumTypes] = {
6084    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6085  };
6086  QualType UnsignedIntegralTypes[NumTypes] = {
6087    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6088    Context.UnsignedLongLongTy
6089  };
6090
6091  unsigned BitWidth = Context.getTypeSize(T);
6092  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6093                                            : UnsignedIntegralTypes;
6094  for (unsigned I = 0; I != NumTypes; ++I)
6095    if (Context.getTypeSize(Types[I]) > BitWidth)
6096      return Types[I];
6097
6098  return QualType();
6099}
6100
6101EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6102                                          EnumConstantDecl *LastEnumConst,
6103                                          SourceLocation IdLoc,
6104                                          IdentifierInfo *Id,
6105                                          ExprArg val) {
6106  Expr *Val = (Expr *)val.get();
6107
6108  unsigned IntWidth = Context.Target.getIntWidth();
6109  llvm::APSInt EnumVal(IntWidth);
6110  QualType EltTy;
6111  if (Val) {
6112    if (Enum->isDependentType() || Val->isTypeDependent())
6113      EltTy = Context.DependentTy;
6114    else {
6115      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6116      SourceLocation ExpLoc;
6117      if (!Val->isValueDependent() &&
6118          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6119        Val = 0;
6120      } else {
6121        if (!getLangOptions().CPlusPlus) {
6122          // C99 6.7.2.2p2:
6123          //   The expression that defines the value of an enumeration constant
6124          //   shall be an integer constant expression that has a value
6125          //   representable as an int.
6126
6127          // Complain if the value is not representable in an int.
6128          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6129            Diag(IdLoc, diag::ext_enum_value_not_int)
6130              << EnumVal.toString(10) << Val->getSourceRange()
6131              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6132          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6133            // Force the type of the expression to 'int'.
6134            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6135
6136            if (Val != val.get()) {
6137              val.release();
6138              val = Val;
6139            }
6140          }
6141        }
6142
6143        // C++0x [dcl.enum]p5:
6144        //   If the underlying type is not fixed, the type of each enumerator
6145        //   is the type of its initializing value:
6146        //     - If an initializer is specified for an enumerator, the
6147        //       initializing value has the same type as the expression.
6148        EltTy = Val->getType();
6149      }
6150    }
6151  }
6152
6153  if (!Val) {
6154    if (Enum->isDependentType())
6155      EltTy = Context.DependentTy;
6156    else if (!LastEnumConst) {
6157      // C++0x [dcl.enum]p5:
6158      //   If the underlying type is not fixed, the type of each enumerator
6159      //   is the type of its initializing value:
6160      //     - If no initializer is specified for the first enumerator, the
6161      //       initializing value has an unspecified integral type.
6162      //
6163      // GCC uses 'int' for its unspecified integral type, as does
6164      // C99 6.7.2.2p3.
6165      EltTy = Context.IntTy;
6166    } else {
6167      // Assign the last value + 1.
6168      EnumVal = LastEnumConst->getInitVal();
6169      ++EnumVal;
6170      EltTy = LastEnumConst->getType();
6171
6172      // Check for overflow on increment.
6173      if (EnumVal < LastEnumConst->getInitVal()) {
6174        // C++0x [dcl.enum]p5:
6175        //   If the underlying type is not fixed, the type of each enumerator
6176        //   is the type of its initializing value:
6177        //
6178        //     - Otherwise the type of the initializing value is the same as
6179        //       the type of the initializing value of the preceding enumerator
6180        //       unless the incremented value is not representable in that type,
6181        //       in which case the type is an unspecified integral type
6182        //       sufficient to contain the incremented value. If no such type
6183        //       exists, the program is ill-formed.
6184        QualType T = getNextLargerIntegralType(Context, EltTy);
6185        if (T.isNull()) {
6186          // There is no integral type larger enough to represent this
6187          // value. Complain, then allow the value to wrap around.
6188          EnumVal = LastEnumConst->getInitVal();
6189          EnumVal.zext(EnumVal.getBitWidth() * 2);
6190          Diag(IdLoc, diag::warn_enumerator_too_large)
6191            << EnumVal.toString(10);
6192        } else {
6193          EltTy = T;
6194        }
6195
6196        // Retrieve the last enumerator's value, extent that type to the
6197        // type that is supposed to be large enough to represent the incremented
6198        // value, then increment.
6199        EnumVal = LastEnumConst->getInitVal();
6200        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6201        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6202        ++EnumVal;
6203
6204        // If we're not in C++, diagnose the overflow of enumerator values,
6205        // which in C99 means that the enumerator value is not representable in
6206        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6207        // permits enumerator values that are representable in some larger
6208        // integral type.
6209        if (!getLangOptions().CPlusPlus && !T.isNull())
6210          Diag(IdLoc, diag::warn_enum_value_overflow);
6211      } else if (!getLangOptions().CPlusPlus &&
6212                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6213        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6214        Diag(IdLoc, diag::ext_enum_value_not_int)
6215          << EnumVal.toString(10) << 1;
6216      }
6217    }
6218  }
6219
6220  if (!EltTy->isDependentType()) {
6221    // Make the enumerator value match the signedness and size of the
6222    // enumerator's type.
6223    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6224    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6225  }
6226
6227  val.release();
6228  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6229                                  Val, EnumVal);
6230}
6231
6232
6233Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6234                                        DeclPtrTy lastEnumConst,
6235                                        SourceLocation IdLoc,
6236                                        IdentifierInfo *Id,
6237                                        SourceLocation EqualLoc, ExprTy *val) {
6238  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6239  EnumConstantDecl *LastEnumConst =
6240    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6241  Expr *Val = static_cast<Expr*>(val);
6242
6243  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6244  // we find one that is.
6245  S = getNonFieldDeclScope(S);
6246
6247  // Verify that there isn't already something declared with this name in this
6248  // scope.
6249  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6250                                         ForRedeclaration);
6251  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6252    // Maybe we will complain about the shadowed template parameter.
6253    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6254    // Just pretend that we didn't see the previous declaration.
6255    PrevDecl = 0;
6256  }
6257
6258  if (PrevDecl) {
6259    // When in C++, we may get a TagDecl with the same name; in this case the
6260    // enum constant will 'hide' the tag.
6261    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6262           "Received TagDecl when not in C++!");
6263    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6264      if (isa<EnumConstantDecl>(PrevDecl))
6265        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6266      else
6267        Diag(IdLoc, diag::err_redefinition) << Id;
6268      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6269      if (Val) Val->Destroy(Context);
6270      return DeclPtrTy();
6271    }
6272  }
6273
6274  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6275                                            IdLoc, Id, Owned(Val));
6276
6277  // Register this decl in the current scope stack.
6278  if (New) {
6279    New->setAccess(TheEnumDecl->getAccess());
6280    PushOnScopeChains(New, S);
6281  }
6282
6283  return DeclPtrTy::make(New);
6284}
6285
6286void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6287                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6288                         DeclPtrTy *Elements, unsigned NumElements,
6289                         Scope *S, AttributeList *Attr) {
6290  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6291  QualType EnumType = Context.getTypeDeclType(Enum);
6292
6293  if (Attr)
6294    ProcessDeclAttributeList(S, Enum, Attr);
6295
6296  if (Enum->isDependentType()) {
6297    for (unsigned i = 0; i != NumElements; ++i) {
6298      EnumConstantDecl *ECD =
6299        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6300      if (!ECD) continue;
6301
6302      ECD->setType(EnumType);
6303    }
6304
6305    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
6306    return;
6307  }
6308
6309  // TODO: If the result value doesn't fit in an int, it must be a long or long
6310  // long value.  ISO C does not support this, but GCC does as an extension,
6311  // emit a warning.
6312  unsigned IntWidth = Context.Target.getIntWidth();
6313  unsigned CharWidth = Context.Target.getCharWidth();
6314  unsigned ShortWidth = Context.Target.getShortWidth();
6315
6316  // Verify that all the values are okay, compute the size of the values, and
6317  // reverse the list.
6318  unsigned NumNegativeBits = 0;
6319  unsigned NumPositiveBits = 0;
6320
6321  // Keep track of whether all elements have type int.
6322  bool AllElementsInt = true;
6323
6324  for (unsigned i = 0; i != NumElements; ++i) {
6325    EnumConstantDecl *ECD =
6326      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6327    if (!ECD) continue;  // Already issued a diagnostic.
6328
6329    const llvm::APSInt &InitVal = ECD->getInitVal();
6330
6331    // Keep track of the size of positive and negative values.
6332    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6333      NumPositiveBits = std::max(NumPositiveBits,
6334                                 (unsigned)InitVal.getActiveBits());
6335    else
6336      NumNegativeBits = std::max(NumNegativeBits,
6337                                 (unsigned)InitVal.getMinSignedBits());
6338
6339    // Keep track of whether every enum element has type int (very commmon).
6340    if (AllElementsInt)
6341      AllElementsInt = ECD->getType() == Context.IntTy;
6342  }
6343
6344  // Figure out the type that should be used for this enum.
6345  // FIXME: Support -fshort-enums.
6346  QualType BestType;
6347  unsigned BestWidth;
6348
6349  // C++0x N3000 [conv.prom]p3:
6350  //   An rvalue of an unscoped enumeration type whose underlying
6351  //   type is not fixed can be converted to an rvalue of the first
6352  //   of the following types that can represent all the values of
6353  //   the enumeration: int, unsigned int, long int, unsigned long
6354  //   int, long long int, or unsigned long long int.
6355  // C99 6.4.4.3p2:
6356  //   An identifier declared as an enumeration constant has type int.
6357  // The C99 rule is modified by a gcc extension
6358  QualType BestPromotionType;
6359
6360  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6361
6362  if (NumNegativeBits) {
6363    // If there is a negative value, figure out the smallest integer type (of
6364    // int/long/longlong) that fits.
6365    // If it's packed, check also if it fits a char or a short.
6366    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6367      BestType = Context.SignedCharTy;
6368      BestWidth = CharWidth;
6369    } else if (Packed && NumNegativeBits <= ShortWidth &&
6370               NumPositiveBits < ShortWidth) {
6371      BestType = Context.ShortTy;
6372      BestWidth = ShortWidth;
6373    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6374      BestType = Context.IntTy;
6375      BestWidth = IntWidth;
6376    } else {
6377      BestWidth = Context.Target.getLongWidth();
6378
6379      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6380        BestType = Context.LongTy;
6381      } else {
6382        BestWidth = Context.Target.getLongLongWidth();
6383
6384        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6385          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6386        BestType = Context.LongLongTy;
6387      }
6388    }
6389    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6390  } else {
6391    // If there is no negative value, figure out the smallest type that fits
6392    // all of the enumerator values.
6393    // If it's packed, check also if it fits a char or a short.
6394    if (Packed && NumPositiveBits <= CharWidth) {
6395      BestType = Context.UnsignedCharTy;
6396      BestPromotionType = Context.IntTy;
6397      BestWidth = CharWidth;
6398    } else if (Packed && NumPositiveBits <= ShortWidth) {
6399      BestType = Context.UnsignedShortTy;
6400      BestPromotionType = Context.IntTy;
6401      BestWidth = ShortWidth;
6402    } else if (NumPositiveBits <= IntWidth) {
6403      BestType = Context.UnsignedIntTy;
6404      BestWidth = IntWidth;
6405      BestPromotionType
6406        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6407                           ? Context.UnsignedIntTy : Context.IntTy;
6408    } else if (NumPositiveBits <=
6409               (BestWidth = Context.Target.getLongWidth())) {
6410      BestType = Context.UnsignedLongTy;
6411      BestPromotionType
6412        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6413                           ? Context.UnsignedLongTy : Context.LongTy;
6414    } else {
6415      BestWidth = Context.Target.getLongLongWidth();
6416      assert(NumPositiveBits <= BestWidth &&
6417             "How could an initializer get larger than ULL?");
6418      BestType = Context.UnsignedLongLongTy;
6419      BestPromotionType
6420        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6421                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6422    }
6423  }
6424
6425  // Loop over all of the enumerator constants, changing their types to match
6426  // the type of the enum if needed.
6427  for (unsigned i = 0; i != NumElements; ++i) {
6428    EnumConstantDecl *ECD =
6429      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6430    if (!ECD) continue;  // Already issued a diagnostic.
6431
6432    // Standard C says the enumerators have int type, but we allow, as an
6433    // extension, the enumerators to be larger than int size.  If each
6434    // enumerator value fits in an int, type it as an int, otherwise type it the
6435    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6436    // that X has type 'int', not 'unsigned'.
6437
6438    // Determine whether the value fits into an int.
6439    llvm::APSInt InitVal = ECD->getInitVal();
6440
6441    // If it fits into an integer type, force it.  Otherwise force it to match
6442    // the enum decl type.
6443    QualType NewTy;
6444    unsigned NewWidth;
6445    bool NewSign;
6446    if (!getLangOptions().CPlusPlus &&
6447        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6448      NewTy = Context.IntTy;
6449      NewWidth = IntWidth;
6450      NewSign = true;
6451    } else if (ECD->getType() == BestType) {
6452      // Already the right type!
6453      if (getLangOptions().CPlusPlus)
6454        // C++ [dcl.enum]p4: Following the closing brace of an
6455        // enum-specifier, each enumerator has the type of its
6456        // enumeration.
6457        ECD->setType(EnumType);
6458      continue;
6459    } else {
6460      NewTy = BestType;
6461      NewWidth = BestWidth;
6462      NewSign = BestType->isSignedIntegerType();
6463    }
6464
6465    // Adjust the APSInt value.
6466    InitVal.extOrTrunc(NewWidth);
6467    InitVal.setIsSigned(NewSign);
6468    ECD->setInitVal(InitVal);
6469
6470    // Adjust the Expr initializer and type.
6471    if (ECD->getInitExpr())
6472      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6473                                                      CastExpr::CK_IntegralCast,
6474                                                      ECD->getInitExpr(),
6475                                                      /*isLvalue=*/false));
6476    if (getLangOptions().CPlusPlus)
6477      // C++ [dcl.enum]p4: Following the closing brace of an
6478      // enum-specifier, each enumerator has the type of its
6479      // enumeration.
6480      ECD->setType(EnumType);
6481    else
6482      ECD->setType(NewTy);
6483  }
6484
6485  Enum->completeDefinition(BestType, BestPromotionType);
6486}
6487
6488Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6489                                            ExprArg expr) {
6490  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6491
6492  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6493                                                   Loc, AsmString);
6494  CurContext->addDecl(New);
6495  return DeclPtrTy::make(New);
6496}
6497
6498void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6499                             SourceLocation PragmaLoc,
6500                             SourceLocation NameLoc) {
6501  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6502
6503  if (PrevDecl) {
6504    PrevDecl->addAttr(::new (Context) WeakAttr());
6505  } else {
6506    (void)WeakUndeclaredIdentifiers.insert(
6507      std::pair<IdentifierInfo*,WeakInfo>
6508        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6509  }
6510}
6511
6512void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6513                                IdentifierInfo* AliasName,
6514                                SourceLocation PragmaLoc,
6515                                SourceLocation NameLoc,
6516                                SourceLocation AliasNameLoc) {
6517  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6518                                    LookupOrdinaryName);
6519  WeakInfo W = WeakInfo(Name, NameLoc);
6520
6521  if (PrevDecl) {
6522    if (!PrevDecl->hasAttr<AliasAttr>())
6523      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6524        DeclApplyPragmaWeak(TUScope, ND, W);
6525  } else {
6526    (void)WeakUndeclaredIdentifiers.insert(
6527      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6528  }
6529}
6530