SemaDecl.cpp revision 13e0b7744ceb8ebe86af3d312a800f08b68cac43
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo,
75                             IdentifierInfo **CorrectedII) {
76  // Determine where we will perform name lookup.
77  DeclContext *LookupCtx = 0;
78  if (ObjectTypePtr) {
79    QualType ObjectType = ObjectTypePtr.get();
80    if (ObjectType->isRecordType())
81      LookupCtx = computeDeclContext(ObjectType);
82  } else if (SS && SS->isNotEmpty()) {
83    LookupCtx = computeDeclContext(*SS, false);
84
85    if (!LookupCtx) {
86      if (isDependentScopeSpecifier(*SS)) {
87        // C++ [temp.res]p3:
88        //   A qualified-id that refers to a type and in which the
89        //   nested-name-specifier depends on a template-parameter (14.6.2)
90        //   shall be prefixed by the keyword typename to indicate that the
91        //   qualified-id denotes a type, forming an
92        //   elaborated-type-specifier (7.1.5.3).
93        //
94        // We therefore do not perform any name lookup if the result would
95        // refer to a member of an unknown specialization.
96        if (!isClassName)
97          return ParsedType();
98
99        // We know from the grammar that this name refers to a type,
100        // so build a dependent node to describe the type.
101        if (WantNontrivialTypeSourceInfo)
102          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
103
104        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
105        QualType T =
106          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
107                            II, NameLoc);
108
109          return ParsedType::make(T);
110      }
111
112      return ParsedType();
113    }
114
115    if (!LookupCtx->isDependentContext() &&
116        RequireCompleteDeclContext(*SS, LookupCtx))
117      return ParsedType();
118  }
119
120  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
121  // lookup for class-names.
122  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
123                                      LookupOrdinaryName;
124  LookupResult Result(*this, &II, NameLoc, Kind);
125  if (LookupCtx) {
126    // Perform "qualified" name lookup into the declaration context we
127    // computed, which is either the type of the base of a member access
128    // expression or the declaration context associated with a prior
129    // nested-name-specifier.
130    LookupQualifiedName(Result, LookupCtx);
131
132    if (ObjectTypePtr && Result.empty()) {
133      // C++ [basic.lookup.classref]p3:
134      //   If the unqualified-id is ~type-name, the type-name is looked up
135      //   in the context of the entire postfix-expression. If the type T of
136      //   the object expression is of a class type C, the type-name is also
137      //   looked up in the scope of class C. At least one of the lookups shall
138      //   find a name that refers to (possibly cv-qualified) T.
139      LookupName(Result, S);
140    }
141  } else {
142    // Perform unqualified name lookup.
143    LookupName(Result, S);
144  }
145
146  NamedDecl *IIDecl = 0;
147  switch (Result.getResultKind()) {
148  case LookupResult::NotFound:
149  case LookupResult::NotFoundInCurrentInstantiation:
150    if (CorrectedII) {
151      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
152                                              Kind, S, SS, 0, false,
153                                              Sema::CTC_Type);
154      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
155      TemplateTy Template;
156      bool MemberOfUnknownSpecialization;
157      UnqualifiedId TemplateName;
158      TemplateName.setIdentifier(NewII, NameLoc);
159      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
160      CXXScopeSpec NewSS, *NewSSPtr = SS;
161      if (SS && NNS) {
162        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
163        NewSSPtr = &NewSS;
164      }
165      if (Correction && (NNS || NewII != &II) &&
166          // Ignore a correction to a template type as the to-be-corrected
167          // identifier is not a template (typo correction for template names
168          // is handled elsewhere).
169          !(getLangOptions().CPlusPlus && NewSSPtr &&
170            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
171                           false, Template, MemberOfUnknownSpecialization))) {
172        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
173                                    isClassName, HasTrailingDot, ObjectTypePtr,
174                                    WantNontrivialTypeSourceInfo);
175        if (Ty) {
176          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
177          std::string CorrectedQuotedStr(
178              Correction.getQuoted(getLangOptions()));
179          Diag(NameLoc, diag::err_unknown_typename_suggest)
180              << Result.getLookupName() << CorrectedQuotedStr
181              << FixItHint::CreateReplacement(SourceRange(NameLoc),
182                                              CorrectedStr);
183          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
184            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
185              << CorrectedQuotedStr;
186
187          if (SS && NNS)
188            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
189          *CorrectedII = NewII;
190          return Ty;
191        }
192      }
193    }
194    // If typo correction failed or was not performed, fall through
195  case LookupResult::FoundOverloaded:
196  case LookupResult::FoundUnresolvedValue:
197    Result.suppressDiagnostics();
198    return ParsedType();
199
200  case LookupResult::Ambiguous:
201    // Recover from type-hiding ambiguities by hiding the type.  We'll
202    // do the lookup again when looking for an object, and we can
203    // diagnose the error then.  If we don't do this, then the error
204    // about hiding the type will be immediately followed by an error
205    // that only makes sense if the identifier was treated like a type.
206    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
207      Result.suppressDiagnostics();
208      return ParsedType();
209    }
210
211    // Look to see if we have a type anywhere in the list of results.
212    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
213         Res != ResEnd; ++Res) {
214      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
215        if (!IIDecl ||
216            (*Res)->getLocation().getRawEncoding() <
217              IIDecl->getLocation().getRawEncoding())
218          IIDecl = *Res;
219      }
220    }
221
222    if (!IIDecl) {
223      // None of the entities we found is a type, so there is no way
224      // to even assume that the result is a type. In this case, don't
225      // complain about the ambiguity. The parser will either try to
226      // perform this lookup again (e.g., as an object name), which
227      // will produce the ambiguity, or will complain that it expected
228      // a type name.
229      Result.suppressDiagnostics();
230      return ParsedType();
231    }
232
233    // We found a type within the ambiguous lookup; diagnose the
234    // ambiguity and then return that type. This might be the right
235    // answer, or it might not be, but it suppresses any attempt to
236    // perform the name lookup again.
237    break;
238
239  case LookupResult::Found:
240    IIDecl = Result.getFoundDecl();
241    break;
242  }
243
244  assert(IIDecl && "Didn't find decl");
245
246  QualType T;
247  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
248    DiagnoseUseOfDecl(IIDecl, NameLoc);
249
250    if (T.isNull())
251      T = Context.getTypeDeclType(TD);
252
253    if (SS && SS->isNotEmpty()) {
254      if (WantNontrivialTypeSourceInfo) {
255        // Construct a type with type-source information.
256        TypeLocBuilder Builder;
257        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
258
259        T = getElaboratedType(ETK_None, *SS, T);
260        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
261        ElabTL.setKeywordLoc(SourceLocation());
262        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
263        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
264      } else {
265        T = getElaboratedType(ETK_None, *SS, T);
266      }
267    }
268  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
269    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
270    if (!HasTrailingDot)
271      T = Context.getObjCInterfaceType(IDecl);
272  }
273
274  if (T.isNull()) {
275    // If it's not plausibly a type, suppress diagnostics.
276    Result.suppressDiagnostics();
277    return ParsedType();
278  }
279  return ParsedType::make(T);
280}
281
282/// isTagName() - This method is called *for error recovery purposes only*
283/// to determine if the specified name is a valid tag name ("struct foo").  If
284/// so, this returns the TST for the tag corresponding to it (TST_enum,
285/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
286/// where the user forgot to specify the tag.
287DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
288  // Do a tag name lookup in this scope.
289  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
290  LookupName(R, S, false);
291  R.suppressDiagnostics();
292  if (R.getResultKind() == LookupResult::Found)
293    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
294      switch (TD->getTagKind()) {
295      default:         return DeclSpec::TST_unspecified;
296      case TTK_Struct: return DeclSpec::TST_struct;
297      case TTK_Union:  return DeclSpec::TST_union;
298      case TTK_Class:  return DeclSpec::TST_class;
299      case TTK_Enum:   return DeclSpec::TST_enum;
300      }
301    }
302
303  return DeclSpec::TST_unspecified;
304}
305
306/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
307/// if a CXXScopeSpec's type is equal to the type of one of the base classes
308/// then downgrade the missing typename error to a warning.
309/// This is needed for MSVC compatibility; Example:
310/// @code
311/// template<class T> class A {
312/// public:
313///   typedef int TYPE;
314/// };
315/// template<class T> class B : public A<T> {
316/// public:
317///   A<T>::TYPE a; // no typename required because A<T> is a base class.
318/// };
319/// @endcode
320bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
321  if (CurContext->isRecord()) {
322    const Type *Ty = SS->getScopeRep()->getAsType();
323
324    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
325    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
326          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
327      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
328        return true;
329    return S->isFunctionPrototypeScope();
330  }
331  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
332}
333
334bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
335                                   SourceLocation IILoc,
336                                   Scope *S,
337                                   CXXScopeSpec *SS,
338                                   ParsedType &SuggestedType) {
339  // We don't have anything to suggest (yet).
340  SuggestedType = ParsedType();
341
342  // There may have been a typo in the name of the type. Look up typo
343  // results, in case we have something that we can suggest.
344  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
345                                             LookupOrdinaryName, S, SS, NULL,
346                                             false, CTC_Type)) {
347    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
348    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
349
350    if (Corrected.isKeyword()) {
351      // We corrected to a keyword.
352      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
353      Diag(IILoc, diag::err_unknown_typename_suggest)
354        << &II << CorrectedQuotedStr;
355      return true;
356    } else {
357      NamedDecl *Result = Corrected.getCorrectionDecl();
358      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
359          !Result->isInvalidDecl()) {
360        // We found a similarly-named type or interface; suggest that.
361        if (!SS || !SS->isSet())
362          Diag(IILoc, diag::err_unknown_typename_suggest)
363            << &II << CorrectedQuotedStr
364            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
365        else if (DeclContext *DC = computeDeclContext(*SS, false))
366          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
367            << &II << DC << CorrectedQuotedStr << SS->getRange()
368            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
369        else
370          llvm_unreachable("could not have corrected a typo here");
371
372        Diag(Result->getLocation(), diag::note_previous_decl)
373          << CorrectedQuotedStr;
374
375        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
376                                    false, false, ParsedType(),
377                                    /*NonTrivialTypeSourceInfo=*/true);
378        return true;
379      }
380    }
381  }
382
383  if (getLangOptions().CPlusPlus) {
384    // See if II is a class template that the user forgot to pass arguments to.
385    UnqualifiedId Name;
386    Name.setIdentifier(&II, IILoc);
387    CXXScopeSpec EmptySS;
388    TemplateTy TemplateResult;
389    bool MemberOfUnknownSpecialization;
390    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
391                       Name, ParsedType(), true, TemplateResult,
392                       MemberOfUnknownSpecialization) == TNK_Type_template) {
393      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
394      Diag(IILoc, diag::err_template_missing_args) << TplName;
395      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
396        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
397          << TplDecl->getTemplateParameters()->getSourceRange();
398      }
399      return true;
400    }
401  }
402
403  // FIXME: Should we move the logic that tries to recover from a missing tag
404  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
405
406  if (!SS || (!SS->isSet() && !SS->isInvalid()))
407    Diag(IILoc, diag::err_unknown_typename) << &II;
408  else if (DeclContext *DC = computeDeclContext(*SS, false))
409    Diag(IILoc, diag::err_typename_nested_not_found)
410      << &II << DC << SS->getRange();
411  else if (isDependentScopeSpecifier(*SS)) {
412    unsigned DiagID = diag::err_typename_missing;
413    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
414      DiagID = diag::warn_typename_missing;
415
416    Diag(SS->getRange().getBegin(), DiagID)
417      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
418      << SourceRange(SS->getRange().getBegin(), IILoc)
419      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
420    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
421                                                                         .get();
422  } else {
423    assert(SS && SS->isInvalid() &&
424           "Invalid scope specifier has already been diagnosed");
425  }
426
427  return true;
428}
429
430/// \brief Determine whether the given result set contains either a type name
431/// or
432static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
433  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
434                       NextToken.is(tok::less);
435
436  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
437    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
438      return true;
439
440    if (CheckTemplate && isa<TemplateDecl>(*I))
441      return true;
442  }
443
444  return false;
445}
446
447Sema::NameClassification Sema::ClassifyName(Scope *S,
448                                            CXXScopeSpec &SS,
449                                            IdentifierInfo *&Name,
450                                            SourceLocation NameLoc,
451                                            const Token &NextToken) {
452  DeclarationNameInfo NameInfo(Name, NameLoc);
453  ObjCMethodDecl *CurMethod = getCurMethodDecl();
454
455  if (NextToken.is(tok::coloncolon)) {
456    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
457                                QualType(), false, SS, 0, false);
458
459  }
460
461  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
462  LookupParsedName(Result, S, &SS, !CurMethod);
463
464  // Perform lookup for Objective-C instance variables (including automatically
465  // synthesized instance variables), if we're in an Objective-C method.
466  // FIXME: This lookup really, really needs to be folded in to the normal
467  // unqualified lookup mechanism.
468  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
469    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
470    if (E.get() || E.isInvalid())
471      return E;
472  }
473
474  bool SecondTry = false;
475  bool IsFilteredTemplateName = false;
476
477Corrected:
478  switch (Result.getResultKind()) {
479  case LookupResult::NotFound:
480    // If an unqualified-id is followed by a '(', then we have a function
481    // call.
482    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
483      // In C++, this is an ADL-only call.
484      // FIXME: Reference?
485      if (getLangOptions().CPlusPlus)
486        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
487
488      // C90 6.3.2.2:
489      //   If the expression that precedes the parenthesized argument list in a
490      //   function call consists solely of an identifier, and if no
491      //   declaration is visible for this identifier, the identifier is
492      //   implicitly declared exactly as if, in the innermost block containing
493      //   the function call, the declaration
494      //
495      //     extern int identifier ();
496      //
497      //   appeared.
498      //
499      // We also allow this in C99 as an extension.
500      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
501        Result.addDecl(D);
502        Result.resolveKind();
503        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
504      }
505    }
506
507    // In C, we first see whether there is a tag type by the same name, in
508    // which case it's likely that the user just forget to write "enum",
509    // "struct", or "union".
510    if (!getLangOptions().CPlusPlus && !SecondTry) {
511      Result.clear(LookupTagName);
512      LookupParsedName(Result, S, &SS);
513      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
514        const char *TagName = 0;
515        const char *FixItTagName = 0;
516        switch (Tag->getTagKind()) {
517          case TTK_Class:
518            TagName = "class";
519            FixItTagName = "class ";
520            break;
521
522          case TTK_Enum:
523            TagName = "enum";
524            FixItTagName = "enum ";
525            break;
526
527          case TTK_Struct:
528            TagName = "struct";
529            FixItTagName = "struct ";
530            break;
531
532          case TTK_Union:
533            TagName = "union";
534            FixItTagName = "union ";
535            break;
536        }
537
538        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
539          << Name << TagName << getLangOptions().CPlusPlus
540          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
541        break;
542      }
543
544      Result.clear(LookupOrdinaryName);
545    }
546
547    // Perform typo correction to determine if there is another name that is
548    // close to this name.
549    if (!SecondTry) {
550      SecondTry = true;
551      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
552                                                 Result.getLookupKind(), S,
553                                                 &SS)) {
554        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
555        unsigned QualifiedDiag = diag::err_no_member_suggest;
556        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
557        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
558
559        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
560        NamedDecl *UnderlyingFirstDecl
561          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
562        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
563            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
564          UnqualifiedDiag = diag::err_no_template_suggest;
565          QualifiedDiag = diag::err_no_member_template_suggest;
566        } else if (UnderlyingFirstDecl &&
567                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
569                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
570           UnqualifiedDiag = diag::err_unknown_typename_suggest;
571           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
572         }
573
574        if (SS.isEmpty())
575          Diag(NameLoc, UnqualifiedDiag)
576            << Name << CorrectedQuotedStr
577            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
578        else
579          Diag(NameLoc, QualifiedDiag)
580            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
581            << SS.getRange()
582            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
583
584        // Update the name, so that the caller has the new name.
585        Name = Corrected.getCorrectionAsIdentifierInfo();
586
587        // Also update the LookupResult...
588        // FIXME: This should probably go away at some point
589        Result.clear();
590        Result.setLookupName(Corrected.getCorrection());
591        if (FirstDecl) Result.addDecl(FirstDecl);
592
593        // Typo correction corrected to a keyword.
594        if (Corrected.isKeyword())
595          return Corrected.getCorrectionAsIdentifierInfo();
596
597        if (FirstDecl)
598          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
599            << CorrectedQuotedStr;
600
601        // If we found an Objective-C instance variable, let
602        // LookupInObjCMethod build the appropriate expression to
603        // reference the ivar.
604        // FIXME: This is a gross hack.
605        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
606          Result.clear();
607          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
608          return move(E);
609        }
610
611        goto Corrected;
612      }
613    }
614
615    // We failed to correct; just fall through and let the parser deal with it.
616    Result.suppressDiagnostics();
617    return NameClassification::Unknown();
618
619  case LookupResult::NotFoundInCurrentInstantiation:
620    // We performed name lookup into the current instantiation, and there were
621    // dependent bases, so we treat this result the same way as any other
622    // dependent nested-name-specifier.
623
624    // C++ [temp.res]p2:
625    //   A name used in a template declaration or definition and that is
626    //   dependent on a template-parameter is assumed not to name a type
627    //   unless the applicable name lookup finds a type name or the name is
628    //   qualified by the keyword typename.
629    //
630    // FIXME: If the next token is '<', we might want to ask the parser to
631    // perform some heroics to see if we actually have a
632    // template-argument-list, which would indicate a missing 'template'
633    // keyword here.
634    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
635
636  case LookupResult::Found:
637  case LookupResult::FoundOverloaded:
638  case LookupResult::FoundUnresolvedValue:
639    break;
640
641  case LookupResult::Ambiguous:
642    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
643        hasAnyAcceptableTemplateNames(Result)) {
644      // C++ [temp.local]p3:
645      //   A lookup that finds an injected-class-name (10.2) can result in an
646      //   ambiguity in certain cases (for example, if it is found in more than
647      //   one base class). If all of the injected-class-names that are found
648      //   refer to specializations of the same class template, and if the name
649      //   is followed by a template-argument-list, the reference refers to the
650      //   class template itself and not a specialization thereof, and is not
651      //   ambiguous.
652      //
653      // This filtering can make an ambiguous result into an unambiguous one,
654      // so try again after filtering out template names.
655      FilterAcceptableTemplateNames(Result);
656      if (!Result.isAmbiguous()) {
657        IsFilteredTemplateName = true;
658        break;
659      }
660    }
661
662    // Diagnose the ambiguity and return an error.
663    return NameClassification::Error();
664  }
665
666  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
667      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
668    // C++ [temp.names]p3:
669    //   After name lookup (3.4) finds that a name is a template-name or that
670    //   an operator-function-id or a literal- operator-id refers to a set of
671    //   overloaded functions any member of which is a function template if
672    //   this is followed by a <, the < is always taken as the delimiter of a
673    //   template-argument-list and never as the less-than operator.
674    if (!IsFilteredTemplateName)
675      FilterAcceptableTemplateNames(Result);
676
677    if (!Result.empty()) {
678      bool IsFunctionTemplate;
679      TemplateName Template;
680      if (Result.end() - Result.begin() > 1) {
681        IsFunctionTemplate = true;
682        Template = Context.getOverloadedTemplateName(Result.begin(),
683                                                     Result.end());
684      } else {
685        TemplateDecl *TD
686          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
687        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
688
689        if (SS.isSet() && !SS.isInvalid())
690          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
691                                                    /*TemplateKeyword=*/false,
692                                                      TD);
693        else
694          Template = TemplateName(TD);
695      }
696
697      if (IsFunctionTemplate) {
698        // Function templates always go through overload resolution, at which
699        // point we'll perform the various checks (e.g., accessibility) we need
700        // to based on which function we selected.
701        Result.suppressDiagnostics();
702
703        return NameClassification::FunctionTemplate(Template);
704      }
705
706      return NameClassification::TypeTemplate(Template);
707    }
708  }
709
710  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
711  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
712    DiagnoseUseOfDecl(Type, NameLoc);
713    QualType T = Context.getTypeDeclType(Type);
714    return ParsedType::make(T);
715  }
716
717  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
718  if (!Class) {
719    // FIXME: It's unfortunate that we don't have a Type node for handling this.
720    if (ObjCCompatibleAliasDecl *Alias
721                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
722      Class = Alias->getClassInterface();
723  }
724
725  if (Class) {
726    DiagnoseUseOfDecl(Class, NameLoc);
727
728    if (NextToken.is(tok::period)) {
729      // Interface. <something> is parsed as a property reference expression.
730      // Just return "unknown" as a fall-through for now.
731      Result.suppressDiagnostics();
732      return NameClassification::Unknown();
733    }
734
735    QualType T = Context.getObjCInterfaceType(Class);
736    return ParsedType::make(T);
737  }
738
739  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
740    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
741
742  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
743  return BuildDeclarationNameExpr(SS, Result, ADL);
744}
745
746// Determines the context to return to after temporarily entering a
747// context.  This depends in an unnecessarily complicated way on the
748// exact ordering of callbacks from the parser.
749DeclContext *Sema::getContainingDC(DeclContext *DC) {
750
751  // Functions defined inline within classes aren't parsed until we've
752  // finished parsing the top-level class, so the top-level class is
753  // the context we'll need to return to.
754  if (isa<FunctionDecl>(DC)) {
755    DC = DC->getLexicalParent();
756
757    // A function not defined within a class will always return to its
758    // lexical context.
759    if (!isa<CXXRecordDecl>(DC))
760      return DC;
761
762    // A C++ inline method/friend is parsed *after* the topmost class
763    // it was declared in is fully parsed ("complete");  the topmost
764    // class is the context we need to return to.
765    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
766      DC = RD;
767
768    // Return the declaration context of the topmost class the inline method is
769    // declared in.
770    return DC;
771  }
772
773  return DC->getLexicalParent();
774}
775
776void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
777  assert(getContainingDC(DC) == CurContext &&
778      "The next DeclContext should be lexically contained in the current one.");
779  CurContext = DC;
780  S->setEntity(DC);
781}
782
783void Sema::PopDeclContext() {
784  assert(CurContext && "DeclContext imbalance!");
785
786  CurContext = getContainingDC(CurContext);
787  assert(CurContext && "Popped translation unit!");
788}
789
790/// EnterDeclaratorContext - Used when we must lookup names in the context
791/// of a declarator's nested name specifier.
792///
793void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
794  // C++0x [basic.lookup.unqual]p13:
795  //   A name used in the definition of a static data member of class
796  //   X (after the qualified-id of the static member) is looked up as
797  //   if the name was used in a member function of X.
798  // C++0x [basic.lookup.unqual]p14:
799  //   If a variable member of a namespace is defined outside of the
800  //   scope of its namespace then any name used in the definition of
801  //   the variable member (after the declarator-id) is looked up as
802  //   if the definition of the variable member occurred in its
803  //   namespace.
804  // Both of these imply that we should push a scope whose context
805  // is the semantic context of the declaration.  We can't use
806  // PushDeclContext here because that context is not necessarily
807  // lexically contained in the current context.  Fortunately,
808  // the containing scope should have the appropriate information.
809
810  assert(!S->getEntity() && "scope already has entity");
811
812#ifndef NDEBUG
813  Scope *Ancestor = S->getParent();
814  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
815  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
816#endif
817
818  CurContext = DC;
819  S->setEntity(DC);
820}
821
822void Sema::ExitDeclaratorContext(Scope *S) {
823  assert(S->getEntity() == CurContext && "Context imbalance!");
824
825  // Switch back to the lexical context.  The safety of this is
826  // enforced by an assert in EnterDeclaratorContext.
827  Scope *Ancestor = S->getParent();
828  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
829  CurContext = (DeclContext*) Ancestor->getEntity();
830
831  // We don't need to do anything with the scope, which is going to
832  // disappear.
833}
834
835
836void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
837  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
838  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
839    // We assume that the caller has already called
840    // ActOnReenterTemplateScope
841    FD = TFD->getTemplatedDecl();
842  }
843  if (!FD)
844    return;
845
846  PushDeclContext(S, FD);
847  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
848    ParmVarDecl *Param = FD->getParamDecl(P);
849    // If the parameter has an identifier, then add it to the scope
850    if (Param->getIdentifier()) {
851      S->AddDecl(Param);
852      IdResolver.AddDecl(Param);
853    }
854  }
855}
856
857
858/// \brief Determine whether we allow overloading of the function
859/// PrevDecl with another declaration.
860///
861/// This routine determines whether overloading is possible, not
862/// whether some new function is actually an overload. It will return
863/// true in C++ (where we can always provide overloads) or, as an
864/// extension, in C when the previous function is already an
865/// overloaded function declaration or has the "overloadable"
866/// attribute.
867static bool AllowOverloadingOfFunction(LookupResult &Previous,
868                                       ASTContext &Context) {
869  if (Context.getLangOptions().CPlusPlus)
870    return true;
871
872  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
873    return true;
874
875  return (Previous.getResultKind() == LookupResult::Found
876          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
877}
878
879/// Add this decl to the scope shadowed decl chains.
880void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
881  // Move up the scope chain until we find the nearest enclosing
882  // non-transparent context. The declaration will be introduced into this
883  // scope.
884  while (S->getEntity() &&
885         ((DeclContext *)S->getEntity())->isTransparentContext())
886    S = S->getParent();
887
888  // Add scoped declarations into their context, so that they can be
889  // found later. Declarations without a context won't be inserted
890  // into any context.
891  if (AddToContext)
892    CurContext->addDecl(D);
893
894  // Out-of-line definitions shouldn't be pushed into scope in C++.
895  // Out-of-line variable and function definitions shouldn't even in C.
896  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
897      D->isOutOfLine() &&
898      !D->getDeclContext()->getRedeclContext()->Equals(
899        D->getLexicalDeclContext()->getRedeclContext()))
900    return;
901
902  // Template instantiations should also not be pushed into scope.
903  if (isa<FunctionDecl>(D) &&
904      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
905    return;
906
907  // If this replaces anything in the current scope,
908  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
909                               IEnd = IdResolver.end();
910  for (; I != IEnd; ++I) {
911    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
912      S->RemoveDecl(*I);
913      IdResolver.RemoveDecl(*I);
914
915      // Should only need to replace one decl.
916      break;
917    }
918  }
919
920  S->AddDecl(D);
921
922  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
923    // Implicitly-generated labels may end up getting generated in an order that
924    // isn't strictly lexical, which breaks name lookup. Be careful to insert
925    // the label at the appropriate place in the identifier chain.
926    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
927      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
928      if (IDC == CurContext) {
929        if (!S->isDeclScope(*I))
930          continue;
931      } else if (IDC->Encloses(CurContext))
932        break;
933    }
934
935    IdResolver.InsertDeclAfter(I, D);
936  } else {
937    IdResolver.AddDecl(D);
938  }
939}
940
941bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
942                         bool ExplicitInstantiationOrSpecialization) {
943  return IdResolver.isDeclInScope(D, Ctx, Context, S,
944                                  ExplicitInstantiationOrSpecialization);
945}
946
947Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
948  DeclContext *TargetDC = DC->getPrimaryContext();
949  do {
950    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
951      if (ScopeDC->getPrimaryContext() == TargetDC)
952        return S;
953  } while ((S = S->getParent()));
954
955  return 0;
956}
957
958static bool isOutOfScopePreviousDeclaration(NamedDecl *,
959                                            DeclContext*,
960                                            ASTContext&);
961
962/// Filters out lookup results that don't fall within the given scope
963/// as determined by isDeclInScope.
964void Sema::FilterLookupForScope(LookupResult &R,
965                                DeclContext *Ctx, Scope *S,
966                                bool ConsiderLinkage,
967                                bool ExplicitInstantiationOrSpecialization) {
968  LookupResult::Filter F = R.makeFilter();
969  while (F.hasNext()) {
970    NamedDecl *D = F.next();
971
972    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
973      continue;
974
975    if (ConsiderLinkage &&
976        isOutOfScopePreviousDeclaration(D, Ctx, Context))
977      continue;
978
979    F.erase();
980  }
981
982  F.done();
983}
984
985static bool isUsingDecl(NamedDecl *D) {
986  return isa<UsingShadowDecl>(D) ||
987         isa<UnresolvedUsingTypenameDecl>(D) ||
988         isa<UnresolvedUsingValueDecl>(D);
989}
990
991/// Removes using shadow declarations from the lookup results.
992static void RemoveUsingDecls(LookupResult &R) {
993  LookupResult::Filter F = R.makeFilter();
994  while (F.hasNext())
995    if (isUsingDecl(F.next()))
996      F.erase();
997
998  F.done();
999}
1000
1001/// \brief Check for this common pattern:
1002/// @code
1003/// class S {
1004///   S(const S&); // DO NOT IMPLEMENT
1005///   void operator=(const S&); // DO NOT IMPLEMENT
1006/// };
1007/// @endcode
1008static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1009  // FIXME: Should check for private access too but access is set after we get
1010  // the decl here.
1011  if (D->doesThisDeclarationHaveABody())
1012    return false;
1013
1014  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1015    return CD->isCopyConstructor();
1016  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1017    return Method->isCopyAssignmentOperator();
1018  return false;
1019}
1020
1021bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1022  assert(D);
1023
1024  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  // Ignore class templates.
1028  if (D->getDeclContext()->isDependentContext() ||
1029      D->getLexicalDeclContext()->isDependentContext())
1030    return false;
1031
1032  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1033    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1034      return false;
1035
1036    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1037      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1038        return false;
1039    } else {
1040      // 'static inline' functions are used in headers; don't warn.
1041      if (FD->getStorageClass() == SC_Static &&
1042          FD->isInlineSpecified())
1043        return false;
1044    }
1045
1046    if (FD->doesThisDeclarationHaveABody() &&
1047        Context.DeclMustBeEmitted(FD))
1048      return false;
1049  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1050    if (!VD->isFileVarDecl() ||
1051        VD->getType().isConstant(Context) ||
1052        Context.DeclMustBeEmitted(VD))
1053      return false;
1054
1055    if (VD->isStaticDataMember() &&
1056        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1057      return false;
1058
1059  } else {
1060    return false;
1061  }
1062
1063  // Only warn for unused decls internal to the translation unit.
1064  if (D->getLinkage() == ExternalLinkage)
1065    return false;
1066
1067  return true;
1068}
1069
1070void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1071  if (!D)
1072    return;
1073
1074  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1075    const FunctionDecl *First = FD->getFirstDeclaration();
1076    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1077      return; // First should already be in the vector.
1078  }
1079
1080  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1081    const VarDecl *First = VD->getFirstDeclaration();
1082    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1083      return; // First should already be in the vector.
1084  }
1085
1086   if (ShouldWarnIfUnusedFileScopedDecl(D))
1087     UnusedFileScopedDecls.push_back(D);
1088 }
1089
1090static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1091  if (D->isInvalidDecl())
1092    return false;
1093
1094  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1095    return false;
1096
1097  if (isa<LabelDecl>(D))
1098    return true;
1099
1100  // White-list anything that isn't a local variable.
1101  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1102      !D->getDeclContext()->isFunctionOrMethod())
1103    return false;
1104
1105  // Types of valid local variables should be complete, so this should succeed.
1106  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1107
1108    // White-list anything with an __attribute__((unused)) type.
1109    QualType Ty = VD->getType();
1110
1111    // Only look at the outermost level of typedef.
1112    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1113      if (TT->getDecl()->hasAttr<UnusedAttr>())
1114        return false;
1115    }
1116
1117    // If we failed to complete the type for some reason, or if the type is
1118    // dependent, don't diagnose the variable.
1119    if (Ty->isIncompleteType() || Ty->isDependentType())
1120      return false;
1121
1122    if (const TagType *TT = Ty->getAs<TagType>()) {
1123      const TagDecl *Tag = TT->getDecl();
1124      if (Tag->hasAttr<UnusedAttr>())
1125        return false;
1126
1127      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1128        // FIXME: Checking for the presence of a user-declared constructor
1129        // isn't completely accurate; we'd prefer to check that the initializer
1130        // has no side effects.
1131        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1132          return false;
1133      }
1134    }
1135
1136    // TODO: __attribute__((unused)) templates?
1137  }
1138
1139  return true;
1140}
1141
1142static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1143                                     FixItHint &Hint) {
1144  if (isa<LabelDecl>(D)) {
1145    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1146                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1147    if (AfterColon.isInvalid())
1148      return;
1149    Hint = FixItHint::CreateRemoval(CharSourceRange::
1150                                    getCharRange(D->getLocStart(), AfterColon));
1151  }
1152  return;
1153}
1154
1155/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1156/// unless they are marked attr(unused).
1157void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1158  FixItHint Hint;
1159  if (!ShouldDiagnoseUnusedDecl(D))
1160    return;
1161
1162  GenerateFixForUnusedDecl(D, Context, Hint);
1163
1164  unsigned DiagID;
1165  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1166    DiagID = diag::warn_unused_exception_param;
1167  else if (isa<LabelDecl>(D))
1168    DiagID = diag::warn_unused_label;
1169  else
1170    DiagID = diag::warn_unused_variable;
1171
1172  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1173}
1174
1175static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1176  // Verify that we have no forward references left.  If so, there was a goto
1177  // or address of a label taken, but no definition of it.  Label fwd
1178  // definitions are indicated with a null substmt.
1179  if (L->getStmt() == 0)
1180    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1181}
1182
1183void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1184  if (S->decl_empty()) return;
1185  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1186         "Scope shouldn't contain decls!");
1187
1188  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1189       I != E; ++I) {
1190    Decl *TmpD = (*I);
1191    assert(TmpD && "This decl didn't get pushed??");
1192
1193    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1194    NamedDecl *D = cast<NamedDecl>(TmpD);
1195
1196    if (!D->getDeclName()) continue;
1197
1198    // Diagnose unused variables in this scope.
1199    if (!S->hasErrorOccurred())
1200      DiagnoseUnusedDecl(D);
1201
1202    // If this was a forward reference to a label, verify it was defined.
1203    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1204      CheckPoppedLabel(LD, *this);
1205
1206    // Remove this name from our lexical scope.
1207    IdResolver.RemoveDecl(D);
1208  }
1209}
1210
1211/// \brief Look for an Objective-C class in the translation unit.
1212///
1213/// \param Id The name of the Objective-C class we're looking for. If
1214/// typo-correction fixes this name, the Id will be updated
1215/// to the fixed name.
1216///
1217/// \param IdLoc The location of the name in the translation unit.
1218///
1219/// \param TypoCorrection If true, this routine will attempt typo correction
1220/// if there is no class with the given name.
1221///
1222/// \returns The declaration of the named Objective-C class, or NULL if the
1223/// class could not be found.
1224ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1225                                              SourceLocation IdLoc,
1226                                              bool DoTypoCorrection) {
1227  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1228  // creation from this context.
1229  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1230
1231  if (!IDecl && DoTypoCorrection) {
1232    // Perform typo correction at the given location, but only if we
1233    // find an Objective-C class name.
1234    TypoCorrection C;
1235    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1236                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1237        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1238      Diag(IdLoc, diag::err_undef_interface_suggest)
1239        << Id << IDecl->getDeclName()
1240        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1241      Diag(IDecl->getLocation(), diag::note_previous_decl)
1242        << IDecl->getDeclName();
1243
1244      Id = IDecl->getIdentifier();
1245    }
1246  }
1247
1248  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1249}
1250
1251/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1252/// from S, where a non-field would be declared. This routine copes
1253/// with the difference between C and C++ scoping rules in structs and
1254/// unions. For example, the following code is well-formed in C but
1255/// ill-formed in C++:
1256/// @code
1257/// struct S6 {
1258///   enum { BAR } e;
1259/// };
1260///
1261/// void test_S6() {
1262///   struct S6 a;
1263///   a.e = BAR;
1264/// }
1265/// @endcode
1266/// For the declaration of BAR, this routine will return a different
1267/// scope. The scope S will be the scope of the unnamed enumeration
1268/// within S6. In C++, this routine will return the scope associated
1269/// with S6, because the enumeration's scope is a transparent
1270/// context but structures can contain non-field names. In C, this
1271/// routine will return the translation unit scope, since the
1272/// enumeration's scope is a transparent context and structures cannot
1273/// contain non-field names.
1274Scope *Sema::getNonFieldDeclScope(Scope *S) {
1275  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1276         (S->getEntity() &&
1277          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1278         (S->isClassScope() && !getLangOptions().CPlusPlus))
1279    S = S->getParent();
1280  return S;
1281}
1282
1283/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1284/// file scope.  lazily create a decl for it. ForRedeclaration is true
1285/// if we're creating this built-in in anticipation of redeclaring the
1286/// built-in.
1287NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1288                                     Scope *S, bool ForRedeclaration,
1289                                     SourceLocation Loc) {
1290  Builtin::ID BID = (Builtin::ID)bid;
1291
1292  ASTContext::GetBuiltinTypeError Error;
1293  QualType R = Context.GetBuiltinType(BID, Error);
1294  switch (Error) {
1295  case ASTContext::GE_None:
1296    // Okay
1297    break;
1298
1299  case ASTContext::GE_Missing_stdio:
1300    if (ForRedeclaration)
1301      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1302        << Context.BuiltinInfo.GetName(BID);
1303    return 0;
1304
1305  case ASTContext::GE_Missing_setjmp:
1306    if (ForRedeclaration)
1307      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1308        << Context.BuiltinInfo.GetName(BID);
1309    return 0;
1310  }
1311
1312  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1313    Diag(Loc, diag::ext_implicit_lib_function_decl)
1314      << Context.BuiltinInfo.GetName(BID)
1315      << R;
1316    if (Context.BuiltinInfo.getHeaderName(BID) &&
1317        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1318          != DiagnosticsEngine::Ignored)
1319      Diag(Loc, diag::note_please_include_header)
1320        << Context.BuiltinInfo.getHeaderName(BID)
1321        << Context.BuiltinInfo.GetName(BID);
1322  }
1323
1324  FunctionDecl *New = FunctionDecl::Create(Context,
1325                                           Context.getTranslationUnitDecl(),
1326                                           Loc, Loc, II, R, /*TInfo=*/0,
1327                                           SC_Extern,
1328                                           SC_None, false,
1329                                           /*hasPrototype=*/true);
1330  New->setImplicit();
1331
1332  // Create Decl objects for each parameter, adding them to the
1333  // FunctionDecl.
1334  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1335    SmallVector<ParmVarDecl*, 16> Params;
1336    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1337      ParmVarDecl *parm =
1338        ParmVarDecl::Create(Context, New, SourceLocation(),
1339                            SourceLocation(), 0,
1340                            FT->getArgType(i), /*TInfo=*/0,
1341                            SC_None, SC_None, 0);
1342      parm->setScopeInfo(0, i);
1343      Params.push_back(parm);
1344    }
1345    New->setParams(Params);
1346  }
1347
1348  AddKnownFunctionAttributes(New);
1349
1350  // TUScope is the translation-unit scope to insert this function into.
1351  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1352  // relate Scopes to DeclContexts, and probably eliminate CurContext
1353  // entirely, but we're not there yet.
1354  DeclContext *SavedContext = CurContext;
1355  CurContext = Context.getTranslationUnitDecl();
1356  PushOnScopeChains(New, TUScope);
1357  CurContext = SavedContext;
1358  return New;
1359}
1360
1361/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1362/// same name and scope as a previous declaration 'Old'.  Figure out
1363/// how to resolve this situation, merging decls or emitting
1364/// diagnostics as appropriate. If there was an error, set New to be invalid.
1365///
1366void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1367  // If the new decl is known invalid already, don't bother doing any
1368  // merging checks.
1369  if (New->isInvalidDecl()) return;
1370
1371  // Allow multiple definitions for ObjC built-in typedefs.
1372  // FIXME: Verify the underlying types are equivalent!
1373  if (getLangOptions().ObjC1) {
1374    const IdentifierInfo *TypeID = New->getIdentifier();
1375    switch (TypeID->getLength()) {
1376    default: break;
1377    case 2:
1378      if (!TypeID->isStr("id"))
1379        break;
1380      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1381      // Install the built-in type for 'id', ignoring the current definition.
1382      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1383      return;
1384    case 5:
1385      if (!TypeID->isStr("Class"))
1386        break;
1387      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1388      // Install the built-in type for 'Class', ignoring the current definition.
1389      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1390      return;
1391    case 3:
1392      if (!TypeID->isStr("SEL"))
1393        break;
1394      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1395      // Install the built-in type for 'SEL', ignoring the current definition.
1396      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1397      return;
1398    }
1399    // Fall through - the typedef name was not a builtin type.
1400  }
1401
1402  // Verify the old decl was also a type.
1403  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1404  if (!Old) {
1405    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1406      << New->getDeclName();
1407
1408    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1409    if (OldD->getLocation().isValid())
1410      Diag(OldD->getLocation(), diag::note_previous_definition);
1411
1412    return New->setInvalidDecl();
1413  }
1414
1415  // If the old declaration is invalid, just give up here.
1416  if (Old->isInvalidDecl())
1417    return New->setInvalidDecl();
1418
1419  // Determine the "old" type we'll use for checking and diagnostics.
1420  QualType OldType;
1421  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1422    OldType = OldTypedef->getUnderlyingType();
1423  else
1424    OldType = Context.getTypeDeclType(Old);
1425
1426  // If the typedef types are not identical, reject them in all languages and
1427  // with any extensions enabled.
1428
1429  if (OldType != New->getUnderlyingType() &&
1430      Context.getCanonicalType(OldType) !=
1431      Context.getCanonicalType(New->getUnderlyingType())) {
1432    int Kind = 0;
1433    if (isa<TypeAliasDecl>(Old))
1434      Kind = 1;
1435    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1436      << Kind << New->getUnderlyingType() << OldType;
1437    if (Old->getLocation().isValid())
1438      Diag(Old->getLocation(), diag::note_previous_definition);
1439    return New->setInvalidDecl();
1440  }
1441
1442  // The types match.  Link up the redeclaration chain if the old
1443  // declaration was a typedef.
1444  // FIXME: this is a potential source of weirdness if the type
1445  // spellings don't match exactly.
1446  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1447    New->setPreviousDeclaration(Typedef);
1448
1449  // __module_private__ is propagated to later declarations.
1450  if (Old->isModulePrivate())
1451    New->setModulePrivate();
1452  else if (New->isModulePrivate())
1453    diagnoseModulePrivateRedeclaration(New, Old);
1454
1455  if (getLangOptions().MicrosoftExt)
1456    return;
1457
1458  if (getLangOptions().CPlusPlus) {
1459    // C++ [dcl.typedef]p2:
1460    //   In a given non-class scope, a typedef specifier can be used to
1461    //   redefine the name of any type declared in that scope to refer
1462    //   to the type to which it already refers.
1463    if (!isa<CXXRecordDecl>(CurContext))
1464      return;
1465
1466    // C++0x [dcl.typedef]p4:
1467    //   In a given class scope, a typedef specifier can be used to redefine
1468    //   any class-name declared in that scope that is not also a typedef-name
1469    //   to refer to the type to which it already refers.
1470    //
1471    // This wording came in via DR424, which was a correction to the
1472    // wording in DR56, which accidentally banned code like:
1473    //
1474    //   struct S {
1475    //     typedef struct A { } A;
1476    //   };
1477    //
1478    // in the C++03 standard. We implement the C++0x semantics, which
1479    // allow the above but disallow
1480    //
1481    //   struct S {
1482    //     typedef int I;
1483    //     typedef int I;
1484    //   };
1485    //
1486    // since that was the intent of DR56.
1487    if (!isa<TypedefNameDecl>(Old))
1488      return;
1489
1490    Diag(New->getLocation(), diag::err_redefinition)
1491      << New->getDeclName();
1492    Diag(Old->getLocation(), diag::note_previous_definition);
1493    return New->setInvalidDecl();
1494  }
1495
1496  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1497  // is normally mapped to an error, but can be controlled with
1498  // -Wtypedef-redefinition.  If either the original or the redefinition is
1499  // in a system header, don't emit this for compatibility with GCC.
1500  if (getDiagnostics().getSuppressSystemWarnings() &&
1501      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1502       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1503    return;
1504
1505  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1506    << New->getDeclName();
1507  Diag(Old->getLocation(), diag::note_previous_definition);
1508  return;
1509}
1510
1511/// DeclhasAttr - returns true if decl Declaration already has the target
1512/// attribute.
1513static bool
1514DeclHasAttr(const Decl *D, const Attr *A) {
1515  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1516  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1517  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1518    if ((*i)->getKind() == A->getKind()) {
1519      if (Ann) {
1520        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1521          return true;
1522        continue;
1523      }
1524      // FIXME: Don't hardcode this check
1525      if (OA && isa<OwnershipAttr>(*i))
1526        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1527      return true;
1528    }
1529
1530  return false;
1531}
1532
1533/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1534static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1535                                ASTContext &C, bool mergeDeprecation = true) {
1536  if (!oldDecl->hasAttrs())
1537    return;
1538
1539  bool foundAny = newDecl->hasAttrs();
1540
1541  // Ensure that any moving of objects within the allocated map is done before
1542  // we process them.
1543  if (!foundAny) newDecl->setAttrs(AttrVec());
1544
1545  for (specific_attr_iterator<InheritableAttr>
1546       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1547       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1548    // Ignore deprecated/unavailable/availability attributes if requested.
1549    if (!mergeDeprecation &&
1550        (isa<DeprecatedAttr>(*i) ||
1551         isa<UnavailableAttr>(*i) ||
1552         isa<AvailabilityAttr>(*i)))
1553      continue;
1554
1555    if (!DeclHasAttr(newDecl, *i)) {
1556      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1557      newAttr->setInherited(true);
1558      newDecl->addAttr(newAttr);
1559      foundAny = true;
1560    }
1561  }
1562
1563  if (!foundAny) newDecl->dropAttrs();
1564}
1565
1566/// mergeParamDeclAttributes - Copy attributes from the old parameter
1567/// to the new one.
1568static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1569                                     const ParmVarDecl *oldDecl,
1570                                     ASTContext &C) {
1571  if (!oldDecl->hasAttrs())
1572    return;
1573
1574  bool foundAny = newDecl->hasAttrs();
1575
1576  // Ensure that any moving of objects within the allocated map is
1577  // done before we process them.
1578  if (!foundAny) newDecl->setAttrs(AttrVec());
1579
1580  for (specific_attr_iterator<InheritableParamAttr>
1581       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1582       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1583    if (!DeclHasAttr(newDecl, *i)) {
1584      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1585      newAttr->setInherited(true);
1586      newDecl->addAttr(newAttr);
1587      foundAny = true;
1588    }
1589  }
1590
1591  if (!foundAny) newDecl->dropAttrs();
1592}
1593
1594namespace {
1595
1596/// Used in MergeFunctionDecl to keep track of function parameters in
1597/// C.
1598struct GNUCompatibleParamWarning {
1599  ParmVarDecl *OldParm;
1600  ParmVarDecl *NewParm;
1601  QualType PromotedType;
1602};
1603
1604}
1605
1606/// getSpecialMember - get the special member enum for a method.
1607Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1608  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1609    if (Ctor->isDefaultConstructor())
1610      return Sema::CXXDefaultConstructor;
1611
1612    if (Ctor->isCopyConstructor())
1613      return Sema::CXXCopyConstructor;
1614
1615    if (Ctor->isMoveConstructor())
1616      return Sema::CXXMoveConstructor;
1617  } else if (isa<CXXDestructorDecl>(MD)) {
1618    return Sema::CXXDestructor;
1619  } else if (MD->isCopyAssignmentOperator()) {
1620    return Sema::CXXCopyAssignment;
1621  } else if (MD->isMoveAssignmentOperator()) {
1622    return Sema::CXXMoveAssignment;
1623  }
1624
1625  return Sema::CXXInvalid;
1626}
1627
1628/// canRedefineFunction - checks if a function can be redefined. Currently,
1629/// only extern inline functions can be redefined, and even then only in
1630/// GNU89 mode.
1631static bool canRedefineFunction(const FunctionDecl *FD,
1632                                const LangOptions& LangOpts) {
1633  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1634          !LangOpts.CPlusPlus &&
1635          FD->isInlineSpecified() &&
1636          FD->getStorageClass() == SC_Extern);
1637}
1638
1639/// MergeFunctionDecl - We just parsed a function 'New' from
1640/// declarator D which has the same name and scope as a previous
1641/// declaration 'Old'.  Figure out how to resolve this situation,
1642/// merging decls or emitting diagnostics as appropriate.
1643///
1644/// In C++, New and Old must be declarations that are not
1645/// overloaded. Use IsOverload to determine whether New and Old are
1646/// overloaded, and to select the Old declaration that New should be
1647/// merged with.
1648///
1649/// Returns true if there was an error, false otherwise.
1650bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1651  // Verify the old decl was also a function.
1652  FunctionDecl *Old = 0;
1653  if (FunctionTemplateDecl *OldFunctionTemplate
1654        = dyn_cast<FunctionTemplateDecl>(OldD))
1655    Old = OldFunctionTemplate->getTemplatedDecl();
1656  else
1657    Old = dyn_cast<FunctionDecl>(OldD);
1658  if (!Old) {
1659    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1660      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1661      Diag(Shadow->getTargetDecl()->getLocation(),
1662           diag::note_using_decl_target);
1663      Diag(Shadow->getUsingDecl()->getLocation(),
1664           diag::note_using_decl) << 0;
1665      return true;
1666    }
1667
1668    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1669      << New->getDeclName();
1670    Diag(OldD->getLocation(), diag::note_previous_definition);
1671    return true;
1672  }
1673
1674  // Determine whether the previous declaration was a definition,
1675  // implicit declaration, or a declaration.
1676  diag::kind PrevDiag;
1677  if (Old->isThisDeclarationADefinition())
1678    PrevDiag = diag::note_previous_definition;
1679  else if (Old->isImplicit())
1680    PrevDiag = diag::note_previous_implicit_declaration;
1681  else
1682    PrevDiag = diag::note_previous_declaration;
1683
1684  QualType OldQType = Context.getCanonicalType(Old->getType());
1685  QualType NewQType = Context.getCanonicalType(New->getType());
1686
1687  // Don't complain about this if we're in GNU89 mode and the old function
1688  // is an extern inline function.
1689  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1690      New->getStorageClass() == SC_Static &&
1691      Old->getStorageClass() != SC_Static &&
1692      !canRedefineFunction(Old, getLangOptions())) {
1693    if (getLangOptions().MicrosoftExt) {
1694      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1695      Diag(Old->getLocation(), PrevDiag);
1696    } else {
1697      Diag(New->getLocation(), diag::err_static_non_static) << New;
1698      Diag(Old->getLocation(), PrevDiag);
1699      return true;
1700    }
1701  }
1702
1703  // If a function is first declared with a calling convention, but is
1704  // later declared or defined without one, the second decl assumes the
1705  // calling convention of the first.
1706  //
1707  // For the new decl, we have to look at the NON-canonical type to tell the
1708  // difference between a function that really doesn't have a calling
1709  // convention and one that is declared cdecl. That's because in
1710  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1711  // because it is the default calling convention.
1712  //
1713  // Note also that we DO NOT return at this point, because we still have
1714  // other tests to run.
1715  const FunctionType *OldType = cast<FunctionType>(OldQType);
1716  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1717  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1718  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1719  bool RequiresAdjustment = false;
1720  if (OldTypeInfo.getCC() != CC_Default &&
1721      NewTypeInfo.getCC() == CC_Default) {
1722    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1723    RequiresAdjustment = true;
1724  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1725                                     NewTypeInfo.getCC())) {
1726    // Calling conventions really aren't compatible, so complain.
1727    Diag(New->getLocation(), diag::err_cconv_change)
1728      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1729      << (OldTypeInfo.getCC() == CC_Default)
1730      << (OldTypeInfo.getCC() == CC_Default ? "" :
1731          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1732    Diag(Old->getLocation(), diag::note_previous_declaration);
1733    return true;
1734  }
1735
1736  // FIXME: diagnose the other way around?
1737  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1738    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1739    RequiresAdjustment = true;
1740  }
1741
1742  // Merge regparm attribute.
1743  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1744      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1745    if (NewTypeInfo.getHasRegParm()) {
1746      Diag(New->getLocation(), diag::err_regparm_mismatch)
1747        << NewType->getRegParmType()
1748        << OldType->getRegParmType();
1749      Diag(Old->getLocation(), diag::note_previous_declaration);
1750      return true;
1751    }
1752
1753    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1754    RequiresAdjustment = true;
1755  }
1756
1757  // Merge ns_returns_retained attribute.
1758  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1759    if (NewTypeInfo.getProducesResult()) {
1760      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1761      Diag(Old->getLocation(), diag::note_previous_declaration);
1762      return true;
1763    }
1764
1765    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1766    RequiresAdjustment = true;
1767  }
1768
1769  if (RequiresAdjustment) {
1770    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1771    New->setType(QualType(NewType, 0));
1772    NewQType = Context.getCanonicalType(New->getType());
1773  }
1774
1775  if (getLangOptions().CPlusPlus) {
1776    // (C++98 13.1p2):
1777    //   Certain function declarations cannot be overloaded:
1778    //     -- Function declarations that differ only in the return type
1779    //        cannot be overloaded.
1780    QualType OldReturnType = OldType->getResultType();
1781    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1782    QualType ResQT;
1783    if (OldReturnType != NewReturnType) {
1784      if (NewReturnType->isObjCObjectPointerType()
1785          && OldReturnType->isObjCObjectPointerType())
1786        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1787      if (ResQT.isNull()) {
1788        if (New->isCXXClassMember() && New->isOutOfLine())
1789          Diag(New->getLocation(),
1790               diag::err_member_def_does_not_match_ret_type) << New;
1791        else
1792          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1793        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1794        return true;
1795      }
1796      else
1797        NewQType = ResQT;
1798    }
1799
1800    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1801    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1802    if (OldMethod && NewMethod) {
1803      // Preserve triviality.
1804      NewMethod->setTrivial(OldMethod->isTrivial());
1805
1806      // MSVC allows explicit template specialization at class scope:
1807      // 2 CXMethodDecls referring to the same function will be injected.
1808      // We don't want a redeclartion error.
1809      bool IsClassScopeExplicitSpecialization =
1810                              OldMethod->isFunctionTemplateSpecialization() &&
1811                              NewMethod->isFunctionTemplateSpecialization();
1812      bool isFriend = NewMethod->getFriendObjectKind();
1813
1814      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1815          !IsClassScopeExplicitSpecialization) {
1816        //    -- Member function declarations with the same name and the
1817        //       same parameter types cannot be overloaded if any of them
1818        //       is a static member function declaration.
1819        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1820          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1821          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1822          return true;
1823        }
1824
1825        // C++ [class.mem]p1:
1826        //   [...] A member shall not be declared twice in the
1827        //   member-specification, except that a nested class or member
1828        //   class template can be declared and then later defined.
1829        unsigned NewDiag;
1830        if (isa<CXXConstructorDecl>(OldMethod))
1831          NewDiag = diag::err_constructor_redeclared;
1832        else if (isa<CXXDestructorDecl>(NewMethod))
1833          NewDiag = diag::err_destructor_redeclared;
1834        else if (isa<CXXConversionDecl>(NewMethod))
1835          NewDiag = diag::err_conv_function_redeclared;
1836        else
1837          NewDiag = diag::err_member_redeclared;
1838
1839        Diag(New->getLocation(), NewDiag);
1840        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1841
1842      // Complain if this is an explicit declaration of a special
1843      // member that was initially declared implicitly.
1844      //
1845      // As an exception, it's okay to befriend such methods in order
1846      // to permit the implicit constructor/destructor/operator calls.
1847      } else if (OldMethod->isImplicit()) {
1848        if (isFriend) {
1849          NewMethod->setImplicit();
1850        } else {
1851          Diag(NewMethod->getLocation(),
1852               diag::err_definition_of_implicitly_declared_member)
1853            << New << getSpecialMember(OldMethod);
1854          return true;
1855        }
1856      } else if (OldMethod->isExplicitlyDefaulted()) {
1857        Diag(NewMethod->getLocation(),
1858             diag::err_definition_of_explicitly_defaulted_member)
1859          << getSpecialMember(OldMethod);
1860        return true;
1861      }
1862    }
1863
1864    // (C++98 8.3.5p3):
1865    //   All declarations for a function shall agree exactly in both the
1866    //   return type and the parameter-type-list.
1867    // We also want to respect all the extended bits except noreturn.
1868
1869    // noreturn should now match unless the old type info didn't have it.
1870    QualType OldQTypeForComparison = OldQType;
1871    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1872      assert(OldQType == QualType(OldType, 0));
1873      const FunctionType *OldTypeForComparison
1874        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1875      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1876      assert(OldQTypeForComparison.isCanonical());
1877    }
1878
1879    if (OldQTypeForComparison == NewQType)
1880      return MergeCompatibleFunctionDecls(New, Old);
1881
1882    // Fall through for conflicting redeclarations and redefinitions.
1883  }
1884
1885  // C: Function types need to be compatible, not identical. This handles
1886  // duplicate function decls like "void f(int); void f(enum X);" properly.
1887  if (!getLangOptions().CPlusPlus &&
1888      Context.typesAreCompatible(OldQType, NewQType)) {
1889    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1890    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1891    const FunctionProtoType *OldProto = 0;
1892    if (isa<FunctionNoProtoType>(NewFuncType) &&
1893        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1894      // The old declaration provided a function prototype, but the
1895      // new declaration does not. Merge in the prototype.
1896      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1897      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1898                                                 OldProto->arg_type_end());
1899      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1900                                         ParamTypes.data(), ParamTypes.size(),
1901                                         OldProto->getExtProtoInfo());
1902      New->setType(NewQType);
1903      New->setHasInheritedPrototype();
1904
1905      // Synthesize a parameter for each argument type.
1906      SmallVector<ParmVarDecl*, 16> Params;
1907      for (FunctionProtoType::arg_type_iterator
1908             ParamType = OldProto->arg_type_begin(),
1909             ParamEnd = OldProto->arg_type_end();
1910           ParamType != ParamEnd; ++ParamType) {
1911        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1912                                                 SourceLocation(),
1913                                                 SourceLocation(), 0,
1914                                                 *ParamType, /*TInfo=*/0,
1915                                                 SC_None, SC_None,
1916                                                 0);
1917        Param->setScopeInfo(0, Params.size());
1918        Param->setImplicit();
1919        Params.push_back(Param);
1920      }
1921
1922      New->setParams(Params);
1923    }
1924
1925    return MergeCompatibleFunctionDecls(New, Old);
1926  }
1927
1928  // GNU C permits a K&R definition to follow a prototype declaration
1929  // if the declared types of the parameters in the K&R definition
1930  // match the types in the prototype declaration, even when the
1931  // promoted types of the parameters from the K&R definition differ
1932  // from the types in the prototype. GCC then keeps the types from
1933  // the prototype.
1934  //
1935  // If a variadic prototype is followed by a non-variadic K&R definition,
1936  // the K&R definition becomes variadic.  This is sort of an edge case, but
1937  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1938  // C99 6.9.1p8.
1939  if (!getLangOptions().CPlusPlus &&
1940      Old->hasPrototype() && !New->hasPrototype() &&
1941      New->getType()->getAs<FunctionProtoType>() &&
1942      Old->getNumParams() == New->getNumParams()) {
1943    SmallVector<QualType, 16> ArgTypes;
1944    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1945    const FunctionProtoType *OldProto
1946      = Old->getType()->getAs<FunctionProtoType>();
1947    const FunctionProtoType *NewProto
1948      = New->getType()->getAs<FunctionProtoType>();
1949
1950    // Determine whether this is the GNU C extension.
1951    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1952                                               NewProto->getResultType());
1953    bool LooseCompatible = !MergedReturn.isNull();
1954    for (unsigned Idx = 0, End = Old->getNumParams();
1955         LooseCompatible && Idx != End; ++Idx) {
1956      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1957      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1958      if (Context.typesAreCompatible(OldParm->getType(),
1959                                     NewProto->getArgType(Idx))) {
1960        ArgTypes.push_back(NewParm->getType());
1961      } else if (Context.typesAreCompatible(OldParm->getType(),
1962                                            NewParm->getType(),
1963                                            /*CompareUnqualified=*/true)) {
1964        GNUCompatibleParamWarning Warn
1965          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1966        Warnings.push_back(Warn);
1967        ArgTypes.push_back(NewParm->getType());
1968      } else
1969        LooseCompatible = false;
1970    }
1971
1972    if (LooseCompatible) {
1973      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1974        Diag(Warnings[Warn].NewParm->getLocation(),
1975             diag::ext_param_promoted_not_compatible_with_prototype)
1976          << Warnings[Warn].PromotedType
1977          << Warnings[Warn].OldParm->getType();
1978        if (Warnings[Warn].OldParm->getLocation().isValid())
1979          Diag(Warnings[Warn].OldParm->getLocation(),
1980               diag::note_previous_declaration);
1981      }
1982
1983      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1984                                           ArgTypes.size(),
1985                                           OldProto->getExtProtoInfo()));
1986      return MergeCompatibleFunctionDecls(New, Old);
1987    }
1988
1989    // Fall through to diagnose conflicting types.
1990  }
1991
1992  // A function that has already been declared has been redeclared or defined
1993  // with a different type- show appropriate diagnostic
1994  if (unsigned BuiltinID = Old->getBuiltinID()) {
1995    // The user has declared a builtin function with an incompatible
1996    // signature.
1997    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1998      // The function the user is redeclaring is a library-defined
1999      // function like 'malloc' or 'printf'. Warn about the
2000      // redeclaration, then pretend that we don't know about this
2001      // library built-in.
2002      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2003      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2004        << Old << Old->getType();
2005      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2006      Old->setInvalidDecl();
2007      return false;
2008    }
2009
2010    PrevDiag = diag::note_previous_builtin_declaration;
2011  }
2012
2013  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2014  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2015  return true;
2016}
2017
2018/// \brief Completes the merge of two function declarations that are
2019/// known to be compatible.
2020///
2021/// This routine handles the merging of attributes and other
2022/// properties of function declarations form the old declaration to
2023/// the new declaration, once we know that New is in fact a
2024/// redeclaration of Old.
2025///
2026/// \returns false
2027bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2028  // Merge the attributes
2029  mergeDeclAttributes(New, Old, Context);
2030
2031  // Merge the storage class.
2032  if (Old->getStorageClass() != SC_Extern &&
2033      Old->getStorageClass() != SC_None)
2034    New->setStorageClass(Old->getStorageClass());
2035
2036  // Merge "pure" flag.
2037  if (Old->isPure())
2038    New->setPure();
2039
2040  // __module_private__ is propagated to later declarations.
2041  if (Old->isModulePrivate())
2042    New->setModulePrivate();
2043  else if (New->isModulePrivate())
2044    diagnoseModulePrivateRedeclaration(New, Old);
2045
2046  // Merge attributes from the parameters.  These can mismatch with K&R
2047  // declarations.
2048  if (New->getNumParams() == Old->getNumParams())
2049    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2050      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2051                               Context);
2052
2053  if (getLangOptions().CPlusPlus)
2054    return MergeCXXFunctionDecl(New, Old);
2055
2056  return false;
2057}
2058
2059
2060void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2061                                const ObjCMethodDecl *oldMethod) {
2062  // We don't want to merge unavailable and deprecated attributes
2063  // except from interface to implementation.
2064  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2065
2066  // Merge the attributes.
2067  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2068
2069  // Merge attributes from the parameters.
2070  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2071  for (ObjCMethodDecl::param_iterator
2072         ni = newMethod->param_begin(), ne = newMethod->param_end();
2073       ni != ne; ++ni, ++oi)
2074    mergeParamDeclAttributes(*ni, *oi, Context);
2075
2076  CheckObjCMethodOverride(newMethod, oldMethod, true);
2077}
2078
2079/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2080/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2081/// emitting diagnostics as appropriate.
2082///
2083/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2084/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2085/// check them before the initializer is attached.
2086///
2087void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2088  if (New->isInvalidDecl() || Old->isInvalidDecl())
2089    return;
2090
2091  QualType MergedT;
2092  if (getLangOptions().CPlusPlus) {
2093    AutoType *AT = New->getType()->getContainedAutoType();
2094    if (AT && !AT->isDeduced()) {
2095      // We don't know what the new type is until the initializer is attached.
2096      return;
2097    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2098      // These could still be something that needs exception specs checked.
2099      return MergeVarDeclExceptionSpecs(New, Old);
2100    }
2101    // C++ [basic.link]p10:
2102    //   [...] the types specified by all declarations referring to a given
2103    //   object or function shall be identical, except that declarations for an
2104    //   array object can specify array types that differ by the presence or
2105    //   absence of a major array bound (8.3.4).
2106    else if (Old->getType()->isIncompleteArrayType() &&
2107             New->getType()->isArrayType()) {
2108      CanQual<ArrayType> OldArray
2109        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2110      CanQual<ArrayType> NewArray
2111        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2112      if (OldArray->getElementType() == NewArray->getElementType())
2113        MergedT = New->getType();
2114    } else if (Old->getType()->isArrayType() &&
2115             New->getType()->isIncompleteArrayType()) {
2116      CanQual<ArrayType> OldArray
2117        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2118      CanQual<ArrayType> NewArray
2119        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2120      if (OldArray->getElementType() == NewArray->getElementType())
2121        MergedT = Old->getType();
2122    } else if (New->getType()->isObjCObjectPointerType()
2123               && Old->getType()->isObjCObjectPointerType()) {
2124        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2125                                                        Old->getType());
2126    }
2127  } else {
2128    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2129  }
2130  if (MergedT.isNull()) {
2131    Diag(New->getLocation(), diag::err_redefinition_different_type)
2132      << New->getDeclName();
2133    Diag(Old->getLocation(), diag::note_previous_definition);
2134    return New->setInvalidDecl();
2135  }
2136  New->setType(MergedT);
2137}
2138
2139/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2140/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2141/// situation, merging decls or emitting diagnostics as appropriate.
2142///
2143/// Tentative definition rules (C99 6.9.2p2) are checked by
2144/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2145/// definitions here, since the initializer hasn't been attached.
2146///
2147void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2148  // If the new decl is already invalid, don't do any other checking.
2149  if (New->isInvalidDecl())
2150    return;
2151
2152  // Verify the old decl was also a variable.
2153  VarDecl *Old = 0;
2154  if (!Previous.isSingleResult() ||
2155      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2156    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2157      << New->getDeclName();
2158    Diag(Previous.getRepresentativeDecl()->getLocation(),
2159         diag::note_previous_definition);
2160    return New->setInvalidDecl();
2161  }
2162
2163  // C++ [class.mem]p1:
2164  //   A member shall not be declared twice in the member-specification [...]
2165  //
2166  // Here, we need only consider static data members.
2167  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2168    Diag(New->getLocation(), diag::err_duplicate_member)
2169      << New->getIdentifier();
2170    Diag(Old->getLocation(), diag::note_previous_declaration);
2171    New->setInvalidDecl();
2172  }
2173
2174  mergeDeclAttributes(New, Old, Context);
2175  // Warn if an already-declared variable is made a weak_import in a subsequent
2176  // declaration
2177  if (New->getAttr<WeakImportAttr>() &&
2178      Old->getStorageClass() == SC_None &&
2179      !Old->getAttr<WeakImportAttr>()) {
2180    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2181    Diag(Old->getLocation(), diag::note_previous_definition);
2182    // Remove weak_import attribute on new declaration.
2183    New->dropAttr<WeakImportAttr>();
2184  }
2185
2186  // Merge the types.
2187  MergeVarDeclTypes(New, Old);
2188  if (New->isInvalidDecl())
2189    return;
2190
2191  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2192  if (New->getStorageClass() == SC_Static &&
2193      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2194    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2195    Diag(Old->getLocation(), diag::note_previous_definition);
2196    return New->setInvalidDecl();
2197  }
2198  // C99 6.2.2p4:
2199  //   For an identifier declared with the storage-class specifier
2200  //   extern in a scope in which a prior declaration of that
2201  //   identifier is visible,23) if the prior declaration specifies
2202  //   internal or external linkage, the linkage of the identifier at
2203  //   the later declaration is the same as the linkage specified at
2204  //   the prior declaration. If no prior declaration is visible, or
2205  //   if the prior declaration specifies no linkage, then the
2206  //   identifier has external linkage.
2207  if (New->hasExternalStorage() && Old->hasLinkage())
2208    /* Okay */;
2209  else if (New->getStorageClass() != SC_Static &&
2210           Old->getStorageClass() == SC_Static) {
2211    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2212    Diag(Old->getLocation(), diag::note_previous_definition);
2213    return New->setInvalidDecl();
2214  }
2215
2216  // Check if extern is followed by non-extern and vice-versa.
2217  if (New->hasExternalStorage() &&
2218      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2219    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2220    Diag(Old->getLocation(), diag::note_previous_definition);
2221    return New->setInvalidDecl();
2222  }
2223  if (Old->hasExternalStorage() &&
2224      !New->hasLinkage() && New->isLocalVarDecl()) {
2225    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2226    Diag(Old->getLocation(), diag::note_previous_definition);
2227    return New->setInvalidDecl();
2228  }
2229
2230  // __module_private__ is propagated to later declarations.
2231  if (Old->isModulePrivate())
2232    New->setModulePrivate();
2233  else if (New->isModulePrivate())
2234    diagnoseModulePrivateRedeclaration(New, Old);
2235
2236  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2237
2238  // FIXME: The test for external storage here seems wrong? We still
2239  // need to check for mismatches.
2240  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2241      // Don't complain about out-of-line definitions of static members.
2242      !(Old->getLexicalDeclContext()->isRecord() &&
2243        !New->getLexicalDeclContext()->isRecord())) {
2244    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2245    Diag(Old->getLocation(), diag::note_previous_definition);
2246    return New->setInvalidDecl();
2247  }
2248
2249  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2250    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2251    Diag(Old->getLocation(), diag::note_previous_definition);
2252  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2253    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2254    Diag(Old->getLocation(), diag::note_previous_definition);
2255  }
2256
2257  // C++ doesn't have tentative definitions, so go right ahead and check here.
2258  const VarDecl *Def;
2259  if (getLangOptions().CPlusPlus &&
2260      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2261      (Def = Old->getDefinition())) {
2262    Diag(New->getLocation(), diag::err_redefinition)
2263      << New->getDeclName();
2264    Diag(Def->getLocation(), diag::note_previous_definition);
2265    New->setInvalidDecl();
2266    return;
2267  }
2268  // c99 6.2.2 P4.
2269  // For an identifier declared with the storage-class specifier extern in a
2270  // scope in which a prior declaration of that identifier is visible, if
2271  // the prior declaration specifies internal or external linkage, the linkage
2272  // of the identifier at the later declaration is the same as the linkage
2273  // specified at the prior declaration.
2274  // FIXME. revisit this code.
2275  if (New->hasExternalStorage() &&
2276      Old->getLinkage() == InternalLinkage &&
2277      New->getDeclContext() == Old->getDeclContext())
2278    New->setStorageClass(Old->getStorageClass());
2279
2280  // Keep a chain of previous declarations.
2281  New->setPreviousDeclaration(Old);
2282
2283  // Inherit access appropriately.
2284  New->setAccess(Old->getAccess());
2285}
2286
2287/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2288/// no declarator (e.g. "struct foo;") is parsed.
2289Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2290                                       DeclSpec &DS) {
2291  return ParsedFreeStandingDeclSpec(S, AS, DS,
2292                                    MultiTemplateParamsArg(*this, 0, 0));
2293}
2294
2295/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2296/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2297/// parameters to cope with template friend declarations.
2298Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2299                                       DeclSpec &DS,
2300                                       MultiTemplateParamsArg TemplateParams) {
2301  Decl *TagD = 0;
2302  TagDecl *Tag = 0;
2303  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2304      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2305      DS.getTypeSpecType() == DeclSpec::TST_union ||
2306      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2307    TagD = DS.getRepAsDecl();
2308
2309    if (!TagD) // We probably had an error
2310      return 0;
2311
2312    // Note that the above type specs guarantee that the
2313    // type rep is a Decl, whereas in many of the others
2314    // it's a Type.
2315    Tag = dyn_cast<TagDecl>(TagD);
2316  }
2317
2318  if (Tag)
2319    Tag->setFreeStanding();
2320
2321  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2322    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2323    // or incomplete types shall not be restrict-qualified."
2324    if (TypeQuals & DeclSpec::TQ_restrict)
2325      Diag(DS.getRestrictSpecLoc(),
2326           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2327           << DS.getSourceRange();
2328  }
2329
2330  if (DS.isConstexprSpecified()) {
2331    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2332    // and definitions of functions and variables.
2333    if (Tag)
2334      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2335        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2336            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2337            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2338    else
2339      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2340    // Don't emit warnings after this error.
2341    return TagD;
2342  }
2343
2344  if (DS.isFriendSpecified()) {
2345    // If we're dealing with a decl but not a TagDecl, assume that
2346    // whatever routines created it handled the friendship aspect.
2347    if (TagD && !Tag)
2348      return 0;
2349    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2350  }
2351
2352  // Track whether we warned about the fact that there aren't any
2353  // declarators.
2354  bool emittedWarning = false;
2355
2356  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2357    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2358
2359    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2360        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2361      if (getLangOptions().CPlusPlus ||
2362          Record->getDeclContext()->isRecord())
2363        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2364
2365      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2366        << DS.getSourceRange();
2367      emittedWarning = true;
2368    }
2369  }
2370
2371  // Check for Microsoft C extension: anonymous struct.
2372  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2373      CurContext->isRecord() &&
2374      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2375    // Handle 2 kinds of anonymous struct:
2376    //   struct STRUCT;
2377    // and
2378    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2379    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2380    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2381        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2382         DS.getRepAsType().get()->isStructureType())) {
2383      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2384        << DS.getSourceRange();
2385      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2386    }
2387  }
2388
2389  if (getLangOptions().CPlusPlus &&
2390      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2391    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2392      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2393          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2394        Diag(Enum->getLocation(), diag::ext_no_declarators)
2395          << DS.getSourceRange();
2396        emittedWarning = true;
2397      }
2398
2399  // Skip all the checks below if we have a type error.
2400  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2401
2402  if (!DS.isMissingDeclaratorOk()) {
2403    // Warn about typedefs of enums without names, since this is an
2404    // extension in both Microsoft and GNU.
2405    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2406        Tag && isa<EnumDecl>(Tag)) {
2407      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2408        << DS.getSourceRange();
2409      return Tag;
2410    }
2411
2412    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2413      << DS.getSourceRange();
2414    emittedWarning = true;
2415  }
2416
2417  // We're going to complain about a bunch of spurious specifiers;
2418  // only do this if we're declaring a tag, because otherwise we
2419  // should be getting diag::ext_no_declarators.
2420  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2421    return TagD;
2422
2423  // Note that a linkage-specification sets a storage class, but
2424  // 'extern "C" struct foo;' is actually valid and not theoretically
2425  // useless.
2426  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2427    if (!DS.isExternInLinkageSpec())
2428      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2429        << DeclSpec::getSpecifierName(scs);
2430
2431  if (DS.isThreadSpecified())
2432    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2433  if (DS.getTypeQualifiers()) {
2434    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2435      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2436    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2437      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2438    // Restrict is covered above.
2439  }
2440  if (DS.isInlineSpecified())
2441    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2442  if (DS.isVirtualSpecified())
2443    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2444  if (DS.isExplicitSpecified())
2445    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2446
2447  if (DS.isModulePrivateSpecified() &&
2448      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2449    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2450      << Tag->getTagKind()
2451      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2452
2453  // FIXME: Warn on useless attributes
2454
2455  return TagD;
2456}
2457
2458/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2459/// builds a statement for it and returns it so it is evaluated.
2460StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2461  StmtResult R;
2462  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2463    Expr *Exp = DS.getRepAsExpr();
2464    QualType Ty = Exp->getType();
2465    if (Ty->isPointerType()) {
2466      do
2467        Ty = Ty->getAs<PointerType>()->getPointeeType();
2468      while (Ty->isPointerType());
2469    }
2470    if (Ty->isVariableArrayType()) {
2471      R = ActOnExprStmt(MakeFullExpr(Exp));
2472    }
2473  }
2474  return R;
2475}
2476
2477/// We are trying to inject an anonymous member into the given scope;
2478/// check if there's an existing declaration that can't be overloaded.
2479///
2480/// \return true if this is a forbidden redeclaration
2481static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2482                                         Scope *S,
2483                                         DeclContext *Owner,
2484                                         DeclarationName Name,
2485                                         SourceLocation NameLoc,
2486                                         unsigned diagnostic) {
2487  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2488                 Sema::ForRedeclaration);
2489  if (!SemaRef.LookupName(R, S)) return false;
2490
2491  if (R.getAsSingle<TagDecl>())
2492    return false;
2493
2494  // Pick a representative declaration.
2495  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2496  assert(PrevDecl && "Expected a non-null Decl");
2497
2498  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2499    return false;
2500
2501  SemaRef.Diag(NameLoc, diagnostic) << Name;
2502  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2503
2504  return true;
2505}
2506
2507/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2508/// anonymous struct or union AnonRecord into the owning context Owner
2509/// and scope S. This routine will be invoked just after we realize
2510/// that an unnamed union or struct is actually an anonymous union or
2511/// struct, e.g.,
2512///
2513/// @code
2514/// union {
2515///   int i;
2516///   float f;
2517/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2518///    // f into the surrounding scope.x
2519/// @endcode
2520///
2521/// This routine is recursive, injecting the names of nested anonymous
2522/// structs/unions into the owning context and scope as well.
2523static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2524                                                DeclContext *Owner,
2525                                                RecordDecl *AnonRecord,
2526                                                AccessSpecifier AS,
2527                              SmallVector<NamedDecl*, 2> &Chaining,
2528                                                      bool MSAnonStruct) {
2529  unsigned diagKind
2530    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2531                            : diag::err_anonymous_struct_member_redecl;
2532
2533  bool Invalid = false;
2534
2535  // Look every FieldDecl and IndirectFieldDecl with a name.
2536  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2537                               DEnd = AnonRecord->decls_end();
2538       D != DEnd; ++D) {
2539    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2540        cast<NamedDecl>(*D)->getDeclName()) {
2541      ValueDecl *VD = cast<ValueDecl>(*D);
2542      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2543                                       VD->getLocation(), diagKind)) {
2544        // C++ [class.union]p2:
2545        //   The names of the members of an anonymous union shall be
2546        //   distinct from the names of any other entity in the
2547        //   scope in which the anonymous union is declared.
2548        Invalid = true;
2549      } else {
2550        // C++ [class.union]p2:
2551        //   For the purpose of name lookup, after the anonymous union
2552        //   definition, the members of the anonymous union are
2553        //   considered to have been defined in the scope in which the
2554        //   anonymous union is declared.
2555        unsigned OldChainingSize = Chaining.size();
2556        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2557          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2558               PE = IF->chain_end(); PI != PE; ++PI)
2559            Chaining.push_back(*PI);
2560        else
2561          Chaining.push_back(VD);
2562
2563        assert(Chaining.size() >= 2);
2564        NamedDecl **NamedChain =
2565          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2566        for (unsigned i = 0; i < Chaining.size(); i++)
2567          NamedChain[i] = Chaining[i];
2568
2569        IndirectFieldDecl* IndirectField =
2570          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2571                                    VD->getIdentifier(), VD->getType(),
2572                                    NamedChain, Chaining.size());
2573
2574        IndirectField->setAccess(AS);
2575        IndirectField->setImplicit();
2576        SemaRef.PushOnScopeChains(IndirectField, S);
2577
2578        // That includes picking up the appropriate access specifier.
2579        if (AS != AS_none) IndirectField->setAccess(AS);
2580
2581        Chaining.resize(OldChainingSize);
2582      }
2583    }
2584  }
2585
2586  return Invalid;
2587}
2588
2589/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2590/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2591/// illegal input values are mapped to SC_None.
2592static StorageClass
2593StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2594  switch (StorageClassSpec) {
2595  case DeclSpec::SCS_unspecified:    return SC_None;
2596  case DeclSpec::SCS_extern:         return SC_Extern;
2597  case DeclSpec::SCS_static:         return SC_Static;
2598  case DeclSpec::SCS_auto:           return SC_Auto;
2599  case DeclSpec::SCS_register:       return SC_Register;
2600  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2601    // Illegal SCSs map to None: error reporting is up to the caller.
2602  case DeclSpec::SCS_mutable:        // Fall through.
2603  case DeclSpec::SCS_typedef:        return SC_None;
2604  }
2605  llvm_unreachable("unknown storage class specifier");
2606}
2607
2608/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2609/// a StorageClass. Any error reporting is up to the caller:
2610/// illegal input values are mapped to SC_None.
2611static StorageClass
2612StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2613  switch (StorageClassSpec) {
2614  case DeclSpec::SCS_unspecified:    return SC_None;
2615  case DeclSpec::SCS_extern:         return SC_Extern;
2616  case DeclSpec::SCS_static:         return SC_Static;
2617  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2618    // Illegal SCSs map to None: error reporting is up to the caller.
2619  case DeclSpec::SCS_auto:           // Fall through.
2620  case DeclSpec::SCS_mutable:        // Fall through.
2621  case DeclSpec::SCS_register:       // Fall through.
2622  case DeclSpec::SCS_typedef:        return SC_None;
2623  }
2624  llvm_unreachable("unknown storage class specifier");
2625}
2626
2627/// BuildAnonymousStructOrUnion - Handle the declaration of an
2628/// anonymous structure or union. Anonymous unions are a C++ feature
2629/// (C++ [class.union]) and a GNU C extension; anonymous structures
2630/// are a GNU C and GNU C++ extension.
2631Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2632                                             AccessSpecifier AS,
2633                                             RecordDecl *Record) {
2634  DeclContext *Owner = Record->getDeclContext();
2635
2636  // Diagnose whether this anonymous struct/union is an extension.
2637  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2638    Diag(Record->getLocation(), diag::ext_anonymous_union);
2639  else if (!Record->isUnion())
2640    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2641
2642  // C and C++ require different kinds of checks for anonymous
2643  // structs/unions.
2644  bool Invalid = false;
2645  if (getLangOptions().CPlusPlus) {
2646    const char* PrevSpec = 0;
2647    unsigned DiagID;
2648    if (Record->isUnion()) {
2649      // C++ [class.union]p6:
2650      //   Anonymous unions declared in a named namespace or in the
2651      //   global namespace shall be declared static.
2652      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2653          (isa<TranslationUnitDecl>(Owner) ||
2654           (isa<NamespaceDecl>(Owner) &&
2655            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2656        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2657          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2658        Invalid = true;
2659
2660        // Recover by adding 'static'.
2661        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2662                               PrevSpec, DiagID);
2663      }
2664      // C++ [class.union]p6:
2665      //   A storage class is not allowed in a declaration of an
2666      //   anonymous union in a class scope.
2667      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2668               isa<RecordDecl>(Owner)) {
2669        Diag(DS.getStorageClassSpecLoc(),
2670             diag::err_anonymous_union_with_storage_spec)
2671          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2672        Invalid = true;
2673
2674        // Recover by removing the storage specifier.
2675        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2676                               SourceLocation(),
2677                               PrevSpec, DiagID);
2678      }
2679    }
2680
2681    // Ignore const/volatile/restrict qualifiers.
2682    if (DS.getTypeQualifiers()) {
2683      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2684        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2685          << Record->isUnion() << 0
2686          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2687      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2688        Diag(DS.getVolatileSpecLoc(),
2689             diag::ext_anonymous_struct_union_qualified)
2690          << Record->isUnion() << 1
2691          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2692      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2693        Diag(DS.getRestrictSpecLoc(),
2694             diag::ext_anonymous_struct_union_qualified)
2695          << Record->isUnion() << 2
2696          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2697
2698      DS.ClearTypeQualifiers();
2699    }
2700
2701    // C++ [class.union]p2:
2702    //   The member-specification of an anonymous union shall only
2703    //   define non-static data members. [Note: nested types and
2704    //   functions cannot be declared within an anonymous union. ]
2705    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2706                                 MemEnd = Record->decls_end();
2707         Mem != MemEnd; ++Mem) {
2708      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2709        // C++ [class.union]p3:
2710        //   An anonymous union shall not have private or protected
2711        //   members (clause 11).
2712        assert(FD->getAccess() != AS_none);
2713        if (FD->getAccess() != AS_public) {
2714          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2715            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2716          Invalid = true;
2717        }
2718
2719        // C++ [class.union]p1
2720        //   An object of a class with a non-trivial constructor, a non-trivial
2721        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2722        //   assignment operator cannot be a member of a union, nor can an
2723        //   array of such objects.
2724        if (CheckNontrivialField(FD))
2725          Invalid = true;
2726      } else if ((*Mem)->isImplicit()) {
2727        // Any implicit members are fine.
2728      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2729        // This is a type that showed up in an
2730        // elaborated-type-specifier inside the anonymous struct or
2731        // union, but which actually declares a type outside of the
2732        // anonymous struct or union. It's okay.
2733      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2734        if (!MemRecord->isAnonymousStructOrUnion() &&
2735            MemRecord->getDeclName()) {
2736          // Visual C++ allows type definition in anonymous struct or union.
2737          if (getLangOptions().MicrosoftExt)
2738            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2739              << (int)Record->isUnion();
2740          else {
2741            // This is a nested type declaration.
2742            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2743              << (int)Record->isUnion();
2744            Invalid = true;
2745          }
2746        }
2747      } else if (isa<AccessSpecDecl>(*Mem)) {
2748        // Any access specifier is fine.
2749      } else {
2750        // We have something that isn't a non-static data
2751        // member. Complain about it.
2752        unsigned DK = diag::err_anonymous_record_bad_member;
2753        if (isa<TypeDecl>(*Mem))
2754          DK = diag::err_anonymous_record_with_type;
2755        else if (isa<FunctionDecl>(*Mem))
2756          DK = diag::err_anonymous_record_with_function;
2757        else if (isa<VarDecl>(*Mem))
2758          DK = diag::err_anonymous_record_with_static;
2759
2760        // Visual C++ allows type definition in anonymous struct or union.
2761        if (getLangOptions().MicrosoftExt &&
2762            DK == diag::err_anonymous_record_with_type)
2763          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2764            << (int)Record->isUnion();
2765        else {
2766          Diag((*Mem)->getLocation(), DK)
2767              << (int)Record->isUnion();
2768          Invalid = true;
2769        }
2770      }
2771    }
2772  }
2773
2774  if (!Record->isUnion() && !Owner->isRecord()) {
2775    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2776      << (int)getLangOptions().CPlusPlus;
2777    Invalid = true;
2778  }
2779
2780  // Mock up a declarator.
2781  Declarator Dc(DS, Declarator::MemberContext);
2782  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2783  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2784
2785  // Create a declaration for this anonymous struct/union.
2786  NamedDecl *Anon = 0;
2787  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2788    Anon = FieldDecl::Create(Context, OwningClass,
2789                             DS.getSourceRange().getBegin(),
2790                             Record->getLocation(),
2791                             /*IdentifierInfo=*/0,
2792                             Context.getTypeDeclType(Record),
2793                             TInfo,
2794                             /*BitWidth=*/0, /*Mutable=*/false,
2795                             /*HasInit=*/false);
2796    Anon->setAccess(AS);
2797    if (getLangOptions().CPlusPlus)
2798      FieldCollector->Add(cast<FieldDecl>(Anon));
2799  } else {
2800    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2801    assert(SCSpec != DeclSpec::SCS_typedef &&
2802           "Parser allowed 'typedef' as storage class VarDecl.");
2803    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2804    if (SCSpec == DeclSpec::SCS_mutable) {
2805      // mutable can only appear on non-static class members, so it's always
2806      // an error here
2807      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2808      Invalid = true;
2809      SC = SC_None;
2810    }
2811    SCSpec = DS.getStorageClassSpecAsWritten();
2812    VarDecl::StorageClass SCAsWritten
2813      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2814
2815    Anon = VarDecl::Create(Context, Owner,
2816                           DS.getSourceRange().getBegin(),
2817                           Record->getLocation(), /*IdentifierInfo=*/0,
2818                           Context.getTypeDeclType(Record),
2819                           TInfo, SC, SCAsWritten);
2820
2821    // Default-initialize the implicit variable. This initialization will be
2822    // trivial in almost all cases, except if a union member has an in-class
2823    // initializer:
2824    //   union { int n = 0; };
2825    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2826  }
2827  Anon->setImplicit();
2828
2829  // Add the anonymous struct/union object to the current
2830  // context. We'll be referencing this object when we refer to one of
2831  // its members.
2832  Owner->addDecl(Anon);
2833
2834  // Inject the members of the anonymous struct/union into the owning
2835  // context and into the identifier resolver chain for name lookup
2836  // purposes.
2837  SmallVector<NamedDecl*, 2> Chain;
2838  Chain.push_back(Anon);
2839
2840  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2841                                          Chain, false))
2842    Invalid = true;
2843
2844  // Mark this as an anonymous struct/union type. Note that we do not
2845  // do this until after we have already checked and injected the
2846  // members of this anonymous struct/union type, because otherwise
2847  // the members could be injected twice: once by DeclContext when it
2848  // builds its lookup table, and once by
2849  // InjectAnonymousStructOrUnionMembers.
2850  Record->setAnonymousStructOrUnion(true);
2851
2852  if (Invalid)
2853    Anon->setInvalidDecl();
2854
2855  return Anon;
2856}
2857
2858/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2859/// Microsoft C anonymous structure.
2860/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2861/// Example:
2862///
2863/// struct A { int a; };
2864/// struct B { struct A; int b; };
2865///
2866/// void foo() {
2867///   B var;
2868///   var.a = 3;
2869/// }
2870///
2871Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2872                                           RecordDecl *Record) {
2873
2874  // If there is no Record, get the record via the typedef.
2875  if (!Record)
2876    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2877
2878  // Mock up a declarator.
2879  Declarator Dc(DS, Declarator::TypeNameContext);
2880  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2881  assert(TInfo && "couldn't build declarator info for anonymous struct");
2882
2883  // Create a declaration for this anonymous struct.
2884  NamedDecl* Anon = FieldDecl::Create(Context,
2885                             cast<RecordDecl>(CurContext),
2886                             DS.getSourceRange().getBegin(),
2887                             DS.getSourceRange().getBegin(),
2888                             /*IdentifierInfo=*/0,
2889                             Context.getTypeDeclType(Record),
2890                             TInfo,
2891                             /*BitWidth=*/0, /*Mutable=*/false,
2892                             /*HasInit=*/false);
2893  Anon->setImplicit();
2894
2895  // Add the anonymous struct object to the current context.
2896  CurContext->addDecl(Anon);
2897
2898  // Inject the members of the anonymous struct into the current
2899  // context and into the identifier resolver chain for name lookup
2900  // purposes.
2901  SmallVector<NamedDecl*, 2> Chain;
2902  Chain.push_back(Anon);
2903
2904  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2905                                          Record->getDefinition(),
2906                                          AS_none, Chain, true))
2907    Anon->setInvalidDecl();
2908
2909  return Anon;
2910}
2911
2912/// GetNameForDeclarator - Determine the full declaration name for the
2913/// given Declarator.
2914DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2915  return GetNameFromUnqualifiedId(D.getName());
2916}
2917
2918/// \brief Retrieves the declaration name from a parsed unqualified-id.
2919DeclarationNameInfo
2920Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2921  DeclarationNameInfo NameInfo;
2922  NameInfo.setLoc(Name.StartLocation);
2923
2924  switch (Name.getKind()) {
2925
2926  case UnqualifiedId::IK_ImplicitSelfParam:
2927  case UnqualifiedId::IK_Identifier:
2928    NameInfo.setName(Name.Identifier);
2929    NameInfo.setLoc(Name.StartLocation);
2930    return NameInfo;
2931
2932  case UnqualifiedId::IK_OperatorFunctionId:
2933    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2934                                           Name.OperatorFunctionId.Operator));
2935    NameInfo.setLoc(Name.StartLocation);
2936    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2937      = Name.OperatorFunctionId.SymbolLocations[0];
2938    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2939      = Name.EndLocation.getRawEncoding();
2940    return NameInfo;
2941
2942  case UnqualifiedId::IK_LiteralOperatorId:
2943    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2944                                                           Name.Identifier));
2945    NameInfo.setLoc(Name.StartLocation);
2946    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2947    return NameInfo;
2948
2949  case UnqualifiedId::IK_ConversionFunctionId: {
2950    TypeSourceInfo *TInfo;
2951    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2952    if (Ty.isNull())
2953      return DeclarationNameInfo();
2954    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2955                                               Context.getCanonicalType(Ty)));
2956    NameInfo.setLoc(Name.StartLocation);
2957    NameInfo.setNamedTypeInfo(TInfo);
2958    return NameInfo;
2959  }
2960
2961  case UnqualifiedId::IK_ConstructorName: {
2962    TypeSourceInfo *TInfo;
2963    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2964    if (Ty.isNull())
2965      return DeclarationNameInfo();
2966    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2967                                              Context.getCanonicalType(Ty)));
2968    NameInfo.setLoc(Name.StartLocation);
2969    NameInfo.setNamedTypeInfo(TInfo);
2970    return NameInfo;
2971  }
2972
2973  case UnqualifiedId::IK_ConstructorTemplateId: {
2974    // In well-formed code, we can only have a constructor
2975    // template-id that refers to the current context, so go there
2976    // to find the actual type being constructed.
2977    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2978    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2979      return DeclarationNameInfo();
2980
2981    // Determine the type of the class being constructed.
2982    QualType CurClassType = Context.getTypeDeclType(CurClass);
2983
2984    // FIXME: Check two things: that the template-id names the same type as
2985    // CurClassType, and that the template-id does not occur when the name
2986    // was qualified.
2987
2988    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2989                                    Context.getCanonicalType(CurClassType)));
2990    NameInfo.setLoc(Name.StartLocation);
2991    // FIXME: should we retrieve TypeSourceInfo?
2992    NameInfo.setNamedTypeInfo(0);
2993    return NameInfo;
2994  }
2995
2996  case UnqualifiedId::IK_DestructorName: {
2997    TypeSourceInfo *TInfo;
2998    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2999    if (Ty.isNull())
3000      return DeclarationNameInfo();
3001    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3002                                              Context.getCanonicalType(Ty)));
3003    NameInfo.setLoc(Name.StartLocation);
3004    NameInfo.setNamedTypeInfo(TInfo);
3005    return NameInfo;
3006  }
3007
3008  case UnqualifiedId::IK_TemplateId: {
3009    TemplateName TName = Name.TemplateId->Template.get();
3010    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3011    return Context.getNameForTemplate(TName, TNameLoc);
3012  }
3013
3014  } // switch (Name.getKind())
3015
3016  llvm_unreachable("Unknown name kind");
3017}
3018
3019static QualType getCoreType(QualType Ty) {
3020  do {
3021    if (Ty->isPointerType() || Ty->isReferenceType())
3022      Ty = Ty->getPointeeType();
3023    else if (Ty->isArrayType())
3024      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3025    else
3026      return Ty.withoutLocalFastQualifiers();
3027  } while (true);
3028}
3029
3030/// hasSimilarParameters - Determine whether the C++ functions Declaration
3031/// and Definition have "nearly" matching parameters. This heuristic is
3032/// used to improve diagnostics in the case where an out-of-line function
3033/// definition doesn't match any declaration within the class or namespace.
3034/// Also sets Params to the list of indices to the parameters that differ
3035/// between the declaration and the definition. If hasSimilarParameters
3036/// returns true and Params is empty, then all of the parameters match.
3037static bool hasSimilarParameters(ASTContext &Context,
3038                                     FunctionDecl *Declaration,
3039                                     FunctionDecl *Definition,
3040                                     llvm::SmallVectorImpl<unsigned> &Params) {
3041  Params.clear();
3042  if (Declaration->param_size() != Definition->param_size())
3043    return false;
3044  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3045    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3046    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3047
3048    // The parameter types are identical
3049    if (Context.hasSameType(DefParamTy, DeclParamTy))
3050      continue;
3051
3052    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3053    QualType DefParamBaseTy = getCoreType(DefParamTy);
3054    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3055    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3056
3057    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3058        (DeclTyName && DeclTyName == DefTyName))
3059      Params.push_back(Idx);
3060    else  // The two parameters aren't even close
3061      return false;
3062  }
3063
3064  return true;
3065}
3066
3067/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3068/// declarator needs to be rebuilt in the current instantiation.
3069/// Any bits of declarator which appear before the name are valid for
3070/// consideration here.  That's specifically the type in the decl spec
3071/// and the base type in any member-pointer chunks.
3072static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3073                                                    DeclarationName Name) {
3074  // The types we specifically need to rebuild are:
3075  //   - typenames, typeofs, and decltypes
3076  //   - types which will become injected class names
3077  // Of course, we also need to rebuild any type referencing such a
3078  // type.  It's safest to just say "dependent", but we call out a
3079  // few cases here.
3080
3081  DeclSpec &DS = D.getMutableDeclSpec();
3082  switch (DS.getTypeSpecType()) {
3083  case DeclSpec::TST_typename:
3084  case DeclSpec::TST_typeofType:
3085  case DeclSpec::TST_decltype:
3086  case DeclSpec::TST_underlyingType:
3087  case DeclSpec::TST_atomic: {
3088    // Grab the type from the parser.
3089    TypeSourceInfo *TSI = 0;
3090    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3091    if (T.isNull() || !T->isDependentType()) break;
3092
3093    // Make sure there's a type source info.  This isn't really much
3094    // of a waste; most dependent types should have type source info
3095    // attached already.
3096    if (!TSI)
3097      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3098
3099    // Rebuild the type in the current instantiation.
3100    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3101    if (!TSI) return true;
3102
3103    // Store the new type back in the decl spec.
3104    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3105    DS.UpdateTypeRep(LocType);
3106    break;
3107  }
3108
3109  case DeclSpec::TST_typeofExpr: {
3110    Expr *E = DS.getRepAsExpr();
3111    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3112    if (Result.isInvalid()) return true;
3113    DS.UpdateExprRep(Result.get());
3114    break;
3115  }
3116
3117  default:
3118    // Nothing to do for these decl specs.
3119    break;
3120  }
3121
3122  // It doesn't matter what order we do this in.
3123  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3124    DeclaratorChunk &Chunk = D.getTypeObject(I);
3125
3126    // The only type information in the declarator which can come
3127    // before the declaration name is the base type of a member
3128    // pointer.
3129    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3130      continue;
3131
3132    // Rebuild the scope specifier in-place.
3133    CXXScopeSpec &SS = Chunk.Mem.Scope();
3134    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3135      return true;
3136  }
3137
3138  return false;
3139}
3140
3141Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3142  D.setFunctionDefinition(false);
3143  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3144}
3145
3146/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3147///   If T is the name of a class, then each of the following shall have a
3148///   name different from T:
3149///     - every static data member of class T;
3150///     - every member function of class T
3151///     - every member of class T that is itself a type;
3152/// \returns true if the declaration name violates these rules.
3153bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3154                                   DeclarationNameInfo NameInfo) {
3155  DeclarationName Name = NameInfo.getName();
3156
3157  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3158    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3159      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3160      return true;
3161    }
3162
3163  return false;
3164}
3165
3166Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3167                             MultiTemplateParamsArg TemplateParamLists) {
3168  // TODO: consider using NameInfo for diagnostic.
3169  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3170  DeclarationName Name = NameInfo.getName();
3171
3172  // All of these full declarators require an identifier.  If it doesn't have
3173  // one, the ParsedFreeStandingDeclSpec action should be used.
3174  if (!Name) {
3175    if (!D.isInvalidType())  // Reject this if we think it is valid.
3176      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3177           diag::err_declarator_need_ident)
3178        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3179    return 0;
3180  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3181    return 0;
3182
3183  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3184  // we find one that is.
3185  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3186         (S->getFlags() & Scope::TemplateParamScope) != 0)
3187    S = S->getParent();
3188
3189  DeclContext *DC = CurContext;
3190  if (D.getCXXScopeSpec().isInvalid())
3191    D.setInvalidType();
3192  else if (D.getCXXScopeSpec().isSet()) {
3193    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3194                                        UPPC_DeclarationQualifier))
3195      return 0;
3196
3197    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3198    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3199    if (!DC) {
3200      // If we could not compute the declaration context, it's because the
3201      // declaration context is dependent but does not refer to a class,
3202      // class template, or class template partial specialization. Complain
3203      // and return early, to avoid the coming semantic disaster.
3204      Diag(D.getIdentifierLoc(),
3205           diag::err_template_qualified_declarator_no_match)
3206        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3207        << D.getCXXScopeSpec().getRange();
3208      return 0;
3209    }
3210    bool IsDependentContext = DC->isDependentContext();
3211
3212    if (!IsDependentContext &&
3213        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3214      return 0;
3215
3216    if (isa<CXXRecordDecl>(DC)) {
3217      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3218        Diag(D.getIdentifierLoc(),
3219             diag::err_member_def_undefined_record)
3220          << Name << DC << D.getCXXScopeSpec().getRange();
3221        D.setInvalidType();
3222      } else if (isa<CXXRecordDecl>(CurContext) &&
3223                 !D.getDeclSpec().isFriendSpecified()) {
3224        // The user provided a superfluous scope specifier inside a class
3225        // definition:
3226        //
3227        // class X {
3228        //   void X::f();
3229        // };
3230        if (CurContext->Equals(DC))
3231          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3232            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3233        else
3234          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3235            << Name << D.getCXXScopeSpec().getRange();
3236
3237        // Pretend that this qualifier was not here.
3238        D.getCXXScopeSpec().clear();
3239      }
3240    }
3241
3242    // Check whether we need to rebuild the type of the given
3243    // declaration in the current instantiation.
3244    if (EnteringContext && IsDependentContext &&
3245        TemplateParamLists.size() != 0) {
3246      ContextRAII SavedContext(*this, DC);
3247      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3248        D.setInvalidType();
3249    }
3250  }
3251
3252  if (DiagnoseClassNameShadow(DC, NameInfo))
3253    // If this is a typedef, we'll end up spewing multiple diagnostics.
3254    // Just return early; it's safer.
3255    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3256      return 0;
3257
3258  NamedDecl *New;
3259
3260  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3261  QualType R = TInfo->getType();
3262
3263  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3264                                      UPPC_DeclarationType))
3265    D.setInvalidType();
3266
3267  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3268                        ForRedeclaration);
3269
3270  // See if this is a redefinition of a variable in the same scope.
3271  if (!D.getCXXScopeSpec().isSet()) {
3272    bool IsLinkageLookup = false;
3273
3274    // If the declaration we're planning to build will be a function
3275    // or object with linkage, then look for another declaration with
3276    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3277    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3278      /* Do nothing*/;
3279    else if (R->isFunctionType()) {
3280      if (CurContext->isFunctionOrMethod() ||
3281          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3282        IsLinkageLookup = true;
3283    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3284      IsLinkageLookup = true;
3285    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3286             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3287      IsLinkageLookup = true;
3288
3289    if (IsLinkageLookup)
3290      Previous.clear(LookupRedeclarationWithLinkage);
3291
3292    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3293  } else { // Something like "int foo::x;"
3294    LookupQualifiedName(Previous, DC);
3295
3296    // Don't consider using declarations as previous declarations for
3297    // out-of-line members.
3298    RemoveUsingDecls(Previous);
3299
3300    // C++ 7.3.1.2p2:
3301    // Members (including explicit specializations of templates) of a named
3302    // namespace can also be defined outside that namespace by explicit
3303    // qualification of the name being defined, provided that the entity being
3304    // defined was already declared in the namespace and the definition appears
3305    // after the point of declaration in a namespace that encloses the
3306    // declarations namespace.
3307    //
3308    // Note that we only check the context at this point. We don't yet
3309    // have enough information to make sure that PrevDecl is actually
3310    // the declaration we want to match. For example, given:
3311    //
3312    //   class X {
3313    //     void f();
3314    //     void f(float);
3315    //   };
3316    //
3317    //   void X::f(int) { } // ill-formed
3318    //
3319    // In this case, PrevDecl will point to the overload set
3320    // containing the two f's declared in X, but neither of them
3321    // matches.
3322
3323    // First check whether we named the global scope.
3324    if (isa<TranslationUnitDecl>(DC)) {
3325      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3326        << Name << D.getCXXScopeSpec().getRange();
3327    } else {
3328      DeclContext *Cur = CurContext;
3329      while (isa<LinkageSpecDecl>(Cur))
3330        Cur = Cur->getParent();
3331      if (!Cur->Encloses(DC)) {
3332        // The qualifying scope doesn't enclose the original declaration.
3333        // Emit diagnostic based on current scope.
3334        SourceLocation L = D.getIdentifierLoc();
3335        SourceRange R = D.getCXXScopeSpec().getRange();
3336        if (isa<FunctionDecl>(Cur))
3337          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3338        else
3339          Diag(L, diag::err_invalid_declarator_scope)
3340            << Name << cast<NamedDecl>(DC) << R;
3341        D.setInvalidType();
3342      }
3343    }
3344  }
3345
3346  if (Previous.isSingleResult() &&
3347      Previous.getFoundDecl()->isTemplateParameter()) {
3348    // Maybe we will complain about the shadowed template parameter.
3349    if (!D.isInvalidType())
3350      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3351                                          Previous.getFoundDecl()))
3352        D.setInvalidType();
3353
3354    // Just pretend that we didn't see the previous declaration.
3355    Previous.clear();
3356  }
3357
3358  // In C++, the previous declaration we find might be a tag type
3359  // (class or enum). In this case, the new declaration will hide the
3360  // tag type. Note that this does does not apply if we're declaring a
3361  // typedef (C++ [dcl.typedef]p4).
3362  if (Previous.isSingleTagDecl() &&
3363      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3364    Previous.clear();
3365
3366  bool AddToScope = true;
3367  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3368    if (TemplateParamLists.size()) {
3369      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3370      return 0;
3371    }
3372
3373    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3374  } else if (R->isFunctionType()) {
3375    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3376                                  move(TemplateParamLists),
3377                                  AddToScope);
3378  } else {
3379    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3380                                  move(TemplateParamLists));
3381  }
3382
3383  if (New == 0)
3384    return 0;
3385
3386  // If this has an identifier and is not an invalid redeclaration or
3387  // function template specialization, add it to the scope stack.
3388  if (New->getDeclName() && AddToScope &&
3389       !(D.isRedeclaration() && New->isInvalidDecl()))
3390    PushOnScopeChains(New, S);
3391
3392  return New;
3393}
3394
3395/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3396/// types into constant array types in certain situations which would otherwise
3397/// be errors (for GCC compatibility).
3398static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3399                                                    ASTContext &Context,
3400                                                    bool &SizeIsNegative,
3401                                                    llvm::APSInt &Oversized) {
3402  // This method tries to turn a variable array into a constant
3403  // array even when the size isn't an ICE.  This is necessary
3404  // for compatibility with code that depends on gcc's buggy
3405  // constant expression folding, like struct {char x[(int)(char*)2];}
3406  SizeIsNegative = false;
3407  Oversized = 0;
3408
3409  if (T->isDependentType())
3410    return QualType();
3411
3412  QualifierCollector Qs;
3413  const Type *Ty = Qs.strip(T);
3414
3415  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3416    QualType Pointee = PTy->getPointeeType();
3417    QualType FixedType =
3418        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3419                                            Oversized);
3420    if (FixedType.isNull()) return FixedType;
3421    FixedType = Context.getPointerType(FixedType);
3422    return Qs.apply(Context, FixedType);
3423  }
3424  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3425    QualType Inner = PTy->getInnerType();
3426    QualType FixedType =
3427        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3428                                            Oversized);
3429    if (FixedType.isNull()) return FixedType;
3430    FixedType = Context.getParenType(FixedType);
3431    return Qs.apply(Context, FixedType);
3432  }
3433
3434  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3435  if (!VLATy)
3436    return QualType();
3437  // FIXME: We should probably handle this case
3438  if (VLATy->getElementType()->isVariablyModifiedType())
3439    return QualType();
3440
3441  Expr::EvalResult EvalResult;
3442  if (!VLATy->getSizeExpr() ||
3443      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3444      !EvalResult.Val.isInt())
3445    return QualType();
3446
3447  // Check whether the array size is negative.
3448  llvm::APSInt &Res = EvalResult.Val.getInt();
3449  if (Res.isSigned() && Res.isNegative()) {
3450    SizeIsNegative = true;
3451    return QualType();
3452  }
3453
3454  // Check whether the array is too large to be addressed.
3455  unsigned ActiveSizeBits
3456    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3457                                              Res);
3458  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3459    Oversized = Res;
3460    return QualType();
3461  }
3462
3463  return Context.getConstantArrayType(VLATy->getElementType(),
3464                                      Res, ArrayType::Normal, 0);
3465}
3466
3467/// \brief Register the given locally-scoped external C declaration so
3468/// that it can be found later for redeclarations
3469void
3470Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3471                                       const LookupResult &Previous,
3472                                       Scope *S) {
3473  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3474         "Decl is not a locally-scoped decl!");
3475  // Note that we have a locally-scoped external with this name.
3476  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3477
3478  if (!Previous.isSingleResult())
3479    return;
3480
3481  NamedDecl *PrevDecl = Previous.getFoundDecl();
3482
3483  // If there was a previous declaration of this variable, it may be
3484  // in our identifier chain. Update the identifier chain with the new
3485  // declaration.
3486  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3487    // The previous declaration was found on the identifer resolver
3488    // chain, so remove it from its scope.
3489
3490    if (S->isDeclScope(PrevDecl)) {
3491      // Special case for redeclarations in the SAME scope.
3492      // Because this declaration is going to be added to the identifier chain
3493      // later, we should temporarily take it OFF the chain.
3494      IdResolver.RemoveDecl(ND);
3495
3496    } else {
3497      // Find the scope for the original declaration.
3498      while (S && !S->isDeclScope(PrevDecl))
3499        S = S->getParent();
3500    }
3501
3502    if (S)
3503      S->RemoveDecl(PrevDecl);
3504  }
3505}
3506
3507llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3508Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3509  if (ExternalSource) {
3510    // Load locally-scoped external decls from the external source.
3511    SmallVector<NamedDecl *, 4> Decls;
3512    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3513    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3514      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3515        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3516      if (Pos == LocallyScopedExternalDecls.end())
3517        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3518    }
3519  }
3520
3521  return LocallyScopedExternalDecls.find(Name);
3522}
3523
3524/// \brief Diagnose function specifiers on a declaration of an identifier that
3525/// does not identify a function.
3526void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3527  // FIXME: We should probably indicate the identifier in question to avoid
3528  // confusion for constructs like "inline int a(), b;"
3529  if (D.getDeclSpec().isInlineSpecified())
3530    Diag(D.getDeclSpec().getInlineSpecLoc(),
3531         diag::err_inline_non_function);
3532
3533  if (D.getDeclSpec().isVirtualSpecified())
3534    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3535         diag::err_virtual_non_function);
3536
3537  if (D.getDeclSpec().isExplicitSpecified())
3538    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3539         diag::err_explicit_non_function);
3540}
3541
3542NamedDecl*
3543Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3544                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3545  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3546  if (D.getCXXScopeSpec().isSet()) {
3547    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3548      << D.getCXXScopeSpec().getRange();
3549    D.setInvalidType();
3550    // Pretend we didn't see the scope specifier.
3551    DC = CurContext;
3552    Previous.clear();
3553  }
3554
3555  if (getLangOptions().CPlusPlus) {
3556    // Check that there are no default arguments (C++ only).
3557    CheckExtraCXXDefaultArguments(D);
3558  }
3559
3560  DiagnoseFunctionSpecifiers(D);
3561
3562  if (D.getDeclSpec().isThreadSpecified())
3563    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3564  if (D.getDeclSpec().isConstexprSpecified())
3565    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3566      << 1;
3567
3568  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3569    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3570      << D.getName().getSourceRange();
3571    return 0;
3572  }
3573
3574  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3575  if (!NewTD) return 0;
3576
3577  // Handle attributes prior to checking for duplicates in MergeVarDecl
3578  ProcessDeclAttributes(S, NewTD, D);
3579
3580  CheckTypedefForVariablyModifiedType(S, NewTD);
3581
3582  bool Redeclaration = D.isRedeclaration();
3583  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3584  D.setRedeclaration(Redeclaration);
3585  return ND;
3586}
3587
3588void
3589Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3590  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3591  // then it shall have block scope.
3592  // Note that variably modified types must be fixed before merging the decl so
3593  // that redeclarations will match.
3594  QualType T = NewTD->getUnderlyingType();
3595  if (T->isVariablyModifiedType()) {
3596    getCurFunction()->setHasBranchProtectedScope();
3597
3598    if (S->getFnParent() == 0) {
3599      bool SizeIsNegative;
3600      llvm::APSInt Oversized;
3601      QualType FixedTy =
3602          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3603                                              Oversized);
3604      if (!FixedTy.isNull()) {
3605        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3606        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3607      } else {
3608        if (SizeIsNegative)
3609          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3610        else if (T->isVariableArrayType())
3611          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3612        else if (Oversized.getBoolValue())
3613          Diag(NewTD->getLocation(), diag::err_array_too_large)
3614            << Oversized.toString(10);
3615        else
3616          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3617        NewTD->setInvalidDecl();
3618      }
3619    }
3620  }
3621}
3622
3623
3624/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3625/// declares a typedef-name, either using the 'typedef' type specifier or via
3626/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3627NamedDecl*
3628Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3629                           LookupResult &Previous, bool &Redeclaration) {
3630  // Merge the decl with the existing one if appropriate. If the decl is
3631  // in an outer scope, it isn't the same thing.
3632  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3633                       /*ExplicitInstantiationOrSpecialization=*/false);
3634  if (!Previous.empty()) {
3635    Redeclaration = true;
3636    MergeTypedefNameDecl(NewTD, Previous);
3637  }
3638
3639  // If this is the C FILE type, notify the AST context.
3640  if (IdentifierInfo *II = NewTD->getIdentifier())
3641    if (!NewTD->isInvalidDecl() &&
3642        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3643      if (II->isStr("FILE"))
3644        Context.setFILEDecl(NewTD);
3645      else if (II->isStr("jmp_buf"))
3646        Context.setjmp_bufDecl(NewTD);
3647      else if (II->isStr("sigjmp_buf"))
3648        Context.setsigjmp_bufDecl(NewTD);
3649      else if (II->isStr("__builtin_va_list"))
3650        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3651    }
3652
3653  return NewTD;
3654}
3655
3656/// \brief Determines whether the given declaration is an out-of-scope
3657/// previous declaration.
3658///
3659/// This routine should be invoked when name lookup has found a
3660/// previous declaration (PrevDecl) that is not in the scope where a
3661/// new declaration by the same name is being introduced. If the new
3662/// declaration occurs in a local scope, previous declarations with
3663/// linkage may still be considered previous declarations (C99
3664/// 6.2.2p4-5, C++ [basic.link]p6).
3665///
3666/// \param PrevDecl the previous declaration found by name
3667/// lookup
3668///
3669/// \param DC the context in which the new declaration is being
3670/// declared.
3671///
3672/// \returns true if PrevDecl is an out-of-scope previous declaration
3673/// for a new delcaration with the same name.
3674static bool
3675isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3676                                ASTContext &Context) {
3677  if (!PrevDecl)
3678    return false;
3679
3680  if (!PrevDecl->hasLinkage())
3681    return false;
3682
3683  if (Context.getLangOptions().CPlusPlus) {
3684    // C++ [basic.link]p6:
3685    //   If there is a visible declaration of an entity with linkage
3686    //   having the same name and type, ignoring entities declared
3687    //   outside the innermost enclosing namespace scope, the block
3688    //   scope declaration declares that same entity and receives the
3689    //   linkage of the previous declaration.
3690    DeclContext *OuterContext = DC->getRedeclContext();
3691    if (!OuterContext->isFunctionOrMethod())
3692      // This rule only applies to block-scope declarations.
3693      return false;
3694
3695    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3696    if (PrevOuterContext->isRecord())
3697      // We found a member function: ignore it.
3698      return false;
3699
3700    // Find the innermost enclosing namespace for the new and
3701    // previous declarations.
3702    OuterContext = OuterContext->getEnclosingNamespaceContext();
3703    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3704
3705    // The previous declaration is in a different namespace, so it
3706    // isn't the same function.
3707    if (!OuterContext->Equals(PrevOuterContext))
3708      return false;
3709  }
3710
3711  return true;
3712}
3713
3714static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3715  CXXScopeSpec &SS = D.getCXXScopeSpec();
3716  if (!SS.isSet()) return;
3717  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3718}
3719
3720bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3721  QualType type = decl->getType();
3722  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3723  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3724    // Various kinds of declaration aren't allowed to be __autoreleasing.
3725    unsigned kind = -1U;
3726    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3727      if (var->hasAttr<BlocksAttr>())
3728        kind = 0; // __block
3729      else if (!var->hasLocalStorage())
3730        kind = 1; // global
3731    } else if (isa<ObjCIvarDecl>(decl)) {
3732      kind = 3; // ivar
3733    } else if (isa<FieldDecl>(decl)) {
3734      kind = 2; // field
3735    }
3736
3737    if (kind != -1U) {
3738      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3739        << kind;
3740    }
3741  } else if (lifetime == Qualifiers::OCL_None) {
3742    // Try to infer lifetime.
3743    if (!type->isObjCLifetimeType())
3744      return false;
3745
3746    lifetime = type->getObjCARCImplicitLifetime();
3747    type = Context.getLifetimeQualifiedType(type, lifetime);
3748    decl->setType(type);
3749  }
3750
3751  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3752    // Thread-local variables cannot have lifetime.
3753    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3754        var->isThreadSpecified()) {
3755      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3756        << var->getType();
3757      return true;
3758    }
3759  }
3760
3761  return false;
3762}
3763
3764NamedDecl*
3765Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3766                              TypeSourceInfo *TInfo, LookupResult &Previous,
3767                              MultiTemplateParamsArg TemplateParamLists) {
3768  QualType R = TInfo->getType();
3769  DeclarationName Name = GetNameForDeclarator(D).getName();
3770
3771  // Check that there are no default arguments (C++ only).
3772  if (getLangOptions().CPlusPlus)
3773    CheckExtraCXXDefaultArguments(D);
3774
3775  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3776  assert(SCSpec != DeclSpec::SCS_typedef &&
3777         "Parser allowed 'typedef' as storage class VarDecl.");
3778  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3779  if (SCSpec == DeclSpec::SCS_mutable) {
3780    // mutable can only appear on non-static class members, so it's always
3781    // an error here
3782    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3783    D.setInvalidType();
3784    SC = SC_None;
3785  }
3786  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3787  VarDecl::StorageClass SCAsWritten
3788    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3789
3790  IdentifierInfo *II = Name.getAsIdentifierInfo();
3791  if (!II) {
3792    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3793      << Name;
3794    return 0;
3795  }
3796
3797  DiagnoseFunctionSpecifiers(D);
3798
3799  if (!DC->isRecord() && S->getFnParent() == 0) {
3800    // C99 6.9p2: The storage-class specifiers auto and register shall not
3801    // appear in the declaration specifiers in an external declaration.
3802    if (SC == SC_Auto || SC == SC_Register) {
3803
3804      // If this is a register variable with an asm label specified, then this
3805      // is a GNU extension.
3806      if (SC == SC_Register && D.getAsmLabel())
3807        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3808      else
3809        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3810      D.setInvalidType();
3811    }
3812  }
3813
3814  if (getLangOptions().OpenCL) {
3815    // Set up the special work-group-local storage class for variables in the
3816    // OpenCL __local address space.
3817    if (R.getAddressSpace() == LangAS::opencl_local)
3818      SC = SC_OpenCLWorkGroupLocal;
3819  }
3820
3821  bool isExplicitSpecialization = false;
3822  VarDecl *NewVD;
3823  if (!getLangOptions().CPlusPlus) {
3824    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3825                            D.getIdentifierLoc(), II,
3826                            R, TInfo, SC, SCAsWritten);
3827
3828    if (D.isInvalidType())
3829      NewVD->setInvalidDecl();
3830  } else {
3831    if (DC->isRecord() && !CurContext->isRecord()) {
3832      // This is an out-of-line definition of a static data member.
3833      if (SC == SC_Static) {
3834        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3835             diag::err_static_out_of_line)
3836          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3837      } else if (SC == SC_None)
3838        SC = SC_Static;
3839    }
3840    if (SC == SC_Static) {
3841      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3842        if (RD->isLocalClass())
3843          Diag(D.getIdentifierLoc(),
3844               diag::err_static_data_member_not_allowed_in_local_class)
3845            << Name << RD->getDeclName();
3846
3847        // C++ [class.union]p1: If a union contains a static data member,
3848        // the program is ill-formed.
3849        //
3850        // We also disallow static data members in anonymous structs.
3851        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3852          Diag(D.getIdentifierLoc(),
3853               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3854            << Name << RD->isUnion();
3855      }
3856    }
3857
3858    // Match up the template parameter lists with the scope specifier, then
3859    // determine whether we have a template or a template specialization.
3860    isExplicitSpecialization = false;
3861    bool Invalid = false;
3862    if (TemplateParameterList *TemplateParams
3863        = MatchTemplateParametersToScopeSpecifier(
3864                                  D.getDeclSpec().getSourceRange().getBegin(),
3865                                                  D.getIdentifierLoc(),
3866                                                  D.getCXXScopeSpec(),
3867                                                  TemplateParamLists.get(),
3868                                                  TemplateParamLists.size(),
3869                                                  /*never a friend*/ false,
3870                                                  isExplicitSpecialization,
3871                                                  Invalid)) {
3872      if (TemplateParams->size() > 0) {
3873        // There is no such thing as a variable template.
3874        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3875          << II
3876          << SourceRange(TemplateParams->getTemplateLoc(),
3877                         TemplateParams->getRAngleLoc());
3878        return 0;
3879      } else {
3880        // There is an extraneous 'template<>' for this variable. Complain
3881        // about it, but allow the declaration of the variable.
3882        Diag(TemplateParams->getTemplateLoc(),
3883             diag::err_template_variable_noparams)
3884          << II
3885          << SourceRange(TemplateParams->getTemplateLoc(),
3886                         TemplateParams->getRAngleLoc());
3887      }
3888    }
3889
3890    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3891                            D.getIdentifierLoc(), II,
3892                            R, TInfo, SC, SCAsWritten);
3893
3894    // If this decl has an auto type in need of deduction, make a note of the
3895    // Decl so we can diagnose uses of it in its own initializer.
3896    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3897        R->getContainedAutoType())
3898      ParsingInitForAutoVars.insert(NewVD);
3899
3900    if (D.isInvalidType() || Invalid)
3901      NewVD->setInvalidDecl();
3902
3903    SetNestedNameSpecifier(NewVD, D);
3904
3905    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3906      NewVD->setTemplateParameterListsInfo(Context,
3907                                           TemplateParamLists.size(),
3908                                           TemplateParamLists.release());
3909    }
3910
3911    if (D.getDeclSpec().isConstexprSpecified()) {
3912      // FIXME: once we know whether there's an initializer, apply this to
3913      // static data members too.
3914      if (!NewVD->isStaticDataMember() &&
3915          !NewVD->isThisDeclarationADefinition()) {
3916        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3917        // of a variable. Suggest replacing it with 'const' if appropriate.
3918        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3919        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3920        // If the declarator is complex, we need to move the keyword to the
3921        // innermost chunk as we switch it from 'constexpr' to 'const'.
3922        int Kind = DeclaratorChunk::Paren;
3923        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3924          Kind = D.getTypeObject(I).Kind;
3925          if (Kind != DeclaratorChunk::Paren)
3926            break;
3927        }
3928        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3929            Kind == DeclaratorChunk::Reference)
3930          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3931            << FixItHint::CreateRemoval(ConstexprRange);
3932        else if (Kind == DeclaratorChunk::Paren)
3933          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3934            << FixItHint::CreateReplacement(ConstexprRange, "const");
3935        else
3936          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3937            << FixItHint::CreateRemoval(ConstexprRange)
3938            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3939      } else {
3940        NewVD->setConstexpr(true);
3941      }
3942    }
3943  }
3944
3945  // Set the lexical context. If the declarator has a C++ scope specifier, the
3946  // lexical context will be different from the semantic context.
3947  NewVD->setLexicalDeclContext(CurContext);
3948
3949  if (D.getDeclSpec().isThreadSpecified()) {
3950    if (NewVD->hasLocalStorage())
3951      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3952    else if (!Context.getTargetInfo().isTLSSupported())
3953      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3954    else
3955      NewVD->setThreadSpecified(true);
3956  }
3957
3958  if (D.getDeclSpec().isModulePrivateSpecified()) {
3959    if (isExplicitSpecialization)
3960      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3961        << 2
3962        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3963    else if (NewVD->hasLocalStorage())
3964      Diag(NewVD->getLocation(), diag::err_module_private_local)
3965        << 0 << NewVD->getDeclName()
3966        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3967        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3968    else
3969      NewVD->setModulePrivate();
3970  }
3971
3972  // Handle attributes prior to checking for duplicates in MergeVarDecl
3973  ProcessDeclAttributes(S, NewVD, D);
3974
3975  // In auto-retain/release, infer strong retension for variables of
3976  // retainable type.
3977  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3978    NewVD->setInvalidDecl();
3979
3980  // Handle GNU asm-label extension (encoded as an attribute).
3981  if (Expr *E = (Expr*)D.getAsmLabel()) {
3982    // The parser guarantees this is a string.
3983    StringLiteral *SE = cast<StringLiteral>(E);
3984    StringRef Label = SE->getString();
3985    if (S->getFnParent() != 0) {
3986      switch (SC) {
3987      case SC_None:
3988      case SC_Auto:
3989        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3990        break;
3991      case SC_Register:
3992        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3993          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3994        break;
3995      case SC_Static:
3996      case SC_Extern:
3997      case SC_PrivateExtern:
3998      case SC_OpenCLWorkGroupLocal:
3999        break;
4000      }
4001    }
4002
4003    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4004                                                Context, Label));
4005  }
4006
4007  // Diagnose shadowed variables before filtering for scope.
4008  if (!D.getCXXScopeSpec().isSet())
4009    CheckShadow(S, NewVD, Previous);
4010
4011  // Don't consider existing declarations that are in a different
4012  // scope and are out-of-semantic-context declarations (if the new
4013  // declaration has linkage).
4014  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4015                       isExplicitSpecialization);
4016
4017  if (!getLangOptions().CPlusPlus) {
4018    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4019  } else {
4020    // Merge the decl with the existing one if appropriate.
4021    if (!Previous.empty()) {
4022      if (Previous.isSingleResult() &&
4023          isa<FieldDecl>(Previous.getFoundDecl()) &&
4024          D.getCXXScopeSpec().isSet()) {
4025        // The user tried to define a non-static data member
4026        // out-of-line (C++ [dcl.meaning]p1).
4027        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4028          << D.getCXXScopeSpec().getRange();
4029        Previous.clear();
4030        NewVD->setInvalidDecl();
4031      }
4032    } else if (D.getCXXScopeSpec().isSet()) {
4033      // No previous declaration in the qualifying scope.
4034      Diag(D.getIdentifierLoc(), diag::err_no_member)
4035        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4036        << D.getCXXScopeSpec().getRange();
4037      NewVD->setInvalidDecl();
4038    }
4039
4040    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4041
4042    // This is an explicit specialization of a static data member. Check it.
4043    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4044        CheckMemberSpecialization(NewVD, Previous))
4045      NewVD->setInvalidDecl();
4046  }
4047
4048  // attributes declared post-definition are currently ignored
4049  // FIXME: This should be handled in attribute merging, not
4050  // here.
4051  if (Previous.isSingleResult()) {
4052    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4053    if (Def && (Def = Def->getDefinition()) &&
4054        Def != NewVD && D.hasAttributes()) {
4055      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4056      Diag(Def->getLocation(), diag::note_previous_definition);
4057    }
4058  }
4059
4060  // If this is a locally-scoped extern C variable, update the map of
4061  // such variables.
4062  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4063      !NewVD->isInvalidDecl())
4064    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4065
4066  // If there's a #pragma GCC visibility in scope, and this isn't a class
4067  // member, set the visibility of this variable.
4068  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4069    AddPushedVisibilityAttribute(NewVD);
4070
4071  MarkUnusedFileScopedDecl(NewVD);
4072
4073  return NewVD;
4074}
4075
4076/// \brief Diagnose variable or built-in function shadowing.  Implements
4077/// -Wshadow.
4078///
4079/// This method is called whenever a VarDecl is added to a "useful"
4080/// scope.
4081///
4082/// \param S the scope in which the shadowing name is being declared
4083/// \param R the lookup of the name
4084///
4085void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4086  // Return if warning is ignored.
4087  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4088        DiagnosticsEngine::Ignored)
4089    return;
4090
4091  // Don't diagnose declarations at file scope.
4092  if (D->hasGlobalStorage())
4093    return;
4094
4095  DeclContext *NewDC = D->getDeclContext();
4096
4097  // Only diagnose if we're shadowing an unambiguous field or variable.
4098  if (R.getResultKind() != LookupResult::Found)
4099    return;
4100
4101  NamedDecl* ShadowedDecl = R.getFoundDecl();
4102  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4103    return;
4104
4105  // Fields are not shadowed by variables in C++ static methods.
4106  if (isa<FieldDecl>(ShadowedDecl))
4107    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4108      if (MD->isStatic())
4109        return;
4110
4111  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4112    if (shadowedVar->isExternC()) {
4113      // For shadowing external vars, make sure that we point to the global
4114      // declaration, not a locally scoped extern declaration.
4115      for (VarDecl::redecl_iterator
4116             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4117           I != E; ++I)
4118        if (I->isFileVarDecl()) {
4119          ShadowedDecl = *I;
4120          break;
4121        }
4122    }
4123
4124  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4125
4126  // Only warn about certain kinds of shadowing for class members.
4127  if (NewDC && NewDC->isRecord()) {
4128    // In particular, don't warn about shadowing non-class members.
4129    if (!OldDC->isRecord())
4130      return;
4131
4132    // TODO: should we warn about static data members shadowing
4133    // static data members from base classes?
4134
4135    // TODO: don't diagnose for inaccessible shadowed members.
4136    // This is hard to do perfectly because we might friend the
4137    // shadowing context, but that's just a false negative.
4138  }
4139
4140  // Determine what kind of declaration we're shadowing.
4141  unsigned Kind;
4142  if (isa<RecordDecl>(OldDC)) {
4143    if (isa<FieldDecl>(ShadowedDecl))
4144      Kind = 3; // field
4145    else
4146      Kind = 2; // static data member
4147  } else if (OldDC->isFileContext())
4148    Kind = 1; // global
4149  else
4150    Kind = 0; // local
4151
4152  DeclarationName Name = R.getLookupName();
4153
4154  // Emit warning and note.
4155  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4156  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4157}
4158
4159/// \brief Check -Wshadow without the advantage of a previous lookup.
4160void Sema::CheckShadow(Scope *S, VarDecl *D) {
4161  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4162        DiagnosticsEngine::Ignored)
4163    return;
4164
4165  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4166                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4167  LookupName(R, S);
4168  CheckShadow(S, D, R);
4169}
4170
4171/// \brief Perform semantic checking on a newly-created variable
4172/// declaration.
4173///
4174/// This routine performs all of the type-checking required for a
4175/// variable declaration once it has been built. It is used both to
4176/// check variables after they have been parsed and their declarators
4177/// have been translated into a declaration, and to check variables
4178/// that have been instantiated from a template.
4179///
4180/// Sets NewVD->isInvalidDecl() if an error was encountered.
4181///
4182/// Returns true if the variable declaration is a redeclaration.
4183bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4184                                    LookupResult &Previous) {
4185  // If the decl is already known invalid, don't check it.
4186  if (NewVD->isInvalidDecl())
4187    return false;
4188
4189  QualType T = NewVD->getType();
4190
4191  if (T->isObjCObjectType()) {
4192    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4193      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4194    T = Context.getObjCObjectPointerType(T);
4195    NewVD->setType(T);
4196  }
4197
4198  // Emit an error if an address space was applied to decl with local storage.
4199  // This includes arrays of objects with address space qualifiers, but not
4200  // automatic variables that point to other address spaces.
4201  // ISO/IEC TR 18037 S5.1.2
4202  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4203    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4204    NewVD->setInvalidDecl();
4205    return false;
4206  }
4207
4208  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4209      && !NewVD->hasAttr<BlocksAttr>()) {
4210    if (getLangOptions().getGC() != LangOptions::NonGC)
4211      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4212    else
4213      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4214  }
4215
4216  bool isVM = T->isVariablyModifiedType();
4217  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4218      NewVD->hasAttr<BlocksAttr>())
4219    getCurFunction()->setHasBranchProtectedScope();
4220
4221  if ((isVM && NewVD->hasLinkage()) ||
4222      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4223    bool SizeIsNegative;
4224    llvm::APSInt Oversized;
4225    QualType FixedTy =
4226        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4227                                            Oversized);
4228
4229    if (FixedTy.isNull() && T->isVariableArrayType()) {
4230      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4231      // FIXME: This won't give the correct result for
4232      // int a[10][n];
4233      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4234
4235      if (NewVD->isFileVarDecl())
4236        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4237        << SizeRange;
4238      else if (NewVD->getStorageClass() == SC_Static)
4239        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4240        << SizeRange;
4241      else
4242        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4243        << SizeRange;
4244      NewVD->setInvalidDecl();
4245      return false;
4246    }
4247
4248    if (FixedTy.isNull()) {
4249      if (NewVD->isFileVarDecl())
4250        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4251      else
4252        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4253      NewVD->setInvalidDecl();
4254      return false;
4255    }
4256
4257    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4258    NewVD->setType(FixedTy);
4259  }
4260
4261  if (Previous.empty() && NewVD->isExternC()) {
4262    // Since we did not find anything by this name and we're declaring
4263    // an extern "C" variable, look for a non-visible extern "C"
4264    // declaration with the same name.
4265    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4266      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4267    if (Pos != LocallyScopedExternalDecls.end())
4268      Previous.addDecl(Pos->second);
4269  }
4270
4271  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4272    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4273      << T;
4274    NewVD->setInvalidDecl();
4275    return false;
4276  }
4277
4278  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4279    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4280    NewVD->setInvalidDecl();
4281    return false;
4282  }
4283
4284  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4285    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4286    NewVD->setInvalidDecl();
4287    return false;
4288  }
4289
4290  // Function pointers and references cannot have qualified function type, only
4291  // function pointer-to-members can do that.
4292  QualType Pointee;
4293  unsigned PtrOrRef = 0;
4294  if (const PointerType *Ptr = T->getAs<PointerType>())
4295    Pointee = Ptr->getPointeeType();
4296  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4297    Pointee = Ref->getPointeeType();
4298    PtrOrRef = 1;
4299  }
4300  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4301      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4302    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4303        << PtrOrRef;
4304    NewVD->setInvalidDecl();
4305    return false;
4306  }
4307
4308  if (!Previous.empty()) {
4309    MergeVarDecl(NewVD, Previous);
4310    return true;
4311  }
4312  return false;
4313}
4314
4315/// \brief Data used with FindOverriddenMethod
4316struct FindOverriddenMethodData {
4317  Sema *S;
4318  CXXMethodDecl *Method;
4319};
4320
4321/// \brief Member lookup function that determines whether a given C++
4322/// method overrides a method in a base class, to be used with
4323/// CXXRecordDecl::lookupInBases().
4324static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4325                                 CXXBasePath &Path,
4326                                 void *UserData) {
4327  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4328
4329  FindOverriddenMethodData *Data
4330    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4331
4332  DeclarationName Name = Data->Method->getDeclName();
4333
4334  // FIXME: Do we care about other names here too?
4335  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4336    // We really want to find the base class destructor here.
4337    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4338    CanQualType CT = Data->S->Context.getCanonicalType(T);
4339
4340    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4341  }
4342
4343  for (Path.Decls = BaseRecord->lookup(Name);
4344       Path.Decls.first != Path.Decls.second;
4345       ++Path.Decls.first) {
4346    NamedDecl *D = *Path.Decls.first;
4347    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4348      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4349        return true;
4350    }
4351  }
4352
4353  return false;
4354}
4355
4356/// AddOverriddenMethods - See if a method overrides any in the base classes,
4357/// and if so, check that it's a valid override and remember it.
4358bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4359  // Look for virtual methods in base classes that this method might override.
4360  CXXBasePaths Paths;
4361  FindOverriddenMethodData Data;
4362  Data.Method = MD;
4363  Data.S = this;
4364  bool AddedAny = false;
4365  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4366    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4367         E = Paths.found_decls_end(); I != E; ++I) {
4368      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4369        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4370        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4371            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4372            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4373          AddedAny = true;
4374        }
4375      }
4376    }
4377  }
4378
4379  return AddedAny;
4380}
4381
4382namespace {
4383  // Struct for holding all of the extra arguments needed by
4384  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4385  struct ActOnFDArgs {
4386    Scope *S;
4387    Declarator &D;
4388    MultiTemplateParamsArg TemplateParamLists;
4389    bool AddToScope;
4390  };
4391}
4392
4393/// \brief Generate diagnostics for an invalid function redeclaration.
4394///
4395/// This routine handles generating the diagnostic messages for an invalid
4396/// function redeclaration, including finding possible similar declarations
4397/// or performing typo correction if there are no previous declarations with
4398/// the same name.
4399///
4400/// Returns a NamedDecl iff typo correction was performed and substituting in
4401/// the new declaration name does not cause new errors.
4402static NamedDecl* DiagnoseInvalidRedeclaration(
4403    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4404    ActOnFDArgs &ExtraArgs) {
4405  NamedDecl *Result = NULL;
4406  DeclarationName Name = NewFD->getDeclName();
4407  DeclContext *NewDC = NewFD->getDeclContext();
4408  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4409                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4410  llvm::SmallVector<unsigned, 1> MismatchedParams;
4411  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4412  TypoCorrection Correction;
4413  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4414                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4415  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4416                                  : diag::err_member_def_does_not_match;
4417
4418  NewFD->setInvalidDecl();
4419  SemaRef.LookupQualifiedName(Prev, NewDC);
4420  assert(!Prev.isAmbiguous() &&
4421         "Cannot have an ambiguity in previous-declaration lookup");
4422  if (!Prev.empty()) {
4423    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4424         Func != FuncEnd; ++Func) {
4425      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4426      if (FD &&
4427          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4428        // Add 1 to the index so that 0 can mean the mismatch didn't
4429        // involve a parameter
4430        unsigned ParamNum =
4431            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4432        NearMatches.push_back(std::make_pair(FD, ParamNum));
4433      }
4434    }
4435  // If the qualified name lookup yielded nothing, try typo correction
4436  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4437                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4438             Correction.getCorrection() != Name) {
4439    // Trap errors.
4440    Sema::SFINAETrap Trap(SemaRef);
4441
4442    // Set up everything for the call to ActOnFunctionDeclarator
4443    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4444                              ExtraArgs.D.getIdentifierLoc());
4445    Previous.clear();
4446    Previous.setLookupName(Correction.getCorrection());
4447    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4448                                    CDeclEnd = Correction.end();
4449         CDecl != CDeclEnd; ++CDecl) {
4450      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4451      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4452                                     MismatchedParams)) {
4453        Previous.addDecl(FD);
4454      }
4455    }
4456    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4457    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4458    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4459    // eliminate the need for the parameter pack ExtraArgs.
4460    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4461                                             NewFD->getDeclContext(),
4462                                             NewFD->getTypeSourceInfo(),
4463                                             Previous,
4464                                             ExtraArgs.TemplateParamLists,
4465                                             ExtraArgs.AddToScope);
4466    if (Trap.hasErrorOccurred()) {
4467      // Pretend the typo correction never occurred
4468      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4469                                ExtraArgs.D.getIdentifierLoc());
4470      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4471      Previous.clear();
4472      Previous.setLookupName(Name);
4473      Result = NULL;
4474    } else {
4475      for (LookupResult::iterator Func = Previous.begin(),
4476                               FuncEnd = Previous.end();
4477           Func != FuncEnd; ++Func) {
4478        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4479          NearMatches.push_back(std::make_pair(FD, 0));
4480      }
4481    }
4482    if (NearMatches.empty()) {
4483      // Ignore the correction if it didn't yield any close FunctionDecl matches
4484      Correction = TypoCorrection();
4485    } else {
4486      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4487                             : diag::err_member_def_does_not_match_suggest;
4488    }
4489  }
4490
4491  if (Correction)
4492    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4493        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4494        << FixItHint::CreateReplacement(
4495            NewFD->getLocation(),
4496            Correction.getAsString(SemaRef.getLangOptions()));
4497  else
4498    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4499        << Name << NewDC << NewFD->getLocation();
4500
4501  bool NewFDisConst = false;
4502  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4503    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4504
4505  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4506       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4507       NearMatch != NearMatchEnd; ++NearMatch) {
4508    FunctionDecl *FD = NearMatch->first;
4509    bool FDisConst = false;
4510    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4511      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4512
4513    if (unsigned Idx = NearMatch->second) {
4514      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4515      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4516             diag::note_member_def_close_param_match)
4517          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4518    } else if (Correction) {
4519      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4520          << Correction.getQuoted(SemaRef.getLangOptions());
4521    } else if (FDisConst != NewFDisConst) {
4522      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4523          << NewFDisConst << FD->getSourceRange().getEnd();
4524    } else
4525      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4526  }
4527  return Result;
4528}
4529
4530static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4531                                                          Declarator &D) {
4532  switch (D.getDeclSpec().getStorageClassSpec()) {
4533  default: llvm_unreachable("Unknown storage class!");
4534  case DeclSpec::SCS_auto:
4535  case DeclSpec::SCS_register:
4536  case DeclSpec::SCS_mutable:
4537    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4538                 diag::err_typecheck_sclass_func);
4539    D.setInvalidType();
4540    break;
4541  case DeclSpec::SCS_unspecified: break;
4542  case DeclSpec::SCS_extern: return SC_Extern;
4543  case DeclSpec::SCS_static: {
4544    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4545      // C99 6.7.1p5:
4546      //   The declaration of an identifier for a function that has
4547      //   block scope shall have no explicit storage-class specifier
4548      //   other than extern
4549      // See also (C++ [dcl.stc]p4).
4550      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4551                   diag::err_static_block_func);
4552      break;
4553    } else
4554      return SC_Static;
4555  }
4556  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4557  }
4558
4559  // No explicit storage class has already been returned
4560  return SC_None;
4561}
4562
4563static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4564                                           DeclContext *DC, QualType &R,
4565                                           TypeSourceInfo *TInfo,
4566                                           FunctionDecl::StorageClass SC,
4567                                           bool &IsVirtualOkay) {
4568  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4569  DeclarationName Name = NameInfo.getName();
4570
4571  FunctionDecl *NewFD = 0;
4572  bool isInline = D.getDeclSpec().isInlineSpecified();
4573  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4574  FunctionDecl::StorageClass SCAsWritten
4575    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4576
4577  if (!SemaRef.getLangOptions().CPlusPlus) {
4578    // Determine whether the function was written with a
4579    // prototype. This true when:
4580    //   - there is a prototype in the declarator, or
4581    //   - the type R of the function is some kind of typedef or other reference
4582    //     to a type name (which eventually refers to a function type).
4583    bool HasPrototype =
4584      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4585      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4586
4587    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4588                                 D.getSourceRange().getBegin(), NameInfo, R,
4589                                 TInfo, SC, SCAsWritten, isInline,
4590                                 HasPrototype);
4591    if (D.isInvalidType())
4592      NewFD->setInvalidDecl();
4593
4594    // Set the lexical context.
4595    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4596
4597    return NewFD;
4598  }
4599
4600  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4601  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4602
4603  // Check that the return type is not an abstract class type.
4604  // For record types, this is done by the AbstractClassUsageDiagnoser once
4605  // the class has been completely parsed.
4606  if (!DC->isRecord() &&
4607      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4608                                     R->getAs<FunctionType>()->getResultType(),
4609                                     diag::err_abstract_type_in_decl,
4610                                     SemaRef.AbstractReturnType))
4611    D.setInvalidType();
4612
4613  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4614    // This is a C++ constructor declaration.
4615    assert(DC->isRecord() &&
4616           "Constructors can only be declared in a member context");
4617
4618    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4619    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4620                                      D.getSourceRange().getBegin(), NameInfo,
4621                                      R, TInfo, isExplicit, isInline,
4622                                      /*isImplicitlyDeclared=*/false,
4623                                      isConstexpr);
4624
4625  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4626    // This is a C++ destructor declaration.
4627    if (DC->isRecord()) {
4628      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4629      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4630      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4631                                        SemaRef.Context, Record,
4632                                        D.getSourceRange().getBegin(),
4633                                        NameInfo, R, TInfo, isInline,
4634                                        /*isImplicitlyDeclared=*/false);
4635
4636      // If the class is complete, then we now create the implicit exception
4637      // specification. If the class is incomplete or dependent, we can't do
4638      // it yet.
4639      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4640          Record->getDefinition() && !Record->isBeingDefined() &&
4641          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4642        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4643      }
4644
4645      IsVirtualOkay = true;
4646      return NewDD;
4647
4648    } else {
4649      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4650      D.setInvalidType();
4651
4652      // Create a FunctionDecl to satisfy the function definition parsing
4653      // code path.
4654      return FunctionDecl::Create(SemaRef.Context, DC,
4655                                  D.getSourceRange().getBegin(),
4656                                  D.getIdentifierLoc(), Name, R, TInfo,
4657                                  SC, SCAsWritten, isInline,
4658                                  /*hasPrototype=*/true, isConstexpr);
4659    }
4660
4661  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4662    if (!DC->isRecord()) {
4663      SemaRef.Diag(D.getIdentifierLoc(),
4664           diag::err_conv_function_not_member);
4665      return 0;
4666    }
4667
4668    SemaRef.CheckConversionDeclarator(D, R, SC);
4669    IsVirtualOkay = true;
4670    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4671                                     D.getSourceRange().getBegin(), NameInfo,
4672                                     R, TInfo, isInline, isExplicit,
4673                                     isConstexpr, SourceLocation());
4674
4675  } else if (DC->isRecord()) {
4676    // If the name of the function is the same as the name of the record,
4677    // then this must be an invalid constructor that has a return type.
4678    // (The parser checks for a return type and makes the declarator a
4679    // constructor if it has no return type).
4680    if (Name.getAsIdentifierInfo() &&
4681        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4682      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4683        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4684        << SourceRange(D.getIdentifierLoc());
4685      return 0;
4686    }
4687
4688    bool isStatic = SC == SC_Static;
4689
4690    // [class.free]p1:
4691    // Any allocation function for a class T is a static member
4692    // (even if not explicitly declared static).
4693    if (Name.getCXXOverloadedOperator() == OO_New ||
4694        Name.getCXXOverloadedOperator() == OO_Array_New)
4695      isStatic = true;
4696
4697    // [class.free]p6 Any deallocation function for a class X is a static member
4698    // (even if not explicitly declared static).
4699    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4700        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4701      isStatic = true;
4702
4703    IsVirtualOkay = !isStatic;
4704
4705    // This is a C++ method declaration.
4706    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4707                                 D.getSourceRange().getBegin(), NameInfo, R,
4708                                 TInfo, isStatic, SCAsWritten, isInline,
4709                                 isConstexpr, SourceLocation());
4710
4711  } else {
4712    // Determine whether the function was written with a
4713    // prototype. This true when:
4714    //   - we're in C++ (where every function has a prototype),
4715    return FunctionDecl::Create(SemaRef.Context, DC,
4716                                D.getSourceRange().getBegin(),
4717                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4718                                true/*HasPrototype*/, isConstexpr);
4719  }
4720}
4721
4722NamedDecl*
4723Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4724                              TypeSourceInfo *TInfo, LookupResult &Previous,
4725                              MultiTemplateParamsArg TemplateParamLists,
4726                              bool &AddToScope) {
4727  QualType R = TInfo->getType();
4728
4729  assert(R.getTypePtr()->isFunctionType());
4730
4731  // TODO: consider using NameInfo for diagnostic.
4732  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4733  DeclarationName Name = NameInfo.getName();
4734  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4735
4736  if (D.getDeclSpec().isThreadSpecified())
4737    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4738
4739  // Do not allow returning a objc interface by-value.
4740  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4741    Diag(D.getIdentifierLoc(),
4742         diag::err_object_cannot_be_passed_returned_by_value) << 0
4743    << R->getAs<FunctionType>()->getResultType()
4744    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4745
4746    QualType T = R->getAs<FunctionType>()->getResultType();
4747    T = Context.getObjCObjectPointerType(T);
4748    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4749      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4750      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4751                                  FPT->getNumArgs(), EPI);
4752    }
4753    else if (isa<FunctionNoProtoType>(R))
4754      R = Context.getFunctionNoProtoType(T);
4755  }
4756
4757  bool isFriend = false;
4758  FunctionTemplateDecl *FunctionTemplate = 0;
4759  bool isExplicitSpecialization = false;
4760  bool isFunctionTemplateSpecialization = false;
4761  bool isDependentClassScopeExplicitSpecialization = false;
4762  bool isVirtualOkay = false;
4763
4764  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4765                                              isVirtualOkay);
4766  if (!NewFD) return 0;
4767
4768  if (getLangOptions().CPlusPlus) {
4769    bool isInline = D.getDeclSpec().isInlineSpecified();
4770    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4771    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4772    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4773    isFriend = D.getDeclSpec().isFriendSpecified();
4774    if (isFriend && !isInline && D.isFunctionDefinition()) {
4775      // C++ [class.friend]p5
4776      //   A function can be defined in a friend declaration of a
4777      //   class . . . . Such a function is implicitly inline.
4778      NewFD->setImplicitlyInline();
4779    }
4780
4781    SetNestedNameSpecifier(NewFD, D);
4782    isExplicitSpecialization = false;
4783    isFunctionTemplateSpecialization = false;
4784    if (D.isInvalidType())
4785      NewFD->setInvalidDecl();
4786
4787    // Set the lexical context. If the declarator has a C++
4788    // scope specifier, or is the object of a friend declaration, the
4789    // lexical context will be different from the semantic context.
4790    NewFD->setLexicalDeclContext(CurContext);
4791
4792    // Match up the template parameter lists with the scope specifier, then
4793    // determine whether we have a template or a template specialization.
4794    bool Invalid = false;
4795    if (TemplateParameterList *TemplateParams
4796          = MatchTemplateParametersToScopeSpecifier(
4797                                  D.getDeclSpec().getSourceRange().getBegin(),
4798                                  D.getIdentifierLoc(),
4799                                  D.getCXXScopeSpec(),
4800                                  TemplateParamLists.get(),
4801                                  TemplateParamLists.size(),
4802                                  isFriend,
4803                                  isExplicitSpecialization,
4804                                  Invalid)) {
4805      if (TemplateParams->size() > 0) {
4806        // This is a function template
4807
4808        // Check that we can declare a template here.
4809        if (CheckTemplateDeclScope(S, TemplateParams))
4810          return 0;
4811
4812        // A destructor cannot be a template.
4813        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4814          Diag(NewFD->getLocation(), diag::err_destructor_template);
4815          return 0;
4816        }
4817
4818        // If we're adding a template to a dependent context, we may need to
4819        // rebuilding some of the types used within the template parameter list,
4820        // now that we know what the current instantiation is.
4821        if (DC->isDependentContext()) {
4822          ContextRAII SavedContext(*this, DC);
4823          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4824            Invalid = true;
4825        }
4826
4827
4828        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4829                                                        NewFD->getLocation(),
4830                                                        Name, TemplateParams,
4831                                                        NewFD);
4832        FunctionTemplate->setLexicalDeclContext(CurContext);
4833        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4834
4835        // For source fidelity, store the other template param lists.
4836        if (TemplateParamLists.size() > 1) {
4837          NewFD->setTemplateParameterListsInfo(Context,
4838                                               TemplateParamLists.size() - 1,
4839                                               TemplateParamLists.release());
4840        }
4841      } else {
4842        // This is a function template specialization.
4843        isFunctionTemplateSpecialization = true;
4844        // For source fidelity, store all the template param lists.
4845        NewFD->setTemplateParameterListsInfo(Context,
4846                                             TemplateParamLists.size(),
4847                                             TemplateParamLists.release());
4848
4849        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4850        if (isFriend) {
4851          // We want to remove the "template<>", found here.
4852          SourceRange RemoveRange = TemplateParams->getSourceRange();
4853
4854          // If we remove the template<> and the name is not a
4855          // template-id, we're actually silently creating a problem:
4856          // the friend declaration will refer to an untemplated decl,
4857          // and clearly the user wants a template specialization.  So
4858          // we need to insert '<>' after the name.
4859          SourceLocation InsertLoc;
4860          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4861            InsertLoc = D.getName().getSourceRange().getEnd();
4862            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4863          }
4864
4865          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4866            << Name << RemoveRange
4867            << FixItHint::CreateRemoval(RemoveRange)
4868            << FixItHint::CreateInsertion(InsertLoc, "<>");
4869        }
4870      }
4871    }
4872    else {
4873      // All template param lists were matched against the scope specifier:
4874      // this is NOT (an explicit specialization of) a template.
4875      if (TemplateParamLists.size() > 0)
4876        // For source fidelity, store all the template param lists.
4877        NewFD->setTemplateParameterListsInfo(Context,
4878                                             TemplateParamLists.size(),
4879                                             TemplateParamLists.release());
4880    }
4881
4882    if (Invalid) {
4883      NewFD->setInvalidDecl();
4884      if (FunctionTemplate)
4885        FunctionTemplate->setInvalidDecl();
4886    }
4887
4888    // C++ [dcl.fct.spec]p5:
4889    //   The virtual specifier shall only be used in declarations of
4890    //   nonstatic class member functions that appear within a
4891    //   member-specification of a class declaration; see 10.3.
4892    //
4893    if (isVirtual && !NewFD->isInvalidDecl()) {
4894      if (!isVirtualOkay) {
4895        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4896             diag::err_virtual_non_function);
4897      } else if (!CurContext->isRecord()) {
4898        // 'virtual' was specified outside of the class.
4899        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4900             diag::err_virtual_out_of_class)
4901          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4902      } else if (NewFD->getDescribedFunctionTemplate()) {
4903        // C++ [temp.mem]p3:
4904        //  A member function template shall not be virtual.
4905        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4906             diag::err_virtual_member_function_template)
4907          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4908      } else {
4909        // Okay: Add virtual to the method.
4910        NewFD->setVirtualAsWritten(true);
4911      }
4912    }
4913
4914    // C++ [dcl.fct.spec]p3:
4915    //  The inline specifier shall not appear on a block scope function
4916    //  declaration.
4917    if (isInline && !NewFD->isInvalidDecl()) {
4918      if (CurContext->isFunctionOrMethod()) {
4919        // 'inline' is not allowed on block scope function declaration.
4920        Diag(D.getDeclSpec().getInlineSpecLoc(),
4921             diag::err_inline_declaration_block_scope) << Name
4922          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4923      }
4924    }
4925
4926    // C++ [dcl.fct.spec]p6:
4927    //  The explicit specifier shall be used only in the declaration of a
4928    //  constructor or conversion function within its class definition;
4929    //  see 12.3.1 and 12.3.2.
4930    if (isExplicit && !NewFD->isInvalidDecl()) {
4931      if (!CurContext->isRecord()) {
4932        // 'explicit' was specified outside of the class.
4933        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4934             diag::err_explicit_out_of_class)
4935          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4936      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4937                 !isa<CXXConversionDecl>(NewFD)) {
4938        // 'explicit' was specified on a function that wasn't a constructor
4939        // or conversion function.
4940        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4941             diag::err_explicit_non_ctor_or_conv_function)
4942          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4943      }
4944    }
4945
4946    if (isConstexpr) {
4947      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4948      // are implicitly inline.
4949      NewFD->setImplicitlyInline();
4950
4951      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4952      // be either constructors or to return a literal type. Therefore,
4953      // destructors cannot be declared constexpr.
4954      if (isa<CXXDestructorDecl>(NewFD))
4955        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4956    }
4957
4958    // If __module_private__ was specified, mark the function accordingly.
4959    if (D.getDeclSpec().isModulePrivateSpecified()) {
4960      if (isFunctionTemplateSpecialization) {
4961        SourceLocation ModulePrivateLoc
4962          = D.getDeclSpec().getModulePrivateSpecLoc();
4963        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4964          << 0
4965          << FixItHint::CreateRemoval(ModulePrivateLoc);
4966      } else {
4967        NewFD->setModulePrivate();
4968        if (FunctionTemplate)
4969          FunctionTemplate->setModulePrivate();
4970      }
4971    }
4972
4973    if (isFriend) {
4974      // For now, claim that the objects have no previous declaration.
4975      if (FunctionTemplate) {
4976        FunctionTemplate->setObjectOfFriendDecl(false);
4977        FunctionTemplate->setAccess(AS_public);
4978      }
4979      NewFD->setObjectOfFriendDecl(false);
4980      NewFD->setAccess(AS_public);
4981    }
4982
4983    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
4984        D.isFunctionDefinition()) {
4985      // A method is implicitly inline if it's defined in its class
4986      // definition.
4987      NewFD->setImplicitlyInline();
4988    }
4989
4990    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4991        !CurContext->isRecord()) {
4992      // C++ [class.static]p1:
4993      //   A data or function member of a class may be declared static
4994      //   in a class definition, in which case it is a static member of
4995      //   the class.
4996
4997      // Complain about the 'static' specifier if it's on an out-of-line
4998      // member function definition.
4999      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5000           diag::err_static_out_of_line)
5001        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5002    }
5003  }
5004
5005  // Filter out previous declarations that don't match the scope.
5006  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5007                       isExplicitSpecialization ||
5008                       isFunctionTemplateSpecialization);
5009
5010  // Handle GNU asm-label extension (encoded as an attribute).
5011  if (Expr *E = (Expr*) D.getAsmLabel()) {
5012    // The parser guarantees this is a string.
5013    StringLiteral *SE = cast<StringLiteral>(E);
5014    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5015                                                SE->getString()));
5016  }
5017
5018  // Copy the parameter declarations from the declarator D to the function
5019  // declaration NewFD, if they are available.  First scavenge them into Params.
5020  SmallVector<ParmVarDecl*, 16> Params;
5021  if (D.isFunctionDeclarator()) {
5022    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5023
5024    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5025    // function that takes no arguments, not a function that takes a
5026    // single void argument.
5027    // We let through "const void" here because Sema::GetTypeForDeclarator
5028    // already checks for that case.
5029    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5030        FTI.ArgInfo[0].Param &&
5031        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5032      // Empty arg list, don't push any params.
5033      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5034
5035      // In C++, the empty parameter-type-list must be spelled "void"; a
5036      // typedef of void is not permitted.
5037      if (getLangOptions().CPlusPlus &&
5038          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5039        bool IsTypeAlias = false;
5040        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5041          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5042        else if (const TemplateSpecializationType *TST =
5043                   Param->getType()->getAs<TemplateSpecializationType>())
5044          IsTypeAlias = TST->isTypeAlias();
5045        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5046          << IsTypeAlias;
5047      }
5048    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5049      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5050        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5051        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5052        Param->setDeclContext(NewFD);
5053        Params.push_back(Param);
5054
5055        if (Param->isInvalidDecl())
5056          NewFD->setInvalidDecl();
5057      }
5058    }
5059
5060  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5061    // When we're declaring a function with a typedef, typeof, etc as in the
5062    // following example, we'll need to synthesize (unnamed)
5063    // parameters for use in the declaration.
5064    //
5065    // @code
5066    // typedef void fn(int);
5067    // fn f;
5068    // @endcode
5069
5070    // Synthesize a parameter for each argument type.
5071    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5072         AE = FT->arg_type_end(); AI != AE; ++AI) {
5073      ParmVarDecl *Param =
5074        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5075      Param->setScopeInfo(0, Params.size());
5076      Params.push_back(Param);
5077    }
5078  } else {
5079    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5080           "Should not need args for typedef of non-prototype fn");
5081  }
5082
5083  // Finally, we know we have the right number of parameters, install them.
5084  NewFD->setParams(Params);
5085
5086  // Process the non-inheritable attributes on this declaration.
5087  ProcessDeclAttributes(S, NewFD, D,
5088                        /*NonInheritable=*/true, /*Inheritable=*/false);
5089
5090  if (!getLangOptions().CPlusPlus) {
5091    // Perform semantic checking on the function declaration.
5092    bool isExplicitSpecialization=false;
5093    if (!NewFD->isInvalidDecl()) {
5094      if (NewFD->getResultType()->isVariablyModifiedType()) {
5095        // Functions returning a variably modified type violate C99 6.7.5.2p2
5096        // because all functions have linkage.
5097        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5098        NewFD->setInvalidDecl();
5099      } else {
5100        if (NewFD->isMain())
5101          CheckMain(NewFD, D.getDeclSpec());
5102        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5103                                                    isExplicitSpecialization));
5104      }
5105    }
5106    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5107            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5108           "previous declaration set still overloaded");
5109  } else {
5110    // If the declarator is a template-id, translate the parser's template
5111    // argument list into our AST format.
5112    bool HasExplicitTemplateArgs = false;
5113    TemplateArgumentListInfo TemplateArgs;
5114    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5115      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5116      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5117      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5118      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5119                                         TemplateId->getTemplateArgs(),
5120                                         TemplateId->NumArgs);
5121      translateTemplateArguments(TemplateArgsPtr,
5122                                 TemplateArgs);
5123      TemplateArgsPtr.release();
5124
5125      HasExplicitTemplateArgs = true;
5126
5127      if (NewFD->isInvalidDecl()) {
5128        HasExplicitTemplateArgs = false;
5129      } else if (FunctionTemplate) {
5130        // Function template with explicit template arguments.
5131        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5132          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5133
5134        HasExplicitTemplateArgs = false;
5135      } else if (!isFunctionTemplateSpecialization &&
5136                 !D.getDeclSpec().isFriendSpecified()) {
5137        // We have encountered something that the user meant to be a
5138        // specialization (because it has explicitly-specified template
5139        // arguments) but that was not introduced with a "template<>" (or had
5140        // too few of them).
5141        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5142          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5143          << FixItHint::CreateInsertion(
5144                                    D.getDeclSpec().getSourceRange().getBegin(),
5145                                        "template<> ");
5146        isFunctionTemplateSpecialization = true;
5147      } else {
5148        // "friend void foo<>(int);" is an implicit specialization decl.
5149        isFunctionTemplateSpecialization = true;
5150      }
5151    } else if (isFriend && isFunctionTemplateSpecialization) {
5152      // This combination is only possible in a recovery case;  the user
5153      // wrote something like:
5154      //   template <> friend void foo(int);
5155      // which we're recovering from as if the user had written:
5156      //   friend void foo<>(int);
5157      // Go ahead and fake up a template id.
5158      HasExplicitTemplateArgs = true;
5159        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5160      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5161    }
5162
5163    // If it's a friend (and only if it's a friend), it's possible
5164    // that either the specialized function type or the specialized
5165    // template is dependent, and therefore matching will fail.  In
5166    // this case, don't check the specialization yet.
5167    bool InstantiationDependent = false;
5168    if (isFunctionTemplateSpecialization && isFriend &&
5169        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5170         TemplateSpecializationType::anyDependentTemplateArguments(
5171            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5172            InstantiationDependent))) {
5173      assert(HasExplicitTemplateArgs &&
5174             "friend function specialization without template args");
5175      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5176                                                       Previous))
5177        NewFD->setInvalidDecl();
5178    } else if (isFunctionTemplateSpecialization) {
5179      if (CurContext->isDependentContext() && CurContext->isRecord()
5180          && !isFriend) {
5181        isDependentClassScopeExplicitSpecialization = true;
5182        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5183          diag::ext_function_specialization_in_class :
5184          diag::err_function_specialization_in_class)
5185          << NewFD->getDeclName();
5186      } else if (CheckFunctionTemplateSpecialization(NewFD,
5187                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5188                                                     Previous))
5189        NewFD->setInvalidDecl();
5190
5191      // C++ [dcl.stc]p1:
5192      //   A storage-class-specifier shall not be specified in an explicit
5193      //   specialization (14.7.3)
5194      if (SC != SC_None) {
5195        if (SC != NewFD->getStorageClass())
5196          Diag(NewFD->getLocation(),
5197               diag::err_explicit_specialization_inconsistent_storage_class)
5198            << SC
5199            << FixItHint::CreateRemoval(
5200                                      D.getDeclSpec().getStorageClassSpecLoc());
5201
5202        else
5203          Diag(NewFD->getLocation(),
5204               diag::ext_explicit_specialization_storage_class)
5205            << FixItHint::CreateRemoval(
5206                                      D.getDeclSpec().getStorageClassSpecLoc());
5207      }
5208
5209    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5210      if (CheckMemberSpecialization(NewFD, Previous))
5211          NewFD->setInvalidDecl();
5212    }
5213
5214    // Perform semantic checking on the function declaration.
5215    if (!isDependentClassScopeExplicitSpecialization) {
5216      if (NewFD->isInvalidDecl()) {
5217        // If this is a class member, mark the class invalid immediately.
5218        // This avoids some consistency errors later.
5219        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5220          methodDecl->getParent()->setInvalidDecl();
5221      } else {
5222        if (NewFD->isMain())
5223          CheckMain(NewFD, D.getDeclSpec());
5224        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5225                                                    isExplicitSpecialization));
5226      }
5227    }
5228
5229    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5230            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5231           "previous declaration set still overloaded");
5232
5233    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5234        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5235      NewFD->setInvalidDecl();
5236
5237    NamedDecl *PrincipalDecl = (FunctionTemplate
5238                                ? cast<NamedDecl>(FunctionTemplate)
5239                                : NewFD);
5240
5241    if (isFriend && D.isRedeclaration()) {
5242      AccessSpecifier Access = AS_public;
5243      if (!NewFD->isInvalidDecl())
5244        Access = NewFD->getPreviousDeclaration()->getAccess();
5245
5246      NewFD->setAccess(Access);
5247      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5248
5249      PrincipalDecl->setObjectOfFriendDecl(true);
5250    }
5251
5252    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5253        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5254      PrincipalDecl->setNonMemberOperator();
5255
5256    // If we have a function template, check the template parameter
5257    // list. This will check and merge default template arguments.
5258    if (FunctionTemplate) {
5259      FunctionTemplateDecl *PrevTemplate =
5260                                     FunctionTemplate->getPreviousDeclaration();
5261      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5262                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5263                            D.getDeclSpec().isFriendSpecified()
5264                              ? (D.isFunctionDefinition()
5265                                   ? TPC_FriendFunctionTemplateDefinition
5266                                   : TPC_FriendFunctionTemplate)
5267                              : (D.getCXXScopeSpec().isSet() &&
5268                                 DC && DC->isRecord() &&
5269                                 DC->isDependentContext())
5270                                  ? TPC_ClassTemplateMember
5271                                  : TPC_FunctionTemplate);
5272    }
5273
5274    if (NewFD->isInvalidDecl()) {
5275      // Ignore all the rest of this.
5276    } else if (!D.isRedeclaration()) {
5277      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5278                                       AddToScope };
5279      // Fake up an access specifier if it's supposed to be a class member.
5280      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5281        NewFD->setAccess(AS_public);
5282
5283      // Qualified decls generally require a previous declaration.
5284      if (D.getCXXScopeSpec().isSet()) {
5285        // ...with the major exception of templated-scope or
5286        // dependent-scope friend declarations.
5287
5288        // TODO: we currently also suppress this check in dependent
5289        // contexts because (1) the parameter depth will be off when
5290        // matching friend templates and (2) we might actually be
5291        // selecting a friend based on a dependent factor.  But there
5292        // are situations where these conditions don't apply and we
5293        // can actually do this check immediately.
5294        if (isFriend &&
5295            (TemplateParamLists.size() ||
5296             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5297             CurContext->isDependentContext())) {
5298          // ignore these
5299        } else {
5300          // The user tried to provide an out-of-line definition for a
5301          // function that is a member of a class or namespace, but there
5302          // was no such member function declared (C++ [class.mfct]p2,
5303          // C++ [namespace.memdef]p2). For example:
5304          //
5305          // class X {
5306          //   void f() const;
5307          // };
5308          //
5309          // void X::f() { } // ill-formed
5310          //
5311          // Complain about this problem, and attempt to suggest close
5312          // matches (e.g., those that differ only in cv-qualifiers and
5313          // whether the parameter types are references).
5314
5315          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5316                                                               NewFD,
5317                                                               ExtraArgs)) {
5318            AddToScope = ExtraArgs.AddToScope;
5319            return Result;
5320          }
5321        }
5322
5323        // Unqualified local friend declarations are required to resolve
5324        // to something.
5325      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5326        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5327                                                             NewFD,
5328                                                             ExtraArgs)) {
5329          AddToScope = ExtraArgs.AddToScope;
5330          return Result;
5331        }
5332      }
5333
5334    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5335               !isFriend && !isFunctionTemplateSpecialization &&
5336               !isExplicitSpecialization) {
5337      // An out-of-line member function declaration must also be a
5338      // definition (C++ [dcl.meaning]p1).
5339      // Note that this is not the case for explicit specializations of
5340      // function templates or member functions of class templates, per
5341      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5342      // extension for compatibility with old SWIG code which likes to
5343      // generate them.
5344      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5345        << D.getCXXScopeSpec().getRange();
5346    }
5347  }
5348
5349
5350  // Handle attributes. We need to have merged decls when handling attributes
5351  // (for example to check for conflicts, etc).
5352  // FIXME: This needs to happen before we merge declarations. Then,
5353  // let attribute merging cope with attribute conflicts.
5354  ProcessDeclAttributes(S, NewFD, D,
5355                        /*NonInheritable=*/false, /*Inheritable=*/true);
5356
5357  // attributes declared post-definition are currently ignored
5358  // FIXME: This should happen during attribute merging
5359  if (D.isRedeclaration() && Previous.isSingleResult()) {
5360    const FunctionDecl *Def;
5361    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5362    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5363      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5364      Diag(Def->getLocation(), diag::note_previous_definition);
5365    }
5366  }
5367
5368  AddKnownFunctionAttributes(NewFD);
5369
5370  if (NewFD->hasAttr<OverloadableAttr>() &&
5371      !NewFD->getType()->getAs<FunctionProtoType>()) {
5372    Diag(NewFD->getLocation(),
5373         diag::err_attribute_overloadable_no_prototype)
5374      << NewFD;
5375
5376    // Turn this into a variadic function with no parameters.
5377    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5378    FunctionProtoType::ExtProtoInfo EPI;
5379    EPI.Variadic = true;
5380    EPI.ExtInfo = FT->getExtInfo();
5381
5382    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5383    NewFD->setType(R);
5384  }
5385
5386  // If there's a #pragma GCC visibility in scope, and this isn't a class
5387  // member, set the visibility of this function.
5388  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5389    AddPushedVisibilityAttribute(NewFD);
5390
5391  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5392  // marking the function.
5393  AddCFAuditedAttribute(NewFD);
5394
5395  // If this is a locally-scoped extern C function, update the
5396  // map of such names.
5397  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5398      && !NewFD->isInvalidDecl())
5399    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5400
5401  // Set this FunctionDecl's range up to the right paren.
5402  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5403
5404  if (getLangOptions().CPlusPlus) {
5405    if (FunctionTemplate) {
5406      if (NewFD->isInvalidDecl())
5407        FunctionTemplate->setInvalidDecl();
5408      return FunctionTemplate;
5409    }
5410  }
5411
5412  MarkUnusedFileScopedDecl(NewFD);
5413
5414  if (getLangOptions().CUDA)
5415    if (IdentifierInfo *II = NewFD->getIdentifier())
5416      if (!NewFD->isInvalidDecl() &&
5417          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5418        if (II->isStr("cudaConfigureCall")) {
5419          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5420            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5421
5422          Context.setcudaConfigureCallDecl(NewFD);
5423        }
5424      }
5425
5426  // Here we have an function template explicit specialization at class scope.
5427  // The actually specialization will be postponed to template instatiation
5428  // time via the ClassScopeFunctionSpecializationDecl node.
5429  if (isDependentClassScopeExplicitSpecialization) {
5430    ClassScopeFunctionSpecializationDecl *NewSpec =
5431                         ClassScopeFunctionSpecializationDecl::Create(
5432                                Context, CurContext,  SourceLocation(),
5433                                cast<CXXMethodDecl>(NewFD));
5434    CurContext->addDecl(NewSpec);
5435    AddToScope = false;
5436  }
5437
5438  return NewFD;
5439}
5440
5441/// \brief Perform semantic checking of a new function declaration.
5442///
5443/// Performs semantic analysis of the new function declaration
5444/// NewFD. This routine performs all semantic checking that does not
5445/// require the actual declarator involved in the declaration, and is
5446/// used both for the declaration of functions as they are parsed
5447/// (called via ActOnDeclarator) and for the declaration of functions
5448/// that have been instantiated via C++ template instantiation (called
5449/// via InstantiateDecl).
5450///
5451/// \param IsExplicitSpecialiation whether this new function declaration is
5452/// an explicit specialization of the previous declaration.
5453///
5454/// This sets NewFD->isInvalidDecl() to true if there was an error.
5455///
5456/// Returns true if the function declaration is a redeclaration.
5457bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5458                                    LookupResult &Previous,
5459                                    bool IsExplicitSpecialization) {
5460  assert(!NewFD->getResultType()->isVariablyModifiedType()
5461         && "Variably modified return types are not handled here");
5462
5463  // Check for a previous declaration of this name.
5464  if (Previous.empty() && NewFD->isExternC()) {
5465    // Since we did not find anything by this name and we're declaring
5466    // an extern "C" function, look for a non-visible extern "C"
5467    // declaration with the same name.
5468    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5469      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5470    if (Pos != LocallyScopedExternalDecls.end())
5471      Previous.addDecl(Pos->second);
5472  }
5473
5474  bool Redeclaration = false;
5475
5476  // Merge or overload the declaration with an existing declaration of
5477  // the same name, if appropriate.
5478  if (!Previous.empty()) {
5479    // Determine whether NewFD is an overload of PrevDecl or
5480    // a declaration that requires merging. If it's an overload,
5481    // there's no more work to do here; we'll just add the new
5482    // function to the scope.
5483
5484    NamedDecl *OldDecl = 0;
5485    if (!AllowOverloadingOfFunction(Previous, Context)) {
5486      Redeclaration = true;
5487      OldDecl = Previous.getFoundDecl();
5488    } else {
5489      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5490                            /*NewIsUsingDecl*/ false)) {
5491      case Ovl_Match:
5492        Redeclaration = true;
5493        break;
5494
5495      case Ovl_NonFunction:
5496        Redeclaration = true;
5497        break;
5498
5499      case Ovl_Overload:
5500        Redeclaration = false;
5501        break;
5502      }
5503
5504      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5505        // If a function name is overloadable in C, then every function
5506        // with that name must be marked "overloadable".
5507        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5508          << Redeclaration << NewFD;
5509        NamedDecl *OverloadedDecl = 0;
5510        if (Redeclaration)
5511          OverloadedDecl = OldDecl;
5512        else if (!Previous.empty())
5513          OverloadedDecl = Previous.getRepresentativeDecl();
5514        if (OverloadedDecl)
5515          Diag(OverloadedDecl->getLocation(),
5516               diag::note_attribute_overloadable_prev_overload);
5517        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5518                                                        Context));
5519      }
5520    }
5521
5522    if (Redeclaration) {
5523      // NewFD and OldDecl represent declarations that need to be
5524      // merged.
5525      if (MergeFunctionDecl(NewFD, OldDecl)) {
5526        NewFD->setInvalidDecl();
5527        return Redeclaration;
5528      }
5529
5530      Previous.clear();
5531      Previous.addDecl(OldDecl);
5532
5533      if (FunctionTemplateDecl *OldTemplateDecl
5534                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5535        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5536        FunctionTemplateDecl *NewTemplateDecl
5537          = NewFD->getDescribedFunctionTemplate();
5538        assert(NewTemplateDecl && "Template/non-template mismatch");
5539        if (CXXMethodDecl *Method
5540              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5541          Method->setAccess(OldTemplateDecl->getAccess());
5542          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5543        }
5544
5545        // If this is an explicit specialization of a member that is a function
5546        // template, mark it as a member specialization.
5547        if (IsExplicitSpecialization &&
5548            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5549          NewTemplateDecl->setMemberSpecialization();
5550          assert(OldTemplateDecl->isMemberSpecialization());
5551        }
5552
5553        if (OldTemplateDecl->isModulePrivate())
5554          NewTemplateDecl->setModulePrivate();
5555
5556      } else {
5557        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5558          NewFD->setAccess(OldDecl->getAccess());
5559        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5560      }
5561    }
5562  }
5563
5564  // Semantic checking for this function declaration (in isolation).
5565  if (getLangOptions().CPlusPlus) {
5566    // C++-specific checks.
5567    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5568      CheckConstructor(Constructor);
5569    } else if (CXXDestructorDecl *Destructor =
5570                dyn_cast<CXXDestructorDecl>(NewFD)) {
5571      CXXRecordDecl *Record = Destructor->getParent();
5572      QualType ClassType = Context.getTypeDeclType(Record);
5573
5574      // FIXME: Shouldn't we be able to perform this check even when the class
5575      // type is dependent? Both gcc and edg can handle that.
5576      if (!ClassType->isDependentType()) {
5577        DeclarationName Name
5578          = Context.DeclarationNames.getCXXDestructorName(
5579                                        Context.getCanonicalType(ClassType));
5580        if (NewFD->getDeclName() != Name) {
5581          Diag(NewFD->getLocation(), diag::err_destructor_name);
5582          NewFD->setInvalidDecl();
5583          return Redeclaration;
5584        }
5585      }
5586    } else if (CXXConversionDecl *Conversion
5587               = dyn_cast<CXXConversionDecl>(NewFD)) {
5588      ActOnConversionDeclarator(Conversion);
5589    }
5590
5591    // Find any virtual functions that this function overrides.
5592    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5593      if (!Method->isFunctionTemplateSpecialization() &&
5594          !Method->getDescribedFunctionTemplate()) {
5595        if (AddOverriddenMethods(Method->getParent(), Method)) {
5596          // If the function was marked as "static", we have a problem.
5597          if (NewFD->getStorageClass() == SC_Static) {
5598            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5599              << NewFD->getDeclName();
5600            for (CXXMethodDecl::method_iterator
5601                      Overridden = Method->begin_overridden_methods(),
5602                   OverriddenEnd = Method->end_overridden_methods();
5603                 Overridden != OverriddenEnd;
5604                 ++Overridden) {
5605              Diag((*Overridden)->getLocation(),
5606                   diag::note_overridden_virtual_function);
5607            }
5608          }
5609        }
5610      }
5611    }
5612
5613    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5614    if (NewFD->isOverloadedOperator() &&
5615        CheckOverloadedOperatorDeclaration(NewFD)) {
5616      NewFD->setInvalidDecl();
5617      return Redeclaration;
5618    }
5619
5620    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5621    if (NewFD->getLiteralIdentifier() &&
5622        CheckLiteralOperatorDeclaration(NewFD)) {
5623      NewFD->setInvalidDecl();
5624      return Redeclaration;
5625    }
5626
5627    // In C++, check default arguments now that we have merged decls. Unless
5628    // the lexical context is the class, because in this case this is done
5629    // during delayed parsing anyway.
5630    if (!CurContext->isRecord())
5631      CheckCXXDefaultArguments(NewFD);
5632
5633    // If this function declares a builtin function, check the type of this
5634    // declaration against the expected type for the builtin.
5635    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5636      ASTContext::GetBuiltinTypeError Error;
5637      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5638      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5639        // The type of this function differs from the type of the builtin,
5640        // so forget about the builtin entirely.
5641        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5642      }
5643    }
5644  }
5645  return Redeclaration;
5646}
5647
5648void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5649  // C++ [basic.start.main]p3:  A program that declares main to be inline
5650  //   or static is ill-formed.
5651  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5652  //   shall not appear in a declaration of main.
5653  // static main is not an error under C99, but we should warn about it.
5654  if (FD->getStorageClass() == SC_Static)
5655    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5656         ? diag::err_static_main : diag::warn_static_main)
5657      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5658  if (FD->isInlineSpecified())
5659    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5660      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5661
5662  QualType T = FD->getType();
5663  assert(T->isFunctionType() && "function decl is not of function type");
5664  const FunctionType* FT = T->getAs<FunctionType>();
5665
5666  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5667    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5668    FD->setInvalidDecl(true);
5669  }
5670
5671  // Treat protoless main() as nullary.
5672  if (isa<FunctionNoProtoType>(FT)) return;
5673
5674  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5675  unsigned nparams = FTP->getNumArgs();
5676  assert(FD->getNumParams() == nparams);
5677
5678  bool HasExtraParameters = (nparams > 3);
5679
5680  // Darwin passes an undocumented fourth argument of type char**.  If
5681  // other platforms start sprouting these, the logic below will start
5682  // getting shifty.
5683  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5684    HasExtraParameters = false;
5685
5686  if (HasExtraParameters) {
5687    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5688    FD->setInvalidDecl(true);
5689    nparams = 3;
5690  }
5691
5692  // FIXME: a lot of the following diagnostics would be improved
5693  // if we had some location information about types.
5694
5695  QualType CharPP =
5696    Context.getPointerType(Context.getPointerType(Context.CharTy));
5697  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5698
5699  for (unsigned i = 0; i < nparams; ++i) {
5700    QualType AT = FTP->getArgType(i);
5701
5702    bool mismatch = true;
5703
5704    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5705      mismatch = false;
5706    else if (Expected[i] == CharPP) {
5707      // As an extension, the following forms are okay:
5708      //   char const **
5709      //   char const * const *
5710      //   char * const *
5711
5712      QualifierCollector qs;
5713      const PointerType* PT;
5714      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5715          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5716          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5717        qs.removeConst();
5718        mismatch = !qs.empty();
5719      }
5720    }
5721
5722    if (mismatch) {
5723      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5724      // TODO: suggest replacing given type with expected type
5725      FD->setInvalidDecl(true);
5726    }
5727  }
5728
5729  if (nparams == 1 && !FD->isInvalidDecl()) {
5730    Diag(FD->getLocation(), diag::warn_main_one_arg);
5731  }
5732
5733  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5734    Diag(FD->getLocation(), diag::err_main_template_decl);
5735    FD->setInvalidDecl();
5736  }
5737}
5738
5739bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5740  // FIXME: Need strict checking.  In C89, we need to check for
5741  // any assignment, increment, decrement, function-calls, or
5742  // commas outside of a sizeof.  In C99, it's the same list,
5743  // except that the aforementioned are allowed in unevaluated
5744  // expressions.  Everything else falls under the
5745  // "may accept other forms of constant expressions" exception.
5746  // (We never end up here for C++, so the constant expression
5747  // rules there don't matter.)
5748  if (Init->isConstantInitializer(Context, false))
5749    return false;
5750  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5751    << Init->getSourceRange();
5752  return true;
5753}
5754
5755namespace {
5756  // Visits an initialization expression to see if OrigDecl is evaluated in
5757  // its own initialization and throws a warning if it does.
5758  class SelfReferenceChecker
5759      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5760    Sema &S;
5761    Decl *OrigDecl;
5762    bool isRecordType;
5763    bool isPODType;
5764
5765  public:
5766    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5767
5768    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5769                                                    S(S), OrigDecl(OrigDecl) {
5770      isPODType = false;
5771      isRecordType = false;
5772      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5773        isPODType = VD->getType().isPODType(S.Context);
5774        isRecordType = VD->getType()->isRecordType();
5775      }
5776    }
5777
5778    void VisitExpr(Expr *E) {
5779      if (isa<ObjCMessageExpr>(*E)) return;
5780      if (isRecordType) {
5781        Expr *expr = E;
5782        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5783          ValueDecl *VD = ME->getMemberDecl();
5784          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5785          expr = ME->getBase();
5786        }
5787        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5788          HandleDeclRefExpr(DRE);
5789          return;
5790        }
5791      }
5792      Inherited::VisitExpr(E);
5793    }
5794
5795    void VisitMemberExpr(MemberExpr *E) {
5796      if (E->getType()->canDecayToPointerType()) return;
5797      if (isa<FieldDecl>(E->getMemberDecl()))
5798        if (DeclRefExpr *DRE
5799              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5800          HandleDeclRefExpr(DRE);
5801          return;
5802        }
5803      Inherited::VisitMemberExpr(E);
5804    }
5805
5806    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5807      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5808          (isRecordType && E->getCastKind() == CK_NoOp)) {
5809        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5810        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5811          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5812        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5813          HandleDeclRefExpr(DRE);
5814          return;
5815        }
5816      }
5817      Inherited::VisitImplicitCastExpr(E);
5818    }
5819
5820    void VisitUnaryOperator(UnaryOperator *E) {
5821      // For POD record types, addresses of its own members are well-defined.
5822      if (isRecordType && isPODType) return;
5823      Inherited::VisitUnaryOperator(E);
5824    }
5825
5826    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5827      Decl* ReferenceDecl = DRE->getDecl();
5828      if (OrigDecl != ReferenceDecl) return;
5829      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5830                          Sema::NotForRedeclaration);
5831      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5832                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5833                              << Result.getLookupName()
5834                              << OrigDecl->getLocation()
5835                              << DRE->getSourceRange());
5836    }
5837  };
5838}
5839
5840/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5841void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5842  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5843}
5844
5845/// AddInitializerToDecl - Adds the initializer Init to the
5846/// declaration dcl. If DirectInit is true, this is C++ direct
5847/// initialization rather than copy initialization.
5848void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5849                                bool DirectInit, bool TypeMayContainAuto) {
5850  // If there is no declaration, there was an error parsing it.  Just ignore
5851  // the initializer.
5852  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5853    return;
5854
5855  // Check for self-references within variable initializers.
5856  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5857    // Variables declared within a function/method body are handled
5858    // by a dataflow analysis.
5859    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5860      CheckSelfReference(RealDecl, Init);
5861  }
5862  else {
5863    CheckSelfReference(RealDecl, Init);
5864  }
5865
5866  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5867    // With declarators parsed the way they are, the parser cannot
5868    // distinguish between a normal initializer and a pure-specifier.
5869    // Thus this grotesque test.
5870    IntegerLiteral *IL;
5871    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5872        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5873      CheckPureMethod(Method, Init->getSourceRange());
5874    else {
5875      Diag(Method->getLocation(), diag::err_member_function_initialization)
5876        << Method->getDeclName() << Init->getSourceRange();
5877      Method->setInvalidDecl();
5878    }
5879    return;
5880  }
5881
5882  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5883  if (!VDecl) {
5884    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5885    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5886    RealDecl->setInvalidDecl();
5887    return;
5888  }
5889
5890  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5891  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5892    TypeSourceInfo *DeducedType = 0;
5893    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5894      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5895        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5896        << Init->getSourceRange();
5897    if (!DeducedType) {
5898      RealDecl->setInvalidDecl();
5899      return;
5900    }
5901    VDecl->setTypeSourceInfo(DeducedType);
5902    VDecl->setType(DeducedType->getType());
5903
5904    // In ARC, infer lifetime.
5905    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5906      VDecl->setInvalidDecl();
5907
5908    // If this is a redeclaration, check that the type we just deduced matches
5909    // the previously declared type.
5910    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5911      MergeVarDeclTypes(VDecl, Old);
5912  }
5913
5914
5915  // A definition must end up with a complete type, which means it must be
5916  // complete with the restriction that an array type might be completed by the
5917  // initializer; note that later code assumes this restriction.
5918  QualType BaseDeclType = VDecl->getType();
5919  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5920    BaseDeclType = Array->getElementType();
5921  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5922                          diag::err_typecheck_decl_incomplete_type)) {
5923    RealDecl->setInvalidDecl();
5924    return;
5925  }
5926
5927  // The variable can not have an abstract class type.
5928  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5929                             diag::err_abstract_type_in_decl,
5930                             AbstractVariableType))
5931    VDecl->setInvalidDecl();
5932
5933  const VarDecl *Def;
5934  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5935    Diag(VDecl->getLocation(), diag::err_redefinition)
5936      << VDecl->getDeclName();
5937    Diag(Def->getLocation(), diag::note_previous_definition);
5938    VDecl->setInvalidDecl();
5939    return;
5940  }
5941
5942  const VarDecl* PrevInit = 0;
5943  if (getLangOptions().CPlusPlus) {
5944    // C++ [class.static.data]p4
5945    //   If a static data member is of const integral or const
5946    //   enumeration type, its declaration in the class definition can
5947    //   specify a constant-initializer which shall be an integral
5948    //   constant expression (5.19). In that case, the member can appear
5949    //   in integral constant expressions. The member shall still be
5950    //   defined in a namespace scope if it is used in the program and the
5951    //   namespace scope definition shall not contain an initializer.
5952    //
5953    // We already performed a redefinition check above, but for static
5954    // data members we also need to check whether there was an in-class
5955    // declaration with an initializer.
5956    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5957      Diag(VDecl->getLocation(), diag::err_redefinition)
5958        << VDecl->getDeclName();
5959      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5960      return;
5961    }
5962
5963    if (VDecl->hasLocalStorage())
5964      getCurFunction()->setHasBranchProtectedScope();
5965
5966    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5967      VDecl->setInvalidDecl();
5968      return;
5969    }
5970  }
5971
5972  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5973  // a kernel function cannot be initialized."
5974  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5975    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5976    VDecl->setInvalidDecl();
5977    return;
5978  }
5979
5980  // Capture the variable that is being initialized and the style of
5981  // initialization.
5982  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5983
5984  // FIXME: Poor source location information.
5985  InitializationKind Kind
5986    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5987                                                   Init->getLocStart(),
5988                                                   Init->getLocEnd())
5989                : InitializationKind::CreateCopy(VDecl->getLocation(),
5990                                                 Init->getLocStart());
5991
5992  // Get the decls type and save a reference for later, since
5993  // CheckInitializerTypes may change it.
5994  QualType DclT = VDecl->getType(), SavT = DclT;
5995  if (VDecl->isLocalVarDecl()) {
5996    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5997      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5998      VDecl->setInvalidDecl();
5999    } else if (!VDecl->isInvalidDecl()) {
6000      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6001      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6002                                                MultiExprArg(*this, &Init, 1),
6003                                                &DclT);
6004      if (Result.isInvalid()) {
6005        VDecl->setInvalidDecl();
6006        return;
6007      }
6008
6009      Init = Result.takeAs<Expr>();
6010
6011      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6012      // Don't check invalid declarations to avoid emitting useless diagnostics.
6013      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6014        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
6015          CheckForConstantInitializer(Init, DclT);
6016      }
6017    }
6018  } else if (VDecl->isStaticDataMember() &&
6019             VDecl->getLexicalDeclContext()->isRecord()) {
6020    // This is an in-class initialization for a static data member, e.g.,
6021    //
6022    // struct S {
6023    //   static const int value = 17;
6024    // };
6025
6026    // Try to perform the initialization regardless.
6027    if (!VDecl->isInvalidDecl()) {
6028      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6029      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6030                                          MultiExprArg(*this, &Init, 1),
6031                                          &DclT);
6032      if (Result.isInvalid()) {
6033        VDecl->setInvalidDecl();
6034        return;
6035      }
6036
6037      Init = Result.takeAs<Expr>();
6038    }
6039
6040    // C++ [class.mem]p4:
6041    //   A member-declarator can contain a constant-initializer only
6042    //   if it declares a static member (9.4) of const integral or
6043    //   const enumeration type, see 9.4.2.
6044    //
6045    // C++0x [class.static.data]p3:
6046    //   If a non-volatile const static data member is of integral or
6047    //   enumeration type, its declaration in the class definition can
6048    //   specify a brace-or-equal-initializer in which every initalizer-clause
6049    //   that is an assignment-expression is a constant expression. A static
6050    //   data member of literal type can be declared in the class definition
6051    //   with the constexpr specifier; if so, its declaration shall specify a
6052    //   brace-or-equal-initializer in which every initializer-clause that is
6053    //   an assignment-expression is a constant expression.
6054    QualType T = VDecl->getType();
6055
6056    // Do nothing on dependent types.
6057    if (T->isDependentType()) {
6058
6059    // Allow any 'static constexpr' members, whether or not they are of literal
6060    // type. We separately check that the initializer is a constant expression,
6061    // which implicitly requires the member to be of literal type.
6062    } else if (VDecl->isConstexpr()) {
6063
6064    // Require constness.
6065    } else if (!T.isConstQualified()) {
6066      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6067        << Init->getSourceRange();
6068      VDecl->setInvalidDecl();
6069
6070    // We allow integer constant expressions in all cases.
6071    } else if (T->isIntegralOrEnumerationType()) {
6072      // Check whether the expression is a constant expression.
6073      SourceLocation Loc;
6074      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
6075        // In C++0x, a non-constexpr const static data member with an
6076        // in-class initializer cannot be volatile.
6077        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6078      else if (Init->isValueDependent())
6079        ; // Nothing to check.
6080      else if (Init->isIntegerConstantExpr(Context, &Loc))
6081        ; // Ok, it's an ICE!
6082      else if (Init->isEvaluatable(Context)) {
6083        // If we can constant fold the initializer through heroics, accept it,
6084        // but report this as a use of an extension for -pedantic.
6085        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6086          << Init->getSourceRange();
6087      } else {
6088        // Otherwise, this is some crazy unknown case.  Report the issue at the
6089        // location provided by the isIntegerConstantExpr failed check.
6090        Diag(Loc, diag::err_in_class_initializer_non_constant)
6091          << Init->getSourceRange();
6092        VDecl->setInvalidDecl();
6093      }
6094
6095    // We allow floating-point constants as an extension.
6096    } else if (T->isFloatingType()) { // also permits complex, which is ok
6097      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6098        << T << Init->getSourceRange();
6099      if (getLangOptions().CPlusPlus0x)
6100        Diag(VDecl->getLocation(),
6101             diag::note_in_class_initializer_float_type_constexpr)
6102          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6103
6104      if (!Init->isValueDependent() &&
6105          !Init->isConstantInitializer(Context, false)) {
6106        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6107          << Init->getSourceRange();
6108        VDecl->setInvalidDecl();
6109      }
6110
6111    // Suggest adding 'constexpr' in C++0x for literal types.
6112    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6113      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6114        << T << Init->getSourceRange()
6115        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6116      VDecl->setConstexpr(true);
6117
6118    } else {
6119      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6120        << T << Init->getSourceRange();
6121      VDecl->setInvalidDecl();
6122    }
6123  } else if (VDecl->isFileVarDecl()) {
6124    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6125        (!getLangOptions().CPlusPlus ||
6126         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6127      Diag(VDecl->getLocation(), diag::warn_extern_init);
6128    if (!VDecl->isInvalidDecl()) {
6129      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6130      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6131                                                MultiExprArg(*this, &Init, 1),
6132                                                &DclT);
6133      if (Result.isInvalid()) {
6134        VDecl->setInvalidDecl();
6135        return;
6136      }
6137
6138      Init = Result.takeAs<Expr>();
6139    }
6140
6141    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6142    // Don't check invalid declarations to avoid emitting useless diagnostics.
6143    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6144      // C99 6.7.8p4. All file scoped initializers need to be constant.
6145      CheckForConstantInitializer(Init, DclT);
6146    }
6147  }
6148  // If the type changed, it means we had an incomplete type that was
6149  // completed by the initializer. For example:
6150  //   int ary[] = { 1, 3, 5 };
6151  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6152  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6153    VDecl->setType(DclT);
6154    Init->setType(DclT);
6155  }
6156
6157  // Check any implicit conversions within the expression.
6158  CheckImplicitConversions(Init, VDecl->getLocation());
6159
6160  if (!VDecl->isInvalidDecl())
6161    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6162
6163  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
6164      !VDecl->getType()->isDependentType() &&
6165      !Init->isTypeDependent() && !Init->isValueDependent() &&
6166      !Init->isConstantInitializer(Context,
6167                                   VDecl->getType()->isReferenceType())) {
6168    // FIXME: Improve this diagnostic to explain why the initializer is not
6169    // a constant expression.
6170    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
6171      << VDecl << Init->getSourceRange();
6172  }
6173
6174  Init = MaybeCreateExprWithCleanups(Init);
6175  // Attach the initializer to the decl.
6176  VDecl->setInit(Init);
6177
6178  CheckCompleteVariableDeclaration(VDecl);
6179}
6180
6181/// ActOnInitializerError - Given that there was an error parsing an
6182/// initializer for the given declaration, try to return to some form
6183/// of sanity.
6184void Sema::ActOnInitializerError(Decl *D) {
6185  // Our main concern here is re-establishing invariants like "a
6186  // variable's type is either dependent or complete".
6187  if (!D || D->isInvalidDecl()) return;
6188
6189  VarDecl *VD = dyn_cast<VarDecl>(D);
6190  if (!VD) return;
6191
6192  // Auto types are meaningless if we can't make sense of the initializer.
6193  if (ParsingInitForAutoVars.count(D)) {
6194    D->setInvalidDecl();
6195    return;
6196  }
6197
6198  QualType Ty = VD->getType();
6199  if (Ty->isDependentType()) return;
6200
6201  // Require a complete type.
6202  if (RequireCompleteType(VD->getLocation(),
6203                          Context.getBaseElementType(Ty),
6204                          diag::err_typecheck_decl_incomplete_type)) {
6205    VD->setInvalidDecl();
6206    return;
6207  }
6208
6209  // Require an abstract type.
6210  if (RequireNonAbstractType(VD->getLocation(), Ty,
6211                             diag::err_abstract_type_in_decl,
6212                             AbstractVariableType)) {
6213    VD->setInvalidDecl();
6214    return;
6215  }
6216
6217  // Don't bother complaining about constructors or destructors,
6218  // though.
6219}
6220
6221void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6222                                  bool TypeMayContainAuto) {
6223  // If there is no declaration, there was an error parsing it. Just ignore it.
6224  if (RealDecl == 0)
6225    return;
6226
6227  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6228    QualType Type = Var->getType();
6229
6230    // C++0x [dcl.spec.auto]p3
6231    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6232      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6233        << Var->getDeclName() << Type;
6234      Var->setInvalidDecl();
6235      return;
6236    }
6237
6238    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6239    // have an initializer.
6240    // C++0x [class.static.data]p3: A static data member can be declared with
6241    // the constexpr specifier; if so, its declaration shall specify
6242    // a brace-or-equal-initializer.
6243    //
6244    // A static data member's definition may inherit an initializer from an
6245    // in-class declaration.
6246    if (Var->isConstexpr() && !Var->getAnyInitializer()) {
6247      Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6248        << Var->getDeclName();
6249      Var->setInvalidDecl();
6250      return;
6251    }
6252
6253    switch (Var->isThisDeclarationADefinition()) {
6254    case VarDecl::Definition:
6255      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6256        break;
6257
6258      // We have an out-of-line definition of a static data member
6259      // that has an in-class initializer, so we type-check this like
6260      // a declaration.
6261      //
6262      // Fall through
6263
6264    case VarDecl::DeclarationOnly:
6265      // It's only a declaration.
6266
6267      // Block scope. C99 6.7p7: If an identifier for an object is
6268      // declared with no linkage (C99 6.2.2p6), the type for the
6269      // object shall be complete.
6270      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6271          !Var->getLinkage() && !Var->isInvalidDecl() &&
6272          RequireCompleteType(Var->getLocation(), Type,
6273                              diag::err_typecheck_decl_incomplete_type))
6274        Var->setInvalidDecl();
6275
6276      // Make sure that the type is not abstract.
6277      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6278          RequireNonAbstractType(Var->getLocation(), Type,
6279                                 diag::err_abstract_type_in_decl,
6280                                 AbstractVariableType))
6281        Var->setInvalidDecl();
6282      return;
6283
6284    case VarDecl::TentativeDefinition:
6285      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6286      // object that has file scope without an initializer, and without a
6287      // storage-class specifier or with the storage-class specifier "static",
6288      // constitutes a tentative definition. Note: A tentative definition with
6289      // external linkage is valid (C99 6.2.2p5).
6290      if (!Var->isInvalidDecl()) {
6291        if (const IncompleteArrayType *ArrayT
6292                                    = Context.getAsIncompleteArrayType(Type)) {
6293          if (RequireCompleteType(Var->getLocation(),
6294                                  ArrayT->getElementType(),
6295                                  diag::err_illegal_decl_array_incomplete_type))
6296            Var->setInvalidDecl();
6297        } else if (Var->getStorageClass() == SC_Static) {
6298          // C99 6.9.2p3: If the declaration of an identifier for an object is
6299          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6300          // declared type shall not be an incomplete type.
6301          // NOTE: code such as the following
6302          //     static struct s;
6303          //     struct s { int a; };
6304          // is accepted by gcc. Hence here we issue a warning instead of
6305          // an error and we do not invalidate the static declaration.
6306          // NOTE: to avoid multiple warnings, only check the first declaration.
6307          if (Var->getPreviousDeclaration() == 0)
6308            RequireCompleteType(Var->getLocation(), Type,
6309                                diag::ext_typecheck_decl_incomplete_type);
6310        }
6311      }
6312
6313      // Record the tentative definition; we're done.
6314      if (!Var->isInvalidDecl())
6315        TentativeDefinitions.push_back(Var);
6316      return;
6317    }
6318
6319    // Provide a specific diagnostic for uninitialized variable
6320    // definitions with incomplete array type.
6321    if (Type->isIncompleteArrayType()) {
6322      Diag(Var->getLocation(),
6323           diag::err_typecheck_incomplete_array_needs_initializer);
6324      Var->setInvalidDecl();
6325      return;
6326    }
6327
6328    // Provide a specific diagnostic for uninitialized variable
6329    // definitions with reference type.
6330    if (Type->isReferenceType()) {
6331      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6332        << Var->getDeclName()
6333        << SourceRange(Var->getLocation(), Var->getLocation());
6334      Var->setInvalidDecl();
6335      return;
6336    }
6337
6338    // Do not attempt to type-check the default initializer for a
6339    // variable with dependent type.
6340    if (Type->isDependentType())
6341      return;
6342
6343    if (Var->isInvalidDecl())
6344      return;
6345
6346    if (RequireCompleteType(Var->getLocation(),
6347                            Context.getBaseElementType(Type),
6348                            diag::err_typecheck_decl_incomplete_type)) {
6349      Var->setInvalidDecl();
6350      return;
6351    }
6352
6353    // The variable can not have an abstract class type.
6354    if (RequireNonAbstractType(Var->getLocation(), Type,
6355                               diag::err_abstract_type_in_decl,
6356                               AbstractVariableType)) {
6357      Var->setInvalidDecl();
6358      return;
6359    }
6360
6361    // Check for jumps past the implicit initializer.  C++0x
6362    // clarifies that this applies to a "variable with automatic
6363    // storage duration", not a "local variable".
6364    // C++0x [stmt.dcl]p3
6365    //   A program that jumps from a point where a variable with automatic
6366    //   storage duration is not in scope to a point where it is in scope is
6367    //   ill-formed unless the variable has scalar type, class type with a
6368    //   trivial default constructor and a trivial destructor, a cv-qualified
6369    //   version of one of these types, or an array of one of the preceding
6370    //   types and is declared without an initializer.
6371    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6372      if (const RecordType *Record
6373            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6374        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6375        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6376            (getLangOptions().CPlusPlus0x &&
6377             (!CXXRecord->hasTrivialDefaultConstructor() ||
6378              !CXXRecord->hasTrivialDestructor())))
6379          getCurFunction()->setHasBranchProtectedScope();
6380      }
6381    }
6382
6383    // C++03 [dcl.init]p9:
6384    //   If no initializer is specified for an object, and the
6385    //   object is of (possibly cv-qualified) non-POD class type (or
6386    //   array thereof), the object shall be default-initialized; if
6387    //   the object is of const-qualified type, the underlying class
6388    //   type shall have a user-declared default
6389    //   constructor. Otherwise, if no initializer is specified for
6390    //   a non- static object, the object and its subobjects, if
6391    //   any, have an indeterminate initial value); if the object
6392    //   or any of its subobjects are of const-qualified type, the
6393    //   program is ill-formed.
6394    // C++0x [dcl.init]p11:
6395    //   If no initializer is specified for an object, the object is
6396    //   default-initialized; [...].
6397    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6398    InitializationKind Kind
6399      = InitializationKind::CreateDefault(Var->getLocation());
6400
6401    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6402    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6403                                      MultiExprArg(*this, 0, 0));
6404    if (Init.isInvalid())
6405      Var->setInvalidDecl();
6406    else if (Init.get())
6407      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6408
6409    CheckCompleteVariableDeclaration(Var);
6410  }
6411}
6412
6413void Sema::ActOnCXXForRangeDecl(Decl *D) {
6414  VarDecl *VD = dyn_cast<VarDecl>(D);
6415  if (!VD) {
6416    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6417    D->setInvalidDecl();
6418    return;
6419  }
6420
6421  VD->setCXXForRangeDecl(true);
6422
6423  // for-range-declaration cannot be given a storage class specifier.
6424  int Error = -1;
6425  switch (VD->getStorageClassAsWritten()) {
6426  case SC_None:
6427    break;
6428  case SC_Extern:
6429    Error = 0;
6430    break;
6431  case SC_Static:
6432    Error = 1;
6433    break;
6434  case SC_PrivateExtern:
6435    Error = 2;
6436    break;
6437  case SC_Auto:
6438    Error = 3;
6439    break;
6440  case SC_Register:
6441    Error = 4;
6442    break;
6443  case SC_OpenCLWorkGroupLocal:
6444    llvm_unreachable("Unexpected storage class");
6445  }
6446  if (VD->isConstexpr())
6447    Error = 5;
6448  if (Error != -1) {
6449    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6450      << VD->getDeclName() << Error;
6451    D->setInvalidDecl();
6452  }
6453}
6454
6455void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6456  if (var->isInvalidDecl()) return;
6457
6458  // In ARC, don't allow jumps past the implicit initialization of a
6459  // local retaining variable.
6460  if (getLangOptions().ObjCAutoRefCount &&
6461      var->hasLocalStorage()) {
6462    switch (var->getType().getObjCLifetime()) {
6463    case Qualifiers::OCL_None:
6464    case Qualifiers::OCL_ExplicitNone:
6465    case Qualifiers::OCL_Autoreleasing:
6466      break;
6467
6468    case Qualifiers::OCL_Weak:
6469    case Qualifiers::OCL_Strong:
6470      getCurFunction()->setHasBranchProtectedScope();
6471      break;
6472    }
6473  }
6474
6475  // All the following checks are C++ only.
6476  if (!getLangOptions().CPlusPlus) return;
6477
6478  QualType baseType = Context.getBaseElementType(var->getType());
6479  if (baseType->isDependentType()) return;
6480
6481  // __block variables might require us to capture a copy-initializer.
6482  if (var->hasAttr<BlocksAttr>()) {
6483    // It's currently invalid to ever have a __block variable with an
6484    // array type; should we diagnose that here?
6485
6486    // Regardless, we don't want to ignore array nesting when
6487    // constructing this copy.
6488    QualType type = var->getType();
6489
6490    if (type->isStructureOrClassType()) {
6491      SourceLocation poi = var->getLocation();
6492      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6493      ExprResult result =
6494        PerformCopyInitialization(
6495                        InitializedEntity::InitializeBlock(poi, type, false),
6496                                  poi, Owned(varRef));
6497      if (!result.isInvalid()) {
6498        result = MaybeCreateExprWithCleanups(result);
6499        Expr *init = result.takeAs<Expr>();
6500        Context.setBlockVarCopyInits(var, init);
6501      }
6502    }
6503  }
6504
6505  // Check for global constructors.
6506  if (!var->getDeclContext()->isDependentContext() &&
6507      var->hasGlobalStorage() &&
6508      !var->isStaticLocal() &&
6509      var->getInit() &&
6510      !var->getInit()->isConstantInitializer(Context,
6511                                             baseType->isReferenceType()))
6512    Diag(var->getLocation(), diag::warn_global_constructor)
6513      << var->getInit()->getSourceRange();
6514
6515  // Require the destructor.
6516  if (const RecordType *recordType = baseType->getAs<RecordType>())
6517    FinalizeVarWithDestructor(var, recordType);
6518}
6519
6520/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6521/// any semantic actions necessary after any initializer has been attached.
6522void
6523Sema::FinalizeDeclaration(Decl *ThisDecl) {
6524  // Note that we are no longer parsing the initializer for this declaration.
6525  ParsingInitForAutoVars.erase(ThisDecl);
6526}
6527
6528Sema::DeclGroupPtrTy
6529Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6530                              Decl **Group, unsigned NumDecls) {
6531  SmallVector<Decl*, 8> Decls;
6532
6533  if (DS.isTypeSpecOwned())
6534    Decls.push_back(DS.getRepAsDecl());
6535
6536  for (unsigned i = 0; i != NumDecls; ++i)
6537    if (Decl *D = Group[i])
6538      Decls.push_back(D);
6539
6540  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6541                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6542}
6543
6544/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6545/// group, performing any necessary semantic checking.
6546Sema::DeclGroupPtrTy
6547Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6548                           bool TypeMayContainAuto) {
6549  // C++0x [dcl.spec.auto]p7:
6550  //   If the type deduced for the template parameter U is not the same in each
6551  //   deduction, the program is ill-formed.
6552  // FIXME: When initializer-list support is added, a distinction is needed
6553  // between the deduced type U and the deduced type which 'auto' stands for.
6554  //   auto a = 0, b = { 1, 2, 3 };
6555  // is legal because the deduced type U is 'int' in both cases.
6556  if (TypeMayContainAuto && NumDecls > 1) {
6557    QualType Deduced;
6558    CanQualType DeducedCanon;
6559    VarDecl *DeducedDecl = 0;
6560    for (unsigned i = 0; i != NumDecls; ++i) {
6561      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6562        AutoType *AT = D->getType()->getContainedAutoType();
6563        // Don't reissue diagnostics when instantiating a template.
6564        if (AT && D->isInvalidDecl())
6565          break;
6566        if (AT && AT->isDeduced()) {
6567          QualType U = AT->getDeducedType();
6568          CanQualType UCanon = Context.getCanonicalType(U);
6569          if (Deduced.isNull()) {
6570            Deduced = U;
6571            DeducedCanon = UCanon;
6572            DeducedDecl = D;
6573          } else if (DeducedCanon != UCanon) {
6574            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6575                 diag::err_auto_different_deductions)
6576              << Deduced << DeducedDecl->getDeclName()
6577              << U << D->getDeclName()
6578              << DeducedDecl->getInit()->getSourceRange()
6579              << D->getInit()->getSourceRange();
6580            D->setInvalidDecl();
6581            break;
6582          }
6583        }
6584      }
6585    }
6586  }
6587
6588  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6589}
6590
6591
6592/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6593/// to introduce parameters into function prototype scope.
6594Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6595  const DeclSpec &DS = D.getDeclSpec();
6596
6597  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6598  VarDecl::StorageClass StorageClass = SC_None;
6599  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6600  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6601    StorageClass = SC_Register;
6602    StorageClassAsWritten = SC_Register;
6603  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6604    Diag(DS.getStorageClassSpecLoc(),
6605         diag::err_invalid_storage_class_in_func_decl);
6606    D.getMutableDeclSpec().ClearStorageClassSpecs();
6607  }
6608
6609  if (D.getDeclSpec().isThreadSpecified())
6610    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6611  if (D.getDeclSpec().isConstexprSpecified())
6612    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6613      << 0;
6614
6615  DiagnoseFunctionSpecifiers(D);
6616
6617  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6618  QualType parmDeclType = TInfo->getType();
6619
6620  if (getLangOptions().CPlusPlus) {
6621    // Check that there are no default arguments inside the type of this
6622    // parameter.
6623    CheckExtraCXXDefaultArguments(D);
6624
6625    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6626    if (D.getCXXScopeSpec().isSet()) {
6627      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6628        << D.getCXXScopeSpec().getRange();
6629      D.getCXXScopeSpec().clear();
6630    }
6631  }
6632
6633  // Ensure we have a valid name
6634  IdentifierInfo *II = 0;
6635  if (D.hasName()) {
6636    II = D.getIdentifier();
6637    if (!II) {
6638      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6639        << GetNameForDeclarator(D).getName().getAsString();
6640      D.setInvalidType(true);
6641    }
6642  }
6643
6644  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6645  if (II) {
6646    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6647                   ForRedeclaration);
6648    LookupName(R, S);
6649    if (R.isSingleResult()) {
6650      NamedDecl *PrevDecl = R.getFoundDecl();
6651      if (PrevDecl->isTemplateParameter()) {
6652        // Maybe we will complain about the shadowed template parameter.
6653        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6654        // Just pretend that we didn't see the previous declaration.
6655        PrevDecl = 0;
6656      } else if (S->isDeclScope(PrevDecl)) {
6657        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6658        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6659
6660        // Recover by removing the name
6661        II = 0;
6662        D.SetIdentifier(0, D.getIdentifierLoc());
6663        D.setInvalidType(true);
6664      }
6665    }
6666  }
6667
6668  // Temporarily put parameter variables in the translation unit, not
6669  // the enclosing context.  This prevents them from accidentally
6670  // looking like class members in C++.
6671  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6672                                    D.getSourceRange().getBegin(),
6673                                    D.getIdentifierLoc(), II,
6674                                    parmDeclType, TInfo,
6675                                    StorageClass, StorageClassAsWritten);
6676
6677  if (D.isInvalidType())
6678    New->setInvalidDecl();
6679
6680  assert(S->isFunctionPrototypeScope());
6681  assert(S->getFunctionPrototypeDepth() >= 1);
6682  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6683                    S->getNextFunctionPrototypeIndex());
6684
6685  // Add the parameter declaration into this scope.
6686  S->AddDecl(New);
6687  if (II)
6688    IdResolver.AddDecl(New);
6689
6690  ProcessDeclAttributes(S, New, D);
6691
6692  if (D.getDeclSpec().isModulePrivateSpecified())
6693    Diag(New->getLocation(), diag::err_module_private_local)
6694      << 1 << New->getDeclName()
6695      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6696      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6697
6698  if (New->hasAttr<BlocksAttr>()) {
6699    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6700  }
6701  return New;
6702}
6703
6704/// \brief Synthesizes a variable for a parameter arising from a
6705/// typedef.
6706ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6707                                              SourceLocation Loc,
6708                                              QualType T) {
6709  /* FIXME: setting StartLoc == Loc.
6710     Would it be worth to modify callers so as to provide proper source
6711     location for the unnamed parameters, embedding the parameter's type? */
6712  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6713                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6714                                           SC_None, SC_None, 0);
6715  Param->setImplicit();
6716  return Param;
6717}
6718
6719void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6720                                    ParmVarDecl * const *ParamEnd) {
6721  // Don't diagnose unused-parameter errors in template instantiations; we
6722  // will already have done so in the template itself.
6723  if (!ActiveTemplateInstantiations.empty())
6724    return;
6725
6726  for (; Param != ParamEnd; ++Param) {
6727    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6728        !(*Param)->hasAttr<UnusedAttr>()) {
6729      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6730        << (*Param)->getDeclName();
6731    }
6732  }
6733}
6734
6735void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6736                                                  ParmVarDecl * const *ParamEnd,
6737                                                  QualType ReturnTy,
6738                                                  NamedDecl *D) {
6739  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6740    return;
6741
6742  // Warn if the return value is pass-by-value and larger than the specified
6743  // threshold.
6744  if (ReturnTy.isPODType(Context)) {
6745    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6746    if (Size > LangOpts.NumLargeByValueCopy)
6747      Diag(D->getLocation(), diag::warn_return_value_size)
6748          << D->getDeclName() << Size;
6749  }
6750
6751  // Warn if any parameter is pass-by-value and larger than the specified
6752  // threshold.
6753  for (; Param != ParamEnd; ++Param) {
6754    QualType T = (*Param)->getType();
6755    if (!T.isPODType(Context))
6756      continue;
6757    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6758    if (Size > LangOpts.NumLargeByValueCopy)
6759      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6760          << (*Param)->getDeclName() << Size;
6761  }
6762}
6763
6764ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6765                                  SourceLocation NameLoc, IdentifierInfo *Name,
6766                                  QualType T, TypeSourceInfo *TSInfo,
6767                                  VarDecl::StorageClass StorageClass,
6768                                  VarDecl::StorageClass StorageClassAsWritten) {
6769  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6770  if (getLangOptions().ObjCAutoRefCount &&
6771      T.getObjCLifetime() == Qualifiers::OCL_None &&
6772      T->isObjCLifetimeType()) {
6773
6774    Qualifiers::ObjCLifetime lifetime;
6775
6776    // Special cases for arrays:
6777    //   - if it's const, use __unsafe_unretained
6778    //   - otherwise, it's an error
6779    if (T->isArrayType()) {
6780      if (!T.isConstQualified()) {
6781        DelayedDiagnostics.add(
6782            sema::DelayedDiagnostic::makeForbiddenType(
6783            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6784      }
6785      lifetime = Qualifiers::OCL_ExplicitNone;
6786    } else {
6787      lifetime = T->getObjCARCImplicitLifetime();
6788    }
6789    T = Context.getLifetimeQualifiedType(T, lifetime);
6790  }
6791
6792  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6793                                         Context.getAdjustedParameterType(T),
6794                                         TSInfo,
6795                                         StorageClass, StorageClassAsWritten,
6796                                         0);
6797
6798  // Parameters can not be abstract class types.
6799  // For record types, this is done by the AbstractClassUsageDiagnoser once
6800  // the class has been completely parsed.
6801  if (!CurContext->isRecord() &&
6802      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6803                             AbstractParamType))
6804    New->setInvalidDecl();
6805
6806  // Parameter declarators cannot be interface types. All ObjC objects are
6807  // passed by reference.
6808  if (T->isObjCObjectType()) {
6809    Diag(NameLoc,
6810         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6811      << FixItHint::CreateInsertion(NameLoc, "*");
6812    T = Context.getObjCObjectPointerType(T);
6813    New->setType(T);
6814  }
6815
6816  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6817  // duration shall not be qualified by an address-space qualifier."
6818  // Since all parameters have automatic store duration, they can not have
6819  // an address space.
6820  if (T.getAddressSpace() != 0) {
6821    Diag(NameLoc, diag::err_arg_with_address_space);
6822    New->setInvalidDecl();
6823  }
6824
6825  return New;
6826}
6827
6828void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6829                                           SourceLocation LocAfterDecls) {
6830  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6831
6832  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6833  // for a K&R function.
6834  if (!FTI.hasPrototype) {
6835    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6836      --i;
6837      if (FTI.ArgInfo[i].Param == 0) {
6838        llvm::SmallString<256> Code;
6839        llvm::raw_svector_ostream(Code) << "  int "
6840                                        << FTI.ArgInfo[i].Ident->getName()
6841                                        << ";\n";
6842        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6843          << FTI.ArgInfo[i].Ident
6844          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6845
6846        // Implicitly declare the argument as type 'int' for lack of a better
6847        // type.
6848        AttributeFactory attrs;
6849        DeclSpec DS(attrs);
6850        const char* PrevSpec; // unused
6851        unsigned DiagID; // unused
6852        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6853                           PrevSpec, DiagID);
6854        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6855        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6856        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6857      }
6858    }
6859  }
6860}
6861
6862Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6863                                         Declarator &D) {
6864  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6865  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6866  Scope *ParentScope = FnBodyScope->getParent();
6867
6868  D.setFunctionDefinition(true);
6869  Decl *DP = HandleDeclarator(ParentScope, D,
6870                              MultiTemplateParamsArg(*this));
6871  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6872}
6873
6874static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6875  // Don't warn about invalid declarations.
6876  if (FD->isInvalidDecl())
6877    return false;
6878
6879  // Or declarations that aren't global.
6880  if (!FD->isGlobal())
6881    return false;
6882
6883  // Don't warn about C++ member functions.
6884  if (isa<CXXMethodDecl>(FD))
6885    return false;
6886
6887  // Don't warn about 'main'.
6888  if (FD->isMain())
6889    return false;
6890
6891  // Don't warn about inline functions.
6892  if (FD->isInlined())
6893    return false;
6894
6895  // Don't warn about function templates.
6896  if (FD->getDescribedFunctionTemplate())
6897    return false;
6898
6899  // Don't warn about function template specializations.
6900  if (FD->isFunctionTemplateSpecialization())
6901    return false;
6902
6903  bool MissingPrototype = true;
6904  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6905       Prev; Prev = Prev->getPreviousDeclaration()) {
6906    // Ignore any declarations that occur in function or method
6907    // scope, because they aren't visible from the header.
6908    if (Prev->getDeclContext()->isFunctionOrMethod())
6909      continue;
6910
6911    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6912    break;
6913  }
6914
6915  return MissingPrototype;
6916}
6917
6918void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6919  // Don't complain if we're in GNU89 mode and the previous definition
6920  // was an extern inline function.
6921  const FunctionDecl *Definition;
6922  if (FD->isDefined(Definition) &&
6923      !canRedefineFunction(Definition, getLangOptions())) {
6924    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6925        Definition->getStorageClass() == SC_Extern)
6926      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6927        << FD->getDeclName() << getLangOptions().CPlusPlus;
6928    else
6929      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6930    Diag(Definition->getLocation(), diag::note_previous_definition);
6931  }
6932}
6933
6934Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6935  // Clear the last template instantiation error context.
6936  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6937
6938  if (!D)
6939    return D;
6940  FunctionDecl *FD = 0;
6941
6942  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6943    FD = FunTmpl->getTemplatedDecl();
6944  else
6945    FD = cast<FunctionDecl>(D);
6946
6947  // Enter a new function scope
6948  PushFunctionScope();
6949
6950  // See if this is a redefinition.
6951  if (!FD->isLateTemplateParsed())
6952    CheckForFunctionRedefinition(FD);
6953
6954  // Builtin functions cannot be defined.
6955  if (unsigned BuiltinID = FD->getBuiltinID()) {
6956    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6957      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6958      FD->setInvalidDecl();
6959    }
6960  }
6961
6962  // The return type of a function definition must be complete
6963  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6964  QualType ResultType = FD->getResultType();
6965  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6966      !FD->isInvalidDecl() &&
6967      RequireCompleteType(FD->getLocation(), ResultType,
6968                          diag::err_func_def_incomplete_result))
6969    FD->setInvalidDecl();
6970
6971  // GNU warning -Wmissing-prototypes:
6972  //   Warn if a global function is defined without a previous
6973  //   prototype declaration. This warning is issued even if the
6974  //   definition itself provides a prototype. The aim is to detect
6975  //   global functions that fail to be declared in header files.
6976  if (ShouldWarnAboutMissingPrototype(FD))
6977    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6978
6979  if (FnBodyScope)
6980    PushDeclContext(FnBodyScope, FD);
6981
6982  // Check the validity of our function parameters
6983  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6984                           /*CheckParameterNames=*/true);
6985
6986  // Introduce our parameters into the function scope
6987  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6988    ParmVarDecl *Param = FD->getParamDecl(p);
6989    Param->setOwningFunction(FD);
6990
6991    // If this has an identifier, add it to the scope stack.
6992    if (Param->getIdentifier() && FnBodyScope) {
6993      CheckShadow(FnBodyScope, Param);
6994
6995      PushOnScopeChains(Param, FnBodyScope);
6996    }
6997  }
6998
6999  // Checking attributes of current function definition
7000  // dllimport attribute.
7001  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7002  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7003    // dllimport attribute cannot be directly applied to definition.
7004    // Microsoft accepts dllimport for functions defined within class scope.
7005    if (!DA->isInherited() &&
7006        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7007      Diag(FD->getLocation(),
7008           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7009        << "dllimport";
7010      FD->setInvalidDecl();
7011      return FD;
7012    }
7013
7014    // Visual C++ appears to not think this is an issue, so only issue
7015    // a warning when Microsoft extensions are disabled.
7016    if (!LangOpts.MicrosoftExt) {
7017      // If a symbol previously declared dllimport is later defined, the
7018      // attribute is ignored in subsequent references, and a warning is
7019      // emitted.
7020      Diag(FD->getLocation(),
7021           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7022        << FD->getName() << "dllimport";
7023    }
7024  }
7025  return FD;
7026}
7027
7028/// \brief Given the set of return statements within a function body,
7029/// compute the variables that are subject to the named return value
7030/// optimization.
7031///
7032/// Each of the variables that is subject to the named return value
7033/// optimization will be marked as NRVO variables in the AST, and any
7034/// return statement that has a marked NRVO variable as its NRVO candidate can
7035/// use the named return value optimization.
7036///
7037/// This function applies a very simplistic algorithm for NRVO: if every return
7038/// statement in the function has the same NRVO candidate, that candidate is
7039/// the NRVO variable.
7040///
7041/// FIXME: Employ a smarter algorithm that accounts for multiple return
7042/// statements and the lifetimes of the NRVO candidates. We should be able to
7043/// find a maximal set of NRVO variables.
7044void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7045  ReturnStmt **Returns = Scope->Returns.data();
7046
7047  const VarDecl *NRVOCandidate = 0;
7048  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7049    if (!Returns[I]->getNRVOCandidate())
7050      return;
7051
7052    if (!NRVOCandidate)
7053      NRVOCandidate = Returns[I]->getNRVOCandidate();
7054    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7055      return;
7056  }
7057
7058  if (NRVOCandidate)
7059    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7060}
7061
7062Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7063  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7064}
7065
7066Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7067                                    bool IsInstantiation) {
7068  FunctionDecl *FD = 0;
7069  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7070  if (FunTmpl)
7071    FD = FunTmpl->getTemplatedDecl();
7072  else
7073    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7074
7075  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7076  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7077
7078  if (FD) {
7079    FD->setBody(Body);
7080    if (FD->isMain()) {
7081      // C and C++ allow for main to automagically return 0.
7082      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7083      FD->setHasImplicitReturnZero(true);
7084      WP.disableCheckFallThrough();
7085    } else if (FD->hasAttr<NakedAttr>()) {
7086      // If the function is marked 'naked', don't complain about missing return
7087      // statements.
7088      WP.disableCheckFallThrough();
7089    }
7090
7091    // MSVC permits the use of pure specifier (=0) on function definition,
7092    // defined at class scope, warn about this non standard construct.
7093    if (getLangOptions().MicrosoftExt && FD->isPure())
7094      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7095
7096    if (!FD->isInvalidDecl()) {
7097      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7098      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7099                                             FD->getResultType(), FD);
7100
7101      // If this is a constructor, we need a vtable.
7102      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7103        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7104
7105      computeNRVO(Body, getCurFunction());
7106    }
7107
7108    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7109  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7110    assert(MD == getCurMethodDecl() && "Method parsing confused");
7111    MD->setBody(Body);
7112    if (Body)
7113      MD->setEndLoc(Body->getLocEnd());
7114    if (!MD->isInvalidDecl()) {
7115      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7116      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7117                                             MD->getResultType(), MD);
7118
7119      if (Body)
7120        computeNRVO(Body, getCurFunction());
7121    }
7122    if (ObjCShouldCallSuperDealloc) {
7123      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7124      ObjCShouldCallSuperDealloc = false;
7125    }
7126    if (ObjCShouldCallSuperFinalize) {
7127      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7128      ObjCShouldCallSuperFinalize = false;
7129    }
7130  } else {
7131    return 0;
7132  }
7133
7134  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7135         "ObjC methods, which should have been handled in the block above.");
7136  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7137         "ObjC methods, which should have been handled in the block above.");
7138
7139  // Verify and clean out per-function state.
7140  if (Body) {
7141    // C++ constructors that have function-try-blocks can't have return
7142    // statements in the handlers of that block. (C++ [except.handle]p14)
7143    // Verify this.
7144    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7145      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7146
7147    // Verify that gotos and switch cases don't jump into scopes illegally.
7148    if (getCurFunction()->NeedsScopeChecking() &&
7149        !dcl->isInvalidDecl() &&
7150        !hasAnyUnrecoverableErrorsInThisFunction())
7151      DiagnoseInvalidJumps(Body);
7152
7153    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7154      if (!Destructor->getParent()->isDependentType())
7155        CheckDestructor(Destructor);
7156
7157      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7158                                             Destructor->getParent());
7159    }
7160
7161    // If any errors have occurred, clear out any temporaries that may have
7162    // been leftover. This ensures that these temporaries won't be picked up for
7163    // deletion in some later function.
7164    if (PP.getDiagnostics().hasErrorOccurred() ||
7165        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7166      ExprTemporaries.clear();
7167      ExprNeedsCleanups = false;
7168    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7169      // Since the body is valid, issue any analysis-based warnings that are
7170      // enabled.
7171      ActivePolicy = &WP;
7172    }
7173
7174    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7175        !CheckConstexprFunctionBody(FD, Body))
7176      FD->setInvalidDecl();
7177
7178    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
7179    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7180  }
7181
7182  if (!IsInstantiation)
7183    PopDeclContext();
7184
7185  PopFunctionOrBlockScope(ActivePolicy, dcl);
7186
7187  // If any errors have occurred, clear out any temporaries that may have
7188  // been leftover. This ensures that these temporaries won't be picked up for
7189  // deletion in some later function.
7190  if (getDiagnostics().hasErrorOccurred()) {
7191    ExprTemporaries.clear();
7192    ExprNeedsCleanups = false;
7193  }
7194
7195  return dcl;
7196}
7197
7198
7199/// When we finish delayed parsing of an attribute, we must attach it to the
7200/// relevant Decl.
7201void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7202                                       ParsedAttributes &Attrs) {
7203  ProcessDeclAttributeList(S, D, Attrs.getList());
7204}
7205
7206
7207/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7208/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7209NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7210                                          IdentifierInfo &II, Scope *S) {
7211  // Before we produce a declaration for an implicitly defined
7212  // function, see whether there was a locally-scoped declaration of
7213  // this name as a function or variable. If so, use that
7214  // (non-visible) declaration, and complain about it.
7215  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7216    = findLocallyScopedExternalDecl(&II);
7217  if (Pos != LocallyScopedExternalDecls.end()) {
7218    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7219    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7220    return Pos->second;
7221  }
7222
7223  // Extension in C99.  Legal in C90, but warn about it.
7224  if (II.getName().startswith("__builtin_"))
7225    Diag(Loc, diag::warn_builtin_unknown) << &II;
7226  else if (getLangOptions().C99)
7227    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7228  else
7229    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7230
7231  // Set a Declarator for the implicit definition: int foo();
7232  const char *Dummy;
7233  AttributeFactory attrFactory;
7234  DeclSpec DS(attrFactory);
7235  unsigned DiagID;
7236  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7237  (void)Error; // Silence warning.
7238  assert(!Error && "Error setting up implicit decl!");
7239  Declarator D(DS, Declarator::BlockContext);
7240  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7241                                             0, 0, true, SourceLocation(),
7242                                             SourceLocation(), SourceLocation(),
7243                                             SourceLocation(),
7244                                             EST_None, SourceLocation(),
7245                                             0, 0, 0, 0, Loc, Loc, D),
7246                DS.getAttributes(),
7247                SourceLocation());
7248  D.SetIdentifier(&II, Loc);
7249
7250  // Insert this function into translation-unit scope.
7251
7252  DeclContext *PrevDC = CurContext;
7253  CurContext = Context.getTranslationUnitDecl();
7254
7255  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7256  FD->setImplicit();
7257
7258  CurContext = PrevDC;
7259
7260  AddKnownFunctionAttributes(FD);
7261
7262  return FD;
7263}
7264
7265/// \brief Adds any function attributes that we know a priori based on
7266/// the declaration of this function.
7267///
7268/// These attributes can apply both to implicitly-declared builtins
7269/// (like __builtin___printf_chk) or to library-declared functions
7270/// like NSLog or printf.
7271///
7272/// We need to check for duplicate attributes both here and where user-written
7273/// attributes are applied to declarations.
7274void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7275  if (FD->isInvalidDecl())
7276    return;
7277
7278  // If this is a built-in function, map its builtin attributes to
7279  // actual attributes.
7280  if (unsigned BuiltinID = FD->getBuiltinID()) {
7281    // Handle printf-formatting attributes.
7282    unsigned FormatIdx;
7283    bool HasVAListArg;
7284    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7285      if (!FD->getAttr<FormatAttr>())
7286        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7287                                                "printf", FormatIdx+1,
7288                                               HasVAListArg ? 0 : FormatIdx+2));
7289    }
7290    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7291                                             HasVAListArg)) {
7292     if (!FD->getAttr<FormatAttr>())
7293       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7294                                              "scanf", FormatIdx+1,
7295                                              HasVAListArg ? 0 : FormatIdx+2));
7296    }
7297
7298    // Mark const if we don't care about errno and that is the only
7299    // thing preventing the function from being const. This allows
7300    // IRgen to use LLVM intrinsics for such functions.
7301    if (!getLangOptions().MathErrno &&
7302        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7303      if (!FD->getAttr<ConstAttr>())
7304        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7305    }
7306
7307    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7308        !FD->getAttr<ReturnsTwiceAttr>())
7309      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7310    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7311      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7312    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7313      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7314  }
7315
7316  IdentifierInfo *Name = FD->getIdentifier();
7317  if (!Name)
7318    return;
7319  if ((!getLangOptions().CPlusPlus &&
7320       FD->getDeclContext()->isTranslationUnit()) ||
7321      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7322       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7323       LinkageSpecDecl::lang_c)) {
7324    // Okay: this could be a libc/libm/Objective-C function we know
7325    // about.
7326  } else
7327    return;
7328
7329  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7330    // FIXME: NSLog and NSLogv should be target specific
7331    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7332      // FIXME: We known better than our headers.
7333      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7334    } else
7335      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7336                                             "printf", 1,
7337                                             Name->isStr("NSLogv") ? 0 : 2));
7338  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7339    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7340    // target-specific builtins, perhaps?
7341    if (!FD->getAttr<FormatAttr>())
7342      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7343                                             "printf", 2,
7344                                             Name->isStr("vasprintf") ? 0 : 3));
7345  }
7346}
7347
7348TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7349                                    TypeSourceInfo *TInfo) {
7350  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7351  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7352
7353  if (!TInfo) {
7354    assert(D.isInvalidType() && "no declarator info for valid type");
7355    TInfo = Context.getTrivialTypeSourceInfo(T);
7356  }
7357
7358  // Scope manipulation handled by caller.
7359  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7360                                           D.getSourceRange().getBegin(),
7361                                           D.getIdentifierLoc(),
7362                                           D.getIdentifier(),
7363                                           TInfo);
7364
7365  // Bail out immediately if we have an invalid declaration.
7366  if (D.isInvalidType()) {
7367    NewTD->setInvalidDecl();
7368    return NewTD;
7369  }
7370
7371  if (D.getDeclSpec().isModulePrivateSpecified()) {
7372    if (CurContext->isFunctionOrMethod())
7373      Diag(NewTD->getLocation(), diag::err_module_private_local)
7374        << 2 << NewTD->getDeclName()
7375        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7376        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7377    else
7378      NewTD->setModulePrivate();
7379  }
7380
7381  // C++ [dcl.typedef]p8:
7382  //   If the typedef declaration defines an unnamed class (or
7383  //   enum), the first typedef-name declared by the declaration
7384  //   to be that class type (or enum type) is used to denote the
7385  //   class type (or enum type) for linkage purposes only.
7386  // We need to check whether the type was declared in the declaration.
7387  switch (D.getDeclSpec().getTypeSpecType()) {
7388  case TST_enum:
7389  case TST_struct:
7390  case TST_union:
7391  case TST_class: {
7392    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7393
7394    // Do nothing if the tag is not anonymous or already has an
7395    // associated typedef (from an earlier typedef in this decl group).
7396    if (tagFromDeclSpec->getIdentifier()) break;
7397    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7398
7399    // A well-formed anonymous tag must always be a TUK_Definition.
7400    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7401
7402    // The type must match the tag exactly;  no qualifiers allowed.
7403    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7404      break;
7405
7406    // Otherwise, set this is the anon-decl typedef for the tag.
7407    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7408    break;
7409  }
7410
7411  default:
7412    break;
7413  }
7414
7415  return NewTD;
7416}
7417
7418
7419/// \brief Determine whether a tag with a given kind is acceptable
7420/// as a redeclaration of the given tag declaration.
7421///
7422/// \returns true if the new tag kind is acceptable, false otherwise.
7423bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7424                                        TagTypeKind NewTag, bool isDefinition,
7425                                        SourceLocation NewTagLoc,
7426                                        const IdentifierInfo &Name) {
7427  // C++ [dcl.type.elab]p3:
7428  //   The class-key or enum keyword present in the
7429  //   elaborated-type-specifier shall agree in kind with the
7430  //   declaration to which the name in the elaborated-type-specifier
7431  //   refers. This rule also applies to the form of
7432  //   elaborated-type-specifier that declares a class-name or
7433  //   friend class since it can be construed as referring to the
7434  //   definition of the class. Thus, in any
7435  //   elaborated-type-specifier, the enum keyword shall be used to
7436  //   refer to an enumeration (7.2), the union class-key shall be
7437  //   used to refer to a union (clause 9), and either the class or
7438  //   struct class-key shall be used to refer to a class (clause 9)
7439  //   declared using the class or struct class-key.
7440  TagTypeKind OldTag = Previous->getTagKind();
7441  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7442    if (OldTag == NewTag)
7443      return true;
7444
7445  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7446      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7447    // Warn about the struct/class tag mismatch.
7448    bool isTemplate = false;
7449    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7450      isTemplate = Record->getDescribedClassTemplate();
7451
7452    if (!ActiveTemplateInstantiations.empty()) {
7453      // In a template instantiation, do not offer fix-its for tag mismatches
7454      // since they usually mess up the template instead of fixing the problem.
7455      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7456        << (NewTag == TTK_Class) << isTemplate << &Name;
7457      return true;
7458    }
7459
7460    if (isDefinition) {
7461      // On definitions, check previous tags and issue a fix-it for each
7462      // one that doesn't match the current tag.
7463      if (Previous->getDefinition()) {
7464        // Don't suggest fix-its for redefinitions.
7465        return true;
7466      }
7467
7468      bool previousMismatch = false;
7469      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7470           E(Previous->redecls_end()); I != E; ++I) {
7471        if (I->getTagKind() != NewTag) {
7472          if (!previousMismatch) {
7473            previousMismatch = true;
7474            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7475              << (NewTag == TTK_Class) << isTemplate << &Name;
7476          }
7477          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7478            << (NewTag == TTK_Class)
7479            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7480                                            NewTag == TTK_Class?
7481                                            "class" : "struct");
7482        }
7483      }
7484      return true;
7485    }
7486
7487    // Check for a previous definition.  If current tag and definition
7488    // are same type, do nothing.  If no definition, but disagree with
7489    // with previous tag type, give a warning, but no fix-it.
7490    const TagDecl *Redecl = Previous->getDefinition() ?
7491                            Previous->getDefinition() : Previous;
7492    if (Redecl->getTagKind() == NewTag) {
7493      return true;
7494    }
7495
7496    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7497      << (NewTag == TTK_Class)
7498      << isTemplate << &Name;
7499    Diag(Redecl->getLocation(), diag::note_previous_use);
7500
7501    // If there is a previous defintion, suggest a fix-it.
7502    if (Previous->getDefinition()) {
7503        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7504          << (Redecl->getTagKind() == TTK_Class)
7505          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7506                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7507    }
7508
7509    return true;
7510  }
7511  return false;
7512}
7513
7514/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7515/// former case, Name will be non-null.  In the later case, Name will be null.
7516/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7517/// reference/declaration/definition of a tag.
7518Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7519                     SourceLocation KWLoc, CXXScopeSpec &SS,
7520                     IdentifierInfo *Name, SourceLocation NameLoc,
7521                     AttributeList *Attr, AccessSpecifier AS,
7522                     SourceLocation ModulePrivateLoc,
7523                     MultiTemplateParamsArg TemplateParameterLists,
7524                     bool &OwnedDecl, bool &IsDependent,
7525                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7526                     TypeResult UnderlyingType) {
7527  // If this is not a definition, it must have a name.
7528  assert((Name != 0 || TUK == TUK_Definition) &&
7529         "Nameless record must be a definition!");
7530  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7531
7532  OwnedDecl = false;
7533  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7534
7535  // FIXME: Check explicit specializations more carefully.
7536  bool isExplicitSpecialization = false;
7537  bool Invalid = false;
7538
7539  // We only need to do this matching if we have template parameters
7540  // or a scope specifier, which also conveniently avoids this work
7541  // for non-C++ cases.
7542  if (TemplateParameterLists.size() > 0 ||
7543      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7544    if (TemplateParameterList *TemplateParams
7545          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7546                                                TemplateParameterLists.get(),
7547                                                TemplateParameterLists.size(),
7548                                                    TUK == TUK_Friend,
7549                                                    isExplicitSpecialization,
7550                                                    Invalid)) {
7551      if (TemplateParams->size() > 0) {
7552        // This is a declaration or definition of a class template (which may
7553        // be a member of another template).
7554
7555        if (Invalid)
7556          return 0;
7557
7558        OwnedDecl = false;
7559        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7560                                               SS, Name, NameLoc, Attr,
7561                                               TemplateParams, AS,
7562                                               ModulePrivateLoc,
7563                                           TemplateParameterLists.size() - 1,
7564                 (TemplateParameterList**) TemplateParameterLists.release());
7565        return Result.get();
7566      } else {
7567        // The "template<>" header is extraneous.
7568        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7569          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7570        isExplicitSpecialization = true;
7571      }
7572    }
7573  }
7574
7575  // Figure out the underlying type if this a enum declaration. We need to do
7576  // this early, because it's needed to detect if this is an incompatible
7577  // redeclaration.
7578  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7579
7580  if (Kind == TTK_Enum) {
7581    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7582      // No underlying type explicitly specified, or we failed to parse the
7583      // type, default to int.
7584      EnumUnderlying = Context.IntTy.getTypePtr();
7585    else if (UnderlyingType.get()) {
7586      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7587      // integral type; any cv-qualification is ignored.
7588      TypeSourceInfo *TI = 0;
7589      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7590      EnumUnderlying = TI;
7591
7592      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7593
7594      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7595        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7596          << T;
7597        // Recover by falling back to int.
7598        EnumUnderlying = Context.IntTy.getTypePtr();
7599      }
7600
7601      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7602                                          UPPC_FixedUnderlyingType))
7603        EnumUnderlying = Context.IntTy.getTypePtr();
7604
7605    } else if (getLangOptions().MicrosoftExt)
7606      // Microsoft enums are always of int type.
7607      EnumUnderlying = Context.IntTy.getTypePtr();
7608  }
7609
7610  DeclContext *SearchDC = CurContext;
7611  DeclContext *DC = CurContext;
7612  bool isStdBadAlloc = false;
7613
7614  RedeclarationKind Redecl = ForRedeclaration;
7615  if (TUK == TUK_Friend || TUK == TUK_Reference)
7616    Redecl = NotForRedeclaration;
7617
7618  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7619
7620  if (Name && SS.isNotEmpty()) {
7621    // We have a nested-name tag ('struct foo::bar').
7622
7623    // Check for invalid 'foo::'.
7624    if (SS.isInvalid()) {
7625      Name = 0;
7626      goto CreateNewDecl;
7627    }
7628
7629    // If this is a friend or a reference to a class in a dependent
7630    // context, don't try to make a decl for it.
7631    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7632      DC = computeDeclContext(SS, false);
7633      if (!DC) {
7634        IsDependent = true;
7635        return 0;
7636      }
7637    } else {
7638      DC = computeDeclContext(SS, true);
7639      if (!DC) {
7640        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7641          << SS.getRange();
7642        return 0;
7643      }
7644    }
7645
7646    if (RequireCompleteDeclContext(SS, DC))
7647      return 0;
7648
7649    SearchDC = DC;
7650    // Look-up name inside 'foo::'.
7651    LookupQualifiedName(Previous, DC);
7652
7653    if (Previous.isAmbiguous())
7654      return 0;
7655
7656    if (Previous.empty()) {
7657      // Name lookup did not find anything. However, if the
7658      // nested-name-specifier refers to the current instantiation,
7659      // and that current instantiation has any dependent base
7660      // classes, we might find something at instantiation time: treat
7661      // this as a dependent elaborated-type-specifier.
7662      // But this only makes any sense for reference-like lookups.
7663      if (Previous.wasNotFoundInCurrentInstantiation() &&
7664          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7665        IsDependent = true;
7666        return 0;
7667      }
7668
7669      // A tag 'foo::bar' must already exist.
7670      Diag(NameLoc, diag::err_not_tag_in_scope)
7671        << Kind << Name << DC << SS.getRange();
7672      Name = 0;
7673      Invalid = true;
7674      goto CreateNewDecl;
7675    }
7676  } else if (Name) {
7677    // If this is a named struct, check to see if there was a previous forward
7678    // declaration or definition.
7679    // FIXME: We're looking into outer scopes here, even when we
7680    // shouldn't be. Doing so can result in ambiguities that we
7681    // shouldn't be diagnosing.
7682    LookupName(Previous, S);
7683
7684    if (Previous.isAmbiguous() &&
7685        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7686      LookupResult::Filter F = Previous.makeFilter();
7687      while (F.hasNext()) {
7688        NamedDecl *ND = F.next();
7689        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7690          F.erase();
7691      }
7692      F.done();
7693    }
7694
7695    // Note:  there used to be some attempt at recovery here.
7696    if (Previous.isAmbiguous())
7697      return 0;
7698
7699    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7700      // FIXME: This makes sure that we ignore the contexts associated
7701      // with C structs, unions, and enums when looking for a matching
7702      // tag declaration or definition. See the similar lookup tweak
7703      // in Sema::LookupName; is there a better way to deal with this?
7704      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7705        SearchDC = SearchDC->getParent();
7706    }
7707  } else if (S->isFunctionPrototypeScope()) {
7708    // If this is an enum declaration in function prototype scope, set its
7709    // initial context to the translation unit.
7710    SearchDC = Context.getTranslationUnitDecl();
7711  }
7712
7713  if (Previous.isSingleResult() &&
7714      Previous.getFoundDecl()->isTemplateParameter()) {
7715    // Maybe we will complain about the shadowed template parameter.
7716    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7717    // Just pretend that we didn't see the previous declaration.
7718    Previous.clear();
7719  }
7720
7721  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7722      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7723    // This is a declaration of or a reference to "std::bad_alloc".
7724    isStdBadAlloc = true;
7725
7726    if (Previous.empty() && StdBadAlloc) {
7727      // std::bad_alloc has been implicitly declared (but made invisible to
7728      // name lookup). Fill in this implicit declaration as the previous
7729      // declaration, so that the declarations get chained appropriately.
7730      Previous.addDecl(getStdBadAlloc());
7731    }
7732  }
7733
7734  // If we didn't find a previous declaration, and this is a reference
7735  // (or friend reference), move to the correct scope.  In C++, we
7736  // also need to do a redeclaration lookup there, just in case
7737  // there's a shadow friend decl.
7738  if (Name && Previous.empty() &&
7739      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7740    if (Invalid) goto CreateNewDecl;
7741    assert(SS.isEmpty());
7742
7743    if (TUK == TUK_Reference) {
7744      // C++ [basic.scope.pdecl]p5:
7745      //   -- for an elaborated-type-specifier of the form
7746      //
7747      //          class-key identifier
7748      //
7749      //      if the elaborated-type-specifier is used in the
7750      //      decl-specifier-seq or parameter-declaration-clause of a
7751      //      function defined in namespace scope, the identifier is
7752      //      declared as a class-name in the namespace that contains
7753      //      the declaration; otherwise, except as a friend
7754      //      declaration, the identifier is declared in the smallest
7755      //      non-class, non-function-prototype scope that contains the
7756      //      declaration.
7757      //
7758      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7759      // C structs and unions.
7760      //
7761      // It is an error in C++ to declare (rather than define) an enum
7762      // type, including via an elaborated type specifier.  We'll
7763      // diagnose that later; for now, declare the enum in the same
7764      // scope as we would have picked for any other tag type.
7765      //
7766      // GNU C also supports this behavior as part of its incomplete
7767      // enum types extension, while GNU C++ does not.
7768      //
7769      // Find the context where we'll be declaring the tag.
7770      // FIXME: We would like to maintain the current DeclContext as the
7771      // lexical context,
7772      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7773        SearchDC = SearchDC->getParent();
7774
7775      // Find the scope where we'll be declaring the tag.
7776      while (S->isClassScope() ||
7777             (getLangOptions().CPlusPlus &&
7778              S->isFunctionPrototypeScope()) ||
7779             ((S->getFlags() & Scope::DeclScope) == 0) ||
7780             (S->getEntity() &&
7781              ((DeclContext *)S->getEntity())->isTransparentContext()))
7782        S = S->getParent();
7783    } else {
7784      assert(TUK == TUK_Friend);
7785      // C++ [namespace.memdef]p3:
7786      //   If a friend declaration in a non-local class first declares a
7787      //   class or function, the friend class or function is a member of
7788      //   the innermost enclosing namespace.
7789      SearchDC = SearchDC->getEnclosingNamespaceContext();
7790    }
7791
7792    // In C++, we need to do a redeclaration lookup to properly
7793    // diagnose some problems.
7794    if (getLangOptions().CPlusPlus) {
7795      Previous.setRedeclarationKind(ForRedeclaration);
7796      LookupQualifiedName(Previous, SearchDC);
7797    }
7798  }
7799
7800  if (!Previous.empty()) {
7801    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7802
7803    // It's okay to have a tag decl in the same scope as a typedef
7804    // which hides a tag decl in the same scope.  Finding this
7805    // insanity with a redeclaration lookup can only actually happen
7806    // in C++.
7807    //
7808    // This is also okay for elaborated-type-specifiers, which is
7809    // technically forbidden by the current standard but which is
7810    // okay according to the likely resolution of an open issue;
7811    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7812    if (getLangOptions().CPlusPlus) {
7813      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7814        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7815          TagDecl *Tag = TT->getDecl();
7816          if (Tag->getDeclName() == Name &&
7817              Tag->getDeclContext()->getRedeclContext()
7818                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7819            PrevDecl = Tag;
7820            Previous.clear();
7821            Previous.addDecl(Tag);
7822            Previous.resolveKind();
7823          }
7824        }
7825      }
7826    }
7827
7828    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7829      // If this is a use of a previous tag, or if the tag is already declared
7830      // in the same scope (so that the definition/declaration completes or
7831      // rementions the tag), reuse the decl.
7832      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7833          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7834        // Make sure that this wasn't declared as an enum and now used as a
7835        // struct or something similar.
7836        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7837                                          TUK == TUK_Definition, KWLoc,
7838                                          *Name)) {
7839          bool SafeToContinue
7840            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7841               Kind != TTK_Enum);
7842          if (SafeToContinue)
7843            Diag(KWLoc, diag::err_use_with_wrong_tag)
7844              << Name
7845              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7846                                              PrevTagDecl->getKindName());
7847          else
7848            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7849          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7850
7851          if (SafeToContinue)
7852            Kind = PrevTagDecl->getTagKind();
7853          else {
7854            // Recover by making this an anonymous redefinition.
7855            Name = 0;
7856            Previous.clear();
7857            Invalid = true;
7858          }
7859        }
7860
7861        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7862          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7863
7864          // All conflicts with previous declarations are recovered by
7865          // returning the previous declaration.
7866          if (ScopedEnum != PrevEnum->isScoped()) {
7867            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7868              << PrevEnum->isScoped();
7869            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7870            return PrevTagDecl;
7871          }
7872          else if (EnumUnderlying && PrevEnum->isFixed()) {
7873            QualType T;
7874            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7875                T = TI->getType();
7876            else
7877                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7878
7879            if (!Context.hasSameUnqualifiedType(T,
7880                                                PrevEnum->getIntegerType())) {
7881              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7882                   diag::err_enum_redeclare_type_mismatch)
7883                << T
7884                << PrevEnum->getIntegerType();
7885              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7886              return PrevTagDecl;
7887            }
7888          }
7889          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7890            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7891              << PrevEnum->isFixed();
7892            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7893            return PrevTagDecl;
7894          }
7895        }
7896
7897        if (!Invalid) {
7898          // If this is a use, just return the declaration we found.
7899
7900          // FIXME: In the future, return a variant or some other clue
7901          // for the consumer of this Decl to know it doesn't own it.
7902          // For our current ASTs this shouldn't be a problem, but will
7903          // need to be changed with DeclGroups.
7904          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7905               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7906            return PrevTagDecl;
7907
7908          // Diagnose attempts to redefine a tag.
7909          if (TUK == TUK_Definition) {
7910            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7911              // If we're defining a specialization and the previous definition
7912              // is from an implicit instantiation, don't emit an error
7913              // here; we'll catch this in the general case below.
7914              if (!isExplicitSpecialization ||
7915                  !isa<CXXRecordDecl>(Def) ||
7916                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7917                                               == TSK_ExplicitSpecialization) {
7918                Diag(NameLoc, diag::err_redefinition) << Name;
7919                Diag(Def->getLocation(), diag::note_previous_definition);
7920                // If this is a redefinition, recover by making this
7921                // struct be anonymous, which will make any later
7922                // references get the previous definition.
7923                Name = 0;
7924                Previous.clear();
7925                Invalid = true;
7926              }
7927            } else {
7928              // If the type is currently being defined, complain
7929              // about a nested redefinition.
7930              const TagType *Tag
7931                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7932              if (Tag->isBeingDefined()) {
7933                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7934                Diag(PrevTagDecl->getLocation(),
7935                     diag::note_previous_definition);
7936                Name = 0;
7937                Previous.clear();
7938                Invalid = true;
7939              }
7940            }
7941
7942            // Okay, this is definition of a previously declared or referenced
7943            // tag PrevDecl. We're going to create a new Decl for it.
7944          }
7945        }
7946        // If we get here we have (another) forward declaration or we
7947        // have a definition.  Just create a new decl.
7948
7949      } else {
7950        // If we get here, this is a definition of a new tag type in a nested
7951        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7952        // new decl/type.  We set PrevDecl to NULL so that the entities
7953        // have distinct types.
7954        Previous.clear();
7955      }
7956      // If we get here, we're going to create a new Decl. If PrevDecl
7957      // is non-NULL, it's a definition of the tag declared by
7958      // PrevDecl. If it's NULL, we have a new definition.
7959
7960
7961    // Otherwise, PrevDecl is not a tag, but was found with tag
7962    // lookup.  This is only actually possible in C++, where a few
7963    // things like templates still live in the tag namespace.
7964    } else {
7965      assert(getLangOptions().CPlusPlus);
7966
7967      // Use a better diagnostic if an elaborated-type-specifier
7968      // found the wrong kind of type on the first
7969      // (non-redeclaration) lookup.
7970      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7971          !Previous.isForRedeclaration()) {
7972        unsigned Kind = 0;
7973        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7974        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7975        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7976        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7977        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7978        Invalid = true;
7979
7980      // Otherwise, only diagnose if the declaration is in scope.
7981      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7982                                isExplicitSpecialization)) {
7983        // do nothing
7984
7985      // Diagnose implicit declarations introduced by elaborated types.
7986      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7987        unsigned Kind = 0;
7988        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7989        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7990        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7991        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7992        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7993        Invalid = true;
7994
7995      // Otherwise it's a declaration.  Call out a particularly common
7996      // case here.
7997      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7998        unsigned Kind = 0;
7999        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8000        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8001          << Name << Kind << TND->getUnderlyingType();
8002        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8003        Invalid = true;
8004
8005      // Otherwise, diagnose.
8006      } else {
8007        // The tag name clashes with something else in the target scope,
8008        // issue an error and recover by making this tag be anonymous.
8009        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8010        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8011        Name = 0;
8012        Invalid = true;
8013      }
8014
8015      // The existing declaration isn't relevant to us; we're in a
8016      // new scope, so clear out the previous declaration.
8017      Previous.clear();
8018    }
8019  }
8020
8021CreateNewDecl:
8022
8023  TagDecl *PrevDecl = 0;
8024  if (Previous.isSingleResult())
8025    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8026
8027  // If there is an identifier, use the location of the identifier as the
8028  // location of the decl, otherwise use the location of the struct/union
8029  // keyword.
8030  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8031
8032  // Otherwise, create a new declaration. If there is a previous
8033  // declaration of the same entity, the two will be linked via
8034  // PrevDecl.
8035  TagDecl *New;
8036
8037  bool IsForwardReference = false;
8038  if (Kind == TTK_Enum) {
8039    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8040    // enum X { A, B, C } D;    D should chain to X.
8041    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8042                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8043                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8044    // If this is an undefined enum, warn.
8045    if (TUK != TUK_Definition && !Invalid) {
8046      TagDecl *Def;
8047      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8048        // C++0x: 7.2p2: opaque-enum-declaration.
8049        // Conflicts are diagnosed above. Do nothing.
8050      }
8051      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8052        Diag(Loc, diag::ext_forward_ref_enum_def)
8053          << New;
8054        Diag(Def->getLocation(), diag::note_previous_definition);
8055      } else {
8056        unsigned DiagID = diag::ext_forward_ref_enum;
8057        if (getLangOptions().MicrosoftExt)
8058          DiagID = diag::ext_ms_forward_ref_enum;
8059        else if (getLangOptions().CPlusPlus)
8060          DiagID = diag::err_forward_ref_enum;
8061        Diag(Loc, DiagID);
8062
8063        // If this is a forward-declared reference to an enumeration, make a
8064        // note of it; we won't actually be introducing the declaration into
8065        // the declaration context.
8066        if (TUK == TUK_Reference)
8067          IsForwardReference = true;
8068      }
8069    }
8070
8071    if (EnumUnderlying) {
8072      EnumDecl *ED = cast<EnumDecl>(New);
8073      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8074        ED->setIntegerTypeSourceInfo(TI);
8075      else
8076        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8077      ED->setPromotionType(ED->getIntegerType());
8078    }
8079
8080  } else {
8081    // struct/union/class
8082
8083    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8084    // struct X { int A; } D;    D should chain to X.
8085    if (getLangOptions().CPlusPlus) {
8086      // FIXME: Look for a way to use RecordDecl for simple structs.
8087      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8088                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8089
8090      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8091        StdBadAlloc = cast<CXXRecordDecl>(New);
8092    } else
8093      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8094                               cast_or_null<RecordDecl>(PrevDecl));
8095  }
8096
8097  // Maybe add qualifier info.
8098  if (SS.isNotEmpty()) {
8099    if (SS.isSet()) {
8100      New->setQualifierInfo(SS.getWithLocInContext(Context));
8101      if (TemplateParameterLists.size() > 0) {
8102        New->setTemplateParameterListsInfo(Context,
8103                                           TemplateParameterLists.size(),
8104                    (TemplateParameterList**) TemplateParameterLists.release());
8105      }
8106    }
8107    else
8108      Invalid = true;
8109  }
8110
8111  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8112    // Add alignment attributes if necessary; these attributes are checked when
8113    // the ASTContext lays out the structure.
8114    //
8115    // It is important for implementing the correct semantics that this
8116    // happen here (in act on tag decl). The #pragma pack stack is
8117    // maintained as a result of parser callbacks which can occur at
8118    // many points during the parsing of a struct declaration (because
8119    // the #pragma tokens are effectively skipped over during the
8120    // parsing of the struct).
8121    AddAlignmentAttributesForRecord(RD);
8122
8123    AddMsStructLayoutForRecord(RD);
8124  }
8125
8126  if (PrevDecl && PrevDecl->isModulePrivate())
8127    New->setModulePrivate();
8128  else if (ModulePrivateLoc.isValid()) {
8129    if (isExplicitSpecialization)
8130      Diag(New->getLocation(), diag::err_module_private_specialization)
8131        << 2
8132        << FixItHint::CreateRemoval(ModulePrivateLoc);
8133    else if (PrevDecl && !PrevDecl->isModulePrivate())
8134      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8135    // __module_private__ does not apply to local classes. However, we only
8136    // diagnose this as an error when the declaration specifiers are
8137    // freestanding. Here, we just ignore the __module_private__.
8138    // foobar
8139    else if (!SearchDC->isFunctionOrMethod())
8140      New->setModulePrivate();
8141  }
8142
8143  // If this is a specialization of a member class (of a class template),
8144  // check the specialization.
8145  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8146    Invalid = true;
8147
8148  if (Invalid)
8149    New->setInvalidDecl();
8150
8151  if (Attr)
8152    ProcessDeclAttributeList(S, New, Attr);
8153
8154  // If we're declaring or defining a tag in function prototype scope
8155  // in C, note that this type can only be used within the function.
8156  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8157    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8158
8159  // Set the lexical context. If the tag has a C++ scope specifier, the
8160  // lexical context will be different from the semantic context.
8161  New->setLexicalDeclContext(CurContext);
8162
8163  // Mark this as a friend decl if applicable.
8164  // In Microsoft mode, a friend declaration also acts as a forward
8165  // declaration so we always pass true to setObjectOfFriendDecl to make
8166  // the tag name visible.
8167  if (TUK == TUK_Friend)
8168    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8169                               getLangOptions().MicrosoftExt);
8170
8171  // Set the access specifier.
8172  if (!Invalid && SearchDC->isRecord())
8173    SetMemberAccessSpecifier(New, PrevDecl, AS);
8174
8175  if (TUK == TUK_Definition)
8176    New->startDefinition();
8177
8178  // If this has an identifier, add it to the scope stack.
8179  if (TUK == TUK_Friend) {
8180    // We might be replacing an existing declaration in the lookup tables;
8181    // if so, borrow its access specifier.
8182    if (PrevDecl)
8183      New->setAccess(PrevDecl->getAccess());
8184
8185    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8186    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8187    if (Name) // can be null along some error paths
8188      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8189        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8190  } else if (Name) {
8191    S = getNonFieldDeclScope(S);
8192    PushOnScopeChains(New, S, !IsForwardReference);
8193    if (IsForwardReference)
8194      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8195
8196  } else {
8197    CurContext->addDecl(New);
8198  }
8199
8200  // If this is the C FILE type, notify the AST context.
8201  if (IdentifierInfo *II = New->getIdentifier())
8202    if (!New->isInvalidDecl() &&
8203        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8204        II->isStr("FILE"))
8205      Context.setFILEDecl(New);
8206
8207  OwnedDecl = true;
8208  return New;
8209}
8210
8211void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8212  AdjustDeclIfTemplate(TagD);
8213  TagDecl *Tag = cast<TagDecl>(TagD);
8214
8215  // Enter the tag context.
8216  PushDeclContext(S, Tag);
8217}
8218
8219Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8220  assert(isa<ObjCContainerDecl>(IDecl) &&
8221         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8222  DeclContext *OCD = cast<DeclContext>(IDecl);
8223  assert(getContainingDC(OCD) == CurContext &&
8224      "The next DeclContext should be lexically contained in the current one.");
8225  CurContext = OCD;
8226  return IDecl;
8227}
8228
8229void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8230                                           SourceLocation FinalLoc,
8231                                           SourceLocation LBraceLoc) {
8232  AdjustDeclIfTemplate(TagD);
8233  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8234
8235  FieldCollector->StartClass();
8236
8237  if (!Record->getIdentifier())
8238    return;
8239
8240  if (FinalLoc.isValid())
8241    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8242
8243  // C++ [class]p2:
8244  //   [...] The class-name is also inserted into the scope of the
8245  //   class itself; this is known as the injected-class-name. For
8246  //   purposes of access checking, the injected-class-name is treated
8247  //   as if it were a public member name.
8248  CXXRecordDecl *InjectedClassName
8249    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8250                            Record->getLocStart(), Record->getLocation(),
8251                            Record->getIdentifier(),
8252                            /*PrevDecl=*/0,
8253                            /*DelayTypeCreation=*/true);
8254  Context.getTypeDeclType(InjectedClassName, Record);
8255  InjectedClassName->setImplicit();
8256  InjectedClassName->setAccess(AS_public);
8257  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8258      InjectedClassName->setDescribedClassTemplate(Template);
8259  PushOnScopeChains(InjectedClassName, S);
8260  assert(InjectedClassName->isInjectedClassName() &&
8261         "Broken injected-class-name");
8262}
8263
8264void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8265                                    SourceLocation RBraceLoc) {
8266  AdjustDeclIfTemplate(TagD);
8267  TagDecl *Tag = cast<TagDecl>(TagD);
8268  Tag->setRBraceLoc(RBraceLoc);
8269
8270  if (isa<CXXRecordDecl>(Tag))
8271    FieldCollector->FinishClass();
8272
8273  // Exit this scope of this tag's definition.
8274  PopDeclContext();
8275
8276  // Notify the consumer that we've defined a tag.
8277  Consumer.HandleTagDeclDefinition(Tag);
8278}
8279
8280void Sema::ActOnObjCContainerFinishDefinition() {
8281  // Exit this scope of this interface definition.
8282  PopDeclContext();
8283}
8284
8285void Sema::ActOnObjCTemporaryExitContainerContext() {
8286  OriginalLexicalContext = CurContext;
8287  ActOnObjCContainerFinishDefinition();
8288}
8289
8290void Sema::ActOnObjCReenterContainerContext() {
8291  ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
8292  OriginalLexicalContext = 0;
8293}
8294
8295void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8296  AdjustDeclIfTemplate(TagD);
8297  TagDecl *Tag = cast<TagDecl>(TagD);
8298  Tag->setInvalidDecl();
8299
8300  // We're undoing ActOnTagStartDefinition here, not
8301  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8302  // the FieldCollector.
8303
8304  PopDeclContext();
8305}
8306
8307// Note that FieldName may be null for anonymous bitfields.
8308bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8309                          QualType FieldTy, const Expr *BitWidth,
8310                          bool *ZeroWidth) {
8311  // Default to true; that shouldn't confuse checks for emptiness
8312  if (ZeroWidth)
8313    *ZeroWidth = true;
8314
8315  // C99 6.7.2.1p4 - verify the field type.
8316  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8317  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8318    // Handle incomplete types with specific error.
8319    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8320      return true;
8321    if (FieldName)
8322      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8323        << FieldName << FieldTy << BitWidth->getSourceRange();
8324    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8325      << FieldTy << BitWidth->getSourceRange();
8326  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8327                                             UPPC_BitFieldWidth))
8328    return true;
8329
8330  // If the bit-width is type- or value-dependent, don't try to check
8331  // it now.
8332  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8333    return false;
8334
8335  llvm::APSInt Value;
8336  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8337    return true;
8338
8339  if (Value != 0 && ZeroWidth)
8340    *ZeroWidth = false;
8341
8342  // Zero-width bitfield is ok for anonymous field.
8343  if (Value == 0 && FieldName)
8344    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8345
8346  if (Value.isSigned() && Value.isNegative()) {
8347    if (FieldName)
8348      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8349               << FieldName << Value.toString(10);
8350    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8351      << Value.toString(10);
8352  }
8353
8354  if (!FieldTy->isDependentType()) {
8355    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8356    if (Value.getZExtValue() > TypeSize) {
8357      if (!getLangOptions().CPlusPlus) {
8358        if (FieldName)
8359          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8360            << FieldName << (unsigned)Value.getZExtValue()
8361            << (unsigned)TypeSize;
8362
8363        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8364          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8365      }
8366
8367      if (FieldName)
8368        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8369          << FieldName << (unsigned)Value.getZExtValue()
8370          << (unsigned)TypeSize;
8371      else
8372        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8373          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8374    }
8375  }
8376
8377  return false;
8378}
8379
8380/// ActOnField - Each field of a C struct/union is passed into this in order
8381/// to create a FieldDecl object for it.
8382Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8383                       Declarator &D, Expr *BitfieldWidth) {
8384  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8385                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8386                               /*HasInit=*/false, AS_public);
8387  return Res;
8388}
8389
8390/// HandleField - Analyze a field of a C struct or a C++ data member.
8391///
8392FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8393                             SourceLocation DeclStart,
8394                             Declarator &D, Expr *BitWidth, bool HasInit,
8395                             AccessSpecifier AS) {
8396  IdentifierInfo *II = D.getIdentifier();
8397  SourceLocation Loc = DeclStart;
8398  if (II) Loc = D.getIdentifierLoc();
8399
8400  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8401  QualType T = TInfo->getType();
8402  if (getLangOptions().CPlusPlus) {
8403    CheckExtraCXXDefaultArguments(D);
8404
8405    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8406                                        UPPC_DataMemberType)) {
8407      D.setInvalidType();
8408      T = Context.IntTy;
8409      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8410    }
8411  }
8412
8413  DiagnoseFunctionSpecifiers(D);
8414
8415  if (D.getDeclSpec().isThreadSpecified())
8416    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8417  if (D.getDeclSpec().isConstexprSpecified())
8418    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8419      << 2;
8420
8421  // Check to see if this name was declared as a member previously
8422  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8423  LookupName(Previous, S);
8424  assert((Previous.empty() || Previous.isOverloadedResult() ||
8425          Previous.isSingleResult())
8426    && "Lookup of member name should be either overloaded, single or null");
8427
8428  // If the name is overloaded then get any declaration else get the single
8429  // result
8430  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8431    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8432
8433  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8434    // Maybe we will complain about the shadowed template parameter.
8435    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8436    // Just pretend that we didn't see the previous declaration.
8437    PrevDecl = 0;
8438  }
8439
8440  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8441    PrevDecl = 0;
8442
8443  bool Mutable
8444    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8445  SourceLocation TSSL = D.getSourceRange().getBegin();
8446  FieldDecl *NewFD
8447    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8448                     TSSL, AS, PrevDecl, &D);
8449
8450  if (NewFD->isInvalidDecl())
8451    Record->setInvalidDecl();
8452
8453  if (D.getDeclSpec().isModulePrivateSpecified())
8454    NewFD->setModulePrivate();
8455
8456  if (NewFD->isInvalidDecl() && PrevDecl) {
8457    // Don't introduce NewFD into scope; there's already something
8458    // with the same name in the same scope.
8459  } else if (II) {
8460    PushOnScopeChains(NewFD, S);
8461  } else
8462    Record->addDecl(NewFD);
8463
8464  return NewFD;
8465}
8466
8467/// \brief Build a new FieldDecl and check its well-formedness.
8468///
8469/// This routine builds a new FieldDecl given the fields name, type,
8470/// record, etc. \p PrevDecl should refer to any previous declaration
8471/// with the same name and in the same scope as the field to be
8472/// created.
8473///
8474/// \returns a new FieldDecl.
8475///
8476/// \todo The Declarator argument is a hack. It will be removed once
8477FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8478                                TypeSourceInfo *TInfo,
8479                                RecordDecl *Record, SourceLocation Loc,
8480                                bool Mutable, Expr *BitWidth, bool HasInit,
8481                                SourceLocation TSSL,
8482                                AccessSpecifier AS, NamedDecl *PrevDecl,
8483                                Declarator *D) {
8484  IdentifierInfo *II = Name.getAsIdentifierInfo();
8485  bool InvalidDecl = false;
8486  if (D) InvalidDecl = D->isInvalidType();
8487
8488  // If we receive a broken type, recover by assuming 'int' and
8489  // marking this declaration as invalid.
8490  if (T.isNull()) {
8491    InvalidDecl = true;
8492    T = Context.IntTy;
8493  }
8494
8495  QualType EltTy = Context.getBaseElementType(T);
8496  if (!EltTy->isDependentType() &&
8497      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8498    // Fields of incomplete type force their record to be invalid.
8499    Record->setInvalidDecl();
8500    InvalidDecl = true;
8501  }
8502
8503  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8504  // than a variably modified type.
8505  if (!InvalidDecl && T->isVariablyModifiedType()) {
8506    bool SizeIsNegative;
8507    llvm::APSInt Oversized;
8508    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8509                                                           SizeIsNegative,
8510                                                           Oversized);
8511    if (!FixedTy.isNull()) {
8512      Diag(Loc, diag::warn_illegal_constant_array_size);
8513      T = FixedTy;
8514    } else {
8515      if (SizeIsNegative)
8516        Diag(Loc, diag::err_typecheck_negative_array_size);
8517      else if (Oversized.getBoolValue())
8518        Diag(Loc, diag::err_array_too_large)
8519          << Oversized.toString(10);
8520      else
8521        Diag(Loc, diag::err_typecheck_field_variable_size);
8522      InvalidDecl = true;
8523    }
8524  }
8525
8526  // Fields can not have abstract class types
8527  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8528                                             diag::err_abstract_type_in_decl,
8529                                             AbstractFieldType))
8530    InvalidDecl = true;
8531
8532  bool ZeroWidth = false;
8533  // If this is declared as a bit-field, check the bit-field.
8534  if (!InvalidDecl && BitWidth &&
8535      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8536    InvalidDecl = true;
8537    BitWidth = 0;
8538    ZeroWidth = false;
8539  }
8540
8541  // Check that 'mutable' is consistent with the type of the declaration.
8542  if (!InvalidDecl && Mutable) {
8543    unsigned DiagID = 0;
8544    if (T->isReferenceType())
8545      DiagID = diag::err_mutable_reference;
8546    else if (T.isConstQualified())
8547      DiagID = diag::err_mutable_const;
8548
8549    if (DiagID) {
8550      SourceLocation ErrLoc = Loc;
8551      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8552        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8553      Diag(ErrLoc, DiagID);
8554      Mutable = false;
8555      InvalidDecl = true;
8556    }
8557  }
8558
8559  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8560                                       BitWidth, Mutable, HasInit);
8561  if (InvalidDecl)
8562    NewFD->setInvalidDecl();
8563
8564  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8565    Diag(Loc, diag::err_duplicate_member) << II;
8566    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8567    NewFD->setInvalidDecl();
8568  }
8569
8570  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8571    if (Record->isUnion()) {
8572      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8573        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8574        if (RDecl->getDefinition()) {
8575          // C++ [class.union]p1: An object of a class with a non-trivial
8576          // constructor, a non-trivial copy constructor, a non-trivial
8577          // destructor, or a non-trivial copy assignment operator
8578          // cannot be a member of a union, nor can an array of such
8579          // objects.
8580          if (CheckNontrivialField(NewFD))
8581            NewFD->setInvalidDecl();
8582        }
8583      }
8584
8585      // C++ [class.union]p1: If a union contains a member of reference type,
8586      // the program is ill-formed.
8587      if (EltTy->isReferenceType()) {
8588        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8589          << NewFD->getDeclName() << EltTy;
8590        NewFD->setInvalidDecl();
8591      }
8592    }
8593  }
8594
8595  // FIXME: We need to pass in the attributes given an AST
8596  // representation, not a parser representation.
8597  if (D)
8598    // FIXME: What to pass instead of TUScope?
8599    ProcessDeclAttributes(TUScope, NewFD, *D);
8600
8601  // In auto-retain/release, infer strong retension for fields of
8602  // retainable type.
8603  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8604    NewFD->setInvalidDecl();
8605
8606  if (T.isObjCGCWeak())
8607    Diag(Loc, diag::warn_attribute_weak_on_field);
8608
8609  NewFD->setAccess(AS);
8610  return NewFD;
8611}
8612
8613bool Sema::CheckNontrivialField(FieldDecl *FD) {
8614  assert(FD);
8615  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8616
8617  if (FD->isInvalidDecl())
8618    return true;
8619
8620  QualType EltTy = Context.getBaseElementType(FD->getType());
8621  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8622    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8623    if (RDecl->getDefinition()) {
8624      // We check for copy constructors before constructors
8625      // because otherwise we'll never get complaints about
8626      // copy constructors.
8627
8628      CXXSpecialMember member = CXXInvalid;
8629      if (!RDecl->hasTrivialCopyConstructor())
8630        member = CXXCopyConstructor;
8631      else if (!RDecl->hasTrivialDefaultConstructor())
8632        member = CXXDefaultConstructor;
8633      else if (!RDecl->hasTrivialCopyAssignment())
8634        member = CXXCopyAssignment;
8635      else if (!RDecl->hasTrivialDestructor())
8636        member = CXXDestructor;
8637
8638      if (member != CXXInvalid) {
8639        if (!getLangOptions().CPlusPlus0x &&
8640            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8641          // Objective-C++ ARC: it is an error to have a non-trivial field of
8642          // a union. However, system headers in Objective-C programs
8643          // occasionally have Objective-C lifetime objects within unions,
8644          // and rather than cause the program to fail, we make those
8645          // members unavailable.
8646          SourceLocation Loc = FD->getLocation();
8647          if (getSourceManager().isInSystemHeader(Loc)) {
8648            if (!FD->hasAttr<UnavailableAttr>())
8649              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8650                                  "this system field has retaining ownership"));
8651            return false;
8652          }
8653        }
8654
8655        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8656               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8657               diag::err_illegal_union_or_anon_struct_member)
8658          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8659        DiagnoseNontrivial(RT, member);
8660        return !getLangOptions().CPlusPlus0x;
8661      }
8662    }
8663  }
8664
8665  return false;
8666}
8667
8668/// DiagnoseNontrivial - Given that a class has a non-trivial
8669/// special member, figure out why.
8670void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8671  QualType QT(T, 0U);
8672  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8673
8674  // Check whether the member was user-declared.
8675  switch (member) {
8676  case CXXInvalid:
8677    break;
8678
8679  case CXXDefaultConstructor:
8680    if (RD->hasUserDeclaredConstructor()) {
8681      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8682      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8683        const FunctionDecl *body = 0;
8684        ci->hasBody(body);
8685        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8686          SourceLocation CtorLoc = ci->getLocation();
8687          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8688          return;
8689        }
8690      }
8691
8692      llvm_unreachable("found no user-declared constructors");
8693    }
8694    break;
8695
8696  case CXXCopyConstructor:
8697    if (RD->hasUserDeclaredCopyConstructor()) {
8698      SourceLocation CtorLoc =
8699        RD->getCopyConstructor(0)->getLocation();
8700      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8701      return;
8702    }
8703    break;
8704
8705  case CXXMoveConstructor:
8706    if (RD->hasUserDeclaredMoveConstructor()) {
8707      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8708      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8709      return;
8710    }
8711    break;
8712
8713  case CXXCopyAssignment:
8714    if (RD->hasUserDeclaredCopyAssignment()) {
8715      // FIXME: this should use the location of the copy
8716      // assignment, not the type.
8717      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8718      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8719      return;
8720    }
8721    break;
8722
8723  case CXXMoveAssignment:
8724    if (RD->hasUserDeclaredMoveAssignment()) {
8725      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8726      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8727      return;
8728    }
8729    break;
8730
8731  case CXXDestructor:
8732    if (RD->hasUserDeclaredDestructor()) {
8733      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8734      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8735      return;
8736    }
8737    break;
8738  }
8739
8740  typedef CXXRecordDecl::base_class_iterator base_iter;
8741
8742  // Virtual bases and members inhibit trivial copying/construction,
8743  // but not trivial destruction.
8744  if (member != CXXDestructor) {
8745    // Check for virtual bases.  vbases includes indirect virtual bases,
8746    // so we just iterate through the direct bases.
8747    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8748      if (bi->isVirtual()) {
8749        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8750        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8751        return;
8752      }
8753
8754    // Check for virtual methods.
8755    typedef CXXRecordDecl::method_iterator meth_iter;
8756    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8757         ++mi) {
8758      if (mi->isVirtual()) {
8759        SourceLocation MLoc = mi->getSourceRange().getBegin();
8760        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8761        return;
8762      }
8763    }
8764  }
8765
8766  bool (CXXRecordDecl::*hasTrivial)() const;
8767  switch (member) {
8768  case CXXDefaultConstructor:
8769    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8770  case CXXCopyConstructor:
8771    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8772  case CXXCopyAssignment:
8773    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8774  case CXXDestructor:
8775    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8776  default:
8777    llvm_unreachable("unexpected special member");
8778  }
8779
8780  // Check for nontrivial bases (and recurse).
8781  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8782    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8783    assert(BaseRT && "Don't know how to handle dependent bases");
8784    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8785    if (!(BaseRecTy->*hasTrivial)()) {
8786      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8787      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8788      DiagnoseNontrivial(BaseRT, member);
8789      return;
8790    }
8791  }
8792
8793  // Check for nontrivial members (and recurse).
8794  typedef RecordDecl::field_iterator field_iter;
8795  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8796       ++fi) {
8797    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8798    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8799      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8800
8801      if (!(EltRD->*hasTrivial)()) {
8802        SourceLocation FLoc = (*fi)->getLocation();
8803        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8804        DiagnoseNontrivial(EltRT, member);
8805        return;
8806      }
8807    }
8808
8809    if (EltTy->isObjCLifetimeType()) {
8810      switch (EltTy.getObjCLifetime()) {
8811      case Qualifiers::OCL_None:
8812      case Qualifiers::OCL_ExplicitNone:
8813        break;
8814
8815      case Qualifiers::OCL_Autoreleasing:
8816      case Qualifiers::OCL_Weak:
8817      case Qualifiers::OCL_Strong:
8818        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8819          << QT << EltTy.getObjCLifetime();
8820        return;
8821      }
8822    }
8823  }
8824
8825  llvm_unreachable("found no explanation for non-trivial member");
8826}
8827
8828/// TranslateIvarVisibility - Translate visibility from a token ID to an
8829///  AST enum value.
8830static ObjCIvarDecl::AccessControl
8831TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8832  switch (ivarVisibility) {
8833  default: llvm_unreachable("Unknown visitibility kind");
8834  case tok::objc_private: return ObjCIvarDecl::Private;
8835  case tok::objc_public: return ObjCIvarDecl::Public;
8836  case tok::objc_protected: return ObjCIvarDecl::Protected;
8837  case tok::objc_package: return ObjCIvarDecl::Package;
8838  }
8839}
8840
8841/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8842/// in order to create an IvarDecl object for it.
8843Decl *Sema::ActOnIvar(Scope *S,
8844                                SourceLocation DeclStart,
8845                                Declarator &D, Expr *BitfieldWidth,
8846                                tok::ObjCKeywordKind Visibility) {
8847
8848  IdentifierInfo *II = D.getIdentifier();
8849  Expr *BitWidth = (Expr*)BitfieldWidth;
8850  SourceLocation Loc = DeclStart;
8851  if (II) Loc = D.getIdentifierLoc();
8852
8853  // FIXME: Unnamed fields can be handled in various different ways, for
8854  // example, unnamed unions inject all members into the struct namespace!
8855
8856  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8857  QualType T = TInfo->getType();
8858
8859  if (BitWidth) {
8860    // 6.7.2.1p3, 6.7.2.1p4
8861    if (VerifyBitField(Loc, II, T, BitWidth)) {
8862      D.setInvalidType();
8863      BitWidth = 0;
8864    }
8865  } else {
8866    // Not a bitfield.
8867
8868    // validate II.
8869
8870  }
8871  if (T->isReferenceType()) {
8872    Diag(Loc, diag::err_ivar_reference_type);
8873    D.setInvalidType();
8874  }
8875  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8876  // than a variably modified type.
8877  else if (T->isVariablyModifiedType()) {
8878    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8879    D.setInvalidType();
8880  }
8881
8882  // Get the visibility (access control) for this ivar.
8883  ObjCIvarDecl::AccessControl ac =
8884    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8885                                        : ObjCIvarDecl::None;
8886  // Must set ivar's DeclContext to its enclosing interface.
8887  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8888  ObjCContainerDecl *EnclosingContext;
8889  if (ObjCImplementationDecl *IMPDecl =
8890      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8891    if (!LangOpts.ObjCNonFragileABI2) {
8892    // Case of ivar declared in an implementation. Context is that of its class.
8893      EnclosingContext = IMPDecl->getClassInterface();
8894      assert(EnclosingContext && "Implementation has no class interface!");
8895    }
8896    else
8897      EnclosingContext = EnclosingDecl;
8898  } else {
8899    if (ObjCCategoryDecl *CDecl =
8900        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8901      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8902        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8903        return 0;
8904      }
8905    }
8906    EnclosingContext = EnclosingDecl;
8907  }
8908
8909  // Construct the decl.
8910  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8911                                             DeclStart, Loc, II, T,
8912                                             TInfo, ac, (Expr *)BitfieldWidth);
8913
8914  if (II) {
8915    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8916                                           ForRedeclaration);
8917    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8918        && !isa<TagDecl>(PrevDecl)) {
8919      Diag(Loc, diag::err_duplicate_member) << II;
8920      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8921      NewID->setInvalidDecl();
8922    }
8923  }
8924
8925  // Process attributes attached to the ivar.
8926  ProcessDeclAttributes(S, NewID, D);
8927
8928  if (D.isInvalidType())
8929    NewID->setInvalidDecl();
8930
8931  // In ARC, infer 'retaining' for ivars of retainable type.
8932  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8933    NewID->setInvalidDecl();
8934
8935  if (D.getDeclSpec().isModulePrivateSpecified())
8936    NewID->setModulePrivate();
8937
8938  if (II) {
8939    // FIXME: When interfaces are DeclContexts, we'll need to add
8940    // these to the interface.
8941    S->AddDecl(NewID);
8942    IdResolver.AddDecl(NewID);
8943  }
8944
8945  return NewID;
8946}
8947
8948/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8949/// class and class extensions. For every class @interface and class
8950/// extension @interface, if the last ivar is a bitfield of any type,
8951/// then add an implicit `char :0` ivar to the end of that interface.
8952void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8953                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8954  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8955    return;
8956
8957  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8958  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8959
8960  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
8961    return;
8962  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8963  if (!ID) {
8964    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8965      if (!CD->IsClassExtension())
8966        return;
8967    }
8968    // No need to add this to end of @implementation.
8969    else
8970      return;
8971  }
8972  // All conditions are met. Add a new bitfield to the tail end of ivars.
8973  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8974  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8975
8976  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8977                              DeclLoc, DeclLoc, 0,
8978                              Context.CharTy,
8979                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8980                                                               DeclLoc),
8981                              ObjCIvarDecl::Private, BW,
8982                              true);
8983  AllIvarDecls.push_back(Ivar);
8984}
8985
8986void Sema::ActOnFields(Scope* S,
8987                       SourceLocation RecLoc, Decl *EnclosingDecl,
8988                       llvm::ArrayRef<Decl *> Fields,
8989                       SourceLocation LBrac, SourceLocation RBrac,
8990                       AttributeList *Attr) {
8991  assert(EnclosingDecl && "missing record or interface decl");
8992
8993  // If the decl this is being inserted into is invalid, then it may be a
8994  // redeclaration or some other bogus case.  Don't try to add fields to it.
8995  if (EnclosingDecl->isInvalidDecl())
8996    return;
8997
8998  // Verify that all the fields are okay.
8999  unsigned NumNamedMembers = 0;
9000  SmallVector<FieldDecl*, 32> RecFields;
9001
9002  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9003  bool ARCErrReported = false;
9004  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9005       i != end; ++i) {
9006    FieldDecl *FD = cast<FieldDecl>(*i);
9007
9008    // Get the type for the field.
9009    const Type *FDTy = FD->getType().getTypePtr();
9010
9011    if (!FD->isAnonymousStructOrUnion()) {
9012      // Remember all fields written by the user.
9013      RecFields.push_back(FD);
9014    }
9015
9016    // If the field is already invalid for some reason, don't emit more
9017    // diagnostics about it.
9018    if (FD->isInvalidDecl()) {
9019      EnclosingDecl->setInvalidDecl();
9020      continue;
9021    }
9022
9023    // C99 6.7.2.1p2:
9024    //   A structure or union shall not contain a member with
9025    //   incomplete or function type (hence, a structure shall not
9026    //   contain an instance of itself, but may contain a pointer to
9027    //   an instance of itself), except that the last member of a
9028    //   structure with more than one named member may have incomplete
9029    //   array type; such a structure (and any union containing,
9030    //   possibly recursively, a member that is such a structure)
9031    //   shall not be a member of a structure or an element of an
9032    //   array.
9033    if (FDTy->isFunctionType()) {
9034      // Field declared as a function.
9035      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9036        << FD->getDeclName();
9037      FD->setInvalidDecl();
9038      EnclosingDecl->setInvalidDecl();
9039      continue;
9040    } else if (FDTy->isIncompleteArrayType() && Record &&
9041               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9042                ((getLangOptions().MicrosoftExt ||
9043                  getLangOptions().CPlusPlus) &&
9044                 (i + 1 == Fields.end() || Record->isUnion())))) {
9045      // Flexible array member.
9046      // Microsoft and g++ is more permissive regarding flexible array.
9047      // It will accept flexible array in union and also
9048      // as the sole element of a struct/class.
9049      if (getLangOptions().MicrosoftExt) {
9050        if (Record->isUnion())
9051          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9052            << FD->getDeclName();
9053        else if (Fields.size() == 1)
9054          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9055            << FD->getDeclName() << Record->getTagKind();
9056      } else if (getLangOptions().CPlusPlus) {
9057        if (Record->isUnion())
9058          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9059            << FD->getDeclName();
9060        else if (Fields.size() == 1)
9061          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9062            << FD->getDeclName() << Record->getTagKind();
9063      } else if (NumNamedMembers < 1) {
9064        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9065          << FD->getDeclName();
9066        FD->setInvalidDecl();
9067        EnclosingDecl->setInvalidDecl();
9068        continue;
9069      }
9070      if (!FD->getType()->isDependentType() &&
9071          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9072        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9073          << FD->getDeclName() << FD->getType();
9074        FD->setInvalidDecl();
9075        EnclosingDecl->setInvalidDecl();
9076        continue;
9077      }
9078      // Okay, we have a legal flexible array member at the end of the struct.
9079      if (Record)
9080        Record->setHasFlexibleArrayMember(true);
9081    } else if (!FDTy->isDependentType() &&
9082               RequireCompleteType(FD->getLocation(), FD->getType(),
9083                                   diag::err_field_incomplete)) {
9084      // Incomplete type
9085      FD->setInvalidDecl();
9086      EnclosingDecl->setInvalidDecl();
9087      continue;
9088    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9089      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9090        // If this is a member of a union, then entire union becomes "flexible".
9091        if (Record && Record->isUnion()) {
9092          Record->setHasFlexibleArrayMember(true);
9093        } else {
9094          // If this is a struct/class and this is not the last element, reject
9095          // it.  Note that GCC supports variable sized arrays in the middle of
9096          // structures.
9097          if (i + 1 != Fields.end())
9098            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9099              << FD->getDeclName() << FD->getType();
9100          else {
9101            // We support flexible arrays at the end of structs in
9102            // other structs as an extension.
9103            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9104              << FD->getDeclName();
9105            if (Record)
9106              Record->setHasFlexibleArrayMember(true);
9107          }
9108        }
9109      }
9110      if (Record && FDTTy->getDecl()->hasObjectMember())
9111        Record->setHasObjectMember(true);
9112    } else if (FDTy->isObjCObjectType()) {
9113      /// A field cannot be an Objective-c object
9114      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9115        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9116      QualType T = Context.getObjCObjectPointerType(FD->getType());
9117      FD->setType(T);
9118    }
9119    else if (!getLangOptions().CPlusPlus) {
9120      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9121        // It's an error in ARC if a field has lifetime.
9122        // We don't want to report this in a system header, though,
9123        // so we just make the field unavailable.
9124        // FIXME: that's really not sufficient; we need to make the type
9125        // itself invalid to, say, initialize or copy.
9126        QualType T = FD->getType();
9127        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9128        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9129          SourceLocation loc = FD->getLocation();
9130          if (getSourceManager().isInSystemHeader(loc)) {
9131            if (!FD->hasAttr<UnavailableAttr>()) {
9132              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9133                                "this system field has retaining ownership"));
9134            }
9135          } else {
9136            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9137          }
9138          ARCErrReported = true;
9139        }
9140      }
9141      else if (getLangOptions().ObjC1 &&
9142               getLangOptions().getGC() != LangOptions::NonGC &&
9143               Record && !Record->hasObjectMember()) {
9144        if (FD->getType()->isObjCObjectPointerType() ||
9145            FD->getType().isObjCGCStrong())
9146          Record->setHasObjectMember(true);
9147        else if (Context.getAsArrayType(FD->getType())) {
9148          QualType BaseType = Context.getBaseElementType(FD->getType());
9149          if (BaseType->isRecordType() &&
9150              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9151            Record->setHasObjectMember(true);
9152          else if (BaseType->isObjCObjectPointerType() ||
9153                   BaseType.isObjCGCStrong())
9154                 Record->setHasObjectMember(true);
9155        }
9156      }
9157    }
9158    // Keep track of the number of named members.
9159    if (FD->getIdentifier())
9160      ++NumNamedMembers;
9161  }
9162
9163  // Okay, we successfully defined 'Record'.
9164  if (Record) {
9165    bool Completed = false;
9166    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9167      if (!CXXRecord->isInvalidDecl()) {
9168        // Set access bits correctly on the directly-declared conversions.
9169        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9170        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9171             I != E; ++I)
9172          Convs->setAccess(I, (*I)->getAccess());
9173
9174        if (!CXXRecord->isDependentType()) {
9175          // Objective-C Automatic Reference Counting:
9176          //   If a class has a non-static data member of Objective-C pointer
9177          //   type (or array thereof), it is a non-POD type and its
9178          //   default constructor (if any), copy constructor, copy assignment
9179          //   operator, and destructor are non-trivial.
9180          //
9181          // This rule is also handled by CXXRecordDecl::completeDefinition().
9182          // However, here we check whether this particular class is only
9183          // non-POD because of the presence of an Objective-C pointer member.
9184          // If so, objects of this type cannot be shared between code compiled
9185          // with instant objects and code compiled with manual retain/release.
9186          if (getLangOptions().ObjCAutoRefCount &&
9187              CXXRecord->hasObjectMember() &&
9188              CXXRecord->getLinkage() == ExternalLinkage) {
9189            if (CXXRecord->isPOD()) {
9190              Diag(CXXRecord->getLocation(),
9191                   diag::warn_arc_non_pod_class_with_object_member)
9192               << CXXRecord;
9193            } else {
9194              // FIXME: Fix-Its would be nice here, but finding a good location
9195              // for them is going to be tricky.
9196              if (CXXRecord->hasTrivialCopyConstructor())
9197                Diag(CXXRecord->getLocation(),
9198                     diag::warn_arc_trivial_member_function_with_object_member)
9199                  << CXXRecord << 0;
9200              if (CXXRecord->hasTrivialCopyAssignment())
9201                Diag(CXXRecord->getLocation(),
9202                     diag::warn_arc_trivial_member_function_with_object_member)
9203                << CXXRecord << 1;
9204              if (CXXRecord->hasTrivialDestructor())
9205                Diag(CXXRecord->getLocation(),
9206                     diag::warn_arc_trivial_member_function_with_object_member)
9207                << CXXRecord << 2;
9208            }
9209          }
9210
9211          // Adjust user-defined destructor exception spec.
9212          if (getLangOptions().CPlusPlus0x &&
9213              CXXRecord->hasUserDeclaredDestructor())
9214            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9215
9216          // Add any implicitly-declared members to this class.
9217          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9218
9219          // If we have virtual base classes, we may end up finding multiple
9220          // final overriders for a given virtual function. Check for this
9221          // problem now.
9222          if (CXXRecord->getNumVBases()) {
9223            CXXFinalOverriderMap FinalOverriders;
9224            CXXRecord->getFinalOverriders(FinalOverriders);
9225
9226            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9227                                             MEnd = FinalOverriders.end();
9228                 M != MEnd; ++M) {
9229              for (OverridingMethods::iterator SO = M->second.begin(),
9230                                            SOEnd = M->second.end();
9231                   SO != SOEnd; ++SO) {
9232                assert(SO->second.size() > 0 &&
9233                       "Virtual function without overridding functions?");
9234                if (SO->second.size() == 1)
9235                  continue;
9236
9237                // C++ [class.virtual]p2:
9238                //   In a derived class, if a virtual member function of a base
9239                //   class subobject has more than one final overrider the
9240                //   program is ill-formed.
9241                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9242                  << (NamedDecl *)M->first << Record;
9243                Diag(M->first->getLocation(),
9244                     diag::note_overridden_virtual_function);
9245                for (OverridingMethods::overriding_iterator
9246                          OM = SO->second.begin(),
9247                       OMEnd = SO->second.end();
9248                     OM != OMEnd; ++OM)
9249                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9250                    << (NamedDecl *)M->first << OM->Method->getParent();
9251
9252                Record->setInvalidDecl();
9253              }
9254            }
9255            CXXRecord->completeDefinition(&FinalOverriders);
9256            Completed = true;
9257          }
9258        }
9259      }
9260    }
9261
9262    if (!Completed)
9263      Record->completeDefinition();
9264
9265    // Now that the record is complete, do any delayed exception spec checks
9266    // we were missing.
9267    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9268      const CXXDestructorDecl *Dtor =
9269              DelayedDestructorExceptionSpecChecks.back().first;
9270      if (Dtor->getParent() != Record)
9271        break;
9272
9273      assert(!Dtor->getParent()->isDependentType() &&
9274          "Should not ever add destructors of templates into the list.");
9275      CheckOverridingFunctionExceptionSpec(Dtor,
9276          DelayedDestructorExceptionSpecChecks.back().second);
9277      DelayedDestructorExceptionSpecChecks.pop_back();
9278    }
9279
9280  } else {
9281    ObjCIvarDecl **ClsFields =
9282      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9283    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9284      ID->setLocEnd(RBrac);
9285      // Add ivar's to class's DeclContext.
9286      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9287        ClsFields[i]->setLexicalDeclContext(ID);
9288        ID->addDecl(ClsFields[i]);
9289      }
9290      // Must enforce the rule that ivars in the base classes may not be
9291      // duplicates.
9292      if (ID->getSuperClass())
9293        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9294    } else if (ObjCImplementationDecl *IMPDecl =
9295                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9296      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9297      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9298        // Ivar declared in @implementation never belongs to the implementation.
9299        // Only it is in implementation's lexical context.
9300        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9301      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9302    } else if (ObjCCategoryDecl *CDecl =
9303                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9304      // case of ivars in class extension; all other cases have been
9305      // reported as errors elsewhere.
9306      // FIXME. Class extension does not have a LocEnd field.
9307      // CDecl->setLocEnd(RBrac);
9308      // Add ivar's to class extension's DeclContext.
9309      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9310        ClsFields[i]->setLexicalDeclContext(CDecl);
9311        CDecl->addDecl(ClsFields[i]);
9312      }
9313    }
9314  }
9315
9316  if (Attr)
9317    ProcessDeclAttributeList(S, Record, Attr);
9318
9319  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9320  // set the visibility of this record.
9321  if (Record && !Record->getDeclContext()->isRecord())
9322    AddPushedVisibilityAttribute(Record);
9323}
9324
9325/// \brief Determine whether the given integral value is representable within
9326/// the given type T.
9327static bool isRepresentableIntegerValue(ASTContext &Context,
9328                                        llvm::APSInt &Value,
9329                                        QualType T) {
9330  assert(T->isIntegralType(Context) && "Integral type required!");
9331  unsigned BitWidth = Context.getIntWidth(T);
9332
9333  if (Value.isUnsigned() || Value.isNonNegative()) {
9334    if (T->isSignedIntegerOrEnumerationType())
9335      --BitWidth;
9336    return Value.getActiveBits() <= BitWidth;
9337  }
9338  return Value.getMinSignedBits() <= BitWidth;
9339}
9340
9341// \brief Given an integral type, return the next larger integral type
9342// (or a NULL type of no such type exists).
9343static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9344  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9345  // enum checking below.
9346  assert(T->isIntegralType(Context) && "Integral type required!");
9347  const unsigned NumTypes = 4;
9348  QualType SignedIntegralTypes[NumTypes] = {
9349    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9350  };
9351  QualType UnsignedIntegralTypes[NumTypes] = {
9352    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9353    Context.UnsignedLongLongTy
9354  };
9355
9356  unsigned BitWidth = Context.getTypeSize(T);
9357  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9358                                                        : UnsignedIntegralTypes;
9359  for (unsigned I = 0; I != NumTypes; ++I)
9360    if (Context.getTypeSize(Types[I]) > BitWidth)
9361      return Types[I];
9362
9363  return QualType();
9364}
9365
9366EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9367                                          EnumConstantDecl *LastEnumConst,
9368                                          SourceLocation IdLoc,
9369                                          IdentifierInfo *Id,
9370                                          Expr *Val) {
9371  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9372  llvm::APSInt EnumVal(IntWidth);
9373  QualType EltTy;
9374
9375  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9376    Val = 0;
9377
9378  if (Val) {
9379    if (Enum->isDependentType() || Val->isTypeDependent())
9380      EltTy = Context.DependentTy;
9381    else {
9382      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9383      SourceLocation ExpLoc;
9384      if (!Val->isValueDependent() &&
9385          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9386        Val = 0;
9387      } else {
9388        if (!getLangOptions().CPlusPlus) {
9389          // C99 6.7.2.2p2:
9390          //   The expression that defines the value of an enumeration constant
9391          //   shall be an integer constant expression that has a value
9392          //   representable as an int.
9393
9394          // Complain if the value is not representable in an int.
9395          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9396            Diag(IdLoc, diag::ext_enum_value_not_int)
9397              << EnumVal.toString(10) << Val->getSourceRange()
9398              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9399          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9400            // Force the type of the expression to 'int'.
9401            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9402          }
9403        }
9404
9405        if (Enum->isFixed()) {
9406          EltTy = Enum->getIntegerType();
9407
9408          // C++0x [dcl.enum]p5:
9409          //   ... if the initializing value of an enumerator cannot be
9410          //   represented by the underlying type, the program is ill-formed.
9411          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9412            if (getLangOptions().MicrosoftExt) {
9413              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9414              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9415            } else
9416              Diag(IdLoc, diag::err_enumerator_too_large)
9417                << EltTy;
9418          } else
9419            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9420        }
9421        else {
9422          // C++0x [dcl.enum]p5:
9423          //   If the underlying type is not fixed, the type of each enumerator
9424          //   is the type of its initializing value:
9425          //     - If an initializer is specified for an enumerator, the
9426          //       initializing value has the same type as the expression.
9427          EltTy = Val->getType();
9428        }
9429      }
9430    }
9431  }
9432
9433  if (!Val) {
9434    if (Enum->isDependentType())
9435      EltTy = Context.DependentTy;
9436    else if (!LastEnumConst) {
9437      // C++0x [dcl.enum]p5:
9438      //   If the underlying type is not fixed, the type of each enumerator
9439      //   is the type of its initializing value:
9440      //     - If no initializer is specified for the first enumerator, the
9441      //       initializing value has an unspecified integral type.
9442      //
9443      // GCC uses 'int' for its unspecified integral type, as does
9444      // C99 6.7.2.2p3.
9445      if (Enum->isFixed()) {
9446        EltTy = Enum->getIntegerType();
9447      }
9448      else {
9449        EltTy = Context.IntTy;
9450      }
9451    } else {
9452      // Assign the last value + 1.
9453      EnumVal = LastEnumConst->getInitVal();
9454      ++EnumVal;
9455      EltTy = LastEnumConst->getType();
9456
9457      // Check for overflow on increment.
9458      if (EnumVal < LastEnumConst->getInitVal()) {
9459        // C++0x [dcl.enum]p5:
9460        //   If the underlying type is not fixed, the type of each enumerator
9461        //   is the type of its initializing value:
9462        //
9463        //     - Otherwise the type of the initializing value is the same as
9464        //       the type of the initializing value of the preceding enumerator
9465        //       unless the incremented value is not representable in that type,
9466        //       in which case the type is an unspecified integral type
9467        //       sufficient to contain the incremented value. If no such type
9468        //       exists, the program is ill-formed.
9469        QualType T = getNextLargerIntegralType(Context, EltTy);
9470        if (T.isNull() || Enum->isFixed()) {
9471          // There is no integral type larger enough to represent this
9472          // value. Complain, then allow the value to wrap around.
9473          EnumVal = LastEnumConst->getInitVal();
9474          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9475          ++EnumVal;
9476          if (Enum->isFixed())
9477            // When the underlying type is fixed, this is ill-formed.
9478            Diag(IdLoc, diag::err_enumerator_wrapped)
9479              << EnumVal.toString(10)
9480              << EltTy;
9481          else
9482            Diag(IdLoc, diag::warn_enumerator_too_large)
9483              << EnumVal.toString(10);
9484        } else {
9485          EltTy = T;
9486        }
9487
9488        // Retrieve the last enumerator's value, extent that type to the
9489        // type that is supposed to be large enough to represent the incremented
9490        // value, then increment.
9491        EnumVal = LastEnumConst->getInitVal();
9492        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9493        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9494        ++EnumVal;
9495
9496        // If we're not in C++, diagnose the overflow of enumerator values,
9497        // which in C99 means that the enumerator value is not representable in
9498        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9499        // permits enumerator values that are representable in some larger
9500        // integral type.
9501        if (!getLangOptions().CPlusPlus && !T.isNull())
9502          Diag(IdLoc, diag::warn_enum_value_overflow);
9503      } else if (!getLangOptions().CPlusPlus &&
9504                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9505        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9506        Diag(IdLoc, diag::ext_enum_value_not_int)
9507          << EnumVal.toString(10) << 1;
9508      }
9509    }
9510  }
9511
9512  if (!EltTy->isDependentType()) {
9513    // Make the enumerator value match the signedness and size of the
9514    // enumerator's type.
9515    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9516    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9517  }
9518
9519  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9520                                  Val, EnumVal);
9521}
9522
9523
9524Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9525                              SourceLocation IdLoc, IdentifierInfo *Id,
9526                              AttributeList *Attr,
9527                              SourceLocation EqualLoc, Expr *val) {
9528  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9529  EnumConstantDecl *LastEnumConst =
9530    cast_or_null<EnumConstantDecl>(lastEnumConst);
9531  Expr *Val = static_cast<Expr*>(val);
9532
9533  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9534  // we find one that is.
9535  S = getNonFieldDeclScope(S);
9536
9537  // Verify that there isn't already something declared with this name in this
9538  // scope.
9539  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9540                                         ForRedeclaration);
9541  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9542    // Maybe we will complain about the shadowed template parameter.
9543    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9544    // Just pretend that we didn't see the previous declaration.
9545    PrevDecl = 0;
9546  }
9547
9548  if (PrevDecl) {
9549    // When in C++, we may get a TagDecl with the same name; in this case the
9550    // enum constant will 'hide' the tag.
9551    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9552           "Received TagDecl when not in C++!");
9553    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9554      if (isa<EnumConstantDecl>(PrevDecl))
9555        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9556      else
9557        Diag(IdLoc, diag::err_redefinition) << Id;
9558      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9559      return 0;
9560    }
9561  }
9562
9563  // C++ [class.mem]p13:
9564  //   If T is the name of a class, then each of the following shall have a
9565  //   name different from T:
9566  //     - every enumerator of every member of class T that is an enumerated
9567  //       type
9568  if (CXXRecordDecl *Record
9569                      = dyn_cast<CXXRecordDecl>(
9570                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9571    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9572      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9573
9574  EnumConstantDecl *New =
9575    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9576
9577  if (New) {
9578    // Process attributes.
9579    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9580
9581    // Register this decl in the current scope stack.
9582    New->setAccess(TheEnumDecl->getAccess());
9583    PushOnScopeChains(New, S);
9584  }
9585
9586  return New;
9587}
9588
9589void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9590                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9591                         Decl **Elements, unsigned NumElements,
9592                         Scope *S, AttributeList *Attr) {
9593  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9594  QualType EnumType = Context.getTypeDeclType(Enum);
9595
9596  if (Attr)
9597    ProcessDeclAttributeList(S, Enum, Attr);
9598
9599  if (Enum->isDependentType()) {
9600    for (unsigned i = 0; i != NumElements; ++i) {
9601      EnumConstantDecl *ECD =
9602        cast_or_null<EnumConstantDecl>(Elements[i]);
9603      if (!ECD) continue;
9604
9605      ECD->setType(EnumType);
9606    }
9607
9608    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9609    return;
9610  }
9611
9612  // TODO: If the result value doesn't fit in an int, it must be a long or long
9613  // long value.  ISO C does not support this, but GCC does as an extension,
9614  // emit a warning.
9615  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9616  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9617  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9618
9619  // Verify that all the values are okay, compute the size of the values, and
9620  // reverse the list.
9621  unsigned NumNegativeBits = 0;
9622  unsigned NumPositiveBits = 0;
9623
9624  // Keep track of whether all elements have type int.
9625  bool AllElementsInt = true;
9626
9627  for (unsigned i = 0; i != NumElements; ++i) {
9628    EnumConstantDecl *ECD =
9629      cast_or_null<EnumConstantDecl>(Elements[i]);
9630    if (!ECD) continue;  // Already issued a diagnostic.
9631
9632    const llvm::APSInt &InitVal = ECD->getInitVal();
9633
9634    // Keep track of the size of positive and negative values.
9635    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9636      NumPositiveBits = std::max(NumPositiveBits,
9637                                 (unsigned)InitVal.getActiveBits());
9638    else
9639      NumNegativeBits = std::max(NumNegativeBits,
9640                                 (unsigned)InitVal.getMinSignedBits());
9641
9642    // Keep track of whether every enum element has type int (very commmon).
9643    if (AllElementsInt)
9644      AllElementsInt = ECD->getType() == Context.IntTy;
9645  }
9646
9647  // Figure out the type that should be used for this enum.
9648  QualType BestType;
9649  unsigned BestWidth;
9650
9651  // C++0x N3000 [conv.prom]p3:
9652  //   An rvalue of an unscoped enumeration type whose underlying
9653  //   type is not fixed can be converted to an rvalue of the first
9654  //   of the following types that can represent all the values of
9655  //   the enumeration: int, unsigned int, long int, unsigned long
9656  //   int, long long int, or unsigned long long int.
9657  // C99 6.4.4.3p2:
9658  //   An identifier declared as an enumeration constant has type int.
9659  // The C99 rule is modified by a gcc extension
9660  QualType BestPromotionType;
9661
9662  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9663  // -fshort-enums is the equivalent to specifying the packed attribute on all
9664  // enum definitions.
9665  if (LangOpts.ShortEnums)
9666    Packed = true;
9667
9668  if (Enum->isFixed()) {
9669    BestType = BestPromotionType = Enum->getIntegerType();
9670    // We don't need to set BestWidth, because BestType is going to be the type
9671    // of the enumerators, but we do anyway because otherwise some compilers
9672    // warn that it might be used uninitialized.
9673    BestWidth = CharWidth;
9674  }
9675  else if (NumNegativeBits) {
9676    // If there is a negative value, figure out the smallest integer type (of
9677    // int/long/longlong) that fits.
9678    // If it's packed, check also if it fits a char or a short.
9679    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9680      BestType = Context.SignedCharTy;
9681      BestWidth = CharWidth;
9682    } else if (Packed && NumNegativeBits <= ShortWidth &&
9683               NumPositiveBits < ShortWidth) {
9684      BestType = Context.ShortTy;
9685      BestWidth = ShortWidth;
9686    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9687      BestType = Context.IntTy;
9688      BestWidth = IntWidth;
9689    } else {
9690      BestWidth = Context.getTargetInfo().getLongWidth();
9691
9692      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9693        BestType = Context.LongTy;
9694      } else {
9695        BestWidth = Context.getTargetInfo().getLongLongWidth();
9696
9697        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9698          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9699        BestType = Context.LongLongTy;
9700      }
9701    }
9702    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9703  } else {
9704    // If there is no negative value, figure out the smallest type that fits
9705    // all of the enumerator values.
9706    // If it's packed, check also if it fits a char or a short.
9707    if (Packed && NumPositiveBits <= CharWidth) {
9708      BestType = Context.UnsignedCharTy;
9709      BestPromotionType = Context.IntTy;
9710      BestWidth = CharWidth;
9711    } else if (Packed && NumPositiveBits <= ShortWidth) {
9712      BestType = Context.UnsignedShortTy;
9713      BestPromotionType = Context.IntTy;
9714      BestWidth = ShortWidth;
9715    } else if (NumPositiveBits <= IntWidth) {
9716      BestType = Context.UnsignedIntTy;
9717      BestWidth = IntWidth;
9718      BestPromotionType
9719        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9720                           ? Context.UnsignedIntTy : Context.IntTy;
9721    } else if (NumPositiveBits <=
9722               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9723      BestType = Context.UnsignedLongTy;
9724      BestPromotionType
9725        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9726                           ? Context.UnsignedLongTy : Context.LongTy;
9727    } else {
9728      BestWidth = Context.getTargetInfo().getLongLongWidth();
9729      assert(NumPositiveBits <= BestWidth &&
9730             "How could an initializer get larger than ULL?");
9731      BestType = Context.UnsignedLongLongTy;
9732      BestPromotionType
9733        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9734                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9735    }
9736  }
9737
9738  // Loop over all of the enumerator constants, changing their types to match
9739  // the type of the enum if needed.
9740  for (unsigned i = 0; i != NumElements; ++i) {
9741    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9742    if (!ECD) continue;  // Already issued a diagnostic.
9743
9744    // Standard C says the enumerators have int type, but we allow, as an
9745    // extension, the enumerators to be larger than int size.  If each
9746    // enumerator value fits in an int, type it as an int, otherwise type it the
9747    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9748    // that X has type 'int', not 'unsigned'.
9749
9750    // Determine whether the value fits into an int.
9751    llvm::APSInt InitVal = ECD->getInitVal();
9752
9753    // If it fits into an integer type, force it.  Otherwise force it to match
9754    // the enum decl type.
9755    QualType NewTy;
9756    unsigned NewWidth;
9757    bool NewSign;
9758    if (!getLangOptions().CPlusPlus &&
9759        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9760      NewTy = Context.IntTy;
9761      NewWidth = IntWidth;
9762      NewSign = true;
9763    } else if (ECD->getType() == BestType) {
9764      // Already the right type!
9765      if (getLangOptions().CPlusPlus)
9766        // C++ [dcl.enum]p4: Following the closing brace of an
9767        // enum-specifier, each enumerator has the type of its
9768        // enumeration.
9769        ECD->setType(EnumType);
9770      continue;
9771    } else {
9772      NewTy = BestType;
9773      NewWidth = BestWidth;
9774      NewSign = BestType->isSignedIntegerOrEnumerationType();
9775    }
9776
9777    // Adjust the APSInt value.
9778    InitVal = InitVal.extOrTrunc(NewWidth);
9779    InitVal.setIsSigned(NewSign);
9780    ECD->setInitVal(InitVal);
9781
9782    // Adjust the Expr initializer and type.
9783    if (ECD->getInitExpr() &&
9784        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9785      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9786                                                CK_IntegralCast,
9787                                                ECD->getInitExpr(),
9788                                                /*base paths*/ 0,
9789                                                VK_RValue));
9790    if (getLangOptions().CPlusPlus)
9791      // C++ [dcl.enum]p4: Following the closing brace of an
9792      // enum-specifier, each enumerator has the type of its
9793      // enumeration.
9794      ECD->setType(EnumType);
9795    else
9796      ECD->setType(NewTy);
9797  }
9798
9799  Enum->completeDefinition(BestType, BestPromotionType,
9800                           NumPositiveBits, NumNegativeBits);
9801}
9802
9803Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9804                                  SourceLocation StartLoc,
9805                                  SourceLocation EndLoc) {
9806  StringLiteral *AsmString = cast<StringLiteral>(expr);
9807
9808  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9809                                                   AsmString, StartLoc,
9810                                                   EndLoc);
9811  CurContext->addDecl(New);
9812  return New;
9813}
9814
9815DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9816                                   IdentifierInfo &ModuleName,
9817                                   SourceLocation ModuleNameLoc) {
9818  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9819                                                     ModuleName, ModuleNameLoc);
9820  if (!Module)
9821    return true;
9822
9823  // FIXME: Actually create a declaration to describe the module import.
9824  (void)Module;
9825  return DeclResult((Decl *)0);
9826}
9827
9828void
9829Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9830                                         SourceLocation ModulePrivateKeyword) {
9831  assert(!Old->isModulePrivate() && "Old is module-private!");
9832
9833  Diag(New->getLocation(), diag::err_module_private_follows_public)
9834    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9835  Diag(Old->getLocation(), diag::note_previous_declaration)
9836    << Old->getDeclName();
9837
9838  // Drop the __module_private__ from the new declaration, since it's invalid.
9839  New->setModulePrivate(false);
9840}
9841
9842void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9843                             SourceLocation PragmaLoc,
9844                             SourceLocation NameLoc) {
9845  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9846
9847  if (PrevDecl) {
9848    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9849  } else {
9850    (void)WeakUndeclaredIdentifiers.insert(
9851      std::pair<IdentifierInfo*,WeakInfo>
9852        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9853  }
9854}
9855
9856void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9857                                IdentifierInfo* AliasName,
9858                                SourceLocation PragmaLoc,
9859                                SourceLocation NameLoc,
9860                                SourceLocation AliasNameLoc) {
9861  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9862                                    LookupOrdinaryName);
9863  WeakInfo W = WeakInfo(Name, NameLoc);
9864
9865  if (PrevDecl) {
9866    if (!PrevDecl->hasAttr<AliasAttr>())
9867      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9868        DeclApplyPragmaWeak(TUScope, ND, W);
9869  } else {
9870    (void)WeakUndeclaredIdentifiers.insert(
9871      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9872  }
9873}
9874
9875Decl *Sema::getObjCDeclContext() const {
9876  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9877}
9878
9879AvailabilityResult Sema::getCurContextAvailability() const {
9880  const Decl *D = cast<Decl>(getCurLexicalContext());
9881  // A category implicitly has the availability of the interface.
9882  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9883    D = CatD->getClassInterface();
9884
9885  return D->getAvailability();
9886}
9887