SemaDecl.cpp revision 13550e08024d7c6476149f800c01ed0306e403f0
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/PathSensitive/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Parse/DeclSpec.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Parse/Template.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
35#include "clang/Lex/Preprocessor.h"
36#include "clang/Lex/HeaderSearch.h"
37#include "llvm/ADT/BitVector.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43#include <queue>
44using namespace clang;
45
46/// getDeclName - Return a pretty name for the specified decl if possible, or
47/// an empty string if not.  This is used for pretty crash reporting.
48std::string Sema::getDeclName(DeclPtrTy d) {
49  Decl *D = d.getAs<Decl>();
50  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
51    return DN->getQualifiedNameAsString();
52  return "";
53}
54
55Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                                Scope *S, const CXXScopeSpec *SS,
72                                bool isClassName,
73                                TypeTy *ObjectTypePtr) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isSet()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return 0;
96
97        // We know from the grammar that this name refers to a type, so build a
98        // TypenameType node to describe the type.
99        // FIXME: Record somewhere that this TypenameType node has no "typename"
100        // keyword associated with it.
101        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
102                                 II, SS->getRange()).getAsOpaquePtr();
103      }
104
105      return 0;
106    }
107
108    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
109      return 0;
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    return 0;
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return 0;
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return 0;
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    // C++ [temp.local]p2:
197    //   Within the scope of a class template specialization or
198    //   partial specialization, when the injected-class-name is
199    //   not followed by a <, it is equivalent to the
200    //   injected-class-name followed by the template-argument s
201    //   of the class template specialization or partial
202    //   specialization enclosed in <>.
203    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
204      if (RD->isInjectedClassName())
205        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
206          T = Template->getInjectedClassNameType(Context);
207
208    if (T.isNull())
209      T = Context.getTypeDeclType(TD);
210
211    if (SS)
212      T = getQualifiedNameType(*SS, T);
213
214  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
215    T = Context.getObjCInterfaceType(IDecl);
216  } else if (UnresolvedUsingTypenameDecl *UUDecl =
217               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
218    // FIXME: preserve source structure information.
219    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
220  } else {
221    // If it's not plausibly a type, suppress diagnostics.
222    Result.suppressDiagnostics();
223    return 0;
224  }
225
226  return T.getAsOpaquePtr();
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      case TagDecl::TK_struct: return DeclSpec::TST_struct;
243      case TagDecl::TK_union:  return DeclSpec::TST_union;
244      case TagDecl::TK_class:  return DeclSpec::TST_class;
245      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
246      }
247    }
248
249  return DeclSpec::TST_unspecified;
250}
251
252bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
253                                   SourceLocation IILoc,
254                                   Scope *S,
255                                   const CXXScopeSpec *SS,
256                                   TypeTy *&SuggestedType) {
257  // We don't have anything to suggest (yet).
258  SuggestedType = 0;
259
260  // There may have been a typo in the name of the type. Look up typo
261  // results, in case we have something that we can suggest.
262  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
263                      NotForRedeclaration);
264
265  // FIXME: It would be nice if we could correct for typos in built-in
266  // names, such as "itn" for "int".
267
268  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
269    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
270    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
271        !Result->isInvalidDecl()) {
272      // We found a similarly-named type or interface; suggest that.
273      if (!SS || !SS->isSet())
274        Diag(IILoc, diag::err_unknown_typename_suggest)
275          << &II << Lookup.getLookupName()
276          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
277                                                     Result->getNameAsString());
278      else if (DeclContext *DC = computeDeclContext(*SS, false))
279        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
280          << &II << DC << Lookup.getLookupName() << SS->getRange()
281          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
282                                                     Result->getNameAsString());
283      else
284        llvm_unreachable("could not have corrected a typo here");
285
286      Diag(Result->getLocation(), diag::note_previous_decl)
287        << Result->getDeclName();
288
289      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
290      return true;
291    }
292  }
293
294  // FIXME: Should we move the logic that tries to recover from a missing tag
295  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
296
297  if (!SS || (!SS->isSet() && !SS->isInvalid()))
298    Diag(IILoc, diag::err_unknown_typename) << &II;
299  else if (DeclContext *DC = computeDeclContext(*SS, false))
300    Diag(IILoc, diag::err_typename_nested_not_found)
301      << &II << DC << SS->getRange();
302  else if (isDependentScopeSpecifier(*SS)) {
303    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
304      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
305      << SourceRange(SS->getRange().getBegin(), IILoc)
306      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
307                                               "typename ");
308    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  if (isa<ObjCMethodDecl>(DC))
345    return Context.getTranslationUnitDecl();
346
347  return DC->getLexicalParent();
348}
349
350void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
351  assert(getContainingDC(DC) == CurContext &&
352      "The next DeclContext should be lexically contained in the current one.");
353  CurContext = DC;
354  S->setEntity(DC);
355}
356
357void Sema::PopDeclContext() {
358  assert(CurContext && "DeclContext imbalance!");
359
360  CurContext = getContainingDC(CurContext);
361}
362
363/// EnterDeclaratorContext - Used when we must lookup names in the context
364/// of a declarator's nested name specifier.
365///
366void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
367  // C++0x [basic.lookup.unqual]p13:
368  //   A name used in the definition of a static data member of class
369  //   X (after the qualified-id of the static member) is looked up as
370  //   if the name was used in a member function of X.
371  // C++0x [basic.lookup.unqual]p14:
372  //   If a variable member of a namespace is defined outside of the
373  //   scope of its namespace then any name used in the definition of
374  //   the variable member (after the declarator-id) is looked up as
375  //   if the definition of the variable member occurred in its
376  //   namespace.
377  // Both of these imply that we should push a scope whose context
378  // is the semantic context of the declaration.  We can't use
379  // PushDeclContext here because that context is not necessarily
380  // lexically contained in the current context.  Fortunately,
381  // the containing scope should have the appropriate information.
382
383  assert(!S->getEntity() && "scope already has entity");
384
385#ifndef NDEBUG
386  Scope *Ancestor = S->getParent();
387  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
388  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
389#endif
390
391  CurContext = DC;
392  S->setEntity(DC);
393}
394
395void Sema::ExitDeclaratorContext(Scope *S) {
396  assert(S->getEntity() == CurContext && "Context imbalance!");
397
398  // Switch back to the lexical context.  The safety of this is
399  // enforced by an assert in EnterDeclaratorContext.
400  Scope *Ancestor = S->getParent();
401  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
402  CurContext = (DeclContext*) Ancestor->getEntity();
403
404  // We don't need to do anything with the scope, which is going to
405  // disappear.
406}
407
408/// \brief Determine whether we allow overloading of the function
409/// PrevDecl with another declaration.
410///
411/// This routine determines whether overloading is possible, not
412/// whether some new function is actually an overload. It will return
413/// true in C++ (where we can always provide overloads) or, as an
414/// extension, in C when the previous function is already an
415/// overloaded function declaration or has the "overloadable"
416/// attribute.
417static bool AllowOverloadingOfFunction(LookupResult &Previous,
418                                       ASTContext &Context) {
419  if (Context.getLangOptions().CPlusPlus)
420    return true;
421
422  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
423    return true;
424
425  return (Previous.getResultKind() == LookupResult::Found
426          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
427}
428
429/// Add this decl to the scope shadowed decl chains.
430void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
431  // Move up the scope chain until we find the nearest enclosing
432  // non-transparent context. The declaration will be introduced into this
433  // scope.
434  while (S->getEntity() &&
435         ((DeclContext *)S->getEntity())->isTransparentContext())
436    S = S->getParent();
437
438  // Add scoped declarations into their context, so that they can be
439  // found later. Declarations without a context won't be inserted
440  // into any context.
441  if (AddToContext)
442    CurContext->addDecl(D);
443
444  // Out-of-line function and variable definitions should not be pushed into
445  // scope.
446  if ((isa<FunctionTemplateDecl>(D) &&
447       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
448      (isa<FunctionDecl>(D) &&
449       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
450        cast<FunctionDecl>(D)->isOutOfLine())) ||
451      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
452    return;
453
454  // If this replaces anything in the current scope,
455  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
456                               IEnd = IdResolver.end();
457  for (; I != IEnd; ++I) {
458    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
459      S->RemoveDecl(DeclPtrTy::make(*I));
460      IdResolver.RemoveDecl(*I);
461
462      // Should only need to replace one decl.
463      break;
464    }
465  }
466
467  S->AddDecl(DeclPtrTy::make(D));
468  IdResolver.AddDecl(D);
469}
470
471bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
472  return IdResolver.isDeclInScope(D, Ctx, Context, S);
473}
474
475static bool isOutOfScopePreviousDeclaration(NamedDecl *,
476                                            DeclContext*,
477                                            ASTContext&);
478
479/// Filters out lookup results that don't fall within the given scope
480/// as determined by isDeclInScope.
481static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
482                                 DeclContext *Ctx, Scope *S,
483                                 bool ConsiderLinkage) {
484  LookupResult::Filter F = R.makeFilter();
485  while (F.hasNext()) {
486    NamedDecl *D = F.next();
487
488    if (SemaRef.isDeclInScope(D, Ctx, S))
489      continue;
490
491    if (ConsiderLinkage &&
492        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
493      continue;
494
495    F.erase();
496  }
497
498  F.done();
499}
500
501static bool isUsingDecl(NamedDecl *D) {
502  return isa<UsingShadowDecl>(D) ||
503         isa<UnresolvedUsingTypenameDecl>(D) ||
504         isa<UnresolvedUsingValueDecl>(D);
505}
506
507/// Removes using shadow declarations from the lookup results.
508static void RemoveUsingDecls(LookupResult &R) {
509  LookupResult::Filter F = R.makeFilter();
510  while (F.hasNext())
511    if (isUsingDecl(F.next()))
512      F.erase();
513
514  F.done();
515}
516
517static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
518  if (D->isUsed() || D->hasAttr<UnusedAttr>())
519    return false;
520
521  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
522    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
523      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
524        if (!RD->hasTrivialConstructor())
525          return false;
526        if (!RD->hasTrivialDestructor())
527          return false;
528      }
529    }
530  }
531
532  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
533          !isa<ImplicitParamDecl>(D) &&
534          D->getDeclContext()->isFunctionOrMethod());
535}
536
537void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
538  if (S->decl_empty()) return;
539  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
540         "Scope shouldn't contain decls!");
541
542  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
543       I != E; ++I) {
544    Decl *TmpD = (*I).getAs<Decl>();
545    assert(TmpD && "This decl didn't get pushed??");
546
547    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
548    NamedDecl *D = cast<NamedDecl>(TmpD);
549
550    if (!D->getDeclName()) continue;
551
552    // Diagnose unused variables in this scope.
553    if (ShouldDiagnoseUnusedDecl(D))
554      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
555
556    // Remove this name from our lexical scope.
557    IdResolver.RemoveDecl(D);
558  }
559}
560
561/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
562/// return 0 if one not found.
563///
564/// \param Id the name of the Objective-C class we're looking for. If
565/// typo-correction fixes this name, the Id will be updated
566/// to the fixed name.
567///
568/// \param RecoverLoc if provided, this routine will attempt to
569/// recover from a typo in the name of an existing Objective-C class
570/// and, if successful, will return the lookup that results from
571/// typo-correction.
572ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
573                                              SourceLocation RecoverLoc) {
574  // The third "scope" argument is 0 since we aren't enabling lazy built-in
575  // creation from this context.
576  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
577
578  if (!IDecl && !RecoverLoc.isInvalid()) {
579    // Perform typo correction at the given location, but only if we
580    // find an Objective-C class name.
581    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
582    if (CorrectTypo(R, TUScope, 0) &&
583        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
584      Diag(RecoverLoc, diag::err_undef_interface_suggest)
585        << Id << IDecl->getDeclName()
586        << CodeModificationHint::CreateReplacement(RecoverLoc,
587                                                   IDecl->getNameAsString());
588      Diag(IDecl->getLocation(), diag::note_previous_decl)
589        << IDecl->getDeclName();
590
591      Id = IDecl->getIdentifier();
592    }
593  }
594
595  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
596}
597
598/// getNonFieldDeclScope - Retrieves the innermost scope, starting
599/// from S, where a non-field would be declared. This routine copes
600/// with the difference between C and C++ scoping rules in structs and
601/// unions. For example, the following code is well-formed in C but
602/// ill-formed in C++:
603/// @code
604/// struct S6 {
605///   enum { BAR } e;
606/// };
607///
608/// void test_S6() {
609///   struct S6 a;
610///   a.e = BAR;
611/// }
612/// @endcode
613/// For the declaration of BAR, this routine will return a different
614/// scope. The scope S will be the scope of the unnamed enumeration
615/// within S6. In C++, this routine will return the scope associated
616/// with S6, because the enumeration's scope is a transparent
617/// context but structures can contain non-field names. In C, this
618/// routine will return the translation unit scope, since the
619/// enumeration's scope is a transparent context and structures cannot
620/// contain non-field names.
621Scope *Sema::getNonFieldDeclScope(Scope *S) {
622  while (((S->getFlags() & Scope::DeclScope) == 0) ||
623         (S->getEntity() &&
624          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
625         (S->isClassScope() && !getLangOptions().CPlusPlus))
626    S = S->getParent();
627  return S;
628}
629
630void Sema::InitBuiltinVaListType() {
631  if (!Context.getBuiltinVaListType().isNull())
632    return;
633
634  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
635  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
636  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
637  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
638}
639
640/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
641/// file scope.  lazily create a decl for it. ForRedeclaration is true
642/// if we're creating this built-in in anticipation of redeclaring the
643/// built-in.
644NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
645                                     Scope *S, bool ForRedeclaration,
646                                     SourceLocation Loc) {
647  Builtin::ID BID = (Builtin::ID)bid;
648
649  if (Context.BuiltinInfo.hasVAListUse(BID))
650    InitBuiltinVaListType();
651
652  ASTContext::GetBuiltinTypeError Error;
653  QualType R = Context.GetBuiltinType(BID, Error);
654  switch (Error) {
655  case ASTContext::GE_None:
656    // Okay
657    break;
658
659  case ASTContext::GE_Missing_stdio:
660    if (ForRedeclaration)
661      Diag(Loc, diag::err_implicit_decl_requires_stdio)
662        << Context.BuiltinInfo.GetName(BID);
663    return 0;
664
665  case ASTContext::GE_Missing_setjmp:
666    if (ForRedeclaration)
667      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
668        << Context.BuiltinInfo.GetName(BID);
669    return 0;
670  }
671
672  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
673    Diag(Loc, diag::ext_implicit_lib_function_decl)
674      << Context.BuiltinInfo.GetName(BID)
675      << R;
676    if (Context.BuiltinInfo.getHeaderName(BID) &&
677        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
678          != Diagnostic::Ignored)
679      Diag(Loc, diag::note_please_include_header)
680        << Context.BuiltinInfo.getHeaderName(BID)
681        << Context.BuiltinInfo.GetName(BID);
682  }
683
684  FunctionDecl *New = FunctionDecl::Create(Context,
685                                           Context.getTranslationUnitDecl(),
686                                           Loc, II, R, /*TInfo=*/0,
687                                           FunctionDecl::Extern, false,
688                                           /*hasPrototype=*/true);
689  New->setImplicit();
690
691  // Create Decl objects for each parameter, adding them to the
692  // FunctionDecl.
693  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
694    llvm::SmallVector<ParmVarDecl*, 16> Params;
695    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
696      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
697                                           FT->getArgType(i), /*TInfo=*/0,
698                                           VarDecl::None, 0));
699    New->setParams(Context, Params.data(), Params.size());
700  }
701
702  AddKnownFunctionAttributes(New);
703
704  // TUScope is the translation-unit scope to insert this function into.
705  // FIXME: This is hideous. We need to teach PushOnScopeChains to
706  // relate Scopes to DeclContexts, and probably eliminate CurContext
707  // entirely, but we're not there yet.
708  DeclContext *SavedContext = CurContext;
709  CurContext = Context.getTranslationUnitDecl();
710  PushOnScopeChains(New, TUScope);
711  CurContext = SavedContext;
712  return New;
713}
714
715/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
716/// same name and scope as a previous declaration 'Old'.  Figure out
717/// how to resolve this situation, merging decls or emitting
718/// diagnostics as appropriate. If there was an error, set New to be invalid.
719///
720void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
721  // If the new decl is known invalid already, don't bother doing any
722  // merging checks.
723  if (New->isInvalidDecl()) return;
724
725  // Allow multiple definitions for ObjC built-in typedefs.
726  // FIXME: Verify the underlying types are equivalent!
727  if (getLangOptions().ObjC1) {
728    const IdentifierInfo *TypeID = New->getIdentifier();
729    switch (TypeID->getLength()) {
730    default: break;
731    case 2:
732      if (!TypeID->isStr("id"))
733        break;
734      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
735      // Install the built-in type for 'id', ignoring the current definition.
736      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
737      return;
738    case 5:
739      if (!TypeID->isStr("Class"))
740        break;
741      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
742      // Install the built-in type for 'Class', ignoring the current definition.
743      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
744      return;
745    case 3:
746      if (!TypeID->isStr("SEL"))
747        break;
748      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
749      // Install the built-in type for 'SEL', ignoring the current definition.
750      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
751      return;
752    case 8:
753      if (!TypeID->isStr("Protocol"))
754        break;
755      Context.setObjCProtoType(New->getUnderlyingType());
756      return;
757    }
758    // Fall through - the typedef name was not a builtin type.
759  }
760
761  // Verify the old decl was also a type.
762  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
763  if (!Old) {
764    Diag(New->getLocation(), diag::err_redefinition_different_kind)
765      << New->getDeclName();
766
767    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
768    if (OldD->getLocation().isValid())
769      Diag(OldD->getLocation(), diag::note_previous_definition);
770
771    return New->setInvalidDecl();
772  }
773
774  // If the old declaration is invalid, just give up here.
775  if (Old->isInvalidDecl())
776    return New->setInvalidDecl();
777
778  // Determine the "old" type we'll use for checking and diagnostics.
779  QualType OldType;
780  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
781    OldType = OldTypedef->getUnderlyingType();
782  else
783    OldType = Context.getTypeDeclType(Old);
784
785  // If the typedef types are not identical, reject them in all languages and
786  // with any extensions enabled.
787
788  if (OldType != New->getUnderlyingType() &&
789      Context.getCanonicalType(OldType) !=
790      Context.getCanonicalType(New->getUnderlyingType())) {
791    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
792      << New->getUnderlyingType() << OldType;
793    if (Old->getLocation().isValid())
794      Diag(Old->getLocation(), diag::note_previous_definition);
795    return New->setInvalidDecl();
796  }
797
798  // The types match.  Link up the redeclaration chain if the old
799  // declaration was a typedef.
800  // FIXME: this is a potential source of wierdness if the type
801  // spellings don't match exactly.
802  if (isa<TypedefDecl>(Old))
803    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
804
805  if (getLangOptions().Microsoft)
806    return;
807
808  if (getLangOptions().CPlusPlus) {
809    // C++ [dcl.typedef]p2:
810    //   In a given non-class scope, a typedef specifier can be used to
811    //   redefine the name of any type declared in that scope to refer
812    //   to the type to which it already refers.
813    if (!isa<CXXRecordDecl>(CurContext))
814      return;
815
816    // C++0x [dcl.typedef]p4:
817    //   In a given class scope, a typedef specifier can be used to redefine
818    //   any class-name declared in that scope that is not also a typedef-name
819    //   to refer to the type to which it already refers.
820    //
821    // This wording came in via DR424, which was a correction to the
822    // wording in DR56, which accidentally banned code like:
823    //
824    //   struct S {
825    //     typedef struct A { } A;
826    //   };
827    //
828    // in the C++03 standard. We implement the C++0x semantics, which
829    // allow the above but disallow
830    //
831    //   struct S {
832    //     typedef int I;
833    //     typedef int I;
834    //   };
835    //
836    // since that was the intent of DR56.
837    if (!isa<TypedefDecl >(Old))
838      return;
839
840    Diag(New->getLocation(), diag::err_redefinition)
841      << New->getDeclName();
842    Diag(Old->getLocation(), diag::note_previous_definition);
843    return New->setInvalidDecl();
844  }
845
846  // If we have a redefinition of a typedef in C, emit a warning.  This warning
847  // is normally mapped to an error, but can be controlled with
848  // -Wtypedef-redefinition.  If either the original or the redefinition is
849  // in a system header, don't emit this for compatibility with GCC.
850  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
851      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
852       Context.getSourceManager().isInSystemHeader(New->getLocation())))
853    return;
854
855  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
856    << New->getDeclName();
857  Diag(Old->getLocation(), diag::note_previous_definition);
858  return;
859}
860
861/// DeclhasAttr - returns true if decl Declaration already has the target
862/// attribute.
863static bool
864DeclHasAttr(const Decl *decl, const Attr *target) {
865  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
866    if (attr->getKind() == target->getKind())
867      return true;
868
869  return false;
870}
871
872/// MergeAttributes - append attributes from the Old decl to the New one.
873static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
874  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
875    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
876      Attr *NewAttr = attr->clone(C);
877      NewAttr->setInherited(true);
878      New->addAttr(NewAttr);
879    }
880  }
881}
882
883/// Used in MergeFunctionDecl to keep track of function parameters in
884/// C.
885struct GNUCompatibleParamWarning {
886  ParmVarDecl *OldParm;
887  ParmVarDecl *NewParm;
888  QualType PromotedType;
889};
890
891
892/// getSpecialMember - get the special member enum for a method.
893static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
894                                               const CXXMethodDecl *MD) {
895  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
896    if (Ctor->isDefaultConstructor())
897      return Sema::CXXDefaultConstructor;
898    if (Ctor->isCopyConstructor())
899      return Sema::CXXCopyConstructor;
900  }
901
902  if (isa<CXXDestructorDecl>(MD))
903    return Sema::CXXDestructor;
904
905  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
906  return Sema::CXXCopyAssignment;
907}
908
909/// MergeFunctionDecl - We just parsed a function 'New' from
910/// declarator D which has the same name and scope as a previous
911/// declaration 'Old'.  Figure out how to resolve this situation,
912/// merging decls or emitting diagnostics as appropriate.
913///
914/// In C++, New and Old must be declarations that are not
915/// overloaded. Use IsOverload to determine whether New and Old are
916/// overloaded, and to select the Old declaration that New should be
917/// merged with.
918///
919/// Returns true if there was an error, false otherwise.
920bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
921  // Verify the old decl was also a function.
922  FunctionDecl *Old = 0;
923  if (FunctionTemplateDecl *OldFunctionTemplate
924        = dyn_cast<FunctionTemplateDecl>(OldD))
925    Old = OldFunctionTemplate->getTemplatedDecl();
926  else
927    Old = dyn_cast<FunctionDecl>(OldD);
928  if (!Old) {
929    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
930      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
931      Diag(Shadow->getTargetDecl()->getLocation(),
932           diag::note_using_decl_target);
933      Diag(Shadow->getUsingDecl()->getLocation(),
934           diag::note_using_decl) << 0;
935      return true;
936    }
937
938    Diag(New->getLocation(), diag::err_redefinition_different_kind)
939      << New->getDeclName();
940    Diag(OldD->getLocation(), diag::note_previous_definition);
941    return true;
942  }
943
944  // Determine whether the previous declaration was a definition,
945  // implicit declaration, or a declaration.
946  diag::kind PrevDiag;
947  if (Old->isThisDeclarationADefinition())
948    PrevDiag = diag::note_previous_definition;
949  else if (Old->isImplicit())
950    PrevDiag = diag::note_previous_implicit_declaration;
951  else
952    PrevDiag = diag::note_previous_declaration;
953
954  QualType OldQType = Context.getCanonicalType(Old->getType());
955  QualType NewQType = Context.getCanonicalType(New->getType());
956
957  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
958      New->getStorageClass() == FunctionDecl::Static &&
959      Old->getStorageClass() != FunctionDecl::Static) {
960    Diag(New->getLocation(), diag::err_static_non_static)
961      << New;
962    Diag(Old->getLocation(), PrevDiag);
963    return true;
964  }
965
966  if (getLangOptions().CPlusPlus) {
967    // (C++98 13.1p2):
968    //   Certain function declarations cannot be overloaded:
969    //     -- Function declarations that differ only in the return type
970    //        cannot be overloaded.
971    QualType OldReturnType
972      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
973    QualType NewReturnType
974      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
975    if (OldReturnType != NewReturnType) {
976      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
977      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
978      return true;
979    }
980
981    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
982    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
983    if (OldMethod && NewMethod) {
984      if (!NewMethod->getFriendObjectKind() &&
985          NewMethod->getLexicalDeclContext()->isRecord()) {
986        //    -- Member function declarations with the same name and the
987        //       same parameter types cannot be overloaded if any of them
988        //       is a static member function declaration.
989        if (OldMethod->isStatic() || NewMethod->isStatic()) {
990          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
991          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
992          return true;
993        }
994
995        // C++ [class.mem]p1:
996        //   [...] A member shall not be declared twice in the
997        //   member-specification, except that a nested class or member
998        //   class template can be declared and then later defined.
999        unsigned NewDiag;
1000        if (isa<CXXConstructorDecl>(OldMethod))
1001          NewDiag = diag::err_constructor_redeclared;
1002        else if (isa<CXXDestructorDecl>(NewMethod))
1003          NewDiag = diag::err_destructor_redeclared;
1004        else if (isa<CXXConversionDecl>(NewMethod))
1005          NewDiag = diag::err_conv_function_redeclared;
1006        else
1007          NewDiag = diag::err_member_redeclared;
1008
1009        Diag(New->getLocation(), NewDiag);
1010        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1011      } else {
1012        if (OldMethod->isImplicit()) {
1013          Diag(NewMethod->getLocation(),
1014               diag::err_definition_of_implicitly_declared_member)
1015          << New << getSpecialMember(Context, OldMethod);
1016
1017          Diag(OldMethod->getLocation(),
1018               diag::note_previous_implicit_declaration);
1019          return true;
1020        }
1021      }
1022    }
1023
1024    // (C++98 8.3.5p3):
1025    //   All declarations for a function shall agree exactly in both the
1026    //   return type and the parameter-type-list.
1027    // attributes should be ignored when comparing.
1028    if (Context.getNoReturnType(OldQType, false) ==
1029        Context.getNoReturnType(NewQType, false))
1030      return MergeCompatibleFunctionDecls(New, Old);
1031
1032    // Fall through for conflicting redeclarations and redefinitions.
1033  }
1034
1035  // C: Function types need to be compatible, not identical. This handles
1036  // duplicate function decls like "void f(int); void f(enum X);" properly.
1037  if (!getLangOptions().CPlusPlus &&
1038      Context.typesAreCompatible(OldQType, NewQType)) {
1039    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1040    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1041    const FunctionProtoType *OldProto = 0;
1042    if (isa<FunctionNoProtoType>(NewFuncType) &&
1043        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1044      // The old declaration provided a function prototype, but the
1045      // new declaration does not. Merge in the prototype.
1046      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1047      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1048                                                 OldProto->arg_type_end());
1049      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1050                                         ParamTypes.data(), ParamTypes.size(),
1051                                         OldProto->isVariadic(),
1052                                         OldProto->getTypeQuals());
1053      New->setType(NewQType);
1054      New->setHasInheritedPrototype();
1055
1056      // Synthesize a parameter for each argument type.
1057      llvm::SmallVector<ParmVarDecl*, 16> Params;
1058      for (FunctionProtoType::arg_type_iterator
1059             ParamType = OldProto->arg_type_begin(),
1060             ParamEnd = OldProto->arg_type_end();
1061           ParamType != ParamEnd; ++ParamType) {
1062        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1063                                                 SourceLocation(), 0,
1064                                                 *ParamType, /*TInfo=*/0,
1065                                                 VarDecl::None, 0);
1066        Param->setImplicit();
1067        Params.push_back(Param);
1068      }
1069
1070      New->setParams(Context, Params.data(), Params.size());
1071    }
1072
1073    return MergeCompatibleFunctionDecls(New, Old);
1074  }
1075
1076  // GNU C permits a K&R definition to follow a prototype declaration
1077  // if the declared types of the parameters in the K&R definition
1078  // match the types in the prototype declaration, even when the
1079  // promoted types of the parameters from the K&R definition differ
1080  // from the types in the prototype. GCC then keeps the types from
1081  // the prototype.
1082  //
1083  // If a variadic prototype is followed by a non-variadic K&R definition,
1084  // the K&R definition becomes variadic.  This is sort of an edge case, but
1085  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1086  // C99 6.9.1p8.
1087  if (!getLangOptions().CPlusPlus &&
1088      Old->hasPrototype() && !New->hasPrototype() &&
1089      New->getType()->getAs<FunctionProtoType>() &&
1090      Old->getNumParams() == New->getNumParams()) {
1091    llvm::SmallVector<QualType, 16> ArgTypes;
1092    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1093    const FunctionProtoType *OldProto
1094      = Old->getType()->getAs<FunctionProtoType>();
1095    const FunctionProtoType *NewProto
1096      = New->getType()->getAs<FunctionProtoType>();
1097
1098    // Determine whether this is the GNU C extension.
1099    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1100                                               NewProto->getResultType());
1101    bool LooseCompatible = !MergedReturn.isNull();
1102    for (unsigned Idx = 0, End = Old->getNumParams();
1103         LooseCompatible && Idx != End; ++Idx) {
1104      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1105      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1106      if (Context.typesAreCompatible(OldParm->getType(),
1107                                     NewProto->getArgType(Idx))) {
1108        ArgTypes.push_back(NewParm->getType());
1109      } else if (Context.typesAreCompatible(OldParm->getType(),
1110                                            NewParm->getType())) {
1111        GNUCompatibleParamWarning Warn
1112          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1113        Warnings.push_back(Warn);
1114        ArgTypes.push_back(NewParm->getType());
1115      } else
1116        LooseCompatible = false;
1117    }
1118
1119    if (LooseCompatible) {
1120      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1121        Diag(Warnings[Warn].NewParm->getLocation(),
1122             diag::ext_param_promoted_not_compatible_with_prototype)
1123          << Warnings[Warn].PromotedType
1124          << Warnings[Warn].OldParm->getType();
1125        Diag(Warnings[Warn].OldParm->getLocation(),
1126             diag::note_previous_declaration);
1127      }
1128
1129      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1130                                           ArgTypes.size(),
1131                                           OldProto->isVariadic(), 0));
1132      return MergeCompatibleFunctionDecls(New, Old);
1133    }
1134
1135    // Fall through to diagnose conflicting types.
1136  }
1137
1138  // A function that has already been declared has been redeclared or defined
1139  // with a different type- show appropriate diagnostic
1140  if (unsigned BuiltinID = Old->getBuiltinID()) {
1141    // The user has declared a builtin function with an incompatible
1142    // signature.
1143    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1144      // The function the user is redeclaring is a library-defined
1145      // function like 'malloc' or 'printf'. Warn about the
1146      // redeclaration, then pretend that we don't know about this
1147      // library built-in.
1148      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1149      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1150        << Old << Old->getType();
1151      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1152      Old->setInvalidDecl();
1153      return false;
1154    }
1155
1156    PrevDiag = diag::note_previous_builtin_declaration;
1157  }
1158
1159  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1160  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1161  return true;
1162}
1163
1164/// \brief Completes the merge of two function declarations that are
1165/// known to be compatible.
1166///
1167/// This routine handles the merging of attributes and other
1168/// properties of function declarations form the old declaration to
1169/// the new declaration, once we know that New is in fact a
1170/// redeclaration of Old.
1171///
1172/// \returns false
1173bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1174  // Merge the attributes
1175  MergeAttributes(New, Old, Context);
1176
1177  // Merge the storage class.
1178  if (Old->getStorageClass() != FunctionDecl::Extern &&
1179      Old->getStorageClass() != FunctionDecl::None)
1180    New->setStorageClass(Old->getStorageClass());
1181
1182  // Merge "pure" flag.
1183  if (Old->isPure())
1184    New->setPure();
1185
1186  // Merge the "deleted" flag.
1187  if (Old->isDeleted())
1188    New->setDeleted();
1189
1190  if (getLangOptions().CPlusPlus)
1191    return MergeCXXFunctionDecl(New, Old);
1192
1193  return false;
1194}
1195
1196/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1197/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1198/// situation, merging decls or emitting diagnostics as appropriate.
1199///
1200/// Tentative definition rules (C99 6.9.2p2) are checked by
1201/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1202/// definitions here, since the initializer hasn't been attached.
1203///
1204void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1205  // If the new decl is already invalid, don't do any other checking.
1206  if (New->isInvalidDecl())
1207    return;
1208
1209  // Verify the old decl was also a variable.
1210  VarDecl *Old = 0;
1211  if (!Previous.isSingleResult() ||
1212      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1213    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1214      << New->getDeclName();
1215    Diag(Previous.getRepresentativeDecl()->getLocation(),
1216         diag::note_previous_definition);
1217    return New->setInvalidDecl();
1218  }
1219
1220  MergeAttributes(New, Old, Context);
1221
1222  // Merge the types
1223  QualType MergedT;
1224  if (getLangOptions().CPlusPlus) {
1225    if (Context.hasSameType(New->getType(), Old->getType()))
1226      MergedT = New->getType();
1227    // C++ [basic.link]p10:
1228    //   [...] the types specified by all declarations referring to a given
1229    //   object or function shall be identical, except that declarations for an
1230    //   array object can specify array types that differ by the presence or
1231    //   absence of a major array bound (8.3.4).
1232    else if (Old->getType()->isIncompleteArrayType() &&
1233             New->getType()->isArrayType()) {
1234      CanQual<ArrayType> OldArray
1235        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1236      CanQual<ArrayType> NewArray
1237        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1238      if (OldArray->getElementType() == NewArray->getElementType())
1239        MergedT = New->getType();
1240    } else if (Old->getType()->isArrayType() &&
1241             New->getType()->isIncompleteArrayType()) {
1242      CanQual<ArrayType> OldArray
1243        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1244      CanQual<ArrayType> NewArray
1245        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1246      if (OldArray->getElementType() == NewArray->getElementType())
1247        MergedT = Old->getType();
1248    }
1249  } else {
1250    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1251  }
1252  if (MergedT.isNull()) {
1253    Diag(New->getLocation(), diag::err_redefinition_different_type)
1254      << New->getDeclName();
1255    Diag(Old->getLocation(), diag::note_previous_definition);
1256    return New->setInvalidDecl();
1257  }
1258  New->setType(MergedT);
1259
1260  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1261  if (New->getStorageClass() == VarDecl::Static &&
1262      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1263    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1264    Diag(Old->getLocation(), diag::note_previous_definition);
1265    return New->setInvalidDecl();
1266  }
1267  // C99 6.2.2p4:
1268  //   For an identifier declared with the storage-class specifier
1269  //   extern in a scope in which a prior declaration of that
1270  //   identifier is visible,23) if the prior declaration specifies
1271  //   internal or external linkage, the linkage of the identifier at
1272  //   the later declaration is the same as the linkage specified at
1273  //   the prior declaration. If no prior declaration is visible, or
1274  //   if the prior declaration specifies no linkage, then the
1275  //   identifier has external linkage.
1276  if (New->hasExternalStorage() && Old->hasLinkage())
1277    /* Okay */;
1278  else if (New->getStorageClass() != VarDecl::Static &&
1279           Old->getStorageClass() == VarDecl::Static) {
1280    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1281    Diag(Old->getLocation(), diag::note_previous_definition);
1282    return New->setInvalidDecl();
1283  }
1284
1285  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1286
1287  // FIXME: The test for external storage here seems wrong? We still
1288  // need to check for mismatches.
1289  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1290      // Don't complain about out-of-line definitions of static members.
1291      !(Old->getLexicalDeclContext()->isRecord() &&
1292        !New->getLexicalDeclContext()->isRecord())) {
1293    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1294    Diag(Old->getLocation(), diag::note_previous_definition);
1295    return New->setInvalidDecl();
1296  }
1297
1298  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1299    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1300    Diag(Old->getLocation(), diag::note_previous_definition);
1301  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1302    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1303    Diag(Old->getLocation(), diag::note_previous_definition);
1304  }
1305
1306  // Keep a chain of previous declarations.
1307  New->setPreviousDeclaration(Old);
1308}
1309
1310static void MarkLive(CFGBlock *e, llvm::BitVector &live) {
1311  std::queue<CFGBlock*> workq;
1312  // Prep work queue
1313  workq.push(e);
1314  // Solve
1315  while (!workq.empty()) {
1316    CFGBlock *item = workq.front();
1317    workq.pop();
1318    live.set(item->getBlockID());
1319    for (CFGBlock::succ_iterator I=item->succ_begin(),
1320           E=item->succ_end();
1321         I != E;
1322         ++I) {
1323      if ((*I) && !live[(*I)->getBlockID()]) {
1324        live.set((*I)->getBlockID());
1325        workq.push(*I);
1326      }
1327    }
1328  }
1329}
1330
1331static SourceLocation GetUnreachableLoc(CFGBlock &b) {
1332  Stmt *S;
1333  if (!b.empty())
1334    S = b[0].getStmt();
1335  else if (b.getTerminator())
1336    S = b.getTerminator();
1337  else
1338    return SourceLocation();
1339
1340  switch (S->getStmtClass()) {
1341  case Expr::BinaryOperatorClass: {
1342    BinaryOperator *Op = cast<BinaryOperator>(S);
1343    if (Op->getOpcode() == BinaryOperator::Comma) {
1344      if (b.size() < 2) {
1345        CFGBlock *n = &b;
1346        while (1) {
1347          if (n->getTerminator())
1348            return n->getTerminator()->getLocStart();
1349          if (n->succ_size() != 1)
1350            return SourceLocation();
1351          n = n[0].succ_begin()[0];
1352          if (n->pred_size() != 1)
1353            return SourceLocation();
1354          if (!n->empty())
1355            return n[0][0].getStmt()->getLocStart();
1356        }
1357      }
1358      return b[1].getStmt()->getLocStart();
1359    }
1360  }
1361  default: ;
1362  }
1363  return S->getLocStart();
1364}
1365
1366static SourceLocation MarkLiveTop(CFGBlock *e, llvm::BitVector &live,
1367                               SourceManager &SM) {
1368  std::queue<CFGBlock*> workq;
1369  // Prep work queue
1370  workq.push(e);
1371  SourceLocation top = GetUnreachableLoc(*e);
1372  bool FromMainFile = false;
1373  bool FromSystemHeader = false;
1374  bool TopValid = false;
1375  if (top.isValid()) {
1376    FromMainFile = SM.isFromMainFile(top);
1377    FromSystemHeader = SM.isInSystemHeader(top);
1378    TopValid = true;
1379  }
1380  // Solve
1381  while (!workq.empty()) {
1382    CFGBlock *item = workq.front();
1383    workq.pop();
1384    SourceLocation c = GetUnreachableLoc(*item);
1385    if (c.isValid()
1386        && (!TopValid
1387            || (SM.isFromMainFile(c) && !FromMainFile)
1388            || (FromSystemHeader && !SM.isInSystemHeader(c))
1389            || SM.isBeforeInTranslationUnit(c, top))) {
1390      top = c;
1391      FromMainFile = SM.isFromMainFile(top);
1392      FromSystemHeader = SM.isInSystemHeader(top);
1393    }
1394    live.set(item->getBlockID());
1395    for (CFGBlock::succ_iterator I=item->succ_begin(),
1396           E=item->succ_end();
1397         I != E;
1398         ++I) {
1399      if ((*I) && !live[(*I)->getBlockID()]) {
1400        live.set((*I)->getBlockID());
1401        workq.push(*I);
1402      }
1403    }
1404  }
1405  return top;
1406}
1407
1408namespace {
1409class LineCmp {
1410  SourceManager &SM;
1411public:
1412  LineCmp(SourceManager &sm) : SM(sm) {
1413  }
1414  bool operator () (SourceLocation l1, SourceLocation l2) {
1415    return l1 < l2;
1416  }
1417};
1418}
1419
1420/// CheckUnreachable - Check for unreachable code.
1421void Sema::CheckUnreachable(AnalysisContext &AC) {
1422  // We avoid checking when there are errors, as the CFG won't faithfully match
1423  // the user's code.
1424  if (getDiagnostics().hasErrorOccurred())
1425    return;
1426  if (Diags.getDiagnosticLevel(diag::warn_unreachable) == Diagnostic::Ignored)
1427    return;
1428
1429  CFG *cfg = AC.getCFG();
1430  if (cfg == 0)
1431    return;
1432
1433  llvm::BitVector live(cfg->getNumBlockIDs());
1434  // Mark all live things first.
1435  MarkLive(&cfg->getEntry(), live);
1436
1437  llvm::SmallVector<SourceLocation, 24> lines;
1438  // First, give warnings for blocks with no predecessors, as they
1439  // can't be part of a loop.
1440  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
1441    CFGBlock &b = **I;
1442    if (!live[b.getBlockID()]) {
1443      if (b.pred_begin() == b.pred_end()) {
1444        SourceLocation c = GetUnreachableLoc(b);
1445        if (!c.isValid()) {
1446          // Blocks without a location can't produce a warning, so don't mark
1447          // reachable blocks from here as live.
1448          live.set(b.getBlockID());
1449          continue;
1450        }
1451        lines.push_back(c);
1452        // Avoid excessive errors by marking everything reachable from here
1453        MarkLive(&b, live);
1454      }
1455    }
1456  }
1457
1458  // And then give warnings for the tops of loops.
1459  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
1460    CFGBlock &b = **I;
1461    if (!live[b.getBlockID()])
1462      // Avoid excessive errors by marking everything reachable from here
1463      lines.push_back(MarkLiveTop(&b, live, Context.getSourceManager()));
1464  }
1465
1466  std::sort(lines.begin(), lines.end(), LineCmp(Context.getSourceManager()));
1467  for (llvm::SmallVector<SourceLocation, 24>::iterator I = lines.begin(),
1468         E = lines.end();
1469       I != E;
1470       ++I)
1471    if (I->isValid())
1472      Diag(*I, diag::warn_unreachable);
1473}
1474
1475/// CheckFallThrough - Check that we don't fall off the end of a
1476/// Statement that should return a value.
1477///
1478/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1479/// MaybeFallThrough iff we might or might not fall off the end,
1480/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1481/// return.  We assume NeverFallThrough iff we never fall off the end of the
1482/// statement but we may return.  We assume that functions not marked noreturn
1483/// will return.
1484Sema::ControlFlowKind Sema::CheckFallThrough(AnalysisContext &AC) {
1485  CFG *cfg = AC.getCFG();
1486  if (cfg == 0)
1487    // FIXME: This should be NeverFallThrough
1488    return NeverFallThroughOrReturn;
1489
1490  // The CFG leaves in dead things, and we don't want to dead code paths to
1491  // confuse us, so we mark all live things first.
1492  std::queue<CFGBlock*> workq;
1493  llvm::BitVector live(cfg->getNumBlockIDs());
1494  MarkLive(&cfg->getEntry(), live);
1495
1496  // Now we know what is live, we check the live precessors of the exit block
1497  // and look for fall through paths, being careful to ignore normal returns,
1498  // and exceptional paths.
1499  bool HasLiveReturn = false;
1500  bool HasFakeEdge = false;
1501  bool HasPlainEdge = false;
1502  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1503         E = cfg->getExit().pred_end();
1504       I != E;
1505       ++I) {
1506    CFGBlock& B = **I;
1507    if (!live[B.getBlockID()])
1508      continue;
1509    if (B.size() == 0) {
1510      // A labeled empty statement, or the entry block...
1511      HasPlainEdge = true;
1512      continue;
1513    }
1514    Stmt *S = B[B.size()-1];
1515    if (isa<ReturnStmt>(S)) {
1516      HasLiveReturn = true;
1517      continue;
1518    }
1519    if (isa<ObjCAtThrowStmt>(S)) {
1520      HasFakeEdge = true;
1521      continue;
1522    }
1523    if (isa<CXXThrowExpr>(S)) {
1524      HasFakeEdge = true;
1525      continue;
1526    }
1527    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
1528      if (AS->isMSAsm()) {
1529        HasFakeEdge = true;
1530        HasLiveReturn = true;
1531        continue;
1532      }
1533    }
1534
1535    bool NoReturnEdge = false;
1536    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1537      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1538      if (CEE->getType().getNoReturnAttr()) {
1539        NoReturnEdge = true;
1540        HasFakeEdge = true;
1541      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1542        ValueDecl *VD = DRE->getDecl();
1543        if (VD->hasAttr<NoReturnAttr>()) {
1544          NoReturnEdge = true;
1545          HasFakeEdge = true;
1546        }
1547      }
1548    }
1549    // FIXME: Add noreturn message sends.
1550    if (NoReturnEdge == false)
1551      HasPlainEdge = true;
1552  }
1553  if (!HasPlainEdge) {
1554    if (HasLiveReturn)
1555      return NeverFallThrough;
1556    return NeverFallThroughOrReturn;
1557  }
1558  if (HasFakeEdge || HasLiveReturn)
1559    return MaybeFallThrough;
1560  // This says AlwaysFallThrough for calls to functions that are not marked
1561  // noreturn, that don't return.  If people would like this warning to be more
1562  // accurate, such functions should be marked as noreturn.
1563  return AlwaysFallThrough;
1564}
1565
1566/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1567/// function that should return a value.  Check that we don't fall off the end
1568/// of a noreturn function.  We assume that functions and blocks not marked
1569/// noreturn will return.
1570void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body,
1571                                          AnalysisContext &AC) {
1572  // FIXME: Would be nice if we had a better way to control cascading errors,
1573  // but for now, avoid them.  The problem is that when Parse sees:
1574  //   int foo() { return a; }
1575  // The return is eaten and the Sema code sees just:
1576  //   int foo() { }
1577  // which this code would then warn about.
1578  if (getDiagnostics().hasErrorOccurred())
1579    return;
1580
1581  bool ReturnsVoid = false;
1582  bool HasNoReturn = false;
1583  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1584    // If the result type of the function is a dependent type, we don't know
1585    // whether it will be void or not, so don't
1586    if (FD->getResultType()->isDependentType())
1587      return;
1588    if (FD->getResultType()->isVoidType())
1589      ReturnsVoid = true;
1590    if (FD->hasAttr<NoReturnAttr>())
1591      HasNoReturn = true;
1592  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1593    if (MD->getResultType()->isVoidType())
1594      ReturnsVoid = true;
1595    if (MD->hasAttr<NoReturnAttr>())
1596      HasNoReturn = true;
1597  }
1598
1599  // Short circuit for compilation speed.
1600  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1601       == Diagnostic::Ignored || ReturnsVoid)
1602      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1603          == Diagnostic::Ignored || !HasNoReturn)
1604      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1605          == Diagnostic::Ignored || !ReturnsVoid))
1606    return;
1607  // FIXME: Function try block
1608  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1609    switch (CheckFallThrough(AC)) {
1610    case MaybeFallThrough:
1611      if (HasNoReturn)
1612        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1613      else if (!ReturnsVoid)
1614        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1615      break;
1616    case AlwaysFallThrough:
1617      if (HasNoReturn)
1618        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1619      else if (!ReturnsVoid)
1620        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1621      break;
1622    case NeverFallThroughOrReturn:
1623      if (ReturnsVoid && !HasNoReturn)
1624        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1625      break;
1626    case NeverFallThrough:
1627      break;
1628    }
1629  }
1630}
1631
1632/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1633/// that should return a value.  Check that we don't fall off the end of a
1634/// noreturn block.  We assume that functions and blocks not marked noreturn
1635/// will return.
1636void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body,
1637                                    AnalysisContext &AC) {
1638  // FIXME: Would be nice if we had a better way to control cascading errors,
1639  // but for now, avoid them.  The problem is that when Parse sees:
1640  //   int foo() { return a; }
1641  // The return is eaten and the Sema code sees just:
1642  //   int foo() { }
1643  // which this code would then warn about.
1644  if (getDiagnostics().hasErrorOccurred())
1645    return;
1646  bool ReturnsVoid = false;
1647  bool HasNoReturn = false;
1648  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1649    if (FT->getResultType()->isVoidType())
1650      ReturnsVoid = true;
1651    if (FT->getNoReturnAttr())
1652      HasNoReturn = true;
1653  }
1654
1655  // Short circuit for compilation speed.
1656  if (ReturnsVoid
1657      && !HasNoReturn
1658      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1659          == Diagnostic::Ignored || !ReturnsVoid))
1660    return;
1661  // FIXME: Funtion try block
1662  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1663    switch (CheckFallThrough(AC)) {
1664    case MaybeFallThrough:
1665      if (HasNoReturn)
1666        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1667      else if (!ReturnsVoid)
1668        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1669      break;
1670    case AlwaysFallThrough:
1671      if (HasNoReturn)
1672        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1673      else if (!ReturnsVoid)
1674        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1675      break;
1676    case NeverFallThroughOrReturn:
1677      if (ReturnsVoid)
1678        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1679      break;
1680    case NeverFallThrough:
1681      break;
1682    }
1683  }
1684}
1685
1686/// CheckParmsForFunctionDef - Check that the parameters of the given
1687/// function are appropriate for the definition of a function. This
1688/// takes care of any checks that cannot be performed on the
1689/// declaration itself, e.g., that the types of each of the function
1690/// parameters are complete.
1691bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1692  bool HasInvalidParm = false;
1693  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1694    ParmVarDecl *Param = FD->getParamDecl(p);
1695
1696    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1697    // function declarator that is part of a function definition of
1698    // that function shall not have incomplete type.
1699    //
1700    // This is also C++ [dcl.fct]p6.
1701    if (!Param->isInvalidDecl() &&
1702        RequireCompleteType(Param->getLocation(), Param->getType(),
1703                               diag::err_typecheck_decl_incomplete_type)) {
1704      Param->setInvalidDecl();
1705      HasInvalidParm = true;
1706    }
1707
1708    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1709    // declaration of each parameter shall include an identifier.
1710    if (Param->getIdentifier() == 0 &&
1711        !Param->isImplicit() &&
1712        !getLangOptions().CPlusPlus)
1713      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1714  }
1715
1716  return HasInvalidParm;
1717}
1718
1719/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1720/// no declarator (e.g. "struct foo;") is parsed.
1721Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1722  // FIXME: Error on auto/register at file scope
1723  // FIXME: Error on inline/virtual/explicit
1724  // FIXME: Warn on useless __thread
1725  // FIXME: Warn on useless const/volatile
1726  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1727  // FIXME: Warn on useless attributes
1728  Decl *TagD = 0;
1729  TagDecl *Tag = 0;
1730  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1731      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1732      DS.getTypeSpecType() == DeclSpec::TST_union ||
1733      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1734    TagD = static_cast<Decl *>(DS.getTypeRep());
1735
1736    if (!TagD) // We probably had an error
1737      return DeclPtrTy();
1738
1739    // Note that the above type specs guarantee that the
1740    // type rep is a Decl, whereas in many of the others
1741    // it's a Type.
1742    Tag = dyn_cast<TagDecl>(TagD);
1743  }
1744
1745  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1746    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1747    // or incomplete types shall not be restrict-qualified."
1748    if (TypeQuals & DeclSpec::TQ_restrict)
1749      Diag(DS.getRestrictSpecLoc(),
1750           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1751           << DS.getSourceRange();
1752  }
1753
1754  if (DS.isFriendSpecified()) {
1755    // If we're dealing with a class template decl, assume that the
1756    // template routines are handling it.
1757    if (TagD && isa<ClassTemplateDecl>(TagD))
1758      return DeclPtrTy();
1759    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1760  }
1761
1762  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1763    // If there are attributes in the DeclSpec, apply them to the record.
1764    if (const AttributeList *AL = DS.getAttributes())
1765      ProcessDeclAttributeList(S, Record, AL);
1766
1767    if (!Record->getDeclName() && Record->isDefinition() &&
1768        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1769      if (getLangOptions().CPlusPlus ||
1770          Record->getDeclContext()->isRecord())
1771        return BuildAnonymousStructOrUnion(S, DS, Record);
1772
1773      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1774        << DS.getSourceRange();
1775    }
1776
1777    // Microsoft allows unnamed struct/union fields. Don't complain
1778    // about them.
1779    // FIXME: Should we support Microsoft's extensions in this area?
1780    if (Record->getDeclName() && getLangOptions().Microsoft)
1781      return DeclPtrTy::make(Tag);
1782  }
1783
1784  if (!DS.isMissingDeclaratorOk() &&
1785      DS.getTypeSpecType() != DeclSpec::TST_error) {
1786    // Warn about typedefs of enums without names, since this is an
1787    // extension in both Microsoft an GNU.
1788    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1789        Tag && isa<EnumDecl>(Tag)) {
1790      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1791        << DS.getSourceRange();
1792      return DeclPtrTy::make(Tag);
1793    }
1794
1795    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1796      << DS.getSourceRange();
1797    return DeclPtrTy();
1798  }
1799
1800  return DeclPtrTy::make(Tag);
1801}
1802
1803/// We are trying to inject an anonymous member into the given scope;
1804/// check if there's an existing declaration that can't be overloaded.
1805///
1806/// \return true if this is a forbidden redeclaration
1807static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1808                                         Scope *S,
1809                                         DeclarationName Name,
1810                                         SourceLocation NameLoc,
1811                                         unsigned diagnostic) {
1812  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1813                 Sema::ForRedeclaration);
1814  if (!SemaRef.LookupName(R, S)) return false;
1815
1816  if (R.getAsSingle<TagDecl>())
1817    return false;
1818
1819  // Pick a representative declaration.
1820  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1821
1822  SemaRef.Diag(NameLoc, diagnostic) << Name;
1823  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1824
1825  return true;
1826}
1827
1828/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1829/// anonymous struct or union AnonRecord into the owning context Owner
1830/// and scope S. This routine will be invoked just after we realize
1831/// that an unnamed union or struct is actually an anonymous union or
1832/// struct, e.g.,
1833///
1834/// @code
1835/// union {
1836///   int i;
1837///   float f;
1838/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1839///    // f into the surrounding scope.x
1840/// @endcode
1841///
1842/// This routine is recursive, injecting the names of nested anonymous
1843/// structs/unions into the owning context and scope as well.
1844bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1845                                               RecordDecl *AnonRecord) {
1846  unsigned diagKind
1847    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1848                            : diag::err_anonymous_struct_member_redecl;
1849
1850  bool Invalid = false;
1851  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1852                               FEnd = AnonRecord->field_end();
1853       F != FEnd; ++F) {
1854    if ((*F)->getDeclName()) {
1855      if (CheckAnonMemberRedeclaration(*this, S, (*F)->getDeclName(),
1856                                       (*F)->getLocation(), diagKind)) {
1857        // C++ [class.union]p2:
1858        //   The names of the members of an anonymous union shall be
1859        //   distinct from the names of any other entity in the
1860        //   scope in which the anonymous union is declared.
1861        Invalid = true;
1862      } else {
1863        // C++ [class.union]p2:
1864        //   For the purpose of name lookup, after the anonymous union
1865        //   definition, the members of the anonymous union are
1866        //   considered to have been defined in the scope in which the
1867        //   anonymous union is declared.
1868        Owner->makeDeclVisibleInContext(*F);
1869        S->AddDecl(DeclPtrTy::make(*F));
1870        IdResolver.AddDecl(*F);
1871      }
1872    } else if (const RecordType *InnerRecordType
1873                 = (*F)->getType()->getAs<RecordType>()) {
1874      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1875      if (InnerRecord->isAnonymousStructOrUnion())
1876        Invalid = Invalid ||
1877          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1878    }
1879  }
1880
1881  return Invalid;
1882}
1883
1884/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1885/// anonymous structure or union. Anonymous unions are a C++ feature
1886/// (C++ [class.union]) and a GNU C extension; anonymous structures
1887/// are a GNU C and GNU C++ extension.
1888Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1889                                                  RecordDecl *Record) {
1890  DeclContext *Owner = Record->getDeclContext();
1891
1892  // Diagnose whether this anonymous struct/union is an extension.
1893  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1894    Diag(Record->getLocation(), diag::ext_anonymous_union);
1895  else if (!Record->isUnion())
1896    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1897
1898  // C and C++ require different kinds of checks for anonymous
1899  // structs/unions.
1900  bool Invalid = false;
1901  if (getLangOptions().CPlusPlus) {
1902    const char* PrevSpec = 0;
1903    unsigned DiagID;
1904    // C++ [class.union]p3:
1905    //   Anonymous unions declared in a named namespace or in the
1906    //   global namespace shall be declared static.
1907    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1908        (isa<TranslationUnitDecl>(Owner) ||
1909         (isa<NamespaceDecl>(Owner) &&
1910          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1911      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1912      Invalid = true;
1913
1914      // Recover by adding 'static'.
1915      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1916                             PrevSpec, DiagID);
1917    }
1918    // C++ [class.union]p3:
1919    //   A storage class is not allowed in a declaration of an
1920    //   anonymous union in a class scope.
1921    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1922             isa<RecordDecl>(Owner)) {
1923      Diag(DS.getStorageClassSpecLoc(),
1924           diag::err_anonymous_union_with_storage_spec);
1925      Invalid = true;
1926
1927      // Recover by removing the storage specifier.
1928      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1929                             PrevSpec, DiagID);
1930    }
1931
1932    // C++ [class.union]p2:
1933    //   The member-specification of an anonymous union shall only
1934    //   define non-static data members. [Note: nested types and
1935    //   functions cannot be declared within an anonymous union. ]
1936    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1937                                 MemEnd = Record->decls_end();
1938         Mem != MemEnd; ++Mem) {
1939      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1940        // C++ [class.union]p3:
1941        //   An anonymous union shall not have private or protected
1942        //   members (clause 11).
1943        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1944          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1945            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1946          Invalid = true;
1947        }
1948      } else if ((*Mem)->isImplicit()) {
1949        // Any implicit members are fine.
1950      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1951        // This is a type that showed up in an
1952        // elaborated-type-specifier inside the anonymous struct or
1953        // union, but which actually declares a type outside of the
1954        // anonymous struct or union. It's okay.
1955      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1956        if (!MemRecord->isAnonymousStructOrUnion() &&
1957            MemRecord->getDeclName()) {
1958          // This is a nested type declaration.
1959          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1960            << (int)Record->isUnion();
1961          Invalid = true;
1962        }
1963      } else {
1964        // We have something that isn't a non-static data
1965        // member. Complain about it.
1966        unsigned DK = diag::err_anonymous_record_bad_member;
1967        if (isa<TypeDecl>(*Mem))
1968          DK = diag::err_anonymous_record_with_type;
1969        else if (isa<FunctionDecl>(*Mem))
1970          DK = diag::err_anonymous_record_with_function;
1971        else if (isa<VarDecl>(*Mem))
1972          DK = diag::err_anonymous_record_with_static;
1973        Diag((*Mem)->getLocation(), DK)
1974            << (int)Record->isUnion();
1975          Invalid = true;
1976      }
1977    }
1978  }
1979
1980  if (!Record->isUnion() && !Owner->isRecord()) {
1981    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1982      << (int)getLangOptions().CPlusPlus;
1983    Invalid = true;
1984  }
1985
1986  // Mock up a declarator.
1987  Declarator Dc(DS, Declarator::TypeNameContext);
1988  TypeSourceInfo *TInfo = 0;
1989  GetTypeForDeclarator(Dc, S, &TInfo);
1990  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1991
1992  // Create a declaration for this anonymous struct/union.
1993  NamedDecl *Anon = 0;
1994  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1995    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1996                             /*IdentifierInfo=*/0,
1997                             Context.getTypeDeclType(Record),
1998                             TInfo,
1999                             /*BitWidth=*/0, /*Mutable=*/false);
2000    Anon->setAccess(AS_public);
2001    if (getLangOptions().CPlusPlus)
2002      FieldCollector->Add(cast<FieldDecl>(Anon));
2003  } else {
2004    VarDecl::StorageClass SC;
2005    switch (DS.getStorageClassSpec()) {
2006    default: assert(0 && "Unknown storage class!");
2007    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2008    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2009    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2010    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2011    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2012    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2013    case DeclSpec::SCS_mutable:
2014      // mutable can only appear on non-static class members, so it's always
2015      // an error here
2016      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2017      Invalid = true;
2018      SC = VarDecl::None;
2019      break;
2020    }
2021
2022    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2023                           /*IdentifierInfo=*/0,
2024                           Context.getTypeDeclType(Record),
2025                           TInfo,
2026                           SC);
2027  }
2028  Anon->setImplicit();
2029
2030  // Add the anonymous struct/union object to the current
2031  // context. We'll be referencing this object when we refer to one of
2032  // its members.
2033  Owner->addDecl(Anon);
2034
2035  // Inject the members of the anonymous struct/union into the owning
2036  // context and into the identifier resolver chain for name lookup
2037  // purposes.
2038  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
2039    Invalid = true;
2040
2041  // Mark this as an anonymous struct/union type. Note that we do not
2042  // do this until after we have already checked and injected the
2043  // members of this anonymous struct/union type, because otherwise
2044  // the members could be injected twice: once by DeclContext when it
2045  // builds its lookup table, and once by
2046  // InjectAnonymousStructOrUnionMembers.
2047  Record->setAnonymousStructOrUnion(true);
2048
2049  if (Invalid)
2050    Anon->setInvalidDecl();
2051
2052  return DeclPtrTy::make(Anon);
2053}
2054
2055
2056/// GetNameForDeclarator - Determine the full declaration name for the
2057/// given Declarator.
2058DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
2059  return GetNameFromUnqualifiedId(D.getName());
2060}
2061
2062/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
2063DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2064  switch (Name.getKind()) {
2065    case UnqualifiedId::IK_Identifier:
2066      return DeclarationName(Name.Identifier);
2067
2068    case UnqualifiedId::IK_OperatorFunctionId:
2069      return Context.DeclarationNames.getCXXOperatorName(
2070                                              Name.OperatorFunctionId.Operator);
2071
2072    case UnqualifiedId::IK_LiteralOperatorId:
2073      return Context.DeclarationNames.getCXXLiteralOperatorName(
2074                                                               Name.Identifier);
2075
2076    case UnqualifiedId::IK_ConversionFunctionId: {
2077      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
2078      if (Ty.isNull())
2079        return DeclarationName();
2080
2081      return Context.DeclarationNames.getCXXConversionFunctionName(
2082                                                  Context.getCanonicalType(Ty));
2083    }
2084
2085    case UnqualifiedId::IK_ConstructorName: {
2086      QualType Ty = GetTypeFromParser(Name.ConstructorName);
2087      if (Ty.isNull())
2088        return DeclarationName();
2089
2090      return Context.DeclarationNames.getCXXConstructorName(
2091                                                  Context.getCanonicalType(Ty));
2092    }
2093
2094    case UnqualifiedId::IK_ConstructorTemplateId: {
2095      // In well-formed code, we can only have a constructor
2096      // template-id that refers to the current context, so go there
2097      // to find the actual type being constructed.
2098      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2099      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2100        return DeclarationName();
2101
2102      // Determine the type of the class being constructed.
2103      QualType CurClassType;
2104      if (ClassTemplateDecl *ClassTemplate
2105            = CurClass->getDescribedClassTemplate())
2106        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
2107      else
2108        CurClassType = Context.getTypeDeclType(CurClass);
2109
2110      // FIXME: Check two things: that the template-id names the same type as
2111      // CurClassType, and that the template-id does not occur when the name
2112      // was qualified.
2113
2114      return Context.DeclarationNames.getCXXConstructorName(
2115                                       Context.getCanonicalType(CurClassType));
2116    }
2117
2118    case UnqualifiedId::IK_DestructorName: {
2119      QualType Ty = GetTypeFromParser(Name.DestructorName);
2120      if (Ty.isNull())
2121        return DeclarationName();
2122
2123      return Context.DeclarationNames.getCXXDestructorName(
2124                                                           Context.getCanonicalType(Ty));
2125    }
2126
2127    case UnqualifiedId::IK_TemplateId: {
2128      TemplateName TName
2129        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
2130      return Context.getNameForTemplate(TName);
2131    }
2132  }
2133
2134  assert(false && "Unknown name kind");
2135  return DeclarationName();
2136}
2137
2138/// isNearlyMatchingFunction - Determine whether the C++ functions
2139/// Declaration and Definition are "nearly" matching. This heuristic
2140/// is used to improve diagnostics in the case where an out-of-line
2141/// function definition doesn't match any declaration within
2142/// the class or namespace.
2143static bool isNearlyMatchingFunction(ASTContext &Context,
2144                                     FunctionDecl *Declaration,
2145                                     FunctionDecl *Definition) {
2146  if (Declaration->param_size() != Definition->param_size())
2147    return false;
2148  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2149    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2150    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2151
2152    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2153                                        DefParamTy.getNonReferenceType()))
2154      return false;
2155  }
2156
2157  return true;
2158}
2159
2160Sema::DeclPtrTy
2161Sema::HandleDeclarator(Scope *S, Declarator &D,
2162                       MultiTemplateParamsArg TemplateParamLists,
2163                       bool IsFunctionDefinition) {
2164  DeclarationName Name = GetNameForDeclarator(D);
2165
2166  // All of these full declarators require an identifier.  If it doesn't have
2167  // one, the ParsedFreeStandingDeclSpec action should be used.
2168  if (!Name) {
2169    if (!D.isInvalidType())  // Reject this if we think it is valid.
2170      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2171           diag::err_declarator_need_ident)
2172        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2173    return DeclPtrTy();
2174  }
2175
2176  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2177  // we find one that is.
2178  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2179         (S->getFlags() & Scope::TemplateParamScope) != 0)
2180    S = S->getParent();
2181
2182  // If this is an out-of-line definition of a member of a class template
2183  // or class template partial specialization, we may need to rebuild the
2184  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
2185  // for more information.
2186  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
2187  // handle expressions properly.
2188  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
2189  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
2190      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
2191      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
2192       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
2193       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
2194       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
2195    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
2196      // FIXME: Preserve type source info.
2197      QualType T = GetTypeFromParser(DS.getTypeRep());
2198
2199      DeclContext *SavedContext = CurContext;
2200      CurContext = DC;
2201      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
2202      CurContext = SavedContext;
2203
2204      if (T.isNull())
2205        return DeclPtrTy();
2206      DS.UpdateTypeRep(T.getAsOpaquePtr());
2207    }
2208  }
2209
2210  DeclContext *DC;
2211  NamedDecl *New;
2212
2213  TypeSourceInfo *TInfo = 0;
2214  QualType R = GetTypeForDeclarator(D, S, &TInfo);
2215
2216  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2217                        ForRedeclaration);
2218
2219  // See if this is a redefinition of a variable in the same scope.
2220  if (D.getCXXScopeSpec().isInvalid()) {
2221    DC = CurContext;
2222    D.setInvalidType();
2223  } else if (!D.getCXXScopeSpec().isSet()) {
2224    bool IsLinkageLookup = false;
2225
2226    // If the declaration we're planning to build will be a function
2227    // or object with linkage, then look for another declaration with
2228    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2229    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2230      /* Do nothing*/;
2231    else if (R->isFunctionType()) {
2232      if (CurContext->isFunctionOrMethod() ||
2233          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2234        IsLinkageLookup = true;
2235    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2236      IsLinkageLookup = true;
2237    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2238             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2239      IsLinkageLookup = true;
2240
2241    if (IsLinkageLookup)
2242      Previous.clear(LookupRedeclarationWithLinkage);
2243
2244    DC = CurContext;
2245    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2246  } else { // Something like "int foo::x;"
2247    DC = computeDeclContext(D.getCXXScopeSpec(), true);
2248
2249    if (!DC) {
2250      // If we could not compute the declaration context, it's because the
2251      // declaration context is dependent but does not refer to a class,
2252      // class template, or class template partial specialization. Complain
2253      // and return early, to avoid the coming semantic disaster.
2254      Diag(D.getIdentifierLoc(),
2255           diag::err_template_qualified_declarator_no_match)
2256        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2257        << D.getCXXScopeSpec().getRange();
2258      return DeclPtrTy();
2259    }
2260
2261    if (!DC->isDependentContext() &&
2262        RequireCompleteDeclContext(D.getCXXScopeSpec()))
2263      return DeclPtrTy();
2264
2265    LookupQualifiedName(Previous, DC);
2266
2267    // Don't consider using declarations as previous declarations for
2268    // out-of-line members.
2269    RemoveUsingDecls(Previous);
2270
2271    // C++ 7.3.1.2p2:
2272    // Members (including explicit specializations of templates) of a named
2273    // namespace can also be defined outside that namespace by explicit
2274    // qualification of the name being defined, provided that the entity being
2275    // defined was already declared in the namespace and the definition appears
2276    // after the point of declaration in a namespace that encloses the
2277    // declarations namespace.
2278    //
2279    // Note that we only check the context at this point. We don't yet
2280    // have enough information to make sure that PrevDecl is actually
2281    // the declaration we want to match. For example, given:
2282    //
2283    //   class X {
2284    //     void f();
2285    //     void f(float);
2286    //   };
2287    //
2288    //   void X::f(int) { } // ill-formed
2289    //
2290    // In this case, PrevDecl will point to the overload set
2291    // containing the two f's declared in X, but neither of them
2292    // matches.
2293
2294    // First check whether we named the global scope.
2295    if (isa<TranslationUnitDecl>(DC)) {
2296      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2297        << Name << D.getCXXScopeSpec().getRange();
2298    } else {
2299      DeclContext *Cur = CurContext;
2300      while (isa<LinkageSpecDecl>(Cur))
2301        Cur = Cur->getParent();
2302      if (!Cur->Encloses(DC)) {
2303        // The qualifying scope doesn't enclose the original declaration.
2304        // Emit diagnostic based on current scope.
2305        SourceLocation L = D.getIdentifierLoc();
2306        SourceRange R = D.getCXXScopeSpec().getRange();
2307        if (isa<FunctionDecl>(Cur))
2308          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2309        else
2310          Diag(L, diag::err_invalid_declarator_scope)
2311            << Name << cast<NamedDecl>(DC) << R;
2312        D.setInvalidType();
2313      }
2314    }
2315  }
2316
2317  if (Previous.isSingleResult() &&
2318      Previous.getFoundDecl()->isTemplateParameter()) {
2319    // Maybe we will complain about the shadowed template parameter.
2320    if (!D.isInvalidType())
2321      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2322                                          Previous.getFoundDecl()))
2323        D.setInvalidType();
2324
2325    // Just pretend that we didn't see the previous declaration.
2326    Previous.clear();
2327  }
2328
2329  // In C++, the previous declaration we find might be a tag type
2330  // (class or enum). In this case, the new declaration will hide the
2331  // tag type. Note that this does does not apply if we're declaring a
2332  // typedef (C++ [dcl.typedef]p4).
2333  if (Previous.isSingleTagDecl() &&
2334      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2335    Previous.clear();
2336
2337  bool Redeclaration = false;
2338  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2339    if (TemplateParamLists.size()) {
2340      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2341      return DeclPtrTy();
2342    }
2343
2344    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2345  } else if (R->isFunctionType()) {
2346    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2347                                  move(TemplateParamLists),
2348                                  IsFunctionDefinition, Redeclaration);
2349  } else {
2350    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2351                                  move(TemplateParamLists),
2352                                  Redeclaration);
2353  }
2354
2355  if (New == 0)
2356    return DeclPtrTy();
2357
2358  // If this has an identifier and is not an invalid redeclaration or
2359  // function template specialization, add it to the scope stack.
2360  if (Name && !(Redeclaration && New->isInvalidDecl()))
2361    PushOnScopeChains(New, S);
2362
2363  return DeclPtrTy::make(New);
2364}
2365
2366/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2367/// types into constant array types in certain situations which would otherwise
2368/// be errors (for GCC compatibility).
2369static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2370                                                    ASTContext &Context,
2371                                                    bool &SizeIsNegative) {
2372  // This method tries to turn a variable array into a constant
2373  // array even when the size isn't an ICE.  This is necessary
2374  // for compatibility with code that depends on gcc's buggy
2375  // constant expression folding, like struct {char x[(int)(char*)2];}
2376  SizeIsNegative = false;
2377
2378  QualifierCollector Qs;
2379  const Type *Ty = Qs.strip(T);
2380
2381  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2382    QualType Pointee = PTy->getPointeeType();
2383    QualType FixedType =
2384        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2385    if (FixedType.isNull()) return FixedType;
2386    FixedType = Context.getPointerType(FixedType);
2387    return Qs.apply(FixedType);
2388  }
2389
2390  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2391  if (!VLATy)
2392    return QualType();
2393  // FIXME: We should probably handle this case
2394  if (VLATy->getElementType()->isVariablyModifiedType())
2395    return QualType();
2396
2397  Expr::EvalResult EvalResult;
2398  if (!VLATy->getSizeExpr() ||
2399      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2400      !EvalResult.Val.isInt())
2401    return QualType();
2402
2403  llvm::APSInt &Res = EvalResult.Val.getInt();
2404  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2405    // TODO: preserve the size expression in declarator info
2406    return Context.getConstantArrayType(VLATy->getElementType(),
2407                                        Res, ArrayType::Normal, 0);
2408  }
2409
2410  SizeIsNegative = true;
2411  return QualType();
2412}
2413
2414/// \brief Register the given locally-scoped external C declaration so
2415/// that it can be found later for redeclarations
2416void
2417Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2418                                       const LookupResult &Previous,
2419                                       Scope *S) {
2420  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2421         "Decl is not a locally-scoped decl!");
2422  // Note that we have a locally-scoped external with this name.
2423  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2424
2425  if (!Previous.isSingleResult())
2426    return;
2427
2428  NamedDecl *PrevDecl = Previous.getFoundDecl();
2429
2430  // If there was a previous declaration of this variable, it may be
2431  // in our identifier chain. Update the identifier chain with the new
2432  // declaration.
2433  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2434    // The previous declaration was found on the identifer resolver
2435    // chain, so remove it from its scope.
2436    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2437      S = S->getParent();
2438
2439    if (S)
2440      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2441  }
2442}
2443
2444/// \brief Diagnose function specifiers on a declaration of an identifier that
2445/// does not identify a function.
2446void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2447  // FIXME: We should probably indicate the identifier in question to avoid
2448  // confusion for constructs like "inline int a(), b;"
2449  if (D.getDeclSpec().isInlineSpecified())
2450    Diag(D.getDeclSpec().getInlineSpecLoc(),
2451         diag::err_inline_non_function);
2452
2453  if (D.getDeclSpec().isVirtualSpecified())
2454    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2455         diag::err_virtual_non_function);
2456
2457  if (D.getDeclSpec().isExplicitSpecified())
2458    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2459         diag::err_explicit_non_function);
2460}
2461
2462NamedDecl*
2463Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2464                             QualType R,  TypeSourceInfo *TInfo,
2465                             LookupResult &Previous, bool &Redeclaration) {
2466  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2467  if (D.getCXXScopeSpec().isSet()) {
2468    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2469      << D.getCXXScopeSpec().getRange();
2470    D.setInvalidType();
2471    // Pretend we didn't see the scope specifier.
2472    DC = 0;
2473  }
2474
2475  if (getLangOptions().CPlusPlus) {
2476    // Check that there are no default arguments (C++ only).
2477    CheckExtraCXXDefaultArguments(D);
2478  }
2479
2480  DiagnoseFunctionSpecifiers(D);
2481
2482  if (D.getDeclSpec().isThreadSpecified())
2483    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2484
2485  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2486  if (!NewTD) return 0;
2487
2488  // Handle attributes prior to checking for duplicates in MergeVarDecl
2489  ProcessDeclAttributes(S, NewTD, D);
2490
2491  // Merge the decl with the existing one if appropriate. If the decl is
2492  // in an outer scope, it isn't the same thing.
2493  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2494  if (!Previous.empty()) {
2495    Redeclaration = true;
2496    MergeTypeDefDecl(NewTD, Previous);
2497  }
2498
2499  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2500  // then it shall have block scope.
2501  QualType T = NewTD->getUnderlyingType();
2502  if (T->isVariablyModifiedType()) {
2503    CurFunctionNeedsScopeChecking = true;
2504
2505    if (S->getFnParent() == 0) {
2506      bool SizeIsNegative;
2507      QualType FixedTy =
2508          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2509      if (!FixedTy.isNull()) {
2510        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2511        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2512      } else {
2513        if (SizeIsNegative)
2514          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2515        else if (T->isVariableArrayType())
2516          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2517        else
2518          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2519        NewTD->setInvalidDecl();
2520      }
2521    }
2522  }
2523
2524  // If this is the C FILE type, notify the AST context.
2525  if (IdentifierInfo *II = NewTD->getIdentifier())
2526    if (!NewTD->isInvalidDecl() &&
2527        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2528      if (II->isStr("FILE"))
2529        Context.setFILEDecl(NewTD);
2530      else if (II->isStr("jmp_buf"))
2531        Context.setjmp_bufDecl(NewTD);
2532      else if (II->isStr("sigjmp_buf"))
2533        Context.setsigjmp_bufDecl(NewTD);
2534    }
2535
2536  return NewTD;
2537}
2538
2539/// \brief Determines whether the given declaration is an out-of-scope
2540/// previous declaration.
2541///
2542/// This routine should be invoked when name lookup has found a
2543/// previous declaration (PrevDecl) that is not in the scope where a
2544/// new declaration by the same name is being introduced. If the new
2545/// declaration occurs in a local scope, previous declarations with
2546/// linkage may still be considered previous declarations (C99
2547/// 6.2.2p4-5, C++ [basic.link]p6).
2548///
2549/// \param PrevDecl the previous declaration found by name
2550/// lookup
2551///
2552/// \param DC the context in which the new declaration is being
2553/// declared.
2554///
2555/// \returns true if PrevDecl is an out-of-scope previous declaration
2556/// for a new delcaration with the same name.
2557static bool
2558isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2559                                ASTContext &Context) {
2560  if (!PrevDecl)
2561    return 0;
2562
2563  if (!PrevDecl->hasLinkage())
2564    return false;
2565
2566  if (Context.getLangOptions().CPlusPlus) {
2567    // C++ [basic.link]p6:
2568    //   If there is a visible declaration of an entity with linkage
2569    //   having the same name and type, ignoring entities declared
2570    //   outside the innermost enclosing namespace scope, the block
2571    //   scope declaration declares that same entity and receives the
2572    //   linkage of the previous declaration.
2573    DeclContext *OuterContext = DC->getLookupContext();
2574    if (!OuterContext->isFunctionOrMethod())
2575      // This rule only applies to block-scope declarations.
2576      return false;
2577    else {
2578      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2579      if (PrevOuterContext->isRecord())
2580        // We found a member function: ignore it.
2581        return false;
2582      else {
2583        // Find the innermost enclosing namespace for the new and
2584        // previous declarations.
2585        while (!OuterContext->isFileContext())
2586          OuterContext = OuterContext->getParent();
2587        while (!PrevOuterContext->isFileContext())
2588          PrevOuterContext = PrevOuterContext->getParent();
2589
2590        // The previous declaration is in a different namespace, so it
2591        // isn't the same function.
2592        if (OuterContext->getPrimaryContext() !=
2593            PrevOuterContext->getPrimaryContext())
2594          return false;
2595      }
2596    }
2597  }
2598
2599  return true;
2600}
2601
2602NamedDecl*
2603Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2604                              QualType R, TypeSourceInfo *TInfo,
2605                              LookupResult &Previous,
2606                              MultiTemplateParamsArg TemplateParamLists,
2607                              bool &Redeclaration) {
2608  DeclarationName Name = GetNameForDeclarator(D);
2609
2610  // Check that there are no default arguments (C++ only).
2611  if (getLangOptions().CPlusPlus)
2612    CheckExtraCXXDefaultArguments(D);
2613
2614  VarDecl *NewVD;
2615  VarDecl::StorageClass SC;
2616  switch (D.getDeclSpec().getStorageClassSpec()) {
2617  default: assert(0 && "Unknown storage class!");
2618  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2619  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2620  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2621  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2622  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2623  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2624  case DeclSpec::SCS_mutable:
2625    // mutable can only appear on non-static class members, so it's always
2626    // an error here
2627    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2628    D.setInvalidType();
2629    SC = VarDecl::None;
2630    break;
2631  }
2632
2633  IdentifierInfo *II = Name.getAsIdentifierInfo();
2634  if (!II) {
2635    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2636      << Name.getAsString();
2637    return 0;
2638  }
2639
2640  DiagnoseFunctionSpecifiers(D);
2641
2642  if (!DC->isRecord() && S->getFnParent() == 0) {
2643    // C99 6.9p2: The storage-class specifiers auto and register shall not
2644    // appear in the declaration specifiers in an external declaration.
2645    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2646
2647      // If this is a register variable with an asm label specified, then this
2648      // is a GNU extension.
2649      if (SC == VarDecl::Register && D.getAsmLabel())
2650        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2651      else
2652        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2653      D.setInvalidType();
2654    }
2655  }
2656  if (DC->isRecord() && !CurContext->isRecord()) {
2657    // This is an out-of-line definition of a static data member.
2658    if (SC == VarDecl::Static) {
2659      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2660           diag::err_static_out_of_line)
2661        << CodeModificationHint::CreateRemoval(
2662                                      D.getDeclSpec().getStorageClassSpecLoc());
2663    } else if (SC == VarDecl::None)
2664      SC = VarDecl::Static;
2665  }
2666  if (SC == VarDecl::Static) {
2667    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2668      if (RD->isLocalClass())
2669        Diag(D.getIdentifierLoc(),
2670             diag::err_static_data_member_not_allowed_in_local_class)
2671          << Name << RD->getDeclName();
2672    }
2673  }
2674
2675  // Match up the template parameter lists with the scope specifier, then
2676  // determine whether we have a template or a template specialization.
2677  bool isExplicitSpecialization = false;
2678  if (TemplateParameterList *TemplateParams
2679        = MatchTemplateParametersToScopeSpecifier(
2680                                  D.getDeclSpec().getSourceRange().getBegin(),
2681                                                  D.getCXXScopeSpec(),
2682                        (TemplateParameterList**)TemplateParamLists.get(),
2683                                                   TemplateParamLists.size(),
2684                                                  isExplicitSpecialization)) {
2685    if (TemplateParams->size() > 0) {
2686      // There is no such thing as a variable template.
2687      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2688        << II
2689        << SourceRange(TemplateParams->getTemplateLoc(),
2690                       TemplateParams->getRAngleLoc());
2691      return 0;
2692    } else {
2693      // There is an extraneous 'template<>' for this variable. Complain
2694      // about it, but allow the declaration of the variable.
2695      Diag(TemplateParams->getTemplateLoc(),
2696           diag::err_template_variable_noparams)
2697        << II
2698        << SourceRange(TemplateParams->getTemplateLoc(),
2699                       TemplateParams->getRAngleLoc());
2700
2701      isExplicitSpecialization = true;
2702    }
2703  }
2704
2705  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2706                          II, R, TInfo, SC);
2707
2708  if (D.isInvalidType())
2709    NewVD->setInvalidDecl();
2710
2711  if (D.getDeclSpec().isThreadSpecified()) {
2712    if (NewVD->hasLocalStorage())
2713      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2714    else if (!Context.Target.isTLSSupported())
2715      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2716    else
2717      NewVD->setThreadSpecified(true);
2718  }
2719
2720  // Set the lexical context. If the declarator has a C++ scope specifier, the
2721  // lexical context will be different from the semantic context.
2722  NewVD->setLexicalDeclContext(CurContext);
2723
2724  // Handle attributes prior to checking for duplicates in MergeVarDecl
2725  ProcessDeclAttributes(S, NewVD, D);
2726
2727  // Handle GNU asm-label extension (encoded as an attribute).
2728  if (Expr *E = (Expr*) D.getAsmLabel()) {
2729    // The parser guarantees this is a string.
2730    StringLiteral *SE = cast<StringLiteral>(E);
2731    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2732  }
2733
2734  // Don't consider existing declarations that are in a different
2735  // scope and are out-of-semantic-context declarations (if the new
2736  // declaration has linkage).
2737  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2738
2739  // Merge the decl with the existing one if appropriate.
2740  if (!Previous.empty()) {
2741    if (Previous.isSingleResult() &&
2742        isa<FieldDecl>(Previous.getFoundDecl()) &&
2743        D.getCXXScopeSpec().isSet()) {
2744      // The user tried to define a non-static data member
2745      // out-of-line (C++ [dcl.meaning]p1).
2746      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2747        << D.getCXXScopeSpec().getRange();
2748      Previous.clear();
2749      NewVD->setInvalidDecl();
2750    }
2751  } else if (D.getCXXScopeSpec().isSet()) {
2752    // No previous declaration in the qualifying scope.
2753    Diag(D.getIdentifierLoc(), diag::err_no_member)
2754      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2755      << D.getCXXScopeSpec().getRange();
2756    NewVD->setInvalidDecl();
2757  }
2758
2759  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2760
2761  // This is an explicit specialization of a static data member. Check it.
2762  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2763      CheckMemberSpecialization(NewVD, Previous))
2764    NewVD->setInvalidDecl();
2765
2766  // attributes declared post-definition are currently ignored
2767  if (Previous.isSingleResult()) {
2768    const VarDecl *Def = 0;
2769    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2770    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2771      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2772      Diag(Def->getLocation(), diag::note_previous_definition);
2773    }
2774  }
2775
2776  // If this is a locally-scoped extern C variable, update the map of
2777  // such variables.
2778  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2779      !NewVD->isInvalidDecl())
2780    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2781
2782  return NewVD;
2783}
2784
2785/// \brief Perform semantic checking on a newly-created variable
2786/// declaration.
2787///
2788/// This routine performs all of the type-checking required for a
2789/// variable declaration once it has been built. It is used both to
2790/// check variables after they have been parsed and their declarators
2791/// have been translated into a declaration, and to check variables
2792/// that have been instantiated from a template.
2793///
2794/// Sets NewVD->isInvalidDecl() if an error was encountered.
2795void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2796                                    LookupResult &Previous,
2797                                    bool &Redeclaration) {
2798  // If the decl is already known invalid, don't check it.
2799  if (NewVD->isInvalidDecl())
2800    return;
2801
2802  QualType T = NewVD->getType();
2803
2804  if (T->isObjCInterfaceType()) {
2805    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2806    return NewVD->setInvalidDecl();
2807  }
2808
2809  // Emit an error if an address space was applied to decl with local storage.
2810  // This includes arrays of objects with address space qualifiers, but not
2811  // automatic variables that point to other address spaces.
2812  // ISO/IEC TR 18037 S5.1.2
2813  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2814    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2815    return NewVD->setInvalidDecl();
2816  }
2817
2818  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2819      && !NewVD->hasAttr<BlocksAttr>())
2820    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2821
2822  bool isVM = T->isVariablyModifiedType();
2823  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2824      NewVD->hasAttr<BlocksAttr>())
2825    CurFunctionNeedsScopeChecking = true;
2826
2827  if ((isVM && NewVD->hasLinkage()) ||
2828      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2829    bool SizeIsNegative;
2830    QualType FixedTy =
2831        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2832
2833    if (FixedTy.isNull() && T->isVariableArrayType()) {
2834      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2835      // FIXME: This won't give the correct result for
2836      // int a[10][n];
2837      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2838
2839      if (NewVD->isFileVarDecl())
2840        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2841        << SizeRange;
2842      else if (NewVD->getStorageClass() == VarDecl::Static)
2843        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2844        << SizeRange;
2845      else
2846        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2847        << SizeRange;
2848      return NewVD->setInvalidDecl();
2849    }
2850
2851    if (FixedTy.isNull()) {
2852      if (NewVD->isFileVarDecl())
2853        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2854      else
2855        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2856      return NewVD->setInvalidDecl();
2857    }
2858
2859    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2860    NewVD->setType(FixedTy);
2861  }
2862
2863  if (Previous.empty() && NewVD->isExternC()) {
2864    // Since we did not find anything by this name and we're declaring
2865    // an extern "C" variable, look for a non-visible extern "C"
2866    // declaration with the same name.
2867    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2868      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2869    if (Pos != LocallyScopedExternalDecls.end())
2870      Previous.addDecl(Pos->second);
2871  }
2872
2873  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2874    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2875      << T;
2876    return NewVD->setInvalidDecl();
2877  }
2878
2879  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2880    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2881    return NewVD->setInvalidDecl();
2882  }
2883
2884  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2885    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2886    return NewVD->setInvalidDecl();
2887  }
2888
2889  if (!Previous.empty()) {
2890    Redeclaration = true;
2891    MergeVarDecl(NewVD, Previous);
2892  }
2893}
2894
2895/// \brief Data used with FindOverriddenMethod
2896struct FindOverriddenMethodData {
2897  Sema *S;
2898  CXXMethodDecl *Method;
2899};
2900
2901/// \brief Member lookup function that determines whether a given C++
2902/// method overrides a method in a base class, to be used with
2903/// CXXRecordDecl::lookupInBases().
2904static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2905                                 CXXBasePath &Path,
2906                                 void *UserData) {
2907  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2908
2909  FindOverriddenMethodData *Data
2910    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2911
2912  DeclarationName Name = Data->Method->getDeclName();
2913
2914  // FIXME: Do we care about other names here too?
2915  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2916    // We really want to find the base class constructor here.
2917    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2918    CanQualType CT = Data->S->Context.getCanonicalType(T);
2919
2920    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2921  }
2922
2923  for (Path.Decls = BaseRecord->lookup(Name);
2924       Path.Decls.first != Path.Decls.second;
2925       ++Path.Decls.first) {
2926    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2927      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2928        return true;
2929    }
2930  }
2931
2932  return false;
2933}
2934
2935/// AddOverriddenMethods - See if a method overrides any in the base classes,
2936/// and if so, check that it's a valid override and remember it.
2937void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2938  // Look for virtual methods in base classes that this method might override.
2939  CXXBasePaths Paths;
2940  FindOverriddenMethodData Data;
2941  Data.Method = MD;
2942  Data.S = this;
2943  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2944    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2945         E = Paths.found_decls_end(); I != E; ++I) {
2946      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2947        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2948            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2949            !CheckOverridingFunctionAttributes(MD, OldMD))
2950          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2951      }
2952    }
2953  }
2954}
2955
2956NamedDecl*
2957Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2958                              QualType R, TypeSourceInfo *TInfo,
2959                              LookupResult &Previous,
2960                              MultiTemplateParamsArg TemplateParamLists,
2961                              bool IsFunctionDefinition, bool &Redeclaration) {
2962  assert(R.getTypePtr()->isFunctionType());
2963
2964  DeclarationName Name = GetNameForDeclarator(D);
2965  FunctionDecl::StorageClass SC = FunctionDecl::None;
2966  switch (D.getDeclSpec().getStorageClassSpec()) {
2967  default: assert(0 && "Unknown storage class!");
2968  case DeclSpec::SCS_auto:
2969  case DeclSpec::SCS_register:
2970  case DeclSpec::SCS_mutable:
2971    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2972         diag::err_typecheck_sclass_func);
2973    D.setInvalidType();
2974    break;
2975  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2976  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2977  case DeclSpec::SCS_static: {
2978    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2979      // C99 6.7.1p5:
2980      //   The declaration of an identifier for a function that has
2981      //   block scope shall have no explicit storage-class specifier
2982      //   other than extern
2983      // See also (C++ [dcl.stc]p4).
2984      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2985           diag::err_static_block_func);
2986      SC = FunctionDecl::None;
2987    } else
2988      SC = FunctionDecl::Static;
2989    break;
2990  }
2991  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2992  }
2993
2994  if (D.getDeclSpec().isThreadSpecified())
2995    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2996
2997  bool isFriend = D.getDeclSpec().isFriendSpecified();
2998  bool isInline = D.getDeclSpec().isInlineSpecified();
2999  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3000  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3001
3002  // Check that the return type is not an abstract class type.
3003  // For record types, this is done by the AbstractClassUsageDiagnoser once
3004  // the class has been completely parsed.
3005  if (!DC->isRecord() &&
3006      RequireNonAbstractType(D.getIdentifierLoc(),
3007                             R->getAs<FunctionType>()->getResultType(),
3008                             diag::err_abstract_type_in_decl,
3009                             AbstractReturnType))
3010    D.setInvalidType();
3011
3012  // Do not allow returning a objc interface by-value.
3013  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
3014    Diag(D.getIdentifierLoc(),
3015         diag::err_object_cannot_be_passed_returned_by_value) << 0
3016      << R->getAs<FunctionType>()->getResultType();
3017    D.setInvalidType();
3018  }
3019
3020  bool isVirtualOkay = false;
3021  FunctionDecl *NewFD;
3022
3023  if (isFriend) {
3024    // C++ [class.friend]p5
3025    //   A function can be defined in a friend declaration of a
3026    //   class . . . . Such a function is implicitly inline.
3027    isInline |= IsFunctionDefinition;
3028  }
3029
3030  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3031    // This is a C++ constructor declaration.
3032    assert(DC->isRecord() &&
3033           "Constructors can only be declared in a member context");
3034
3035    R = CheckConstructorDeclarator(D, R, SC);
3036
3037    // Create the new declaration
3038    NewFD = CXXConstructorDecl::Create(Context,
3039                                       cast<CXXRecordDecl>(DC),
3040                                       D.getIdentifierLoc(), Name, R, TInfo,
3041                                       isExplicit, isInline,
3042                                       /*isImplicitlyDeclared=*/false);
3043  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3044    // This is a C++ destructor declaration.
3045    if (DC->isRecord()) {
3046      R = CheckDestructorDeclarator(D, SC);
3047
3048      NewFD = CXXDestructorDecl::Create(Context,
3049                                        cast<CXXRecordDecl>(DC),
3050                                        D.getIdentifierLoc(), Name, R,
3051                                        isInline,
3052                                        /*isImplicitlyDeclared=*/false);
3053
3054      isVirtualOkay = true;
3055    } else {
3056      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3057
3058      // Create a FunctionDecl to satisfy the function definition parsing
3059      // code path.
3060      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3061                                   Name, R, TInfo, SC, isInline,
3062                                   /*hasPrototype=*/true);
3063      D.setInvalidType();
3064    }
3065  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3066    if (!DC->isRecord()) {
3067      Diag(D.getIdentifierLoc(),
3068           diag::err_conv_function_not_member);
3069      return 0;
3070    }
3071
3072    CheckConversionDeclarator(D, R, SC);
3073    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3074                                      D.getIdentifierLoc(), Name, R, TInfo,
3075                                      isInline, isExplicit);
3076
3077    isVirtualOkay = true;
3078  } else if (DC->isRecord()) {
3079    // If the of the function is the same as the name of the record, then this
3080    // must be an invalid constructor that has a return type.
3081    // (The parser checks for a return type and makes the declarator a
3082    // constructor if it has no return type).
3083    // must have an invalid constructor that has a return type
3084    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3085      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3086        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3087        << SourceRange(D.getIdentifierLoc());
3088      return 0;
3089    }
3090
3091    bool isStatic = SC == FunctionDecl::Static;
3092
3093    // [class.free]p1:
3094    // Any allocation function for a class T is a static member
3095    // (even if not explicitly declared static).
3096    if (Name.getCXXOverloadedOperator() == OO_New ||
3097        Name.getCXXOverloadedOperator() == OO_Array_New)
3098      isStatic = true;
3099
3100    // [class.free]p6 Any deallocation function for a class X is a static member
3101    // (even if not explicitly declared static).
3102    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3103        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3104      isStatic = true;
3105
3106    // This is a C++ method declaration.
3107    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3108                                  D.getIdentifierLoc(), Name, R, TInfo,
3109                                  isStatic, isInline);
3110
3111    isVirtualOkay = !isStatic;
3112  } else {
3113    // Determine whether the function was written with a
3114    // prototype. This true when:
3115    //   - we're in C++ (where every function has a prototype),
3116    //   - there is a prototype in the declarator, or
3117    //   - the type R of the function is some kind of typedef or other reference
3118    //     to a type name (which eventually refers to a function type).
3119    bool HasPrototype =
3120       getLangOptions().CPlusPlus ||
3121       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3122       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3123
3124    NewFD = FunctionDecl::Create(Context, DC,
3125                                 D.getIdentifierLoc(),
3126                                 Name, R, TInfo, SC, isInline, HasPrototype);
3127  }
3128
3129  if (D.isInvalidType())
3130    NewFD->setInvalidDecl();
3131
3132  // Set the lexical context. If the declarator has a C++
3133  // scope specifier, or is the object of a friend declaration, the
3134  // lexical context will be different from the semantic context.
3135  NewFD->setLexicalDeclContext(CurContext);
3136
3137  // Match up the template parameter lists with the scope specifier, then
3138  // determine whether we have a template or a template specialization.
3139  FunctionTemplateDecl *FunctionTemplate = 0;
3140  bool isExplicitSpecialization = false;
3141  bool isFunctionTemplateSpecialization = false;
3142  if (TemplateParameterList *TemplateParams
3143        = MatchTemplateParametersToScopeSpecifier(
3144                                  D.getDeclSpec().getSourceRange().getBegin(),
3145                                  D.getCXXScopeSpec(),
3146                           (TemplateParameterList**)TemplateParamLists.get(),
3147                                                  TemplateParamLists.size(),
3148                                                  isExplicitSpecialization)) {
3149    if (TemplateParams->size() > 0) {
3150      // This is a function template
3151
3152      // Check that we can declare a template here.
3153      if (CheckTemplateDeclScope(S, TemplateParams))
3154        return 0;
3155
3156      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3157                                                      NewFD->getLocation(),
3158                                                      Name, TemplateParams,
3159                                                      NewFD);
3160      FunctionTemplate->setLexicalDeclContext(CurContext);
3161      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3162    } else {
3163      // This is a function template specialization.
3164      isFunctionTemplateSpecialization = true;
3165    }
3166
3167    // FIXME: Free this memory properly.
3168    TemplateParamLists.release();
3169  }
3170
3171  // C++ [dcl.fct.spec]p5:
3172  //   The virtual specifier shall only be used in declarations of
3173  //   nonstatic class member functions that appear within a
3174  //   member-specification of a class declaration; see 10.3.
3175  //
3176  if (isVirtual && !NewFD->isInvalidDecl()) {
3177    if (!isVirtualOkay) {
3178       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3179           diag::err_virtual_non_function);
3180    } else if (!CurContext->isRecord()) {
3181      // 'virtual' was specified outside of the class.
3182      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3183        << CodeModificationHint::CreateRemoval(
3184                                           D.getDeclSpec().getVirtualSpecLoc());
3185    } else {
3186      // Okay: Add virtual to the method.
3187      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3188      CurClass->setMethodAsVirtual(NewFD);
3189    }
3190  }
3191
3192  // Filter out previous declarations that don't match the scope.
3193  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3194
3195  if (isFriend) {
3196    // DC is the namespace in which the function is being declared.
3197    assert((DC->isFileContext() || !Previous.empty()) &&
3198           "previously-undeclared friend function being created "
3199           "in a non-namespace context");
3200
3201    if (FunctionTemplate) {
3202      FunctionTemplate->setObjectOfFriendDecl(
3203                                   /* PreviouslyDeclared= */ !Previous.empty());
3204      FunctionTemplate->setAccess(AS_public);
3205    }
3206    else
3207      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
3208
3209    NewFD->setAccess(AS_public);
3210  }
3211
3212  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3213      !CurContext->isRecord()) {
3214    // C++ [class.static]p1:
3215    //   A data or function member of a class may be declared static
3216    //   in a class definition, in which case it is a static member of
3217    //   the class.
3218
3219    // Complain about the 'static' specifier if it's on an out-of-line
3220    // member function definition.
3221    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3222         diag::err_static_out_of_line)
3223      << CodeModificationHint::CreateRemoval(
3224                                      D.getDeclSpec().getStorageClassSpecLoc());
3225  }
3226
3227  // Handle GNU asm-label extension (encoded as an attribute).
3228  if (Expr *E = (Expr*) D.getAsmLabel()) {
3229    // The parser guarantees this is a string.
3230    StringLiteral *SE = cast<StringLiteral>(E);
3231    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
3232  }
3233
3234  // Copy the parameter declarations from the declarator D to the function
3235  // declaration NewFD, if they are available.  First scavenge them into Params.
3236  llvm::SmallVector<ParmVarDecl*, 16> Params;
3237  if (D.getNumTypeObjects() > 0) {
3238    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3239
3240    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3241    // function that takes no arguments, not a function that takes a
3242    // single void argument.
3243    // We let through "const void" here because Sema::GetTypeForDeclarator
3244    // already checks for that case.
3245    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3246        FTI.ArgInfo[0].Param &&
3247        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3248      // Empty arg list, don't push any params.
3249      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3250
3251      // In C++, the empty parameter-type-list must be spelled "void"; a
3252      // typedef of void is not permitted.
3253      if (getLangOptions().CPlusPlus &&
3254          Param->getType().getUnqualifiedType() != Context.VoidTy)
3255        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3256      // FIXME: Leaks decl?
3257    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3258      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3259        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3260        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3261        Param->setDeclContext(NewFD);
3262        Params.push_back(Param);
3263      }
3264    }
3265
3266  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3267    // When we're declaring a function with a typedef, typeof, etc as in the
3268    // following example, we'll need to synthesize (unnamed)
3269    // parameters for use in the declaration.
3270    //
3271    // @code
3272    // typedef void fn(int);
3273    // fn f;
3274    // @endcode
3275
3276    // Synthesize a parameter for each argument type.
3277    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3278         AE = FT->arg_type_end(); AI != AE; ++AI) {
3279      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
3280                                               SourceLocation(), 0,
3281                                               *AI, /*TInfo=*/0,
3282                                               VarDecl::None, 0);
3283      Param->setImplicit();
3284      Params.push_back(Param);
3285    }
3286  } else {
3287    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3288           "Should not need args for typedef of non-prototype fn");
3289  }
3290  // Finally, we know we have the right number of parameters, install them.
3291  NewFD->setParams(Context, Params.data(), Params.size());
3292
3293  // If the declarator is a template-id, translate the parser's template
3294  // argument list into our AST format.
3295  bool HasExplicitTemplateArgs = false;
3296  TemplateArgumentListInfo TemplateArgs;
3297  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3298    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3299    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3300    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3301    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3302                                       TemplateId->getTemplateArgs(),
3303                                       TemplateId->NumArgs);
3304    translateTemplateArguments(TemplateArgsPtr,
3305                               TemplateArgs);
3306    TemplateArgsPtr.release();
3307
3308    HasExplicitTemplateArgs = true;
3309
3310    if (FunctionTemplate) {
3311      // FIXME: Diagnose function template with explicit template
3312      // arguments.
3313      HasExplicitTemplateArgs = false;
3314    } else if (!isFunctionTemplateSpecialization &&
3315               !D.getDeclSpec().isFriendSpecified()) {
3316      // We have encountered something that the user meant to be a
3317      // specialization (because it has explicitly-specified template
3318      // arguments) but that was not introduced with a "template<>" (or had
3319      // too few of them).
3320      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3321        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3322        << CodeModificationHint::CreateInsertion(
3323                                   D.getDeclSpec().getSourceRange().getBegin(),
3324                                                 "template<> ");
3325      isFunctionTemplateSpecialization = true;
3326    }
3327  }
3328
3329  if (isFunctionTemplateSpecialization) {
3330      if (CheckFunctionTemplateSpecialization(NewFD,
3331                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3332                                              Previous))
3333        NewFD->setInvalidDecl();
3334  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3335             CheckMemberSpecialization(NewFD, Previous))
3336    NewFD->setInvalidDecl();
3337
3338  // Perform semantic checking on the function declaration.
3339  bool OverloadableAttrRequired = false; // FIXME: HACK!
3340  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3341                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3342
3343  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3344          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3345         "previous declaration set still overloaded");
3346
3347  // If we have a function template, check the template parameter
3348  // list. This will check and merge default template arguments.
3349  if (FunctionTemplate) {
3350    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3351    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3352                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3353             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3354                                                : TPC_FunctionTemplate);
3355  }
3356
3357  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3358    // An out-of-line member function declaration must also be a
3359    // definition (C++ [dcl.meaning]p1).
3360    // Note that this is not the case for explicit specializations of
3361    // function templates or member functions of class templates, per
3362    // C++ [temp.expl.spec]p2.
3363    if (!IsFunctionDefinition && !isFriend &&
3364        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3365      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3366        << D.getCXXScopeSpec().getRange();
3367      NewFD->setInvalidDecl();
3368    } else if (!Redeclaration) {
3369      // The user tried to provide an out-of-line definition for a
3370      // function that is a member of a class or namespace, but there
3371      // was no such member function declared (C++ [class.mfct]p2,
3372      // C++ [namespace.memdef]p2). For example:
3373      //
3374      // class X {
3375      //   void f() const;
3376      // };
3377      //
3378      // void X::f() { } // ill-formed
3379      //
3380      // Complain about this problem, and attempt to suggest close
3381      // matches (e.g., those that differ only in cv-qualifiers and
3382      // whether the parameter types are references).
3383      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3384        << Name << DC << D.getCXXScopeSpec().getRange();
3385      NewFD->setInvalidDecl();
3386
3387      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3388                        ForRedeclaration);
3389      LookupQualifiedName(Prev, DC);
3390      assert(!Prev.isAmbiguous() &&
3391             "Cannot have an ambiguity in previous-declaration lookup");
3392      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3393           Func != FuncEnd; ++Func) {
3394        if (isa<FunctionDecl>(*Func) &&
3395            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3396          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3397      }
3398    }
3399  }
3400
3401  // Handle attributes. We need to have merged decls when handling attributes
3402  // (for example to check for conflicts, etc).
3403  // FIXME: This needs to happen before we merge declarations. Then,
3404  // let attribute merging cope with attribute conflicts.
3405  ProcessDeclAttributes(S, NewFD, D);
3406
3407  // attributes declared post-definition are currently ignored
3408  if (Redeclaration && Previous.isSingleResult()) {
3409    const FunctionDecl *Def;
3410    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3411    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3412      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3413      Diag(Def->getLocation(), diag::note_previous_definition);
3414    }
3415  }
3416
3417  AddKnownFunctionAttributes(NewFD);
3418
3419  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3420    // If a function name is overloadable in C, then every function
3421    // with that name must be marked "overloadable".
3422    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3423      << Redeclaration << NewFD;
3424    if (!Previous.empty())
3425      Diag(Previous.getRepresentativeDecl()->getLocation(),
3426           diag::note_attribute_overloadable_prev_overload);
3427    NewFD->addAttr(::new (Context) OverloadableAttr());
3428  }
3429
3430  // If this is a locally-scoped extern C function, update the
3431  // map of such names.
3432  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3433      && !NewFD->isInvalidDecl())
3434    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3435
3436  // Set this FunctionDecl's range up to the right paren.
3437  NewFD->setLocEnd(D.getSourceRange().getEnd());
3438
3439  if (FunctionTemplate && NewFD->isInvalidDecl())
3440    FunctionTemplate->setInvalidDecl();
3441
3442  if (FunctionTemplate)
3443    return FunctionTemplate;
3444
3445  return NewFD;
3446}
3447
3448/// \brief Perform semantic checking of a new function declaration.
3449///
3450/// Performs semantic analysis of the new function declaration
3451/// NewFD. This routine performs all semantic checking that does not
3452/// require the actual declarator involved in the declaration, and is
3453/// used both for the declaration of functions as they are parsed
3454/// (called via ActOnDeclarator) and for the declaration of functions
3455/// that have been instantiated via C++ template instantiation (called
3456/// via InstantiateDecl).
3457///
3458/// \param IsExplicitSpecialiation whether this new function declaration is
3459/// an explicit specialization of the previous declaration.
3460///
3461/// This sets NewFD->isInvalidDecl() to true if there was an error.
3462void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3463                                    LookupResult &Previous,
3464                                    bool IsExplicitSpecialization,
3465                                    bool &Redeclaration,
3466                                    bool &OverloadableAttrRequired) {
3467  // If NewFD is already known erroneous, don't do any of this checking.
3468  if (NewFD->isInvalidDecl())
3469    return;
3470
3471  if (NewFD->getResultType()->isVariablyModifiedType()) {
3472    // Functions returning a variably modified type violate C99 6.7.5.2p2
3473    // because all functions have linkage.
3474    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3475    return NewFD->setInvalidDecl();
3476  }
3477
3478  if (NewFD->isMain())
3479    CheckMain(NewFD);
3480
3481  // Check for a previous declaration of this name.
3482  if (Previous.empty() && NewFD->isExternC()) {
3483    // Since we did not find anything by this name and we're declaring
3484    // an extern "C" function, look for a non-visible extern "C"
3485    // declaration with the same name.
3486    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3487      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3488    if (Pos != LocallyScopedExternalDecls.end())
3489      Previous.addDecl(Pos->second);
3490  }
3491
3492  // Merge or overload the declaration with an existing declaration of
3493  // the same name, if appropriate.
3494  if (!Previous.empty()) {
3495    // Determine whether NewFD is an overload of PrevDecl or
3496    // a declaration that requires merging. If it's an overload,
3497    // there's no more work to do here; we'll just add the new
3498    // function to the scope.
3499
3500    NamedDecl *OldDecl = 0;
3501    if (!AllowOverloadingOfFunction(Previous, Context)) {
3502      Redeclaration = true;
3503      OldDecl = Previous.getFoundDecl();
3504    } else {
3505      if (!getLangOptions().CPlusPlus) {
3506        OverloadableAttrRequired = true;
3507
3508        // Functions marked "overloadable" must have a prototype (that
3509        // we can't get through declaration merging).
3510        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3511          Diag(NewFD->getLocation(),
3512               diag::err_attribute_overloadable_no_prototype)
3513            << NewFD;
3514          Redeclaration = true;
3515
3516          // Turn this into a variadic function with no parameters.
3517          QualType R = Context.getFunctionType(
3518                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3519                     0, 0, true, 0);
3520          NewFD->setType(R);
3521          return NewFD->setInvalidDecl();
3522        }
3523      }
3524
3525      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3526      case Ovl_Match:
3527        Redeclaration = true;
3528        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3529          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3530          Redeclaration = false;
3531        }
3532        break;
3533
3534      case Ovl_NonFunction:
3535        Redeclaration = true;
3536        break;
3537
3538      case Ovl_Overload:
3539        Redeclaration = false;
3540        break;
3541      }
3542    }
3543
3544    if (Redeclaration) {
3545      // NewFD and OldDecl represent declarations that need to be
3546      // merged.
3547      if (MergeFunctionDecl(NewFD, OldDecl))
3548        return NewFD->setInvalidDecl();
3549
3550      Previous.clear();
3551      Previous.addDecl(OldDecl);
3552
3553      if (FunctionTemplateDecl *OldTemplateDecl
3554                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3555        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3556        FunctionTemplateDecl *NewTemplateDecl
3557          = NewFD->getDescribedFunctionTemplate();
3558        assert(NewTemplateDecl && "Template/non-template mismatch");
3559        if (CXXMethodDecl *Method
3560              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3561          Method->setAccess(OldTemplateDecl->getAccess());
3562          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3563        }
3564
3565        // If this is an explicit specialization of a member that is a function
3566        // template, mark it as a member specialization.
3567        if (IsExplicitSpecialization &&
3568            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3569          NewTemplateDecl->setMemberSpecialization();
3570          assert(OldTemplateDecl->isMemberSpecialization());
3571        }
3572      } else {
3573        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3574          NewFD->setAccess(OldDecl->getAccess());
3575        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3576      }
3577    }
3578  }
3579
3580  // Semantic checking for this function declaration (in isolation).
3581  if (getLangOptions().CPlusPlus) {
3582    // C++-specific checks.
3583    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3584      CheckConstructor(Constructor);
3585    } else if (CXXDestructorDecl *Destructor =
3586                dyn_cast<CXXDestructorDecl>(NewFD)) {
3587      CXXRecordDecl *Record = Destructor->getParent();
3588      QualType ClassType = Context.getTypeDeclType(Record);
3589
3590      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3591      // type is dependent? Both gcc and edg can handle that.
3592      if (!ClassType->isDependentType()) {
3593        DeclarationName Name
3594          = Context.DeclarationNames.getCXXDestructorName(
3595                                        Context.getCanonicalType(ClassType));
3596        if (NewFD->getDeclName() != Name) {
3597          Diag(NewFD->getLocation(), diag::err_destructor_name);
3598          return NewFD->setInvalidDecl();
3599        }
3600      }
3601
3602      Record->setUserDeclaredDestructor(true);
3603      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3604      // user-defined destructor.
3605      Record->setPOD(false);
3606
3607      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3608      // declared destructor.
3609      // FIXME: C++0x: don't do this for "= default" destructors
3610      Record->setHasTrivialDestructor(false);
3611    } else if (CXXConversionDecl *Conversion
3612               = dyn_cast<CXXConversionDecl>(NewFD)) {
3613      ActOnConversionDeclarator(Conversion);
3614    }
3615
3616    // Find any virtual functions that this function overrides.
3617    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3618      if (!Method->isFunctionTemplateSpecialization() &&
3619          !Method->getDescribedFunctionTemplate())
3620        AddOverriddenMethods(Method->getParent(), Method);
3621    }
3622
3623    // Additional checks for the destructor; make sure we do this after we
3624    // figure out whether the destructor is virtual.
3625    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3626      if (!Destructor->getParent()->isDependentType())
3627        CheckDestructor(Destructor);
3628
3629    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3630    if (NewFD->isOverloadedOperator() &&
3631        CheckOverloadedOperatorDeclaration(NewFD))
3632      return NewFD->setInvalidDecl();
3633
3634    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3635    if (NewFD->getLiteralIdentifier() &&
3636        CheckLiteralOperatorDeclaration(NewFD))
3637      return NewFD->setInvalidDecl();
3638
3639    // In C++, check default arguments now that we have merged decls. Unless
3640    // the lexical context is the class, because in this case this is done
3641    // during delayed parsing anyway.
3642    if (!CurContext->isRecord())
3643      CheckCXXDefaultArguments(NewFD);
3644  }
3645}
3646
3647void Sema::CheckMain(FunctionDecl* FD) {
3648  // C++ [basic.start.main]p3:  A program that declares main to be inline
3649  //   or static is ill-formed.
3650  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3651  //   shall not appear in a declaration of main.
3652  // static main is not an error under C99, but we should warn about it.
3653  bool isInline = FD->isInlineSpecified();
3654  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3655  if (isInline || isStatic) {
3656    unsigned diagID = diag::warn_unusual_main_decl;
3657    if (isInline || getLangOptions().CPlusPlus)
3658      diagID = diag::err_unusual_main_decl;
3659
3660    int which = isStatic + (isInline << 1) - 1;
3661    Diag(FD->getLocation(), diagID) << which;
3662  }
3663
3664  QualType T = FD->getType();
3665  assert(T->isFunctionType() && "function decl is not of function type");
3666  const FunctionType* FT = T->getAs<FunctionType>();
3667
3668  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3669    // TODO: add a replacement fixit to turn the return type into 'int'.
3670    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3671    FD->setInvalidDecl(true);
3672  }
3673
3674  // Treat protoless main() as nullary.
3675  if (isa<FunctionNoProtoType>(FT)) return;
3676
3677  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3678  unsigned nparams = FTP->getNumArgs();
3679  assert(FD->getNumParams() == nparams);
3680
3681  bool HasExtraParameters = (nparams > 3);
3682
3683  // Darwin passes an undocumented fourth argument of type char**.  If
3684  // other platforms start sprouting these, the logic below will start
3685  // getting shifty.
3686  if (nparams == 4 &&
3687      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3688    HasExtraParameters = false;
3689
3690  if (HasExtraParameters) {
3691    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3692    FD->setInvalidDecl(true);
3693    nparams = 3;
3694  }
3695
3696  // FIXME: a lot of the following diagnostics would be improved
3697  // if we had some location information about types.
3698
3699  QualType CharPP =
3700    Context.getPointerType(Context.getPointerType(Context.CharTy));
3701  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3702
3703  for (unsigned i = 0; i < nparams; ++i) {
3704    QualType AT = FTP->getArgType(i);
3705
3706    bool mismatch = true;
3707
3708    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3709      mismatch = false;
3710    else if (Expected[i] == CharPP) {
3711      // As an extension, the following forms are okay:
3712      //   char const **
3713      //   char const * const *
3714      //   char * const *
3715
3716      QualifierCollector qs;
3717      const PointerType* PT;
3718      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3719          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3720          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3721        qs.removeConst();
3722        mismatch = !qs.empty();
3723      }
3724    }
3725
3726    if (mismatch) {
3727      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3728      // TODO: suggest replacing given type with expected type
3729      FD->setInvalidDecl(true);
3730    }
3731  }
3732
3733  if (nparams == 1 && !FD->isInvalidDecl()) {
3734    Diag(FD->getLocation(), diag::warn_main_one_arg);
3735  }
3736}
3737
3738bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3739  // FIXME: Need strict checking.  In C89, we need to check for
3740  // any assignment, increment, decrement, function-calls, or
3741  // commas outside of a sizeof.  In C99, it's the same list,
3742  // except that the aforementioned are allowed in unevaluated
3743  // expressions.  Everything else falls under the
3744  // "may accept other forms of constant expressions" exception.
3745  // (We never end up here for C++, so the constant expression
3746  // rules there don't matter.)
3747  if (Init->isConstantInitializer(Context))
3748    return false;
3749  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3750    << Init->getSourceRange();
3751  return true;
3752}
3753
3754void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3755  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3756}
3757
3758/// AddInitializerToDecl - Adds the initializer Init to the
3759/// declaration dcl. If DirectInit is true, this is C++ direct
3760/// initialization rather than copy initialization.
3761void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3762  Decl *RealDecl = dcl.getAs<Decl>();
3763  // If there is no declaration, there was an error parsing it.  Just ignore
3764  // the initializer.
3765  if (RealDecl == 0)
3766    return;
3767
3768  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3769    // With declarators parsed the way they are, the parser cannot
3770    // distinguish between a normal initializer and a pure-specifier.
3771    // Thus this grotesque test.
3772    IntegerLiteral *IL;
3773    Expr *Init = static_cast<Expr *>(init.get());
3774    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3775        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3776      CheckPureMethod(Method, Init->getSourceRange());
3777    else {
3778      Diag(Method->getLocation(), diag::err_member_function_initialization)
3779        << Method->getDeclName() << Init->getSourceRange();
3780      Method->setInvalidDecl();
3781    }
3782    return;
3783  }
3784
3785  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3786  if (!VDecl) {
3787    if (getLangOptions().CPlusPlus &&
3788        RealDecl->getLexicalDeclContext()->isRecord() &&
3789        isa<NamedDecl>(RealDecl))
3790      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3791        << cast<NamedDecl>(RealDecl)->getDeclName();
3792    else
3793      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3794    RealDecl->setInvalidDecl();
3795    return;
3796  }
3797
3798  // A definition must end up with a complete type, which means it must be
3799  // complete with the restriction that an array type might be completed by the
3800  // initializer; note that later code assumes this restriction.
3801  QualType BaseDeclType = VDecl->getType();
3802  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3803    BaseDeclType = Array->getElementType();
3804  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3805                          diag::err_typecheck_decl_incomplete_type)) {
3806    RealDecl->setInvalidDecl();
3807    return;
3808  }
3809
3810  // The variable can not have an abstract class type.
3811  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3812                             diag::err_abstract_type_in_decl,
3813                             AbstractVariableType))
3814    VDecl->setInvalidDecl();
3815
3816  const VarDecl *Def = 0;
3817  if (VDecl->getDefinition(Def)) {
3818    Diag(VDecl->getLocation(), diag::err_redefinition)
3819      << VDecl->getDeclName();
3820    Diag(Def->getLocation(), diag::note_previous_definition);
3821    VDecl->setInvalidDecl();
3822    return;
3823  }
3824
3825  // Take ownership of the expression, now that we're sure we have somewhere
3826  // to put it.
3827  Expr *Init = init.takeAs<Expr>();
3828  assert(Init && "missing initializer");
3829
3830  // Capture the variable that is being initialized and the style of
3831  // initialization.
3832  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3833
3834  // FIXME: Poor source location information.
3835  InitializationKind Kind
3836    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3837                                                   Init->getLocStart(),
3838                                                   Init->getLocEnd())
3839                : InitializationKind::CreateCopy(VDecl->getLocation(),
3840                                                 Init->getLocStart());
3841
3842  // Get the decls type and save a reference for later, since
3843  // CheckInitializerTypes may change it.
3844  QualType DclT = VDecl->getType(), SavT = DclT;
3845  if (VDecl->isBlockVarDecl()) {
3846    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3847      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3848      VDecl->setInvalidDecl();
3849    } else if (!VDecl->isInvalidDecl()) {
3850      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3851      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3852                                          MultiExprArg(*this, (void**)&Init, 1),
3853                                                &DclT);
3854      if (Result.isInvalid()) {
3855        VDecl->setInvalidDecl();
3856        return;
3857      }
3858
3859      Init = Result.takeAs<Expr>();
3860
3861      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3862      // Don't check invalid declarations to avoid emitting useless diagnostics.
3863      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3864        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3865          CheckForConstantInitializer(Init, DclT);
3866      }
3867    }
3868  } else if (VDecl->isStaticDataMember() &&
3869             VDecl->getLexicalDeclContext()->isRecord()) {
3870    // This is an in-class initialization for a static data member, e.g.,
3871    //
3872    // struct S {
3873    //   static const int value = 17;
3874    // };
3875
3876    // Attach the initializer
3877    VDecl->setInit(Context, Init);
3878
3879    // C++ [class.mem]p4:
3880    //   A member-declarator can contain a constant-initializer only
3881    //   if it declares a static member (9.4) of const integral or
3882    //   const enumeration type, see 9.4.2.
3883    QualType T = VDecl->getType();
3884    if (!T->isDependentType() &&
3885        (!Context.getCanonicalType(T).isConstQualified() ||
3886         !T->isIntegralType())) {
3887      Diag(VDecl->getLocation(), diag::err_member_initialization)
3888        << VDecl->getDeclName() << Init->getSourceRange();
3889      VDecl->setInvalidDecl();
3890    } else {
3891      // C++ [class.static.data]p4:
3892      //   If a static data member is of const integral or const
3893      //   enumeration type, its declaration in the class definition
3894      //   can specify a constant-initializer which shall be an
3895      //   integral constant expression (5.19).
3896      if (!Init->isTypeDependent() &&
3897          !Init->getType()->isIntegralType()) {
3898        // We have a non-dependent, non-integral or enumeration type.
3899        Diag(Init->getSourceRange().getBegin(),
3900             diag::err_in_class_initializer_non_integral_type)
3901          << Init->getType() << Init->getSourceRange();
3902        VDecl->setInvalidDecl();
3903      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3904        // Check whether the expression is a constant expression.
3905        llvm::APSInt Value;
3906        SourceLocation Loc;
3907        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3908          Diag(Loc, diag::err_in_class_initializer_non_constant)
3909            << Init->getSourceRange();
3910          VDecl->setInvalidDecl();
3911        } else if (!VDecl->getType()->isDependentType())
3912          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3913      }
3914    }
3915  } else if (VDecl->isFileVarDecl()) {
3916    if (VDecl->getStorageClass() == VarDecl::Extern)
3917      Diag(VDecl->getLocation(), diag::warn_extern_init);
3918    if (!VDecl->isInvalidDecl()) {
3919      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3920      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3921                                          MultiExprArg(*this, (void**)&Init, 1),
3922                                                &DclT);
3923      if (Result.isInvalid()) {
3924        VDecl->setInvalidDecl();
3925        return;
3926      }
3927
3928      Init = Result.takeAs<Expr>();
3929    }
3930
3931    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3932    // Don't check invalid declarations to avoid emitting useless diagnostics.
3933    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3934      // C99 6.7.8p4. All file scoped initializers need to be constant.
3935      CheckForConstantInitializer(Init, DclT);
3936    }
3937  }
3938  // If the type changed, it means we had an incomplete type that was
3939  // completed by the initializer. For example:
3940  //   int ary[] = { 1, 3, 5 };
3941  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3942  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3943    VDecl->setType(DclT);
3944    Init->setType(DclT);
3945  }
3946
3947  Init = MaybeCreateCXXExprWithTemporaries(Init);
3948  // Attach the initializer to the decl.
3949  VDecl->setInit(Context, Init);
3950
3951  // If the previous declaration of VDecl was a tentative definition,
3952  // remove it from the set of tentative definitions.
3953  if (VDecl->getPreviousDeclaration() &&
3954      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3955    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3956    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3957  }
3958
3959  if (getLangOptions().CPlusPlus) {
3960    // Make sure we mark the destructor as used if necessary.
3961    QualType InitType = VDecl->getType();
3962    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3963      InitType = Context.getBaseElementType(Array);
3964    if (InitType->isRecordType())
3965      FinalizeVarWithDestructor(VDecl, InitType);
3966  }
3967
3968  return;
3969}
3970
3971void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3972                                  bool TypeContainsUndeducedAuto) {
3973  Decl *RealDecl = dcl.getAs<Decl>();
3974
3975  // If there is no declaration, there was an error parsing it. Just ignore it.
3976  if (RealDecl == 0)
3977    return;
3978
3979  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3980    QualType Type = Var->getType();
3981
3982    // Record tentative definitions.
3983    if (Var->isTentativeDefinition(Context)) {
3984      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3985        InsertPair =
3986           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3987
3988      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3989      // want the second one in the map.
3990      InsertPair.first->second = Var;
3991
3992      // However, for the list, we don't care about the order, just make sure
3993      // that there are no dupes for a given declaration name.
3994      if (InsertPair.second)
3995        TentativeDefinitionList.push_back(Var->getDeclName());
3996    }
3997
3998    // C++ [dcl.init.ref]p3:
3999    //   The initializer can be omitted for a reference only in a
4000    //   parameter declaration (8.3.5), in the declaration of a
4001    //   function return type, in the declaration of a class member
4002    //   within its class declaration (9.2), and where the extern
4003    //   specifier is explicitly used.
4004    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
4005      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4006        << Var->getDeclName()
4007        << SourceRange(Var->getLocation(), Var->getLocation());
4008      Var->setInvalidDecl();
4009      return;
4010    }
4011
4012    // C++0x [dcl.spec.auto]p3
4013    if (TypeContainsUndeducedAuto) {
4014      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4015        << Var->getDeclName() << Type;
4016      Var->setInvalidDecl();
4017      return;
4018    }
4019
4020    // An array without size is an incomplete type, and there are no special
4021    // rules in C++ to make such a definition acceptable.
4022    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
4023        !Var->hasExternalStorage()) {
4024      Diag(Var->getLocation(),
4025           diag::err_typecheck_incomplete_array_needs_initializer);
4026      Var->setInvalidDecl();
4027      return;
4028    }
4029
4030    // C++ [temp.expl.spec]p15:
4031    //   An explicit specialization of a static data member of a template is a
4032    //   definition if the declaration includes an initializer; otherwise, it
4033    //   is a declaration.
4034    if (Var->isStaticDataMember() &&
4035        Var->getInstantiatedFromStaticDataMember() &&
4036        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
4037      return;
4038
4039    // C++ [dcl.init]p9:
4040    //   If no initializer is specified for an object, and the object
4041    //   is of (possibly cv-qualified) non-POD class type (or array
4042    //   thereof), the object shall be default-initialized; if the
4043    //   object is of const-qualified type, the underlying class type
4044    //   shall have a user-declared default constructor.
4045    //
4046    // FIXME: Diagnose the "user-declared default constructor" bit.
4047    if (getLangOptions().CPlusPlus) {
4048      QualType InitType = Type;
4049      if (const ArrayType *Array = Context.getAsArrayType(Type))
4050        InitType = Context.getBaseElementType(Array);
4051      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
4052          InitType->isRecordType() && !InitType->isDependentType()) {
4053        if (!RequireCompleteType(Var->getLocation(), InitType,
4054                                 diag::err_invalid_incomplete_type_use)) {
4055          InitializedEntity Entity
4056            = InitializedEntity::InitializeVariable(Var);
4057          InitializationKind Kind
4058            = InitializationKind::CreateDefault(Var->getLocation());
4059
4060          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4061          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4062                                                  MultiExprArg(*this, 0, 0));
4063          if (Init.isInvalid())
4064            Var->setInvalidDecl();
4065          else {
4066            Var->setInit(Context,
4067                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4068            FinalizeVarWithDestructor(Var, InitType);
4069          }
4070        } else {
4071          Var->setInvalidDecl();
4072        }
4073      }
4074
4075      // The variable can not have an abstract class type.
4076      if (RequireNonAbstractType(Var->getLocation(), Type,
4077                                 diag::err_abstract_type_in_decl,
4078                                 AbstractVariableType))
4079        Var->setInvalidDecl();
4080    }
4081
4082#if 0
4083    // FIXME: Temporarily disabled because we are not properly parsing
4084    // linkage specifications on declarations, e.g.,
4085    //
4086    //   extern "C" const CGPoint CGPointerZero;
4087    //
4088    // C++ [dcl.init]p9:
4089    //
4090    //     If no initializer is specified for an object, and the
4091    //     object is of (possibly cv-qualified) non-POD class type (or
4092    //     array thereof), the object shall be default-initialized; if
4093    //     the object is of const-qualified type, the underlying class
4094    //     type shall have a user-declared default
4095    //     constructor. Otherwise, if no initializer is specified for
4096    //     an object, the object and its subobjects, if any, have an
4097    //     indeterminate initial value; if the object or any of its
4098    //     subobjects are of const-qualified type, the program is
4099    //     ill-formed.
4100    //
4101    // This isn't technically an error in C, so we don't diagnose it.
4102    //
4103    // FIXME: Actually perform the POD/user-defined default
4104    // constructor check.
4105    if (getLangOptions().CPlusPlus &&
4106        Context.getCanonicalType(Type).isConstQualified() &&
4107        !Var->hasExternalStorage())
4108      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
4109        << Var->getName()
4110        << SourceRange(Var->getLocation(), Var->getLocation());
4111#endif
4112  }
4113}
4114
4115Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4116                                                   DeclPtrTy *Group,
4117                                                   unsigned NumDecls) {
4118  llvm::SmallVector<Decl*, 8> Decls;
4119
4120  if (DS.isTypeSpecOwned())
4121    Decls.push_back((Decl*)DS.getTypeRep());
4122
4123  for (unsigned i = 0; i != NumDecls; ++i)
4124    if (Decl *D = Group[i].getAs<Decl>())
4125      Decls.push_back(D);
4126
4127  // Perform semantic analysis that depends on having fully processed both
4128  // the declarator and initializer.
4129  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
4130    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
4131    if (!IDecl)
4132      continue;
4133    QualType T = IDecl->getType();
4134
4135    // Block scope. C99 6.7p7: If an identifier for an object is declared with
4136    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
4137    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
4138      if (T->isDependentType()) {
4139        // If T is dependent, we should not require a complete type.
4140        // (RequireCompleteType shouldn't be called with dependent types.)
4141        // But we still can at least check if we've got an array of unspecified
4142        // size without an initializer.
4143        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
4144            !IDecl->getInit()) {
4145          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
4146            << T;
4147          IDecl->setInvalidDecl();
4148        }
4149      } else if (!IDecl->isInvalidDecl()) {
4150        // If T is an incomplete array type with an initializer list that is
4151        // dependent on something, its size has not been fixed. We could attempt
4152        // to fix the size for such arrays, but we would still have to check
4153        // here for initializers containing a C++0x vararg expansion, e.g.
4154        // template <typename... Args> void f(Args... args) {
4155        //   int vals[] = { args };
4156        // }
4157        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
4158        Expr *Init = IDecl->getInit();
4159        if (IAT && Init &&
4160            (Init->isTypeDependent() || Init->isValueDependent())) {
4161          // Check that the member type of the array is complete, at least.
4162          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
4163                                  diag::err_typecheck_decl_incomplete_type))
4164            IDecl->setInvalidDecl();
4165        } else if (RequireCompleteType(IDecl->getLocation(), T,
4166                                      diag::err_typecheck_decl_incomplete_type))
4167          IDecl->setInvalidDecl();
4168      }
4169    }
4170    // File scope. C99 6.9.2p2: A declaration of an identifier for an
4171    // object that has file scope without an initializer, and without a
4172    // storage-class specifier or with the storage-class specifier "static",
4173    // constitutes a tentative definition. Note: A tentative definition with
4174    // external linkage is valid (C99 6.2.2p5).
4175    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
4176      if (const IncompleteArrayType *ArrayT
4177          = Context.getAsIncompleteArrayType(T)) {
4178        if (RequireCompleteType(IDecl->getLocation(),
4179                                ArrayT->getElementType(),
4180                                diag::err_illegal_decl_array_incomplete_type))
4181          IDecl->setInvalidDecl();
4182      } else if (IDecl->getStorageClass() == VarDecl::Static) {
4183        // C99 6.9.2p3: If the declaration of an identifier for an object is
4184        // a tentative definition and has internal linkage (C99 6.2.2p3), the
4185        // declared type shall not be an incomplete type.
4186        // NOTE: code such as the following
4187        //     static struct s;
4188        //     struct s { int a; };
4189        // is accepted by gcc. Hence here we issue a warning instead of
4190        // an error and we do not invalidate the static declaration.
4191        // NOTE: to avoid multiple warnings, only check the first declaration.
4192        if (IDecl->getPreviousDeclaration() == 0)
4193          RequireCompleteType(IDecl->getLocation(), T,
4194                              diag::ext_typecheck_decl_incomplete_type);
4195      }
4196    }
4197  }
4198  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4199                                                   Decls.data(), Decls.size()));
4200}
4201
4202
4203/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4204/// to introduce parameters into function prototype scope.
4205Sema::DeclPtrTy
4206Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4207  const DeclSpec &DS = D.getDeclSpec();
4208
4209  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4210  VarDecl::StorageClass StorageClass = VarDecl::None;
4211  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4212    StorageClass = VarDecl::Register;
4213  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4214    Diag(DS.getStorageClassSpecLoc(),
4215         diag::err_invalid_storage_class_in_func_decl);
4216    D.getMutableDeclSpec().ClearStorageClassSpecs();
4217  }
4218
4219  if (D.getDeclSpec().isThreadSpecified())
4220    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4221
4222  DiagnoseFunctionSpecifiers(D);
4223
4224  // Check that there are no default arguments inside the type of this
4225  // parameter (C++ only).
4226  if (getLangOptions().CPlusPlus)
4227    CheckExtraCXXDefaultArguments(D);
4228
4229  TypeSourceInfo *TInfo = 0;
4230  TagDecl *OwnedDecl = 0;
4231  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4232
4233  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4234    // C++ [dcl.fct]p6:
4235    //   Types shall not be defined in return or parameter types.
4236    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4237      << Context.getTypeDeclType(OwnedDecl);
4238  }
4239
4240  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
4241  // Can this happen for params?  We already checked that they don't conflict
4242  // among each other.  Here they can only shadow globals, which is ok.
4243  IdentifierInfo *II = D.getIdentifier();
4244  if (II) {
4245    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4246      if (PrevDecl->isTemplateParameter()) {
4247        // Maybe we will complain about the shadowed template parameter.
4248        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4249        // Just pretend that we didn't see the previous declaration.
4250        PrevDecl = 0;
4251      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4252        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4253
4254        // Recover by removing the name
4255        II = 0;
4256        D.SetIdentifier(0, D.getIdentifierLoc());
4257      }
4258    }
4259  }
4260
4261  // Parameters can not be abstract class types.
4262  // For record types, this is done by the AbstractClassUsageDiagnoser once
4263  // the class has been completely parsed.
4264  if (!CurContext->isRecord() &&
4265      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4266                             diag::err_abstract_type_in_decl,
4267                             AbstractParamType))
4268    D.setInvalidType(true);
4269
4270  QualType T = adjustParameterType(parmDeclType);
4271
4272  ParmVarDecl *New
4273    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
4274                          T, TInfo, StorageClass, 0);
4275
4276  if (D.isInvalidType())
4277    New->setInvalidDecl();
4278
4279  // Parameter declarators cannot be interface types. All ObjC objects are
4280  // passed by reference.
4281  if (T->isObjCInterfaceType()) {
4282    Diag(D.getIdentifierLoc(),
4283         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4284    New->setInvalidDecl();
4285  }
4286
4287  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4288  if (D.getCXXScopeSpec().isSet()) {
4289    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4290      << D.getCXXScopeSpec().getRange();
4291    New->setInvalidDecl();
4292  }
4293
4294  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4295  // duration shall not be qualified by an address-space qualifier."
4296  // Since all parameters have automatic store duration, they can not have
4297  // an address space.
4298  if (T.getAddressSpace() != 0) {
4299    Diag(D.getIdentifierLoc(),
4300         diag::err_arg_with_address_space);
4301    New->setInvalidDecl();
4302  }
4303
4304
4305  // Add the parameter declaration into this scope.
4306  S->AddDecl(DeclPtrTy::make(New));
4307  if (II)
4308    IdResolver.AddDecl(New);
4309
4310  ProcessDeclAttributes(S, New, D);
4311
4312  if (New->hasAttr<BlocksAttr>()) {
4313    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4314  }
4315  return DeclPtrTy::make(New);
4316}
4317
4318void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4319                                           SourceLocation LocAfterDecls) {
4320  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4321         "Not a function declarator!");
4322  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4323
4324  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4325  // for a K&R function.
4326  if (!FTI.hasPrototype) {
4327    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4328      --i;
4329      if (FTI.ArgInfo[i].Param == 0) {
4330        llvm::SmallString<256> Code;
4331        llvm::raw_svector_ostream(Code) << "  int "
4332                                        << FTI.ArgInfo[i].Ident->getName()
4333                                        << ";\n";
4334        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4335          << FTI.ArgInfo[i].Ident
4336          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4337
4338        // Implicitly declare the argument as type 'int' for lack of a better
4339        // type.
4340        DeclSpec DS;
4341        const char* PrevSpec; // unused
4342        unsigned DiagID; // unused
4343        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4344                           PrevSpec, DiagID);
4345        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4346        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4347        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4348      }
4349    }
4350  }
4351}
4352
4353Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4354                                              Declarator &D) {
4355  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4356  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4357         "Not a function declarator!");
4358  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4359
4360  if (FTI.hasPrototype) {
4361    // FIXME: Diagnose arguments without names in C.
4362  }
4363
4364  Scope *ParentScope = FnBodyScope->getParent();
4365
4366  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4367                                  MultiTemplateParamsArg(*this),
4368                                  /*IsFunctionDefinition=*/true);
4369  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4370}
4371
4372static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4373  // Don't warn about invalid declarations.
4374  if (FD->isInvalidDecl())
4375    return false;
4376
4377  // Or declarations that aren't global.
4378  if (!FD->isGlobal())
4379    return false;
4380
4381  // Don't warn about C++ member functions.
4382  if (isa<CXXMethodDecl>(FD))
4383    return false;
4384
4385  // Don't warn about 'main'.
4386  if (FD->isMain())
4387    return false;
4388
4389  // Don't warn about inline functions.
4390  if (FD->isInlineSpecified())
4391    return false;
4392
4393  // Don't warn about function templates.
4394  if (FD->getDescribedFunctionTemplate())
4395    return false;
4396
4397  // Don't warn about function template specializations.
4398  if (FD->isFunctionTemplateSpecialization())
4399    return false;
4400
4401  bool MissingPrototype = true;
4402  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4403       Prev; Prev = Prev->getPreviousDeclaration()) {
4404    // Ignore any declarations that occur in function or method
4405    // scope, because they aren't visible from the header.
4406    if (Prev->getDeclContext()->isFunctionOrMethod())
4407      continue;
4408
4409    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4410    break;
4411  }
4412
4413  return MissingPrototype;
4414}
4415
4416Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4417  // Clear the last template instantiation error context.
4418  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4419
4420  if (!D)
4421    return D;
4422  FunctionDecl *FD = 0;
4423
4424  if (FunctionTemplateDecl *FunTmpl
4425        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4426    FD = FunTmpl->getTemplatedDecl();
4427  else
4428    FD = cast<FunctionDecl>(D.getAs<Decl>());
4429
4430  CurFunctionNeedsScopeChecking = false;
4431
4432  // See if this is a redefinition.
4433  const FunctionDecl *Definition;
4434  if (FD->getBody(Definition)) {
4435    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4436    Diag(Definition->getLocation(), diag::note_previous_definition);
4437  }
4438
4439  // Builtin functions cannot be defined.
4440  if (unsigned BuiltinID = FD->getBuiltinID()) {
4441    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4442      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4443      FD->setInvalidDecl();
4444    }
4445  }
4446
4447  // The return type of a function definition must be complete
4448  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4449  QualType ResultType = FD->getResultType();
4450  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4451      !FD->isInvalidDecl() &&
4452      RequireCompleteType(FD->getLocation(), ResultType,
4453                          diag::err_func_def_incomplete_result))
4454    FD->setInvalidDecl();
4455
4456  // GNU warning -Wmissing-prototypes:
4457  //   Warn if a global function is defined without a previous
4458  //   prototype declaration. This warning is issued even if the
4459  //   definition itself provides a prototype. The aim is to detect
4460  //   global functions that fail to be declared in header files.
4461  if (ShouldWarnAboutMissingPrototype(FD))
4462    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4463
4464  if (FnBodyScope)
4465    PushDeclContext(FnBodyScope, FD);
4466
4467  // Check the validity of our function parameters
4468  CheckParmsForFunctionDef(FD);
4469
4470  // Introduce our parameters into the function scope
4471  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4472    ParmVarDecl *Param = FD->getParamDecl(p);
4473    Param->setOwningFunction(FD);
4474
4475    // If this has an identifier, add it to the scope stack.
4476    if (Param->getIdentifier() && FnBodyScope)
4477      PushOnScopeChains(Param, FnBodyScope);
4478  }
4479
4480  // Checking attributes of current function definition
4481  // dllimport attribute.
4482  if (FD->getAttr<DLLImportAttr>() &&
4483      (!FD->getAttr<DLLExportAttr>())) {
4484    // dllimport attribute cannot be applied to definition.
4485    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4486      Diag(FD->getLocation(),
4487           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4488        << "dllimport";
4489      FD->setInvalidDecl();
4490      return DeclPtrTy::make(FD);
4491    } else {
4492      // If a symbol previously declared dllimport is later defined, the
4493      // attribute is ignored in subsequent references, and a warning is
4494      // emitted.
4495      Diag(FD->getLocation(),
4496           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4497        << FD->getNameAsCString() << "dllimport";
4498    }
4499  }
4500  return DeclPtrTy::make(FD);
4501}
4502
4503Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4504  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4505}
4506
4507Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4508                                              bool IsInstantiation) {
4509  Decl *dcl = D.getAs<Decl>();
4510  Stmt *Body = BodyArg.takeAs<Stmt>();
4511
4512  AnalysisContext AC(dcl);
4513  FunctionDecl *FD = 0;
4514  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4515  if (FunTmpl)
4516    FD = FunTmpl->getTemplatedDecl();
4517  else
4518    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4519
4520  if (FD) {
4521    FD->setBody(Body);
4522    if (FD->isMain())
4523      // C and C++ allow for main to automagically return 0.
4524      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4525      FD->setHasImplicitReturnZero(true);
4526    else
4527      CheckFallThroughForFunctionDef(FD, Body, AC);
4528
4529    if (!FD->isInvalidDecl())
4530      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4531
4532    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4533      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4534
4535    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4536  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4537    assert(MD == getCurMethodDecl() && "Method parsing confused");
4538    MD->setBody(Body);
4539    CheckFallThroughForFunctionDef(MD, Body, AC);
4540    MD->setEndLoc(Body->getLocEnd());
4541
4542    if (!MD->isInvalidDecl())
4543      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4544  } else {
4545    Body->Destroy(Context);
4546    return DeclPtrTy();
4547  }
4548  if (!IsInstantiation)
4549    PopDeclContext();
4550
4551  // Verify and clean out per-function state.
4552
4553  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4554
4555  // Check goto/label use.
4556  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4557       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4558    LabelStmt *L = I->second;
4559
4560    // Verify that we have no forward references left.  If so, there was a goto
4561    // or address of a label taken, but no definition of it.  Label fwd
4562    // definitions are indicated with a null substmt.
4563    if (L->getSubStmt() != 0)
4564      continue;
4565
4566    // Emit error.
4567    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4568
4569    // At this point, we have gotos that use the bogus label.  Stitch it into
4570    // the function body so that they aren't leaked and that the AST is well
4571    // formed.
4572    if (Body == 0) {
4573      // The whole function wasn't parsed correctly, just delete this.
4574      L->Destroy(Context);
4575      continue;
4576    }
4577
4578    // Otherwise, the body is valid: we want to stitch the label decl into the
4579    // function somewhere so that it is properly owned and so that the goto
4580    // has a valid target.  Do this by creating a new compound stmt with the
4581    // label in it.
4582
4583    // Give the label a sub-statement.
4584    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4585
4586    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4587                               cast<CXXTryStmt>(Body)->getTryBlock() :
4588                               cast<CompoundStmt>(Body);
4589    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4590    Elements.push_back(L);
4591    Compound->setStmts(Context, &Elements[0], Elements.size());
4592  }
4593  FunctionLabelMap.clear();
4594
4595  if (!Body) return D;
4596
4597  CheckUnreachable(AC);
4598
4599  // Verify that that gotos and switch cases don't jump into scopes illegally.
4600  if (CurFunctionNeedsScopeChecking)
4601    DiagnoseInvalidJumps(Body);
4602
4603  // C++ constructors that have function-try-blocks can't have return
4604  // statements in the handlers of that block. (C++ [except.handle]p14)
4605  // Verify this.
4606  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4607    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4608
4609  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4610    MarkBaseAndMemberDestructorsReferenced(Destructor);
4611
4612  // If any errors have occurred, clear out any temporaries that may have
4613  // been leftover. This ensures that these temporaries won't be picked up for
4614  // deletion in some later function.
4615  if (PP.getDiagnostics().hasErrorOccurred())
4616    ExprTemporaries.clear();
4617
4618  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4619  return D;
4620}
4621
4622/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4623/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4624NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4625                                          IdentifierInfo &II, Scope *S) {
4626  // Before we produce a declaration for an implicitly defined
4627  // function, see whether there was a locally-scoped declaration of
4628  // this name as a function or variable. If so, use that
4629  // (non-visible) declaration, and complain about it.
4630  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4631    = LocallyScopedExternalDecls.find(&II);
4632  if (Pos != LocallyScopedExternalDecls.end()) {
4633    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4634    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4635    return Pos->second;
4636  }
4637
4638  // Extension in C99.  Legal in C90, but warn about it.
4639  if (II.getName().startswith("__builtin_"))
4640    Diag(Loc, diag::warn_builtin_unknown) << &II;
4641  else if (getLangOptions().C99)
4642    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4643  else
4644    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4645
4646  // Set a Declarator for the implicit definition: int foo();
4647  const char *Dummy;
4648  DeclSpec DS;
4649  unsigned DiagID;
4650  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4651  Error = Error; // Silence warning.
4652  assert(!Error && "Error setting up implicit decl!");
4653  Declarator D(DS, Declarator::BlockContext);
4654  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4655                                             0, 0, false, SourceLocation(),
4656                                             false, 0,0,0, Loc, Loc, D),
4657                SourceLocation());
4658  D.SetIdentifier(&II, Loc);
4659
4660  // Insert this function into translation-unit scope.
4661
4662  DeclContext *PrevDC = CurContext;
4663  CurContext = Context.getTranslationUnitDecl();
4664
4665  FunctionDecl *FD =
4666 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4667  FD->setImplicit();
4668
4669  CurContext = PrevDC;
4670
4671  AddKnownFunctionAttributes(FD);
4672
4673  return FD;
4674}
4675
4676/// \brief Adds any function attributes that we know a priori based on
4677/// the declaration of this function.
4678///
4679/// These attributes can apply both to implicitly-declared builtins
4680/// (like __builtin___printf_chk) or to library-declared functions
4681/// like NSLog or printf.
4682void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4683  if (FD->isInvalidDecl())
4684    return;
4685
4686  // If this is a built-in function, map its builtin attributes to
4687  // actual attributes.
4688  if (unsigned BuiltinID = FD->getBuiltinID()) {
4689    // Handle printf-formatting attributes.
4690    unsigned FormatIdx;
4691    bool HasVAListArg;
4692    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4693      if (!FD->getAttr<FormatAttr>())
4694        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4695                                             HasVAListArg ? 0 : FormatIdx + 2));
4696    }
4697
4698    // Mark const if we don't care about errno and that is the only
4699    // thing preventing the function from being const. This allows
4700    // IRgen to use LLVM intrinsics for such functions.
4701    if (!getLangOptions().MathErrno &&
4702        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4703      if (!FD->getAttr<ConstAttr>())
4704        FD->addAttr(::new (Context) ConstAttr());
4705    }
4706
4707    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4708      FD->addAttr(::new (Context) NoReturnAttr());
4709    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4710      FD->addAttr(::new (Context) NoThrowAttr());
4711    if (Context.BuiltinInfo.isConst(BuiltinID))
4712      FD->addAttr(::new (Context) ConstAttr());
4713  }
4714
4715  IdentifierInfo *Name = FD->getIdentifier();
4716  if (!Name)
4717    return;
4718  if ((!getLangOptions().CPlusPlus &&
4719       FD->getDeclContext()->isTranslationUnit()) ||
4720      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4721       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4722       LinkageSpecDecl::lang_c)) {
4723    // Okay: this could be a libc/libm/Objective-C function we know
4724    // about.
4725  } else
4726    return;
4727
4728  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4729    // FIXME: NSLog and NSLogv should be target specific
4730    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4731      // FIXME: We known better than our headers.
4732      const_cast<FormatAttr *>(Format)->setType("printf");
4733    } else
4734      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4735                                             Name->isStr("NSLogv") ? 0 : 2));
4736  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4737    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4738    // target-specific builtins, perhaps?
4739    if (!FD->getAttr<FormatAttr>())
4740      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4741                                             Name->isStr("vasprintf") ? 0 : 3));
4742  }
4743}
4744
4745TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4746                                    TypeSourceInfo *TInfo) {
4747  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4748  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4749
4750  if (!TInfo) {
4751    assert(D.isInvalidType() && "no declarator info for valid type");
4752    TInfo = Context.getTrivialTypeSourceInfo(T);
4753  }
4754
4755  // Scope manipulation handled by caller.
4756  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4757                                           D.getIdentifierLoc(),
4758                                           D.getIdentifier(),
4759                                           TInfo);
4760
4761  if (const TagType *TT = T->getAs<TagType>()) {
4762    TagDecl *TD = TT->getDecl();
4763
4764    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4765    // keep track of the TypedefDecl.
4766    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4767      TD->setTypedefForAnonDecl(NewTD);
4768  }
4769
4770  if (D.isInvalidType())
4771    NewTD->setInvalidDecl();
4772  return NewTD;
4773}
4774
4775
4776/// \brief Determine whether a tag with a given kind is acceptable
4777/// as a redeclaration of the given tag declaration.
4778///
4779/// \returns true if the new tag kind is acceptable, false otherwise.
4780bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4781                                        TagDecl::TagKind NewTag,
4782                                        SourceLocation NewTagLoc,
4783                                        const IdentifierInfo &Name) {
4784  // C++ [dcl.type.elab]p3:
4785  //   The class-key or enum keyword present in the
4786  //   elaborated-type-specifier shall agree in kind with the
4787  //   declaration to which the name in theelaborated-type-specifier
4788  //   refers. This rule also applies to the form of
4789  //   elaborated-type-specifier that declares a class-name or
4790  //   friend class since it can be construed as referring to the
4791  //   definition of the class. Thus, in any
4792  //   elaborated-type-specifier, the enum keyword shall be used to
4793  //   refer to an enumeration (7.2), the union class-keyshall be
4794  //   used to refer to a union (clause 9), and either the class or
4795  //   struct class-key shall be used to refer to a class (clause 9)
4796  //   declared using the class or struct class-key.
4797  TagDecl::TagKind OldTag = Previous->getTagKind();
4798  if (OldTag == NewTag)
4799    return true;
4800
4801  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4802      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4803    // Warn about the struct/class tag mismatch.
4804    bool isTemplate = false;
4805    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4806      isTemplate = Record->getDescribedClassTemplate();
4807
4808    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4809      << (NewTag == TagDecl::TK_class)
4810      << isTemplate << &Name
4811      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4812                              OldTag == TagDecl::TK_class? "class" : "struct");
4813    Diag(Previous->getLocation(), diag::note_previous_use);
4814    return true;
4815  }
4816  return false;
4817}
4818
4819/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4820/// former case, Name will be non-null.  In the later case, Name will be null.
4821/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4822/// reference/declaration/definition of a tag.
4823Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4824                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4825                               IdentifierInfo *Name, SourceLocation NameLoc,
4826                               AttributeList *Attr, AccessSpecifier AS,
4827                               MultiTemplateParamsArg TemplateParameterLists,
4828                               bool &OwnedDecl, bool &IsDependent) {
4829  // If this is not a definition, it must have a name.
4830  assert((Name != 0 || TUK == TUK_Definition) &&
4831         "Nameless record must be a definition!");
4832
4833  OwnedDecl = false;
4834  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4835
4836  // FIXME: Check explicit specializations more carefully.
4837  bool isExplicitSpecialization = false;
4838  if (TUK != TUK_Reference) {
4839    if (TemplateParameterList *TemplateParams
4840          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4841                        (TemplateParameterList**)TemplateParameterLists.get(),
4842                                              TemplateParameterLists.size(),
4843                                                    isExplicitSpecialization)) {
4844      if (TemplateParams->size() > 0) {
4845        // This is a declaration or definition of a class template (which may
4846        // be a member of another template).
4847        OwnedDecl = false;
4848        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4849                                               SS, Name, NameLoc, Attr,
4850                                               TemplateParams,
4851                                               AS);
4852        TemplateParameterLists.release();
4853        return Result.get();
4854      } else {
4855        // The "template<>" header is extraneous.
4856        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4857          << ElaboratedType::getNameForTagKind(Kind) << Name;
4858        isExplicitSpecialization = true;
4859      }
4860    }
4861
4862    TemplateParameterLists.release();
4863  }
4864
4865  DeclContext *SearchDC = CurContext;
4866  DeclContext *DC = CurContext;
4867  bool isStdBadAlloc = false;
4868  bool Invalid = false;
4869
4870  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4871                                                   : NotForRedeclaration);
4872
4873  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4874
4875  if (Name && SS.isNotEmpty()) {
4876    // We have a nested-name tag ('struct foo::bar').
4877
4878    // Check for invalid 'foo::'.
4879    if (SS.isInvalid()) {
4880      Name = 0;
4881      goto CreateNewDecl;
4882    }
4883
4884    // If this is a friend or a reference to a class in a dependent
4885    // context, don't try to make a decl for it.
4886    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4887      DC = computeDeclContext(SS, false);
4888      if (!DC) {
4889        IsDependent = true;
4890        return DeclPtrTy();
4891      }
4892    }
4893
4894    if (RequireCompleteDeclContext(SS))
4895      return DeclPtrTy::make((Decl *)0);
4896
4897    DC = computeDeclContext(SS, true);
4898    SearchDC = DC;
4899    // Look-up name inside 'foo::'.
4900    LookupQualifiedName(Previous, DC);
4901
4902    if (Previous.isAmbiguous())
4903      return DeclPtrTy();
4904
4905    if (Previous.empty()) {
4906      // Name lookup did not find anything. However, if the
4907      // nested-name-specifier refers to the current instantiation,
4908      // and that current instantiation has any dependent base
4909      // classes, we might find something at instantiation time: treat
4910      // this as a dependent elaborated-type-specifier.
4911      if (Previous.wasNotFoundInCurrentInstantiation()) {
4912        IsDependent = true;
4913        return DeclPtrTy();
4914      }
4915
4916      // A tag 'foo::bar' must already exist.
4917      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4918      Name = 0;
4919      Invalid = true;
4920      goto CreateNewDecl;
4921    }
4922  } else if (Name) {
4923    // If this is a named struct, check to see if there was a previous forward
4924    // declaration or definition.
4925    // FIXME: We're looking into outer scopes here, even when we
4926    // shouldn't be. Doing so can result in ambiguities that we
4927    // shouldn't be diagnosing.
4928    LookupName(Previous, S);
4929
4930    // Note:  there used to be some attempt at recovery here.
4931    if (Previous.isAmbiguous())
4932      return DeclPtrTy();
4933
4934    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4935      // FIXME: This makes sure that we ignore the contexts associated
4936      // with C structs, unions, and enums when looking for a matching
4937      // tag declaration or definition. See the similar lookup tweak
4938      // in Sema::LookupName; is there a better way to deal with this?
4939      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4940        SearchDC = SearchDC->getParent();
4941    }
4942  }
4943
4944  if (Previous.isSingleResult() &&
4945      Previous.getFoundDecl()->isTemplateParameter()) {
4946    // Maybe we will complain about the shadowed template parameter.
4947    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4948    // Just pretend that we didn't see the previous declaration.
4949    Previous.clear();
4950  }
4951
4952  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4953      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4954    // This is a declaration of or a reference to "std::bad_alloc".
4955    isStdBadAlloc = true;
4956
4957    if (Previous.empty() && StdBadAlloc) {
4958      // std::bad_alloc has been implicitly declared (but made invisible to
4959      // name lookup). Fill in this implicit declaration as the previous
4960      // declaration, so that the declarations get chained appropriately.
4961      Previous.addDecl(StdBadAlloc);
4962    }
4963  }
4964
4965  if (!Previous.empty()) {
4966    assert(Previous.isSingleResult());
4967    NamedDecl *PrevDecl = Previous.getFoundDecl();
4968    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4969      // If this is a use of a previous tag, or if the tag is already declared
4970      // in the same scope (so that the definition/declaration completes or
4971      // rementions the tag), reuse the decl.
4972      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4973          isDeclInScope(PrevDecl, SearchDC, S)) {
4974        // Make sure that this wasn't declared as an enum and now used as a
4975        // struct or something similar.
4976        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4977          bool SafeToContinue
4978            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4979               Kind != TagDecl::TK_enum);
4980          if (SafeToContinue)
4981            Diag(KWLoc, diag::err_use_with_wrong_tag)
4982              << Name
4983              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4984                                                  PrevTagDecl->getKindName());
4985          else
4986            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4987          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4988
4989          if (SafeToContinue)
4990            Kind = PrevTagDecl->getTagKind();
4991          else {
4992            // Recover by making this an anonymous redefinition.
4993            Name = 0;
4994            Previous.clear();
4995            Invalid = true;
4996          }
4997        }
4998
4999        if (!Invalid) {
5000          // If this is a use, just return the declaration we found.
5001
5002          // FIXME: In the future, return a variant or some other clue
5003          // for the consumer of this Decl to know it doesn't own it.
5004          // For our current ASTs this shouldn't be a problem, but will
5005          // need to be changed with DeclGroups.
5006          if (TUK == TUK_Reference || TUK == TUK_Friend)
5007            return DeclPtrTy::make(PrevTagDecl);
5008
5009          // Diagnose attempts to redefine a tag.
5010          if (TUK == TUK_Definition) {
5011            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
5012              // If we're defining a specialization and the previous definition
5013              // is from an implicit instantiation, don't emit an error
5014              // here; we'll catch this in the general case below.
5015              if (!isExplicitSpecialization ||
5016                  !isa<CXXRecordDecl>(Def) ||
5017                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5018                                               == TSK_ExplicitSpecialization) {
5019                Diag(NameLoc, diag::err_redefinition) << Name;
5020                Diag(Def->getLocation(), diag::note_previous_definition);
5021                // If this is a redefinition, recover by making this
5022                // struct be anonymous, which will make any later
5023                // references get the previous definition.
5024                Name = 0;
5025                Previous.clear();
5026                Invalid = true;
5027              }
5028            } else {
5029              // If the type is currently being defined, complain
5030              // about a nested redefinition.
5031              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5032              if (Tag->isBeingDefined()) {
5033                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5034                Diag(PrevTagDecl->getLocation(),
5035                     diag::note_previous_definition);
5036                Name = 0;
5037                Previous.clear();
5038                Invalid = true;
5039              }
5040            }
5041
5042            // Okay, this is definition of a previously declared or referenced
5043            // tag PrevDecl. We're going to create a new Decl for it.
5044          }
5045        }
5046        // If we get here we have (another) forward declaration or we
5047        // have a definition.  Just create a new decl.
5048
5049      } else {
5050        // If we get here, this is a definition of a new tag type in a nested
5051        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5052        // new decl/type.  We set PrevDecl to NULL so that the entities
5053        // have distinct types.
5054        Previous.clear();
5055      }
5056      // If we get here, we're going to create a new Decl. If PrevDecl
5057      // is non-NULL, it's a definition of the tag declared by
5058      // PrevDecl. If it's NULL, we have a new definition.
5059    } else {
5060      // PrevDecl is a namespace, template, or anything else
5061      // that lives in the IDNS_Tag identifier namespace.
5062      if (isDeclInScope(PrevDecl, SearchDC, S)) {
5063        // The tag name clashes with a namespace name, issue an error and
5064        // recover by making this tag be anonymous.
5065        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5066        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5067        Name = 0;
5068        Previous.clear();
5069        Invalid = true;
5070      } else {
5071        // The existing declaration isn't relevant to us; we're in a
5072        // new scope, so clear out the previous declaration.
5073        Previous.clear();
5074      }
5075    }
5076  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
5077    // C++ [basic.scope.pdecl]p5:
5078    //   -- for an elaborated-type-specifier of the form
5079    //
5080    //          class-key identifier
5081    //
5082    //      if the elaborated-type-specifier is used in the
5083    //      decl-specifier-seq or parameter-declaration-clause of a
5084    //      function defined in namespace scope, the identifier is
5085    //      declared as a class-name in the namespace that contains
5086    //      the declaration; otherwise, except as a friend
5087    //      declaration, the identifier is declared in the smallest
5088    //      non-class, non-function-prototype scope that contains the
5089    //      declaration.
5090    //
5091    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5092    // C structs and unions.
5093    //
5094    // It is an error in C++ to declare (rather than define) an enum
5095    // type, including via an elaborated type specifier.  We'll
5096    // diagnose that later; for now, declare the enum in the same
5097    // scope as we would have picked for any other tag type.
5098    //
5099    // GNU C also supports this behavior as part of its incomplete
5100    // enum types extension, while GNU C++ does not.
5101    //
5102    // Find the context where we'll be declaring the tag.
5103    // FIXME: We would like to maintain the current DeclContext as the
5104    // lexical context,
5105    while (SearchDC->isRecord())
5106      SearchDC = SearchDC->getParent();
5107
5108    // Find the scope where we'll be declaring the tag.
5109    while (S->isClassScope() ||
5110           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
5111           ((S->getFlags() & Scope::DeclScope) == 0) ||
5112           (S->getEntity() &&
5113            ((DeclContext *)S->getEntity())->isTransparentContext()))
5114      S = S->getParent();
5115
5116  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
5117    // C++ [namespace.memdef]p3:
5118    //   If a friend declaration in a non-local class first declares a
5119    //   class or function, the friend class or function is a member of
5120    //   the innermost enclosing namespace.
5121    while (!SearchDC->isFileContext())
5122      SearchDC = SearchDC->getParent();
5123
5124    // The entity of a decl scope is a DeclContext; see PushDeclContext.
5125    while (S->getEntity() != SearchDC)
5126      S = S->getParent();
5127  }
5128
5129CreateNewDecl:
5130
5131  TagDecl *PrevDecl = 0;
5132  if (Previous.isSingleResult())
5133    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5134
5135  // If there is an identifier, use the location of the identifier as the
5136  // location of the decl, otherwise use the location of the struct/union
5137  // keyword.
5138  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5139
5140  // Otherwise, create a new declaration. If there is a previous
5141  // declaration of the same entity, the two will be linked via
5142  // PrevDecl.
5143  TagDecl *New;
5144
5145  if (Kind == TagDecl::TK_enum) {
5146    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5147    // enum X { A, B, C } D;    D should chain to X.
5148    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5149                           cast_or_null<EnumDecl>(PrevDecl));
5150    // If this is an undefined enum, warn.
5151    if (TUK != TUK_Definition && !Invalid)  {
5152      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5153                                              : diag::ext_forward_ref_enum;
5154      Diag(Loc, DK);
5155    }
5156  } else {
5157    // struct/union/class
5158
5159    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5160    // struct X { int A; } D;    D should chain to X.
5161    if (getLangOptions().CPlusPlus) {
5162      // FIXME: Look for a way to use RecordDecl for simple structs.
5163      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5164                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5165
5166      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5167        StdBadAlloc = cast<CXXRecordDecl>(New);
5168    } else
5169      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5170                               cast_or_null<RecordDecl>(PrevDecl));
5171  }
5172
5173  if (Kind != TagDecl::TK_enum) {
5174    // Handle #pragma pack: if the #pragma pack stack has non-default
5175    // alignment, make up a packed attribute for this decl. These
5176    // attributes are checked when the ASTContext lays out the
5177    // structure.
5178    //
5179    // It is important for implementing the correct semantics that this
5180    // happen here (in act on tag decl). The #pragma pack stack is
5181    // maintained as a result of parser callbacks which can occur at
5182    // many points during the parsing of a struct declaration (because
5183    // the #pragma tokens are effectively skipped over during the
5184    // parsing of the struct).
5185    if (unsigned Alignment = getPragmaPackAlignment())
5186      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5187  }
5188
5189  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5190    // C++ [dcl.typedef]p3:
5191    //   [...] Similarly, in a given scope, a class or enumeration
5192    //   shall not be declared with the same name as a typedef-name
5193    //   that is declared in that scope and refers to a type other
5194    //   than the class or enumeration itself.
5195    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5196                        ForRedeclaration);
5197    LookupName(Lookup, S);
5198    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5199    NamedDecl *PrevTypedefNamed = PrevTypedef;
5200    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5201        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5202          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5203      Diag(Loc, diag::err_tag_definition_of_typedef)
5204        << Context.getTypeDeclType(New)
5205        << PrevTypedef->getUnderlyingType();
5206      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5207      Invalid = true;
5208    }
5209  }
5210
5211  // If this is a specialization of a member class (of a class template),
5212  // check the specialization.
5213  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5214    Invalid = true;
5215
5216  if (Invalid)
5217    New->setInvalidDecl();
5218
5219  if (Attr)
5220    ProcessDeclAttributeList(S, New, Attr);
5221
5222  // If we're declaring or defining a tag in function prototype scope
5223  // in C, note that this type can only be used within the function.
5224  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5225    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5226
5227  // Set the lexical context. If the tag has a C++ scope specifier, the
5228  // lexical context will be different from the semantic context.
5229  New->setLexicalDeclContext(CurContext);
5230
5231  // Mark this as a friend decl if applicable.
5232  if (TUK == TUK_Friend)
5233    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5234
5235  // Set the access specifier.
5236  if (!Invalid && TUK != TUK_Friend)
5237    SetMemberAccessSpecifier(New, PrevDecl, AS);
5238
5239  if (TUK == TUK_Definition)
5240    New->startDefinition();
5241
5242  // If this has an identifier, add it to the scope stack.
5243  if (TUK == TUK_Friend) {
5244    // We might be replacing an existing declaration in the lookup tables;
5245    // if so, borrow its access specifier.
5246    if (PrevDecl)
5247      New->setAccess(PrevDecl->getAccess());
5248
5249    // Friend tag decls are visible in fairly strange ways.
5250    if (!CurContext->isDependentContext()) {
5251      DeclContext *DC = New->getDeclContext()->getLookupContext();
5252      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5253      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5254        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5255    }
5256  } else if (Name) {
5257    S = getNonFieldDeclScope(S);
5258    PushOnScopeChains(New, S);
5259  } else {
5260    CurContext->addDecl(New);
5261  }
5262
5263  // If this is the C FILE type, notify the AST context.
5264  if (IdentifierInfo *II = New->getIdentifier())
5265    if (!New->isInvalidDecl() &&
5266        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5267        II->isStr("FILE"))
5268      Context.setFILEDecl(New);
5269
5270  OwnedDecl = true;
5271  return DeclPtrTy::make(New);
5272}
5273
5274void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5275  AdjustDeclIfTemplate(TagD);
5276  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5277
5278  // Enter the tag context.
5279  PushDeclContext(S, Tag);
5280}
5281
5282void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5283                                           SourceLocation LBraceLoc) {
5284  AdjustDeclIfTemplate(TagD);
5285  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5286
5287  FieldCollector->StartClass();
5288
5289  if (!Record->getIdentifier())
5290    return;
5291
5292  // C++ [class]p2:
5293  //   [...] The class-name is also inserted into the scope of the
5294  //   class itself; this is known as the injected-class-name. For
5295  //   purposes of access checking, the injected-class-name is treated
5296  //   as if it were a public member name.
5297  CXXRecordDecl *InjectedClassName
5298    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5299                            CurContext, Record->getLocation(),
5300                            Record->getIdentifier(),
5301                            Record->getTagKeywordLoc(),
5302                            Record);
5303  InjectedClassName->setImplicit();
5304  InjectedClassName->setAccess(AS_public);
5305  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5306      InjectedClassName->setDescribedClassTemplate(Template);
5307  PushOnScopeChains(InjectedClassName, S);
5308  assert(InjectedClassName->isInjectedClassName() &&
5309         "Broken injected-class-name");
5310}
5311
5312// Traverses the class and any nested classes, making a note of any
5313// dynamic classes that have no key function so that we can mark all of
5314// their virtual member functions as "used" at the end of the translation
5315// unit. This ensures that all functions needed by the vtable will get
5316// instantiated/synthesized.
5317static void
5318RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5319                                      SourceLocation Loc) {
5320  // We don't look at dependent or undefined classes.
5321  if (Record->isDependentContext() || !Record->isDefinition())
5322    return;
5323
5324  if (Record->isDynamicClass() && !S.Context.getKeyFunction(Record))
5325    S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record, Loc));
5326
5327  for (DeclContext::decl_iterator D = Record->decls_begin(),
5328                               DEnd = Record->decls_end();
5329       D != DEnd; ++D) {
5330    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5331      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5332  }
5333}
5334
5335void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5336                                    SourceLocation RBraceLoc) {
5337  AdjustDeclIfTemplate(TagD);
5338  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5339  Tag->setRBraceLoc(RBraceLoc);
5340
5341  if (isa<CXXRecordDecl>(Tag))
5342    FieldCollector->FinishClass();
5343
5344  // Exit this scope of this tag's definition.
5345  PopDeclContext();
5346
5347  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
5348    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5349                                          RBraceLoc);
5350
5351  // Notify the consumer that we've defined a tag.
5352  Consumer.HandleTagDeclDefinition(Tag);
5353}
5354
5355// Note that FieldName may be null for anonymous bitfields.
5356bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5357                          QualType FieldTy, const Expr *BitWidth,
5358                          bool *ZeroWidth) {
5359  // Default to true; that shouldn't confuse checks for emptiness
5360  if (ZeroWidth)
5361    *ZeroWidth = true;
5362
5363  // C99 6.7.2.1p4 - verify the field type.
5364  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5365  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5366    // Handle incomplete types with specific error.
5367    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5368      return true;
5369    if (FieldName)
5370      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5371        << FieldName << FieldTy << BitWidth->getSourceRange();
5372    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5373      << FieldTy << BitWidth->getSourceRange();
5374  }
5375
5376  // If the bit-width is type- or value-dependent, don't try to check
5377  // it now.
5378  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5379    return false;
5380
5381  llvm::APSInt Value;
5382  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5383    return true;
5384
5385  if (Value != 0 && ZeroWidth)
5386    *ZeroWidth = false;
5387
5388  // Zero-width bitfield is ok for anonymous field.
5389  if (Value == 0 && FieldName)
5390    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5391
5392  if (Value.isSigned() && Value.isNegative()) {
5393    if (FieldName)
5394      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5395               << FieldName << Value.toString(10);
5396    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5397      << Value.toString(10);
5398  }
5399
5400  if (!FieldTy->isDependentType()) {
5401    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5402    if (Value.getZExtValue() > TypeSize) {
5403      if (FieldName)
5404        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5405          << FieldName << (unsigned)TypeSize;
5406      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5407        << (unsigned)TypeSize;
5408    }
5409  }
5410
5411  return false;
5412}
5413
5414/// ActOnField - Each field of a struct/union/class is passed into this in order
5415/// to create a FieldDecl object for it.
5416Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5417                                 SourceLocation DeclStart,
5418                                 Declarator &D, ExprTy *BitfieldWidth) {
5419  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5420                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5421                               AS_public);
5422  return DeclPtrTy::make(Res);
5423}
5424
5425/// HandleField - Analyze a field of a C struct or a C++ data member.
5426///
5427FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5428                             SourceLocation DeclStart,
5429                             Declarator &D, Expr *BitWidth,
5430                             AccessSpecifier AS) {
5431  IdentifierInfo *II = D.getIdentifier();
5432  SourceLocation Loc = DeclStart;
5433  if (II) Loc = D.getIdentifierLoc();
5434
5435  TypeSourceInfo *TInfo = 0;
5436  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5437  if (getLangOptions().CPlusPlus)
5438    CheckExtraCXXDefaultArguments(D);
5439
5440  DiagnoseFunctionSpecifiers(D);
5441
5442  if (D.getDeclSpec().isThreadSpecified())
5443    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5444
5445  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5446                                         ForRedeclaration);
5447
5448  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5449    // Maybe we will complain about the shadowed template parameter.
5450    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5451    // Just pretend that we didn't see the previous declaration.
5452    PrevDecl = 0;
5453  }
5454
5455  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5456    PrevDecl = 0;
5457
5458  bool Mutable
5459    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5460  SourceLocation TSSL = D.getSourceRange().getBegin();
5461  FieldDecl *NewFD
5462    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5463                     AS, PrevDecl, &D);
5464  if (NewFD->isInvalidDecl() && PrevDecl) {
5465    // Don't introduce NewFD into scope; there's already something
5466    // with the same name in the same scope.
5467  } else if (II) {
5468    PushOnScopeChains(NewFD, S);
5469  } else
5470    Record->addDecl(NewFD);
5471
5472  return NewFD;
5473}
5474
5475/// \brief Build a new FieldDecl and check its well-formedness.
5476///
5477/// This routine builds a new FieldDecl given the fields name, type,
5478/// record, etc. \p PrevDecl should refer to any previous declaration
5479/// with the same name and in the same scope as the field to be
5480/// created.
5481///
5482/// \returns a new FieldDecl.
5483///
5484/// \todo The Declarator argument is a hack. It will be removed once
5485FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5486                                TypeSourceInfo *TInfo,
5487                                RecordDecl *Record, SourceLocation Loc,
5488                                bool Mutable, Expr *BitWidth,
5489                                SourceLocation TSSL,
5490                                AccessSpecifier AS, NamedDecl *PrevDecl,
5491                                Declarator *D) {
5492  IdentifierInfo *II = Name.getAsIdentifierInfo();
5493  bool InvalidDecl = false;
5494  if (D) InvalidDecl = D->isInvalidType();
5495
5496  // If we receive a broken type, recover by assuming 'int' and
5497  // marking this declaration as invalid.
5498  if (T.isNull()) {
5499    InvalidDecl = true;
5500    T = Context.IntTy;
5501  }
5502
5503  QualType EltTy = Context.getBaseElementType(T);
5504  if (!EltTy->isDependentType() &&
5505      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5506    InvalidDecl = true;
5507
5508  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5509  // than a variably modified type.
5510  if (!InvalidDecl && T->isVariablyModifiedType()) {
5511    bool SizeIsNegative;
5512    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5513                                                           SizeIsNegative);
5514    if (!FixedTy.isNull()) {
5515      Diag(Loc, diag::warn_illegal_constant_array_size);
5516      T = FixedTy;
5517    } else {
5518      if (SizeIsNegative)
5519        Diag(Loc, diag::err_typecheck_negative_array_size);
5520      else
5521        Diag(Loc, diag::err_typecheck_field_variable_size);
5522      InvalidDecl = true;
5523    }
5524  }
5525
5526  // Fields can not have abstract class types
5527  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5528                                             diag::err_abstract_type_in_decl,
5529                                             AbstractFieldType))
5530    InvalidDecl = true;
5531
5532  bool ZeroWidth = false;
5533  // If this is declared as a bit-field, check the bit-field.
5534  if (!InvalidDecl && BitWidth &&
5535      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5536    InvalidDecl = true;
5537    DeleteExpr(BitWidth);
5538    BitWidth = 0;
5539    ZeroWidth = false;
5540  }
5541
5542  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5543                                       BitWidth, Mutable);
5544  if (InvalidDecl)
5545    NewFD->setInvalidDecl();
5546
5547  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5548    Diag(Loc, diag::err_duplicate_member) << II;
5549    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5550    NewFD->setInvalidDecl();
5551  }
5552
5553  if (getLangOptions().CPlusPlus) {
5554    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5555
5556    if (!T->isPODType())
5557      CXXRecord->setPOD(false);
5558    if (!ZeroWidth)
5559      CXXRecord->setEmpty(false);
5560
5561    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5562      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5563
5564      if (!RDecl->hasTrivialConstructor())
5565        CXXRecord->setHasTrivialConstructor(false);
5566      if (!RDecl->hasTrivialCopyConstructor())
5567        CXXRecord->setHasTrivialCopyConstructor(false);
5568      if (!RDecl->hasTrivialCopyAssignment())
5569        CXXRecord->setHasTrivialCopyAssignment(false);
5570      if (!RDecl->hasTrivialDestructor())
5571        CXXRecord->setHasTrivialDestructor(false);
5572
5573      // C++ 9.5p1: An object of a class with a non-trivial
5574      // constructor, a non-trivial copy constructor, a non-trivial
5575      // destructor, or a non-trivial copy assignment operator
5576      // cannot be a member of a union, nor can an array of such
5577      // objects.
5578      // TODO: C++0x alters this restriction significantly.
5579      if (Record->isUnion()) {
5580        // We check for copy constructors before constructors
5581        // because otherwise we'll never get complaints about
5582        // copy constructors.
5583
5584        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5585
5586        CXXSpecialMember member;
5587        if (!RDecl->hasTrivialCopyConstructor())
5588          member = CXXCopyConstructor;
5589        else if (!RDecl->hasTrivialConstructor())
5590          member = CXXDefaultConstructor;
5591        else if (!RDecl->hasTrivialCopyAssignment())
5592          member = CXXCopyAssignment;
5593        else if (!RDecl->hasTrivialDestructor())
5594          member = CXXDestructor;
5595        else
5596          member = invalid;
5597
5598        if (member != invalid) {
5599          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5600          DiagnoseNontrivial(RT, member);
5601          NewFD->setInvalidDecl();
5602        }
5603      }
5604    }
5605  }
5606
5607  // FIXME: We need to pass in the attributes given an AST
5608  // representation, not a parser representation.
5609  if (D)
5610    // FIXME: What to pass instead of TUScope?
5611    ProcessDeclAttributes(TUScope, NewFD, *D);
5612
5613  if (T.isObjCGCWeak())
5614    Diag(Loc, diag::warn_attribute_weak_on_field);
5615
5616  NewFD->setAccess(AS);
5617
5618  // C++ [dcl.init.aggr]p1:
5619  //   An aggregate is an array or a class (clause 9) with [...] no
5620  //   private or protected non-static data members (clause 11).
5621  // A POD must be an aggregate.
5622  if (getLangOptions().CPlusPlus &&
5623      (AS == AS_private || AS == AS_protected)) {
5624    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5625    CXXRecord->setAggregate(false);
5626    CXXRecord->setPOD(false);
5627  }
5628
5629  return NewFD;
5630}
5631
5632/// DiagnoseNontrivial - Given that a class has a non-trivial
5633/// special member, figure out why.
5634void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5635  QualType QT(T, 0U);
5636  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5637
5638  // Check whether the member was user-declared.
5639  switch (member) {
5640  case CXXDefaultConstructor:
5641    if (RD->hasUserDeclaredConstructor()) {
5642      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5643      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5644        const FunctionDecl *body = 0;
5645        ci->getBody(body);
5646        if (!body ||
5647            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5648          SourceLocation CtorLoc = ci->getLocation();
5649          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5650          return;
5651        }
5652      }
5653
5654      assert(0 && "found no user-declared constructors");
5655      return;
5656    }
5657    break;
5658
5659  case CXXCopyConstructor:
5660    if (RD->hasUserDeclaredCopyConstructor()) {
5661      SourceLocation CtorLoc =
5662        RD->getCopyConstructor(Context, 0)->getLocation();
5663      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5664      return;
5665    }
5666    break;
5667
5668  case CXXCopyAssignment:
5669    if (RD->hasUserDeclaredCopyAssignment()) {
5670      // FIXME: this should use the location of the copy
5671      // assignment, not the type.
5672      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5673      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5674      return;
5675    }
5676    break;
5677
5678  case CXXDestructor:
5679    if (RD->hasUserDeclaredDestructor()) {
5680      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5681      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5682      return;
5683    }
5684    break;
5685  }
5686
5687  typedef CXXRecordDecl::base_class_iterator base_iter;
5688
5689  // Virtual bases and members inhibit trivial copying/construction,
5690  // but not trivial destruction.
5691  if (member != CXXDestructor) {
5692    // Check for virtual bases.  vbases includes indirect virtual bases,
5693    // so we just iterate through the direct bases.
5694    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5695      if (bi->isVirtual()) {
5696        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5697        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5698        return;
5699      }
5700
5701    // Check for virtual methods.
5702    typedef CXXRecordDecl::method_iterator meth_iter;
5703    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5704         ++mi) {
5705      if (mi->isVirtual()) {
5706        SourceLocation MLoc = mi->getSourceRange().getBegin();
5707        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5708        return;
5709      }
5710    }
5711  }
5712
5713  bool (CXXRecordDecl::*hasTrivial)() const;
5714  switch (member) {
5715  case CXXDefaultConstructor:
5716    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5717  case CXXCopyConstructor:
5718    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5719  case CXXCopyAssignment:
5720    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5721  case CXXDestructor:
5722    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5723  default:
5724    assert(0 && "unexpected special member"); return;
5725  }
5726
5727  // Check for nontrivial bases (and recurse).
5728  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5729    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5730    assert(BaseRT && "Don't know how to handle dependent bases");
5731    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5732    if (!(BaseRecTy->*hasTrivial)()) {
5733      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5734      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5735      DiagnoseNontrivial(BaseRT, member);
5736      return;
5737    }
5738  }
5739
5740  // Check for nontrivial members (and recurse).
5741  typedef RecordDecl::field_iterator field_iter;
5742  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5743       ++fi) {
5744    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5745    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5746      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5747
5748      if (!(EltRD->*hasTrivial)()) {
5749        SourceLocation FLoc = (*fi)->getLocation();
5750        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5751        DiagnoseNontrivial(EltRT, member);
5752        return;
5753      }
5754    }
5755  }
5756
5757  assert(0 && "found no explanation for non-trivial member");
5758}
5759
5760/// TranslateIvarVisibility - Translate visibility from a token ID to an
5761///  AST enum value.
5762static ObjCIvarDecl::AccessControl
5763TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5764  switch (ivarVisibility) {
5765  default: assert(0 && "Unknown visitibility kind");
5766  case tok::objc_private: return ObjCIvarDecl::Private;
5767  case tok::objc_public: return ObjCIvarDecl::Public;
5768  case tok::objc_protected: return ObjCIvarDecl::Protected;
5769  case tok::objc_package: return ObjCIvarDecl::Package;
5770  }
5771}
5772
5773/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5774/// in order to create an IvarDecl object for it.
5775Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5776                                SourceLocation DeclStart,
5777                                DeclPtrTy IntfDecl,
5778                                Declarator &D, ExprTy *BitfieldWidth,
5779                                tok::ObjCKeywordKind Visibility) {
5780
5781  IdentifierInfo *II = D.getIdentifier();
5782  Expr *BitWidth = (Expr*)BitfieldWidth;
5783  SourceLocation Loc = DeclStart;
5784  if (II) Loc = D.getIdentifierLoc();
5785
5786  // FIXME: Unnamed fields can be handled in various different ways, for
5787  // example, unnamed unions inject all members into the struct namespace!
5788
5789  TypeSourceInfo *TInfo = 0;
5790  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5791
5792  if (BitWidth) {
5793    // 6.7.2.1p3, 6.7.2.1p4
5794    if (VerifyBitField(Loc, II, T, BitWidth)) {
5795      D.setInvalidType();
5796      DeleteExpr(BitWidth);
5797      BitWidth = 0;
5798    }
5799  } else {
5800    // Not a bitfield.
5801
5802    // validate II.
5803
5804  }
5805
5806  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5807  // than a variably modified type.
5808  if (T->isVariablyModifiedType()) {
5809    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5810    D.setInvalidType();
5811  }
5812
5813  // Get the visibility (access control) for this ivar.
5814  ObjCIvarDecl::AccessControl ac =
5815    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5816                                        : ObjCIvarDecl::None;
5817  // Must set ivar's DeclContext to its enclosing interface.
5818  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5819  DeclContext *EnclosingContext;
5820  if (ObjCImplementationDecl *IMPDecl =
5821      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5822    // Case of ivar declared in an implementation. Context is that of its class.
5823    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5824    assert(IDecl && "No class- ActOnIvar");
5825    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5826  } else
5827    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5828  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5829
5830  // Construct the decl.
5831  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5832                                             EnclosingContext, Loc, II, T,
5833                                             TInfo, ac, (Expr *)BitfieldWidth);
5834
5835  if (II) {
5836    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5837                                           ForRedeclaration);
5838    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5839        && !isa<TagDecl>(PrevDecl)) {
5840      Diag(Loc, diag::err_duplicate_member) << II;
5841      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5842      NewID->setInvalidDecl();
5843    }
5844  }
5845
5846  // Process attributes attached to the ivar.
5847  ProcessDeclAttributes(S, NewID, D);
5848
5849  if (D.isInvalidType())
5850    NewID->setInvalidDecl();
5851
5852  if (II) {
5853    // FIXME: When interfaces are DeclContexts, we'll need to add
5854    // these to the interface.
5855    S->AddDecl(DeclPtrTy::make(NewID));
5856    IdResolver.AddDecl(NewID);
5857  }
5858
5859  return DeclPtrTy::make(NewID);
5860}
5861
5862void Sema::ActOnFields(Scope* S,
5863                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5864                       DeclPtrTy *Fields, unsigned NumFields,
5865                       SourceLocation LBrac, SourceLocation RBrac,
5866                       AttributeList *Attr) {
5867  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5868  assert(EnclosingDecl && "missing record or interface decl");
5869
5870  // If the decl this is being inserted into is invalid, then it may be a
5871  // redeclaration or some other bogus case.  Don't try to add fields to it.
5872  if (EnclosingDecl->isInvalidDecl()) {
5873    // FIXME: Deallocate fields?
5874    return;
5875  }
5876
5877
5878  // Verify that all the fields are okay.
5879  unsigned NumNamedMembers = 0;
5880  llvm::SmallVector<FieldDecl*, 32> RecFields;
5881
5882  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5883  for (unsigned i = 0; i != NumFields; ++i) {
5884    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5885
5886    // Get the type for the field.
5887    Type *FDTy = FD->getType().getTypePtr();
5888
5889    if (!FD->isAnonymousStructOrUnion()) {
5890      // Remember all fields written by the user.
5891      RecFields.push_back(FD);
5892    }
5893
5894    // If the field is already invalid for some reason, don't emit more
5895    // diagnostics about it.
5896    if (FD->isInvalidDecl()) {
5897      EnclosingDecl->setInvalidDecl();
5898      continue;
5899    }
5900
5901    // C99 6.7.2.1p2:
5902    //   A structure or union shall not contain a member with
5903    //   incomplete or function type (hence, a structure shall not
5904    //   contain an instance of itself, but may contain a pointer to
5905    //   an instance of itself), except that the last member of a
5906    //   structure with more than one named member may have incomplete
5907    //   array type; such a structure (and any union containing,
5908    //   possibly recursively, a member that is such a structure)
5909    //   shall not be a member of a structure or an element of an
5910    //   array.
5911    if (FDTy->isFunctionType()) {
5912      // Field declared as a function.
5913      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5914        << FD->getDeclName();
5915      FD->setInvalidDecl();
5916      EnclosingDecl->setInvalidDecl();
5917      continue;
5918    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5919               Record && Record->isStruct()) {
5920      // Flexible array member.
5921      if (NumNamedMembers < 1) {
5922        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5923          << FD->getDeclName();
5924        FD->setInvalidDecl();
5925        EnclosingDecl->setInvalidDecl();
5926        continue;
5927      }
5928      // Okay, we have a legal flexible array member at the end of the struct.
5929      if (Record)
5930        Record->setHasFlexibleArrayMember(true);
5931    } else if (!FDTy->isDependentType() &&
5932               RequireCompleteType(FD->getLocation(), FD->getType(),
5933                                   diag::err_field_incomplete)) {
5934      // Incomplete type
5935      FD->setInvalidDecl();
5936      EnclosingDecl->setInvalidDecl();
5937      continue;
5938    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5939      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5940        // If this is a member of a union, then entire union becomes "flexible".
5941        if (Record && Record->isUnion()) {
5942          Record->setHasFlexibleArrayMember(true);
5943        } else {
5944          // If this is a struct/class and this is not the last element, reject
5945          // it.  Note that GCC supports variable sized arrays in the middle of
5946          // structures.
5947          if (i != NumFields-1)
5948            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5949              << FD->getDeclName() << FD->getType();
5950          else {
5951            // We support flexible arrays at the end of structs in
5952            // other structs as an extension.
5953            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5954              << FD->getDeclName();
5955            if (Record)
5956              Record->setHasFlexibleArrayMember(true);
5957          }
5958        }
5959      }
5960      if (Record && FDTTy->getDecl()->hasObjectMember())
5961        Record->setHasObjectMember(true);
5962    } else if (FDTy->isObjCInterfaceType()) {
5963      /// A field cannot be an Objective-c object
5964      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5965      FD->setInvalidDecl();
5966      EnclosingDecl->setInvalidDecl();
5967      continue;
5968    } else if (getLangOptions().ObjC1 &&
5969               getLangOptions().getGCMode() != LangOptions::NonGC &&
5970               Record &&
5971               (FD->getType()->isObjCObjectPointerType() ||
5972                FD->getType().isObjCGCStrong()))
5973      Record->setHasObjectMember(true);
5974    // Keep track of the number of named members.
5975    if (FD->getIdentifier())
5976      ++NumNamedMembers;
5977  }
5978
5979  // Okay, we successfully defined 'Record'.
5980  if (Record) {
5981    Record->completeDefinition(Context);
5982  } else {
5983    ObjCIvarDecl **ClsFields =
5984      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5985    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5986      ID->setIVarList(ClsFields, RecFields.size(), Context);
5987      ID->setLocEnd(RBrac);
5988      // Add ivar's to class's DeclContext.
5989      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5990        ClsFields[i]->setLexicalDeclContext(ID);
5991        ID->addDecl(ClsFields[i]);
5992      }
5993      // Must enforce the rule that ivars in the base classes may not be
5994      // duplicates.
5995      if (ID->getSuperClass()) {
5996        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5997             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5998          ObjCIvarDecl* Ivar = (*IVI);
5999
6000          if (IdentifierInfo *II = Ivar->getIdentifier()) {
6001            ObjCIvarDecl* prevIvar =
6002              ID->getSuperClass()->lookupInstanceVariable(II);
6003            if (prevIvar) {
6004              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
6005              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
6006            }
6007          }
6008        }
6009      }
6010    } else if (ObjCImplementationDecl *IMPDecl =
6011                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6012      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6013      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6014        // Ivar declared in @implementation never belongs to the implementation.
6015        // Only it is in implementation's lexical context.
6016        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6017      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6018    }
6019  }
6020
6021  if (Attr)
6022    ProcessDeclAttributeList(S, Record, Attr);
6023}
6024
6025EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6026                                          EnumConstantDecl *LastEnumConst,
6027                                          SourceLocation IdLoc,
6028                                          IdentifierInfo *Id,
6029                                          ExprArg val) {
6030  Expr *Val = (Expr *)val.get();
6031
6032  llvm::APSInt EnumVal(32);
6033  QualType EltTy;
6034  if (Val) {
6035    if (Enum->isDependentType())
6036      EltTy = Context.DependentTy;
6037    else {
6038      // Make sure to promote the operand type to int.
6039      UsualUnaryConversions(Val);
6040      if (Val != val.get()) {
6041        val.release();
6042        val = Val;
6043      }
6044
6045      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6046      SourceLocation ExpLoc;
6047      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
6048        Val = 0;
6049      } else {
6050        EltTy = Val->getType();
6051      }
6052    }
6053  }
6054
6055  if (!Val) {
6056    if (Enum->isDependentType())
6057      EltTy = Context.DependentTy;
6058    else if (LastEnumConst) {
6059      // Assign the last value + 1.
6060      EnumVal = LastEnumConst->getInitVal();
6061      ++EnumVal;
6062
6063      // Check for overflow on increment.
6064      if (EnumVal < LastEnumConst->getInitVal())
6065        Diag(IdLoc, diag::warn_enum_value_overflow);
6066
6067      EltTy = LastEnumConst->getType();
6068    } else {
6069      // First value, set to zero.
6070      EltTy = Context.IntTy;
6071      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
6072      EnumVal.setIsSigned(true);
6073    }
6074  }
6075
6076  assert(!EltTy.isNull() && "Enum constant with NULL type");
6077
6078  val.release();
6079  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6080                                  Val, EnumVal);
6081}
6082
6083
6084Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6085                                        DeclPtrTy lastEnumConst,
6086                                        SourceLocation IdLoc,
6087                                        IdentifierInfo *Id,
6088                                        SourceLocation EqualLoc, ExprTy *val) {
6089  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6090  EnumConstantDecl *LastEnumConst =
6091    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6092  Expr *Val = static_cast<Expr*>(val);
6093
6094  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6095  // we find one that is.
6096  S = getNonFieldDeclScope(S);
6097
6098  // Verify that there isn't already something declared with this name in this
6099  // scope.
6100  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
6101  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6102    // Maybe we will complain about the shadowed template parameter.
6103    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6104    // Just pretend that we didn't see the previous declaration.
6105    PrevDecl = 0;
6106  }
6107
6108  if (PrevDecl) {
6109    // When in C++, we may get a TagDecl with the same name; in this case the
6110    // enum constant will 'hide' the tag.
6111    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6112           "Received TagDecl when not in C++!");
6113    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6114      if (isa<EnumConstantDecl>(PrevDecl))
6115        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6116      else
6117        Diag(IdLoc, diag::err_redefinition) << Id;
6118      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6119      if (Val) Val->Destroy(Context);
6120      return DeclPtrTy();
6121    }
6122  }
6123
6124  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6125                                            IdLoc, Id, Owned(Val));
6126
6127  // Register this decl in the current scope stack.
6128  if (New)
6129    PushOnScopeChains(New, S);
6130
6131  return DeclPtrTy::make(New);
6132}
6133
6134void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6135                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6136                         DeclPtrTy *Elements, unsigned NumElements,
6137                         Scope *S, AttributeList *Attr) {
6138  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6139  QualType EnumType = Context.getTypeDeclType(Enum);
6140
6141  if (Attr)
6142    ProcessDeclAttributeList(S, Enum, Attr);
6143
6144  if (Enum->isDependentType()) {
6145    for (unsigned i = 0; i != NumElements; ++i) {
6146      EnumConstantDecl *ECD =
6147        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6148      if (!ECD) continue;
6149
6150      ECD->setType(EnumType);
6151    }
6152
6153    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
6154    return;
6155  }
6156
6157  // TODO: If the result value doesn't fit in an int, it must be a long or long
6158  // long value.  ISO C does not support this, but GCC does as an extension,
6159  // emit a warning.
6160  unsigned IntWidth = Context.Target.getIntWidth();
6161  unsigned CharWidth = Context.Target.getCharWidth();
6162  unsigned ShortWidth = Context.Target.getShortWidth();
6163
6164  // Verify that all the values are okay, compute the size of the values, and
6165  // reverse the list.
6166  unsigned NumNegativeBits = 0;
6167  unsigned NumPositiveBits = 0;
6168
6169  // Keep track of whether all elements have type int.
6170  bool AllElementsInt = true;
6171
6172  for (unsigned i = 0; i != NumElements; ++i) {
6173    EnumConstantDecl *ECD =
6174      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6175    if (!ECD) continue;  // Already issued a diagnostic.
6176
6177    // If the enum value doesn't fit in an int, emit an extension warning.
6178    const llvm::APSInt &InitVal = ECD->getInitVal();
6179    assert(InitVal.getBitWidth() >= IntWidth &&
6180           "Should have promoted value to int");
6181    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
6182      llvm::APSInt V(InitVal);
6183      V.trunc(IntWidth);
6184      V.extend(InitVal.getBitWidth());
6185      if (V != InitVal)
6186        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
6187          << InitVal.toString(10);
6188    }
6189
6190    // Keep track of the size of positive and negative values.
6191    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6192      NumPositiveBits = std::max(NumPositiveBits,
6193                                 (unsigned)InitVal.getActiveBits());
6194    else
6195      NumNegativeBits = std::max(NumNegativeBits,
6196                                 (unsigned)InitVal.getMinSignedBits());
6197
6198    // Keep track of whether every enum element has type int (very commmon).
6199    if (AllElementsInt)
6200      AllElementsInt = ECD->getType() == Context.IntTy;
6201  }
6202
6203  // Figure out the type that should be used for this enum.
6204  // FIXME: Support -fshort-enums.
6205  QualType BestType;
6206  unsigned BestWidth;
6207
6208  // C++0x N3000 [conv.prom]p3:
6209  //   An rvalue of an unscoped enumeration type whose underlying
6210  //   type is not fixed can be converted to an rvalue of the first
6211  //   of the following types that can represent all the values of
6212  //   the enumeration: int, unsigned int, long int, unsigned long
6213  //   int, long long int, or unsigned long long int.
6214  // C99 6.4.4.3p2:
6215  //   An identifier declared as an enumeration constant has type int.
6216  // The C99 rule is modified by a gcc extension
6217  QualType BestPromotionType;
6218
6219  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6220
6221  if (NumNegativeBits) {
6222    // If there is a negative value, figure out the smallest integer type (of
6223    // int/long/longlong) that fits.
6224    // If it's packed, check also if it fits a char or a short.
6225    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6226      BestType = Context.SignedCharTy;
6227      BestWidth = CharWidth;
6228    } else if (Packed && NumNegativeBits <= ShortWidth &&
6229               NumPositiveBits < ShortWidth) {
6230      BestType = Context.ShortTy;
6231      BestWidth = ShortWidth;
6232    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6233      BestType = Context.IntTy;
6234      BestWidth = IntWidth;
6235    } else {
6236      BestWidth = Context.Target.getLongWidth();
6237
6238      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6239        BestType = Context.LongTy;
6240      } else {
6241        BestWidth = Context.Target.getLongLongWidth();
6242
6243        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6244          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6245        BestType = Context.LongLongTy;
6246      }
6247    }
6248    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6249  } else {
6250    // If there is no negative value, figure out which of uint, ulong, ulonglong
6251    // fits.
6252    // If it's packed, check also if it fits a char or a short.
6253    if (Packed && NumPositiveBits <= CharWidth) {
6254      BestType = Context.UnsignedCharTy;
6255      BestPromotionType = Context.IntTy;
6256      BestWidth = CharWidth;
6257    } else if (Packed && NumPositiveBits <= ShortWidth) {
6258      BestType = Context.UnsignedShortTy;
6259      BestPromotionType = Context.IntTy;
6260      BestWidth = ShortWidth;
6261    } else if (NumPositiveBits <= IntWidth) {
6262      BestType = Context.UnsignedIntTy;
6263      BestWidth = IntWidth;
6264      BestPromotionType = (NumPositiveBits == BestWidth
6265                           ? Context.UnsignedIntTy : Context.IntTy);
6266    } else if (NumPositiveBits <=
6267               (BestWidth = Context.Target.getLongWidth())) {
6268      BestType = Context.UnsignedLongTy;
6269      BestPromotionType = (NumPositiveBits == BestWidth
6270                           ? Context.UnsignedLongTy : Context.LongTy);
6271    } else {
6272      BestWidth = Context.Target.getLongLongWidth();
6273      assert(NumPositiveBits <= BestWidth &&
6274             "How could an initializer get larger than ULL?");
6275      BestType = Context.UnsignedLongLongTy;
6276      BestPromotionType = (NumPositiveBits == BestWidth
6277                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
6278    }
6279  }
6280
6281  // If we're in C and the promotion type is larger than an int, just
6282  // use the underlying type, which is generally the unsigned integer
6283  // type of the same rank as the promotion type.  This is how the gcc
6284  // extension works.
6285  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
6286    BestPromotionType = BestType;
6287
6288  // Loop over all of the enumerator constants, changing their types to match
6289  // the type of the enum if needed.
6290  for (unsigned i = 0; i != NumElements; ++i) {
6291    EnumConstantDecl *ECD =
6292      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6293    if (!ECD) continue;  // Already issued a diagnostic.
6294
6295    // Standard C says the enumerators have int type, but we allow, as an
6296    // extension, the enumerators to be larger than int size.  If each
6297    // enumerator value fits in an int, type it as an int, otherwise type it the
6298    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6299    // that X has type 'int', not 'unsigned'.
6300    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
6301      continue;
6302
6303    // Determine whether the value fits into an int.
6304    llvm::APSInt InitVal = ECD->getInitVal();
6305    bool FitsInInt;
6306    if (InitVal.isUnsigned() || !InitVal.isNegative())
6307      FitsInInt = InitVal.getActiveBits() < IntWidth;
6308    else
6309      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
6310
6311    // If it fits into an integer type, force it.  Otherwise force it to match
6312    // the enum decl type.
6313    QualType NewTy;
6314    unsigned NewWidth;
6315    bool NewSign;
6316    if (FitsInInt && !getLangOptions().CPlusPlus) {
6317      NewTy = Context.IntTy;
6318      NewWidth = IntWidth;
6319      NewSign = true;
6320    } else if (ECD->getType() == BestType) {
6321      // Already the right type!
6322      if (getLangOptions().CPlusPlus)
6323        // C++ [dcl.enum]p4: Following the closing brace of an
6324        // enum-specifier, each enumerator has the type of its
6325        // enumeration.
6326        ECD->setType(EnumType);
6327      continue;
6328    } else {
6329      NewTy = BestType;
6330      NewWidth = BestWidth;
6331      NewSign = BestType->isSignedIntegerType();
6332    }
6333
6334    // Adjust the APSInt value.
6335    InitVal.extOrTrunc(NewWidth);
6336    InitVal.setIsSigned(NewSign);
6337    ECD->setInitVal(InitVal);
6338
6339    // Adjust the Expr initializer and type.
6340    if (ECD->getInitExpr())
6341      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6342                                                      CastExpr::CK_IntegralCast,
6343                                                      ECD->getInitExpr(),
6344                                                      /*isLvalue=*/false));
6345    if (getLangOptions().CPlusPlus)
6346      // C++ [dcl.enum]p4: Following the closing brace of an
6347      // enum-specifier, each enumerator has the type of its
6348      // enumeration.
6349      ECD->setType(EnumType);
6350    else
6351      ECD->setType(NewTy);
6352  }
6353
6354  Enum->completeDefinition(Context, BestType, BestPromotionType);
6355}
6356
6357Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6358                                            ExprArg expr) {
6359  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6360
6361  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6362                                                   Loc, AsmString);
6363  CurContext->addDecl(New);
6364  return DeclPtrTy::make(New);
6365}
6366
6367void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6368                             SourceLocation PragmaLoc,
6369                             SourceLocation NameLoc) {
6370  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6371
6372  if (PrevDecl) {
6373    PrevDecl->addAttr(::new (Context) WeakAttr());
6374  } else {
6375    (void)WeakUndeclaredIdentifiers.insert(
6376      std::pair<IdentifierInfo*,WeakInfo>
6377        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6378  }
6379}
6380
6381void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6382                                IdentifierInfo* AliasName,
6383                                SourceLocation PragmaLoc,
6384                                SourceLocation NameLoc,
6385                                SourceLocation AliasNameLoc) {
6386  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6387  WeakInfo W = WeakInfo(Name, NameLoc);
6388
6389  if (PrevDecl) {
6390    if (!PrevDecl->hasAttr<AliasAttr>())
6391      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6392        DeclApplyPragmaWeak(TUScope, ND, W);
6393  } else {
6394    (void)WeakUndeclaredIdentifiers.insert(
6395      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6396  }
6397}
6398