SemaDecl.cpp revision 10e975c9a31461b7b5c32725d749a7c6d9b88efa
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <functional>
35#include <queue>
36using namespace clang;
37
38/// getDeclName - Return a pretty name for the specified decl if possible, or
39/// an empty string if not.  This is used for pretty crash reporting.
40std::string Sema::getDeclName(DeclPtrTy d) {
41  Decl *D = d.getAs<Decl>();
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, const CXXScopeSpec *SS) {
64  // C++ [temp.res]p3:
65  //   A qualified-id that refers to a type and in which the
66  //   nested-name-specifier depends on a template-parameter (14.6.2)
67  //   shall be prefixed by the keyword typename to indicate that the
68  //   qualified-id denotes a type, forming an
69  //   elaborated-type-specifier (7.1.5.3).
70  //
71  // We therefore do not perform any name lookup if the result would
72  // refer to a member of an unknown specialization.
73  if (SS && isUnknownSpecialization(*SS))
74    return 0;
75
76  LookupResult Result
77    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
78
79  NamedDecl *IIDecl = 0;
80  switch (Result.getKind()) {
81  case LookupResult::NotFound:
82  case LookupResult::FoundOverloaded:
83    return 0;
84
85  case LookupResult::AmbiguousBaseSubobjectTypes:
86  case LookupResult::AmbiguousBaseSubobjects:
87  case LookupResult::AmbiguousReference: {
88    // Look to see if we have a type anywhere in the list of results.
89    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
90         Res != ResEnd; ++Res) {
91      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
92        if (!IIDecl ||
93            (*Res)->getLocation().getRawEncoding() <
94              IIDecl->getLocation().getRawEncoding())
95          IIDecl = *Res;
96      }
97    }
98
99    if (!IIDecl) {
100      // None of the entities we found is a type, so there is no way
101      // to even assume that the result is a type. In this case, don't
102      // complain about the ambiguity. The parser will either try to
103      // perform this lookup again (e.g., as an object name), which
104      // will produce the ambiguity, or will complain that it expected
105      // a type name.
106      Result.Destroy();
107      return 0;
108    }
109
110    // We found a type within the ambiguous lookup; diagnose the
111    // ambiguity and then return that type. This might be the right
112    // answer, or it might not be, but it suppresses any attempt to
113    // perform the name lookup again.
114    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
115    break;
116  }
117
118  case LookupResult::Found:
119    IIDecl = Result.getAsDecl();
120    break;
121  }
122
123  if (IIDecl) {
124    QualType T;
125
126    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
127      // Check whether we can use this type
128      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
129
130      if (getLangOptions().CPlusPlus) {
131        // C++ [temp.local]p2:
132        //   Within the scope of a class template specialization or
133        //   partial specialization, when the injected-class-name is
134        //   not followed by a <, it is equivalent to the
135        //   injected-class-name followed by the template-argument s
136        //   of the class template specialization or partial
137        //   specialization enclosed in <>.
138        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
139          if (RD->isInjectedClassName())
140            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
141              T = Template->getInjectedClassNameType(Context);
142      }
143
144      if (T.isNull())
145        T = Context.getTypeDeclType(TD);
146    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
147      // Check whether we can use this interface.
148      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
149
150      T = Context.getObjCInterfaceType(IDecl);
151    } else
152      return 0;
153
154    if (SS)
155      T = getQualifiedNameType(*SS, T);
156
157    return T.getAsOpaquePtr();
158  }
159
160  return 0;
161}
162
163/// isTagName() - This method is called *for error recovery purposes only*
164/// to determine if the specified name is a valid tag name ("struct foo").  If
165/// so, this returns the TST for the tag corresponding to it (TST_enum,
166/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
167/// where the user forgot to specify the tag.
168DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
169  // Do a tag name lookup in this scope.
170  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
171  if (R.getKind() == LookupResult::Found)
172    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
173      switch (TD->getTagKind()) {
174      case TagDecl::TK_struct: return DeclSpec::TST_struct;
175      case TagDecl::TK_union:  return DeclSpec::TST_union;
176      case TagDecl::TK_class:  return DeclSpec::TST_class;
177      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
178      }
179    }
180
181  return DeclSpec::TST_unspecified;
182}
183
184
185
186DeclContext *Sema::getContainingDC(DeclContext *DC) {
187  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
188    // A C++ out-of-line method will return to the file declaration context.
189    if (MD->isOutOfLine())
190      return MD->getLexicalDeclContext();
191
192    // A C++ inline method is parsed *after* the topmost class it was declared
193    // in is fully parsed (it's "complete").
194    // The parsing of a C++ inline method happens at the declaration context of
195    // the topmost (non-nested) class it is lexically declared in.
196    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
197    DC = MD->getParent();
198    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
199      DC = RD;
200
201    // Return the declaration context of the topmost class the inline method is
202    // declared in.
203    return DC;
204  }
205
206  if (isa<ObjCMethodDecl>(DC))
207    return Context.getTranslationUnitDecl();
208
209  return DC->getLexicalParent();
210}
211
212void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
213  assert(getContainingDC(DC) == CurContext &&
214      "The next DeclContext should be lexically contained in the current one.");
215  CurContext = DC;
216  S->setEntity(DC);
217}
218
219void Sema::PopDeclContext() {
220  assert(CurContext && "DeclContext imbalance!");
221
222  CurContext = getContainingDC(CurContext);
223}
224
225/// EnterDeclaratorContext - Used when we must lookup names in the context
226/// of a declarator's nested name specifier.
227void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
228  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
229  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
230  CurContext = DC;
231  assert(CurContext && "No context?");
232  S->setEntity(CurContext);
233}
234
235void Sema::ExitDeclaratorContext(Scope *S) {
236  S->setEntity(PreDeclaratorDC);
237  PreDeclaratorDC = 0;
238
239  // Reset CurContext to the nearest enclosing context.
240  while (!S->getEntity() && S->getParent())
241    S = S->getParent();
242  CurContext = static_cast<DeclContext*>(S->getEntity());
243  assert(CurContext && "No context?");
244}
245
246/// \brief Determine whether we allow overloading of the function
247/// PrevDecl with another declaration.
248///
249/// This routine determines whether overloading is possible, not
250/// whether some new function is actually an overload. It will return
251/// true in C++ (where we can always provide overloads) or, as an
252/// extension, in C when the previous function is already an
253/// overloaded function declaration or has the "overloadable"
254/// attribute.
255static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
256  if (Context.getLangOptions().CPlusPlus)
257    return true;
258
259  if (isa<OverloadedFunctionDecl>(PrevDecl))
260    return true;
261
262  return PrevDecl->getAttr<OverloadableAttr>() != 0;
263}
264
265/// Add this decl to the scope shadowed decl chains.
266void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
267  // Move up the scope chain until we find the nearest enclosing
268  // non-transparent context. The declaration will be introduced into this
269  // scope.
270  while (S->getEntity() &&
271         ((DeclContext *)S->getEntity())->isTransparentContext())
272    S = S->getParent();
273
274  S->AddDecl(DeclPtrTy::make(D));
275
276  // Add scoped declarations into their context, so that they can be
277  // found later. Declarations without a context won't be inserted
278  // into any context.
279  CurContext->addDecl(D);
280
281  // C++ [basic.scope]p4:
282  //   -- exactly one declaration shall declare a class name or
283  //   enumeration name that is not a typedef name and the other
284  //   declarations shall all refer to the same object or
285  //   enumerator, or all refer to functions and function templates;
286  //   in this case the class name or enumeration name is hidden.
287  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
288    // We are pushing the name of a tag (enum or class).
289    if (CurContext->getLookupContext()
290          == TD->getDeclContext()->getLookupContext()) {
291      // We're pushing the tag into the current context, which might
292      // require some reshuffling in the identifier resolver.
293      IdentifierResolver::iterator
294        I = IdResolver.begin(TD->getDeclName()),
295        IEnd = IdResolver.end();
296      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
297        NamedDecl *PrevDecl = *I;
298        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
299             PrevDecl = *I, ++I) {
300          if (TD->declarationReplaces(*I)) {
301            // This is a redeclaration. Remove it from the chain and
302            // break out, so that we'll add in the shadowed
303            // declaration.
304            S->RemoveDecl(DeclPtrTy::make(*I));
305            if (PrevDecl == *I) {
306              IdResolver.RemoveDecl(*I);
307              IdResolver.AddDecl(TD);
308              return;
309            } else {
310              IdResolver.RemoveDecl(*I);
311              break;
312            }
313          }
314        }
315
316        // There is already a declaration with the same name in the same
317        // scope, which is not a tag declaration. It must be found
318        // before we find the new declaration, so insert the new
319        // declaration at the end of the chain.
320        IdResolver.AddShadowedDecl(TD, PrevDecl);
321
322        return;
323      }
324    }
325  } else if ((isa<FunctionDecl>(D) &&
326              AllowOverloadingOfFunction(D, Context)) ||
327             isa<FunctionTemplateDecl>(D)) {
328    // We are pushing the name of a function or function template,
329    // which might be an overloaded name.
330    IdentifierResolver::iterator Redecl
331      = std::find_if(IdResolver.begin(D->getDeclName()),
332                     IdResolver.end(),
333                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
334                                  D));
335    if (Redecl != IdResolver.end() &&
336        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
337      // There is already a declaration of a function on our
338      // IdResolver chain. Replace it with this declaration.
339      S->RemoveDecl(DeclPtrTy::make(*Redecl));
340      IdResolver.RemoveDecl(*Redecl);
341    }
342  } else if (isa<ObjCInterfaceDecl>(D)) {
343    // We're pushing an Objective-C interface into the current
344    // context. If there is already an alias declaration, remove it first.
345    for (IdentifierResolver::iterator
346           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
347         I != IEnd; ++I) {
348      if (isa<ObjCCompatibleAliasDecl>(*I)) {
349        S->RemoveDecl(DeclPtrTy::make(*I));
350        IdResolver.RemoveDecl(*I);
351        break;
352      }
353    }
354  }
355
356  IdResolver.AddDecl(D);
357}
358
359void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
360  if (S->decl_empty()) return;
361  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
362	 "Scope shouldn't contain decls!");
363
364  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
365       I != E; ++I) {
366    Decl *TmpD = (*I).getAs<Decl>();
367    assert(TmpD && "This decl didn't get pushed??");
368
369    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
370    NamedDecl *D = cast<NamedDecl>(TmpD);
371
372    if (!D->getDeclName()) continue;
373
374    // Remove this name from our lexical scope.
375    IdResolver.RemoveDecl(D);
376  }
377}
378
379/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
380/// return 0 if one not found.
381ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
382  // The third "scope" argument is 0 since we aren't enabling lazy built-in
383  // creation from this context.
384  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
385
386  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
387}
388
389/// getNonFieldDeclScope - Retrieves the innermost scope, starting
390/// from S, where a non-field would be declared. This routine copes
391/// with the difference between C and C++ scoping rules in structs and
392/// unions. For example, the following code is well-formed in C but
393/// ill-formed in C++:
394/// @code
395/// struct S6 {
396///   enum { BAR } e;
397/// };
398///
399/// void test_S6() {
400///   struct S6 a;
401///   a.e = BAR;
402/// }
403/// @endcode
404/// For the declaration of BAR, this routine will return a different
405/// scope. The scope S will be the scope of the unnamed enumeration
406/// within S6. In C++, this routine will return the scope associated
407/// with S6, because the enumeration's scope is a transparent
408/// context but structures can contain non-field names. In C, this
409/// routine will return the translation unit scope, since the
410/// enumeration's scope is a transparent context and structures cannot
411/// contain non-field names.
412Scope *Sema::getNonFieldDeclScope(Scope *S) {
413  while (((S->getFlags() & Scope::DeclScope) == 0) ||
414         (S->getEntity() &&
415          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
416         (S->isClassScope() && !getLangOptions().CPlusPlus))
417    S = S->getParent();
418  return S;
419}
420
421void Sema::InitBuiltinVaListType() {
422  if (!Context.getBuiltinVaListType().isNull())
423    return;
424
425  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
426  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
427  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
428  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
429}
430
431/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
432/// file scope.  lazily create a decl for it. ForRedeclaration is true
433/// if we're creating this built-in in anticipation of redeclaring the
434/// built-in.
435NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
436                                     Scope *S, bool ForRedeclaration,
437                                     SourceLocation Loc) {
438  Builtin::ID BID = (Builtin::ID)bid;
439
440  if (Context.BuiltinInfo.hasVAListUse(BID))
441    InitBuiltinVaListType();
442
443  ASTContext::GetBuiltinTypeError Error;
444  QualType R = Context.GetBuiltinType(BID, Error);
445  switch (Error) {
446  case ASTContext::GE_None:
447    // Okay
448    break;
449
450  case ASTContext::GE_Missing_FILE:
451    if (ForRedeclaration)
452      Diag(Loc, diag::err_implicit_decl_requires_stdio)
453        << Context.BuiltinInfo.GetName(BID);
454    return 0;
455  }
456
457  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
458    Diag(Loc, diag::ext_implicit_lib_function_decl)
459      << Context.BuiltinInfo.GetName(BID)
460      << R;
461    if (Context.BuiltinInfo.getHeaderName(BID) &&
462        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
463          != Diagnostic::Ignored)
464      Diag(Loc, diag::note_please_include_header)
465        << Context.BuiltinInfo.getHeaderName(BID)
466        << Context.BuiltinInfo.GetName(BID);
467  }
468
469  FunctionDecl *New = FunctionDecl::Create(Context,
470                                           Context.getTranslationUnitDecl(),
471                                           Loc, II, R,
472                                           FunctionDecl::Extern, false,
473                                           /*hasPrototype=*/true);
474  New->setImplicit();
475
476  // Create Decl objects for each parameter, adding them to the
477  // FunctionDecl.
478  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
479    llvm::SmallVector<ParmVarDecl*, 16> Params;
480    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
481      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
482                                           FT->getArgType(i), VarDecl::None, 0));
483    New->setParams(Context, Params.data(), Params.size());
484  }
485
486  AddKnownFunctionAttributes(New);
487
488  // TUScope is the translation-unit scope to insert this function into.
489  // FIXME: This is hideous. We need to teach PushOnScopeChains to
490  // relate Scopes to DeclContexts, and probably eliminate CurContext
491  // entirely, but we're not there yet.
492  DeclContext *SavedContext = CurContext;
493  CurContext = Context.getTranslationUnitDecl();
494  PushOnScopeChains(New, TUScope);
495  CurContext = SavedContext;
496  return New;
497}
498
499/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
500/// everything from the standard library is defined.
501NamespaceDecl *Sema::GetStdNamespace() {
502  if (!StdNamespace) {
503    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
504    DeclContext *Global = Context.getTranslationUnitDecl();
505    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
506    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
507  }
508  return StdNamespace;
509}
510
511/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
512/// same name and scope as a previous declaration 'Old'.  Figure out
513/// how to resolve this situation, merging decls or emitting
514/// diagnostics as appropriate. If there was an error, set New to be invalid.
515///
516void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
517  // If either decl is known invalid already, set the new one to be invalid and
518  // don't bother doing any merging checks.
519  if (New->isInvalidDecl() || OldD->isInvalidDecl())
520    return New->setInvalidDecl();
521
522  // Allow multiple definitions for ObjC built-in typedefs.
523  // FIXME: Verify the underlying types are equivalent!
524  if (getLangOptions().ObjC1) {
525    const IdentifierInfo *TypeID = New->getIdentifier();
526    switch (TypeID->getLength()) {
527    default: break;
528    case 2:
529      if (!TypeID->isStr("id"))
530        break;
531      // Install the built-in type for 'id', ignoring the current definition.
532      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
533      return;
534    case 5:
535      if (!TypeID->isStr("Class"))
536        break;
537      // Install the built-in type for 'Class', ignoring the current definition.
538      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
539      return;
540    case 3:
541      if (!TypeID->isStr("SEL"))
542        break;
543      Context.setObjCSelType(Context.getTypeDeclType(New));
544      return;
545    case 8:
546      if (!TypeID->isStr("Protocol"))
547        break;
548      Context.setObjCProtoType(New->getUnderlyingType());
549      return;
550    }
551    // Fall through - the typedef name was not a builtin type.
552  }
553  // Verify the old decl was also a type.
554  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
555  if (!Old) {
556    Diag(New->getLocation(), diag::err_redefinition_different_kind)
557      << New->getDeclName();
558    if (OldD->getLocation().isValid())
559      Diag(OldD->getLocation(), diag::note_previous_definition);
560    return New->setInvalidDecl();
561  }
562
563  // Determine the "old" type we'll use for checking and diagnostics.
564  QualType OldType;
565  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
566    OldType = OldTypedef->getUnderlyingType();
567  else
568    OldType = Context.getTypeDeclType(Old);
569
570  // If the typedef types are not identical, reject them in all languages and
571  // with any extensions enabled.
572
573  if (OldType != New->getUnderlyingType() &&
574      Context.getCanonicalType(OldType) !=
575      Context.getCanonicalType(New->getUnderlyingType())) {
576    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
577      << New->getUnderlyingType() << OldType;
578    if (Old->getLocation().isValid())
579      Diag(Old->getLocation(), diag::note_previous_definition);
580    return New->setInvalidDecl();
581  }
582
583  if (getLangOptions().Microsoft)
584    return;
585
586  // C++ [dcl.typedef]p2:
587  //   In a given non-class scope, a typedef specifier can be used to
588  //   redefine the name of any type declared in that scope to refer
589  //   to the type to which it already refers.
590  if (getLangOptions().CPlusPlus) {
591    if (!isa<CXXRecordDecl>(CurContext))
592      return;
593    Diag(New->getLocation(), diag::err_redefinition)
594      << New->getDeclName();
595    Diag(Old->getLocation(), diag::note_previous_definition);
596    return New->setInvalidDecl();
597  }
598
599  // If we have a redefinition of a typedef in C, emit a warning.  This warning
600  // is normally mapped to an error, but can be controlled with
601  // -Wtypedef-redefinition.  If either the original or the redefinition is
602  // in a system header, don't emit this for compatibility with GCC.
603  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
604      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
605       Context.getSourceManager().isInSystemHeader(New->getLocation())))
606    return;
607
608  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
609    << New->getDeclName();
610  Diag(Old->getLocation(), diag::note_previous_definition);
611  return;
612}
613
614/// DeclhasAttr - returns true if decl Declaration already has the target
615/// attribute.
616static bool
617DeclHasAttr(const Decl *decl, const Attr *target) {
618  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
619    if (attr->getKind() == target->getKind())
620      return true;
621
622  return false;
623}
624
625/// MergeAttributes - append attributes from the Old decl to the New one.
626static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
627  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
628    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
629      Attr *NewAttr = attr->clone(C);
630      NewAttr->setInherited(true);
631      New->addAttr(NewAttr);
632    }
633  }
634}
635
636/// Used in MergeFunctionDecl to keep track of function parameters in
637/// C.
638struct GNUCompatibleParamWarning {
639  ParmVarDecl *OldParm;
640  ParmVarDecl *NewParm;
641  QualType PromotedType;
642};
643
644/// MergeFunctionDecl - We just parsed a function 'New' from
645/// declarator D which has the same name and scope as a previous
646/// declaration 'Old'.  Figure out how to resolve this situation,
647/// merging decls or emitting diagnostics as appropriate.
648///
649/// In C++, New and Old must be declarations that are not
650/// overloaded. Use IsOverload to determine whether New and Old are
651/// overloaded, and to select the Old declaration that New should be
652/// merged with.
653///
654/// Returns true if there was an error, false otherwise.
655bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
656  assert(!isa<OverloadedFunctionDecl>(OldD) &&
657         "Cannot merge with an overloaded function declaration");
658
659  // Verify the old decl was also a function.
660  FunctionDecl *Old = 0;
661  if (FunctionTemplateDecl *OldFunctionTemplate
662        = dyn_cast<FunctionTemplateDecl>(OldD))
663    Old = OldFunctionTemplate->getTemplatedDecl();
664  else
665    Old = dyn_cast<FunctionDecl>(OldD);
666  if (!Old) {
667    Diag(New->getLocation(), diag::err_redefinition_different_kind)
668      << New->getDeclName();
669    Diag(OldD->getLocation(), diag::note_previous_definition);
670    return true;
671  }
672
673  // Determine whether the previous declaration was a definition,
674  // implicit declaration, or a declaration.
675  diag::kind PrevDiag;
676  if (Old->isThisDeclarationADefinition())
677    PrevDiag = diag::note_previous_definition;
678  else if (Old->isImplicit())
679    PrevDiag = diag::note_previous_implicit_declaration;
680  else
681    PrevDiag = diag::note_previous_declaration;
682
683  QualType OldQType = Context.getCanonicalType(Old->getType());
684  QualType NewQType = Context.getCanonicalType(New->getType());
685
686  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
687      New->getStorageClass() == FunctionDecl::Static &&
688      Old->getStorageClass() != FunctionDecl::Static) {
689    Diag(New->getLocation(), diag::err_static_non_static)
690      << New;
691    Diag(Old->getLocation(), PrevDiag);
692    return true;
693  }
694
695  if (getLangOptions().CPlusPlus) {
696    // (C++98 13.1p2):
697    //   Certain function declarations cannot be overloaded:
698    //     -- Function declarations that differ only in the return type
699    //        cannot be overloaded.
700    QualType OldReturnType
701      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
702    QualType NewReturnType
703      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
704    if (OldReturnType != NewReturnType) {
705      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
706      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
707      return true;
708    }
709
710    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
711    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
712    if (OldMethod && NewMethod &&
713        NewMethod->getLexicalDeclContext()->isRecord()) {
714      //    -- Member function declarations with the same name and the
715      //       same parameter types cannot be overloaded if any of them
716      //       is a static member function declaration.
717      if (OldMethod->isStatic() || NewMethod->isStatic()) {
718        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
719        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
720        return true;
721      }
722
723      // C++ [class.mem]p1:
724      //   [...] A member shall not be declared twice in the
725      //   member-specification, except that a nested class or member
726      //   class template can be declared and then later defined.
727      unsigned NewDiag;
728      if (isa<CXXConstructorDecl>(OldMethod))
729        NewDiag = diag::err_constructor_redeclared;
730      else if (isa<CXXDestructorDecl>(NewMethod))
731        NewDiag = diag::err_destructor_redeclared;
732      else if (isa<CXXConversionDecl>(NewMethod))
733        NewDiag = diag::err_conv_function_redeclared;
734      else
735        NewDiag = diag::err_member_redeclared;
736
737      Diag(New->getLocation(), NewDiag);
738      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
739    }
740
741    // (C++98 8.3.5p3):
742    //   All declarations for a function shall agree exactly in both the
743    //   return type and the parameter-type-list.
744    if (OldQType == NewQType)
745      return MergeCompatibleFunctionDecls(New, Old);
746
747    // Fall through for conflicting redeclarations and redefinitions.
748  }
749
750  // C: Function types need to be compatible, not identical. This handles
751  // duplicate function decls like "void f(int); void f(enum X);" properly.
752  if (!getLangOptions().CPlusPlus &&
753      Context.typesAreCompatible(OldQType, NewQType)) {
754    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
755    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
756    const FunctionProtoType *OldProto = 0;
757    if (isa<FunctionNoProtoType>(NewFuncType) &&
758        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
759      // The old declaration provided a function prototype, but the
760      // new declaration does not. Merge in the prototype.
761      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
762      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
763                                                 OldProto->arg_type_end());
764      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
765                                         ParamTypes.data(), ParamTypes.size(),
766                                         OldProto->isVariadic(),
767                                         OldProto->getTypeQuals());
768      New->setType(NewQType);
769      New->setHasInheritedPrototype();
770
771      // Synthesize a parameter for each argument type.
772      llvm::SmallVector<ParmVarDecl*, 16> Params;
773      for (FunctionProtoType::arg_type_iterator
774             ParamType = OldProto->arg_type_begin(),
775             ParamEnd = OldProto->arg_type_end();
776           ParamType != ParamEnd; ++ParamType) {
777        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
778                                                 SourceLocation(), 0,
779                                                 *ParamType, VarDecl::None,
780                                                 0);
781        Param->setImplicit();
782        Params.push_back(Param);
783      }
784
785      New->setParams(Context, Params.data(), Params.size());
786    }
787
788    return MergeCompatibleFunctionDecls(New, Old);
789  }
790
791  // GNU C permits a K&R definition to follow a prototype declaration
792  // if the declared types of the parameters in the K&R definition
793  // match the types in the prototype declaration, even when the
794  // promoted types of the parameters from the K&R definition differ
795  // from the types in the prototype. GCC then keeps the types from
796  // the prototype.
797  //
798  // If a variadic prototype is followed by a non-variadic K&R definition,
799  // the K&R definition becomes variadic.  This is sort of an edge case, but
800  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
801  // C99 6.9.1p8.
802  if (!getLangOptions().CPlusPlus &&
803      Old->hasPrototype() && !New->hasPrototype() &&
804      New->getType()->getAsFunctionProtoType() &&
805      Old->getNumParams() == New->getNumParams()) {
806    llvm::SmallVector<QualType, 16> ArgTypes;
807    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
808    const FunctionProtoType *OldProto
809      = Old->getType()->getAsFunctionProtoType();
810    const FunctionProtoType *NewProto
811      = New->getType()->getAsFunctionProtoType();
812
813    // Determine whether this is the GNU C extension.
814    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
815                                               NewProto->getResultType());
816    bool LooseCompatible = !MergedReturn.isNull();
817    for (unsigned Idx = 0, End = Old->getNumParams();
818         LooseCompatible && Idx != End; ++Idx) {
819      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
820      ParmVarDecl *NewParm = New->getParamDecl(Idx);
821      if (Context.typesAreCompatible(OldParm->getType(),
822                                     NewProto->getArgType(Idx))) {
823        ArgTypes.push_back(NewParm->getType());
824      } else if (Context.typesAreCompatible(OldParm->getType(),
825                                            NewParm->getType())) {
826        GNUCompatibleParamWarning Warn
827          = { OldParm, NewParm, NewProto->getArgType(Idx) };
828        Warnings.push_back(Warn);
829        ArgTypes.push_back(NewParm->getType());
830      } else
831        LooseCompatible = false;
832    }
833
834    if (LooseCompatible) {
835      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
836        Diag(Warnings[Warn].NewParm->getLocation(),
837             diag::ext_param_promoted_not_compatible_with_prototype)
838          << Warnings[Warn].PromotedType
839          << Warnings[Warn].OldParm->getType();
840        Diag(Warnings[Warn].OldParm->getLocation(),
841             diag::note_previous_declaration);
842      }
843
844      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
845                                           ArgTypes.size(),
846                                           OldProto->isVariadic(), 0));
847      return MergeCompatibleFunctionDecls(New, Old);
848    }
849
850    // Fall through to diagnose conflicting types.
851  }
852
853  // A function that has already been declared has been redeclared or defined
854  // with a different type- show appropriate diagnostic
855  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
856    // The user has declared a builtin function with an incompatible
857    // signature.
858    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
859      // The function the user is redeclaring is a library-defined
860      // function like 'malloc' or 'printf'. Warn about the
861      // redeclaration, then pretend that we don't know about this
862      // library built-in.
863      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
864      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
865        << Old << Old->getType();
866      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
867      Old->setInvalidDecl();
868      return false;
869    }
870
871    PrevDiag = diag::note_previous_builtin_declaration;
872  }
873
874  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
875  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
876  return true;
877}
878
879/// \brief Completes the merge of two function declarations that are
880/// known to be compatible.
881///
882/// This routine handles the merging of attributes and other
883/// properties of function declarations form the old declaration to
884/// the new declaration, once we know that New is in fact a
885/// redeclaration of Old.
886///
887/// \returns false
888bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
889  // Merge the attributes
890  MergeAttributes(New, Old, Context);
891
892  // Merge the storage class.
893  if (Old->getStorageClass() != FunctionDecl::Extern)
894    New->setStorageClass(Old->getStorageClass());
895
896  // Merge "inline"
897  if (Old->isInline())
898    New->setInline(true);
899
900  // If this function declaration by itself qualifies as a C99 inline
901  // definition (C99 6.7.4p6), but the previous definition did not,
902  // then the function is not a C99 inline definition.
903  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
904    New->setC99InlineDefinition(false);
905  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
906    // Mark all preceding definitions as not being C99 inline definitions.
907    for (const FunctionDecl *Prev = Old; Prev;
908         Prev = Prev->getPreviousDeclaration())
909      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
910  }
911
912  // Merge "pure" flag.
913  if (Old->isPure())
914    New->setPure();
915
916  // Merge the "deleted" flag.
917  if (Old->isDeleted())
918    New->setDeleted();
919
920  if (getLangOptions().CPlusPlus)
921    return MergeCXXFunctionDecl(New, Old);
922
923  return false;
924}
925
926/// MergeVarDecl - We just parsed a variable 'New' which has the same name
927/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
928/// situation, merging decls or emitting diagnostics as appropriate.
929///
930/// Tentative definition rules (C99 6.9.2p2) are checked by
931/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
932/// definitions here, since the initializer hasn't been attached.
933///
934void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
935  // If either decl is invalid, make sure the new one is marked invalid and
936  // don't do any other checking.
937  if (New->isInvalidDecl() || OldD->isInvalidDecl())
938    return New->setInvalidDecl();
939
940  // Verify the old decl was also a variable.
941  VarDecl *Old = dyn_cast<VarDecl>(OldD);
942  if (!Old) {
943    Diag(New->getLocation(), diag::err_redefinition_different_kind)
944      << New->getDeclName();
945    Diag(OldD->getLocation(), diag::note_previous_definition);
946    return New->setInvalidDecl();
947  }
948
949  MergeAttributes(New, Old, Context);
950
951  // Merge the types
952  QualType MergedT;
953  if (getLangOptions().CPlusPlus) {
954    if (Context.hasSameType(New->getType(), Old->getType()))
955      MergedT = New->getType();
956  } else {
957    MergedT = Context.mergeTypes(New->getType(), Old->getType());
958  }
959  if (MergedT.isNull()) {
960    Diag(New->getLocation(), diag::err_redefinition_different_type)
961      << New->getDeclName();
962    Diag(Old->getLocation(), diag::note_previous_definition);
963    return New->setInvalidDecl();
964  }
965  New->setType(MergedT);
966
967  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
968  if (New->getStorageClass() == VarDecl::Static &&
969      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
970    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
971    Diag(Old->getLocation(), diag::note_previous_definition);
972    return New->setInvalidDecl();
973  }
974  // C99 6.2.2p4:
975  //   For an identifier declared with the storage-class specifier
976  //   extern in a scope in which a prior declaration of that
977  //   identifier is visible,23) if the prior declaration specifies
978  //   internal or external linkage, the linkage of the identifier at
979  //   the later declaration is the same as the linkage specified at
980  //   the prior declaration. If no prior declaration is visible, or
981  //   if the prior declaration specifies no linkage, then the
982  //   identifier has external linkage.
983  if (New->hasExternalStorage() && Old->hasLinkage())
984    /* Okay */;
985  else if (New->getStorageClass() != VarDecl::Static &&
986           Old->getStorageClass() == VarDecl::Static) {
987    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991
992  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
993
994  // FIXME: The test for external storage here seems wrong? We still
995  // need to check for mismatches.
996  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
997      // Don't complain about out-of-line definitions of static members.
998      !(Old->getLexicalDeclContext()->isRecord() &&
999        !New->getLexicalDeclContext()->isRecord())) {
1000    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002    return New->setInvalidDecl();
1003  }
1004
1005  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1006    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1009    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1010    Diag(Old->getLocation(), diag::note_previous_definition);
1011  }
1012
1013  // Keep a chain of previous declarations.
1014  New->setPreviousDeclaration(Old);
1015}
1016
1017Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1018  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1019
1020  // FIXME: They should never return 0, fix that, delete this code.
1021  if (cfg == 0)
1022    return NeverFallThrough;
1023  // The CFG leaves in dead things, run a simple mark and sweep on it
1024  // to weed out the trivially dead things.
1025  std::queue<CFGBlock*> workq;
1026  llvm::OwningArrayPtr<char> live(new char[cfg->getNumBlockIDs()]);
1027  // Prep work queue
1028  workq.push(&cfg->getEntry());
1029  // Solve
1030  while (!workq.empty()) {
1031    CFGBlock *item = workq.front();
1032    workq.pop();
1033    live[item->getBlockID()] = 1;
1034    CFGBlock::succ_iterator i;
1035    for (i=item->succ_begin(); i != item->succ_end(); ++i) {
1036      if ((*i) && ! live[(*i)->getBlockID()]) {
1037        live[(*i)->getBlockID()] = 1;
1038        workq.push(*i);
1039      }
1040    }
1041  }
1042
1043  CFGBlock::succ_iterator i;
1044  bool HasLiveReturn = false;
1045  bool HasFakeEdge = false;
1046  bool HasPlainEdge = false;
1047  for (i=cfg->getExit().pred_begin(); i != cfg->getExit().pred_end(); ++i) {
1048    if (!live[(*i)->getBlockID()])
1049      continue;
1050    if ((*i)->size() == 0) {
1051      // A labeled empty statement, or the entry block...
1052      HasPlainEdge = true;
1053      continue;
1054    }
1055    Stmt *S = (**i)[(*i)->size()-1];
1056    if (isa<ReturnStmt>(S)) {
1057      HasLiveReturn = true;
1058      continue;
1059    }
1060    if (isa<ObjCAtThrowStmt>(S)) {
1061      HasFakeEdge = true;
1062      continue;
1063    }
1064    if (isa<CXXThrowExpr>(S)) {
1065      HasFakeEdge = true;
1066      continue;
1067    }
1068    bool NoReturnEdge = false;
1069    if (CallExpr *C = dyn_cast<CallExpr>(S))
1070      {
1071        Expr *CEE = C->getCallee()->IgnoreParenCasts();
1072        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1073          if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1074            if (FD->hasAttr<NoReturnAttr>()) {
1075              NoReturnEdge = true;
1076              HasFakeEdge = true;
1077            }
1078          }
1079        }
1080      }
1081    if (NoReturnEdge == false)
1082      HasPlainEdge = true;
1083  }
1084  if (HasPlainEdge) {
1085    if (HasFakeEdge|HasLiveReturn)
1086      return MaybeFallThrough;
1087    // This says never for calls to functions that are not marked noreturn, that
1088    // don't return.  For people that don't like this, we encourage marking the
1089    // functions as noreturn.
1090    return AlwaysFallThrough;
1091  }
1092  return NeverFallThrough;
1093}
1094
1095/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1096/// function that should return a value.
1097///
1098/// \returns Never iff we can never alter control flow (we always fall off the
1099/// end of the statement, Conditional iff we might or might not alter
1100/// control-flow and Always iff we always alter control flow (we never fall off
1101/// the end of the statement).
1102void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1103  // FIXME: Would be nice if we had a better way to control cascding errors, but
1104  // for now, avoid them.
1105  if (getDiagnostics().hasErrorOccurred())
1106    return;
1107  if (Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1108      == Diagnostic::Ignored)
1109    return;
1110  // FIXME: Funtion try block
1111  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1112    switch (CheckFallThrough(Body)) {
1113    case MaybeFallThrough:
1114      Diag(Compound->getRBracLoc(), diag::warn_maybe_falloff_nonvoid_function);
1115      break;
1116    case AlwaysFallThrough:
1117      Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1118      break;
1119    case NeverFallThrough:
1120      break;
1121    }
1122  }
1123}
1124
1125/// CheckParmsForFunctionDef - Check that the parameters of the given
1126/// function are appropriate for the definition of a function. This
1127/// takes care of any checks that cannot be performed on the
1128/// declaration itself, e.g., that the types of each of the function
1129/// parameters are complete.
1130bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1131  bool HasInvalidParm = false;
1132  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1133    ParmVarDecl *Param = FD->getParamDecl(p);
1134
1135    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1136    // function declarator that is part of a function definition of
1137    // that function shall not have incomplete type.
1138    //
1139    // This is also C++ [dcl.fct]p6.
1140    if (!Param->isInvalidDecl() &&
1141        RequireCompleteType(Param->getLocation(), Param->getType(),
1142                               diag::err_typecheck_decl_incomplete_type)) {
1143      Param->setInvalidDecl();
1144      HasInvalidParm = true;
1145    }
1146
1147    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1148    // declaration of each parameter shall include an identifier.
1149    if (Param->getIdentifier() == 0 &&
1150        !Param->isImplicit() &&
1151        !getLangOptions().CPlusPlus)
1152      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1153  }
1154
1155  return HasInvalidParm;
1156}
1157
1158/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1159/// no declarator (e.g. "struct foo;") is parsed.
1160Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1161  // FIXME: Error on auto/register at file scope
1162  // FIXME: Error on inline/virtual/explicit
1163  // FIXME: Error on invalid restrict
1164  // FIXME: Warn on useless __thread
1165  // FIXME: Warn on useless const/volatile
1166  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1167  // FIXME: Warn on useless attributes
1168  TagDecl *Tag = 0;
1169  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1170      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1171      DS.getTypeSpecType() == DeclSpec::TST_union ||
1172      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1173    if (!DS.getTypeRep()) // We probably had an error
1174      return DeclPtrTy();
1175
1176    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1177  }
1178
1179  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1180    if (!Record->getDeclName() && Record->isDefinition() &&
1181        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1182      if (getLangOptions().CPlusPlus ||
1183          Record->getDeclContext()->isRecord())
1184        return BuildAnonymousStructOrUnion(S, DS, Record);
1185
1186      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1187        << DS.getSourceRange();
1188    }
1189
1190    // Microsoft allows unnamed struct/union fields. Don't complain
1191    // about them.
1192    // FIXME: Should we support Microsoft's extensions in this area?
1193    if (Record->getDeclName() && getLangOptions().Microsoft)
1194      return DeclPtrTy::make(Tag);
1195  }
1196
1197  if (!DS.isMissingDeclaratorOk() &&
1198      DS.getTypeSpecType() != DeclSpec::TST_error) {
1199    // Warn about typedefs of enums without names, since this is an
1200    // extension in both Microsoft an GNU.
1201    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1202        Tag && isa<EnumDecl>(Tag)) {
1203      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1204        << DS.getSourceRange();
1205      return DeclPtrTy::make(Tag);
1206    }
1207
1208    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1209      << DS.getSourceRange();
1210    return DeclPtrTy();
1211  }
1212
1213  return DeclPtrTy::make(Tag);
1214}
1215
1216/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1217/// anonymous struct or union AnonRecord into the owning context Owner
1218/// and scope S. This routine will be invoked just after we realize
1219/// that an unnamed union or struct is actually an anonymous union or
1220/// struct, e.g.,
1221///
1222/// @code
1223/// union {
1224///   int i;
1225///   float f;
1226/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1227///    // f into the surrounding scope.x
1228/// @endcode
1229///
1230/// This routine is recursive, injecting the names of nested anonymous
1231/// structs/unions into the owning context and scope as well.
1232bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1233                                               RecordDecl *AnonRecord) {
1234  bool Invalid = false;
1235  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1236                               FEnd = AnonRecord->field_end();
1237       F != FEnd; ++F) {
1238    if ((*F)->getDeclName()) {
1239      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1240                                                LookupOrdinaryName, true);
1241      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1242        // C++ [class.union]p2:
1243        //   The names of the members of an anonymous union shall be
1244        //   distinct from the names of any other entity in the
1245        //   scope in which the anonymous union is declared.
1246        unsigned diagKind
1247          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1248                                 : diag::err_anonymous_struct_member_redecl;
1249        Diag((*F)->getLocation(), diagKind)
1250          << (*F)->getDeclName();
1251        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1252        Invalid = true;
1253      } else {
1254        // C++ [class.union]p2:
1255        //   For the purpose of name lookup, after the anonymous union
1256        //   definition, the members of the anonymous union are
1257        //   considered to have been defined in the scope in which the
1258        //   anonymous union is declared.
1259        Owner->makeDeclVisibleInContext(*F);
1260        S->AddDecl(DeclPtrTy::make(*F));
1261        IdResolver.AddDecl(*F);
1262      }
1263    } else if (const RecordType *InnerRecordType
1264                 = (*F)->getType()->getAsRecordType()) {
1265      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1266      if (InnerRecord->isAnonymousStructOrUnion())
1267        Invalid = Invalid ||
1268          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1269    }
1270  }
1271
1272  return Invalid;
1273}
1274
1275/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1276/// anonymous structure or union. Anonymous unions are a C++ feature
1277/// (C++ [class.union]) and a GNU C extension; anonymous structures
1278/// are a GNU C and GNU C++ extension.
1279Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1280                                                  RecordDecl *Record) {
1281  DeclContext *Owner = Record->getDeclContext();
1282
1283  // Diagnose whether this anonymous struct/union is an extension.
1284  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1285    Diag(Record->getLocation(), diag::ext_anonymous_union);
1286  else if (!Record->isUnion())
1287    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1288
1289  // C and C++ require different kinds of checks for anonymous
1290  // structs/unions.
1291  bool Invalid = false;
1292  if (getLangOptions().CPlusPlus) {
1293    const char* PrevSpec = 0;
1294    // C++ [class.union]p3:
1295    //   Anonymous unions declared in a named namespace or in the
1296    //   global namespace shall be declared static.
1297    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1298        (isa<TranslationUnitDecl>(Owner) ||
1299         (isa<NamespaceDecl>(Owner) &&
1300          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1301      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1302      Invalid = true;
1303
1304      // Recover by adding 'static'.
1305      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1306    }
1307    // C++ [class.union]p3:
1308    //   A storage class is not allowed in a declaration of an
1309    //   anonymous union in a class scope.
1310    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1311             isa<RecordDecl>(Owner)) {
1312      Diag(DS.getStorageClassSpecLoc(),
1313           diag::err_anonymous_union_with_storage_spec);
1314      Invalid = true;
1315
1316      // Recover by removing the storage specifier.
1317      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1318                             PrevSpec);
1319    }
1320
1321    // C++ [class.union]p2:
1322    //   The member-specification of an anonymous union shall only
1323    //   define non-static data members. [Note: nested types and
1324    //   functions cannot be declared within an anonymous union. ]
1325    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1326                                 MemEnd = Record->decls_end();
1327         Mem != MemEnd; ++Mem) {
1328      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1329        // C++ [class.union]p3:
1330        //   An anonymous union shall not have private or protected
1331        //   members (clause 11).
1332        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1333          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1334            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1335          Invalid = true;
1336        }
1337      } else if ((*Mem)->isImplicit()) {
1338        // Any implicit members are fine.
1339      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1340        // This is a type that showed up in an
1341        // elaborated-type-specifier inside the anonymous struct or
1342        // union, but which actually declares a type outside of the
1343        // anonymous struct or union. It's okay.
1344      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1345        if (!MemRecord->isAnonymousStructOrUnion() &&
1346            MemRecord->getDeclName()) {
1347          // This is a nested type declaration.
1348          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1349            << (int)Record->isUnion();
1350          Invalid = true;
1351        }
1352      } else {
1353        // We have something that isn't a non-static data
1354        // member. Complain about it.
1355        unsigned DK = diag::err_anonymous_record_bad_member;
1356        if (isa<TypeDecl>(*Mem))
1357          DK = diag::err_anonymous_record_with_type;
1358        else if (isa<FunctionDecl>(*Mem))
1359          DK = diag::err_anonymous_record_with_function;
1360        else if (isa<VarDecl>(*Mem))
1361          DK = diag::err_anonymous_record_with_static;
1362        Diag((*Mem)->getLocation(), DK)
1363            << (int)Record->isUnion();
1364          Invalid = true;
1365      }
1366    }
1367  }
1368
1369  if (!Record->isUnion() && !Owner->isRecord()) {
1370    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1371      << (int)getLangOptions().CPlusPlus;
1372    Invalid = true;
1373  }
1374
1375  // Create a declaration for this anonymous struct/union.
1376  NamedDecl *Anon = 0;
1377  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1378    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1379                             /*IdentifierInfo=*/0,
1380                             Context.getTypeDeclType(Record),
1381                             /*BitWidth=*/0, /*Mutable=*/false,
1382                             DS.getSourceRange().getBegin());
1383    Anon->setAccess(AS_public);
1384    if (getLangOptions().CPlusPlus)
1385      FieldCollector->Add(cast<FieldDecl>(Anon));
1386  } else {
1387    VarDecl::StorageClass SC;
1388    switch (DS.getStorageClassSpec()) {
1389    default: assert(0 && "Unknown storage class!");
1390    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1391    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1392    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1393    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1394    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1395    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1396    case DeclSpec::SCS_mutable:
1397      // mutable can only appear on non-static class members, so it's always
1398      // an error here
1399      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1400      Invalid = true;
1401      SC = VarDecl::None;
1402      break;
1403    }
1404
1405    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1406                           /*IdentifierInfo=*/0,
1407                           Context.getTypeDeclType(Record),
1408                           SC, DS.getSourceRange().getBegin());
1409  }
1410  Anon->setImplicit();
1411
1412  // Add the anonymous struct/union object to the current
1413  // context. We'll be referencing this object when we refer to one of
1414  // its members.
1415  Owner->addDecl(Anon);
1416
1417  // Inject the members of the anonymous struct/union into the owning
1418  // context and into the identifier resolver chain for name lookup
1419  // purposes.
1420  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1421    Invalid = true;
1422
1423  // Mark this as an anonymous struct/union type. Note that we do not
1424  // do this until after we have already checked and injected the
1425  // members of this anonymous struct/union type, because otherwise
1426  // the members could be injected twice: once by DeclContext when it
1427  // builds its lookup table, and once by
1428  // InjectAnonymousStructOrUnionMembers.
1429  Record->setAnonymousStructOrUnion(true);
1430
1431  if (Invalid)
1432    Anon->setInvalidDecl();
1433
1434  return DeclPtrTy::make(Anon);
1435}
1436
1437
1438/// GetNameForDeclarator - Determine the full declaration name for the
1439/// given Declarator.
1440DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1441  switch (D.getKind()) {
1442  case Declarator::DK_Abstract:
1443    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1444    return DeclarationName();
1445
1446  case Declarator::DK_Normal:
1447    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1448    return DeclarationName(D.getIdentifier());
1449
1450  case Declarator::DK_Constructor: {
1451    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1452    Ty = Context.getCanonicalType(Ty);
1453    return Context.DeclarationNames.getCXXConstructorName(Ty);
1454  }
1455
1456  case Declarator::DK_Destructor: {
1457    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1458    Ty = Context.getCanonicalType(Ty);
1459    return Context.DeclarationNames.getCXXDestructorName(Ty);
1460  }
1461
1462  case Declarator::DK_Conversion: {
1463    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1464    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1465    Ty = Context.getCanonicalType(Ty);
1466    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1467  }
1468
1469  case Declarator::DK_Operator:
1470    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1471    return Context.DeclarationNames.getCXXOperatorName(
1472                                                D.getOverloadedOperator());
1473  }
1474
1475  assert(false && "Unknown name kind");
1476  return DeclarationName();
1477}
1478
1479/// isNearlyMatchingFunction - Determine whether the C++ functions
1480/// Declaration and Definition are "nearly" matching. This heuristic
1481/// is used to improve diagnostics in the case where an out-of-line
1482/// function definition doesn't match any declaration within
1483/// the class or namespace.
1484static bool isNearlyMatchingFunction(ASTContext &Context,
1485                                     FunctionDecl *Declaration,
1486                                     FunctionDecl *Definition) {
1487  if (Declaration->param_size() != Definition->param_size())
1488    return false;
1489  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1490    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1491    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1492
1493    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1494    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1495    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1496      return false;
1497  }
1498
1499  return true;
1500}
1501
1502Sema::DeclPtrTy
1503Sema::HandleDeclarator(Scope *S, Declarator &D,
1504                       MultiTemplateParamsArg TemplateParamLists,
1505                       bool IsFunctionDefinition) {
1506  DeclarationName Name = GetNameForDeclarator(D);
1507
1508  // All of these full declarators require an identifier.  If it doesn't have
1509  // one, the ParsedFreeStandingDeclSpec action should be used.
1510  if (!Name) {
1511    if (!D.isInvalidType())  // Reject this if we think it is valid.
1512      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1513           diag::err_declarator_need_ident)
1514        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1515    return DeclPtrTy();
1516  }
1517
1518  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1519  // we find one that is.
1520  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1521         (S->getFlags() & Scope::TemplateParamScope) != 0)
1522    S = S->getParent();
1523
1524  DeclContext *DC;
1525  NamedDecl *PrevDecl;
1526  NamedDecl *New;
1527
1528  QualType R = GetTypeForDeclarator(D, S);
1529
1530  // See if this is a redefinition of a variable in the same scope.
1531  if (D.getCXXScopeSpec().isInvalid()) {
1532    DC = CurContext;
1533    PrevDecl = 0;
1534    D.setInvalidType();
1535  } else if (!D.getCXXScopeSpec().isSet()) {
1536    LookupNameKind NameKind = LookupOrdinaryName;
1537
1538    // If the declaration we're planning to build will be a function
1539    // or object with linkage, then look for another declaration with
1540    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1541    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1542      /* Do nothing*/;
1543    else if (R->isFunctionType()) {
1544      if (CurContext->isFunctionOrMethod() ||
1545          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1546        NameKind = LookupRedeclarationWithLinkage;
1547    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1548      NameKind = LookupRedeclarationWithLinkage;
1549    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1550             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1551      NameKind = LookupRedeclarationWithLinkage;
1552
1553    DC = CurContext;
1554    PrevDecl = LookupName(S, Name, NameKind, true,
1555                          NameKind == LookupRedeclarationWithLinkage,
1556                          D.getIdentifierLoc());
1557  } else { // Something like "int foo::x;"
1558    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1559    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1560    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1561
1562    // C++ 7.3.1.2p2:
1563    // Members (including explicit specializations of templates) of a named
1564    // namespace can also be defined outside that namespace by explicit
1565    // qualification of the name being defined, provided that the entity being
1566    // defined was already declared in the namespace and the definition appears
1567    // after the point of declaration in a namespace that encloses the
1568    // declarations namespace.
1569    //
1570    // Note that we only check the context at this point. We don't yet
1571    // have enough information to make sure that PrevDecl is actually
1572    // the declaration we want to match. For example, given:
1573    //
1574    //   class X {
1575    //     void f();
1576    //     void f(float);
1577    //   };
1578    //
1579    //   void X::f(int) { } // ill-formed
1580    //
1581    // In this case, PrevDecl will point to the overload set
1582    // containing the two f's declared in X, but neither of them
1583    // matches.
1584
1585    // First check whether we named the global scope.
1586    if (isa<TranslationUnitDecl>(DC)) {
1587      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1588        << Name << D.getCXXScopeSpec().getRange();
1589    } else if (!CurContext->Encloses(DC)) {
1590      // The qualifying scope doesn't enclose the original declaration.
1591      // Emit diagnostic based on current scope.
1592      SourceLocation L = D.getIdentifierLoc();
1593      SourceRange R = D.getCXXScopeSpec().getRange();
1594      if (isa<FunctionDecl>(CurContext))
1595        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1596      else
1597        Diag(L, diag::err_invalid_declarator_scope)
1598          << Name << cast<NamedDecl>(DC) << R;
1599      D.setInvalidType();
1600    }
1601  }
1602
1603  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1604    // Maybe we will complain about the shadowed template parameter.
1605    if (!D.isInvalidType())
1606      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1607        D.setInvalidType();
1608
1609    // Just pretend that we didn't see the previous declaration.
1610    PrevDecl = 0;
1611  }
1612
1613  // In C++, the previous declaration we find might be a tag type
1614  // (class or enum). In this case, the new declaration will hide the
1615  // tag type. Note that this does does not apply if we're declaring a
1616  // typedef (C++ [dcl.typedef]p4).
1617  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1618      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1619    PrevDecl = 0;
1620
1621  bool Redeclaration = false;
1622  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1623    if (TemplateParamLists.size()) {
1624      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1625      return DeclPtrTy();
1626    }
1627
1628    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1629  } else if (R->isFunctionType()) {
1630    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1631                                  move(TemplateParamLists),
1632                                  IsFunctionDefinition, Redeclaration);
1633  } else {
1634    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1635                                  move(TemplateParamLists),
1636                                  Redeclaration);
1637  }
1638
1639  if (New == 0)
1640    return DeclPtrTy();
1641
1642  // If this has an identifier and is not an invalid redeclaration,
1643  // add it to the scope stack.
1644  if (Name && !(Redeclaration && New->isInvalidDecl()))
1645    PushOnScopeChains(New, S);
1646
1647  return DeclPtrTy::make(New);
1648}
1649
1650/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1651/// types into constant array types in certain situations which would otherwise
1652/// be errors (for GCC compatibility).
1653static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1654                                                    ASTContext &Context,
1655                                                    bool &SizeIsNegative) {
1656  // This method tries to turn a variable array into a constant
1657  // array even when the size isn't an ICE.  This is necessary
1658  // for compatibility with code that depends on gcc's buggy
1659  // constant expression folding, like struct {char x[(int)(char*)2];}
1660  SizeIsNegative = false;
1661
1662  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1663    QualType Pointee = PTy->getPointeeType();
1664    QualType FixedType =
1665        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1666    if (FixedType.isNull()) return FixedType;
1667    FixedType = Context.getPointerType(FixedType);
1668    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1669    return FixedType;
1670  }
1671
1672  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1673  if (!VLATy)
1674    return QualType();
1675  // FIXME: We should probably handle this case
1676  if (VLATy->getElementType()->isVariablyModifiedType())
1677    return QualType();
1678
1679  Expr::EvalResult EvalResult;
1680  if (!VLATy->getSizeExpr() ||
1681      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1682      !EvalResult.Val.isInt())
1683    return QualType();
1684
1685  llvm::APSInt &Res = EvalResult.Val.getInt();
1686  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1687    Expr* ArySizeExpr = VLATy->getSizeExpr();
1688    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1689    // so as to transfer ownership to the ConstantArrayWithExpr.
1690    // Alternatively, we could "clone" it (how?).
1691    // Since we don't know how to do things above, we just use the
1692    // very same Expr*.
1693    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1694                                                Res, ArySizeExpr,
1695                                                ArrayType::Normal, 0,
1696                                                VLATy->getBracketsRange());
1697  }
1698
1699  SizeIsNegative = true;
1700  return QualType();
1701}
1702
1703/// \brief Register the given locally-scoped external C declaration so
1704/// that it can be found later for redeclarations
1705void
1706Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1707                                       Scope *S) {
1708  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1709         "Decl is not a locally-scoped decl!");
1710  // Note that we have a locally-scoped external with this name.
1711  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1712
1713  if (!PrevDecl)
1714    return;
1715
1716  // If there was a previous declaration of this variable, it may be
1717  // in our identifier chain. Update the identifier chain with the new
1718  // declaration.
1719  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1720    // The previous declaration was found on the identifer resolver
1721    // chain, so remove it from its scope.
1722    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1723      S = S->getParent();
1724
1725    if (S)
1726      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1727  }
1728}
1729
1730/// \brief Diagnose function specifiers on a declaration of an identifier that
1731/// does not identify a function.
1732void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1733  // FIXME: We should probably indicate the identifier in question to avoid
1734  // confusion for constructs like "inline int a(), b;"
1735  if (D.getDeclSpec().isInlineSpecified())
1736    Diag(D.getDeclSpec().getInlineSpecLoc(),
1737         diag::err_inline_non_function);
1738
1739  if (D.getDeclSpec().isVirtualSpecified())
1740    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1741         diag::err_virtual_non_function);
1742
1743  if (D.getDeclSpec().isExplicitSpecified())
1744    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1745         diag::err_explicit_non_function);
1746}
1747
1748NamedDecl*
1749Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1750                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1751  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1752  if (D.getCXXScopeSpec().isSet()) {
1753    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1754      << D.getCXXScopeSpec().getRange();
1755    D.setInvalidType();
1756    // Pretend we didn't see the scope specifier.
1757    DC = 0;
1758  }
1759
1760  if (getLangOptions().CPlusPlus) {
1761    // Check that there are no default arguments (C++ only).
1762    CheckExtraCXXDefaultArguments(D);
1763  }
1764
1765  DiagnoseFunctionSpecifiers(D);
1766
1767  if (D.getDeclSpec().isThreadSpecified())
1768    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1769
1770  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1771  if (!NewTD) return 0;
1772
1773  if (D.isInvalidType())
1774    NewTD->setInvalidDecl();
1775
1776  // Handle attributes prior to checking for duplicates in MergeVarDecl
1777  ProcessDeclAttributes(S, NewTD, D);
1778  // Merge the decl with the existing one if appropriate. If the decl is
1779  // in an outer scope, it isn't the same thing.
1780  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1781    Redeclaration = true;
1782    MergeTypeDefDecl(NewTD, PrevDecl);
1783  }
1784
1785  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1786  // then it shall have block scope.
1787  QualType T = NewTD->getUnderlyingType();
1788  if (T->isVariablyModifiedType()) {
1789    CurFunctionNeedsScopeChecking = true;
1790
1791    if (S->getFnParent() == 0) {
1792      bool SizeIsNegative;
1793      QualType FixedTy =
1794          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1795      if (!FixedTy.isNull()) {
1796        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1797        NewTD->setUnderlyingType(FixedTy);
1798      } else {
1799        if (SizeIsNegative)
1800          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1801        else if (T->isVariableArrayType())
1802          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1803        else
1804          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1805        NewTD->setInvalidDecl();
1806      }
1807    }
1808  }
1809
1810  // If this is the C FILE type, notify the AST context.
1811  if (IdentifierInfo *II = NewTD->getIdentifier())
1812    if (!NewTD->isInvalidDecl() &&
1813        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1814        II->isStr("FILE"))
1815      Context.setFILEDecl(NewTD);
1816
1817  return NewTD;
1818}
1819
1820/// \brief Determines whether the given declaration is an out-of-scope
1821/// previous declaration.
1822///
1823/// This routine should be invoked when name lookup has found a
1824/// previous declaration (PrevDecl) that is not in the scope where a
1825/// new declaration by the same name is being introduced. If the new
1826/// declaration occurs in a local scope, previous declarations with
1827/// linkage may still be considered previous declarations (C99
1828/// 6.2.2p4-5, C++ [basic.link]p6).
1829///
1830/// \param PrevDecl the previous declaration found by name
1831/// lookup
1832///
1833/// \param DC the context in which the new declaration is being
1834/// declared.
1835///
1836/// \returns true if PrevDecl is an out-of-scope previous declaration
1837/// for a new delcaration with the same name.
1838static bool
1839isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1840                                ASTContext &Context) {
1841  if (!PrevDecl)
1842    return 0;
1843
1844  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1845  // case we need to check each of the overloaded functions.
1846  if (!PrevDecl->hasLinkage())
1847    return false;
1848
1849  if (Context.getLangOptions().CPlusPlus) {
1850    // C++ [basic.link]p6:
1851    //   If there is a visible declaration of an entity with linkage
1852    //   having the same name and type, ignoring entities declared
1853    //   outside the innermost enclosing namespace scope, the block
1854    //   scope declaration declares that same entity and receives the
1855    //   linkage of the previous declaration.
1856    DeclContext *OuterContext = DC->getLookupContext();
1857    if (!OuterContext->isFunctionOrMethod())
1858      // This rule only applies to block-scope declarations.
1859      return false;
1860    else {
1861      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1862      if (PrevOuterContext->isRecord())
1863        // We found a member function: ignore it.
1864        return false;
1865      else {
1866        // Find the innermost enclosing namespace for the new and
1867        // previous declarations.
1868        while (!OuterContext->isFileContext())
1869          OuterContext = OuterContext->getParent();
1870        while (!PrevOuterContext->isFileContext())
1871          PrevOuterContext = PrevOuterContext->getParent();
1872
1873        // The previous declaration is in a different namespace, so it
1874        // isn't the same function.
1875        if (OuterContext->getPrimaryContext() !=
1876            PrevOuterContext->getPrimaryContext())
1877          return false;
1878      }
1879    }
1880  }
1881
1882  return true;
1883}
1884
1885NamedDecl*
1886Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1887                              QualType R,NamedDecl* PrevDecl,
1888                              MultiTemplateParamsArg TemplateParamLists,
1889                              bool &Redeclaration) {
1890  DeclarationName Name = GetNameForDeclarator(D);
1891
1892  // Check that there are no default arguments (C++ only).
1893  if (getLangOptions().CPlusPlus)
1894    CheckExtraCXXDefaultArguments(D);
1895
1896  VarDecl *NewVD;
1897  VarDecl::StorageClass SC;
1898  switch (D.getDeclSpec().getStorageClassSpec()) {
1899  default: assert(0 && "Unknown storage class!");
1900  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1901  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1902  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1903  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1904  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1905  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1906  case DeclSpec::SCS_mutable:
1907    // mutable can only appear on non-static class members, so it's always
1908    // an error here
1909    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1910    D.setInvalidType();
1911    SC = VarDecl::None;
1912    break;
1913  }
1914
1915  IdentifierInfo *II = Name.getAsIdentifierInfo();
1916  if (!II) {
1917    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1918      << Name.getAsString();
1919    return 0;
1920  }
1921
1922  DiagnoseFunctionSpecifiers(D);
1923
1924  if (!DC->isRecord() && S->getFnParent() == 0) {
1925    // C99 6.9p2: The storage-class specifiers auto and register shall not
1926    // appear in the declaration specifiers in an external declaration.
1927    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1928
1929      // If this is a register variable with an asm label specified, then this
1930      // is a GNU extension.
1931      if (SC == VarDecl::Register && D.getAsmLabel())
1932        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1933      else
1934        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1935      D.setInvalidType();
1936    }
1937  }
1938  if (DC->isRecord() && !CurContext->isRecord()) {
1939    // This is an out-of-line definition of a static data member.
1940    if (SC == VarDecl::Static) {
1941      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1942           diag::err_static_out_of_line)
1943        << CodeModificationHint::CreateRemoval(
1944                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1945    } else if (SC == VarDecl::None)
1946      SC = VarDecl::Static;
1947  }
1948  if (SC == VarDecl::Static) {
1949    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1950      if (RD->isLocalClass())
1951        Diag(D.getIdentifierLoc(),
1952             diag::err_static_data_member_not_allowed_in_local_class)
1953          << Name << RD->getDeclName();
1954    }
1955  }
1956
1957  // Check that we can declare a template here.
1958  if (TemplateParamLists.size() &&
1959      CheckTemplateDeclScope(S, TemplateParamLists))
1960    return 0;
1961
1962  // Match up the template parameter lists with the scope specifier, then
1963  // determine whether we have a template or a template specialization.
1964  if (TemplateParameterList *TemplateParams
1965      = MatchTemplateParametersToScopeSpecifier(
1966                                  D.getDeclSpec().getSourceRange().getBegin(),
1967                                                D.getCXXScopeSpec(),
1968                        (TemplateParameterList**)TemplateParamLists.get(),
1969                                                 TemplateParamLists.size())) {
1970    if (TemplateParams->size() > 0) {
1971      // There is no such thing as a variable template.
1972      Diag(D.getIdentifierLoc(), diag::err_template_variable)
1973        << II
1974        << SourceRange(TemplateParams->getTemplateLoc(),
1975                       TemplateParams->getRAngleLoc());
1976      return 0;
1977    } else {
1978      // There is an extraneous 'template<>' for this variable. Complain
1979      // about it, but allow the declaration of the variable.
1980      Diag(TemplateParams->getTemplateLoc(),
1981           diag::err_template_variable_noparams)
1982        << II
1983        << SourceRange(TemplateParams->getTemplateLoc(),
1984                       TemplateParams->getRAngleLoc());
1985    }
1986  }
1987
1988  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1989                          II, R, SC,
1990                          // FIXME: Move to DeclGroup...
1991                          D.getDeclSpec().getSourceRange().getBegin());
1992
1993  if (D.isInvalidType())
1994    NewVD->setInvalidDecl();
1995
1996  if (D.getDeclSpec().isThreadSpecified()) {
1997    if (NewVD->hasLocalStorage())
1998      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1999    else if (!Context.Target.isTLSSupported())
2000      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2001    else
2002      NewVD->setThreadSpecified(true);
2003  }
2004
2005  // Set the lexical context. If the declarator has a C++ scope specifier, the
2006  // lexical context will be different from the semantic context.
2007  NewVD->setLexicalDeclContext(CurContext);
2008
2009  // Handle attributes prior to checking for duplicates in MergeVarDecl
2010  ProcessDeclAttributes(S, NewVD, D);
2011
2012  // Handle GNU asm-label extension (encoded as an attribute).
2013  if (Expr *E = (Expr*) D.getAsmLabel()) {
2014    // The parser guarantees this is a string.
2015    StringLiteral *SE = cast<StringLiteral>(E);
2016    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2017                                                        SE->getByteLength())));
2018  }
2019
2020  // If name lookup finds a previous declaration that is not in the
2021  // same scope as the new declaration, this may still be an
2022  // acceptable redeclaration.
2023  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2024      !(NewVD->hasLinkage() &&
2025        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2026    PrevDecl = 0;
2027
2028  // Merge the decl with the existing one if appropriate.
2029  if (PrevDecl) {
2030    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2031      // The user tried to define a non-static data member
2032      // out-of-line (C++ [dcl.meaning]p1).
2033      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2034        << D.getCXXScopeSpec().getRange();
2035      PrevDecl = 0;
2036      NewVD->setInvalidDecl();
2037    }
2038  } else if (D.getCXXScopeSpec().isSet()) {
2039    // No previous declaration in the qualifying scope.
2040    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2041      << Name << D.getCXXScopeSpec().getRange();
2042    NewVD->setInvalidDecl();
2043  }
2044
2045  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2046
2047  // If this is a locally-scoped extern C variable, update the map of
2048  // such variables.
2049  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2050      !NewVD->isInvalidDecl())
2051    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2052
2053  return NewVD;
2054}
2055
2056/// \brief Perform semantic checking on a newly-created variable
2057/// declaration.
2058///
2059/// This routine performs all of the type-checking required for a
2060/// variable declaration once it has been built. It is used both to
2061/// check variables after they have been parsed and their declarators
2062/// have been translated into a declaration, and to check variables
2063/// that have been instantiated from a template.
2064///
2065/// Sets NewVD->isInvalidDecl() if an error was encountered.
2066void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2067                                    bool &Redeclaration) {
2068  // If the decl is already known invalid, don't check it.
2069  if (NewVD->isInvalidDecl())
2070    return;
2071
2072  QualType T = NewVD->getType();
2073
2074  if (T->isObjCInterfaceType()) {
2075    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2076    return NewVD->setInvalidDecl();
2077  }
2078
2079  // The variable can not have an abstract class type.
2080  if (RequireNonAbstractType(NewVD->getLocation(), T,
2081                             diag::err_abstract_type_in_decl,
2082                             AbstractVariableType))
2083    return NewVD->setInvalidDecl();
2084
2085  // Emit an error if an address space was applied to decl with local storage.
2086  // This includes arrays of objects with address space qualifiers, but not
2087  // automatic variables that point to other address spaces.
2088  // ISO/IEC TR 18037 S5.1.2
2089  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2090    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2091    return NewVD->setInvalidDecl();
2092  }
2093
2094  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2095      && !NewVD->hasAttr<BlocksAttr>())
2096    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2097
2098  bool isVM = T->isVariablyModifiedType();
2099  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2100      NewVD->hasAttr<BlocksAttr>())
2101    CurFunctionNeedsScopeChecking = true;
2102
2103  if ((isVM && NewVD->hasLinkage()) ||
2104      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2105    bool SizeIsNegative;
2106    QualType FixedTy =
2107        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2108
2109    if (FixedTy.isNull() && T->isVariableArrayType()) {
2110      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2111      // FIXME: This won't give the correct result for
2112      // int a[10][n];
2113      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2114
2115      if (NewVD->isFileVarDecl())
2116        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2117        << SizeRange;
2118      else if (NewVD->getStorageClass() == VarDecl::Static)
2119        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2120        << SizeRange;
2121      else
2122        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2123        << SizeRange;
2124      return NewVD->setInvalidDecl();
2125    }
2126
2127    if (FixedTy.isNull()) {
2128      if (NewVD->isFileVarDecl())
2129        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2130      else
2131        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2132      return NewVD->setInvalidDecl();
2133    }
2134
2135    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2136    NewVD->setType(FixedTy);
2137  }
2138
2139  if (!PrevDecl && NewVD->isExternC(Context)) {
2140    // Since we did not find anything by this name and we're declaring
2141    // an extern "C" variable, look for a non-visible extern "C"
2142    // declaration with the same name.
2143    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2144      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2145    if (Pos != LocallyScopedExternalDecls.end())
2146      PrevDecl = Pos->second;
2147  }
2148
2149  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2150    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2151      << T;
2152    return NewVD->setInvalidDecl();
2153  }
2154
2155  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2156    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2157    return NewVD->setInvalidDecl();
2158  }
2159
2160  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2161    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2162    return NewVD->setInvalidDecl();
2163  }
2164
2165  if (PrevDecl) {
2166    Redeclaration = true;
2167    MergeVarDecl(NewVD, PrevDecl);
2168  }
2169}
2170
2171NamedDecl*
2172Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2173                              QualType R, NamedDecl* PrevDecl,
2174                              MultiTemplateParamsArg TemplateParamLists,
2175                              bool IsFunctionDefinition, bool &Redeclaration) {
2176  assert(R.getTypePtr()->isFunctionType());
2177
2178  DeclarationName Name = GetNameForDeclarator(D);
2179  FunctionDecl::StorageClass SC = FunctionDecl::None;
2180  switch (D.getDeclSpec().getStorageClassSpec()) {
2181  default: assert(0 && "Unknown storage class!");
2182  case DeclSpec::SCS_auto:
2183  case DeclSpec::SCS_register:
2184  case DeclSpec::SCS_mutable:
2185    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2186         diag::err_typecheck_sclass_func);
2187    D.setInvalidType();
2188    break;
2189  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2190  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2191  case DeclSpec::SCS_static: {
2192    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2193      // C99 6.7.1p5:
2194      //   The declaration of an identifier for a function that has
2195      //   block scope shall have no explicit storage-class specifier
2196      //   other than extern
2197      // See also (C++ [dcl.stc]p4).
2198      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2199           diag::err_static_block_func);
2200      SC = FunctionDecl::None;
2201    } else
2202      SC = FunctionDecl::Static;
2203    break;
2204  }
2205  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2206  }
2207
2208  if (D.getDeclSpec().isThreadSpecified())
2209    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2210
2211  bool isInline = D.getDeclSpec().isInlineSpecified();
2212  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2213  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2214
2215  // Check that the return type is not an abstract class type.
2216  // For record types, this is done by the AbstractClassUsageDiagnoser once
2217  // the class has been completely parsed.
2218  if (!DC->isRecord() &&
2219      RequireNonAbstractType(D.getIdentifierLoc(),
2220                             R->getAsFunctionType()->getResultType(),
2221                             diag::err_abstract_type_in_decl,
2222                             AbstractReturnType))
2223    D.setInvalidType();
2224
2225  // Do not allow returning a objc interface by-value.
2226  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2227    Diag(D.getIdentifierLoc(),
2228         diag::err_object_cannot_be_passed_returned_by_value) << 0
2229      << R->getAsFunctionType()->getResultType();
2230    D.setInvalidType();
2231  }
2232
2233  // Check that we can declare a template here.
2234  if (TemplateParamLists.size() &&
2235      CheckTemplateDeclScope(S, TemplateParamLists))
2236    return 0;
2237
2238  bool isVirtualOkay = false;
2239  FunctionDecl *NewFD;
2240  if (D.getKind() == Declarator::DK_Constructor) {
2241    // This is a C++ constructor declaration.
2242    assert(DC->isRecord() &&
2243           "Constructors can only be declared in a member context");
2244
2245    R = CheckConstructorDeclarator(D, R, SC);
2246
2247    // Create the new declaration
2248    NewFD = CXXConstructorDecl::Create(Context,
2249                                       cast<CXXRecordDecl>(DC),
2250                                       D.getIdentifierLoc(), Name, R,
2251                                       isExplicit, isInline,
2252                                       /*isImplicitlyDeclared=*/false);
2253  } else if (D.getKind() == Declarator::DK_Destructor) {
2254    // This is a C++ destructor declaration.
2255    if (DC->isRecord()) {
2256      R = CheckDestructorDeclarator(D, SC);
2257
2258      NewFD = CXXDestructorDecl::Create(Context,
2259                                        cast<CXXRecordDecl>(DC),
2260                                        D.getIdentifierLoc(), Name, R,
2261                                        isInline,
2262                                        /*isImplicitlyDeclared=*/false);
2263
2264      isVirtualOkay = true;
2265    } else {
2266      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2267
2268      // Create a FunctionDecl to satisfy the function definition parsing
2269      // code path.
2270      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2271                                   Name, R, SC, isInline,
2272                                   /*hasPrototype=*/true,
2273                                   // FIXME: Move to DeclGroup...
2274                                   D.getDeclSpec().getSourceRange().getBegin());
2275      D.setInvalidType();
2276    }
2277  } else if (D.getKind() == Declarator::DK_Conversion) {
2278    if (!DC->isRecord()) {
2279      Diag(D.getIdentifierLoc(),
2280           diag::err_conv_function_not_member);
2281      return 0;
2282    }
2283
2284    CheckConversionDeclarator(D, R, SC);
2285    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2286                                      D.getIdentifierLoc(), Name, R,
2287                                      isInline, isExplicit);
2288
2289    isVirtualOkay = true;
2290  } else if (DC->isRecord()) {
2291    // If the of the function is the same as the name of the record, then this
2292    // must be an invalid constructor that has a return type.
2293    // (The parser checks for a return type and makes the declarator a
2294    // constructor if it has no return type).
2295    // must have an invalid constructor that has a return type
2296    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2297      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2298        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2299        << SourceRange(D.getIdentifierLoc());
2300      return 0;
2301    }
2302
2303    // This is a C++ method declaration.
2304    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2305                                  D.getIdentifierLoc(), Name, R,
2306                                  (SC == FunctionDecl::Static), isInline);
2307
2308    isVirtualOkay = (SC != FunctionDecl::Static);
2309  } else {
2310    // Determine whether the function was written with a
2311    // prototype. This true when:
2312    //   - we're in C++ (where every function has a prototype),
2313    //   - there is a prototype in the declarator, or
2314    //   - the type R of the function is some kind of typedef or other reference
2315    //     to a type name (which eventually refers to a function type).
2316    bool HasPrototype =
2317       getLangOptions().CPlusPlus ||
2318       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2319       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2320
2321    NewFD = FunctionDecl::Create(Context, DC,
2322                                 D.getIdentifierLoc(),
2323                                 Name, R, SC, isInline, HasPrototype,
2324                                 // FIXME: Move to DeclGroup...
2325                                 D.getDeclSpec().getSourceRange().getBegin());
2326  }
2327
2328  if (D.isInvalidType())
2329    NewFD->setInvalidDecl();
2330
2331  // Set the lexical context. If the declarator has a C++
2332  // scope specifier, the lexical context will be different
2333  // from the semantic context.
2334  NewFD->setLexicalDeclContext(CurContext);
2335
2336  // Match up the template parameter lists with the scope specifier, then
2337  // determine whether we have a template or a template specialization.
2338  FunctionTemplateDecl *FunctionTemplate = 0;
2339  if (TemplateParameterList *TemplateParams
2340        = MatchTemplateParametersToScopeSpecifier(
2341                                  D.getDeclSpec().getSourceRange().getBegin(),
2342                                  D.getCXXScopeSpec(),
2343                           (TemplateParameterList**)TemplateParamLists.get(),
2344                                                  TemplateParamLists.size())) {
2345    if (TemplateParams->size() > 0) {
2346      // This is a function template
2347      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2348                                                      NewFD->getLocation(),
2349                                                      Name, TemplateParams,
2350                                                      NewFD);
2351      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2352    } else {
2353      // FIXME: Handle function template specializations
2354    }
2355
2356    // FIXME: Free this memory properly.
2357    TemplateParamLists.release();
2358  }
2359
2360  // C++ [dcl.fct.spec]p5:
2361  //   The virtual specifier shall only be used in declarations of
2362  //   nonstatic class member functions that appear within a
2363  //   member-specification of a class declaration; see 10.3.
2364  //
2365  if (isVirtual && !NewFD->isInvalidDecl()) {
2366    if (!isVirtualOkay) {
2367       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2368           diag::err_virtual_non_function);
2369    } else if (!CurContext->isRecord()) {
2370      // 'virtual' was specified outside of the class.
2371      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2372        << CodeModificationHint::CreateRemoval(
2373                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2374    } else {
2375      // Okay: Add virtual to the method.
2376      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2377      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2378      CurClass->setAggregate(false);
2379      CurClass->setPOD(false);
2380      CurClass->setPolymorphic(true);
2381      CurClass->setHasTrivialConstructor(false);
2382      CurClass->setHasTrivialCopyConstructor(false);
2383      CurClass->setHasTrivialCopyAssignment(false);
2384    }
2385  }
2386
2387  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2388    // Look for virtual methods in base classes that this method might override.
2389
2390    BasePaths Paths;
2391    if (LookupInBases(cast<CXXRecordDecl>(DC),
2392                      MemberLookupCriteria(NewMD), Paths)) {
2393      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2394           E = Paths.found_decls_end(); I != E; ++I) {
2395        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2396          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2397              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2398            NewMD->addOverriddenMethod(OldMD);
2399        }
2400      }
2401    }
2402  }
2403
2404  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2405      !CurContext->isRecord()) {
2406    // C++ [class.static]p1:
2407    //   A data or function member of a class may be declared static
2408    //   in a class definition, in which case it is a static member of
2409    //   the class.
2410
2411    // Complain about the 'static' specifier if it's on an out-of-line
2412    // member function definition.
2413    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2414         diag::err_static_out_of_line)
2415      << CodeModificationHint::CreateRemoval(
2416                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2417  }
2418
2419  // Handle GNU asm-label extension (encoded as an attribute).
2420  if (Expr *E = (Expr*) D.getAsmLabel()) {
2421    // The parser guarantees this is a string.
2422    StringLiteral *SE = cast<StringLiteral>(E);
2423    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2424                                                        SE->getByteLength())));
2425  }
2426
2427  // Copy the parameter declarations from the declarator D to the function
2428  // declaration NewFD, if they are available.  First scavenge them into Params.
2429  llvm::SmallVector<ParmVarDecl*, 16> Params;
2430  if (D.getNumTypeObjects() > 0) {
2431    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2432
2433    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2434    // function that takes no arguments, not a function that takes a
2435    // single void argument.
2436    // We let through "const void" here because Sema::GetTypeForDeclarator
2437    // already checks for that case.
2438    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2439        FTI.ArgInfo[0].Param &&
2440        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2441      // Empty arg list, don't push any params.
2442      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2443
2444      // In C++, the empty parameter-type-list must be spelled "void"; a
2445      // typedef of void is not permitted.
2446      if (getLangOptions().CPlusPlus &&
2447          Param->getType().getUnqualifiedType() != Context.VoidTy)
2448        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2449      // FIXME: Leaks decl?
2450    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2451      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2452        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2453        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2454        Param->setDeclContext(NewFD);
2455        Params.push_back(Param);
2456      }
2457    }
2458
2459  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2460    // When we're declaring a function with a typedef, typeof, etc as in the
2461    // following example, we'll need to synthesize (unnamed)
2462    // parameters for use in the declaration.
2463    //
2464    // @code
2465    // typedef void fn(int);
2466    // fn f;
2467    // @endcode
2468
2469    // Synthesize a parameter for each argument type.
2470    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2471         AE = FT->arg_type_end(); AI != AE; ++AI) {
2472      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2473                                               SourceLocation(), 0,
2474                                               *AI, VarDecl::None, 0);
2475      Param->setImplicit();
2476      Params.push_back(Param);
2477    }
2478  } else {
2479    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2480           "Should not need args for typedef of non-prototype fn");
2481  }
2482  // Finally, we know we have the right number of parameters, install them.
2483  NewFD->setParams(Context, Params.data(), Params.size());
2484
2485  // If name lookup finds a previous declaration that is not in the
2486  // same scope as the new declaration, this may still be an
2487  // acceptable redeclaration.
2488  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2489      !(NewFD->hasLinkage() &&
2490        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2491    PrevDecl = 0;
2492
2493  // Perform semantic checking on the function declaration.
2494  bool OverloadableAttrRequired = false; // FIXME: HACK!
2495  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2496                           /*FIXME:*/OverloadableAttrRequired);
2497
2498  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2499    // An out-of-line member function declaration must also be a
2500    // definition (C++ [dcl.meaning]p1).
2501    if (!IsFunctionDefinition) {
2502      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2503        << D.getCXXScopeSpec().getRange();
2504      NewFD->setInvalidDecl();
2505    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2506      // The user tried to provide an out-of-line definition for a
2507      // function that is a member of a class or namespace, but there
2508      // was no such member function declared (C++ [class.mfct]p2,
2509      // C++ [namespace.memdef]p2). For example:
2510      //
2511      // class X {
2512      //   void f() const;
2513      // };
2514      //
2515      // void X::f() { } // ill-formed
2516      //
2517      // Complain about this problem, and attempt to suggest close
2518      // matches (e.g., those that differ only in cv-qualifiers and
2519      // whether the parameter types are references).
2520      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2521        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2522      NewFD->setInvalidDecl();
2523
2524      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2525                                              true);
2526      assert(!Prev.isAmbiguous() &&
2527             "Cannot have an ambiguity in previous-declaration lookup");
2528      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2529           Func != FuncEnd; ++Func) {
2530        if (isa<FunctionDecl>(*Func) &&
2531            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2532          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2533      }
2534
2535      PrevDecl = 0;
2536    }
2537  }
2538
2539  // Handle attributes. We need to have merged decls when handling attributes
2540  // (for example to check for conflicts, etc).
2541  // FIXME: This needs to happen before we merge declarations. Then,
2542  // let attribute merging cope with attribute conflicts.
2543  ProcessDeclAttributes(S, NewFD, D);
2544  AddKnownFunctionAttributes(NewFD);
2545
2546  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2547    // If a function name is overloadable in C, then every function
2548    // with that name must be marked "overloadable".
2549    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2550      << Redeclaration << NewFD;
2551    if (PrevDecl)
2552      Diag(PrevDecl->getLocation(),
2553           diag::note_attribute_overloadable_prev_overload);
2554    NewFD->addAttr(::new (Context) OverloadableAttr());
2555  }
2556
2557  // If this is a locally-scoped extern C function, update the
2558  // map of such names.
2559  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2560      && !NewFD->isInvalidDecl())
2561    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2562
2563  // Set this FunctionDecl's range up to the right paren.
2564  NewFD->setLocEnd(D.getSourceRange().getEnd());
2565
2566  if (FunctionTemplate && NewFD->isInvalidDecl())
2567    FunctionTemplate->setInvalidDecl();
2568
2569  if (FunctionTemplate)
2570    return FunctionTemplate;
2571
2572  return NewFD;
2573}
2574
2575/// \brief Perform semantic checking of a new function declaration.
2576///
2577/// Performs semantic analysis of the new function declaration
2578/// NewFD. This routine performs all semantic checking that does not
2579/// require the actual declarator involved in the declaration, and is
2580/// used both for the declaration of functions as they are parsed
2581/// (called via ActOnDeclarator) and for the declaration of functions
2582/// that have been instantiated via C++ template instantiation (called
2583/// via InstantiateDecl).
2584///
2585/// This sets NewFD->isInvalidDecl() to true if there was an error.
2586void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2587                                    bool &Redeclaration,
2588                                    bool &OverloadableAttrRequired) {
2589  // If NewFD is already known erroneous, don't do any of this checking.
2590  if (NewFD->isInvalidDecl())
2591    return;
2592
2593  if (NewFD->getResultType()->isVariablyModifiedType()) {
2594    // Functions returning a variably modified type violate C99 6.7.5.2p2
2595    // because all functions have linkage.
2596    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2597    return NewFD->setInvalidDecl();
2598  }
2599
2600  // Semantic checking for this function declaration (in isolation).
2601  if (getLangOptions().CPlusPlus) {
2602    // C++-specific checks.
2603    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2604      CheckConstructor(Constructor);
2605    } else if (isa<CXXDestructorDecl>(NewFD)) {
2606      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2607      QualType ClassType = Context.getTypeDeclType(Record);
2608      if (!ClassType->isDependentType()) {
2609        ClassType = Context.getCanonicalType(ClassType);
2610        DeclarationName Name
2611          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2612        if (NewFD->getDeclName() != Name) {
2613          Diag(NewFD->getLocation(), diag::err_destructor_name);
2614          return NewFD->setInvalidDecl();
2615        }
2616      }
2617      Record->setUserDeclaredDestructor(true);
2618      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2619      // user-defined destructor.
2620      Record->setPOD(false);
2621
2622      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2623      // declared destructor.
2624      // FIXME: C++0x: don't do this for "= default" destructors
2625      Record->setHasTrivialDestructor(false);
2626    } else if (CXXConversionDecl *Conversion
2627               = dyn_cast<CXXConversionDecl>(NewFD))
2628      ActOnConversionDeclarator(Conversion);
2629
2630    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2631    if (NewFD->isOverloadedOperator() &&
2632        CheckOverloadedOperatorDeclaration(NewFD))
2633      return NewFD->setInvalidDecl();
2634  }
2635
2636  // C99 6.7.4p6:
2637  //   [... ] For a function with external linkage, the following
2638  //   restrictions apply: [...] If all of the file scope declarations
2639  //   for a function in a translation unit include the inline
2640  //   function specifier without extern, then the definition in that
2641  //   translation unit is an inline definition. An inline definition
2642  //   does not provide an external definition for the function, and
2643  //   does not forbid an external definition in another translation
2644  //   unit.
2645  //
2646  // Here we determine whether this function, in isolation, would be a
2647  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2648  // previous declarations.
2649  if (NewFD->isInline() && getLangOptions().C99 &&
2650      NewFD->getStorageClass() == FunctionDecl::None &&
2651      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2652    NewFD->setC99InlineDefinition(true);
2653
2654  // Check for a previous declaration of this name.
2655  if (!PrevDecl && NewFD->isExternC(Context)) {
2656    // Since we did not find anything by this name and we're declaring
2657    // an extern "C" function, look for a non-visible extern "C"
2658    // declaration with the same name.
2659    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2660      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2661    if (Pos != LocallyScopedExternalDecls.end())
2662      PrevDecl = Pos->second;
2663  }
2664
2665  // Merge or overload the declaration with an existing declaration of
2666  // the same name, if appropriate.
2667  if (PrevDecl) {
2668    // Determine whether NewFD is an overload of PrevDecl or
2669    // a declaration that requires merging. If it's an overload,
2670    // there's no more work to do here; we'll just add the new
2671    // function to the scope.
2672    OverloadedFunctionDecl::function_iterator MatchedDecl;
2673
2674    if (!getLangOptions().CPlusPlus &&
2675        AllowOverloadingOfFunction(PrevDecl, Context)) {
2676      OverloadableAttrRequired = true;
2677
2678      // Functions marked "overloadable" must have a prototype (that
2679      // we can't get through declaration merging).
2680      if (!NewFD->getType()->getAsFunctionProtoType()) {
2681        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2682          << NewFD;
2683        Redeclaration = true;
2684
2685        // Turn this into a variadic function with no parameters.
2686        QualType R = Context.getFunctionType(
2687                       NewFD->getType()->getAsFunctionType()->getResultType(),
2688                       0, 0, true, 0);
2689        NewFD->setType(R);
2690        return NewFD->setInvalidDecl();
2691      }
2692    }
2693
2694    if (PrevDecl &&
2695        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2696         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2697        !isa<UsingDecl>(PrevDecl)) {
2698      Redeclaration = true;
2699      Decl *OldDecl = PrevDecl;
2700
2701      // If PrevDecl was an overloaded function, extract the
2702      // FunctionDecl that matched.
2703      if (isa<OverloadedFunctionDecl>(PrevDecl))
2704        OldDecl = *MatchedDecl;
2705
2706      // NewFD and OldDecl represent declarations that need to be
2707      // merged.
2708      if (MergeFunctionDecl(NewFD, OldDecl))
2709        return NewFD->setInvalidDecl();
2710
2711      if (FunctionTemplateDecl *OldTemplateDecl
2712            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2713        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2714      else {
2715        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2716          NewFD->setAccess(OldDecl->getAccess());
2717        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2718      }
2719    }
2720  }
2721
2722  // In C++, check default arguments now that we have merged decls. Unless
2723  // the lexical context is the class, because in this case this is done
2724  // during delayed parsing anyway.
2725  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2726    CheckCXXDefaultArguments(NewFD);
2727}
2728
2729bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2730  // FIXME: Need strict checking.  In C89, we need to check for
2731  // any assignment, increment, decrement, function-calls, or
2732  // commas outside of a sizeof.  In C99, it's the same list,
2733  // except that the aforementioned are allowed in unevaluated
2734  // expressions.  Everything else falls under the
2735  // "may accept other forms of constant expressions" exception.
2736  // (We never end up here for C++, so the constant expression
2737  // rules there don't matter.)
2738  if (Init->isConstantInitializer(Context))
2739    return false;
2740  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2741    << Init->getSourceRange();
2742  return true;
2743}
2744
2745void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2746  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2747}
2748
2749/// AddInitializerToDecl - Adds the initializer Init to the
2750/// declaration dcl. If DirectInit is true, this is C++ direct
2751/// initialization rather than copy initialization.
2752void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2753  Decl *RealDecl = dcl.getAs<Decl>();
2754  // If there is no declaration, there was an error parsing it.  Just ignore
2755  // the initializer.
2756  if (RealDecl == 0)
2757    return;
2758
2759  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2760    // With declarators parsed the way they are, the parser cannot
2761    // distinguish between a normal initializer and a pure-specifier.
2762    // Thus this grotesque test.
2763    IntegerLiteral *IL;
2764    Expr *Init = static_cast<Expr *>(init.get());
2765    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2766        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2767      if (Method->isVirtualAsWritten()) {
2768        Method->setPure();
2769
2770        // A class is abstract if at least one function is pure virtual.
2771        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2772      } else if (!Method->isInvalidDecl()) {
2773        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2774          << Method->getDeclName() << Init->getSourceRange();
2775        Method->setInvalidDecl();
2776      }
2777    } else {
2778      Diag(Method->getLocation(), diag::err_member_function_initialization)
2779        << Method->getDeclName() << Init->getSourceRange();
2780      Method->setInvalidDecl();
2781    }
2782    return;
2783  }
2784
2785  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2786  if (!VDecl) {
2787    if (getLangOptions().CPlusPlus &&
2788        RealDecl->getLexicalDeclContext()->isRecord() &&
2789        isa<NamedDecl>(RealDecl))
2790      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2791        << cast<NamedDecl>(RealDecl)->getDeclName();
2792    else
2793      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2794    RealDecl->setInvalidDecl();
2795    return;
2796  }
2797
2798  if (!VDecl->getType()->isArrayType() &&
2799      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2800                          diag::err_typecheck_decl_incomplete_type)) {
2801    RealDecl->setInvalidDecl();
2802    return;
2803  }
2804
2805  const VarDecl *Def = 0;
2806  if (VDecl->getDefinition(Def)) {
2807    Diag(VDecl->getLocation(), diag::err_redefinition)
2808      << VDecl->getDeclName();
2809    Diag(Def->getLocation(), diag::note_previous_definition);
2810    VDecl->setInvalidDecl();
2811    return;
2812  }
2813
2814  // Take ownership of the expression, now that we're sure we have somewhere
2815  // to put it.
2816  Expr *Init = init.takeAs<Expr>();
2817  assert(Init && "missing initializer");
2818
2819  // Get the decls type and save a reference for later, since
2820  // CheckInitializerTypes may change it.
2821  QualType DclT = VDecl->getType(), SavT = DclT;
2822  if (VDecl->isBlockVarDecl()) {
2823    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2824      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2825      VDecl->setInvalidDecl();
2826    } else if (!VDecl->isInvalidDecl()) {
2827      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2828                                VDecl->getDeclName(), DirectInit))
2829        VDecl->setInvalidDecl();
2830
2831      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2832      // Don't check invalid declarations to avoid emitting useless diagnostics.
2833      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2834        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2835          CheckForConstantInitializer(Init, DclT);
2836      }
2837    }
2838  } else if (VDecl->isStaticDataMember() &&
2839             VDecl->getLexicalDeclContext()->isRecord()) {
2840    // This is an in-class initialization for a static data member, e.g.,
2841    //
2842    // struct S {
2843    //   static const int value = 17;
2844    // };
2845
2846    // Attach the initializer
2847    VDecl->setInit(Context, Init);
2848
2849    // C++ [class.mem]p4:
2850    //   A member-declarator can contain a constant-initializer only
2851    //   if it declares a static member (9.4) of const integral or
2852    //   const enumeration type, see 9.4.2.
2853    QualType T = VDecl->getType();
2854    if (!T->isDependentType() &&
2855        (!Context.getCanonicalType(T).isConstQualified() ||
2856         !T->isIntegralType())) {
2857      Diag(VDecl->getLocation(), diag::err_member_initialization)
2858        << VDecl->getDeclName() << Init->getSourceRange();
2859      VDecl->setInvalidDecl();
2860    } else {
2861      // C++ [class.static.data]p4:
2862      //   If a static data member is of const integral or const
2863      //   enumeration type, its declaration in the class definition
2864      //   can specify a constant-initializer which shall be an
2865      //   integral constant expression (5.19).
2866      if (!Init->isTypeDependent() &&
2867          !Init->getType()->isIntegralType()) {
2868        // We have a non-dependent, non-integral or enumeration type.
2869        Diag(Init->getSourceRange().getBegin(),
2870             diag::err_in_class_initializer_non_integral_type)
2871          << Init->getType() << Init->getSourceRange();
2872        VDecl->setInvalidDecl();
2873      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2874        // Check whether the expression is a constant expression.
2875        llvm::APSInt Value;
2876        SourceLocation Loc;
2877        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2878          Diag(Loc, diag::err_in_class_initializer_non_constant)
2879            << Init->getSourceRange();
2880          VDecl->setInvalidDecl();
2881        } else if (!VDecl->getType()->isDependentType())
2882          ImpCastExprToType(Init, VDecl->getType());
2883      }
2884    }
2885  } else if (VDecl->isFileVarDecl()) {
2886    if (VDecl->getStorageClass() == VarDecl::Extern)
2887      Diag(VDecl->getLocation(), diag::warn_extern_init);
2888    if (!VDecl->isInvalidDecl())
2889      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2890                                VDecl->getDeclName(), DirectInit))
2891        VDecl->setInvalidDecl();
2892
2893    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2894    // Don't check invalid declarations to avoid emitting useless diagnostics.
2895    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2896      // C99 6.7.8p4. All file scoped initializers need to be constant.
2897      CheckForConstantInitializer(Init, DclT);
2898    }
2899  }
2900  // If the type changed, it means we had an incomplete type that was
2901  // completed by the initializer. For example:
2902  //   int ary[] = { 1, 3, 5 };
2903  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2904  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2905    VDecl->setType(DclT);
2906    Init->setType(DclT);
2907  }
2908
2909  // Attach the initializer to the decl.
2910  VDecl->setInit(Context, Init);
2911
2912  // If the previous declaration of VDecl was a tentative definition,
2913  // remove it from the set of tentative definitions.
2914  if (VDecl->getPreviousDeclaration() &&
2915      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2916    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2917      = TentativeDefinitions.find(VDecl->getDeclName());
2918    assert(Pos != TentativeDefinitions.end() &&
2919           "Unrecorded tentative definition?");
2920    TentativeDefinitions.erase(Pos);
2921  }
2922
2923  return;
2924}
2925
2926void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
2927                                  bool TypeContainsUndeducedAuto) {
2928  Decl *RealDecl = dcl.getAs<Decl>();
2929
2930  // If there is no declaration, there was an error parsing it. Just ignore it.
2931  if (RealDecl == 0)
2932    return;
2933
2934  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2935    QualType Type = Var->getType();
2936
2937    // Record tentative definitions.
2938    if (Var->isTentativeDefinition(Context))
2939      TentativeDefinitions[Var->getDeclName()] = Var;
2940
2941    // C++ [dcl.init.ref]p3:
2942    //   The initializer can be omitted for a reference only in a
2943    //   parameter declaration (8.3.5), in the declaration of a
2944    //   function return type, in the declaration of a class member
2945    //   within its class declaration (9.2), and where the extern
2946    //   specifier is explicitly used.
2947    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2948      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2949        << Var->getDeclName()
2950        << SourceRange(Var->getLocation(), Var->getLocation());
2951      Var->setInvalidDecl();
2952      return;
2953    }
2954
2955    // C++0x [dcl.spec.auto]p3
2956    if (TypeContainsUndeducedAuto) {
2957      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
2958        << Var->getDeclName() << Type;
2959      Var->setInvalidDecl();
2960      return;
2961    }
2962
2963    // C++ [dcl.init]p9:
2964    //
2965    //   If no initializer is specified for an object, and the object
2966    //   is of (possibly cv-qualified) non-POD class type (or array
2967    //   thereof), the object shall be default-initialized; if the
2968    //   object is of const-qualified type, the underlying class type
2969    //   shall have a user-declared default constructor.
2970    if (getLangOptions().CPlusPlus) {
2971      QualType InitType = Type;
2972      if (const ArrayType *Array = Context.getAsArrayType(Type))
2973        InitType = Array->getElementType();
2974      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2975          InitType->isRecordType() && !InitType->isDependentType()) {
2976        CXXRecordDecl *RD =
2977          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2978        CXXConstructorDecl *Constructor = 0;
2979        if (!RequireCompleteType(Var->getLocation(), InitType,
2980                                    diag::err_invalid_incomplete_type_use))
2981          Constructor
2982            = PerformInitializationByConstructor(InitType, 0, 0,
2983                                                 Var->getLocation(),
2984                                               SourceRange(Var->getLocation(),
2985                                                           Var->getLocation()),
2986                                                 Var->getDeclName(),
2987                                                 IK_Default);
2988        if (!Constructor)
2989          Var->setInvalidDecl();
2990        else {
2991          if (!RD->hasTrivialConstructor())
2992            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2993          // FIXME. Must do all that is needed to destroy the object
2994          // on scope exit. For now, just mark the destructor as used.
2995          MarkDestructorReferenced(Var->getLocation(), InitType);
2996        }
2997      }
2998    }
2999
3000#if 0
3001    // FIXME: Temporarily disabled because we are not properly parsing
3002    // linkage specifications on declarations, e.g.,
3003    //
3004    //   extern "C" const CGPoint CGPointerZero;
3005    //
3006    // C++ [dcl.init]p9:
3007    //
3008    //     If no initializer is specified for an object, and the
3009    //     object is of (possibly cv-qualified) non-POD class type (or
3010    //     array thereof), the object shall be default-initialized; if
3011    //     the object is of const-qualified type, the underlying class
3012    //     type shall have a user-declared default
3013    //     constructor. Otherwise, if no initializer is specified for
3014    //     an object, the object and its subobjects, if any, have an
3015    //     indeterminate initial value; if the object or any of its
3016    //     subobjects are of const-qualified type, the program is
3017    //     ill-formed.
3018    //
3019    // This isn't technically an error in C, so we don't diagnose it.
3020    //
3021    // FIXME: Actually perform the POD/user-defined default
3022    // constructor check.
3023    if (getLangOptions().CPlusPlus &&
3024        Context.getCanonicalType(Type).isConstQualified() &&
3025        !Var->hasExternalStorage())
3026      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3027        << Var->getName()
3028        << SourceRange(Var->getLocation(), Var->getLocation());
3029#endif
3030  }
3031}
3032
3033Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3034                                                   DeclPtrTy *Group,
3035                                                   unsigned NumDecls) {
3036  llvm::SmallVector<Decl*, 8> Decls;
3037
3038  if (DS.isTypeSpecOwned())
3039    Decls.push_back((Decl*)DS.getTypeRep());
3040
3041  for (unsigned i = 0; i != NumDecls; ++i)
3042    if (Decl *D = Group[i].getAs<Decl>())
3043      Decls.push_back(D);
3044
3045  // Perform semantic analysis that depends on having fully processed both
3046  // the declarator and initializer.
3047  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3048    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3049    if (!IDecl)
3050      continue;
3051    QualType T = IDecl->getType();
3052
3053    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3054    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3055    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3056      if (!IDecl->isInvalidDecl() &&
3057          RequireCompleteType(IDecl->getLocation(), T,
3058                              diag::err_typecheck_decl_incomplete_type))
3059        IDecl->setInvalidDecl();
3060    }
3061    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3062    // object that has file scope without an initializer, and without a
3063    // storage-class specifier or with the storage-class specifier "static",
3064    // constitutes a tentative definition. Note: A tentative definition with
3065    // external linkage is valid (C99 6.2.2p5).
3066    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3067      if (const IncompleteArrayType *ArrayT
3068          = Context.getAsIncompleteArrayType(T)) {
3069        if (RequireCompleteType(IDecl->getLocation(),
3070                                ArrayT->getElementType(),
3071                                diag::err_illegal_decl_array_incomplete_type))
3072          IDecl->setInvalidDecl();
3073      }
3074      else if (IDecl->getStorageClass() == VarDecl::Static) {
3075        // C99 6.9.2p3: If the declaration of an identifier for an object is
3076        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3077        // declared type shall not be an incomplete type.
3078        // NOTE: code such as the following
3079        //     static struct s;
3080        //     struct s { int a; };
3081        // is accepted by gcc. Hence here we issue a warning instead of
3082        // an error and we do not invalidate the static declaration.
3083        // NOTE: to avoid multiple warnings, only check the first declaration.
3084        if (IDecl->getPreviousDeclaration() == 0)
3085          RequireCompleteType(IDecl->getLocation(), T,
3086                              diag::ext_typecheck_decl_incomplete_type);
3087      }
3088    }
3089  }
3090  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3091                                                   Decls.data(), Decls.size()));
3092}
3093
3094
3095/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3096/// to introduce parameters into function prototype scope.
3097Sema::DeclPtrTy
3098Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3099  const DeclSpec &DS = D.getDeclSpec();
3100
3101  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3102  VarDecl::StorageClass StorageClass = VarDecl::None;
3103  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3104    StorageClass = VarDecl::Register;
3105  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3106    Diag(DS.getStorageClassSpecLoc(),
3107         diag::err_invalid_storage_class_in_func_decl);
3108    D.getMutableDeclSpec().ClearStorageClassSpecs();
3109  }
3110
3111  if (D.getDeclSpec().isThreadSpecified())
3112    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3113
3114  DiagnoseFunctionSpecifiers(D);
3115
3116  // Check that there are no default arguments inside the type of this
3117  // parameter (C++ only).
3118  if (getLangOptions().CPlusPlus)
3119    CheckExtraCXXDefaultArguments(D);
3120
3121  TagDecl *OwnedDecl = 0;
3122  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3123
3124  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3125    // C++ [dcl.fct]p6:
3126    //   Types shall not be defined in return or parameter types.
3127    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3128      << Context.getTypeDeclType(OwnedDecl);
3129  }
3130
3131  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3132  // Can this happen for params?  We already checked that they don't conflict
3133  // among each other.  Here they can only shadow globals, which is ok.
3134  IdentifierInfo *II = D.getIdentifier();
3135  if (II) {
3136    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3137      if (PrevDecl->isTemplateParameter()) {
3138        // Maybe we will complain about the shadowed template parameter.
3139        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3140        // Just pretend that we didn't see the previous declaration.
3141        PrevDecl = 0;
3142      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3143        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3144
3145        // Recover by removing the name
3146        II = 0;
3147        D.SetIdentifier(0, D.getIdentifierLoc());
3148      }
3149    }
3150  }
3151
3152  // Parameters can not be abstract class types.
3153  // For record types, this is done by the AbstractClassUsageDiagnoser once
3154  // the class has been completely parsed.
3155  if (!CurContext->isRecord() &&
3156      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3157                             diag::err_abstract_type_in_decl,
3158                             AbstractParamType))
3159    D.setInvalidType(true);
3160
3161  QualType T = adjustParameterType(parmDeclType);
3162
3163  ParmVarDecl *New;
3164  if (T == parmDeclType) // parameter type did not need adjustment
3165    New = ParmVarDecl::Create(Context, CurContext,
3166                              D.getIdentifierLoc(), II,
3167                              parmDeclType, StorageClass,
3168                              0);
3169  else // keep track of both the adjusted and unadjusted types
3170    New = OriginalParmVarDecl::Create(Context, CurContext,
3171                                      D.getIdentifierLoc(), II, T,
3172                                      parmDeclType, StorageClass, 0);
3173
3174  if (D.isInvalidType())
3175    New->setInvalidDecl();
3176
3177  // Parameter declarators cannot be interface types. All ObjC objects are
3178  // passed by reference.
3179  if (T->isObjCInterfaceType()) {
3180    Diag(D.getIdentifierLoc(),
3181         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3182    New->setInvalidDecl();
3183  }
3184
3185  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3186  if (D.getCXXScopeSpec().isSet()) {
3187    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3188      << D.getCXXScopeSpec().getRange();
3189    New->setInvalidDecl();
3190  }
3191
3192  // Add the parameter declaration into this scope.
3193  S->AddDecl(DeclPtrTy::make(New));
3194  if (II)
3195    IdResolver.AddDecl(New);
3196
3197  ProcessDeclAttributes(S, New, D);
3198
3199  if (New->hasAttr<BlocksAttr>()) {
3200    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3201  }
3202  return DeclPtrTy::make(New);
3203}
3204
3205void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3206                                           SourceLocation LocAfterDecls) {
3207  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3208         "Not a function declarator!");
3209  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3210
3211  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3212  // for a K&R function.
3213  if (!FTI.hasPrototype) {
3214    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3215      --i;
3216      if (FTI.ArgInfo[i].Param == 0) {
3217        std::string Code = "  int ";
3218        Code += FTI.ArgInfo[i].Ident->getName();
3219        Code += ";\n";
3220        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3221          << FTI.ArgInfo[i].Ident
3222          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3223
3224        // Implicitly declare the argument as type 'int' for lack of a better
3225        // type.
3226        DeclSpec DS;
3227        const char* PrevSpec; // unused
3228        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3229                           PrevSpec);
3230        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3231        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3232        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3233      }
3234    }
3235  }
3236}
3237
3238Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3239                                              Declarator &D) {
3240  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3241  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3242         "Not a function declarator!");
3243  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3244
3245  if (FTI.hasPrototype) {
3246    // FIXME: Diagnose arguments without names in C.
3247  }
3248
3249  Scope *ParentScope = FnBodyScope->getParent();
3250
3251  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3252                                  MultiTemplateParamsArg(*this),
3253                                  /*IsFunctionDefinition=*/true);
3254  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3255}
3256
3257Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3258  if (!D)
3259    return D;
3260  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3261
3262  CurFunctionNeedsScopeChecking = false;
3263
3264  // See if this is a redefinition.
3265  const FunctionDecl *Definition;
3266  if (FD->getBody(Definition)) {
3267    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3268    Diag(Definition->getLocation(), diag::note_previous_definition);
3269  }
3270
3271  // Builtin functions cannot be defined.
3272  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3273    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3274      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3275      FD->setInvalidDecl();
3276    }
3277  }
3278
3279  // The return type of a function definition must be complete
3280  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3281  QualType ResultType = FD->getResultType();
3282  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3283      !FD->isInvalidDecl() &&
3284      RequireCompleteType(FD->getLocation(), ResultType,
3285                          diag::err_func_def_incomplete_result))
3286    FD->setInvalidDecl();
3287
3288  // GNU warning -Wmissing-prototypes:
3289  //   Warn if a global function is defined without a previous
3290  //   prototype declaration. This warning is issued even if the
3291  //   definition itself provides a prototype. The aim is to detect
3292  //   global functions that fail to be declared in header files.
3293  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3294      !FD->isMain()) {
3295    bool MissingPrototype = true;
3296    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3297         Prev; Prev = Prev->getPreviousDeclaration()) {
3298      // Ignore any declarations that occur in function or method
3299      // scope, because they aren't visible from the header.
3300      if (Prev->getDeclContext()->isFunctionOrMethod())
3301        continue;
3302
3303      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3304      break;
3305    }
3306
3307    if (MissingPrototype)
3308      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3309  }
3310
3311  if (FnBodyScope)
3312    PushDeclContext(FnBodyScope, FD);
3313
3314  // Check the validity of our function parameters
3315  CheckParmsForFunctionDef(FD);
3316
3317  // Introduce our parameters into the function scope
3318  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3319    ParmVarDecl *Param = FD->getParamDecl(p);
3320    Param->setOwningFunction(FD);
3321
3322    // If this has an identifier, add it to the scope stack.
3323    if (Param->getIdentifier() && FnBodyScope)
3324      PushOnScopeChains(Param, FnBodyScope);
3325  }
3326
3327  // Checking attributes of current function definition
3328  // dllimport attribute.
3329  if (FD->getAttr<DLLImportAttr>() &&
3330      (!FD->getAttr<DLLExportAttr>())) {
3331    // dllimport attribute cannot be applied to definition.
3332    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3333      Diag(FD->getLocation(),
3334           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3335        << "dllimport";
3336      FD->setInvalidDecl();
3337      return DeclPtrTy::make(FD);
3338    } else {
3339      // If a symbol previously declared dllimport is later defined, the
3340      // attribute is ignored in subsequent references, and a warning is
3341      // emitted.
3342      Diag(FD->getLocation(),
3343           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3344        << FD->getNameAsCString() << "dllimport";
3345    }
3346  }
3347  return DeclPtrTy::make(FD);
3348}
3349
3350Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3351  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3352}
3353
3354Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3355                                              bool IsInstantiation) {
3356  Decl *dcl = D.getAs<Decl>();
3357  Stmt *Body = BodyArg.takeAs<Stmt>();
3358  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3359    FD->setBody(Body);
3360    if (!FD->getResultType()->isVoidType()
3361        // C and C++ allow for main to automagically return 0.
3362        && !FD->isMain())
3363      CheckFallThroughForFunctionDef(FD, Body);
3364
3365    if (!FD->isInvalidDecl())
3366      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3367
3368    // C++ [basic.def.odr]p2:
3369    //   [...] A virtual member function is used if it is not pure. [...]
3370    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3371      if (Method->isVirtual() && !Method->isPure())
3372        MarkDeclarationReferenced(Method->getLocation(), Method);
3373
3374    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3375  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3376    assert(MD == getCurMethodDecl() && "Method parsing confused");
3377    MD->setBody(Body);
3378    if (!MD->getResultType()->isVoidType())
3379      CheckFallThroughForFunctionDef(MD, Body);
3380    MD->setEndLoc(Body->getLocEnd());
3381
3382    if (!MD->isInvalidDecl())
3383      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3384  } else {
3385    Body->Destroy(Context);
3386    return DeclPtrTy();
3387  }
3388  if (!IsInstantiation)
3389    PopDeclContext();
3390
3391  // Verify and clean out per-function state.
3392
3393  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3394
3395  // Check goto/label use.
3396  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3397       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3398    LabelStmt *L = I->second;
3399
3400    // Verify that we have no forward references left.  If so, there was a goto
3401    // or address of a label taken, but no definition of it.  Label fwd
3402    // definitions are indicated with a null substmt.
3403    if (L->getSubStmt() != 0)
3404      continue;
3405
3406    // Emit error.
3407    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3408
3409    // At this point, we have gotos that use the bogus label.  Stitch it into
3410    // the function body so that they aren't leaked and that the AST is well
3411    // formed.
3412    if (Body == 0) {
3413      // The whole function wasn't parsed correctly, just delete this.
3414      L->Destroy(Context);
3415      continue;
3416    }
3417
3418    // Otherwise, the body is valid: we want to stitch the label decl into the
3419    // function somewhere so that it is properly owned and so that the goto
3420    // has a valid target.  Do this by creating a new compound stmt with the
3421    // label in it.
3422
3423    // Give the label a sub-statement.
3424    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3425
3426    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3427                               cast<CXXTryStmt>(Body)->getTryBlock() :
3428                               cast<CompoundStmt>(Body);
3429    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3430    Elements.push_back(L);
3431    Compound->setStmts(Context, &Elements[0], Elements.size());
3432  }
3433  FunctionLabelMap.clear();
3434
3435  if (!Body) return D;
3436
3437  // Verify that that gotos and switch cases don't jump into scopes illegally.
3438  if (CurFunctionNeedsScopeChecking)
3439    DiagnoseInvalidJumps(Body);
3440
3441  // C++ constructors that have function-try-blocks can't have return
3442  // statements in the handlers of that block. (C++ [except.handle]p14)
3443  // Verify this.
3444  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3445    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3446
3447  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3448    Destructor->computeBaseOrMembersToDestroy(Context);
3449  return D;
3450}
3451
3452/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3453/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3454NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3455                                          IdentifierInfo &II, Scope *S) {
3456  // Before we produce a declaration for an implicitly defined
3457  // function, see whether there was a locally-scoped declaration of
3458  // this name as a function or variable. If so, use that
3459  // (non-visible) declaration, and complain about it.
3460  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3461    = LocallyScopedExternalDecls.find(&II);
3462  if (Pos != LocallyScopedExternalDecls.end()) {
3463    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3464    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3465    return Pos->second;
3466  }
3467
3468  // Extension in C99.  Legal in C90, but warn about it.
3469  if (getLangOptions().C99)
3470    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3471  else
3472    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3473
3474  // FIXME: handle stuff like:
3475  // void foo() { extern float X(); }
3476  // void bar() { X(); }  <-- implicit decl for X in another scope.
3477
3478  // Set a Declarator for the implicit definition: int foo();
3479  const char *Dummy;
3480  DeclSpec DS;
3481  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3482  Error = Error; // Silence warning.
3483  assert(!Error && "Error setting up implicit decl!");
3484  Declarator D(DS, Declarator::BlockContext);
3485  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3486                                             0, 0, false, SourceLocation(),
3487                                             false, 0,0,0, Loc, D),
3488                SourceLocation());
3489  D.SetIdentifier(&II, Loc);
3490
3491  // Insert this function into translation-unit scope.
3492
3493  DeclContext *PrevDC = CurContext;
3494  CurContext = Context.getTranslationUnitDecl();
3495
3496  FunctionDecl *FD =
3497 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3498  FD->setImplicit();
3499
3500  CurContext = PrevDC;
3501
3502  AddKnownFunctionAttributes(FD);
3503
3504  return FD;
3505}
3506
3507/// \brief Adds any function attributes that we know a priori based on
3508/// the declaration of this function.
3509///
3510/// These attributes can apply both to implicitly-declared builtins
3511/// (like __builtin___printf_chk) or to library-declared functions
3512/// like NSLog or printf.
3513void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3514  if (FD->isInvalidDecl())
3515    return;
3516
3517  // If this is a built-in function, map its builtin attributes to
3518  // actual attributes.
3519  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3520    // Handle printf-formatting attributes.
3521    unsigned FormatIdx;
3522    bool HasVAListArg;
3523    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3524      if (!FD->getAttr<FormatAttr>())
3525        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3526                                             HasVAListArg ? 0 : FormatIdx + 2));
3527    }
3528
3529    // Mark const if we don't care about errno and that is the only
3530    // thing preventing the function from being const. This allows
3531    // IRgen to use LLVM intrinsics for such functions.
3532    if (!getLangOptions().MathErrno &&
3533        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3534      if (!FD->getAttr<ConstAttr>())
3535        FD->addAttr(::new (Context) ConstAttr());
3536    }
3537  }
3538
3539  IdentifierInfo *Name = FD->getIdentifier();
3540  if (!Name)
3541    return;
3542  if ((!getLangOptions().CPlusPlus &&
3543       FD->getDeclContext()->isTranslationUnit()) ||
3544      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3545       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3546       LinkageSpecDecl::lang_c)) {
3547    // Okay: this could be a libc/libm/Objective-C function we know
3548    // about.
3549  } else
3550    return;
3551
3552  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3553    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3554      // FIXME: We known better than our headers.
3555      const_cast<FormatAttr *>(Format)->setType("printf");
3556    } else
3557      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3558                                             Name->isStr("NSLogv") ? 0 : 2));
3559  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3560    if (!FD->getAttr<FormatAttr>())
3561      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3562                                             Name->isStr("vasprintf") ? 0 : 3));
3563  }
3564}
3565
3566TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3567  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3568  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3569
3570  // Scope manipulation handled by caller.
3571  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3572                                           D.getIdentifierLoc(),
3573                                           D.getIdentifier(),
3574                                           T);
3575
3576  if (TagType *TT = dyn_cast<TagType>(T)) {
3577    TagDecl *TD = TT->getDecl();
3578
3579    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3580    // keep track of the TypedefDecl.
3581    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3582      TD->setTypedefForAnonDecl(NewTD);
3583  }
3584
3585  if (D.isInvalidType())
3586    NewTD->setInvalidDecl();
3587  return NewTD;
3588}
3589
3590
3591/// \brief Determine whether a tag with a given kind is acceptable
3592/// as a redeclaration of the given tag declaration.
3593///
3594/// \returns true if the new tag kind is acceptable, false otherwise.
3595bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3596                                        TagDecl::TagKind NewTag,
3597                                        SourceLocation NewTagLoc,
3598                                        const IdentifierInfo &Name) {
3599  // C++ [dcl.type.elab]p3:
3600  //   The class-key or enum keyword present in the
3601  //   elaborated-type-specifier shall agree in kind with the
3602  //   declaration to which the name in theelaborated-type-specifier
3603  //   refers. This rule also applies to the form of
3604  //   elaborated-type-specifier that declares a class-name or
3605  //   friend class since it can be construed as referring to the
3606  //   definition of the class. Thus, in any
3607  //   elaborated-type-specifier, the enum keyword shall be used to
3608  //   refer to an enumeration (7.2), the union class-keyshall be
3609  //   used to refer to a union (clause 9), and either the class or
3610  //   struct class-key shall be used to refer to a class (clause 9)
3611  //   declared using the class or struct class-key.
3612  TagDecl::TagKind OldTag = Previous->getTagKind();
3613  if (OldTag == NewTag)
3614    return true;
3615
3616  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3617      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3618    // Warn about the struct/class tag mismatch.
3619    bool isTemplate = false;
3620    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3621      isTemplate = Record->getDescribedClassTemplate();
3622
3623    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3624      << (NewTag == TagDecl::TK_class)
3625      << isTemplate << &Name
3626      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3627                              OldTag == TagDecl::TK_class? "class" : "struct");
3628    Diag(Previous->getLocation(), diag::note_previous_use);
3629    return true;
3630  }
3631  return false;
3632}
3633
3634/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3635/// former case, Name will be non-null.  In the later case, Name will be null.
3636/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3637/// reference/declaration/definition of a tag.
3638Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3639                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3640                               IdentifierInfo *Name, SourceLocation NameLoc,
3641                               AttributeList *Attr, AccessSpecifier AS,
3642                               MultiTemplateParamsArg TemplateParameterLists,
3643                               bool &OwnedDecl) {
3644  // If this is not a definition, it must have a name.
3645  assert((Name != 0 || TK == TK_Definition) &&
3646         "Nameless record must be a definition!");
3647
3648  OwnedDecl = false;
3649  TagDecl::TagKind Kind;
3650  switch (TagSpec) {
3651  default: assert(0 && "Unknown tag type!");
3652  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3653  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3654  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3655  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3656  }
3657
3658  if (TK != TK_Reference) {
3659    if (TemplateParameterList *TemplateParams
3660          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3661                        (TemplateParameterList**)TemplateParameterLists.get(),
3662                                              TemplateParameterLists.size())) {
3663      if (TemplateParams->size() > 0) {
3664        // This is a declaration or definition of a class template (which may
3665        // be a member of another template).
3666        OwnedDecl = false;
3667        DeclResult Result = ActOnClassTemplate(S, TagSpec, TK, KWLoc,
3668                                               SS, Name, NameLoc, Attr,
3669                                               move(TemplateParameterLists),
3670                                               AS);
3671        return Result.get();
3672      } else {
3673        // FIXME: diagnose the extraneous 'template<>', once we recover
3674        // slightly better in ParseTemplate.cpp from bogus template
3675        // parameters.
3676      }
3677    }
3678  }
3679
3680  DeclContext *SearchDC = CurContext;
3681  DeclContext *DC = CurContext;
3682  NamedDecl *PrevDecl = 0;
3683
3684  bool Invalid = false;
3685
3686  if (Name && SS.isNotEmpty()) {
3687    // We have a nested-name tag ('struct foo::bar').
3688
3689    // Check for invalid 'foo::'.
3690    if (SS.isInvalid()) {
3691      Name = 0;
3692      goto CreateNewDecl;
3693    }
3694
3695    if (RequireCompleteDeclContext(SS))
3696      return DeclPtrTy::make((Decl *)0);
3697
3698    DC = computeDeclContext(SS, true);
3699    SearchDC = DC;
3700    // Look-up name inside 'foo::'.
3701    PrevDecl
3702      = dyn_cast_or_null<TagDecl>(
3703               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3704
3705    // A tag 'foo::bar' must already exist.
3706    if (PrevDecl == 0) {
3707      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3708      Name = 0;
3709      Invalid = true;
3710      goto CreateNewDecl;
3711    }
3712  } else if (Name) {
3713    // If this is a named struct, check to see if there was a previous forward
3714    // declaration or definition.
3715    // FIXME: We're looking into outer scopes here, even when we
3716    // shouldn't be. Doing so can result in ambiguities that we
3717    // shouldn't be diagnosing.
3718    LookupResult R = LookupName(S, Name, LookupTagName,
3719                                /*RedeclarationOnly=*/(TK != TK_Reference));
3720    if (R.isAmbiguous()) {
3721      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3722      // FIXME: This is not best way to recover from case like:
3723      //
3724      // struct S s;
3725      //
3726      // causes needless "incomplete type" error later.
3727      Name = 0;
3728      PrevDecl = 0;
3729      Invalid = true;
3730    }
3731    else
3732      PrevDecl = R;
3733
3734    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3735      // FIXME: This makes sure that we ignore the contexts associated
3736      // with C structs, unions, and enums when looking for a matching
3737      // tag declaration or definition. See the similar lookup tweak
3738      // in Sema::LookupName; is there a better way to deal with this?
3739      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3740        SearchDC = SearchDC->getParent();
3741    }
3742  }
3743
3744  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3745    // Maybe we will complain about the shadowed template parameter.
3746    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3747    // Just pretend that we didn't see the previous declaration.
3748    PrevDecl = 0;
3749  }
3750
3751  if (PrevDecl) {
3752    // Check whether the previous declaration is usable.
3753    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3754
3755    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3756      // If this is a use of a previous tag, or if the tag is already declared
3757      // in the same scope (so that the definition/declaration completes or
3758      // rementions the tag), reuse the decl.
3759      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3760        // Make sure that this wasn't declared as an enum and now used as a
3761        // struct or something similar.
3762        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3763          bool SafeToContinue
3764            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3765               Kind != TagDecl::TK_enum);
3766          if (SafeToContinue)
3767            Diag(KWLoc, diag::err_use_with_wrong_tag)
3768              << Name
3769              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3770                                                  PrevTagDecl->getKindName());
3771          else
3772            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3773          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3774
3775          if (SafeToContinue)
3776            Kind = PrevTagDecl->getTagKind();
3777          else {
3778            // Recover by making this an anonymous redefinition.
3779            Name = 0;
3780            PrevDecl = 0;
3781            Invalid = true;
3782          }
3783        }
3784
3785        if (!Invalid) {
3786          // If this is a use, just return the declaration we found.
3787
3788          // FIXME: In the future, return a variant or some other clue
3789          // for the consumer of this Decl to know it doesn't own it.
3790          // For our current ASTs this shouldn't be a problem, but will
3791          // need to be changed with DeclGroups.
3792          if (TK == TK_Reference)
3793            return DeclPtrTy::make(PrevDecl);
3794
3795          // Diagnose attempts to redefine a tag.
3796          if (TK == TK_Definition) {
3797            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3798              Diag(NameLoc, diag::err_redefinition) << Name;
3799              Diag(Def->getLocation(), diag::note_previous_definition);
3800              // If this is a redefinition, recover by making this
3801              // struct be anonymous, which will make any later
3802              // references get the previous definition.
3803              Name = 0;
3804              PrevDecl = 0;
3805              Invalid = true;
3806            } else {
3807              // If the type is currently being defined, complain
3808              // about a nested redefinition.
3809              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3810              if (Tag->isBeingDefined()) {
3811                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3812                Diag(PrevTagDecl->getLocation(),
3813                     diag::note_previous_definition);
3814                Name = 0;
3815                PrevDecl = 0;
3816                Invalid = true;
3817              }
3818            }
3819
3820            // Okay, this is definition of a previously declared or referenced
3821            // tag PrevDecl. We're going to create a new Decl for it.
3822          }
3823        }
3824        // If we get here we have (another) forward declaration or we
3825        // have a definition.  Just create a new decl.
3826      } else {
3827        // If we get here, this is a definition of a new tag type in a nested
3828        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3829        // new decl/type.  We set PrevDecl to NULL so that the entities
3830        // have distinct types.
3831        PrevDecl = 0;
3832      }
3833      // If we get here, we're going to create a new Decl. If PrevDecl
3834      // is non-NULL, it's a definition of the tag declared by
3835      // PrevDecl. If it's NULL, we have a new definition.
3836    } else {
3837      // PrevDecl is a namespace, template, or anything else
3838      // that lives in the IDNS_Tag identifier namespace.
3839      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3840        // The tag name clashes with a namespace name, issue an error and
3841        // recover by making this tag be anonymous.
3842        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3843        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3844        Name = 0;
3845        PrevDecl = 0;
3846        Invalid = true;
3847      } else {
3848        // The existing declaration isn't relevant to us; we're in a
3849        // new scope, so clear out the previous declaration.
3850        PrevDecl = 0;
3851      }
3852    }
3853  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3854             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3855    // C++ [basic.scope.pdecl]p5:
3856    //   -- for an elaborated-type-specifier of the form
3857    //
3858    //          class-key identifier
3859    //
3860    //      if the elaborated-type-specifier is used in the
3861    //      decl-specifier-seq or parameter-declaration-clause of a
3862    //      function defined in namespace scope, the identifier is
3863    //      declared as a class-name in the namespace that contains
3864    //      the declaration; otherwise, except as a friend
3865    //      declaration, the identifier is declared in the smallest
3866    //      non-class, non-function-prototype scope that contains the
3867    //      declaration.
3868    //
3869    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3870    // C structs and unions.
3871    //
3872    // GNU C also supports this behavior as part of its incomplete
3873    // enum types extension, while GNU C++ does not.
3874    //
3875    // Find the context where we'll be declaring the tag.
3876    // FIXME: We would like to maintain the current DeclContext as the
3877    // lexical context,
3878    while (SearchDC->isRecord())
3879      SearchDC = SearchDC->getParent();
3880
3881    // Find the scope where we'll be declaring the tag.
3882    while (S->isClassScope() ||
3883           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3884           ((S->getFlags() & Scope::DeclScope) == 0) ||
3885           (S->getEntity() &&
3886            ((DeclContext *)S->getEntity())->isTransparentContext()))
3887      S = S->getParent();
3888  }
3889
3890CreateNewDecl:
3891
3892  // If there is an identifier, use the location of the identifier as the
3893  // location of the decl, otherwise use the location of the struct/union
3894  // keyword.
3895  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3896
3897  // Otherwise, create a new declaration. If there is a previous
3898  // declaration of the same entity, the two will be linked via
3899  // PrevDecl.
3900  TagDecl *New;
3901
3902  if (Kind == TagDecl::TK_enum) {
3903    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3904    // enum X { A, B, C } D;    D should chain to X.
3905    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
3906                           cast_or_null<EnumDecl>(PrevDecl));
3907    // If this is an undefined enum, warn.
3908    if (TK != TK_Definition && !Invalid)  {
3909      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3910                                              : diag::ext_forward_ref_enum;
3911      Diag(Loc, DK);
3912    }
3913  } else {
3914    // struct/union/class
3915
3916    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3917    // struct X { int A; } D;    D should chain to X.
3918    if (getLangOptions().CPlusPlus)
3919      // FIXME: Look for a way to use RecordDecl for simple structs.
3920      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3921                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3922    else
3923      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3924                               cast_or_null<RecordDecl>(PrevDecl));
3925  }
3926
3927  if (Kind != TagDecl::TK_enum) {
3928    // Handle #pragma pack: if the #pragma pack stack has non-default
3929    // alignment, make up a packed attribute for this decl. These
3930    // attributes are checked when the ASTContext lays out the
3931    // structure.
3932    //
3933    // It is important for implementing the correct semantics that this
3934    // happen here (in act on tag decl). The #pragma pack stack is
3935    // maintained as a result of parser callbacks which can occur at
3936    // many points during the parsing of a struct declaration (because
3937    // the #pragma tokens are effectively skipped over during the
3938    // parsing of the struct).
3939    if (unsigned Alignment = getPragmaPackAlignment())
3940      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3941  }
3942
3943  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3944    // C++ [dcl.typedef]p3:
3945    //   [...] Similarly, in a given scope, a class or enumeration
3946    //   shall not be declared with the same name as a typedef-name
3947    //   that is declared in that scope and refers to a type other
3948    //   than the class or enumeration itself.
3949    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3950    TypedefDecl *PrevTypedef = 0;
3951    if (Lookup.getKind() == LookupResult::Found)
3952      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3953
3954    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3955        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3956          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3957      Diag(Loc, diag::err_tag_definition_of_typedef)
3958        << Context.getTypeDeclType(New)
3959        << PrevTypedef->getUnderlyingType();
3960      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3961      Invalid = true;
3962    }
3963  }
3964
3965  if (Invalid)
3966    New->setInvalidDecl();
3967
3968  if (Attr)
3969    ProcessDeclAttributeList(S, New, Attr);
3970
3971  // If we're declaring or defining a tag in function prototype scope
3972  // in C, note that this type can only be used within the function.
3973  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3974    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3975
3976  // Set the lexical context. If the tag has a C++ scope specifier, the
3977  // lexical context will be different from the semantic context.
3978  New->setLexicalDeclContext(CurContext);
3979
3980  // Set the access specifier.
3981  if (!Invalid)
3982    SetMemberAccessSpecifier(New, PrevDecl, AS);
3983
3984  if (TK == TK_Definition)
3985    New->startDefinition();
3986
3987  // If this has an identifier, add it to the scope stack.
3988  if (Name) {
3989    S = getNonFieldDeclScope(S);
3990    PushOnScopeChains(New, S);
3991  } else {
3992    CurContext->addDecl(New);
3993  }
3994
3995  // If this is the C FILE type, notify the AST context.
3996  if (IdentifierInfo *II = New->getIdentifier())
3997    if (!New->isInvalidDecl() &&
3998        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
3999        II->isStr("FILE"))
4000      Context.setFILEDecl(New);
4001
4002  OwnedDecl = true;
4003  return DeclPtrTy::make(New);
4004}
4005
4006void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4007  AdjustDeclIfTemplate(TagD);
4008  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4009
4010  // Enter the tag context.
4011  PushDeclContext(S, Tag);
4012
4013  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4014    FieldCollector->StartClass();
4015
4016    if (Record->getIdentifier()) {
4017      // C++ [class]p2:
4018      //   [...] The class-name is also inserted into the scope of the
4019      //   class itself; this is known as the injected-class-name. For
4020      //   purposes of access checking, the injected-class-name is treated
4021      //   as if it were a public member name.
4022      CXXRecordDecl *InjectedClassName
4023        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4024                                CurContext, Record->getLocation(),
4025                                Record->getIdentifier(),
4026                                Record->getTagKeywordLoc(),
4027                                Record);
4028      InjectedClassName->setImplicit();
4029      InjectedClassName->setAccess(AS_public);
4030      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4031        InjectedClassName->setDescribedClassTemplate(Template);
4032      PushOnScopeChains(InjectedClassName, S);
4033      assert(InjectedClassName->isInjectedClassName() &&
4034             "Broken injected-class-name");
4035    }
4036  }
4037}
4038
4039void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4040                                    SourceLocation RBraceLoc) {
4041  AdjustDeclIfTemplate(TagD);
4042  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4043  Tag->setRBraceLoc(RBraceLoc);
4044
4045  if (isa<CXXRecordDecl>(Tag))
4046    FieldCollector->FinishClass();
4047
4048  // Exit this scope of this tag's definition.
4049  PopDeclContext();
4050
4051  // Notify the consumer that we've defined a tag.
4052  Consumer.HandleTagDeclDefinition(Tag);
4053}
4054
4055// Note that FieldName may be null for anonymous bitfields.
4056bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4057                          QualType FieldTy, const Expr *BitWidth) {
4058
4059  // C99 6.7.2.1p4 - verify the field type.
4060  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4061  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4062    // Handle incomplete types with specific error.
4063    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4064      return true;
4065    if (FieldName)
4066      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4067        << FieldName << FieldTy << BitWidth->getSourceRange();
4068    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4069      << FieldTy << BitWidth->getSourceRange();
4070  }
4071
4072  // If the bit-width is type- or value-dependent, don't try to check
4073  // it now.
4074  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4075    return false;
4076
4077  llvm::APSInt Value;
4078  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4079    return true;
4080
4081  // Zero-width bitfield is ok for anonymous field.
4082  if (Value == 0 && FieldName)
4083    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4084
4085  if (Value.isSigned() && Value.isNegative()) {
4086    if (FieldName)
4087      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4088               << FieldName << Value.toString(10);
4089    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4090      << Value.toString(10);
4091  }
4092
4093  if (!FieldTy->isDependentType()) {
4094    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4095    if (Value.getZExtValue() > TypeSize) {
4096      if (FieldName)
4097        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4098          << FieldName << (unsigned)TypeSize;
4099      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4100        << (unsigned)TypeSize;
4101    }
4102  }
4103
4104  return false;
4105}
4106
4107/// ActOnField - Each field of a struct/union/class is passed into this in order
4108/// to create a FieldDecl object for it.
4109Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4110                                 SourceLocation DeclStart,
4111                                 Declarator &D, ExprTy *BitfieldWidth) {
4112  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4113                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4114                               AS_public);
4115  return DeclPtrTy::make(Res);
4116}
4117
4118/// HandleField - Analyze a field of a C struct or a C++ data member.
4119///
4120FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4121                             SourceLocation DeclStart,
4122                             Declarator &D, Expr *BitWidth,
4123                             AccessSpecifier AS) {
4124  IdentifierInfo *II = D.getIdentifier();
4125  SourceLocation Loc = DeclStart;
4126  if (II) Loc = D.getIdentifierLoc();
4127
4128  QualType T = GetTypeForDeclarator(D, S);
4129  if (getLangOptions().CPlusPlus)
4130    CheckExtraCXXDefaultArguments(D);
4131
4132  DiagnoseFunctionSpecifiers(D);
4133
4134  if (D.getDeclSpec().isThreadSpecified())
4135    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4136
4137  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4138
4139  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4140    // Maybe we will complain about the shadowed template parameter.
4141    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4142    // Just pretend that we didn't see the previous declaration.
4143    PrevDecl = 0;
4144  }
4145
4146  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4147    PrevDecl = 0;
4148
4149  bool Mutable
4150    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4151  SourceLocation TSSL = D.getSourceRange().getBegin();
4152  FieldDecl *NewFD
4153    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4154                     AS, PrevDecl, &D);
4155  if (NewFD->isInvalidDecl() && PrevDecl) {
4156    // Don't introduce NewFD into scope; there's already something
4157    // with the same name in the same scope.
4158  } else if (II) {
4159    PushOnScopeChains(NewFD, S);
4160  } else
4161    Record->addDecl(NewFD);
4162
4163  return NewFD;
4164}
4165
4166/// \brief Build a new FieldDecl and check its well-formedness.
4167///
4168/// This routine builds a new FieldDecl given the fields name, type,
4169/// record, etc. \p PrevDecl should refer to any previous declaration
4170/// with the same name and in the same scope as the field to be
4171/// created.
4172///
4173/// \returns a new FieldDecl.
4174///
4175/// \todo The Declarator argument is a hack. It will be removed once
4176FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4177                                RecordDecl *Record, SourceLocation Loc,
4178                                bool Mutable, Expr *BitWidth,
4179                                SourceLocation TSSL,
4180                                AccessSpecifier AS, NamedDecl *PrevDecl,
4181                                Declarator *D) {
4182  IdentifierInfo *II = Name.getAsIdentifierInfo();
4183  bool InvalidDecl = false;
4184  if (D) InvalidDecl = D->isInvalidType();
4185
4186  // If we receive a broken type, recover by assuming 'int' and
4187  // marking this declaration as invalid.
4188  if (T.isNull()) {
4189    InvalidDecl = true;
4190    T = Context.IntTy;
4191  }
4192
4193  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4194  // than a variably modified type.
4195  if (T->isVariablyModifiedType()) {
4196    bool SizeIsNegative;
4197    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4198                                                           SizeIsNegative);
4199    if (!FixedTy.isNull()) {
4200      Diag(Loc, diag::warn_illegal_constant_array_size);
4201      T = FixedTy;
4202    } else {
4203      if (SizeIsNegative)
4204        Diag(Loc, diag::err_typecheck_negative_array_size);
4205      else
4206        Diag(Loc, diag::err_typecheck_field_variable_size);
4207      InvalidDecl = true;
4208    }
4209  }
4210
4211  // Fields can not have abstract class types
4212  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4213                             AbstractFieldType))
4214    InvalidDecl = true;
4215
4216  // If this is declared as a bit-field, check the bit-field.
4217  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4218    InvalidDecl = true;
4219    DeleteExpr(BitWidth);
4220    BitWidth = 0;
4221  }
4222
4223  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4224                                       Mutable, TSSL);
4225  if (InvalidDecl)
4226    NewFD->setInvalidDecl();
4227
4228  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4229    Diag(Loc, diag::err_duplicate_member) << II;
4230    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4231    NewFD->setInvalidDecl();
4232  }
4233
4234  if (getLangOptions().CPlusPlus) {
4235    QualType EltTy = T;
4236    while (const ArrayType *AT = Context.getAsArrayType(EltTy))
4237      EltTy = AT->getElementType();
4238
4239    if (const RecordType *RT = EltTy->getAsRecordType()) {
4240      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4241
4242      if (!RDecl->hasTrivialConstructor())
4243        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4244      if (!RDecl->hasTrivialCopyConstructor())
4245        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4246      if (!RDecl->hasTrivialCopyAssignment())
4247        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4248      if (!RDecl->hasTrivialDestructor())
4249        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4250
4251      // C++ 9.5p1: An object of a class with a non-trivial
4252      // constructor, a non-trivial copy constructor, a non-trivial
4253      // destructor, or a non-trivial copy assignment operator
4254      // cannot be a member of a union, nor can an array of such
4255      // objects.
4256      // TODO: C++0x alters this restriction significantly.
4257      if (Record->isUnion()) {
4258        // We check for copy constructors before constructors
4259        // because otherwise we'll never get complaints about
4260        // copy constructors.
4261
4262        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4263
4264        CXXSpecialMember member;
4265        if (!RDecl->hasTrivialCopyConstructor())
4266          member = CXXCopyConstructor;
4267        else if (!RDecl->hasTrivialConstructor())
4268          member = CXXDefaultConstructor;
4269        else if (!RDecl->hasTrivialCopyAssignment())
4270          member = CXXCopyAssignment;
4271        else if (!RDecl->hasTrivialDestructor())
4272          member = CXXDestructor;
4273        else
4274          member = invalid;
4275
4276        if (member != invalid) {
4277          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4278          DiagnoseNontrivial(RT, member);
4279          NewFD->setInvalidDecl();
4280        }
4281      }
4282    }
4283  }
4284
4285  if (getLangOptions().CPlusPlus && !T->isPODType())
4286    cast<CXXRecordDecl>(Record)->setPOD(false);
4287
4288  // FIXME: We need to pass in the attributes given an AST
4289  // representation, not a parser representation.
4290  if (D)
4291    // FIXME: What to pass instead of TUScope?
4292    ProcessDeclAttributes(TUScope, NewFD, *D);
4293
4294  if (T.isObjCGCWeak())
4295    Diag(Loc, diag::warn_attribute_weak_on_field);
4296
4297  NewFD->setAccess(AS);
4298
4299  // C++ [dcl.init.aggr]p1:
4300  //   An aggregate is an array or a class (clause 9) with [...] no
4301  //   private or protected non-static data members (clause 11).
4302  // A POD must be an aggregate.
4303  if (getLangOptions().CPlusPlus &&
4304      (AS == AS_private || AS == AS_protected)) {
4305    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4306    CXXRecord->setAggregate(false);
4307    CXXRecord->setPOD(false);
4308  }
4309
4310  return NewFD;
4311}
4312
4313/// DiagnoseNontrivial - Given that a class has a non-trivial
4314/// special member, figure out why.
4315void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4316  QualType QT(T, 0U);
4317  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4318
4319  // Check whether the member was user-declared.
4320  switch (member) {
4321  case CXXDefaultConstructor:
4322    if (RD->hasUserDeclaredConstructor()) {
4323      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4324      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4325        if (!ci->isImplicitlyDefined(Context)) {
4326          SourceLocation CtorLoc = ci->getLocation();
4327          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4328          return;
4329        }
4330
4331      assert(0 && "found no user-declared constructors");
4332      return;
4333    }
4334    break;
4335
4336  case CXXCopyConstructor:
4337    if (RD->hasUserDeclaredCopyConstructor()) {
4338      SourceLocation CtorLoc =
4339        RD->getCopyConstructor(Context, 0)->getLocation();
4340      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4341      return;
4342    }
4343    break;
4344
4345  case CXXCopyAssignment:
4346    if (RD->hasUserDeclaredCopyAssignment()) {
4347      // FIXME: this should use the location of the copy
4348      // assignment, not the type.
4349      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4350      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4351      return;
4352    }
4353    break;
4354
4355  case CXXDestructor:
4356    if (RD->hasUserDeclaredDestructor()) {
4357      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4358      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4359      return;
4360    }
4361    break;
4362  }
4363
4364  typedef CXXRecordDecl::base_class_iterator base_iter;
4365
4366  // Virtual bases and members inhibit trivial copying/construction,
4367  // but not trivial destruction.
4368  if (member != CXXDestructor) {
4369    // Check for virtual bases.  vbases includes indirect virtual bases,
4370    // so we just iterate through the direct bases.
4371    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4372      if (bi->isVirtual()) {
4373        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4374        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4375        return;
4376      }
4377
4378    // Check for virtual methods.
4379    typedef CXXRecordDecl::method_iterator meth_iter;
4380    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4381         ++mi) {
4382      if (mi->isVirtual()) {
4383        SourceLocation MLoc = mi->getSourceRange().getBegin();
4384        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4385        return;
4386      }
4387    }
4388  }
4389
4390  bool (CXXRecordDecl::*hasTrivial)() const;
4391  switch (member) {
4392  case CXXDefaultConstructor:
4393    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4394  case CXXCopyConstructor:
4395    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4396  case CXXCopyAssignment:
4397    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4398  case CXXDestructor:
4399    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4400  default:
4401    assert(0 && "unexpected special member"); return;
4402  }
4403
4404  // Check for nontrivial bases (and recurse).
4405  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4406    const RecordType *BaseRT = bi->getType()->getAsRecordType();
4407    assert(BaseRT);
4408    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4409    if (!(BaseRecTy->*hasTrivial)()) {
4410      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4411      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4412      DiagnoseNontrivial(BaseRT, member);
4413      return;
4414    }
4415  }
4416
4417  // Check for nontrivial members (and recurse).
4418  typedef RecordDecl::field_iterator field_iter;
4419  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4420       ++fi) {
4421    QualType EltTy = (*fi)->getType();
4422    while (const ArrayType *AT = Context.getAsArrayType(EltTy))
4423      EltTy = AT->getElementType();
4424
4425    if (const RecordType *EltRT = EltTy->getAsRecordType()) {
4426      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4427
4428      if (!(EltRD->*hasTrivial)()) {
4429        SourceLocation FLoc = (*fi)->getLocation();
4430        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4431        DiagnoseNontrivial(EltRT, member);
4432        return;
4433      }
4434    }
4435  }
4436
4437  assert(0 && "found no explanation for non-trivial member");
4438}
4439
4440/// TranslateIvarVisibility - Translate visibility from a token ID to an
4441///  AST enum value.
4442static ObjCIvarDecl::AccessControl
4443TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4444  switch (ivarVisibility) {
4445  default: assert(0 && "Unknown visitibility kind");
4446  case tok::objc_private: return ObjCIvarDecl::Private;
4447  case tok::objc_public: return ObjCIvarDecl::Public;
4448  case tok::objc_protected: return ObjCIvarDecl::Protected;
4449  case tok::objc_package: return ObjCIvarDecl::Package;
4450  }
4451}
4452
4453/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4454/// in order to create an IvarDecl object for it.
4455Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4456                                SourceLocation DeclStart,
4457                                DeclPtrTy IntfDecl,
4458                                Declarator &D, ExprTy *BitfieldWidth,
4459                                tok::ObjCKeywordKind Visibility) {
4460
4461  IdentifierInfo *II = D.getIdentifier();
4462  Expr *BitWidth = (Expr*)BitfieldWidth;
4463  SourceLocation Loc = DeclStart;
4464  if (II) Loc = D.getIdentifierLoc();
4465
4466  // FIXME: Unnamed fields can be handled in various different ways, for
4467  // example, unnamed unions inject all members into the struct namespace!
4468
4469  QualType T = GetTypeForDeclarator(D, S);
4470
4471  if (BitWidth) {
4472    // 6.7.2.1p3, 6.7.2.1p4
4473    if (VerifyBitField(Loc, II, T, BitWidth)) {
4474      D.setInvalidType();
4475      DeleteExpr(BitWidth);
4476      BitWidth = 0;
4477    }
4478  } else {
4479    // Not a bitfield.
4480
4481    // validate II.
4482
4483  }
4484
4485  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4486  // than a variably modified type.
4487  if (T->isVariablyModifiedType()) {
4488    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4489    D.setInvalidType();
4490  }
4491
4492  // Get the visibility (access control) for this ivar.
4493  ObjCIvarDecl::AccessControl ac =
4494    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4495                                        : ObjCIvarDecl::None;
4496  // Must set ivar's DeclContext to its enclosing interface.
4497  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4498  DeclContext *EnclosingContext;
4499  if (ObjCImplementationDecl *IMPDecl =
4500      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4501    // Case of ivar declared in an implementation. Context is that of its class.
4502    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4503    assert(IDecl && "No class- ActOnIvar");
4504    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4505  }
4506  else
4507    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4508  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4509
4510  // Construct the decl.
4511  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4512                                             EnclosingContext, Loc, II, T,ac,
4513                                             (Expr *)BitfieldWidth);
4514
4515  if (II) {
4516    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4517    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4518        && !isa<TagDecl>(PrevDecl)) {
4519      Diag(Loc, diag::err_duplicate_member) << II;
4520      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4521      NewID->setInvalidDecl();
4522    }
4523  }
4524
4525  // Process attributes attached to the ivar.
4526  ProcessDeclAttributes(S, NewID, D);
4527
4528  if (D.isInvalidType())
4529    NewID->setInvalidDecl();
4530
4531  if (II) {
4532    // FIXME: When interfaces are DeclContexts, we'll need to add
4533    // these to the interface.
4534    S->AddDecl(DeclPtrTy::make(NewID));
4535    IdResolver.AddDecl(NewID);
4536  }
4537
4538  return DeclPtrTy::make(NewID);
4539}
4540
4541void Sema::ActOnFields(Scope* S,
4542                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4543                       DeclPtrTy *Fields, unsigned NumFields,
4544                       SourceLocation LBrac, SourceLocation RBrac,
4545                       AttributeList *Attr) {
4546  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4547  assert(EnclosingDecl && "missing record or interface decl");
4548
4549  // If the decl this is being inserted into is invalid, then it may be a
4550  // redeclaration or some other bogus case.  Don't try to add fields to it.
4551  if (EnclosingDecl->isInvalidDecl()) {
4552    // FIXME: Deallocate fields?
4553    return;
4554  }
4555
4556
4557  // Verify that all the fields are okay.
4558  unsigned NumNamedMembers = 0;
4559  llvm::SmallVector<FieldDecl*, 32> RecFields;
4560
4561  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4562  for (unsigned i = 0; i != NumFields; ++i) {
4563    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4564
4565    // Get the type for the field.
4566    Type *FDTy = FD->getType().getTypePtr();
4567
4568    if (!FD->isAnonymousStructOrUnion()) {
4569      // Remember all fields written by the user.
4570      RecFields.push_back(FD);
4571    }
4572
4573    // If the field is already invalid for some reason, don't emit more
4574    // diagnostics about it.
4575    if (FD->isInvalidDecl())
4576      continue;
4577
4578    // C99 6.7.2.1p2:
4579    //   A structure or union shall not contain a member with
4580    //   incomplete or function type (hence, a structure shall not
4581    //   contain an instance of itself, but may contain a pointer to
4582    //   an instance of itself), except that the last member of a
4583    //   structure with more than one named member may have incomplete
4584    //   array type; such a structure (and any union containing,
4585    //   possibly recursively, a member that is such a structure)
4586    //   shall not be a member of a structure or an element of an
4587    //   array.
4588    if (FDTy->isFunctionType()) {
4589      // Field declared as a function.
4590      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4591        << FD->getDeclName();
4592      FD->setInvalidDecl();
4593      EnclosingDecl->setInvalidDecl();
4594      continue;
4595    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4596               Record && Record->isStruct()) {
4597      // Flexible array member.
4598      if (NumNamedMembers < 1) {
4599        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4600          << FD->getDeclName();
4601        FD->setInvalidDecl();
4602        EnclosingDecl->setInvalidDecl();
4603        continue;
4604      }
4605      // Okay, we have a legal flexible array member at the end of the struct.
4606      if (Record)
4607        Record->setHasFlexibleArrayMember(true);
4608    } else if (!FDTy->isDependentType() &&
4609               RequireCompleteType(FD->getLocation(), FD->getType(),
4610                                   diag::err_field_incomplete)) {
4611      // Incomplete type
4612      FD->setInvalidDecl();
4613      EnclosingDecl->setInvalidDecl();
4614      continue;
4615    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4616      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4617        // If this is a member of a union, then entire union becomes "flexible".
4618        if (Record && Record->isUnion()) {
4619          Record->setHasFlexibleArrayMember(true);
4620        } else {
4621          // If this is a struct/class and this is not the last element, reject
4622          // it.  Note that GCC supports variable sized arrays in the middle of
4623          // structures.
4624          if (i != NumFields-1)
4625            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4626              << FD->getDeclName() << FD->getType();
4627          else {
4628            // We support flexible arrays at the end of structs in
4629            // other structs as an extension.
4630            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4631              << FD->getDeclName();
4632            if (Record)
4633              Record->setHasFlexibleArrayMember(true);
4634          }
4635        }
4636      }
4637      if (Record && FDTTy->getDecl()->hasObjectMember())
4638        Record->setHasObjectMember(true);
4639    } else if (FDTy->isObjCInterfaceType()) {
4640      /// A field cannot be an Objective-c object
4641      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4642      FD->setInvalidDecl();
4643      EnclosingDecl->setInvalidDecl();
4644      continue;
4645    }
4646    else if (getLangOptions().ObjC1 &&
4647             getLangOptions().getGCMode() != LangOptions::NonGC &&
4648             Record &&
4649             (FD->getType()->isObjCObjectPointerType() ||
4650              FD->getType().isObjCGCStrong()))
4651      Record->setHasObjectMember(true);
4652    // Keep track of the number of named members.
4653    if (FD->getIdentifier())
4654      ++NumNamedMembers;
4655  }
4656
4657  // Okay, we successfully defined 'Record'.
4658  if (Record) {
4659    Record->completeDefinition(Context);
4660  } else {
4661    ObjCIvarDecl **ClsFields =
4662      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4663    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4664      ID->setIVarList(ClsFields, RecFields.size(), Context);
4665      ID->setLocEnd(RBrac);
4666      // Add ivar's to class's DeclContext.
4667      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4668        ClsFields[i]->setLexicalDeclContext(ID);
4669        ID->addDecl(ClsFields[i]);
4670      }
4671      // Must enforce the rule that ivars in the base classes may not be
4672      // duplicates.
4673      if (ID->getSuperClass()) {
4674        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4675             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4676          ObjCIvarDecl* Ivar = (*IVI);
4677
4678          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4679            ObjCIvarDecl* prevIvar =
4680              ID->getSuperClass()->lookupInstanceVariable(II);
4681            if (prevIvar) {
4682              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4683              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4684            }
4685          }
4686        }
4687      }
4688    } else if (ObjCImplementationDecl *IMPDecl =
4689                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4690      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4691      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4692        // Ivar declared in @implementation never belongs to the implementation.
4693        // Only it is in implementation's lexical context.
4694        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4695      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4696    }
4697  }
4698
4699  if (Attr)
4700    ProcessDeclAttributeList(S, Record, Attr);
4701}
4702
4703EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4704                                          EnumConstantDecl *LastEnumConst,
4705                                          SourceLocation IdLoc,
4706                                          IdentifierInfo *Id,
4707                                          ExprArg val) {
4708  Expr *Val = (Expr *)val.get();
4709
4710  llvm::APSInt EnumVal(32);
4711  QualType EltTy;
4712  if (Val && !Val->isTypeDependent()) {
4713    // Make sure to promote the operand type to int.
4714    UsualUnaryConversions(Val);
4715    if (Val != val.get()) {
4716      val.release();
4717      val = Val;
4718    }
4719
4720    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4721    SourceLocation ExpLoc;
4722    if (!Val->isValueDependent() &&
4723        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4724      Val = 0;
4725    } else {
4726      EltTy = Val->getType();
4727    }
4728  }
4729
4730  if (!Val) {
4731    if (LastEnumConst) {
4732      // Assign the last value + 1.
4733      EnumVal = LastEnumConst->getInitVal();
4734      ++EnumVal;
4735
4736      // Check for overflow on increment.
4737      if (EnumVal < LastEnumConst->getInitVal())
4738        Diag(IdLoc, diag::warn_enum_value_overflow);
4739
4740      EltTy = LastEnumConst->getType();
4741    } else {
4742      // First value, set to zero.
4743      EltTy = Context.IntTy;
4744      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4745    }
4746  }
4747
4748  val.release();
4749  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4750                                  Val, EnumVal);
4751}
4752
4753
4754Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4755                                        DeclPtrTy lastEnumConst,
4756                                        SourceLocation IdLoc,
4757                                        IdentifierInfo *Id,
4758                                        SourceLocation EqualLoc, ExprTy *val) {
4759  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4760  EnumConstantDecl *LastEnumConst =
4761    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4762  Expr *Val = static_cast<Expr*>(val);
4763
4764  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4765  // we find one that is.
4766  S = getNonFieldDeclScope(S);
4767
4768  // Verify that there isn't already something declared with this name in this
4769  // scope.
4770  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4771  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4772    // Maybe we will complain about the shadowed template parameter.
4773    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4774    // Just pretend that we didn't see the previous declaration.
4775    PrevDecl = 0;
4776  }
4777
4778  if (PrevDecl) {
4779    // When in C++, we may get a TagDecl with the same name; in this case the
4780    // enum constant will 'hide' the tag.
4781    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4782           "Received TagDecl when not in C++!");
4783    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4784      if (isa<EnumConstantDecl>(PrevDecl))
4785        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4786      else
4787        Diag(IdLoc, diag::err_redefinition) << Id;
4788      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4789      if (Val) Val->Destroy(Context);
4790      return DeclPtrTy();
4791    }
4792  }
4793
4794  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4795                                            IdLoc, Id, Owned(Val));
4796
4797  // Register this decl in the current scope stack.
4798  if (New)
4799    PushOnScopeChains(New, S);
4800
4801  return DeclPtrTy::make(New);
4802}
4803
4804void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4805                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4806                         DeclPtrTy *Elements, unsigned NumElements) {
4807  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4808  QualType EnumType = Context.getTypeDeclType(Enum);
4809
4810  // TODO: If the result value doesn't fit in an int, it must be a long or long
4811  // long value.  ISO C does not support this, but GCC does as an extension,
4812  // emit a warning.
4813  unsigned IntWidth = Context.Target.getIntWidth();
4814
4815  // Verify that all the values are okay, compute the size of the values, and
4816  // reverse the list.
4817  unsigned NumNegativeBits = 0;
4818  unsigned NumPositiveBits = 0;
4819
4820  // Keep track of whether all elements have type int.
4821  bool AllElementsInt = true;
4822
4823  for (unsigned i = 0; i != NumElements; ++i) {
4824    EnumConstantDecl *ECD =
4825      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4826    if (!ECD) continue;  // Already issued a diagnostic.
4827
4828    // If the enum value doesn't fit in an int, emit an extension warning.
4829    const llvm::APSInt &InitVal = ECD->getInitVal();
4830    assert(InitVal.getBitWidth() >= IntWidth &&
4831           "Should have promoted value to int");
4832    if (InitVal.getBitWidth() > IntWidth) {
4833      llvm::APSInt V(InitVal);
4834      V.trunc(IntWidth);
4835      V.extend(InitVal.getBitWidth());
4836      if (V != InitVal)
4837        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4838          << InitVal.toString(10);
4839    }
4840
4841    // Keep track of the size of positive and negative values.
4842    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4843      NumPositiveBits = std::max(NumPositiveBits,
4844                                 (unsigned)InitVal.getActiveBits());
4845    else
4846      NumNegativeBits = std::max(NumNegativeBits,
4847                                 (unsigned)InitVal.getMinSignedBits());
4848
4849    // Keep track of whether every enum element has type int (very commmon).
4850    if (AllElementsInt)
4851      AllElementsInt = ECD->getType() == Context.IntTy;
4852  }
4853
4854  // Figure out the type that should be used for this enum.
4855  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4856  QualType BestType;
4857  unsigned BestWidth;
4858
4859  if (NumNegativeBits) {
4860    // If there is a negative value, figure out the smallest integer type (of
4861    // int/long/longlong) that fits.
4862    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4863      BestType = Context.IntTy;
4864      BestWidth = IntWidth;
4865    } else {
4866      BestWidth = Context.Target.getLongWidth();
4867
4868      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4869        BestType = Context.LongTy;
4870      else {
4871        BestWidth = Context.Target.getLongLongWidth();
4872
4873        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4874          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4875        BestType = Context.LongLongTy;
4876      }
4877    }
4878  } else {
4879    // If there is no negative value, figure out which of uint, ulong, ulonglong
4880    // fits.
4881    if (NumPositiveBits <= IntWidth) {
4882      BestType = Context.UnsignedIntTy;
4883      BestWidth = IntWidth;
4884    } else if (NumPositiveBits <=
4885               (BestWidth = Context.Target.getLongWidth())) {
4886      BestType = Context.UnsignedLongTy;
4887    } else {
4888      BestWidth = Context.Target.getLongLongWidth();
4889      assert(NumPositiveBits <= BestWidth &&
4890             "How could an initializer get larger than ULL?");
4891      BestType = Context.UnsignedLongLongTy;
4892    }
4893  }
4894
4895  // Loop over all of the enumerator constants, changing their types to match
4896  // the type of the enum if needed.
4897  for (unsigned i = 0; i != NumElements; ++i) {
4898    EnumConstantDecl *ECD =
4899      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4900    if (!ECD) continue;  // Already issued a diagnostic.
4901
4902    // Standard C says the enumerators have int type, but we allow, as an
4903    // extension, the enumerators to be larger than int size.  If each
4904    // enumerator value fits in an int, type it as an int, otherwise type it the
4905    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4906    // that X has type 'int', not 'unsigned'.
4907    if (ECD->getType() == Context.IntTy) {
4908      // Make sure the init value is signed.
4909      llvm::APSInt IV = ECD->getInitVal();
4910      IV.setIsSigned(true);
4911      ECD->setInitVal(IV);
4912
4913      if (getLangOptions().CPlusPlus)
4914        // C++ [dcl.enum]p4: Following the closing brace of an
4915        // enum-specifier, each enumerator has the type of its
4916        // enumeration.
4917        ECD->setType(EnumType);
4918      continue;  // Already int type.
4919    }
4920
4921    // Determine whether the value fits into an int.
4922    llvm::APSInt InitVal = ECD->getInitVal();
4923    bool FitsInInt;
4924    if (InitVal.isUnsigned() || !InitVal.isNegative())
4925      FitsInInt = InitVal.getActiveBits() < IntWidth;
4926    else
4927      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4928
4929    // If it fits into an integer type, force it.  Otherwise force it to match
4930    // the enum decl type.
4931    QualType NewTy;
4932    unsigned NewWidth;
4933    bool NewSign;
4934    if (FitsInInt) {
4935      NewTy = Context.IntTy;
4936      NewWidth = IntWidth;
4937      NewSign = true;
4938    } else if (ECD->getType() == BestType) {
4939      // Already the right type!
4940      if (getLangOptions().CPlusPlus)
4941        // C++ [dcl.enum]p4: Following the closing brace of an
4942        // enum-specifier, each enumerator has the type of its
4943        // enumeration.
4944        ECD->setType(EnumType);
4945      continue;
4946    } else {
4947      NewTy = BestType;
4948      NewWidth = BestWidth;
4949      NewSign = BestType->isSignedIntegerType();
4950    }
4951
4952    // Adjust the APSInt value.
4953    InitVal.extOrTrunc(NewWidth);
4954    InitVal.setIsSigned(NewSign);
4955    ECD->setInitVal(InitVal);
4956
4957    // Adjust the Expr initializer and type.
4958    if (ECD->getInitExpr())
4959      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4960                                                      /*isLvalue=*/false));
4961    if (getLangOptions().CPlusPlus)
4962      // C++ [dcl.enum]p4: Following the closing brace of an
4963      // enum-specifier, each enumerator has the type of its
4964      // enumeration.
4965      ECD->setType(EnumType);
4966    else
4967      ECD->setType(NewTy);
4968  }
4969
4970  Enum->completeDefinition(Context, BestType);
4971}
4972
4973Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4974                                            ExprArg expr) {
4975  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4976
4977  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4978                                                   Loc, AsmString);
4979  CurContext->addDecl(New);
4980  return DeclPtrTy::make(New);
4981}
4982
4983void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4984                             SourceLocation PragmaLoc,
4985                             SourceLocation NameLoc) {
4986  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4987
4988  // FIXME: This implementation is an ugly hack!
4989  if (PrevDecl) {
4990    PrevDecl->addAttr(::new (Context) WeakAttr());
4991    return;
4992  }
4993  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4994  return;
4995}
4996
4997void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4998                                IdentifierInfo* AliasName,
4999                                SourceLocation PragmaLoc,
5000                                SourceLocation NameLoc,
5001                                SourceLocation AliasNameLoc) {
5002  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5003
5004  // FIXME: This implementation is an ugly hack!
5005  if (PrevDecl) {
5006    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
5007    PrevDecl->addAttr(::new (Context) WeakAttr());
5008    return;
5009  }
5010  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
5011  return;
5012}
5013