SemaDecl.cpp revision 11578179e813f5db02e04c626b99fa64b8d4da7e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  // C++ [temp.res]p3:
56  //   A qualified-id that refers to a type and in which the
57  //   nested-name-specifier depends on a template-parameter (14.6.2)
58  //   shall be prefixed by the keyword typename to indicate that the
59  //   qualified-id denotes a type, forming an
60  //   elaborated-type-specifier (7.1.5.3).
61  //
62  // We therefore do not perform any name lookup up SS is a dependent
63  // scope name. FIXME: we will need to perform a special kind of
64  // lookup if the scope specifier names a member of the current
65  // instantiation.
66  if (SS && isDependentScopeSpecifier(*SS))
67    return 0;
68
69  NamedDecl *IIDecl = 0;
70  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
71                                         false, false);
72  switch (Result.getKind()) {
73  case LookupResult::NotFound:
74  case LookupResult::FoundOverloaded:
75    return 0;
76
77  case LookupResult::AmbiguousBaseSubobjectTypes:
78  case LookupResult::AmbiguousBaseSubobjects:
79  case LookupResult::AmbiguousReference:
80    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
81    return 0;
82
83  case LookupResult::Found:
84    IIDecl = Result.getAsDecl();
85    break;
86  }
87
88  if (IIDecl) {
89    QualType T;
90
91    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
92      // Check whether we can use this type
93      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
94
95      T = Context.getTypeDeclType(TD);
96    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
97      // Check whether we can use this interface.
98      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
99
100      T = Context.getObjCInterfaceType(IDecl);
101    } else
102      return 0;
103
104    if (SS)
105      T = getQualifiedNameType(*SS, T);
106
107    return T.getAsOpaquePtr();
108  }
109
110  return 0;
111}
112
113DeclContext *Sema::getContainingDC(DeclContext *DC) {
114  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
115    // A C++ out-of-line method will return to the file declaration context.
116    if (MD->isOutOfLineDefinition())
117      return MD->getLexicalDeclContext();
118
119    // A C++ inline method is parsed *after* the topmost class it was declared
120    // in is fully parsed (it's "complete").
121    // The parsing of a C++ inline method happens at the declaration context of
122    // the topmost (non-nested) class it is lexically declared in.
123    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
124    DC = MD->getParent();
125    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
126      DC = RD;
127
128    // Return the declaration context of the topmost class the inline method is
129    // declared in.
130    return DC;
131  }
132
133  if (isa<ObjCMethodDecl>(DC))
134    return Context.getTranslationUnitDecl();
135
136  return DC->getLexicalParent();
137}
138
139void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
140  assert(getContainingDC(DC) == CurContext &&
141      "The next DeclContext should be lexically contained in the current one.");
142  CurContext = DC;
143  S->setEntity(DC);
144}
145
146void Sema::PopDeclContext() {
147  assert(CurContext && "DeclContext imbalance!");
148
149  CurContext = getContainingDC(CurContext);
150}
151
152/// \brief Determine whether we allow overloading of the function
153/// PrevDecl with another declaration.
154///
155/// This routine determines whether overloading is possible, not
156/// whether some new function is actually an overload. It will return
157/// true in C++ (where we can always provide overloads) or, as an
158/// extension, in C when the previous function is already an
159/// overloaded function declaration or has the "overloadable"
160/// attribute.
161static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
162  if (Context.getLangOptions().CPlusPlus)
163    return true;
164
165  if (isa<OverloadedFunctionDecl>(PrevDecl))
166    return true;
167
168  return PrevDecl->getAttr<OverloadableAttr>() != 0;
169}
170
171/// Add this decl to the scope shadowed decl chains.
172void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
173  // Move up the scope chain until we find the nearest enclosing
174  // non-transparent context. The declaration will be introduced into this
175  // scope.
176  while (S->getEntity() &&
177         ((DeclContext *)S->getEntity())->isTransparentContext())
178    S = S->getParent();
179
180  S->AddDecl(D);
181
182  // Add scoped declarations into their context, so that they can be
183  // found later. Declarations without a context won't be inserted
184  // into any context.
185  CurContext->addDecl(D);
186
187  // C++ [basic.scope]p4:
188  //   -- exactly one declaration shall declare a class name or
189  //   enumeration name that is not a typedef name and the other
190  //   declarations shall all refer to the same object or
191  //   enumerator, or all refer to functions and function templates;
192  //   in this case the class name or enumeration name is hidden.
193  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
194    // We are pushing the name of a tag (enum or class).
195    if (CurContext->getLookupContext()
196          == TD->getDeclContext()->getLookupContext()) {
197      // We're pushing the tag into the current context, which might
198      // require some reshuffling in the identifier resolver.
199      IdentifierResolver::iterator
200        I = IdResolver.begin(TD->getDeclName()),
201        IEnd = IdResolver.end();
202      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
203        NamedDecl *PrevDecl = *I;
204        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
205             PrevDecl = *I, ++I) {
206          if (TD->declarationReplaces(*I)) {
207            // This is a redeclaration. Remove it from the chain and
208            // break out, so that we'll add in the shadowed
209            // declaration.
210            S->RemoveDecl(*I);
211            if (PrevDecl == *I) {
212              IdResolver.RemoveDecl(*I);
213              IdResolver.AddDecl(TD);
214              return;
215            } else {
216              IdResolver.RemoveDecl(*I);
217              break;
218            }
219          }
220        }
221
222        // There is already a declaration with the same name in the same
223        // scope, which is not a tag declaration. It must be found
224        // before we find the new declaration, so insert the new
225        // declaration at the end of the chain.
226        IdResolver.AddShadowedDecl(TD, PrevDecl);
227
228        return;
229      }
230    }
231  } else if (isa<FunctionDecl>(D) &&
232             AllowOverloadingOfFunction(D, Context)) {
233    // We are pushing the name of a function, which might be an
234    // overloaded name.
235    FunctionDecl *FD = cast<FunctionDecl>(D);
236    IdentifierResolver::iterator Redecl
237      = std::find_if(IdResolver.begin(FD->getDeclName()),
238                     IdResolver.end(),
239                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
240                                  FD));
241    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
242      // There is already a declaration of a function on our
243      // IdResolver chain. Replace it with this declaration.
244      S->RemoveDecl(*Redecl);
245      IdResolver.RemoveDecl(*Redecl);
246    }
247  }
248
249  IdResolver.AddDecl(D);
250}
251
252void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
253  if (S->decl_empty()) return;
254  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
255	 "Scope shouldn't contain decls!");
256
257  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
258       I != E; ++I) {
259    Decl *TmpD = static_cast<Decl*>(*I);
260    assert(TmpD && "This decl didn't get pushed??");
261
262    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
263    NamedDecl *D = cast<NamedDecl>(TmpD);
264
265    if (!D->getDeclName()) continue;
266
267    // Remove this name from our lexical scope.
268    IdResolver.RemoveDecl(D);
269  }
270}
271
272/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
273/// return 0 if one not found.
274ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
275  // The third "scope" argument is 0 since we aren't enabling lazy built-in
276  // creation from this context.
277  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
278
279  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
280}
281
282/// getNonFieldDeclScope - Retrieves the innermost scope, starting
283/// from S, where a non-field would be declared. This routine copes
284/// with the difference between C and C++ scoping rules in structs and
285/// unions. For example, the following code is well-formed in C but
286/// ill-formed in C++:
287/// @code
288/// struct S6 {
289///   enum { BAR } e;
290/// };
291///
292/// void test_S6() {
293///   struct S6 a;
294///   a.e = BAR;
295/// }
296/// @endcode
297/// For the declaration of BAR, this routine will return a different
298/// scope. The scope S will be the scope of the unnamed enumeration
299/// within S6. In C++, this routine will return the scope associated
300/// with S6, because the enumeration's scope is a transparent
301/// context but structures can contain non-field names. In C, this
302/// routine will return the translation unit scope, since the
303/// enumeration's scope is a transparent context and structures cannot
304/// contain non-field names.
305Scope *Sema::getNonFieldDeclScope(Scope *S) {
306  while (((S->getFlags() & Scope::DeclScope) == 0) ||
307         (S->getEntity() &&
308          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
309         (S->isClassScope() && !getLangOptions().CPlusPlus))
310    S = S->getParent();
311  return S;
312}
313
314void Sema::InitBuiltinVaListType() {
315  if (!Context.getBuiltinVaListType().isNull())
316    return;
317
318  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
319  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
320  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
321  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
322}
323
324/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
325/// file scope.  lazily create a decl for it. ForRedeclaration is true
326/// if we're creating this built-in in anticipation of redeclaring the
327/// built-in.
328NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
329                                     Scope *S, bool ForRedeclaration,
330                                     SourceLocation Loc) {
331  Builtin::ID BID = (Builtin::ID)bid;
332
333  if (Context.BuiltinInfo.hasVAListUse(BID))
334    InitBuiltinVaListType();
335
336  Builtin::Context::GetBuiltinTypeError Error;
337  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
338  switch (Error) {
339  case Builtin::Context::GE_None:
340    // Okay
341    break;
342
343  case Builtin::Context::GE_Missing_FILE:
344    if (ForRedeclaration)
345      Diag(Loc, diag::err_implicit_decl_requires_stdio)
346        << Context.BuiltinInfo.GetName(BID);
347    return 0;
348  }
349
350  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
351    Diag(Loc, diag::ext_implicit_lib_function_decl)
352      << Context.BuiltinInfo.GetName(BID)
353      << R;
354    if (Context.BuiltinInfo.getHeaderName(BID) &&
355        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
356          != diag::MAP_IGNORE)
357      Diag(Loc, diag::note_please_include_header)
358        << Context.BuiltinInfo.getHeaderName(BID)
359        << Context.BuiltinInfo.GetName(BID);
360  }
361
362  FunctionDecl *New = FunctionDecl::Create(Context,
363                                           Context.getTranslationUnitDecl(),
364                                           Loc, II, R,
365                                           FunctionDecl::Extern, false,
366                                           /*hasPrototype=*/true);
367  New->setImplicit();
368
369  // Create Decl objects for each parameter, adding them to the
370  // FunctionDecl.
371  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
372    llvm::SmallVector<ParmVarDecl*, 16> Params;
373    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
374      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
375                                           FT->getArgType(i), VarDecl::None, 0));
376    New->setParams(Context, &Params[0], Params.size());
377  }
378
379  AddKnownFunctionAttributes(New);
380
381  // TUScope is the translation-unit scope to insert this function into.
382  // FIXME: This is hideous. We need to teach PushOnScopeChains to
383  // relate Scopes to DeclContexts, and probably eliminate CurContext
384  // entirely, but we're not there yet.
385  DeclContext *SavedContext = CurContext;
386  CurContext = Context.getTranslationUnitDecl();
387  PushOnScopeChains(New, TUScope);
388  CurContext = SavedContext;
389  return New;
390}
391
392/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
393/// everything from the standard library is defined.
394NamespaceDecl *Sema::GetStdNamespace() {
395  if (!StdNamespace) {
396    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
397    DeclContext *Global = Context.getTranslationUnitDecl();
398    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
399    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
400  }
401  return StdNamespace;
402}
403
404/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
405/// same name and scope as a previous declaration 'Old'.  Figure out
406/// how to resolve this situation, merging decls or emitting
407/// diagnostics as appropriate. Returns true if there was an error,
408/// false otherwise.
409///
410bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
411  bool objc_types = false;
412  // Allow multiple definitions for ObjC built-in typedefs.
413  // FIXME: Verify the underlying types are equivalent!
414  if (getLangOptions().ObjC1) {
415    const IdentifierInfo *TypeID = New->getIdentifier();
416    switch (TypeID->getLength()) {
417    default: break;
418    case 2:
419      if (!TypeID->isStr("id"))
420        break;
421      Context.setObjCIdType(New);
422      objc_types = true;
423      break;
424    case 5:
425      if (!TypeID->isStr("Class"))
426        break;
427      Context.setObjCClassType(New);
428      objc_types = true;
429      return false;
430    case 3:
431      if (!TypeID->isStr("SEL"))
432        break;
433      Context.setObjCSelType(New);
434      objc_types = true;
435      return false;
436    case 8:
437      if (!TypeID->isStr("Protocol"))
438        break;
439      Context.setObjCProtoType(New->getUnderlyingType());
440      objc_types = true;
441      return false;
442    }
443    // Fall through - the typedef name was not a builtin type.
444  }
445  // Verify the old decl was also a type.
446  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
447  if (!Old) {
448    Diag(New->getLocation(), diag::err_redefinition_different_kind)
449      << New->getDeclName();
450    if (!objc_types)
451      Diag(OldD->getLocation(), diag::note_previous_definition);
452    return true;
453  }
454
455  // Determine the "old" type we'll use for checking and diagnostics.
456  QualType OldType;
457  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
458    OldType = OldTypedef->getUnderlyingType();
459  else
460    OldType = Context.getTypeDeclType(Old);
461
462  // If the typedef types are not identical, reject them in all languages and
463  // with any extensions enabled.
464
465  if (OldType != New->getUnderlyingType() &&
466      Context.getCanonicalType(OldType) !=
467      Context.getCanonicalType(New->getUnderlyingType())) {
468    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
469      << New->getUnderlyingType() << OldType;
470    if (!objc_types)
471      Diag(Old->getLocation(), diag::note_previous_definition);
472    return true;
473  }
474  if (objc_types) return false;
475  if (getLangOptions().Microsoft) return false;
476
477  // C++ [dcl.typedef]p2:
478  //   In a given non-class scope, a typedef specifier can be used to
479  //   redefine the name of any type declared in that scope to refer
480  //   to the type to which it already refers.
481  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
482    return false;
483
484  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
485  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
486  // *either* declaration is in a system header. The code below implements
487  // this adhoc compatibility rule. FIXME: The following code will not
488  // work properly when compiling ".i" files (containing preprocessed output).
489  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
490    SourceManager &SrcMgr = Context.getSourceManager();
491    if (SrcMgr.isInSystemHeader(Old->getLocation()))
492      return false;
493    if (SrcMgr.isInSystemHeader(New->getLocation()))
494      return false;
495  }
496
497  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
498  Diag(Old->getLocation(), diag::note_previous_definition);
499  return true;
500}
501
502/// DeclhasAttr - returns true if decl Declaration already has the target
503/// attribute.
504static bool DeclHasAttr(const Decl *decl, const Attr *target) {
505  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
506    if (attr->getKind() == target->getKind())
507      return true;
508
509  return false;
510}
511
512/// MergeAttributes - append attributes from the Old decl to the New one.
513static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
514  Attr *attr = const_cast<Attr*>(Old->getAttrs());
515
516  while (attr) {
517    Attr *tmp = attr;
518    attr = attr->getNext();
519
520    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
521      tmp->setInherited(true);
522      New->addAttr(tmp);
523    } else {
524      tmp->setNext(0);
525      tmp->Destroy(C);
526    }
527  }
528
529  Old->invalidateAttrs();
530}
531
532/// Used in MergeFunctionDecl to keep track of function parameters in
533/// C.
534struct GNUCompatibleParamWarning {
535  ParmVarDecl *OldParm;
536  ParmVarDecl *NewParm;
537  QualType PromotedType;
538};
539
540/// MergeFunctionDecl - We just parsed a function 'New' from
541/// declarator D which has the same name and scope as a previous
542/// declaration 'Old'.  Figure out how to resolve this situation,
543/// merging decls or emitting diagnostics as appropriate.
544///
545/// In C++, New and Old must be declarations that are not
546/// overloaded. Use IsOverload to determine whether New and Old are
547/// overloaded, and to select the Old declaration that New should be
548/// merged with.
549///
550/// Returns true if there was an error, false otherwise.
551bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
552  assert(!isa<OverloadedFunctionDecl>(OldD) &&
553         "Cannot merge with an overloaded function declaration");
554
555  // Verify the old decl was also a function.
556  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
557  if (!Old) {
558    Diag(New->getLocation(), diag::err_redefinition_different_kind)
559      << New->getDeclName();
560    Diag(OldD->getLocation(), diag::note_previous_definition);
561    return true;
562  }
563
564  // Determine whether the previous declaration was a definition,
565  // implicit declaration, or a declaration.
566  diag::kind PrevDiag;
567  if (Old->isThisDeclarationADefinition())
568    PrevDiag = diag::note_previous_definition;
569  else if (Old->isImplicit())
570    PrevDiag = diag::note_previous_implicit_declaration;
571  else
572    PrevDiag = diag::note_previous_declaration;
573
574  QualType OldQType = Context.getCanonicalType(Old->getType());
575  QualType NewQType = Context.getCanonicalType(New->getType());
576
577  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
578      New->getStorageClass() == FunctionDecl::Static &&
579      Old->getStorageClass() != FunctionDecl::Static) {
580    Diag(New->getLocation(), diag::err_static_non_static)
581      << New;
582    Diag(Old->getLocation(), PrevDiag);
583    return true;
584  }
585
586  if (getLangOptions().CPlusPlus) {
587    // (C++98 13.1p2):
588    //   Certain function declarations cannot be overloaded:
589    //     -- Function declarations that differ only in the return type
590    //        cannot be overloaded.
591    QualType OldReturnType
592      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
593    QualType NewReturnType
594      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
595    if (OldReturnType != NewReturnType) {
596      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
597      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
598      return true;
599    }
600
601    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
602    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
603    if (OldMethod && NewMethod &&
604        OldMethod->getLexicalDeclContext() ==
605          NewMethod->getLexicalDeclContext()) {
606      //    -- Member function declarations with the same name and the
607      //       same parameter types cannot be overloaded if any of them
608      //       is a static member function declaration.
609      if (OldMethod->isStatic() || NewMethod->isStatic()) {
610        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
611        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612        return true;
613      }
614
615      // C++ [class.mem]p1:
616      //   [...] A member shall not be declared twice in the
617      //   member-specification, except that a nested class or member
618      //   class template can be declared and then later defined.
619      unsigned NewDiag;
620      if (isa<CXXConstructorDecl>(OldMethod))
621        NewDiag = diag::err_constructor_redeclared;
622      else if (isa<CXXDestructorDecl>(NewMethod))
623        NewDiag = diag::err_destructor_redeclared;
624      else if (isa<CXXConversionDecl>(NewMethod))
625        NewDiag = diag::err_conv_function_redeclared;
626      else
627        NewDiag = diag::err_member_redeclared;
628
629      Diag(New->getLocation(), NewDiag);
630      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
631    }
632
633    // (C++98 8.3.5p3):
634    //   All declarations for a function shall agree exactly in both the
635    //   return type and the parameter-type-list.
636    if (OldQType == NewQType)
637      return MergeCompatibleFunctionDecls(New, Old);
638
639    // Fall through for conflicting redeclarations and redefinitions.
640  }
641
642  // C: Function types need to be compatible, not identical. This handles
643  // duplicate function decls like "void f(int); void f(enum X);" properly.
644  if (!getLangOptions().CPlusPlus &&
645      Context.typesAreCompatible(OldQType, NewQType)) {
646    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
647    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
648    const FunctionProtoType *OldProto = 0;
649    if (isa<FunctionNoProtoType>(NewFuncType) &&
650        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
651      // The old declaration provided a function prototype, but the
652      // new declaration does not. Merge in the prototype.
653      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
654                                                 OldProto->arg_type_end());
655      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
656                                         &ParamTypes[0], ParamTypes.size(),
657                                         OldProto->isVariadic(),
658                                         OldProto->getTypeQuals());
659      New->setType(NewQType);
660      New->setInheritedPrototype();
661
662      // Synthesize a parameter for each argument type.
663      llvm::SmallVector<ParmVarDecl*, 16> Params;
664      for (FunctionProtoType::arg_type_iterator
665             ParamType = OldProto->arg_type_begin(),
666             ParamEnd = OldProto->arg_type_end();
667           ParamType != ParamEnd; ++ParamType) {
668        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
669                                                 SourceLocation(), 0,
670                                                 *ParamType, VarDecl::None,
671                                                 0);
672        Param->setImplicit();
673        Params.push_back(Param);
674      }
675
676      New->setParams(Context, &Params[0], Params.size());
677    }
678
679    return MergeCompatibleFunctionDecls(New, Old);
680  }
681
682  // GNU C permits a K&R definition to follow a prototype declaration
683  // if the declared types of the parameters in the K&R definition
684  // match the types in the prototype declaration, even when the
685  // promoted types of the parameters from the K&R definition differ
686  // from the types in the prototype. GCC then keeps the types from
687  // the prototype.
688  if (!getLangOptions().CPlusPlus &&
689      !getLangOptions().NoExtensions &&
690      Old->hasPrototype() && !New->hasPrototype() &&
691      New->getType()->getAsFunctionProtoType() &&
692      Old->getNumParams() == New->getNumParams()) {
693    llvm::SmallVector<QualType, 16> ArgTypes;
694    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
695    const FunctionProtoType *OldProto
696      = Old->getType()->getAsFunctionProtoType();
697    const FunctionProtoType *NewProto
698      = New->getType()->getAsFunctionProtoType();
699
700    // Determine whether this is the GNU C extension.
701    bool GNUCompatible =
702      Context.typesAreCompatible(OldProto->getResultType(),
703                                 NewProto->getResultType()) &&
704      (OldProto->isVariadic() == NewProto->isVariadic());
705    for (unsigned Idx = 0, End = Old->getNumParams();
706         GNUCompatible && Idx != End; ++Idx) {
707      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
708      ParmVarDecl *NewParm = New->getParamDecl(Idx);
709      if (Context.typesAreCompatible(OldParm->getType(),
710                                     NewProto->getArgType(Idx))) {
711        ArgTypes.push_back(NewParm->getType());
712      } else if (Context.typesAreCompatible(OldParm->getType(),
713                                            NewParm->getType())) {
714        GNUCompatibleParamWarning Warn
715          = { OldParm, NewParm, NewProto->getArgType(Idx) };
716        Warnings.push_back(Warn);
717        ArgTypes.push_back(NewParm->getType());
718      } else
719        GNUCompatible = false;
720    }
721
722    if (GNUCompatible) {
723      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
724        Diag(Warnings[Warn].NewParm->getLocation(),
725             diag::ext_param_promoted_not_compatible_with_prototype)
726          << Warnings[Warn].PromotedType
727          << Warnings[Warn].OldParm->getType();
728        Diag(Warnings[Warn].OldParm->getLocation(),
729             diag::note_previous_declaration);
730      }
731
732      New->setType(Context.getFunctionType(NewProto->getResultType(),
733                                           &ArgTypes[0], ArgTypes.size(),
734                                           NewProto->isVariadic(),
735                                           NewProto->getTypeQuals()));
736      return MergeCompatibleFunctionDecls(New, Old);
737    }
738
739    // Fall through to diagnose conflicting types.
740  }
741
742  // A function that has already been declared has been redeclared or defined
743  // with a different type- show appropriate diagnostic
744  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
745    // The user has declared a builtin function with an incompatible
746    // signature.
747    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
748      // The function the user is redeclaring is a library-defined
749      // function like 'malloc' or 'printf'. Warn about the
750      // redeclaration, then ignore it.
751      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
752      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
753        << Old << Old->getType();
754      return true;
755    }
756
757    PrevDiag = diag::note_previous_builtin_declaration;
758  }
759
760  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
761  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
762  return true;
763}
764
765/// \brief Completes the merge of two function declarations that are
766/// known to be compatible.
767///
768/// This routine handles the merging of attributes and other
769/// properties of function declarations form the old declaration to
770/// the new declaration, once we know that New is in fact a
771/// redeclaration of Old.
772///
773/// \returns false
774bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
775  // Merge the attributes
776  MergeAttributes(New, Old, Context);
777
778  // Merge the storage class.
779  New->setStorageClass(Old->getStorageClass());
780
781  // FIXME: need to implement inline semantics
782
783  // Merge "pure" flag.
784  if (Old->isPure())
785    New->setPure();
786
787  // Merge the "deleted" flag.
788  if (Old->isDeleted())
789    New->setDeleted();
790
791  if (getLangOptions().CPlusPlus)
792    return MergeCXXFunctionDecl(New, Old);
793
794  return false;
795}
796
797/// MergeVarDecl - We just parsed a variable 'New' which has the same name
798/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
799/// situation, merging decls or emitting diagnostics as appropriate.
800///
801/// Tentative definition rules (C99 6.9.2p2) are checked by
802/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
803/// definitions here, since the initializer hasn't been attached.
804///
805bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
806  // Verify the old decl was also a variable.
807  VarDecl *Old = dyn_cast<VarDecl>(OldD);
808  if (!Old) {
809    Diag(New->getLocation(), diag::err_redefinition_different_kind)
810      << New->getDeclName();
811    Diag(OldD->getLocation(), diag::note_previous_definition);
812    return true;
813  }
814
815  MergeAttributes(New, Old, Context);
816
817  // Merge the types
818  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
819  if (MergedT.isNull()) {
820    Diag(New->getLocation(), diag::err_redefinition_different_type)
821      << New->getDeclName();
822    Diag(Old->getLocation(), diag::note_previous_definition);
823    return true;
824  }
825  New->setType(MergedT);
826
827  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
828  if (New->getStorageClass() == VarDecl::Static &&
829      (Old->getStorageClass() == VarDecl::None ||
830       Old->getStorageClass() == VarDecl::Extern)) {
831    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
832    Diag(Old->getLocation(), diag::note_previous_definition);
833    return true;
834  }
835  // C99 6.2.2p4:
836  //   For an identifier declared with the storage-class specifier
837  //   extern in a scope in which a prior declaration of that
838  //   identifier is visible,23) if the prior declaration specifies
839  //   internal or external linkage, the linkage of the identifier at
840  //   the later declaration is the same as the linkage specified at
841  //   the prior declaration. If no prior declaration is visible, or
842  //   if the prior declaration specifies no linkage, then the
843  //   identifier has external linkage.
844  if (New->hasExternalStorage() && Old->hasLinkage())
845    /* Okay */;
846  else if (New->getStorageClass() != VarDecl::Static &&
847           Old->getStorageClass() == VarDecl::Static) {
848    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
849    Diag(Old->getLocation(), diag::note_previous_definition);
850    return true;
851  }
852  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
853  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
854      // Don't complain about out-of-line definitions of static members.
855      !(Old->getLexicalDeclContext()->isRecord() &&
856        !New->getLexicalDeclContext()->isRecord())) {
857    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
858    Diag(Old->getLocation(), diag::note_previous_definition);
859    return true;
860  }
861
862  // Keep a chain of previous declarations.
863  New->setPreviousDeclaration(Old);
864
865  return false;
866}
867
868/// CheckParmsForFunctionDef - Check that the parameters of the given
869/// function are appropriate for the definition of a function. This
870/// takes care of any checks that cannot be performed on the
871/// declaration itself, e.g., that the types of each of the function
872/// parameters are complete.
873bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
874  bool HasInvalidParm = false;
875  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
876    ParmVarDecl *Param = FD->getParamDecl(p);
877
878    // C99 6.7.5.3p4: the parameters in a parameter type list in a
879    // function declarator that is part of a function definition of
880    // that function shall not have incomplete type.
881    if (!Param->isInvalidDecl() &&
882        RequireCompleteType(Param->getLocation(), Param->getType(),
883                               diag::err_typecheck_decl_incomplete_type)) {
884      Param->setInvalidDecl();
885      HasInvalidParm = true;
886    }
887
888    // C99 6.9.1p5: If the declarator includes a parameter type list, the
889    // declaration of each parameter shall include an identifier.
890    if (Param->getIdentifier() == 0 &&
891        !Param->isImplicit() &&
892        !getLangOptions().CPlusPlus)
893      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
894  }
895
896  return HasInvalidParm;
897}
898
899/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
900/// no declarator (e.g. "struct foo;") is parsed.
901Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
902  TagDecl *Tag = 0;
903  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
904      DS.getTypeSpecType() == DeclSpec::TST_struct ||
905      DS.getTypeSpecType() == DeclSpec::TST_union ||
906      DS.getTypeSpecType() == DeclSpec::TST_enum)
907    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
908
909  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
910    if (!Record->getDeclName() && Record->isDefinition() &&
911        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
912      if (getLangOptions().CPlusPlus ||
913          Record->getDeclContext()->isRecord())
914        return BuildAnonymousStructOrUnion(S, DS, Record);
915
916      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
917        << DS.getSourceRange();
918    }
919
920    // Microsoft allows unnamed struct/union fields. Don't complain
921    // about them.
922    // FIXME: Should we support Microsoft's extensions in this area?
923    if (Record->getDeclName() && getLangOptions().Microsoft)
924      return Tag;
925  }
926
927  if (!DS.isMissingDeclaratorOk() &&
928      DS.getTypeSpecType() != DeclSpec::TST_error) {
929    // Warn about typedefs of enums without names, since this is an
930    // extension in both Microsoft an GNU.
931    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
932        Tag && isa<EnumDecl>(Tag)) {
933      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
934        << DS.getSourceRange();
935      return Tag;
936    }
937
938    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
939      << DS.getSourceRange();
940    return 0;
941  }
942
943  return Tag;
944}
945
946/// InjectAnonymousStructOrUnionMembers - Inject the members of the
947/// anonymous struct or union AnonRecord into the owning context Owner
948/// and scope S. This routine will be invoked just after we realize
949/// that an unnamed union or struct is actually an anonymous union or
950/// struct, e.g.,
951///
952/// @code
953/// union {
954///   int i;
955///   float f;
956/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
957///    // f into the surrounding scope.x
958/// @endcode
959///
960/// This routine is recursive, injecting the names of nested anonymous
961/// structs/unions into the owning context and scope as well.
962bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
963                                               RecordDecl *AnonRecord) {
964  bool Invalid = false;
965  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
966                               FEnd = AnonRecord->field_end();
967       F != FEnd; ++F) {
968    if ((*F)->getDeclName()) {
969      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
970                                                LookupOrdinaryName, true);
971      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
972        // C++ [class.union]p2:
973        //   The names of the members of an anonymous union shall be
974        //   distinct from the names of any other entity in the
975        //   scope in which the anonymous union is declared.
976        unsigned diagKind
977          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
978                                 : diag::err_anonymous_struct_member_redecl;
979        Diag((*F)->getLocation(), diagKind)
980          << (*F)->getDeclName();
981        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
982        Invalid = true;
983      } else {
984        // C++ [class.union]p2:
985        //   For the purpose of name lookup, after the anonymous union
986        //   definition, the members of the anonymous union are
987        //   considered to have been defined in the scope in which the
988        //   anonymous union is declared.
989        Owner->makeDeclVisibleInContext(*F);
990        S->AddDecl(*F);
991        IdResolver.AddDecl(*F);
992      }
993    } else if (const RecordType *InnerRecordType
994                 = (*F)->getType()->getAsRecordType()) {
995      RecordDecl *InnerRecord = InnerRecordType->getDecl();
996      if (InnerRecord->isAnonymousStructOrUnion())
997        Invalid = Invalid ||
998          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
999    }
1000  }
1001
1002  return Invalid;
1003}
1004
1005/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1006/// anonymous structure or union. Anonymous unions are a C++ feature
1007/// (C++ [class.union]) and a GNU C extension; anonymous structures
1008/// are a GNU C and GNU C++ extension.
1009Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1010                                                RecordDecl *Record) {
1011  DeclContext *Owner = Record->getDeclContext();
1012
1013  // Diagnose whether this anonymous struct/union is an extension.
1014  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1015    Diag(Record->getLocation(), diag::ext_anonymous_union);
1016  else if (!Record->isUnion())
1017    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1018
1019  // C and C++ require different kinds of checks for anonymous
1020  // structs/unions.
1021  bool Invalid = false;
1022  if (getLangOptions().CPlusPlus) {
1023    const char* PrevSpec = 0;
1024    // C++ [class.union]p3:
1025    //   Anonymous unions declared in a named namespace or in the
1026    //   global namespace shall be declared static.
1027    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1028        (isa<TranslationUnitDecl>(Owner) ||
1029         (isa<NamespaceDecl>(Owner) &&
1030          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1031      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1032      Invalid = true;
1033
1034      // Recover by adding 'static'.
1035      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1036    }
1037    // C++ [class.union]p3:
1038    //   A storage class is not allowed in a declaration of an
1039    //   anonymous union in a class scope.
1040    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1041             isa<RecordDecl>(Owner)) {
1042      Diag(DS.getStorageClassSpecLoc(),
1043           diag::err_anonymous_union_with_storage_spec);
1044      Invalid = true;
1045
1046      // Recover by removing the storage specifier.
1047      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1048                             PrevSpec);
1049    }
1050
1051    // C++ [class.union]p2:
1052    //   The member-specification of an anonymous union shall only
1053    //   define non-static data members. [Note: nested types and
1054    //   functions cannot be declared within an anonymous union. ]
1055    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1056                                 MemEnd = Record->decls_end();
1057         Mem != MemEnd; ++Mem) {
1058      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1059        // C++ [class.union]p3:
1060        //   An anonymous union shall not have private or protected
1061        //   members (clause 11).
1062        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1063          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1064            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1065          Invalid = true;
1066        }
1067      } else if ((*Mem)->isImplicit()) {
1068        // Any implicit members are fine.
1069      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1070        // This is a type that showed up in an
1071        // elaborated-type-specifier inside the anonymous struct or
1072        // union, but which actually declares a type outside of the
1073        // anonymous struct or union. It's okay.
1074      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1075        if (!MemRecord->isAnonymousStructOrUnion() &&
1076            MemRecord->getDeclName()) {
1077          // This is a nested type declaration.
1078          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1079            << (int)Record->isUnion();
1080          Invalid = true;
1081        }
1082      } else {
1083        // We have something that isn't a non-static data
1084        // member. Complain about it.
1085        unsigned DK = diag::err_anonymous_record_bad_member;
1086        if (isa<TypeDecl>(*Mem))
1087          DK = diag::err_anonymous_record_with_type;
1088        else if (isa<FunctionDecl>(*Mem))
1089          DK = diag::err_anonymous_record_with_function;
1090        else if (isa<VarDecl>(*Mem))
1091          DK = diag::err_anonymous_record_with_static;
1092        Diag((*Mem)->getLocation(), DK)
1093            << (int)Record->isUnion();
1094          Invalid = true;
1095      }
1096    }
1097  }
1098
1099  if (!Record->isUnion() && !Owner->isRecord()) {
1100    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1101      << (int)getLangOptions().CPlusPlus;
1102    Invalid = true;
1103  }
1104
1105  // Create a declaration for this anonymous struct/union.
1106  NamedDecl *Anon = 0;
1107  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1108    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1109                             /*IdentifierInfo=*/0,
1110                             Context.getTypeDeclType(Record),
1111                             /*BitWidth=*/0, /*Mutable=*/false);
1112    Anon->setAccess(AS_public);
1113    if (getLangOptions().CPlusPlus)
1114      FieldCollector->Add(cast<FieldDecl>(Anon));
1115  } else {
1116    VarDecl::StorageClass SC;
1117    switch (DS.getStorageClassSpec()) {
1118    default: assert(0 && "Unknown storage class!");
1119    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1120    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1121    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1122    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1123    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1124    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1125    case DeclSpec::SCS_mutable:
1126      // mutable can only appear on non-static class members, so it's always
1127      // an error here
1128      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1129      Invalid = true;
1130      SC = VarDecl::None;
1131      break;
1132    }
1133
1134    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1135                           /*IdentifierInfo=*/0,
1136                           Context.getTypeDeclType(Record),
1137                           SC, DS.getSourceRange().getBegin());
1138  }
1139  Anon->setImplicit();
1140
1141  // Add the anonymous struct/union object to the current
1142  // context. We'll be referencing this object when we refer to one of
1143  // its members.
1144  Owner->addDecl(Anon);
1145
1146  // Inject the members of the anonymous struct/union into the owning
1147  // context and into the identifier resolver chain for name lookup
1148  // purposes.
1149  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1150    Invalid = true;
1151
1152  // Mark this as an anonymous struct/union type. Note that we do not
1153  // do this until after we have already checked and injected the
1154  // members of this anonymous struct/union type, because otherwise
1155  // the members could be injected twice: once by DeclContext when it
1156  // builds its lookup table, and once by
1157  // InjectAnonymousStructOrUnionMembers.
1158  Record->setAnonymousStructOrUnion(true);
1159
1160  if (Invalid)
1161    Anon->setInvalidDecl();
1162
1163  return Anon;
1164}
1165
1166
1167/// GetNameForDeclarator - Determine the full declaration name for the
1168/// given Declarator.
1169DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1170  switch (D.getKind()) {
1171  case Declarator::DK_Abstract:
1172    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1173    return DeclarationName();
1174
1175  case Declarator::DK_Normal:
1176    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1177    return DeclarationName(D.getIdentifier());
1178
1179  case Declarator::DK_Constructor: {
1180    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1181    Ty = Context.getCanonicalType(Ty);
1182    return Context.DeclarationNames.getCXXConstructorName(Ty);
1183  }
1184
1185  case Declarator::DK_Destructor: {
1186    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1187    Ty = Context.getCanonicalType(Ty);
1188    return Context.DeclarationNames.getCXXDestructorName(Ty);
1189  }
1190
1191  case Declarator::DK_Conversion: {
1192    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1193    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1194    Ty = Context.getCanonicalType(Ty);
1195    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1196  }
1197
1198  case Declarator::DK_Operator:
1199    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1200    return Context.DeclarationNames.getCXXOperatorName(
1201                                                D.getOverloadedOperator());
1202  }
1203
1204  assert(false && "Unknown name kind");
1205  return DeclarationName();
1206}
1207
1208/// isNearlyMatchingFunction - Determine whether the C++ functions
1209/// Declaration and Definition are "nearly" matching. This heuristic
1210/// is used to improve diagnostics in the case where an out-of-line
1211/// function definition doesn't match any declaration within
1212/// the class or namespace.
1213static bool isNearlyMatchingFunction(ASTContext &Context,
1214                                     FunctionDecl *Declaration,
1215                                     FunctionDecl *Definition) {
1216  if (Declaration->param_size() != Definition->param_size())
1217    return false;
1218  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1219    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1220    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1221
1222    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1223    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1224    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1225      return false;
1226  }
1227
1228  return true;
1229}
1230
1231Sema::DeclTy *
1232Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1233                      bool IsFunctionDefinition) {
1234  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1235  DeclarationName Name = GetNameForDeclarator(D);
1236
1237  // All of these full declarators require an identifier.  If it doesn't have
1238  // one, the ParsedFreeStandingDeclSpec action should be used.
1239  if (!Name) {
1240    if (!D.getInvalidType())  // Reject this if we think it is valid.
1241      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1242           diag::err_declarator_need_ident)
1243        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1244    return 0;
1245  }
1246
1247  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1248  // we find one that is.
1249  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1250         (S->getFlags() & Scope::TemplateParamScope) != 0)
1251    S = S->getParent();
1252
1253  DeclContext *DC;
1254  NamedDecl *PrevDecl;
1255  NamedDecl *New;
1256  bool InvalidDecl = false;
1257
1258  QualType R = GetTypeForDeclarator(D, S);
1259  if (R.isNull()) {
1260    InvalidDecl = true;
1261    R = Context.IntTy;
1262  }
1263
1264  // See if this is a redefinition of a variable in the same scope.
1265  if (D.getCXXScopeSpec().isInvalid()) {
1266    DC = CurContext;
1267    PrevDecl = 0;
1268    InvalidDecl = true;
1269  } else if (!D.getCXXScopeSpec().isSet()) {
1270    LookupNameKind NameKind = LookupOrdinaryName;
1271
1272    // If the declaration we're planning to build will be a function
1273    // or object with linkage, then look for another declaration with
1274    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1275    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1276      /* Do nothing*/;
1277    else if (R->isFunctionType()) {
1278      if (CurContext->isFunctionOrMethod())
1279        NameKind = LookupRedeclarationWithLinkage;
1280    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1281      NameKind = LookupRedeclarationWithLinkage;
1282
1283    DC = CurContext;
1284    PrevDecl = LookupName(S, Name, NameKind, true,
1285                          D.getDeclSpec().getStorageClassSpec() !=
1286                            DeclSpec::SCS_static,
1287                          D.getIdentifierLoc());
1288  } else { // Something like "int foo::x;"
1289    DC = computeDeclContext(D.getCXXScopeSpec());
1290    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1291    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1292
1293    // C++ 7.3.1.2p2:
1294    // Members (including explicit specializations of templates) of a named
1295    // namespace can also be defined outside that namespace by explicit
1296    // qualification of the name being defined, provided that the entity being
1297    // defined was already declared in the namespace and the definition appears
1298    // after the point of declaration in a namespace that encloses the
1299    // declarations namespace.
1300    //
1301    // Note that we only check the context at this point. We don't yet
1302    // have enough information to make sure that PrevDecl is actually
1303    // the declaration we want to match. For example, given:
1304    //
1305    //   class X {
1306    //     void f();
1307    //     void f(float);
1308    //   };
1309    //
1310    //   void X::f(int) { } // ill-formed
1311    //
1312    // In this case, PrevDecl will point to the overload set
1313    // containing the two f's declared in X, but neither of them
1314    // matches.
1315
1316    // First check whether we named the global scope.
1317    if (isa<TranslationUnitDecl>(DC)) {
1318      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1319        << Name << D.getCXXScopeSpec().getRange();
1320    } else if (!CurContext->Encloses(DC)) {
1321      // The qualifying scope doesn't enclose the original declaration.
1322      // Emit diagnostic based on current scope.
1323      SourceLocation L = D.getIdentifierLoc();
1324      SourceRange R = D.getCXXScopeSpec().getRange();
1325      if (isa<FunctionDecl>(CurContext))
1326        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1327      else
1328        Diag(L, diag::err_invalid_declarator_scope)
1329          << Name << cast<NamedDecl>(DC) << R;
1330      InvalidDecl = true;
1331    }
1332  }
1333
1334  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1335    // Maybe we will complain about the shadowed template parameter.
1336    InvalidDecl = InvalidDecl
1337      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1338    // Just pretend that we didn't see the previous declaration.
1339    PrevDecl = 0;
1340  }
1341
1342  // In C++, the previous declaration we find might be a tag type
1343  // (class or enum). In this case, the new declaration will hide the
1344  // tag type. Note that this does does not apply if we're declaring a
1345  // typedef (C++ [dcl.typedef]p4).
1346  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1347      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1348    PrevDecl = 0;
1349
1350  bool Redeclaration = false;
1351  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1352    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1353                                 InvalidDecl, Redeclaration);
1354  } else if (R->isFunctionType()) {
1355    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1356                                  IsFunctionDefinition, InvalidDecl,
1357                                  Redeclaration);
1358  } else {
1359    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1360                                  InvalidDecl, Redeclaration);
1361  }
1362
1363  if (New == 0)
1364    return 0;
1365
1366  // If this has an identifier and is not an invalid redeclaration,
1367  // add it to the scope stack.
1368  if (Name && !(Redeclaration && InvalidDecl))
1369    PushOnScopeChains(New, S);
1370  // If any semantic error occurred, mark the decl as invalid.
1371  if (D.getInvalidType() || InvalidDecl)
1372    New->setInvalidDecl();
1373
1374  return New;
1375}
1376
1377/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1378/// types into constant array types in certain situations which would otherwise
1379/// be errors (for GCC compatibility).
1380static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1381                                                    ASTContext &Context,
1382                                                    bool &SizeIsNegative) {
1383  // This method tries to turn a variable array into a constant
1384  // array even when the size isn't an ICE.  This is necessary
1385  // for compatibility with code that depends on gcc's buggy
1386  // constant expression folding, like struct {char x[(int)(char*)2];}
1387  SizeIsNegative = false;
1388
1389  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1390    QualType Pointee = PTy->getPointeeType();
1391    QualType FixedType =
1392        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1393    if (FixedType.isNull()) return FixedType;
1394    FixedType = Context.getPointerType(FixedType);
1395    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1396    return FixedType;
1397  }
1398
1399  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1400  if (!VLATy)
1401    return QualType();
1402  // FIXME: We should probably handle this case
1403  if (VLATy->getElementType()->isVariablyModifiedType())
1404    return QualType();
1405
1406  Expr::EvalResult EvalResult;
1407  if (!VLATy->getSizeExpr() ||
1408      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1409      !EvalResult.Val.isInt())
1410    return QualType();
1411
1412  llvm::APSInt &Res = EvalResult.Val.getInt();
1413  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1414    return Context.getConstantArrayType(VLATy->getElementType(),
1415                                        Res, ArrayType::Normal, 0);
1416
1417  SizeIsNegative = true;
1418  return QualType();
1419}
1420
1421/// \brief Register the given locally-scoped external C declaration so
1422/// that it can be found later for redeclarations
1423void
1424Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1425                                       Scope *S) {
1426  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1427         "Decl is not a locally-scoped decl!");
1428  // Note that we have a locally-scoped external with this name.
1429  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1430
1431  if (!PrevDecl)
1432    return;
1433
1434  // If there was a previous declaration of this variable, it may be
1435  // in our identifier chain. Update the identifier chain with the new
1436  // declaration.
1437  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1438    // The previous declaration was found on the identifer resolver
1439    // chain, so remove it from its scope.
1440    while (S && !S->isDeclScope(PrevDecl))
1441      S = S->getParent();
1442
1443    if (S)
1444      S->RemoveDecl(PrevDecl);
1445  }
1446}
1447
1448NamedDecl*
1449Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1450                             QualType R, Decl* LastDeclarator,
1451                             Decl* PrevDecl, bool& InvalidDecl,
1452                             bool &Redeclaration) {
1453  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1454  if (D.getCXXScopeSpec().isSet()) {
1455    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1456      << D.getCXXScopeSpec().getRange();
1457    InvalidDecl = true;
1458    // Pretend we didn't see the scope specifier.
1459    DC = 0;
1460  }
1461
1462  if (getLangOptions().CPlusPlus) {
1463    // Check that there are no default arguments (C++ only).
1464    CheckExtraCXXDefaultArguments(D);
1465
1466    if (D.getDeclSpec().isVirtualSpecified())
1467      Diag(D.getDeclSpec().getVirtualSpecLoc(),
1468           diag::err_virtual_non_function);
1469  }
1470
1471  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1472  if (!NewTD) return 0;
1473
1474  // Handle attributes prior to checking for duplicates in MergeVarDecl
1475  ProcessDeclAttributes(NewTD, D);
1476  // Merge the decl with the existing one if appropriate. If the decl is
1477  // in an outer scope, it isn't the same thing.
1478  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1479    Redeclaration = true;
1480    if (MergeTypeDefDecl(NewTD, PrevDecl))
1481      InvalidDecl = true;
1482  }
1483
1484  if (S->getFnParent() == 0) {
1485    QualType T = NewTD->getUnderlyingType();
1486    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1487    // then it shall have block scope.
1488    if (T->isVariablyModifiedType()) {
1489      bool SizeIsNegative;
1490      QualType FixedTy =
1491          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1492      if (!FixedTy.isNull()) {
1493        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1494        NewTD->setUnderlyingType(FixedTy);
1495      } else {
1496        if (SizeIsNegative)
1497          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1498        else if (T->isVariableArrayType())
1499          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1500        else
1501          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1502        InvalidDecl = true;
1503      }
1504    }
1505  }
1506  return NewTD;
1507}
1508
1509/// \brief Determines whether the given declaration is an out-of-scope
1510/// previous declaration.
1511///
1512/// This routine should be invoked when name lookup has found a
1513/// previous declaration (PrevDecl) that is not in the scope where a
1514/// new declaration by the same name is being introduced. If the new
1515/// declaration occurs in a local scope, previous declarations with
1516/// linkage may still be considered previous declarations (C99
1517/// 6.2.2p4-5, C++ [basic.link]p6).
1518///
1519/// \param PrevDecl the previous declaration found by name
1520/// lookup
1521///
1522/// \param DC the context in which the new declaration is being
1523/// declared.
1524///
1525/// \returns true if PrevDecl is an out-of-scope previous declaration
1526/// for a new delcaration with the same name.
1527static bool
1528isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1529                                ASTContext &Context) {
1530  if (!PrevDecl)
1531    return 0;
1532
1533  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1534  // case we need to check each of the overloaded functions.
1535  if (!PrevDecl->hasLinkage())
1536    return false;
1537
1538  if (Context.getLangOptions().CPlusPlus) {
1539    // C++ [basic.link]p6:
1540    //   If there is a visible declaration of an entity with linkage
1541    //   having the same name and type, ignoring entities declared
1542    //   outside the innermost enclosing namespace scope, the block
1543    //   scope declaration declares that same entity and receives the
1544    //   linkage of the previous declaration.
1545    DeclContext *OuterContext = DC->getLookupContext();
1546    if (!OuterContext->isFunctionOrMethod())
1547      // This rule only applies to block-scope declarations.
1548      return false;
1549    else {
1550      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1551      if (PrevOuterContext->isRecord())
1552        // We found a member function: ignore it.
1553        return false;
1554      else {
1555        // Find the innermost enclosing namespace for the new and
1556        // previous declarations.
1557        while (!OuterContext->isFileContext())
1558          OuterContext = OuterContext->getParent();
1559        while (!PrevOuterContext->isFileContext())
1560          PrevOuterContext = PrevOuterContext->getParent();
1561
1562        // The previous declaration is in a different namespace, so it
1563        // isn't the same function.
1564        if (OuterContext->getPrimaryContext() !=
1565            PrevOuterContext->getPrimaryContext())
1566          return false;
1567      }
1568    }
1569  }
1570
1571  return true;
1572}
1573
1574NamedDecl*
1575Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1576                              QualType R, Decl* LastDeclarator,
1577                              NamedDecl* PrevDecl, bool& InvalidDecl,
1578                              bool &Redeclaration) {
1579  DeclarationName Name = GetNameForDeclarator(D);
1580
1581  // Check that there are no default arguments (C++ only).
1582  if (getLangOptions().CPlusPlus)
1583    CheckExtraCXXDefaultArguments(D);
1584
1585  if (R.getTypePtr()->isObjCInterfaceType()) {
1586    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1587    InvalidDecl = true;
1588  }
1589
1590  VarDecl *NewVD;
1591  VarDecl::StorageClass SC;
1592  switch (D.getDeclSpec().getStorageClassSpec()) {
1593  default: assert(0 && "Unknown storage class!");
1594  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1595  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1596  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1597  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1598  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1599  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1600  case DeclSpec::SCS_mutable:
1601    // mutable can only appear on non-static class members, so it's always
1602    // an error here
1603    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1604    InvalidDecl = true;
1605    SC = VarDecl::None;
1606    break;
1607  }
1608
1609  IdentifierInfo *II = Name.getAsIdentifierInfo();
1610  if (!II) {
1611    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1612      << Name.getAsString();
1613    return 0;
1614  }
1615
1616  if (D.getDeclSpec().isVirtualSpecified())
1617    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1618         diag::err_virtual_non_function);
1619
1620  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1621  if (!DC->isRecord() && S->getFnParent() == 0) {
1622    // C99 6.9p2: The storage-class specifiers auto and register shall not
1623    // appear in the declaration specifiers in an external declaration.
1624    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1625      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1626      InvalidDecl = true;
1627    }
1628  }
1629  if (DC->isRecord() && !CurContext->isRecord()) {
1630    // This is an out-of-line definition of a static data member.
1631    if (SC == VarDecl::Static) {
1632      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1633           diag::err_static_out_of_line)
1634        << CodeModificationHint::CreateRemoval(
1635                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1636    } else if (SC == VarDecl::None)
1637      SC = VarDecl::Static;
1638  }
1639
1640  // The variable can not have an abstract class type.
1641  if (RequireNonAbstractType(D.getIdentifierLoc(), R, 2 /* variable type */))
1642    InvalidDecl = true;
1643
1644  // The variable can not
1645  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1646                          II, R, SC,
1647                          // FIXME: Move to DeclGroup...
1648                          D.getDeclSpec().getSourceRange().getBegin());
1649  NewVD->setThreadSpecified(ThreadSpecified);
1650  NewVD->setNextDeclarator(LastDeclarator);
1651
1652  // Set the lexical context. If the declarator has a C++ scope specifier, the
1653  // lexical context will be different from the semantic context.
1654  NewVD->setLexicalDeclContext(CurContext);
1655
1656  // Handle attributes prior to checking for duplicates in MergeVarDecl
1657  ProcessDeclAttributes(NewVD, D);
1658
1659  // Handle GNU asm-label extension (encoded as an attribute).
1660  if (Expr *E = (Expr*) D.getAsmLabel()) {
1661    // The parser guarantees this is a string.
1662    StringLiteral *SE = cast<StringLiteral>(E);
1663    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1664                                                        SE->getByteLength())));
1665  }
1666
1667  // Emit an error if an address space was applied to decl with local storage.
1668  // This includes arrays of objects with address space qualifiers, but not
1669  // automatic variables that point to other address spaces.
1670  // ISO/IEC TR 18037 S5.1.2
1671  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1672    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1673    InvalidDecl = true;
1674  }
1675
1676  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1677    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1678  }
1679
1680  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1681  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1682  if (isIllegalVLA || isIllegalVM) {
1683    bool SizeIsNegative;
1684    QualType FixedTy =
1685        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1686    if (!FixedTy.isNull()) {
1687      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1688      NewVD->setType(FixedTy);
1689    } else if (R->isVariableArrayType()) {
1690      NewVD->setInvalidDecl();
1691
1692      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1693      // FIXME: This won't give the correct result for
1694      // int a[10][n];
1695      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1696
1697      if (NewVD->isFileVarDecl())
1698        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1699          << SizeRange;
1700      else if (NewVD->getStorageClass() == VarDecl::Static)
1701        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1702          << SizeRange;
1703      else
1704        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1705            << SizeRange;
1706    } else {
1707      InvalidDecl = true;
1708
1709      if (NewVD->isFileVarDecl())
1710        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1711      else
1712        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1713    }
1714  }
1715
1716  // If name lookup finds a previous declaration that is not in the
1717  // same scope as the new declaration, this may still be an
1718  // acceptable redeclaration.
1719  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1720      !(NewVD->hasLinkage() &&
1721        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1722    PrevDecl = 0;
1723
1724  if (!PrevDecl && NewVD->isExternC(Context)) {
1725    // Since we did not find anything by this name and we're declaring
1726    // an extern "C" variable, look for a non-visible extern "C"
1727    // declaration with the same name.
1728    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1729      = LocallyScopedExternalDecls.find(Name);
1730    if (Pos != LocallyScopedExternalDecls.end())
1731      PrevDecl = Pos->second;
1732  }
1733
1734  // Merge the decl with the existing one if appropriate.
1735  if (PrevDecl) {
1736    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1737      // The user tried to define a non-static data member
1738      // out-of-line (C++ [dcl.meaning]p1).
1739      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1740        << D.getCXXScopeSpec().getRange();
1741      NewVD->Destroy(Context);
1742      return 0;
1743    }
1744
1745    Redeclaration = true;
1746    if (MergeVarDecl(NewVD, PrevDecl))
1747      InvalidDecl = true;
1748  } else if (D.getCXXScopeSpec().isSet()) {
1749    // No previous declaration in the qualifying scope.
1750    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1751      << Name << D.getCXXScopeSpec().getRange();
1752    InvalidDecl = true;
1753  }
1754
1755  if (!InvalidDecl && R->isVoidType() && !NewVD->hasExternalStorage()) {
1756    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1757      << R;
1758    InvalidDecl = true;
1759  }
1760
1761
1762  // If this is a locally-scoped extern C variable, update the map of
1763  // such variables.
1764  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1765      !InvalidDecl)
1766    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1767
1768  return NewVD;
1769}
1770
1771NamedDecl*
1772Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1773                              QualType R, Decl *LastDeclarator,
1774                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1775                              bool& InvalidDecl, bool &Redeclaration) {
1776  assert(R.getTypePtr()->isFunctionType());
1777
1778  DeclarationName Name = GetNameForDeclarator(D);
1779  FunctionDecl::StorageClass SC = FunctionDecl::None;
1780  switch (D.getDeclSpec().getStorageClassSpec()) {
1781  default: assert(0 && "Unknown storage class!");
1782  case DeclSpec::SCS_auto:
1783  case DeclSpec::SCS_register:
1784  case DeclSpec::SCS_mutable:
1785    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1786         diag::err_typecheck_sclass_func);
1787    InvalidDecl = true;
1788    break;
1789  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1790  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1791  case DeclSpec::SCS_static: {
1792    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1793      // C99 6.7.1p5:
1794      //   The declaration of an identifier for a function that has
1795      //   block scope shall have no explicit storage-class specifier
1796      //   other than extern
1797      // See also (C++ [dcl.stc]p4).
1798      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1799           diag::err_static_block_func);
1800      SC = FunctionDecl::None;
1801    } else
1802      SC = FunctionDecl::Static;
1803    break;
1804  }
1805  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1806  }
1807
1808  bool isInline = D.getDeclSpec().isInlineSpecified();
1809  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1810  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1811
1812  // Check that the return type is not an abstract class type.
1813  if (RequireNonAbstractType(D.getIdentifierLoc(),
1814                             R->getAsFunctionType()->getResultType(),
1815                             0 /* return type */))
1816    InvalidDecl = true;
1817
1818  bool isVirtualOkay = false;
1819  FunctionDecl *NewFD;
1820  if (D.getKind() == Declarator::DK_Constructor) {
1821    // This is a C++ constructor declaration.
1822    assert(DC->isRecord() &&
1823           "Constructors can only be declared in a member context");
1824
1825    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1826
1827    // Create the new declaration
1828    NewFD = CXXConstructorDecl::Create(Context,
1829                                       cast<CXXRecordDecl>(DC),
1830                                       D.getIdentifierLoc(), Name, R,
1831                                       isExplicit, isInline,
1832                                       /*isImplicitlyDeclared=*/false);
1833
1834    if (InvalidDecl)
1835      NewFD->setInvalidDecl();
1836  } else if (D.getKind() == Declarator::DK_Destructor) {
1837    // This is a C++ destructor declaration.
1838    if (DC->isRecord()) {
1839      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1840
1841      NewFD = CXXDestructorDecl::Create(Context,
1842                                        cast<CXXRecordDecl>(DC),
1843                                        D.getIdentifierLoc(), Name, R,
1844                                        isInline,
1845                                        /*isImplicitlyDeclared=*/false);
1846
1847      if (InvalidDecl)
1848        NewFD->setInvalidDecl();
1849
1850      isVirtualOkay = true;
1851    } else {
1852      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1853
1854      // Create a FunctionDecl to satisfy the function definition parsing
1855      // code path.
1856      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1857                                   Name, R, SC, isInline,
1858                                   /*hasPrototype=*/true,
1859                                   // FIXME: Move to DeclGroup...
1860                                   D.getDeclSpec().getSourceRange().getBegin());
1861      InvalidDecl = true;
1862      NewFD->setInvalidDecl();
1863    }
1864  } else if (D.getKind() == Declarator::DK_Conversion) {
1865    if (!DC->isRecord()) {
1866      Diag(D.getIdentifierLoc(),
1867           diag::err_conv_function_not_member);
1868      return 0;
1869    } else {
1870      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1871
1872      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1873                                        D.getIdentifierLoc(), Name, R,
1874                                        isInline, isExplicit);
1875
1876      if (InvalidDecl)
1877        NewFD->setInvalidDecl();
1878
1879      isVirtualOkay = true;
1880    }
1881  } else if (DC->isRecord()) {
1882    // This is a C++ method declaration.
1883    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1884                                  D.getIdentifierLoc(), Name, R,
1885                                  (SC == FunctionDecl::Static), isInline);
1886
1887    isVirtualOkay = (SC != FunctionDecl::Static);
1888  } else {
1889    // Determine whether the function was written with a
1890    // prototype. This true when:
1891    //   - we're in C++ (where every function has a prototype),
1892    //   - there is a prototype in the declarator, or
1893    //   - the type R of the function is some kind of typedef or other reference
1894    //     to a type name (which eventually refers to a function type).
1895    bool HasPrototype =
1896       getLangOptions().CPlusPlus ||
1897       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
1898       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
1899
1900    NewFD = FunctionDecl::Create(Context, DC,
1901                                 D.getIdentifierLoc(),
1902                                 Name, R, SC, isInline, HasPrototype,
1903                                 // FIXME: Move to DeclGroup...
1904                                 D.getDeclSpec().getSourceRange().getBegin());
1905  }
1906  NewFD->setNextDeclarator(LastDeclarator);
1907
1908  // Set the lexical context. If the declarator has a C++
1909  // scope specifier, the lexical context will be different
1910  // from the semantic context.
1911  NewFD->setLexicalDeclContext(CurContext);
1912
1913  // C++ [dcl.fct.spec]p5:
1914  //   The virtual specifier shall only be used in declarations of
1915  //   nonstatic class member functions that appear within a
1916  //   member-specification of a class declaration; see 10.3.
1917  //
1918  // FIXME: Checking the 'virtual' specifier is not sufficient. A
1919  // function is also virtual if it overrides an already virtual
1920  // function. This is important to do here because it's part of the
1921  // declaration.
1922  if (isVirtual && !InvalidDecl) {
1923    if (!isVirtualOkay) {
1924       Diag(D.getDeclSpec().getVirtualSpecLoc(),
1925           diag::err_virtual_non_function);
1926    } else if (!CurContext->isRecord()) {
1927      // 'virtual' was specified outside of the class.
1928      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
1929        << CodeModificationHint::CreateRemoval(
1930                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
1931    } else {
1932      // Okay: Add virtual to the method.
1933      cast<CXXMethodDecl>(NewFD)->setVirtual();
1934      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
1935      CurClass->setAggregate(false);
1936      CurClass->setPOD(false);
1937      CurClass->setPolymorphic(true);
1938    }
1939  }
1940
1941  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
1942      !CurContext->isRecord()) {
1943    // C++ [class.static]p1:
1944    //   A data or function member of a class may be declared static
1945    //   in a class definition, in which case it is a static member of
1946    //   the class.
1947
1948    // Complain about the 'static' specifier if it's on an out-of-line
1949    // member function definition.
1950    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1951         diag::err_static_out_of_line)
1952      << CodeModificationHint::CreateRemoval(
1953                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1954  }
1955
1956  // Handle GNU asm-label extension (encoded as an attribute).
1957  if (Expr *E = (Expr*) D.getAsmLabel()) {
1958    // The parser guarantees this is a string.
1959    StringLiteral *SE = cast<StringLiteral>(E);
1960    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1961                                                        SE->getByteLength())));
1962  }
1963
1964  // Copy the parameter declarations from the declarator D to
1965  // the function declaration NewFD, if they are available.
1966  if (D.getNumTypeObjects() > 0) {
1967    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1968
1969    // Create Decl objects for each parameter, adding them to the
1970    // FunctionDecl.
1971    llvm::SmallVector<ParmVarDecl*, 16> Params;
1972
1973    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1974    // function that takes no arguments, not a function that takes a
1975    // single void argument.
1976    // We let through "const void" here because Sema::GetTypeForDeclarator
1977    // already checks for that case.
1978    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1979        FTI.ArgInfo[0].Param &&
1980        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1981      // empty arg list, don't push any params.
1982      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1983
1984      // In C++, the empty parameter-type-list must be spelled "void"; a
1985      // typedef of void is not permitted.
1986      if (getLangOptions().CPlusPlus &&
1987          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1988        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1989      }
1990    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1991      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1992        ParmVarDecl *PVD = (ParmVarDecl *)FTI.ArgInfo[i].Param;
1993
1994        // Function parameters cannot have abstract class types.
1995        if (RequireNonAbstractType(PVD->getLocation(), PVD->getType(),
1996                                   1 /* parameter type */))
1997            InvalidDecl = true;
1998        Params.push_back(PVD);
1999      }
2000    }
2001
2002    NewFD->setParams(Context, &Params[0], Params.size());
2003  } else if (R->getAsTypedefType()) {
2004    // When we're declaring a function with a typedef, as in the
2005    // following example, we'll need to synthesize (unnamed)
2006    // parameters for use in the declaration.
2007    //
2008    // @code
2009    // typedef void fn(int);
2010    // fn f;
2011    // @endcode
2012    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2013    if (!FT) {
2014      // This is a typedef of a function with no prototype, so we
2015      // don't need to do anything.
2016    } else if ((FT->getNumArgs() == 0) ||
2017               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2018                FT->getArgType(0)->isVoidType())) {
2019      // This is a zero-argument function. We don't need to do anything.
2020    } else {
2021      // Synthesize a parameter for each argument type.
2022      llvm::SmallVector<ParmVarDecl*, 16> Params;
2023      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2024           ArgType != FT->arg_type_end(); ++ArgType) {
2025        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2026                                                 SourceLocation(), 0,
2027                                                 *ArgType, VarDecl::None,
2028                                                 0);
2029        Param->setImplicit();
2030        Params.push_back(Param);
2031      }
2032
2033      NewFD->setParams(Context, &Params[0], Params.size());
2034    }
2035  }
2036
2037  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2038    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2039  else if (isa<CXXDestructorDecl>(NewFD)) {
2040    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2041    Record->setUserDeclaredDestructor(true);
2042    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2043    // user-defined destructor.
2044    Record->setPOD(false);
2045  } else if (CXXConversionDecl *Conversion =
2046             dyn_cast<CXXConversionDecl>(NewFD))
2047    ActOnConversionDeclarator(Conversion);
2048
2049  // Extra checking for C++ overloaded operators (C++ [over.oper]).
2050  if (NewFD->isOverloadedOperator() &&
2051      CheckOverloadedOperatorDeclaration(NewFD))
2052    NewFD->setInvalidDecl();
2053
2054  // If name lookup finds a previous declaration that is not in the
2055  // same scope as the new declaration, this may still be an
2056  // acceptable redeclaration.
2057  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2058      !(NewFD->hasLinkage() &&
2059        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2060    PrevDecl = 0;
2061
2062  if (!PrevDecl && NewFD->isExternC(Context)) {
2063    // Since we did not find anything by this name and we're declaring
2064    // an extern "C" function, look for a non-visible extern "C"
2065    // declaration with the same name.
2066    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2067      = LocallyScopedExternalDecls.find(Name);
2068    if (Pos != LocallyScopedExternalDecls.end())
2069      PrevDecl = Pos->second;
2070  }
2071
2072  // Merge or overload the declaration with an existing declaration of
2073  // the same name, if appropriate.
2074  bool OverloadableAttrRequired = false;
2075  if (PrevDecl) {
2076    // Determine whether NewFD is an overload of PrevDecl or
2077    // a declaration that requires merging. If it's an overload,
2078    // there's no more work to do here; we'll just add the new
2079    // function to the scope.
2080    OverloadedFunctionDecl::function_iterator MatchedDecl;
2081
2082    if (!getLangOptions().CPlusPlus &&
2083        AllowOverloadingOfFunction(PrevDecl, Context)) {
2084      OverloadableAttrRequired = true;
2085
2086      // Functions marked "overloadable" must have a prototype (that
2087      // we can't get through declaration merging).
2088      if (!R->getAsFunctionProtoType()) {
2089        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2090          << NewFD;
2091        InvalidDecl = true;
2092        Redeclaration = true;
2093
2094        // Turn this into a variadic function with no parameters.
2095        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
2096                                    0, 0, true, 0);
2097        NewFD->setType(R);
2098      }
2099    }
2100
2101    if (PrevDecl &&
2102        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2103         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2104      Redeclaration = true;
2105      Decl *OldDecl = PrevDecl;
2106
2107      // If PrevDecl was an overloaded function, extract the
2108      // FunctionDecl that matched.
2109      if (isa<OverloadedFunctionDecl>(PrevDecl))
2110        OldDecl = *MatchedDecl;
2111
2112      // NewFD and PrevDecl represent declarations that need to be
2113      // merged.
2114      if (MergeFunctionDecl(NewFD, OldDecl))
2115        InvalidDecl = true;
2116
2117      if (!InvalidDecl) {
2118        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2119
2120        // An out-of-line member function declaration must also be a
2121        // definition (C++ [dcl.meaning]p1).
2122        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
2123            !InvalidDecl) {
2124          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2125            << D.getCXXScopeSpec().getRange();
2126          NewFD->setInvalidDecl();
2127        }
2128      }
2129    }
2130  }
2131
2132  if (D.getCXXScopeSpec().isSet() &&
2133      (!PrevDecl || !Redeclaration)) {
2134    // The user tried to provide an out-of-line definition for a
2135    // function that is a member of a class or namespace, but there
2136    // was no such member function declared (C++ [class.mfct]p2,
2137    // C++ [namespace.memdef]p2). For example:
2138    //
2139    // class X {
2140    //   void f() const;
2141    // };
2142    //
2143    // void X::f() { } // ill-formed
2144    //
2145    // Complain about this problem, and attempt to suggest close
2146    // matches (e.g., those that differ only in cv-qualifiers and
2147    // whether the parameter types are references).
2148    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2149      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2150    InvalidDecl = true;
2151
2152    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2153                                            true);
2154    assert(!Prev.isAmbiguous() &&
2155           "Cannot have an ambiguity in previous-declaration lookup");
2156    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2157         Func != FuncEnd; ++Func) {
2158      if (isa<FunctionDecl>(*Func) &&
2159          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2160        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2161    }
2162
2163    PrevDecl = 0;
2164  }
2165
2166  // Handle attributes. We need to have merged decls when handling attributes
2167  // (for example to check for conflicts, etc).
2168  ProcessDeclAttributes(NewFD, D);
2169  AddKnownFunctionAttributes(NewFD);
2170
2171  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2172    // If a function name is overloadable in C, then every function
2173    // with that name must be marked "overloadable".
2174    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2175      << Redeclaration << NewFD;
2176    if (PrevDecl)
2177      Diag(PrevDecl->getLocation(),
2178           diag::note_attribute_overloadable_prev_overload);
2179    NewFD->addAttr(::new (Context) OverloadableAttr());
2180  }
2181
2182  if (getLangOptions().CPlusPlus) {
2183    // In C++, check default arguments now that we have merged decls. Unless
2184    // the lexical context is the class, because in this case this is done
2185    // during delayed parsing anyway.
2186    if (!CurContext->isRecord())
2187      CheckCXXDefaultArguments(NewFD);
2188
2189    // An out-of-line member function declaration must also be a
2190    // definition (C++ [dcl.meaning]p1).
2191    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2192      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2193        << D.getCXXScopeSpec().getRange();
2194      InvalidDecl = true;
2195    }
2196  }
2197
2198  // If this is a locally-scoped extern C function, update the
2199  // map of such names.
2200  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2201      && !InvalidDecl)
2202    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2203
2204  return NewFD;
2205}
2206
2207bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2208  // FIXME: Need strict checking.  In C89, we need to check for
2209  // any assignment, increment, decrement, function-calls, or
2210  // commas outside of a sizeof.  In C99, it's the same list,
2211  // except that the aforementioned are allowed in unevaluated
2212  // expressions.  Everything else falls under the
2213  // "may accept other forms of constant expressions" exception.
2214  // (We never end up here for C++, so the constant expression
2215  // rules there don't matter.)
2216  if (Init->isConstantInitializer(Context))
2217    return false;
2218  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2219    << Init->getSourceRange();
2220  return true;
2221}
2222
2223void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2224  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2225}
2226
2227/// AddInitializerToDecl - Adds the initializer Init to the
2228/// declaration dcl. If DirectInit is true, this is C++ direct
2229/// initialization rather than copy initialization.
2230void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2231  Decl *RealDecl = static_cast<Decl *>(dcl);
2232  // If there is no declaration, there was an error parsing it.  Just ignore
2233  // the initializer.
2234  if (RealDecl == 0)
2235    return;
2236
2237  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2238    // With declarators parsed the way they are, the parser cannot
2239    // distinguish between a normal initializer and a pure-specifier.
2240    // Thus this grotesque test.
2241    IntegerLiteral *IL;
2242    Expr *Init = static_cast<Expr *>(init.get());
2243    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2244        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2245      if (Method->isVirtual()) {
2246        Method->setPure();
2247
2248        // A class is abstract if at least one function is pure virtual.
2249        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2250      } else {
2251        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2252          << Method->getDeclName() << Init->getSourceRange();
2253        Method->setInvalidDecl();
2254      }
2255    } else {
2256      Diag(Method->getLocation(), diag::err_member_function_initialization)
2257        << Method->getDeclName() << Init->getSourceRange();
2258      Method->setInvalidDecl();
2259    }
2260    return;
2261  }
2262
2263  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2264  if (!VDecl) {
2265    if (getLangOptions().CPlusPlus &&
2266        RealDecl->getLexicalDeclContext()->isRecord() &&
2267        isa<NamedDecl>(RealDecl))
2268      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2269        << cast<NamedDecl>(RealDecl)->getDeclName();
2270    else
2271      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2272    RealDecl->setInvalidDecl();
2273    return;
2274  }
2275
2276  const VarDecl *Def = 0;
2277  if (VDecl->getDefinition(Def)) {
2278    Diag(VDecl->getLocation(), diag::err_redefinition)
2279      << VDecl->getDeclName();
2280    Diag(Def->getLocation(), diag::note_previous_definition);
2281    VDecl->setInvalidDecl();
2282    return;
2283  }
2284
2285  // Take ownership of the expression, now that we're sure we have somewhere
2286  // to put it.
2287  Expr *Init = static_cast<Expr *>(init.release());
2288  assert(Init && "missing initializer");
2289
2290  // Get the decls type and save a reference for later, since
2291  // CheckInitializerTypes may change it.
2292  QualType DclT = VDecl->getType(), SavT = DclT;
2293  if (VDecl->isBlockVarDecl()) {
2294    VarDecl::StorageClass SC = VDecl->getStorageClass();
2295    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2296      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2297      VDecl->setInvalidDecl();
2298    } else if (!VDecl->isInvalidDecl()) {
2299      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2300                                VDecl->getDeclName(), DirectInit))
2301        VDecl->setInvalidDecl();
2302
2303      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2304      // Don't check invalid declarations to avoid emitting useless diagnostics.
2305      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2306        if (SC == VarDecl::Static) // C99 6.7.8p4.
2307          CheckForConstantInitializer(Init, DclT);
2308      }
2309    }
2310  } else if (VDecl->isStaticDataMember() &&
2311             VDecl->getLexicalDeclContext()->isRecord()) {
2312    // This is an in-class initialization for a static data member, e.g.,
2313    //
2314    // struct S {
2315    //   static const int value = 17;
2316    // };
2317
2318    // Attach the initializer
2319    VDecl->setInit(Init);
2320
2321    // C++ [class.mem]p4:
2322    //   A member-declarator can contain a constant-initializer only
2323    //   if it declares a static member (9.4) of const integral or
2324    //   const enumeration type, see 9.4.2.
2325    QualType T = VDecl->getType();
2326    if (!T->isDependentType() &&
2327        (!Context.getCanonicalType(T).isConstQualified() ||
2328         !T->isIntegralType())) {
2329      Diag(VDecl->getLocation(), diag::err_member_initialization)
2330        << VDecl->getDeclName() << Init->getSourceRange();
2331      VDecl->setInvalidDecl();
2332    } else {
2333      // C++ [class.static.data]p4:
2334      //   If a static data member is of const integral or const
2335      //   enumeration type, its declaration in the class definition
2336      //   can specify a constant-initializer which shall be an
2337      //   integral constant expression (5.19).
2338      if (!Init->isTypeDependent() &&
2339          !Init->getType()->isIntegralType()) {
2340        // We have a non-dependent, non-integral or enumeration type.
2341        Diag(Init->getSourceRange().getBegin(),
2342             diag::err_in_class_initializer_non_integral_type)
2343          << Init->getType() << Init->getSourceRange();
2344        VDecl->setInvalidDecl();
2345      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2346        // Check whether the expression is a constant expression.
2347        llvm::APSInt Value;
2348        SourceLocation Loc;
2349        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2350          Diag(Loc, diag::err_in_class_initializer_non_constant)
2351            << Init->getSourceRange();
2352          VDecl->setInvalidDecl();
2353        }
2354      }
2355    }
2356  } else if (VDecl->isFileVarDecl()) {
2357    if (VDecl->getStorageClass() == VarDecl::Extern)
2358      Diag(VDecl->getLocation(), diag::warn_extern_init);
2359    if (!VDecl->isInvalidDecl())
2360      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2361                                VDecl->getDeclName(), DirectInit))
2362        VDecl->setInvalidDecl();
2363
2364    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2365    // Don't check invalid declarations to avoid emitting useless diagnostics.
2366    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2367      // C99 6.7.8p4. All file scoped initializers need to be constant.
2368      CheckForConstantInitializer(Init, DclT);
2369    }
2370  }
2371  // If the type changed, it means we had an incomplete type that was
2372  // completed by the initializer. For example:
2373  //   int ary[] = { 1, 3, 5 };
2374  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2375  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2376    VDecl->setType(DclT);
2377    Init->setType(DclT);
2378  }
2379
2380  // Attach the initializer to the decl.
2381  VDecl->setInit(Init);
2382  return;
2383}
2384
2385void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2386  Decl *RealDecl = static_cast<Decl *>(dcl);
2387
2388  // If there is no declaration, there was an error parsing it. Just ignore it.
2389  if (RealDecl == 0)
2390    return;
2391
2392  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2393    QualType Type = Var->getType();
2394    // C++ [dcl.init.ref]p3:
2395    //   The initializer can be omitted for a reference only in a
2396    //   parameter declaration (8.3.5), in the declaration of a
2397    //   function return type, in the declaration of a class member
2398    //   within its class declaration (9.2), and where the extern
2399    //   specifier is explicitly used.
2400    if (Type->isReferenceType() &&
2401        Var->getStorageClass() != VarDecl::Extern &&
2402        Var->getStorageClass() != VarDecl::PrivateExtern) {
2403      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2404        << Var->getDeclName()
2405        << SourceRange(Var->getLocation(), Var->getLocation());
2406      Var->setInvalidDecl();
2407      return;
2408    }
2409
2410    // C++ [dcl.init]p9:
2411    //
2412    //   If no initializer is specified for an object, and the object
2413    //   is of (possibly cv-qualified) non-POD class type (or array
2414    //   thereof), the object shall be default-initialized; if the
2415    //   object is of const-qualified type, the underlying class type
2416    //   shall have a user-declared default constructor.
2417    if (getLangOptions().CPlusPlus) {
2418      QualType InitType = Type;
2419      if (const ArrayType *Array = Context.getAsArrayType(Type))
2420        InitType = Array->getElementType();
2421      if (Var->getStorageClass() != VarDecl::Extern &&
2422          Var->getStorageClass() != VarDecl::PrivateExtern &&
2423          InitType->isRecordType()) {
2424        const CXXConstructorDecl *Constructor = 0;
2425        if (!RequireCompleteType(Var->getLocation(), InitType,
2426                                    diag::err_invalid_incomplete_type_use))
2427          Constructor
2428            = PerformInitializationByConstructor(InitType, 0, 0,
2429                                                 Var->getLocation(),
2430                                               SourceRange(Var->getLocation(),
2431                                                           Var->getLocation()),
2432                                                 Var->getDeclName(),
2433                                                 IK_Default);
2434        if (!Constructor)
2435          Var->setInvalidDecl();
2436      }
2437    }
2438
2439#if 0
2440    // FIXME: Temporarily disabled because we are not properly parsing
2441    // linkage specifications on declarations, e.g.,
2442    //
2443    //   extern "C" const CGPoint CGPointerZero;
2444    //
2445    // C++ [dcl.init]p9:
2446    //
2447    //     If no initializer is specified for an object, and the
2448    //     object is of (possibly cv-qualified) non-POD class type (or
2449    //     array thereof), the object shall be default-initialized; if
2450    //     the object is of const-qualified type, the underlying class
2451    //     type shall have a user-declared default
2452    //     constructor. Otherwise, if no initializer is specified for
2453    //     an object, the object and its subobjects, if any, have an
2454    //     indeterminate initial value; if the object or any of its
2455    //     subobjects are of const-qualified type, the program is
2456    //     ill-formed.
2457    //
2458    // This isn't technically an error in C, so we don't diagnose it.
2459    //
2460    // FIXME: Actually perform the POD/user-defined default
2461    // constructor check.
2462    if (getLangOptions().CPlusPlus &&
2463        Context.getCanonicalType(Type).isConstQualified() &&
2464        Var->getStorageClass() != VarDecl::Extern)
2465      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2466        << Var->getName()
2467        << SourceRange(Var->getLocation(), Var->getLocation());
2468#endif
2469  }
2470}
2471
2472/// The declarators are chained together backwards, reverse the list.
2473Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2474  // Often we have single declarators, handle them quickly.
2475  Decl *Group = static_cast<Decl*>(group);
2476  if (Group == 0)
2477    return 0;
2478
2479  Decl *NewGroup = 0;
2480  if (Group->getNextDeclarator() == 0)
2481    NewGroup = Group;
2482  else { // reverse the list.
2483    while (Group) {
2484      Decl *Next = Group->getNextDeclarator();
2485      Group->setNextDeclarator(NewGroup);
2486      NewGroup = Group;
2487      Group = Next;
2488    }
2489  }
2490  // Perform semantic analysis that depends on having fully processed both
2491  // the declarator and initializer.
2492  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2493    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2494    if (!IDecl)
2495      continue;
2496    QualType T = IDecl->getType();
2497
2498    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2499    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2500    if (IDecl->isBlockVarDecl() &&
2501        IDecl->getStorageClass() != VarDecl::Extern) {
2502      if (!IDecl->isInvalidDecl() &&
2503          RequireCompleteType(IDecl->getLocation(), T,
2504                                 diag::err_typecheck_decl_incomplete_type))
2505        IDecl->setInvalidDecl();
2506    }
2507    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2508    // object that has file scope without an initializer, and without a
2509    // storage-class specifier or with the storage-class specifier "static",
2510    // constitutes a tentative definition. Note: A tentative definition with
2511    // external linkage is valid (C99 6.2.2p5).
2512    if (IDecl->isTentativeDefinition(Context)) {
2513      QualType CheckType = T;
2514      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2515
2516      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2517      if (ArrayT) {
2518        CheckType = ArrayT->getElementType();
2519        DiagID = diag::err_illegal_decl_array_incomplete_type;
2520      }
2521
2522      if (IDecl->isInvalidDecl()) {
2523        // Do nothing with invalid declarations
2524      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2525                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2526        // C99 6.9.2p3: If the declaration of an identifier for an object is
2527        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2528        // declared type shall not be an incomplete type.
2529        IDecl->setInvalidDecl();
2530      }
2531    }
2532  }
2533  return NewGroup;
2534}
2535
2536/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2537/// to introduce parameters into function prototype scope.
2538Sema::DeclTy *
2539Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2540  const DeclSpec &DS = D.getDeclSpec();
2541
2542  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2543  VarDecl::StorageClass StorageClass = VarDecl::None;
2544  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2545    StorageClass = VarDecl::Register;
2546  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2547    Diag(DS.getStorageClassSpecLoc(),
2548         diag::err_invalid_storage_class_in_func_decl);
2549    D.getMutableDeclSpec().ClearStorageClassSpecs();
2550  }
2551  if (DS.isThreadSpecified()) {
2552    Diag(DS.getThreadSpecLoc(),
2553         diag::err_invalid_storage_class_in_func_decl);
2554    D.getMutableDeclSpec().ClearStorageClassSpecs();
2555  }
2556
2557  // Check that there are no default arguments inside the type of this
2558  // parameter (C++ only).
2559  if (getLangOptions().CPlusPlus)
2560    CheckExtraCXXDefaultArguments(D);
2561
2562  // In this context, we *do not* check D.getInvalidType(). If the declarator
2563  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2564  // though it will not reflect the user specified type.
2565  QualType parmDeclType = GetTypeForDeclarator(D, S);
2566
2567  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2568
2569  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2570  // Can this happen for params?  We already checked that they don't conflict
2571  // among each other.  Here they can only shadow globals, which is ok.
2572  IdentifierInfo *II = D.getIdentifier();
2573  if (II) {
2574    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2575      if (PrevDecl->isTemplateParameter()) {
2576        // Maybe we will complain about the shadowed template parameter.
2577        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2578        // Just pretend that we didn't see the previous declaration.
2579        PrevDecl = 0;
2580      } else if (S->isDeclScope(PrevDecl)) {
2581        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2582
2583        // Recover by removing the name
2584        II = 0;
2585        D.SetIdentifier(0, D.getIdentifierLoc());
2586      }
2587    }
2588  }
2589
2590  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2591  // Doing the promotion here has a win and a loss. The win is the type for
2592  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2593  // code generator). The loss is the orginal type isn't preserved. For example:
2594  //
2595  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2596  //    int blockvardecl[5];
2597  //    sizeof(parmvardecl);  // size == 4
2598  //    sizeof(blockvardecl); // size == 20
2599  // }
2600  //
2601  // For expressions, all implicit conversions are captured using the
2602  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2603  //
2604  // FIXME: If a source translation tool needs to see the original type, then
2605  // we need to consider storing both types (in ParmVarDecl)...
2606  //
2607  if (parmDeclType->isArrayType()) {
2608    // int x[restrict 4] ->  int *restrict
2609    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2610  } else if (parmDeclType->isFunctionType())
2611    parmDeclType = Context.getPointerType(parmDeclType);
2612
2613  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2614                                         D.getIdentifierLoc(), II,
2615                                         parmDeclType, StorageClass,
2616                                         0);
2617
2618  if (D.getInvalidType())
2619    New->setInvalidDecl();
2620
2621  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2622  if (D.getCXXScopeSpec().isSet()) {
2623    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2624      << D.getCXXScopeSpec().getRange();
2625    New->setInvalidDecl();
2626  }
2627  // Parameter declarators cannot be interface types. All ObjC objects are
2628  // passed by reference.
2629  if (parmDeclType->isObjCInterfaceType()) {
2630    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2631         << "passed";
2632    New->setInvalidDecl();
2633  }
2634
2635  // Add the parameter declaration into this scope.
2636  S->AddDecl(New);
2637  if (II)
2638    IdResolver.AddDecl(New);
2639
2640  ProcessDeclAttributes(New, D);
2641  return New;
2642
2643}
2644
2645void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2646  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2647         "Not a function declarator!");
2648  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2649
2650  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2651  // for a K&R function.
2652  if (!FTI.hasPrototype) {
2653    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2654      if (FTI.ArgInfo[i].Param == 0) {
2655        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2656          << FTI.ArgInfo[i].Ident;
2657        // Implicitly declare the argument as type 'int' for lack of a better
2658        // type.
2659        DeclSpec DS;
2660        const char* PrevSpec; // unused
2661        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2662                           PrevSpec);
2663        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2664        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2665        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2666      }
2667    }
2668  }
2669}
2670
2671Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2672  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2673  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2674         "Not a function declarator!");
2675  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2676
2677  if (FTI.hasPrototype) {
2678    // FIXME: Diagnose arguments without names in C.
2679  }
2680
2681  Scope *ParentScope = FnBodyScope->getParent();
2682
2683  return ActOnStartOfFunctionDef(FnBodyScope,
2684                                 ActOnDeclarator(ParentScope, D, 0,
2685                                                 /*IsFunctionDefinition=*/true));
2686}
2687
2688Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2689  Decl *decl = static_cast<Decl*>(D);
2690  FunctionDecl *FD = cast<FunctionDecl>(decl);
2691
2692  // See if this is a redefinition.
2693  const FunctionDecl *Definition;
2694  if (FD->getBody(Definition)) {
2695    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2696    Diag(Definition->getLocation(), diag::note_previous_definition);
2697  }
2698
2699  // Builtin functions cannot be defined.
2700  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2701    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2702      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2703      FD->setInvalidDecl();
2704    }
2705  }
2706
2707  // The return type of a function definition must be complete
2708  // (C99 6.9.1p3)
2709  if (FD->getResultType()->isIncompleteType() &&
2710      !FD->getResultType()->isVoidType()) {
2711    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2712    FD->setInvalidDecl();
2713  }
2714
2715  PushDeclContext(FnBodyScope, FD);
2716
2717  // Check the validity of our function parameters
2718  CheckParmsForFunctionDef(FD);
2719
2720  // Introduce our parameters into the function scope
2721  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2722    ParmVarDecl *Param = FD->getParamDecl(p);
2723    Param->setOwningFunction(FD);
2724
2725    // If this has an identifier, add it to the scope stack.
2726    if (Param->getIdentifier())
2727      PushOnScopeChains(Param, FnBodyScope);
2728  }
2729
2730  // Checking attributes of current function definition
2731  // dllimport attribute.
2732  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2733    // dllimport attribute cannot be applied to definition.
2734    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2735      Diag(FD->getLocation(),
2736           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2737        << "dllimport";
2738      FD->setInvalidDecl();
2739      return FD;
2740    } else {
2741      // If a symbol previously declared dllimport is later defined, the
2742      // attribute is ignored in subsequent references, and a warning is
2743      // emitted.
2744      Diag(FD->getLocation(),
2745           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2746        << FD->getNameAsCString() << "dllimport";
2747    }
2748  }
2749  return FD;
2750}
2751
2752static bool StatementCreatesScope(Stmt* S) {
2753  bool result = false;
2754  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2755    for (DeclStmt::decl_iterator i = DS->decl_begin();
2756         i != DS->decl_end(); ++i) {
2757      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2758        result |= D->getType()->isVariablyModifiedType();
2759        result |= !!D->getAttr<CleanupAttr>();
2760      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2761        result |= D->getUnderlyingType()->isVariablyModifiedType();
2762      }
2763    }
2764  }
2765
2766  return result;
2767}
2768
2769void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2770                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2771                                    std::vector<void*>& ScopeStack,
2772                                    Stmt* CurStmt,
2773                                    Stmt* ParentCompoundStmt) {
2774  for (Stmt::child_iterator i = CurStmt->child_begin();
2775       i != CurStmt->child_end(); ++i) {
2776    if (!*i) continue;
2777    if (StatementCreatesScope(*i))  {
2778      ScopeStack.push_back(*i);
2779      PopScopeMap[*i] = ParentCompoundStmt;
2780    } else if (isa<LabelStmt>(CurStmt)) {
2781      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2782    }
2783    if (isa<DeclStmt>(*i)) continue;
2784    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2785    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2786                             *i, CurCompound);
2787  }
2788
2789  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2790    ScopeStack.pop_back();
2791  }
2792}
2793
2794void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2795                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2796                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2797                                   std::vector<void*>& ScopeStack,
2798                                   Stmt* CurStmt) {
2799  for (Stmt::child_iterator i = CurStmt->child_begin();
2800       i != CurStmt->child_end(); ++i) {
2801    if (!*i) continue;
2802    if (StatementCreatesScope(*i))  {
2803      ScopeStack.push_back(*i);
2804    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2805      void* LScope = LabelScopeMap[GS->getLabel()];
2806      if (LScope) {
2807        bool foundScopeInStack = false;
2808        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2809          if (LScope == ScopeStack[i-1]) {
2810            foundScopeInStack = true;
2811            break;
2812          }
2813        }
2814        if (!foundScopeInStack) {
2815          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2816        }
2817      }
2818    }
2819    if (isa<DeclStmt>(*i)) continue;
2820    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2821                            ScopeStack, *i);
2822  }
2823
2824  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2825    ScopeStack.pop_back();
2826  }
2827}
2828
2829Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2830  Decl *dcl = static_cast<Decl *>(D);
2831  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2832  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2833    FD->setBody(cast<CompoundStmt>(Body));
2834    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2835  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2836    assert(MD == getCurMethodDecl() && "Method parsing confused");
2837    MD->setBody(cast<CompoundStmt>(Body));
2838  } else {
2839    Body->Destroy(Context);
2840    return 0;
2841  }
2842  PopDeclContext();
2843  // Verify and clean out per-function state.
2844
2845  bool HaveLabels = !LabelMap.empty();
2846  // Check goto/label use.
2847  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2848       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2849    // Verify that we have no forward references left.  If so, there was a goto
2850    // or address of a label taken, but no definition of it.  Label fwd
2851    // definitions are indicated with a null substmt.
2852    if (I->second->getSubStmt() == 0) {
2853      LabelStmt *L = I->second;
2854      // Emit error.
2855      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2856
2857      // At this point, we have gotos that use the bogus label.  Stitch it into
2858      // the function body so that they aren't leaked and that the AST is well
2859      // formed.
2860      if (Body) {
2861#if 0
2862        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2863        // and the AST is malformed anyway.  We should just blow away 'L'.
2864        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2865        cast<CompoundStmt>(Body)->push_back(L);
2866#else
2867        L->Destroy(Context);
2868#endif
2869      } else {
2870        // The whole function wasn't parsed correctly, just delete this.
2871        L->Destroy(Context);
2872      }
2873    }
2874  }
2875  LabelMap.clear();
2876
2877  if (!Body) return D;
2878
2879  if (HaveLabels) {
2880    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2881    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2882    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2883    std::vector<void*> ScopeStack;
2884    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2885    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2886  }
2887
2888  return D;
2889}
2890
2891/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2892/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2893NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2894                                          IdentifierInfo &II, Scope *S) {
2895  // Before we produce a declaration for an implicitly defined
2896  // function, see whether there was a locally-scoped declaration of
2897  // this name as a function or variable. If so, use that
2898  // (non-visible) declaration, and complain about it.
2899  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2900    = LocallyScopedExternalDecls.find(&II);
2901  if (Pos != LocallyScopedExternalDecls.end()) {
2902    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2903    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2904    return Pos->second;
2905  }
2906
2907  // Extension in C99.  Legal in C90, but warn about it.
2908  if (getLangOptions().C99)
2909    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2910  else
2911    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2912
2913  // FIXME: handle stuff like:
2914  // void foo() { extern float X(); }
2915  // void bar() { X(); }  <-- implicit decl for X in another scope.
2916
2917  // Set a Declarator for the implicit definition: int foo();
2918  const char *Dummy;
2919  DeclSpec DS;
2920  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2921  Error = Error; // Silence warning.
2922  assert(!Error && "Error setting up implicit decl!");
2923  Declarator D(DS, Declarator::BlockContext);
2924  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2925                                             0, 0, 0, Loc, D),
2926                SourceLocation());
2927  D.SetIdentifier(&II, Loc);
2928
2929  // Insert this function into translation-unit scope.
2930
2931  DeclContext *PrevDC = CurContext;
2932  CurContext = Context.getTranslationUnitDecl();
2933
2934  FunctionDecl *FD =
2935    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2936  FD->setImplicit();
2937
2938  CurContext = PrevDC;
2939
2940  AddKnownFunctionAttributes(FD);
2941
2942  return FD;
2943}
2944
2945/// \brief Adds any function attributes that we know a priori based on
2946/// the declaration of this function.
2947///
2948/// These attributes can apply both to implicitly-declared builtins
2949/// (like __builtin___printf_chk) or to library-declared functions
2950/// like NSLog or printf.
2951void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2952  if (FD->isInvalidDecl())
2953    return;
2954
2955  // If this is a built-in function, map its builtin attributes to
2956  // actual attributes.
2957  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2958    // Handle printf-formatting attributes.
2959    unsigned FormatIdx;
2960    bool HasVAListArg;
2961    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2962      if (!FD->getAttr<FormatAttr>())
2963        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2964                                               FormatIdx + 2));
2965    }
2966
2967    // Mark const if we don't care about errno and that is the only
2968    // thing preventing the function from being const. This allows
2969    // IRgen to use LLVM intrinsics for such functions.
2970    if (!getLangOptions().MathErrno &&
2971        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2972      if (!FD->getAttr<ConstAttr>())
2973        FD->addAttr(::new (Context) ConstAttr());
2974    }
2975  }
2976
2977  IdentifierInfo *Name = FD->getIdentifier();
2978  if (!Name)
2979    return;
2980  if ((!getLangOptions().CPlusPlus &&
2981       FD->getDeclContext()->isTranslationUnit()) ||
2982      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2983       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2984       LinkageSpecDecl::lang_c)) {
2985    // Okay: this could be a libc/libm/Objective-C function we know
2986    // about.
2987  } else
2988    return;
2989
2990  unsigned KnownID;
2991  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2992    if (KnownFunctionIDs[KnownID] == Name)
2993      break;
2994
2995  switch (KnownID) {
2996  case id_NSLog:
2997  case id_NSLogv:
2998    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2999      // FIXME: We known better than our headers.
3000      const_cast<FormatAttr *>(Format)->setType("printf");
3001    } else
3002      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3003    break;
3004
3005  case id_asprintf:
3006  case id_vasprintf:
3007    if (!FD->getAttr<FormatAttr>())
3008      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3009    break;
3010
3011  default:
3012    // Unknown function or known function without any attributes to
3013    // add. Do nothing.
3014    break;
3015  }
3016}
3017
3018TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3019                                    Decl *LastDeclarator) {
3020  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3021  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3022
3023  // Scope manipulation handled by caller.
3024  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3025                                           D.getIdentifierLoc(),
3026                                           D.getIdentifier(),
3027                                           T);
3028
3029  if (TagType *TT = dyn_cast<TagType>(T)) {
3030    TagDecl *TD = TT->getDecl();
3031
3032    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3033    // keep track of the TypedefDecl.
3034    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3035      TD->setTypedefForAnonDecl(NewTD);
3036  }
3037
3038  NewTD->setNextDeclarator(LastDeclarator);
3039  if (D.getInvalidType())
3040    NewTD->setInvalidDecl();
3041  return NewTD;
3042}
3043
3044/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3045/// former case, Name will be non-null.  In the later case, Name will be null.
3046/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3047/// reference/declaration/definition of a tag.
3048Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3049                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3050                             IdentifierInfo *Name, SourceLocation NameLoc,
3051                             AttributeList *Attr) {
3052  // If this is not a definition, it must have a name.
3053  assert((Name != 0 || TK == TK_Definition) &&
3054         "Nameless record must be a definition!");
3055
3056  TagDecl::TagKind Kind;
3057  switch (TagSpec) {
3058  default: assert(0 && "Unknown tag type!");
3059  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3060  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3061  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3062  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3063  }
3064
3065  DeclContext *SearchDC = CurContext;
3066  DeclContext *DC = CurContext;
3067  NamedDecl *PrevDecl = 0;
3068
3069  bool Invalid = false;
3070
3071  if (Name && SS.isNotEmpty()) {
3072    // We have a nested-name tag ('struct foo::bar').
3073
3074    // Check for invalid 'foo::'.
3075    if (SS.isInvalid()) {
3076      Name = 0;
3077      goto CreateNewDecl;
3078    }
3079
3080    // FIXME: RequireCompleteDeclContext(SS)?
3081    DC = computeDeclContext(SS);
3082    SearchDC = DC;
3083    // Look-up name inside 'foo::'.
3084    PrevDecl = dyn_cast_or_null<TagDecl>(
3085                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3086
3087    // A tag 'foo::bar' must already exist.
3088    if (PrevDecl == 0) {
3089      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3090      Name = 0;
3091      goto CreateNewDecl;
3092    }
3093  } else if (Name) {
3094    // If this is a named struct, check to see if there was a previous forward
3095    // declaration or definition.
3096    // FIXME: We're looking into outer scopes here, even when we
3097    // shouldn't be. Doing so can result in ambiguities that we
3098    // shouldn't be diagnosing.
3099    LookupResult R = LookupName(S, Name, LookupTagName,
3100                                /*RedeclarationOnly=*/(TK != TK_Reference));
3101    if (R.isAmbiguous()) {
3102      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3103      // FIXME: This is not best way to recover from case like:
3104      //
3105      // struct S s;
3106      //
3107      // causes needless err_ovl_no_viable_function_in_init latter.
3108      Name = 0;
3109      PrevDecl = 0;
3110      Invalid = true;
3111    }
3112    else
3113      PrevDecl = R;
3114
3115    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3116      // FIXME: This makes sure that we ignore the contexts associated
3117      // with C structs, unions, and enums when looking for a matching
3118      // tag declaration or definition. See the similar lookup tweak
3119      // in Sema::LookupName; is there a better way to deal with this?
3120      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3121        SearchDC = SearchDC->getParent();
3122    }
3123  }
3124
3125  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3126    // Maybe we will complain about the shadowed template parameter.
3127    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3128    // Just pretend that we didn't see the previous declaration.
3129    PrevDecl = 0;
3130  }
3131
3132  if (PrevDecl) {
3133    // Check whether the previous declaration is usable.
3134    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3135
3136    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3137      // If this is a use of a previous tag, or if the tag is already declared
3138      // in the same scope (so that the definition/declaration completes or
3139      // rementions the tag), reuse the decl.
3140      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3141        // Make sure that this wasn't declared as an enum and now used as a
3142        // struct or something similar.
3143        if (PrevTagDecl->getTagKind() != Kind) {
3144          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3145          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3146          // Recover by making this an anonymous redefinition.
3147          Name = 0;
3148          PrevDecl = 0;
3149          Invalid = true;
3150        } else {
3151          // If this is a use, just return the declaration we found.
3152
3153          // FIXME: In the future, return a variant or some other clue
3154          // for the consumer of this Decl to know it doesn't own it.
3155          // For our current ASTs this shouldn't be a problem, but will
3156          // need to be changed with DeclGroups.
3157          if (TK == TK_Reference)
3158            return PrevDecl;
3159
3160          // Diagnose attempts to redefine a tag.
3161          if (TK == TK_Definition) {
3162            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3163              Diag(NameLoc, diag::err_redefinition) << Name;
3164              Diag(Def->getLocation(), diag::note_previous_definition);
3165              // If this is a redefinition, recover by making this
3166              // struct be anonymous, which will make any later
3167              // references get the previous definition.
3168              Name = 0;
3169              PrevDecl = 0;
3170              Invalid = true;
3171            } else {
3172              // If the type is currently being defined, complain
3173              // about a nested redefinition.
3174              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3175              if (Tag->isBeingDefined()) {
3176                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3177                Diag(PrevTagDecl->getLocation(),
3178                     diag::note_previous_definition);
3179                Name = 0;
3180                PrevDecl = 0;
3181                Invalid = true;
3182              }
3183            }
3184
3185            // Okay, this is definition of a previously declared or referenced
3186            // tag PrevDecl. We're going to create a new Decl for it.
3187          }
3188        }
3189        // If we get here we have (another) forward declaration or we
3190        // have a definition.  Just create a new decl.
3191      } else {
3192        // If we get here, this is a definition of a new tag type in a nested
3193        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3194        // new decl/type.  We set PrevDecl to NULL so that the entities
3195        // have distinct types.
3196        PrevDecl = 0;
3197      }
3198      // If we get here, we're going to create a new Decl. If PrevDecl
3199      // is non-NULL, it's a definition of the tag declared by
3200      // PrevDecl. If it's NULL, we have a new definition.
3201    } else {
3202      // PrevDecl is a namespace, template, or anything else
3203      // that lives in the IDNS_Tag identifier namespace.
3204      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3205        // The tag name clashes with a namespace name, issue an error and
3206        // recover by making this tag be anonymous.
3207        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3208        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3209        Name = 0;
3210        PrevDecl = 0;
3211        Invalid = true;
3212      } else {
3213        // The existing declaration isn't relevant to us; we're in a
3214        // new scope, so clear out the previous declaration.
3215        PrevDecl = 0;
3216      }
3217    }
3218  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3219             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3220    // C.scope.pdecl]p5:
3221    //   -- for an elaborated-type-specifier of the form
3222    //
3223    //          class-key identifier
3224    //
3225    //      if the elaborated-type-specifier is used in the
3226    //      decl-specifier-seq or parameter-declaration-clause of a
3227    //      function defined in namespace scope, the identifier is
3228    //      declared as a class-name in the namespace that contains
3229    //      the declaration; otherwise, except as a friend
3230    //      declaration, the identifier is declared in the smallest
3231    //      non-class, non-function-prototype scope that contains the
3232    //      declaration.
3233    //
3234    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3235    // C structs and unions.
3236    //
3237    // GNU C also supports this behavior as part of its incomplete
3238    // enum types extension, while GNU C++ does not.
3239    //
3240    // Find the context where we'll be declaring the tag.
3241    // FIXME: We would like to maintain the current DeclContext as the
3242    // lexical context,
3243    while (SearchDC->isRecord())
3244      SearchDC = SearchDC->getParent();
3245
3246    // Find the scope where we'll be declaring the tag.
3247    while (S->isClassScope() ||
3248           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3249           ((S->getFlags() & Scope::DeclScope) == 0) ||
3250           (S->getEntity() &&
3251            ((DeclContext *)S->getEntity())->isTransparentContext()))
3252      S = S->getParent();
3253  }
3254
3255CreateNewDecl:
3256
3257  // If there is an identifier, use the location of the identifier as the
3258  // location of the decl, otherwise use the location of the struct/union
3259  // keyword.
3260  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3261
3262  // Otherwise, create a new declaration. If there is a previous
3263  // declaration of the same entity, the two will be linked via
3264  // PrevDecl.
3265  TagDecl *New;
3266
3267  if (Kind == TagDecl::TK_enum) {
3268    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3269    // enum X { A, B, C } D;    D should chain to X.
3270    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3271                           cast_or_null<EnumDecl>(PrevDecl));
3272    // If this is an undefined enum, warn.
3273    if (TK != TK_Definition && !Invalid)  {
3274      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3275                                              : diag::ext_forward_ref_enum;
3276      Diag(Loc, DK);
3277    }
3278  } else {
3279    // struct/union/class
3280
3281    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3282    // struct X { int A; } D;    D should chain to X.
3283    if (getLangOptions().CPlusPlus)
3284      // FIXME: Look for a way to use RecordDecl for simple structs.
3285      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3286                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3287    else
3288      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3289                               cast_or_null<RecordDecl>(PrevDecl));
3290  }
3291
3292  if (Kind != TagDecl::TK_enum) {
3293    // Handle #pragma pack: if the #pragma pack stack has non-default
3294    // alignment, make up a packed attribute for this decl. These
3295    // attributes are checked when the ASTContext lays out the
3296    // structure.
3297    //
3298    // It is important for implementing the correct semantics that this
3299    // happen here (in act on tag decl). The #pragma pack stack is
3300    // maintained as a result of parser callbacks which can occur at
3301    // many points during the parsing of a struct declaration (because
3302    // the #pragma tokens are effectively skipped over during the
3303    // parsing of the struct).
3304    if (unsigned Alignment = getPragmaPackAlignment())
3305      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3306  }
3307
3308  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3309    // C++ [dcl.typedef]p3:
3310    //   [...] Similarly, in a given scope, a class or enumeration
3311    //   shall not be declared with the same name as a typedef-name
3312    //   that is declared in that scope and refers to a type other
3313    //   than the class or enumeration itself.
3314    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3315    TypedefDecl *PrevTypedef = 0;
3316    if (Lookup.getKind() == LookupResult::Found)
3317      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3318
3319    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3320        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3321          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3322      Diag(Loc, diag::err_tag_definition_of_typedef)
3323        << Context.getTypeDeclType(New)
3324        << PrevTypedef->getUnderlyingType();
3325      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3326      Invalid = true;
3327    }
3328  }
3329
3330  if (Invalid)
3331    New->setInvalidDecl();
3332
3333  if (Attr)
3334    ProcessDeclAttributeList(New, Attr);
3335
3336  // If we're declaring or defining a tag in function prototype scope
3337  // in C, note that this type can only be used within the function.
3338  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3339    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3340
3341  // Set the lexical context. If the tag has a C++ scope specifier, the
3342  // lexical context will be different from the semantic context.
3343  New->setLexicalDeclContext(CurContext);
3344
3345  if (TK == TK_Definition)
3346    New->startDefinition();
3347
3348  // If this has an identifier, add it to the scope stack.
3349  if (Name) {
3350    S = getNonFieldDeclScope(S);
3351    PushOnScopeChains(New, S);
3352  } else {
3353    CurContext->addDecl(New);
3354  }
3355
3356  return New;
3357}
3358
3359void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3360  AdjustDeclIfTemplate(TagD);
3361  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3362
3363  // Enter the tag context.
3364  PushDeclContext(S, Tag);
3365
3366  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3367    FieldCollector->StartClass();
3368
3369    if (Record->getIdentifier()) {
3370      // C++ [class]p2:
3371      //   [...] The class-name is also inserted into the scope of the
3372      //   class itself; this is known as the injected-class-name. For
3373      //   purposes of access checking, the injected-class-name is treated
3374      //   as if it were a public member name.
3375      RecordDecl *InjectedClassName
3376        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3377                                CurContext, Record->getLocation(),
3378                                Record->getIdentifier(), Record);
3379      InjectedClassName->setImplicit();
3380      PushOnScopeChains(InjectedClassName, S);
3381    }
3382  }
3383}
3384
3385void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3386  AdjustDeclIfTemplate(TagD);
3387  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3388
3389  if (isa<CXXRecordDecl>(Tag))
3390    FieldCollector->FinishClass();
3391
3392  // Exit this scope of this tag's definition.
3393  PopDeclContext();
3394
3395  // Notify the consumer that we've defined a tag.
3396  Consumer.HandleTagDeclDefinition(Tag);
3397}
3398
3399bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3400                          QualType FieldTy, const Expr *BitWidth) {
3401  // C99 6.7.2.1p4 - verify the field type.
3402  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3403  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3404    // Handle incomplete types with specific error.
3405    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3406      return true;
3407    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3408      << FieldName << FieldTy << BitWidth->getSourceRange();
3409  }
3410
3411  // If the bit-width is type- or value-dependent, don't try to check
3412  // it now.
3413  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3414    return false;
3415
3416  llvm::APSInt Value;
3417  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3418    return true;
3419
3420  // Zero-width bitfield is ok for anonymous field.
3421  if (Value == 0 && FieldName)
3422    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3423
3424  if (Value.isSigned() && Value.isNegative())
3425    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3426             << FieldName << Value.toString(10);
3427
3428  if (!FieldTy->isDependentType()) {
3429    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3430    // FIXME: We won't need the 0 size once we check that the field type is valid.
3431    if (TypeSize && Value.getZExtValue() > TypeSize)
3432      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3433        << FieldName << (unsigned)TypeSize;
3434  }
3435
3436  return false;
3437}
3438
3439/// ActOnField - Each field of a struct/union/class is passed into this in order
3440/// to create a FieldDecl object for it.
3441Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3442                               SourceLocation DeclStart,
3443                               Declarator &D, ExprTy *BitfieldWidth) {
3444
3445  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3446                     static_cast<Expr*>(BitfieldWidth),
3447                     AS_public);
3448}
3449
3450/// HandleField - Analyze a field of a C struct or a C++ data member.
3451///
3452FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3453                             SourceLocation DeclStart,
3454                             Declarator &D, Expr *BitWidth,
3455                             AccessSpecifier AS) {
3456  IdentifierInfo *II = D.getIdentifier();
3457  SourceLocation Loc = DeclStart;
3458  if (II) Loc = D.getIdentifierLoc();
3459
3460  QualType T = GetTypeForDeclarator(D, S);
3461
3462  if (getLangOptions().CPlusPlus) {
3463    CheckExtraCXXDefaultArguments(D);
3464
3465    if (D.getDeclSpec().isVirtualSpecified())
3466      Diag(D.getDeclSpec().getVirtualSpecLoc(),
3467           diag::err_virtual_non_function);
3468  }
3469
3470  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3471  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3472    PrevDecl = 0;
3473
3474  FieldDecl *NewFD
3475    = CheckFieldDecl(II, T, Record, Loc,
3476               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3477                     BitWidth, AS, PrevDecl, &D);
3478  if (NewFD->isInvalidDecl() && PrevDecl) {
3479    // Don't introduce NewFD into scope; there's already something
3480    // with the same name in the same scope.
3481  } else if (II) {
3482    PushOnScopeChains(NewFD, S);
3483  } else
3484    Record->addDecl(NewFD);
3485
3486  return NewFD;
3487}
3488
3489/// \brief Build a new FieldDecl and check its well-formedness.
3490///
3491/// This routine builds a new FieldDecl given the fields name, type,
3492/// record, etc. \p PrevDecl should refer to any previous declaration
3493/// with the same name and in the same scope as the field to be
3494/// created.
3495///
3496/// \returns a new FieldDecl.
3497///
3498/// \todo The Declarator argument is a hack. It will be removed once
3499FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3500                                RecordDecl *Record, SourceLocation Loc,
3501                                bool Mutable, Expr *BitWidth,
3502                                AccessSpecifier AS, NamedDecl *PrevDecl,
3503                                Declarator *D) {
3504  IdentifierInfo *II = Name.getAsIdentifierInfo();
3505  bool InvalidDecl = false;
3506
3507  // If we receive a broken type, recover by assuming 'int' and
3508  // marking this declaration as invalid.
3509  if (T.isNull()) {
3510    InvalidDecl = true;
3511    T = Context.IntTy;
3512  }
3513
3514  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3515  // than a variably modified type.
3516  if (T->isVariablyModifiedType()) {
3517    bool SizeIsNegative;
3518    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3519                                                           SizeIsNegative);
3520    if (!FixedTy.isNull()) {
3521      Diag(Loc, diag::warn_illegal_constant_array_size);
3522      T = FixedTy;
3523    } else {
3524      if (SizeIsNegative)
3525        Diag(Loc, diag::err_typecheck_negative_array_size);
3526      else
3527        Diag(Loc, diag::err_typecheck_field_variable_size);
3528      T = Context.IntTy;
3529      InvalidDecl = true;
3530    }
3531  }
3532
3533  // Fields can not have abstract class types
3534  if (RequireNonAbstractType(Loc, T, 3 /* field type */))
3535    InvalidDecl = true;
3536
3537  // If this is declared as a bit-field, check the bit-field.
3538  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3539    InvalidDecl = true;
3540    DeleteExpr(BitWidth);
3541    BitWidth = 0;
3542  }
3543
3544  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3545                                       Mutable);
3546
3547  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3548    Diag(Loc, diag::err_duplicate_member) << II;
3549    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3550    NewFD->setInvalidDecl();
3551    Record->setInvalidDecl();
3552  }
3553
3554  if (getLangOptions().CPlusPlus && !T->isPODType())
3555    cast<CXXRecordDecl>(Record)->setPOD(false);
3556
3557  // FIXME: We need to pass in the attributes given an AST
3558  // representation, not a parser representation.
3559  if (D)
3560    ProcessDeclAttributes(NewFD, *D);
3561
3562  if (T.isObjCGCWeak())
3563    Diag(Loc, diag::warn_attribute_weak_on_field);
3564
3565  if (InvalidDecl)
3566    NewFD->setInvalidDecl();
3567
3568  NewFD->setAccess(AS);
3569
3570  // C++ [dcl.init.aggr]p1:
3571  //   An aggregate is an array or a class (clause 9) with [...] no
3572  //   private or protected non-static data members (clause 11).
3573  // A POD must be an aggregate.
3574  if (getLangOptions().CPlusPlus &&
3575      (AS == AS_private || AS == AS_protected)) {
3576    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3577    CXXRecord->setAggregate(false);
3578    CXXRecord->setPOD(false);
3579  }
3580
3581  return NewFD;
3582}
3583
3584/// TranslateIvarVisibility - Translate visibility from a token ID to an
3585///  AST enum value.
3586static ObjCIvarDecl::AccessControl
3587TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3588  switch (ivarVisibility) {
3589  default: assert(0 && "Unknown visitibility kind");
3590  case tok::objc_private: return ObjCIvarDecl::Private;
3591  case tok::objc_public: return ObjCIvarDecl::Public;
3592  case tok::objc_protected: return ObjCIvarDecl::Protected;
3593  case tok::objc_package: return ObjCIvarDecl::Package;
3594  }
3595}
3596
3597/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3598/// in order to create an IvarDecl object for it.
3599Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3600                              SourceLocation DeclStart,
3601                              Declarator &D, ExprTy *BitfieldWidth,
3602                              tok::ObjCKeywordKind Visibility) {
3603
3604  IdentifierInfo *II = D.getIdentifier();
3605  Expr *BitWidth = (Expr*)BitfieldWidth;
3606  SourceLocation Loc = DeclStart;
3607  if (II) Loc = D.getIdentifierLoc();
3608
3609  // FIXME: Unnamed fields can be handled in various different ways, for
3610  // example, unnamed unions inject all members into the struct namespace!
3611
3612  QualType T = GetTypeForDeclarator(D, S);
3613  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3614  bool InvalidDecl = false;
3615
3616  if (BitWidth) {
3617    // 6.7.2.1p3, 6.7.2.1p4
3618    if (VerifyBitField(Loc, II, T, BitWidth)) {
3619      InvalidDecl = true;
3620      DeleteExpr(BitWidth);
3621      BitWidth = 0;
3622    }
3623  } else {
3624    // Not a bitfield.
3625
3626    // validate II.
3627
3628  }
3629
3630  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3631  // than a variably modified type.
3632  if (T->isVariablyModifiedType()) {
3633    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3634    InvalidDecl = true;
3635  }
3636
3637  // Get the visibility (access control) for this ivar.
3638  ObjCIvarDecl::AccessControl ac =
3639    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3640                                        : ObjCIvarDecl::None;
3641
3642  // Construct the decl.
3643  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3644                                             (Expr *)BitfieldWidth);
3645
3646  if (II) {
3647    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3648    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3649        && !isa<TagDecl>(PrevDecl)) {
3650      Diag(Loc, diag::err_duplicate_member) << II;
3651      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3652      NewID->setInvalidDecl();
3653    }
3654  }
3655
3656  // Process attributes attached to the ivar.
3657  ProcessDeclAttributes(NewID, D);
3658
3659  if (D.getInvalidType() || InvalidDecl)
3660    NewID->setInvalidDecl();
3661
3662  if (II) {
3663    // FIXME: When interfaces are DeclContexts, we'll need to add
3664    // these to the interface.
3665    S->AddDecl(NewID);
3666    IdResolver.AddDecl(NewID);
3667  }
3668
3669  return NewID;
3670}
3671
3672void Sema::ActOnFields(Scope* S,
3673                       SourceLocation RecLoc, DeclTy *RecDecl,
3674                       DeclTy **Fields, unsigned NumFields,
3675                       SourceLocation LBrac, SourceLocation RBrac,
3676                       AttributeList *Attr) {
3677  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3678  assert(EnclosingDecl && "missing record or interface decl");
3679
3680  // If the decl this is being inserted into is invalid, then it may be a
3681  // redeclaration or some other bogus case.  Don't try to add fields to it.
3682  if (EnclosingDecl->isInvalidDecl()) {
3683    // FIXME: Deallocate fields?
3684    return;
3685  }
3686
3687
3688  // Verify that all the fields are okay.
3689  unsigned NumNamedMembers = 0;
3690  llvm::SmallVector<FieldDecl*, 32> RecFields;
3691
3692  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3693  for (unsigned i = 0; i != NumFields; ++i) {
3694    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3695    assert(FD && "missing field decl");
3696
3697    // Get the type for the field.
3698    Type *FDTy = FD->getType().getTypePtr();
3699
3700    if (!FD->isAnonymousStructOrUnion()) {
3701      // Remember all fields written by the user.
3702      RecFields.push_back(FD);
3703    }
3704
3705    // If the field is already invalid for some reason, don't emit more
3706    // diagnostics about it.
3707    if (FD->isInvalidDecl())
3708      continue;
3709
3710    // C99 6.7.2.1p2 - A field may not be a function type.
3711    if (FDTy->isFunctionType()) {
3712      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3713        << FD->getDeclName();
3714      FD->setInvalidDecl();
3715      EnclosingDecl->setInvalidDecl();
3716      continue;
3717    }
3718    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3719    if (FDTy->isIncompleteType()) {
3720      if (!Record) {  // Incomplete ivar type is always an error.
3721        RequireCompleteType(FD->getLocation(), FD->getType(),
3722                               diag::err_field_incomplete);
3723        FD->setInvalidDecl();
3724        EnclosingDecl->setInvalidDecl();
3725        continue;
3726      }
3727      if (i != NumFields-1 ||                   // ... that the last member ...
3728          !Record->isStruct() ||  // ... of a structure ...
3729          !FDTy->isArrayType()) {         //... may have incomplete array type.
3730        RequireCompleteType(FD->getLocation(), FD->getType(),
3731                               diag::err_field_incomplete);
3732        FD->setInvalidDecl();
3733        EnclosingDecl->setInvalidDecl();
3734        continue;
3735      }
3736      if (NumNamedMembers < 1) {  //... must have more than named member ...
3737        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3738          << FD->getDeclName();
3739        FD->setInvalidDecl();
3740        EnclosingDecl->setInvalidDecl();
3741        continue;
3742      }
3743      // Okay, we have a legal flexible array member at the end of the struct.
3744      if (Record)
3745        Record->setHasFlexibleArrayMember(true);
3746    }
3747    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3748    /// field of another structure or the element of an array.
3749    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3750      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3751        // If this is a member of a union, then entire union becomes "flexible".
3752        if (Record && Record->isUnion()) {
3753          Record->setHasFlexibleArrayMember(true);
3754        } else {
3755          // If this is a struct/class and this is not the last element, reject
3756          // it.  Note that GCC supports variable sized arrays in the middle of
3757          // structures.
3758          if (i != NumFields-1)
3759            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3760              << FD->getDeclName();
3761          else {
3762            // We support flexible arrays at the end of structs in
3763            // other structs as an extension.
3764            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3765              << FD->getDeclName();
3766            if (Record)
3767              Record->setHasFlexibleArrayMember(true);
3768          }
3769        }
3770      }
3771    }
3772    /// A field cannot be an Objective-c object
3773    if (FDTy->isObjCInterfaceType()) {
3774      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3775      FD->setInvalidDecl();
3776      EnclosingDecl->setInvalidDecl();
3777      continue;
3778    }
3779    // Keep track of the number of named members.
3780    if (FD->getIdentifier())
3781      ++NumNamedMembers;
3782  }
3783
3784  // Okay, we successfully defined 'Record'.
3785  if (Record) {
3786    Record->completeDefinition(Context);
3787  } else {
3788    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3789    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3790      ID->setIVarList(ClsFields, RecFields.size(), Context);
3791      ID->setLocEnd(RBrac);
3792
3793      // Must enforce the rule that ivars in the base classes may not be
3794      // duplicates.
3795      if (ID->getSuperClass()) {
3796        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3797             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3798          ObjCIvarDecl* Ivar = (*IVI);
3799          IdentifierInfo *II = Ivar->getIdentifier();
3800          ObjCIvarDecl* prevIvar =
3801            ID->getSuperClass()->lookupInstanceVariable(II);
3802          if (prevIvar) {
3803            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3804            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3805          }
3806        }
3807      }
3808    } else if (ObjCImplementationDecl *IMPDecl =
3809                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3810      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3811      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3812      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3813    }
3814  }
3815
3816  if (Attr)
3817    ProcessDeclAttributeList(Record, Attr);
3818}
3819
3820EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3821                                          EnumConstantDecl *LastEnumConst,
3822                                          SourceLocation IdLoc,
3823                                          IdentifierInfo *Id,
3824                                          ExprArg val) {
3825  Expr *Val = (Expr *)val.get();
3826
3827  llvm::APSInt EnumVal(32);
3828  QualType EltTy;
3829  if (Val && !Val->isTypeDependent()) {
3830    // Make sure to promote the operand type to int.
3831    UsualUnaryConversions(Val);
3832    if (Val != val.get()) {
3833      val.release();
3834      val = Val;
3835    }
3836
3837    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3838    SourceLocation ExpLoc;
3839    if (!Val->isValueDependent() &&
3840        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3841      Val = 0;
3842    } else {
3843      EltTy = Val->getType();
3844    }
3845  }
3846
3847  if (!Val) {
3848    if (LastEnumConst) {
3849      // Assign the last value + 1.
3850      EnumVal = LastEnumConst->getInitVal();
3851      ++EnumVal;
3852
3853      // Check for overflow on increment.
3854      if (EnumVal < LastEnumConst->getInitVal())
3855        Diag(IdLoc, diag::warn_enum_value_overflow);
3856
3857      EltTy = LastEnumConst->getType();
3858    } else {
3859      // First value, set to zero.
3860      EltTy = Context.IntTy;
3861      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3862    }
3863  }
3864
3865  val.release();
3866  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
3867                                  Val, EnumVal);
3868}
3869
3870
3871Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3872                                      DeclTy *lastEnumConst,
3873                                      SourceLocation IdLoc, IdentifierInfo *Id,
3874                                      SourceLocation EqualLoc, ExprTy *val) {
3875  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3876  EnumConstantDecl *LastEnumConst =
3877    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3878  Expr *Val = static_cast<Expr*>(val);
3879
3880  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3881  // we find one that is.
3882  S = getNonFieldDeclScope(S);
3883
3884  // Verify that there isn't already something declared with this name in this
3885  // scope.
3886  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3887  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3888    // Maybe we will complain about the shadowed template parameter.
3889    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3890    // Just pretend that we didn't see the previous declaration.
3891    PrevDecl = 0;
3892  }
3893
3894  if (PrevDecl) {
3895    // When in C++, we may get a TagDecl with the same name; in this case the
3896    // enum constant will 'hide' the tag.
3897    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3898           "Received TagDecl when not in C++!");
3899    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3900      if (isa<EnumConstantDecl>(PrevDecl))
3901        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3902      else
3903        Diag(IdLoc, diag::err_redefinition) << Id;
3904      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3905      if (Val) Val->Destroy(Context);
3906      return 0;
3907    }
3908  }
3909
3910  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
3911                                            IdLoc, Id, Owned(Val));
3912
3913  // Register this decl in the current scope stack.
3914  if (New)
3915    PushOnScopeChains(New, S);
3916
3917  return New;
3918}
3919
3920// FIXME: For consistency with ActOnFields(), we should have the parser
3921// pass in the source location for the left/right braces.
3922void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3923                         DeclTy **Elements, unsigned NumElements) {
3924  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3925  QualType EnumType = Context.getTypeDeclType(Enum);
3926
3927  // TODO: If the result value doesn't fit in an int, it must be a long or long
3928  // long value.  ISO C does not support this, but GCC does as an extension,
3929  // emit a warning.
3930  unsigned IntWidth = Context.Target.getIntWidth();
3931
3932  // Verify that all the values are okay, compute the size of the values, and
3933  // reverse the list.
3934  unsigned NumNegativeBits = 0;
3935  unsigned NumPositiveBits = 0;
3936
3937  // Keep track of whether all elements have type int.
3938  bool AllElementsInt = true;
3939
3940  for (unsigned i = 0; i != NumElements; ++i) {
3941    EnumConstantDecl *ECD =
3942      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3943    if (!ECD) continue;  // Already issued a diagnostic.
3944
3945    // If the enum value doesn't fit in an int, emit an extension warning.
3946    const llvm::APSInt &InitVal = ECD->getInitVal();
3947    assert(InitVal.getBitWidth() >= IntWidth &&
3948           "Should have promoted value to int");
3949    if (InitVal.getBitWidth() > IntWidth) {
3950      llvm::APSInt V(InitVal);
3951      V.trunc(IntWidth);
3952      V.extend(InitVal.getBitWidth());
3953      if (V != InitVal)
3954        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3955          << InitVal.toString(10);
3956    }
3957
3958    // Keep track of the size of positive and negative values.
3959    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3960      NumPositiveBits = std::max(NumPositiveBits,
3961                                 (unsigned)InitVal.getActiveBits());
3962    else
3963      NumNegativeBits = std::max(NumNegativeBits,
3964                                 (unsigned)InitVal.getMinSignedBits());
3965
3966    // Keep track of whether every enum element has type int (very commmon).
3967    if (AllElementsInt)
3968      AllElementsInt = ECD->getType() == Context.IntTy;
3969  }
3970
3971  // Figure out the type that should be used for this enum.
3972  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3973  QualType BestType;
3974  unsigned BestWidth;
3975
3976  if (NumNegativeBits) {
3977    // If there is a negative value, figure out the smallest integer type (of
3978    // int/long/longlong) that fits.
3979    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3980      BestType = Context.IntTy;
3981      BestWidth = IntWidth;
3982    } else {
3983      BestWidth = Context.Target.getLongWidth();
3984
3985      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3986        BestType = Context.LongTy;
3987      else {
3988        BestWidth = Context.Target.getLongLongWidth();
3989
3990        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3991          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3992        BestType = Context.LongLongTy;
3993      }
3994    }
3995  } else {
3996    // If there is no negative value, figure out which of uint, ulong, ulonglong
3997    // fits.
3998    if (NumPositiveBits <= IntWidth) {
3999      BestType = Context.UnsignedIntTy;
4000      BestWidth = IntWidth;
4001    } else if (NumPositiveBits <=
4002               (BestWidth = Context.Target.getLongWidth())) {
4003      BestType = Context.UnsignedLongTy;
4004    } else {
4005      BestWidth = Context.Target.getLongLongWidth();
4006      assert(NumPositiveBits <= BestWidth &&
4007             "How could an initializer get larger than ULL?");
4008      BestType = Context.UnsignedLongLongTy;
4009    }
4010  }
4011
4012  // Loop over all of the enumerator constants, changing their types to match
4013  // the type of the enum if needed.
4014  for (unsigned i = 0; i != NumElements; ++i) {
4015    EnumConstantDecl *ECD =
4016      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
4017    if (!ECD) continue;  // Already issued a diagnostic.
4018
4019    // Standard C says the enumerators have int type, but we allow, as an
4020    // extension, the enumerators to be larger than int size.  If each
4021    // enumerator value fits in an int, type it as an int, otherwise type it the
4022    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4023    // that X has type 'int', not 'unsigned'.
4024    if (ECD->getType() == Context.IntTy) {
4025      // Make sure the init value is signed.
4026      llvm::APSInt IV = ECD->getInitVal();
4027      IV.setIsSigned(true);
4028      ECD->setInitVal(IV);
4029
4030      if (getLangOptions().CPlusPlus)
4031        // C++ [dcl.enum]p4: Following the closing brace of an
4032        // enum-specifier, each enumerator has the type of its
4033        // enumeration.
4034        ECD->setType(EnumType);
4035      continue;  // Already int type.
4036    }
4037
4038    // Determine whether the value fits into an int.
4039    llvm::APSInt InitVal = ECD->getInitVal();
4040    bool FitsInInt;
4041    if (InitVal.isUnsigned() || !InitVal.isNegative())
4042      FitsInInt = InitVal.getActiveBits() < IntWidth;
4043    else
4044      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4045
4046    // If it fits into an integer type, force it.  Otherwise force it to match
4047    // the enum decl type.
4048    QualType NewTy;
4049    unsigned NewWidth;
4050    bool NewSign;
4051    if (FitsInInt) {
4052      NewTy = Context.IntTy;
4053      NewWidth = IntWidth;
4054      NewSign = true;
4055    } else if (ECD->getType() == BestType) {
4056      // Already the right type!
4057      if (getLangOptions().CPlusPlus)
4058        // C++ [dcl.enum]p4: Following the closing brace of an
4059        // enum-specifier, each enumerator has the type of its
4060        // enumeration.
4061        ECD->setType(EnumType);
4062      continue;
4063    } else {
4064      NewTy = BestType;
4065      NewWidth = BestWidth;
4066      NewSign = BestType->isSignedIntegerType();
4067    }
4068
4069    // Adjust the APSInt value.
4070    InitVal.extOrTrunc(NewWidth);
4071    InitVal.setIsSigned(NewSign);
4072    ECD->setInitVal(InitVal);
4073
4074    // Adjust the Expr initializer and type.
4075    if (ECD->getInitExpr())
4076      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4077                                                      /*isLvalue=*/false));
4078    if (getLangOptions().CPlusPlus)
4079      // C++ [dcl.enum]p4: Following the closing brace of an
4080      // enum-specifier, each enumerator has the type of its
4081      // enumeration.
4082      ECD->setType(EnumType);
4083    else
4084      ECD->setType(NewTy);
4085  }
4086
4087  Enum->completeDefinition(Context, BestType);
4088}
4089
4090Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4091                                          ExprArg expr) {
4092  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4093
4094  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4095}
4096
4097