SemaDecl.cpp revision 14b6ba77710d6431794d65c7d58c6f29c3dc956e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName, bool HasTrailingDot,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    if (!HasTrailingDot)
197      T = Context.getObjCInterfaceType(IDecl);
198  }
199
200  if (T.isNull()) {
201    // If it's not plausibly a type, suppress diagnostics.
202    Result.suppressDiagnostics();
203    return ParsedType();
204  }
205  return ParsedType::make(T);
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   ParsedType &SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = ParsedType();
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
286                       Name, ParsedType(), true, TemplateResult,
287                       MemberOfUnknownSpecialization) == TNK_Type_template) {
288      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
289      Diag(IILoc, diag::err_template_missing_args) << TplName;
290      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
291        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
292          << TplDecl->getTemplateParameters()->getSourceRange();
293      }
294      return true;
295    }
296  }
297
298  // FIXME: Should we move the logic that tries to recover from a missing tag
299  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
300
301  if (!SS || (!SS->isSet() && !SS->isInvalid()))
302    Diag(IILoc, diag::err_unknown_typename) << &II;
303  else if (DeclContext *DC = computeDeclContext(*SS, false))
304    Diag(IILoc, diag::err_typename_nested_not_found)
305      << &II << DC << SS->getRange();
306  else if (isDependentScopeSpecifier(*SS)) {
307    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
308      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
309      << SourceRange(SS->getRange().getBegin(), IILoc)
310      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
311    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
312  } else {
313    assert(SS && SS->isInvalid() &&
314           "Invalid scope specifier has already been diagnosed");
315  }
316
317  return true;
318}
319
320// Determines the context to return to after temporarily entering a
321// context.  This depends in an unnecessarily complicated way on the
322// exact ordering of callbacks from the parser.
323DeclContext *Sema::getContainingDC(DeclContext *DC) {
324
325  // Functions defined inline within classes aren't parsed until we've
326  // finished parsing the top-level class, so the top-level class is
327  // the context we'll need to return to.
328  if (isa<FunctionDecl>(DC)) {
329    DC = DC->getLexicalParent();
330
331    // A function not defined within a class will always return to its
332    // lexical context.
333    if (!isa<CXXRecordDecl>(DC))
334      return DC;
335
336    // A C++ inline method/friend is parsed *after* the topmost class
337    // it was declared in is fully parsed ("complete");  the topmost
338    // class is the context we need to return to.
339    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
340      DC = RD;
341
342    // Return the declaration context of the topmost class the inline method is
343    // declared in.
344    return DC;
345  }
346
347  // ObjCMethodDecls are parsed (for some reason) outside the context
348  // of the class.
349  if (isa<ObjCMethodDecl>(DC))
350    return DC->getLexicalParent()->getLexicalParent();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366  assert(CurContext && "Popped translation unit!");
367}
368
369/// EnterDeclaratorContext - Used when we must lookup names in the context
370/// of a declarator's nested name specifier.
371///
372void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
373  // C++0x [basic.lookup.unqual]p13:
374  //   A name used in the definition of a static data member of class
375  //   X (after the qualified-id of the static member) is looked up as
376  //   if the name was used in a member function of X.
377  // C++0x [basic.lookup.unqual]p14:
378  //   If a variable member of a namespace is defined outside of the
379  //   scope of its namespace then any name used in the definition of
380  //   the variable member (after the declarator-id) is looked up as
381  //   if the definition of the variable member occurred in its
382  //   namespace.
383  // Both of these imply that we should push a scope whose context
384  // is the semantic context of the declaration.  We can't use
385  // PushDeclContext here because that context is not necessarily
386  // lexically contained in the current context.  Fortunately,
387  // the containing scope should have the appropriate information.
388
389  assert(!S->getEntity() && "scope already has entity");
390
391#ifndef NDEBUG
392  Scope *Ancestor = S->getParent();
393  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
394  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
395#endif
396
397  CurContext = DC;
398  S->setEntity(DC);
399}
400
401void Sema::ExitDeclaratorContext(Scope *S) {
402  assert(S->getEntity() == CurContext && "Context imbalance!");
403
404  // Switch back to the lexical context.  The safety of this is
405  // enforced by an assert in EnterDeclaratorContext.
406  Scope *Ancestor = S->getParent();
407  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
408  CurContext = (DeclContext*) Ancestor->getEntity();
409
410  // We don't need to do anything with the scope, which is going to
411  // disappear.
412}
413
414/// \brief Determine whether we allow overloading of the function
415/// PrevDecl with another declaration.
416///
417/// This routine determines whether overloading is possible, not
418/// whether some new function is actually an overload. It will return
419/// true in C++ (where we can always provide overloads) or, as an
420/// extension, in C when the previous function is already an
421/// overloaded function declaration or has the "overloadable"
422/// attribute.
423static bool AllowOverloadingOfFunction(LookupResult &Previous,
424                                       ASTContext &Context) {
425  if (Context.getLangOptions().CPlusPlus)
426    return true;
427
428  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
429    return true;
430
431  return (Previous.getResultKind() == LookupResult::Found
432          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
433}
434
435/// Add this decl to the scope shadowed decl chains.
436void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
437  // Move up the scope chain until we find the nearest enclosing
438  // non-transparent context. The declaration will be introduced into this
439  // scope.
440  while (S->getEntity() &&
441         ((DeclContext *)S->getEntity())->isTransparentContext())
442    S = S->getParent();
443
444  // Add scoped declarations into their context, so that they can be
445  // found later. Declarations without a context won't be inserted
446  // into any context.
447  if (AddToContext)
448    CurContext->addDecl(D);
449
450  // Out-of-line definitions shouldn't be pushed into scope in C++.
451  // Out-of-line variable and function definitions shouldn't even in C.
452  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
453      D->isOutOfLine())
454    return;
455
456  // Template instantiations should also not be pushed into scope.
457  if (isa<FunctionDecl>(D) &&
458      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
459    return;
460
461  // If this replaces anything in the current scope,
462  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
463                               IEnd = IdResolver.end();
464  for (; I != IEnd; ++I) {
465    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
466      S->RemoveDecl(*I);
467      IdResolver.RemoveDecl(*I);
468
469      // Should only need to replace one decl.
470      break;
471    }
472  }
473
474  S->AddDecl(D);
475  IdResolver.AddDecl(D);
476}
477
478bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
479  return IdResolver.isDeclInScope(D, Ctx, Context, S);
480}
481
482Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
483  DeclContext *TargetDC = DC->getPrimaryContext();
484  do {
485    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
486      if (ScopeDC->getPrimaryContext() == TargetDC)
487        return S;
488  } while ((S = S->getParent()));
489
490  return 0;
491}
492
493static bool isOutOfScopePreviousDeclaration(NamedDecl *,
494                                            DeclContext*,
495                                            ASTContext&);
496
497/// Filters out lookup results that don't fall within the given scope
498/// as determined by isDeclInScope.
499static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
500                                 DeclContext *Ctx, Scope *S,
501                                 bool ConsiderLinkage) {
502  LookupResult::Filter F = R.makeFilter();
503  while (F.hasNext()) {
504    NamedDecl *D = F.next();
505
506    if (SemaRef.isDeclInScope(D, Ctx, S))
507      continue;
508
509    if (ConsiderLinkage &&
510        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
511      continue;
512
513    F.erase();
514  }
515
516  F.done();
517}
518
519static bool isUsingDecl(NamedDecl *D) {
520  return isa<UsingShadowDecl>(D) ||
521         isa<UnresolvedUsingTypenameDecl>(D) ||
522         isa<UnresolvedUsingValueDecl>(D);
523}
524
525/// Removes using shadow declarations from the lookup results.
526static void RemoveUsingDecls(LookupResult &R) {
527  LookupResult::Filter F = R.makeFilter();
528  while (F.hasNext())
529    if (isUsingDecl(F.next()))
530      F.erase();
531
532  F.done();
533}
534
535/// \brief Check for this common pattern:
536/// @code
537/// class S {
538///   S(const S&); // DO NOT IMPLEMENT
539///   void operator=(const S&); // DO NOT IMPLEMENT
540/// };
541/// @endcode
542static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
543  // FIXME: Should check for private access too but access is set after we get
544  // the decl here.
545  if (D->isThisDeclarationADefinition())
546    return false;
547
548  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
549    return CD->isCopyConstructor();
550  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
551    return Method->isCopyAssignmentOperator();
552  return false;
553}
554
555bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
556  assert(D);
557
558  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
559    return false;
560
561  // Ignore class templates.
562  if (D->getDeclContext()->isDependentContext() ||
563      D->getLexicalDeclContext()->isDependentContext())
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition() &&
581        Context.DeclMustBeEmitted(FD))
582      return false;
583
584  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
585    if (!VD->isFileVarDecl() ||
586        VD->getType().isConstant(Context) ||
587        Context.DeclMustBeEmitted(VD))
588      return false;
589
590    if (VD->isStaticDataMember() &&
591        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
592      return false;
593
594  } else {
595    return false;
596  }
597
598  // Only warn for unused decls internal to the translation unit.
599  if (D->getLinkage() == ExternalLinkage)
600    return false;
601
602  return true;
603}
604
605void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
606  if (!D)
607    return;
608
609  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
610    const FunctionDecl *First = FD->getFirstDeclaration();
611    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
612      return; // First should already be in the vector.
613  }
614
615  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
616    const VarDecl *First = VD->getFirstDeclaration();
617    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
618      return; // First should already be in the vector.
619  }
620
621   if (ShouldWarnIfUnusedFileScopedDecl(D))
622     UnusedFileScopedDecls.push_back(D);
623 }
624
625static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
626  if (D->isInvalidDecl())
627    return false;
628
629  if (D->isUsed() || D->hasAttr<UnusedAttr>())
630    return false;
631
632  // White-list anything that isn't a local variable.
633  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
634      !D->getDeclContext()->isFunctionOrMethod())
635    return false;
636
637  // Types of valid local variables should be complete, so this should succeed.
638  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
639
640    // White-list anything with an __attribute__((unused)) type.
641    QualType Ty = VD->getType();
642
643    // Only look at the outermost level of typedef.
644    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
645      if (TT->getDecl()->hasAttr<UnusedAttr>())
646        return false;
647    }
648
649    // If we failed to complete the type for some reason, or if the type is
650    // dependent, don't diagnose the variable.
651    if (Ty->isIncompleteType() || Ty->isDependentType())
652      return false;
653
654    if (const TagType *TT = Ty->getAs<TagType>()) {
655      const TagDecl *Tag = TT->getDecl();
656      if (Tag->hasAttr<UnusedAttr>())
657        return false;
658
659      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
660        // FIXME: Checking for the presence of a user-declared constructor
661        // isn't completely accurate; we'd prefer to check that the initializer
662        // has no side effects.
663        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
664          return false;
665      }
666    }
667
668    // TODO: __attribute__((unused)) templates?
669  }
670
671  return true;
672}
673
674void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
675  if (!ShouldDiagnoseUnusedDecl(D))
676    return;
677
678  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
679    Diag(D->getLocation(), diag::warn_unused_exception_param)
680    << D->getDeclName();
681  else
682    Diag(D->getLocation(), diag::warn_unused_variable)
683    << D->getDeclName();
684}
685
686void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
687  if (S->decl_empty()) return;
688  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
689         "Scope shouldn't contain decls!");
690
691  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
692       I != E; ++I) {
693    Decl *TmpD = (*I);
694    assert(TmpD && "This decl didn't get pushed??");
695
696    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
697    NamedDecl *D = cast<NamedDecl>(TmpD);
698
699    if (!D->getDeclName()) continue;
700
701    // Diagnose unused variables in this scope.
702    if (!S->hasErrorOccurred())
703      DiagnoseUnusedDecl(D);
704
705    // Remove this name from our lexical scope.
706    IdResolver.RemoveDecl(D);
707  }
708}
709
710/// \brief Look for an Objective-C class in the translation unit.
711///
712/// \param Id The name of the Objective-C class we're looking for. If
713/// typo-correction fixes this name, the Id will be updated
714/// to the fixed name.
715///
716/// \param IdLoc The location of the name in the translation unit.
717///
718/// \param TypoCorrection If true, this routine will attempt typo correction
719/// if there is no class with the given name.
720///
721/// \returns The declaration of the named Objective-C class, or NULL if the
722/// class could not be found.
723ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
724                                              SourceLocation IdLoc,
725                                              bool TypoCorrection) {
726  // The third "scope" argument is 0 since we aren't enabling lazy built-in
727  // creation from this context.
728  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
729
730  if (!IDecl && TypoCorrection) {
731    // Perform typo correction at the given location, but only if we
732    // find an Objective-C class name.
733    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
734    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
735        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
736      Diag(IdLoc, diag::err_undef_interface_suggest)
737        << Id << IDecl->getDeclName()
738        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
739      Diag(IDecl->getLocation(), diag::note_previous_decl)
740        << IDecl->getDeclName();
741
742      Id = IDecl->getIdentifier();
743    }
744  }
745
746  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
747}
748
749/// getNonFieldDeclScope - Retrieves the innermost scope, starting
750/// from S, where a non-field would be declared. This routine copes
751/// with the difference between C and C++ scoping rules in structs and
752/// unions. For example, the following code is well-formed in C but
753/// ill-formed in C++:
754/// @code
755/// struct S6 {
756///   enum { BAR } e;
757/// };
758///
759/// void test_S6() {
760///   struct S6 a;
761///   a.e = BAR;
762/// }
763/// @endcode
764/// For the declaration of BAR, this routine will return a different
765/// scope. The scope S will be the scope of the unnamed enumeration
766/// within S6. In C++, this routine will return the scope associated
767/// with S6, because the enumeration's scope is a transparent
768/// context but structures can contain non-field names. In C, this
769/// routine will return the translation unit scope, since the
770/// enumeration's scope is a transparent context and structures cannot
771/// contain non-field names.
772Scope *Sema::getNonFieldDeclScope(Scope *S) {
773  while (((S->getFlags() & Scope::DeclScope) == 0) ||
774         (S->getEntity() &&
775          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
776         (S->isClassScope() && !getLangOptions().CPlusPlus))
777    S = S->getParent();
778  return S;
779}
780
781/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
782/// file scope.  lazily create a decl for it. ForRedeclaration is true
783/// if we're creating this built-in in anticipation of redeclaring the
784/// built-in.
785NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
786                                     Scope *S, bool ForRedeclaration,
787                                     SourceLocation Loc) {
788  Builtin::ID BID = (Builtin::ID)bid;
789
790  ASTContext::GetBuiltinTypeError Error;
791  QualType R = Context.GetBuiltinType(BID, Error);
792  switch (Error) {
793  case ASTContext::GE_None:
794    // Okay
795    break;
796
797  case ASTContext::GE_Missing_stdio:
798    if (ForRedeclaration)
799      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
800        << Context.BuiltinInfo.GetName(BID);
801    return 0;
802
803  case ASTContext::GE_Missing_setjmp:
804    if (ForRedeclaration)
805      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
806        << Context.BuiltinInfo.GetName(BID);
807    return 0;
808  }
809
810  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
811    Diag(Loc, diag::ext_implicit_lib_function_decl)
812      << Context.BuiltinInfo.GetName(BID)
813      << R;
814    if (Context.BuiltinInfo.getHeaderName(BID) &&
815        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
816          != Diagnostic::Ignored)
817      Diag(Loc, diag::note_please_include_header)
818        << Context.BuiltinInfo.getHeaderName(BID)
819        << Context.BuiltinInfo.GetName(BID);
820  }
821
822  FunctionDecl *New = FunctionDecl::Create(Context,
823                                           Context.getTranslationUnitDecl(),
824                                           Loc, II, R, /*TInfo=*/0,
825                                           SC_Extern,
826                                           SC_None, false,
827                                           /*hasPrototype=*/true);
828  New->setImplicit();
829
830  // Create Decl objects for each parameter, adding them to the
831  // FunctionDecl.
832  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
833    llvm::SmallVector<ParmVarDecl*, 16> Params;
834    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
835      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
836                                           FT->getArgType(i), /*TInfo=*/0,
837                                           SC_None, SC_None, 0));
838    New->setParams(Params.data(), Params.size());
839  }
840
841  AddKnownFunctionAttributes(New);
842
843  // TUScope is the translation-unit scope to insert this function into.
844  // FIXME: This is hideous. We need to teach PushOnScopeChains to
845  // relate Scopes to DeclContexts, and probably eliminate CurContext
846  // entirely, but we're not there yet.
847  DeclContext *SavedContext = CurContext;
848  CurContext = Context.getTranslationUnitDecl();
849  PushOnScopeChains(New, TUScope);
850  CurContext = SavedContext;
851  return New;
852}
853
854/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
855/// same name and scope as a previous declaration 'Old'.  Figure out
856/// how to resolve this situation, merging decls or emitting
857/// diagnostics as appropriate. If there was an error, set New to be invalid.
858///
859void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
860  // If the new decl is known invalid already, don't bother doing any
861  // merging checks.
862  if (New->isInvalidDecl()) return;
863
864  // Allow multiple definitions for ObjC built-in typedefs.
865  // FIXME: Verify the underlying types are equivalent!
866  if (getLangOptions().ObjC1) {
867    const IdentifierInfo *TypeID = New->getIdentifier();
868    switch (TypeID->getLength()) {
869    default: break;
870    case 2:
871      if (!TypeID->isStr("id"))
872        break;
873      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
874      // Install the built-in type for 'id', ignoring the current definition.
875      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
876      return;
877    case 5:
878      if (!TypeID->isStr("Class"))
879        break;
880      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
881      // Install the built-in type for 'Class', ignoring the current definition.
882      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
883      return;
884    case 3:
885      if (!TypeID->isStr("SEL"))
886        break;
887      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
888      // Install the built-in type for 'SEL', ignoring the current definition.
889      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
890      return;
891    case 8:
892      if (!TypeID->isStr("Protocol"))
893        break;
894      Context.setObjCProtoType(New->getUnderlyingType());
895      return;
896    }
897    // Fall through - the typedef name was not a builtin type.
898  }
899
900  // Verify the old decl was also a type.
901  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
902  if (!Old) {
903    Diag(New->getLocation(), diag::err_redefinition_different_kind)
904      << New->getDeclName();
905
906    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
907    if (OldD->getLocation().isValid())
908      Diag(OldD->getLocation(), diag::note_previous_definition);
909
910    return New->setInvalidDecl();
911  }
912
913  // If the old declaration is invalid, just give up here.
914  if (Old->isInvalidDecl())
915    return New->setInvalidDecl();
916
917  // Determine the "old" type we'll use for checking and diagnostics.
918  QualType OldType;
919  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
920    OldType = OldTypedef->getUnderlyingType();
921  else
922    OldType = Context.getTypeDeclType(Old);
923
924  // If the typedef types are not identical, reject them in all languages and
925  // with any extensions enabled.
926
927  if (OldType != New->getUnderlyingType() &&
928      Context.getCanonicalType(OldType) !=
929      Context.getCanonicalType(New->getUnderlyingType())) {
930    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
931      << New->getUnderlyingType() << OldType;
932    if (Old->getLocation().isValid())
933      Diag(Old->getLocation(), diag::note_previous_definition);
934    return New->setInvalidDecl();
935  }
936
937  // The types match.  Link up the redeclaration chain if the old
938  // declaration was a typedef.
939  // FIXME: this is a potential source of wierdness if the type
940  // spellings don't match exactly.
941  if (isa<TypedefDecl>(Old))
942    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
943
944  if (getLangOptions().Microsoft)
945    return;
946
947  if (getLangOptions().CPlusPlus) {
948    // C++ [dcl.typedef]p2:
949    //   In a given non-class scope, a typedef specifier can be used to
950    //   redefine the name of any type declared in that scope to refer
951    //   to the type to which it already refers.
952    if (!isa<CXXRecordDecl>(CurContext))
953      return;
954
955    // C++0x [dcl.typedef]p4:
956    //   In a given class scope, a typedef specifier can be used to redefine
957    //   any class-name declared in that scope that is not also a typedef-name
958    //   to refer to the type to which it already refers.
959    //
960    // This wording came in via DR424, which was a correction to the
961    // wording in DR56, which accidentally banned code like:
962    //
963    //   struct S {
964    //     typedef struct A { } A;
965    //   };
966    //
967    // in the C++03 standard. We implement the C++0x semantics, which
968    // allow the above but disallow
969    //
970    //   struct S {
971    //     typedef int I;
972    //     typedef int I;
973    //   };
974    //
975    // since that was the intent of DR56.
976    if (!isa<TypedefDecl >(Old))
977      return;
978
979    Diag(New->getLocation(), diag::err_redefinition)
980      << New->getDeclName();
981    Diag(Old->getLocation(), diag::note_previous_definition);
982    return New->setInvalidDecl();
983  }
984
985  // If we have a redefinition of a typedef in C, emit a warning.  This warning
986  // is normally mapped to an error, but can be controlled with
987  // -Wtypedef-redefinition.  If either the original or the redefinition is
988  // in a system header, don't emit this for compatibility with GCC.
989  if (getDiagnostics().getSuppressSystemWarnings() &&
990      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
991       Context.getSourceManager().isInSystemHeader(New->getLocation())))
992    return;
993
994  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
995    << New->getDeclName();
996  Diag(Old->getLocation(), diag::note_previous_definition);
997  return;
998}
999
1000/// DeclhasAttr - returns true if decl Declaration already has the target
1001/// attribute.
1002static bool
1003DeclHasAttr(const Decl *D, const Attr *A) {
1004  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1005  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1006    if ((*i)->getKind() == A->getKind()) {
1007      // FIXME: Don't hardcode this check
1008      if (OA && isa<OwnershipAttr>(*i))
1009        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1010      return true;
1011    }
1012
1013  return false;
1014}
1015
1016/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1017static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1018  if (!Old->hasAttrs())
1019    return;
1020  // Ensure that any moving of objects within the allocated map is done before
1021  // we process them.
1022  if (!New->hasAttrs())
1023    New->setAttrs(AttrVec());
1024  for (specific_attr_iterator<InheritableAttr>
1025       i = Old->specific_attr_begin<InheritableAttr>(),
1026       e = Old->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1027    if (!DeclHasAttr(New, *i)) {
1028      InheritableAttr *NewAttr = cast<InheritableAttr>((*i)->clone(C));
1029      NewAttr->setInherited(true);
1030      New->addAttr(NewAttr);
1031    }
1032  }
1033}
1034
1035namespace {
1036
1037/// Used in MergeFunctionDecl to keep track of function parameters in
1038/// C.
1039struct GNUCompatibleParamWarning {
1040  ParmVarDecl *OldParm;
1041  ParmVarDecl *NewParm;
1042  QualType PromotedType;
1043};
1044
1045}
1046
1047/// getSpecialMember - get the special member enum for a method.
1048Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1049  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1050    if (Ctor->isCopyConstructor())
1051      return Sema::CXXCopyConstructor;
1052
1053    return Sema::CXXConstructor;
1054  }
1055
1056  if (isa<CXXDestructorDecl>(MD))
1057    return Sema::CXXDestructor;
1058
1059  assert(MD->isCopyAssignmentOperator() &&
1060         "Must have copy assignment operator");
1061  return Sema::CXXCopyAssignment;
1062}
1063
1064/// canRedefineFunction - checks if a function can be redefined. Currently,
1065/// only extern inline functions can be redefined, and even then only in
1066/// GNU89 mode.
1067static bool canRedefineFunction(const FunctionDecl *FD,
1068                                const LangOptions& LangOpts) {
1069  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1070          FD->isInlineSpecified() &&
1071          FD->getStorageClass() == SC_Extern);
1072}
1073
1074/// MergeFunctionDecl - We just parsed a function 'New' from
1075/// declarator D which has the same name and scope as a previous
1076/// declaration 'Old'.  Figure out how to resolve this situation,
1077/// merging decls or emitting diagnostics as appropriate.
1078///
1079/// In C++, New and Old must be declarations that are not
1080/// overloaded. Use IsOverload to determine whether New and Old are
1081/// overloaded, and to select the Old declaration that New should be
1082/// merged with.
1083///
1084/// Returns true if there was an error, false otherwise.
1085bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1086  // Verify the old decl was also a function.
1087  FunctionDecl *Old = 0;
1088  if (FunctionTemplateDecl *OldFunctionTemplate
1089        = dyn_cast<FunctionTemplateDecl>(OldD))
1090    Old = OldFunctionTemplate->getTemplatedDecl();
1091  else
1092    Old = dyn_cast<FunctionDecl>(OldD);
1093  if (!Old) {
1094    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1095      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1096      Diag(Shadow->getTargetDecl()->getLocation(),
1097           diag::note_using_decl_target);
1098      Diag(Shadow->getUsingDecl()->getLocation(),
1099           diag::note_using_decl) << 0;
1100      return true;
1101    }
1102
1103    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1104      << New->getDeclName();
1105    Diag(OldD->getLocation(), diag::note_previous_definition);
1106    return true;
1107  }
1108
1109  // Determine whether the previous declaration was a definition,
1110  // implicit declaration, or a declaration.
1111  diag::kind PrevDiag;
1112  if (Old->isThisDeclarationADefinition())
1113    PrevDiag = diag::note_previous_definition;
1114  else if (Old->isImplicit())
1115    PrevDiag = diag::note_previous_implicit_declaration;
1116  else
1117    PrevDiag = diag::note_previous_declaration;
1118
1119  QualType OldQType = Context.getCanonicalType(Old->getType());
1120  QualType NewQType = Context.getCanonicalType(New->getType());
1121
1122  // Don't complain about this if we're in GNU89 mode and the old function
1123  // is an extern inline function.
1124  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1125      New->getStorageClass() == SC_Static &&
1126      Old->getStorageClass() != SC_Static &&
1127      !canRedefineFunction(Old, getLangOptions())) {
1128    Diag(New->getLocation(), diag::err_static_non_static)
1129      << New;
1130    Diag(Old->getLocation(), PrevDiag);
1131    return true;
1132  }
1133
1134  // If a function is first declared with a calling convention, but is
1135  // later declared or defined without one, the second decl assumes the
1136  // calling convention of the first.
1137  //
1138  // For the new decl, we have to look at the NON-canonical type to tell the
1139  // difference between a function that really doesn't have a calling
1140  // convention and one that is declared cdecl. That's because in
1141  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1142  // because it is the default calling convention.
1143  //
1144  // Note also that we DO NOT return at this point, because we still have
1145  // other tests to run.
1146  const FunctionType *OldType = cast<FunctionType>(OldQType);
1147  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1148  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1149  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1150  bool RequiresAdjustment = false;
1151  if (OldTypeInfo.getCC() != CC_Default &&
1152      NewTypeInfo.getCC() == CC_Default) {
1153    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1154    RequiresAdjustment = true;
1155  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1156                                     NewTypeInfo.getCC())) {
1157    // Calling conventions really aren't compatible, so complain.
1158    Diag(New->getLocation(), diag::err_cconv_change)
1159      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1160      << (OldTypeInfo.getCC() == CC_Default)
1161      << (OldTypeInfo.getCC() == CC_Default ? "" :
1162          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1163    Diag(Old->getLocation(), diag::note_previous_declaration);
1164    return true;
1165  }
1166
1167  // FIXME: diagnose the other way around?
1168  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1169    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1170    RequiresAdjustment = true;
1171  }
1172
1173  // Merge regparm attribute.
1174  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1175    if (NewTypeInfo.getRegParm()) {
1176      Diag(New->getLocation(), diag::err_regparm_mismatch)
1177        << NewType->getRegParmType()
1178        << OldType->getRegParmType();
1179      Diag(Old->getLocation(), diag::note_previous_declaration);
1180      return true;
1181    }
1182
1183    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1184    RequiresAdjustment = true;
1185  }
1186
1187  if (RequiresAdjustment) {
1188    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1189    New->setType(QualType(NewType, 0));
1190    NewQType = Context.getCanonicalType(New->getType());
1191  }
1192
1193  if (getLangOptions().CPlusPlus) {
1194    // (C++98 13.1p2):
1195    //   Certain function declarations cannot be overloaded:
1196    //     -- Function declarations that differ only in the return type
1197    //        cannot be overloaded.
1198    QualType OldReturnType = OldType->getResultType();
1199    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1200    QualType ResQT;
1201    if (OldReturnType != NewReturnType) {
1202      if (NewReturnType->isObjCObjectPointerType()
1203          && OldReturnType->isObjCObjectPointerType())
1204        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1205      if (ResQT.isNull()) {
1206        if (New->isCXXClassMember() && New->isOutOfLine())
1207          Diag(New->getLocation(),
1208               diag::err_member_def_does_not_match_ret_type) << New;
1209        else
1210          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1211        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1212        return true;
1213      }
1214      else
1215        NewQType = ResQT;
1216    }
1217
1218    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1219    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1220    if (OldMethod && NewMethod) {
1221      // Preserve triviality.
1222      NewMethod->setTrivial(OldMethod->isTrivial());
1223
1224      bool isFriend = NewMethod->getFriendObjectKind();
1225
1226      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1227        //    -- Member function declarations with the same name and the
1228        //       same parameter types cannot be overloaded if any of them
1229        //       is a static member function declaration.
1230        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1231          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1232          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1233          return true;
1234        }
1235
1236        // C++ [class.mem]p1:
1237        //   [...] A member shall not be declared twice in the
1238        //   member-specification, except that a nested class or member
1239        //   class template can be declared and then later defined.
1240        unsigned NewDiag;
1241        if (isa<CXXConstructorDecl>(OldMethod))
1242          NewDiag = diag::err_constructor_redeclared;
1243        else if (isa<CXXDestructorDecl>(NewMethod))
1244          NewDiag = diag::err_destructor_redeclared;
1245        else if (isa<CXXConversionDecl>(NewMethod))
1246          NewDiag = diag::err_conv_function_redeclared;
1247        else
1248          NewDiag = diag::err_member_redeclared;
1249
1250        Diag(New->getLocation(), NewDiag);
1251        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1252
1253      // Complain if this is an explicit declaration of a special
1254      // member that was initially declared implicitly.
1255      //
1256      // As an exception, it's okay to befriend such methods in order
1257      // to permit the implicit constructor/destructor/operator calls.
1258      } else if (OldMethod->isImplicit()) {
1259        if (isFriend) {
1260          NewMethod->setImplicit();
1261        } else {
1262          Diag(NewMethod->getLocation(),
1263               diag::err_definition_of_implicitly_declared_member)
1264            << New << getSpecialMember(OldMethod);
1265          return true;
1266        }
1267      }
1268    }
1269
1270    // (C++98 8.3.5p3):
1271    //   All declarations for a function shall agree exactly in both the
1272    //   return type and the parameter-type-list.
1273    // We also want to respect all the extended bits except noreturn.
1274
1275    // noreturn should now match unless the old type info didn't have it.
1276    QualType OldQTypeForComparison = OldQType;
1277    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1278      assert(OldQType == QualType(OldType, 0));
1279      const FunctionType *OldTypeForComparison
1280        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1281      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1282      assert(OldQTypeForComparison.isCanonical());
1283    }
1284
1285    if (OldQTypeForComparison == NewQType)
1286      return MergeCompatibleFunctionDecls(New, Old);
1287
1288    // Fall through for conflicting redeclarations and redefinitions.
1289  }
1290
1291  // C: Function types need to be compatible, not identical. This handles
1292  // duplicate function decls like "void f(int); void f(enum X);" properly.
1293  if (!getLangOptions().CPlusPlus &&
1294      Context.typesAreCompatible(OldQType, NewQType)) {
1295    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1296    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1297    const FunctionProtoType *OldProto = 0;
1298    if (isa<FunctionNoProtoType>(NewFuncType) &&
1299        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1300      // The old declaration provided a function prototype, but the
1301      // new declaration does not. Merge in the prototype.
1302      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1303      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1304                                                 OldProto->arg_type_end());
1305      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1306                                         ParamTypes.data(), ParamTypes.size(),
1307                                         OldProto->getExtProtoInfo());
1308      New->setType(NewQType);
1309      New->setHasInheritedPrototype();
1310
1311      // Synthesize a parameter for each argument type.
1312      llvm::SmallVector<ParmVarDecl*, 16> Params;
1313      for (FunctionProtoType::arg_type_iterator
1314             ParamType = OldProto->arg_type_begin(),
1315             ParamEnd = OldProto->arg_type_end();
1316           ParamType != ParamEnd; ++ParamType) {
1317        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1318                                                 SourceLocation(), 0,
1319                                                 *ParamType, /*TInfo=*/0,
1320                                                 SC_None, SC_None,
1321                                                 0);
1322        Param->setImplicit();
1323        Params.push_back(Param);
1324      }
1325
1326      New->setParams(Params.data(), Params.size());
1327    }
1328
1329    return MergeCompatibleFunctionDecls(New, Old);
1330  }
1331
1332  // GNU C permits a K&R definition to follow a prototype declaration
1333  // if the declared types of the parameters in the K&R definition
1334  // match the types in the prototype declaration, even when the
1335  // promoted types of the parameters from the K&R definition differ
1336  // from the types in the prototype. GCC then keeps the types from
1337  // the prototype.
1338  //
1339  // If a variadic prototype is followed by a non-variadic K&R definition,
1340  // the K&R definition becomes variadic.  This is sort of an edge case, but
1341  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1342  // C99 6.9.1p8.
1343  if (!getLangOptions().CPlusPlus &&
1344      Old->hasPrototype() && !New->hasPrototype() &&
1345      New->getType()->getAs<FunctionProtoType>() &&
1346      Old->getNumParams() == New->getNumParams()) {
1347    llvm::SmallVector<QualType, 16> ArgTypes;
1348    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1349    const FunctionProtoType *OldProto
1350      = Old->getType()->getAs<FunctionProtoType>();
1351    const FunctionProtoType *NewProto
1352      = New->getType()->getAs<FunctionProtoType>();
1353
1354    // Determine whether this is the GNU C extension.
1355    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1356                                               NewProto->getResultType());
1357    bool LooseCompatible = !MergedReturn.isNull();
1358    for (unsigned Idx = 0, End = Old->getNumParams();
1359         LooseCompatible && Idx != End; ++Idx) {
1360      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1361      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1362      if (Context.typesAreCompatible(OldParm->getType(),
1363                                     NewProto->getArgType(Idx))) {
1364        ArgTypes.push_back(NewParm->getType());
1365      } else if (Context.typesAreCompatible(OldParm->getType(),
1366                                            NewParm->getType(),
1367                                            /*CompareUnqualified=*/true)) {
1368        GNUCompatibleParamWarning Warn
1369          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1370        Warnings.push_back(Warn);
1371        ArgTypes.push_back(NewParm->getType());
1372      } else
1373        LooseCompatible = false;
1374    }
1375
1376    if (LooseCompatible) {
1377      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1378        Diag(Warnings[Warn].NewParm->getLocation(),
1379             diag::ext_param_promoted_not_compatible_with_prototype)
1380          << Warnings[Warn].PromotedType
1381          << Warnings[Warn].OldParm->getType();
1382        if (Warnings[Warn].OldParm->getLocation().isValid())
1383          Diag(Warnings[Warn].OldParm->getLocation(),
1384               diag::note_previous_declaration);
1385      }
1386
1387      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1388                                           ArgTypes.size(),
1389                                           OldProto->getExtProtoInfo()));
1390      return MergeCompatibleFunctionDecls(New, Old);
1391    }
1392
1393    // Fall through to diagnose conflicting types.
1394  }
1395
1396  // A function that has already been declared has been redeclared or defined
1397  // with a different type- show appropriate diagnostic
1398  if (unsigned BuiltinID = Old->getBuiltinID()) {
1399    // The user has declared a builtin function with an incompatible
1400    // signature.
1401    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1402      // The function the user is redeclaring is a library-defined
1403      // function like 'malloc' or 'printf'. Warn about the
1404      // redeclaration, then pretend that we don't know about this
1405      // library built-in.
1406      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1407      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1408        << Old << Old->getType();
1409      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1410      Old->setInvalidDecl();
1411      return false;
1412    }
1413
1414    PrevDiag = diag::note_previous_builtin_declaration;
1415  }
1416
1417  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1418  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1419  return true;
1420}
1421
1422/// \brief Completes the merge of two function declarations that are
1423/// known to be compatible.
1424///
1425/// This routine handles the merging of attributes and other
1426/// properties of function declarations form the old declaration to
1427/// the new declaration, once we know that New is in fact a
1428/// redeclaration of Old.
1429///
1430/// \returns false
1431bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1432  // Merge the attributes
1433  MergeDeclAttributes(New, Old, Context);
1434
1435  // Merge the storage class.
1436  if (Old->getStorageClass() != SC_Extern &&
1437      Old->getStorageClass() != SC_None)
1438    New->setStorageClass(Old->getStorageClass());
1439
1440  // Merge "pure" flag.
1441  if (Old->isPure())
1442    New->setPure();
1443
1444  // Merge the "deleted" flag.
1445  if (Old->isDeleted())
1446    New->setDeleted();
1447
1448  if (getLangOptions().CPlusPlus)
1449    return MergeCXXFunctionDecl(New, Old);
1450
1451  return false;
1452}
1453
1454/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1455/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1456/// situation, merging decls or emitting diagnostics as appropriate.
1457///
1458/// Tentative definition rules (C99 6.9.2p2) are checked by
1459/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1460/// definitions here, since the initializer hasn't been attached.
1461///
1462void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1463  // If the new decl is already invalid, don't do any other checking.
1464  if (New->isInvalidDecl())
1465    return;
1466
1467  // Verify the old decl was also a variable.
1468  VarDecl *Old = 0;
1469  if (!Previous.isSingleResult() ||
1470      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1471    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1472      << New->getDeclName();
1473    Diag(Previous.getRepresentativeDecl()->getLocation(),
1474         diag::note_previous_definition);
1475    return New->setInvalidDecl();
1476  }
1477
1478  // C++ [class.mem]p1:
1479  //   A member shall not be declared twice in the member-specification [...]
1480  //
1481  // Here, we need only consider static data members.
1482  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1483    Diag(New->getLocation(), diag::err_duplicate_member)
1484      << New->getIdentifier();
1485    Diag(Old->getLocation(), diag::note_previous_declaration);
1486    New->setInvalidDecl();
1487  }
1488
1489  MergeDeclAttributes(New, Old, Context);
1490
1491  // Merge the types
1492  QualType MergedT;
1493  if (getLangOptions().CPlusPlus) {
1494    if (Context.hasSameType(New->getType(), Old->getType()))
1495      MergedT = New->getType();
1496    // C++ [basic.link]p10:
1497    //   [...] the types specified by all declarations referring to a given
1498    //   object or function shall be identical, except that declarations for an
1499    //   array object can specify array types that differ by the presence or
1500    //   absence of a major array bound (8.3.4).
1501    else if (Old->getType()->isIncompleteArrayType() &&
1502             New->getType()->isArrayType()) {
1503      CanQual<ArrayType> OldArray
1504        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1505      CanQual<ArrayType> NewArray
1506        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1507      if (OldArray->getElementType() == NewArray->getElementType())
1508        MergedT = New->getType();
1509    } else if (Old->getType()->isArrayType() &&
1510             New->getType()->isIncompleteArrayType()) {
1511      CanQual<ArrayType> OldArray
1512        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1513      CanQual<ArrayType> NewArray
1514        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1515      if (OldArray->getElementType() == NewArray->getElementType())
1516        MergedT = Old->getType();
1517    } else if (New->getType()->isObjCObjectPointerType()
1518               && Old->getType()->isObjCObjectPointerType()) {
1519        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1520    }
1521  } else {
1522    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1523  }
1524  if (MergedT.isNull()) {
1525    Diag(New->getLocation(), diag::err_redefinition_different_type)
1526      << New->getDeclName();
1527    Diag(Old->getLocation(), diag::note_previous_definition);
1528    return New->setInvalidDecl();
1529  }
1530  New->setType(MergedT);
1531
1532  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1533  if (New->getStorageClass() == SC_Static &&
1534      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1535    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1536    Diag(Old->getLocation(), diag::note_previous_definition);
1537    return New->setInvalidDecl();
1538  }
1539  // C99 6.2.2p4:
1540  //   For an identifier declared with the storage-class specifier
1541  //   extern in a scope in which a prior declaration of that
1542  //   identifier is visible,23) if the prior declaration specifies
1543  //   internal or external linkage, the linkage of the identifier at
1544  //   the later declaration is the same as the linkage specified at
1545  //   the prior declaration. If no prior declaration is visible, or
1546  //   if the prior declaration specifies no linkage, then the
1547  //   identifier has external linkage.
1548  if (New->hasExternalStorage() && Old->hasLinkage())
1549    /* Okay */;
1550  else if (New->getStorageClass() != SC_Static &&
1551           Old->getStorageClass() == SC_Static) {
1552    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1553    Diag(Old->getLocation(), diag::note_previous_definition);
1554    return New->setInvalidDecl();
1555  }
1556
1557  // Check if extern is followed by non-extern and vice-versa.
1558  if (New->hasExternalStorage() &&
1559      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1560    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1561    Diag(Old->getLocation(), diag::note_previous_definition);
1562    return New->setInvalidDecl();
1563  }
1564  if (Old->hasExternalStorage() &&
1565      !New->hasLinkage() && New->isLocalVarDecl()) {
1566    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1567    Diag(Old->getLocation(), diag::note_previous_definition);
1568    return New->setInvalidDecl();
1569  }
1570
1571  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1572
1573  // FIXME: The test for external storage here seems wrong? We still
1574  // need to check for mismatches.
1575  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1576      // Don't complain about out-of-line definitions of static members.
1577      !(Old->getLexicalDeclContext()->isRecord() &&
1578        !New->getLexicalDeclContext()->isRecord())) {
1579    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1580    Diag(Old->getLocation(), diag::note_previous_definition);
1581    return New->setInvalidDecl();
1582  }
1583
1584  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1585    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1586    Diag(Old->getLocation(), diag::note_previous_definition);
1587  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1588    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1589    Diag(Old->getLocation(), diag::note_previous_definition);
1590  }
1591
1592  // C++ doesn't have tentative definitions, so go right ahead and check here.
1593  const VarDecl *Def;
1594  if (getLangOptions().CPlusPlus &&
1595      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1596      (Def = Old->getDefinition())) {
1597    Diag(New->getLocation(), diag::err_redefinition)
1598      << New->getDeclName();
1599    Diag(Def->getLocation(), diag::note_previous_definition);
1600    New->setInvalidDecl();
1601    return;
1602  }
1603  // c99 6.2.2 P4.
1604  // For an identifier declared with the storage-class specifier extern in a
1605  // scope in which a prior declaration of that identifier is visible, if
1606  // the prior declaration specifies internal or external linkage, the linkage
1607  // of the identifier at the later declaration is the same as the linkage
1608  // specified at the prior declaration.
1609  // FIXME. revisit this code.
1610  if (New->hasExternalStorage() &&
1611      Old->getLinkage() == InternalLinkage &&
1612      New->getDeclContext() == Old->getDeclContext())
1613    New->setStorageClass(Old->getStorageClass());
1614
1615  // Keep a chain of previous declarations.
1616  New->setPreviousDeclaration(Old);
1617
1618  // Inherit access appropriately.
1619  New->setAccess(Old->getAccess());
1620}
1621
1622/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1623/// no declarator (e.g. "struct foo;") is parsed.
1624Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1625                                            DeclSpec &DS) {
1626  // FIXME: Error on inline/virtual/explicit
1627  // FIXME: Warn on useless __thread
1628  // FIXME: Warn on useless const/volatile
1629  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1630  // FIXME: Warn on useless attributes
1631  Decl *TagD = 0;
1632  TagDecl *Tag = 0;
1633  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1634      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1635      DS.getTypeSpecType() == DeclSpec::TST_union ||
1636      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1637    TagD = DS.getRepAsDecl();
1638
1639    if (!TagD) // We probably had an error
1640      return 0;
1641
1642    // Note that the above type specs guarantee that the
1643    // type rep is a Decl, whereas in many of the others
1644    // it's a Type.
1645    Tag = dyn_cast<TagDecl>(TagD);
1646  }
1647
1648  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1649    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1650    // or incomplete types shall not be restrict-qualified."
1651    if (TypeQuals & DeclSpec::TQ_restrict)
1652      Diag(DS.getRestrictSpecLoc(),
1653           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1654           << DS.getSourceRange();
1655  }
1656
1657  if (DS.isFriendSpecified()) {
1658    // If we're dealing with a decl but not a TagDecl, assume that
1659    // whatever routines created it handled the friendship aspect.
1660    if (TagD && !Tag)
1661      return 0;
1662    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1663  }
1664
1665  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1666    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1667
1668    if (!Record->getDeclName() && Record->isDefinition() &&
1669        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1670      if (getLangOptions().CPlusPlus ||
1671          Record->getDeclContext()->isRecord())
1672        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1673
1674      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1675        << DS.getSourceRange();
1676    }
1677  }
1678
1679  // Check for Microsoft C extension: anonymous struct.
1680  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1681      CurContext->isRecord() &&
1682      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1683    // Handle 2 kinds of anonymous struct:
1684    //   struct STRUCT;
1685    // and
1686    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1687    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1688    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1689        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1690         DS.getRepAsType().get()->isStructureType())) {
1691      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1692        << DS.getSourceRange();
1693      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1694    }
1695  }
1696
1697  if (getLangOptions().CPlusPlus &&
1698      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1699    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1700      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1701          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1702        Diag(Enum->getLocation(), diag::ext_no_declarators)
1703          << DS.getSourceRange();
1704
1705  if (!DS.isMissingDeclaratorOk() &&
1706      DS.getTypeSpecType() != DeclSpec::TST_error) {
1707    // Warn about typedefs of enums without names, since this is an
1708    // extension in both Microsoft and GNU.
1709    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1710        Tag && isa<EnumDecl>(Tag)) {
1711      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1712        << DS.getSourceRange();
1713      return Tag;
1714    }
1715
1716    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1717      << DS.getSourceRange();
1718  }
1719
1720  return TagD;
1721}
1722
1723/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1724/// builds a statement for it and returns it so it is evaluated.
1725StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1726  StmtResult R;
1727  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1728    Expr *Exp = DS.getRepAsExpr();
1729    QualType Ty = Exp->getType();
1730    if (Ty->isPointerType()) {
1731      do
1732        Ty = Ty->getAs<PointerType>()->getPointeeType();
1733      while (Ty->isPointerType());
1734    }
1735    if (Ty->isVariableArrayType()) {
1736      R = ActOnExprStmt(MakeFullExpr(Exp));
1737    }
1738  }
1739  return R;
1740}
1741
1742/// We are trying to inject an anonymous member into the given scope;
1743/// check if there's an existing declaration that can't be overloaded.
1744///
1745/// \return true if this is a forbidden redeclaration
1746static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1747                                         Scope *S,
1748                                         DeclContext *Owner,
1749                                         DeclarationName Name,
1750                                         SourceLocation NameLoc,
1751                                         unsigned diagnostic) {
1752  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1753                 Sema::ForRedeclaration);
1754  if (!SemaRef.LookupName(R, S)) return false;
1755
1756  if (R.getAsSingle<TagDecl>())
1757    return false;
1758
1759  // Pick a representative declaration.
1760  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1761  assert(PrevDecl && "Expected a non-null Decl");
1762
1763  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1764    return false;
1765
1766  SemaRef.Diag(NameLoc, diagnostic) << Name;
1767  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1768
1769  return true;
1770}
1771
1772/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1773/// anonymous struct or union AnonRecord into the owning context Owner
1774/// and scope S. This routine will be invoked just after we realize
1775/// that an unnamed union or struct is actually an anonymous union or
1776/// struct, e.g.,
1777///
1778/// @code
1779/// union {
1780///   int i;
1781///   float f;
1782/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1783///    // f into the surrounding scope.x
1784/// @endcode
1785///
1786/// This routine is recursive, injecting the names of nested anonymous
1787/// structs/unions into the owning context and scope as well.
1788static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1789                                                DeclContext *Owner,
1790                                                RecordDecl *AnonRecord,
1791                                                AccessSpecifier AS,
1792                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1793                                                      bool MSAnonStruct) {
1794  unsigned diagKind
1795    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1796                            : diag::err_anonymous_struct_member_redecl;
1797
1798  bool Invalid = false;
1799
1800  // Look every FieldDecl and IndirectFieldDecl with a name.
1801  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1802                               DEnd = AnonRecord->decls_end();
1803       D != DEnd; ++D) {
1804    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1805        cast<NamedDecl>(*D)->getDeclName()) {
1806      ValueDecl *VD = cast<ValueDecl>(*D);
1807      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1808                                       VD->getLocation(), diagKind)) {
1809        // C++ [class.union]p2:
1810        //   The names of the members of an anonymous union shall be
1811        //   distinct from the names of any other entity in the
1812        //   scope in which the anonymous union is declared.
1813        Invalid = true;
1814      } else {
1815        // C++ [class.union]p2:
1816        //   For the purpose of name lookup, after the anonymous union
1817        //   definition, the members of the anonymous union are
1818        //   considered to have been defined in the scope in which the
1819        //   anonymous union is declared.
1820        unsigned OldChainingSize = Chaining.size();
1821        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1822          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1823               PE = IF->chain_end(); PI != PE; ++PI)
1824            Chaining.push_back(*PI);
1825        else
1826          Chaining.push_back(VD);
1827
1828        assert(Chaining.size() >= 2);
1829        NamedDecl **NamedChain =
1830          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1831        for (unsigned i = 0; i < Chaining.size(); i++)
1832          NamedChain[i] = Chaining[i];
1833
1834        IndirectFieldDecl* IndirectField =
1835          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1836                                    VD->getIdentifier(), VD->getType(),
1837                                    NamedChain, Chaining.size());
1838
1839        IndirectField->setAccess(AS);
1840        IndirectField->setImplicit();
1841        SemaRef.PushOnScopeChains(IndirectField, S);
1842
1843        // That includes picking up the appropriate access specifier.
1844        if (AS != AS_none) IndirectField->setAccess(AS);
1845
1846        Chaining.resize(OldChainingSize);
1847      }
1848    }
1849  }
1850
1851  return Invalid;
1852}
1853
1854/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1855/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1856/// illegal input values are mapped to SC_None.
1857static StorageClass
1858StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1859  switch (StorageClassSpec) {
1860  case DeclSpec::SCS_unspecified:    return SC_None;
1861  case DeclSpec::SCS_extern:         return SC_Extern;
1862  case DeclSpec::SCS_static:         return SC_Static;
1863  case DeclSpec::SCS_auto:           return SC_Auto;
1864  case DeclSpec::SCS_register:       return SC_Register;
1865  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1866    // Illegal SCSs map to None: error reporting is up to the caller.
1867  case DeclSpec::SCS_mutable:        // Fall through.
1868  case DeclSpec::SCS_typedef:        return SC_None;
1869  }
1870  llvm_unreachable("unknown storage class specifier");
1871}
1872
1873/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1874/// a StorageClass. Any error reporting is up to the caller:
1875/// illegal input values are mapped to SC_None.
1876static StorageClass
1877StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1878  switch (StorageClassSpec) {
1879  case DeclSpec::SCS_unspecified:    return SC_None;
1880  case DeclSpec::SCS_extern:         return SC_Extern;
1881  case DeclSpec::SCS_static:         return SC_Static;
1882  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1883    // Illegal SCSs map to None: error reporting is up to the caller.
1884  case DeclSpec::SCS_auto:           // Fall through.
1885  case DeclSpec::SCS_mutable:        // Fall through.
1886  case DeclSpec::SCS_register:       // Fall through.
1887  case DeclSpec::SCS_typedef:        return SC_None;
1888  }
1889  llvm_unreachable("unknown storage class specifier");
1890}
1891
1892/// BuildAnonymousStructOrUnion - Handle the declaration of an
1893/// anonymous structure or union. Anonymous unions are a C++ feature
1894/// (C++ [class.union]) and a GNU C extension; anonymous structures
1895/// are a GNU C and GNU C++ extension.
1896Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1897                                             AccessSpecifier AS,
1898                                             RecordDecl *Record) {
1899  DeclContext *Owner = Record->getDeclContext();
1900
1901  // Diagnose whether this anonymous struct/union is an extension.
1902  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1903    Diag(Record->getLocation(), diag::ext_anonymous_union);
1904  else if (!Record->isUnion())
1905    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1906
1907  // C and C++ require different kinds of checks for anonymous
1908  // structs/unions.
1909  bool Invalid = false;
1910  if (getLangOptions().CPlusPlus) {
1911    const char* PrevSpec = 0;
1912    unsigned DiagID;
1913    // C++ [class.union]p3:
1914    //   Anonymous unions declared in a named namespace or in the
1915    //   global namespace shall be declared static.
1916    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1917        (isa<TranslationUnitDecl>(Owner) ||
1918         (isa<NamespaceDecl>(Owner) &&
1919          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1920      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1921      Invalid = true;
1922
1923      // Recover by adding 'static'.
1924      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1925                             PrevSpec, DiagID);
1926    }
1927    // C++ [class.union]p3:
1928    //   A storage class is not allowed in a declaration of an
1929    //   anonymous union in a class scope.
1930    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1931             isa<RecordDecl>(Owner)) {
1932      Diag(DS.getStorageClassSpecLoc(),
1933           diag::err_anonymous_union_with_storage_spec);
1934      Invalid = true;
1935
1936      // Recover by removing the storage specifier.
1937      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1938                             PrevSpec, DiagID);
1939    }
1940
1941    // C++ [class.union]p2:
1942    //   The member-specification of an anonymous union shall only
1943    //   define non-static data members. [Note: nested types and
1944    //   functions cannot be declared within an anonymous union. ]
1945    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1946                                 MemEnd = Record->decls_end();
1947         Mem != MemEnd; ++Mem) {
1948      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1949        // C++ [class.union]p3:
1950        //   An anonymous union shall not have private or protected
1951        //   members (clause 11).
1952        assert(FD->getAccess() != AS_none);
1953        if (FD->getAccess() != AS_public) {
1954          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1955            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1956          Invalid = true;
1957        }
1958
1959        if (CheckNontrivialField(FD))
1960          Invalid = true;
1961      } else if ((*Mem)->isImplicit()) {
1962        // Any implicit members are fine.
1963      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1964        // This is a type that showed up in an
1965        // elaborated-type-specifier inside the anonymous struct or
1966        // union, but which actually declares a type outside of the
1967        // anonymous struct or union. It's okay.
1968      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1969        if (!MemRecord->isAnonymousStructOrUnion() &&
1970            MemRecord->getDeclName()) {
1971          // Visual C++ allows type definition in anonymous struct or union.
1972          if (getLangOptions().Microsoft)
1973            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1974              << (int)Record->isUnion();
1975          else {
1976            // This is a nested type declaration.
1977            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1978              << (int)Record->isUnion();
1979            Invalid = true;
1980          }
1981        }
1982      } else if (isa<AccessSpecDecl>(*Mem)) {
1983        // Any access specifier is fine.
1984      } else {
1985        // We have something that isn't a non-static data
1986        // member. Complain about it.
1987        unsigned DK = diag::err_anonymous_record_bad_member;
1988        if (isa<TypeDecl>(*Mem))
1989          DK = diag::err_anonymous_record_with_type;
1990        else if (isa<FunctionDecl>(*Mem))
1991          DK = diag::err_anonymous_record_with_function;
1992        else if (isa<VarDecl>(*Mem))
1993          DK = diag::err_anonymous_record_with_static;
1994
1995        // Visual C++ allows type definition in anonymous struct or union.
1996        if (getLangOptions().Microsoft &&
1997            DK == diag::err_anonymous_record_with_type)
1998          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1999            << (int)Record->isUnion();
2000        else {
2001          Diag((*Mem)->getLocation(), DK)
2002              << (int)Record->isUnion();
2003          Invalid = true;
2004        }
2005      }
2006    }
2007  }
2008
2009  if (!Record->isUnion() && !Owner->isRecord()) {
2010    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2011      << (int)getLangOptions().CPlusPlus;
2012    Invalid = true;
2013  }
2014
2015  // Mock up a declarator.
2016  Declarator Dc(DS, Declarator::TypeNameContext);
2017  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2018  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2019
2020  // Create a declaration for this anonymous struct/union.
2021  NamedDecl *Anon = 0;
2022  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2023    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2024                             /*IdentifierInfo=*/0,
2025                             Context.getTypeDeclType(Record),
2026                             TInfo,
2027                             /*BitWidth=*/0, /*Mutable=*/false);
2028    Anon->setAccess(AS);
2029    if (getLangOptions().CPlusPlus)
2030      FieldCollector->Add(cast<FieldDecl>(Anon));
2031  } else {
2032    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2033    assert(SCSpec != DeclSpec::SCS_typedef &&
2034           "Parser allowed 'typedef' as storage class VarDecl.");
2035    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2036    if (SCSpec == DeclSpec::SCS_mutable) {
2037      // mutable can only appear on non-static class members, so it's always
2038      // an error here
2039      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2040      Invalid = true;
2041      SC = SC_None;
2042    }
2043    SCSpec = DS.getStorageClassSpecAsWritten();
2044    VarDecl::StorageClass SCAsWritten
2045      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2046
2047    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2048                           /*IdentifierInfo=*/0,
2049                           Context.getTypeDeclType(Record),
2050                           TInfo, SC, SCAsWritten);
2051  }
2052  Anon->setImplicit();
2053
2054  // Add the anonymous struct/union object to the current
2055  // context. We'll be referencing this object when we refer to one of
2056  // its members.
2057  Owner->addDecl(Anon);
2058
2059  // Inject the members of the anonymous struct/union into the owning
2060  // context and into the identifier resolver chain for name lookup
2061  // purposes.
2062  llvm::SmallVector<NamedDecl*, 2> Chain;
2063  Chain.push_back(Anon);
2064
2065  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2066                                          Chain, false))
2067    Invalid = true;
2068
2069  // Mark this as an anonymous struct/union type. Note that we do not
2070  // do this until after we have already checked and injected the
2071  // members of this anonymous struct/union type, because otherwise
2072  // the members could be injected twice: once by DeclContext when it
2073  // builds its lookup table, and once by
2074  // InjectAnonymousStructOrUnionMembers.
2075  Record->setAnonymousStructOrUnion(true);
2076
2077  if (Invalid)
2078    Anon->setInvalidDecl();
2079
2080  return Anon;
2081}
2082
2083/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2084/// Microsoft C anonymous structure.
2085/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2086/// Example:
2087///
2088/// struct A { int a; };
2089/// struct B { struct A; int b; };
2090///
2091/// void foo() {
2092///   B var;
2093///   var.a = 3;
2094/// }
2095///
2096Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2097                                           RecordDecl *Record) {
2098
2099  // If there is no Record, get the record via the typedef.
2100  if (!Record)
2101    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2102
2103  // Mock up a declarator.
2104  Declarator Dc(DS, Declarator::TypeNameContext);
2105  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2106  assert(TInfo && "couldn't build declarator info for anonymous struct");
2107
2108  // Create a declaration for this anonymous struct.
2109  NamedDecl* Anon = FieldDecl::Create(Context,
2110                             cast<RecordDecl>(CurContext),
2111                             DS.getSourceRange().getBegin(),
2112                             /*IdentifierInfo=*/0,
2113                             Context.getTypeDeclType(Record),
2114                             TInfo,
2115                             /*BitWidth=*/0, /*Mutable=*/false);
2116  Anon->setImplicit();
2117
2118  // Add the anonymous struct object to the current context.
2119  CurContext->addDecl(Anon);
2120
2121  // Inject the members of the anonymous struct into the current
2122  // context and into the identifier resolver chain for name lookup
2123  // purposes.
2124  llvm::SmallVector<NamedDecl*, 2> Chain;
2125  Chain.push_back(Anon);
2126
2127  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2128                                          Record->getDefinition(),
2129                                          AS_none, Chain, true))
2130    Anon->setInvalidDecl();
2131
2132  return Anon;
2133}
2134
2135/// GetNameForDeclarator - Determine the full declaration name for the
2136/// given Declarator.
2137DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2138  return GetNameFromUnqualifiedId(D.getName());
2139}
2140
2141/// \brief Retrieves the declaration name from a parsed unqualified-id.
2142DeclarationNameInfo
2143Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2144  DeclarationNameInfo NameInfo;
2145  NameInfo.setLoc(Name.StartLocation);
2146
2147  switch (Name.getKind()) {
2148
2149  case UnqualifiedId::IK_Identifier:
2150    NameInfo.setName(Name.Identifier);
2151    NameInfo.setLoc(Name.StartLocation);
2152    return NameInfo;
2153
2154  case UnqualifiedId::IK_OperatorFunctionId:
2155    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2156                                           Name.OperatorFunctionId.Operator));
2157    NameInfo.setLoc(Name.StartLocation);
2158    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2159      = Name.OperatorFunctionId.SymbolLocations[0];
2160    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2161      = Name.EndLocation.getRawEncoding();
2162    return NameInfo;
2163
2164  case UnqualifiedId::IK_LiteralOperatorId:
2165    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2166                                                           Name.Identifier));
2167    NameInfo.setLoc(Name.StartLocation);
2168    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2169    return NameInfo;
2170
2171  case UnqualifiedId::IK_ConversionFunctionId: {
2172    TypeSourceInfo *TInfo;
2173    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2174    if (Ty.isNull())
2175      return DeclarationNameInfo();
2176    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2177                                               Context.getCanonicalType(Ty)));
2178    NameInfo.setLoc(Name.StartLocation);
2179    NameInfo.setNamedTypeInfo(TInfo);
2180    return NameInfo;
2181  }
2182
2183  case UnqualifiedId::IK_ConstructorName: {
2184    TypeSourceInfo *TInfo;
2185    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2186    if (Ty.isNull())
2187      return DeclarationNameInfo();
2188    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2189                                              Context.getCanonicalType(Ty)));
2190    NameInfo.setLoc(Name.StartLocation);
2191    NameInfo.setNamedTypeInfo(TInfo);
2192    return NameInfo;
2193  }
2194
2195  case UnqualifiedId::IK_ConstructorTemplateId: {
2196    // In well-formed code, we can only have a constructor
2197    // template-id that refers to the current context, so go there
2198    // to find the actual type being constructed.
2199    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2200    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2201      return DeclarationNameInfo();
2202
2203    // Determine the type of the class being constructed.
2204    QualType CurClassType = Context.getTypeDeclType(CurClass);
2205
2206    // FIXME: Check two things: that the template-id names the same type as
2207    // CurClassType, and that the template-id does not occur when the name
2208    // was qualified.
2209
2210    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2211                                    Context.getCanonicalType(CurClassType)));
2212    NameInfo.setLoc(Name.StartLocation);
2213    // FIXME: should we retrieve TypeSourceInfo?
2214    NameInfo.setNamedTypeInfo(0);
2215    return NameInfo;
2216  }
2217
2218  case UnqualifiedId::IK_DestructorName: {
2219    TypeSourceInfo *TInfo;
2220    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2221    if (Ty.isNull())
2222      return DeclarationNameInfo();
2223    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2224                                              Context.getCanonicalType(Ty)));
2225    NameInfo.setLoc(Name.StartLocation);
2226    NameInfo.setNamedTypeInfo(TInfo);
2227    return NameInfo;
2228  }
2229
2230  case UnqualifiedId::IK_TemplateId: {
2231    TemplateName TName = Name.TemplateId->Template.get();
2232    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2233    return Context.getNameForTemplate(TName, TNameLoc);
2234  }
2235
2236  } // switch (Name.getKind())
2237
2238  assert(false && "Unknown name kind");
2239  return DeclarationNameInfo();
2240}
2241
2242/// isNearlyMatchingFunction - Determine whether the C++ functions
2243/// Declaration and Definition are "nearly" matching. This heuristic
2244/// is used to improve diagnostics in the case where an out-of-line
2245/// function definition doesn't match any declaration within
2246/// the class or namespace.
2247static bool isNearlyMatchingFunction(ASTContext &Context,
2248                                     FunctionDecl *Declaration,
2249                                     FunctionDecl *Definition) {
2250  if (Declaration->param_size() != Definition->param_size())
2251    return false;
2252  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2253    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2254    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2255
2256    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2257                                        DefParamTy.getNonReferenceType()))
2258      return false;
2259  }
2260
2261  return true;
2262}
2263
2264/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2265/// declarator needs to be rebuilt in the current instantiation.
2266/// Any bits of declarator which appear before the name are valid for
2267/// consideration here.  That's specifically the type in the decl spec
2268/// and the base type in any member-pointer chunks.
2269static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2270                                                    DeclarationName Name) {
2271  // The types we specifically need to rebuild are:
2272  //   - typenames, typeofs, and decltypes
2273  //   - types which will become injected class names
2274  // Of course, we also need to rebuild any type referencing such a
2275  // type.  It's safest to just say "dependent", but we call out a
2276  // few cases here.
2277
2278  DeclSpec &DS = D.getMutableDeclSpec();
2279  switch (DS.getTypeSpecType()) {
2280  case DeclSpec::TST_typename:
2281  case DeclSpec::TST_typeofType:
2282  case DeclSpec::TST_decltype: {
2283    // Grab the type from the parser.
2284    TypeSourceInfo *TSI = 0;
2285    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2286    if (T.isNull() || !T->isDependentType()) break;
2287
2288    // Make sure there's a type source info.  This isn't really much
2289    // of a waste; most dependent types should have type source info
2290    // attached already.
2291    if (!TSI)
2292      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2293
2294    // Rebuild the type in the current instantiation.
2295    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2296    if (!TSI) return true;
2297
2298    // Store the new type back in the decl spec.
2299    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2300    DS.UpdateTypeRep(LocType);
2301    break;
2302  }
2303
2304  case DeclSpec::TST_typeofExpr: {
2305    Expr *E = DS.getRepAsExpr();
2306    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2307    if (Result.isInvalid()) return true;
2308    DS.UpdateExprRep(Result.get());
2309    break;
2310  }
2311
2312  default:
2313    // Nothing to do for these decl specs.
2314    break;
2315  }
2316
2317  // It doesn't matter what order we do this in.
2318  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2319    DeclaratorChunk &Chunk = D.getTypeObject(I);
2320
2321    // The only type information in the declarator which can come
2322    // before the declaration name is the base type of a member
2323    // pointer.
2324    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2325      continue;
2326
2327    // Rebuild the scope specifier in-place.
2328    CXXScopeSpec &SS = Chunk.Mem.Scope();
2329    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2330      return true;
2331  }
2332
2333  return false;
2334}
2335
2336Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2337  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2338}
2339
2340Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2341                             MultiTemplateParamsArg TemplateParamLists,
2342                             bool IsFunctionDefinition) {
2343  // TODO: consider using NameInfo for diagnostic.
2344  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2345  DeclarationName Name = NameInfo.getName();
2346
2347  // All of these full declarators require an identifier.  If it doesn't have
2348  // one, the ParsedFreeStandingDeclSpec action should be used.
2349  if (!Name) {
2350    if (!D.isInvalidType())  // Reject this if we think it is valid.
2351      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2352           diag::err_declarator_need_ident)
2353        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2354    return 0;
2355  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2356    return 0;
2357
2358  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2359  // we find one that is.
2360  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2361         (S->getFlags() & Scope::TemplateParamScope) != 0)
2362    S = S->getParent();
2363
2364  DeclContext *DC = CurContext;
2365  if (D.getCXXScopeSpec().isInvalid())
2366    D.setInvalidType();
2367  else if (D.getCXXScopeSpec().isSet()) {
2368    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2369                                        UPPC_DeclarationQualifier))
2370      return 0;
2371
2372    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2373    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2374    if (!DC) {
2375      // If we could not compute the declaration context, it's because the
2376      // declaration context is dependent but does not refer to a class,
2377      // class template, or class template partial specialization. Complain
2378      // and return early, to avoid the coming semantic disaster.
2379      Diag(D.getIdentifierLoc(),
2380           diag::err_template_qualified_declarator_no_match)
2381        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2382        << D.getCXXScopeSpec().getRange();
2383      return 0;
2384    }
2385
2386    bool IsDependentContext = DC->isDependentContext();
2387
2388    if (!IsDependentContext &&
2389        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2390      return 0;
2391
2392    if (isa<CXXRecordDecl>(DC)) {
2393      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2394        Diag(D.getIdentifierLoc(),
2395             diag::err_member_def_undefined_record)
2396          << Name << DC << D.getCXXScopeSpec().getRange();
2397        D.setInvalidType();
2398      } else if (isa<CXXRecordDecl>(CurContext) &&
2399                 !D.getDeclSpec().isFriendSpecified()) {
2400        // The user provided a superfluous scope specifier inside a class
2401        // definition:
2402        //
2403        // class X {
2404        //   void X::f();
2405        // };
2406        if (CurContext->Equals(DC))
2407          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2408            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2409        else
2410          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2411            << Name << D.getCXXScopeSpec().getRange();
2412
2413        // Pretend that this qualifier was not here.
2414        D.getCXXScopeSpec().clear();
2415      }
2416    }
2417
2418    // Check whether we need to rebuild the type of the given
2419    // declaration in the current instantiation.
2420    if (EnteringContext && IsDependentContext &&
2421        TemplateParamLists.size() != 0) {
2422      ContextRAII SavedContext(*this, DC);
2423      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2424        D.setInvalidType();
2425    }
2426  }
2427
2428  // C++ [class.mem]p13:
2429  //   If T is the name of a class, then each of the following shall have a
2430  //   name different from T:
2431  //     - every static data member of class T;
2432  //     - every member function of class T
2433  //     - every member of class T that is itself a type;
2434  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2435    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2436      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2437        << Name;
2438
2439      // If this is a typedef, we'll end up spewing multiple diagnostics.
2440      // Just return early; it's safer.
2441      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2442        return 0;
2443    }
2444
2445  NamedDecl *New;
2446
2447  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2448  QualType R = TInfo->getType();
2449
2450  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2451                                      UPPC_DeclarationType))
2452    D.setInvalidType();
2453
2454  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2455                        ForRedeclaration);
2456
2457  // See if this is a redefinition of a variable in the same scope.
2458  if (!D.getCXXScopeSpec().isSet()) {
2459    bool IsLinkageLookup = false;
2460
2461    // If the declaration we're planning to build will be a function
2462    // or object with linkage, then look for another declaration with
2463    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2464    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2465      /* Do nothing*/;
2466    else if (R->isFunctionType()) {
2467      if (CurContext->isFunctionOrMethod() ||
2468          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2469        IsLinkageLookup = true;
2470    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2471      IsLinkageLookup = true;
2472    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2473             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2474      IsLinkageLookup = true;
2475
2476    if (IsLinkageLookup)
2477      Previous.clear(LookupRedeclarationWithLinkage);
2478
2479    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2480  } else { // Something like "int foo::x;"
2481    LookupQualifiedName(Previous, DC);
2482
2483    // Don't consider using declarations as previous declarations for
2484    // out-of-line members.
2485    RemoveUsingDecls(Previous);
2486
2487    // C++ 7.3.1.2p2:
2488    // Members (including explicit specializations of templates) of a named
2489    // namespace can also be defined outside that namespace by explicit
2490    // qualification of the name being defined, provided that the entity being
2491    // defined was already declared in the namespace and the definition appears
2492    // after the point of declaration in a namespace that encloses the
2493    // declarations namespace.
2494    //
2495    // Note that we only check the context at this point. We don't yet
2496    // have enough information to make sure that PrevDecl is actually
2497    // the declaration we want to match. For example, given:
2498    //
2499    //   class X {
2500    //     void f();
2501    //     void f(float);
2502    //   };
2503    //
2504    //   void X::f(int) { } // ill-formed
2505    //
2506    // In this case, PrevDecl will point to the overload set
2507    // containing the two f's declared in X, but neither of them
2508    // matches.
2509
2510    // First check whether we named the global scope.
2511    if (isa<TranslationUnitDecl>(DC)) {
2512      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2513        << Name << D.getCXXScopeSpec().getRange();
2514    } else {
2515      DeclContext *Cur = CurContext;
2516      while (isa<LinkageSpecDecl>(Cur))
2517        Cur = Cur->getParent();
2518      if (!Cur->Encloses(DC)) {
2519        // The qualifying scope doesn't enclose the original declaration.
2520        // Emit diagnostic based on current scope.
2521        SourceLocation L = D.getIdentifierLoc();
2522        SourceRange R = D.getCXXScopeSpec().getRange();
2523        if (isa<FunctionDecl>(Cur))
2524          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2525        else
2526          Diag(L, diag::err_invalid_declarator_scope)
2527            << Name << cast<NamedDecl>(DC) << R;
2528        D.setInvalidType();
2529      }
2530    }
2531  }
2532
2533  if (Previous.isSingleResult() &&
2534      Previous.getFoundDecl()->isTemplateParameter()) {
2535    // Maybe we will complain about the shadowed template parameter.
2536    if (!D.isInvalidType())
2537      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2538                                          Previous.getFoundDecl()))
2539        D.setInvalidType();
2540
2541    // Just pretend that we didn't see the previous declaration.
2542    Previous.clear();
2543  }
2544
2545  // In C++, the previous declaration we find might be a tag type
2546  // (class or enum). In this case, the new declaration will hide the
2547  // tag type. Note that this does does not apply if we're declaring a
2548  // typedef (C++ [dcl.typedef]p4).
2549  if (Previous.isSingleTagDecl() &&
2550      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2551    Previous.clear();
2552
2553  bool Redeclaration = false;
2554  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2555    if (TemplateParamLists.size()) {
2556      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2557      return 0;
2558    }
2559
2560    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2561  } else if (R->isFunctionType()) {
2562    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2563                                  move(TemplateParamLists),
2564                                  IsFunctionDefinition, Redeclaration);
2565  } else {
2566    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2567                                  move(TemplateParamLists),
2568                                  Redeclaration);
2569  }
2570
2571  if (New == 0)
2572    return 0;
2573
2574  // If this has an identifier and is not an invalid redeclaration or
2575  // function template specialization, add it to the scope stack.
2576  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2577    PushOnScopeChains(New, S);
2578
2579  return New;
2580}
2581
2582/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2583/// types into constant array types in certain situations which would otherwise
2584/// be errors (for GCC compatibility).
2585static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2586                                                    ASTContext &Context,
2587                                                    bool &SizeIsNegative,
2588                                                    llvm::APSInt &Oversized) {
2589  // This method tries to turn a variable array into a constant
2590  // array even when the size isn't an ICE.  This is necessary
2591  // for compatibility with code that depends on gcc's buggy
2592  // constant expression folding, like struct {char x[(int)(char*)2];}
2593  SizeIsNegative = false;
2594  Oversized = 0;
2595
2596  if (T->isDependentType())
2597    return QualType();
2598
2599  QualifierCollector Qs;
2600  const Type *Ty = Qs.strip(T);
2601
2602  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2603    QualType Pointee = PTy->getPointeeType();
2604    QualType FixedType =
2605        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2606                                            Oversized);
2607    if (FixedType.isNull()) return FixedType;
2608    FixedType = Context.getPointerType(FixedType);
2609    return Qs.apply(Context, FixedType);
2610  }
2611  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2612    QualType Inner = PTy->getInnerType();
2613    QualType FixedType =
2614        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2615                                            Oversized);
2616    if (FixedType.isNull()) return FixedType;
2617    FixedType = Context.getParenType(FixedType);
2618    return Qs.apply(Context, FixedType);
2619  }
2620
2621  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2622  if (!VLATy)
2623    return QualType();
2624  // FIXME: We should probably handle this case
2625  if (VLATy->getElementType()->isVariablyModifiedType())
2626    return QualType();
2627
2628  Expr::EvalResult EvalResult;
2629  if (!VLATy->getSizeExpr() ||
2630      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2631      !EvalResult.Val.isInt())
2632    return QualType();
2633
2634  // Check whether the array size is negative.
2635  llvm::APSInt &Res = EvalResult.Val.getInt();
2636  if (Res.isSigned() && Res.isNegative()) {
2637    SizeIsNegative = true;
2638    return QualType();
2639  }
2640
2641  // Check whether the array is too large to be addressed.
2642  unsigned ActiveSizeBits
2643    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2644                                              Res);
2645  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2646    Oversized = Res;
2647    return QualType();
2648  }
2649
2650  return Context.getConstantArrayType(VLATy->getElementType(),
2651                                      Res, ArrayType::Normal, 0);
2652}
2653
2654/// \brief Register the given locally-scoped external C declaration so
2655/// that it can be found later for redeclarations
2656void
2657Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2658                                       const LookupResult &Previous,
2659                                       Scope *S) {
2660  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2661         "Decl is not a locally-scoped decl!");
2662  // Note that we have a locally-scoped external with this name.
2663  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2664
2665  if (!Previous.isSingleResult())
2666    return;
2667
2668  NamedDecl *PrevDecl = Previous.getFoundDecl();
2669
2670  // If there was a previous declaration of this variable, it may be
2671  // in our identifier chain. Update the identifier chain with the new
2672  // declaration.
2673  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2674    // The previous declaration was found on the identifer resolver
2675    // chain, so remove it from its scope.
2676    while (S && !S->isDeclScope(PrevDecl))
2677      S = S->getParent();
2678
2679    if (S)
2680      S->RemoveDecl(PrevDecl);
2681  }
2682}
2683
2684/// \brief Diagnose function specifiers on a declaration of an identifier that
2685/// does not identify a function.
2686void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2687  // FIXME: We should probably indicate the identifier in question to avoid
2688  // confusion for constructs like "inline int a(), b;"
2689  if (D.getDeclSpec().isInlineSpecified())
2690    Diag(D.getDeclSpec().getInlineSpecLoc(),
2691         diag::err_inline_non_function);
2692
2693  if (D.getDeclSpec().isVirtualSpecified())
2694    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2695         diag::err_virtual_non_function);
2696
2697  if (D.getDeclSpec().isExplicitSpecified())
2698    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2699         diag::err_explicit_non_function);
2700}
2701
2702NamedDecl*
2703Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2704                             QualType R,  TypeSourceInfo *TInfo,
2705                             LookupResult &Previous, bool &Redeclaration) {
2706  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2707  if (D.getCXXScopeSpec().isSet()) {
2708    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2709      << D.getCXXScopeSpec().getRange();
2710    D.setInvalidType();
2711    // Pretend we didn't see the scope specifier.
2712    DC = CurContext;
2713    Previous.clear();
2714  }
2715
2716  if (getLangOptions().CPlusPlus) {
2717    // Check that there are no default arguments (C++ only).
2718    CheckExtraCXXDefaultArguments(D);
2719  }
2720
2721  DiagnoseFunctionSpecifiers(D);
2722
2723  if (D.getDeclSpec().isThreadSpecified())
2724    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2725
2726  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2727    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2728      << D.getName().getSourceRange();
2729    return 0;
2730  }
2731
2732  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2733  if (!NewTD) return 0;
2734
2735  // Handle attributes prior to checking for duplicates in MergeVarDecl
2736  ProcessDeclAttributes(S, NewTD, D);
2737
2738  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2739  // then it shall have block scope.
2740  // Note that variably modified types must be fixed before merging the decl so
2741  // that redeclarations will match.
2742  QualType T = NewTD->getUnderlyingType();
2743  if (T->isVariablyModifiedType()) {
2744    getCurFunction()->setHasBranchProtectedScope();
2745
2746    if (S->getFnParent() == 0) {
2747      bool SizeIsNegative;
2748      llvm::APSInt Oversized;
2749      QualType FixedTy =
2750          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2751                                              Oversized);
2752      if (!FixedTy.isNull()) {
2753        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2754        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2755      } else {
2756        if (SizeIsNegative)
2757          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2758        else if (T->isVariableArrayType())
2759          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2760        else if (Oversized.getBoolValue())
2761          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2762            << Oversized.toString(10);
2763        else
2764          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2765        NewTD->setInvalidDecl();
2766      }
2767    }
2768  }
2769
2770  // Merge the decl with the existing one if appropriate. If the decl is
2771  // in an outer scope, it isn't the same thing.
2772  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2773  if (!Previous.empty()) {
2774    Redeclaration = true;
2775    MergeTypeDefDecl(NewTD, Previous);
2776  }
2777
2778  // If this is the C FILE type, notify the AST context.
2779  if (IdentifierInfo *II = NewTD->getIdentifier())
2780    if (!NewTD->isInvalidDecl() &&
2781        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2782      if (II->isStr("FILE"))
2783        Context.setFILEDecl(NewTD);
2784      else if (II->isStr("jmp_buf"))
2785        Context.setjmp_bufDecl(NewTD);
2786      else if (II->isStr("sigjmp_buf"))
2787        Context.setsigjmp_bufDecl(NewTD);
2788      else if (II->isStr("__builtin_va_list"))
2789        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2790    }
2791
2792  return NewTD;
2793}
2794
2795/// \brief Determines whether the given declaration is an out-of-scope
2796/// previous declaration.
2797///
2798/// This routine should be invoked when name lookup has found a
2799/// previous declaration (PrevDecl) that is not in the scope where a
2800/// new declaration by the same name is being introduced. If the new
2801/// declaration occurs in a local scope, previous declarations with
2802/// linkage may still be considered previous declarations (C99
2803/// 6.2.2p4-5, C++ [basic.link]p6).
2804///
2805/// \param PrevDecl the previous declaration found by name
2806/// lookup
2807///
2808/// \param DC the context in which the new declaration is being
2809/// declared.
2810///
2811/// \returns true if PrevDecl is an out-of-scope previous declaration
2812/// for a new delcaration with the same name.
2813static bool
2814isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2815                                ASTContext &Context) {
2816  if (!PrevDecl)
2817    return false;
2818
2819  if (!PrevDecl->hasLinkage())
2820    return false;
2821
2822  if (Context.getLangOptions().CPlusPlus) {
2823    // C++ [basic.link]p6:
2824    //   If there is a visible declaration of an entity with linkage
2825    //   having the same name and type, ignoring entities declared
2826    //   outside the innermost enclosing namespace scope, the block
2827    //   scope declaration declares that same entity and receives the
2828    //   linkage of the previous declaration.
2829    DeclContext *OuterContext = DC->getRedeclContext();
2830    if (!OuterContext->isFunctionOrMethod())
2831      // This rule only applies to block-scope declarations.
2832      return false;
2833
2834    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2835    if (PrevOuterContext->isRecord())
2836      // We found a member function: ignore it.
2837      return false;
2838
2839    // Find the innermost enclosing namespace for the new and
2840    // previous declarations.
2841    OuterContext = OuterContext->getEnclosingNamespaceContext();
2842    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2843
2844    // The previous declaration is in a different namespace, so it
2845    // isn't the same function.
2846    if (!OuterContext->Equals(PrevOuterContext))
2847      return false;
2848  }
2849
2850  return true;
2851}
2852
2853static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2854  CXXScopeSpec &SS = D.getCXXScopeSpec();
2855  if (!SS.isSet()) return;
2856  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2857                       SS.getRange());
2858}
2859
2860NamedDecl*
2861Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2862                              QualType R, TypeSourceInfo *TInfo,
2863                              LookupResult &Previous,
2864                              MultiTemplateParamsArg TemplateParamLists,
2865                              bool &Redeclaration) {
2866  DeclarationName Name = GetNameForDeclarator(D).getName();
2867
2868  // Check that there are no default arguments (C++ only).
2869  if (getLangOptions().CPlusPlus)
2870    CheckExtraCXXDefaultArguments(D);
2871
2872  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2873  assert(SCSpec != DeclSpec::SCS_typedef &&
2874         "Parser allowed 'typedef' as storage class VarDecl.");
2875  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2876  if (SCSpec == DeclSpec::SCS_mutable) {
2877    // mutable can only appear on non-static class members, so it's always
2878    // an error here
2879    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2880    D.setInvalidType();
2881    SC = SC_None;
2882  }
2883  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2884  VarDecl::StorageClass SCAsWritten
2885    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2886
2887  IdentifierInfo *II = Name.getAsIdentifierInfo();
2888  if (!II) {
2889    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2890      << Name.getAsString();
2891    return 0;
2892  }
2893
2894  DiagnoseFunctionSpecifiers(D);
2895
2896  if (!DC->isRecord() && S->getFnParent() == 0) {
2897    // C99 6.9p2: The storage-class specifiers auto and register shall not
2898    // appear in the declaration specifiers in an external declaration.
2899    if (SC == SC_Auto || SC == SC_Register) {
2900
2901      // If this is a register variable with an asm label specified, then this
2902      // is a GNU extension.
2903      if (SC == SC_Register && D.getAsmLabel())
2904        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2905      else
2906        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2907      D.setInvalidType();
2908    }
2909  }
2910
2911  bool isExplicitSpecialization = false;
2912  VarDecl *NewVD;
2913  if (!getLangOptions().CPlusPlus) {
2914      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2915                              II, R, TInfo, SC, SCAsWritten);
2916
2917    if (D.isInvalidType())
2918      NewVD->setInvalidDecl();
2919  } else {
2920    if (DC->isRecord() && !CurContext->isRecord()) {
2921      // This is an out-of-line definition of a static data member.
2922      if (SC == SC_Static) {
2923        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2924             diag::err_static_out_of_line)
2925          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2926      } else if (SC == SC_None)
2927        SC = SC_Static;
2928    }
2929    if (SC == SC_Static) {
2930      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2931        if (RD->isLocalClass())
2932          Diag(D.getIdentifierLoc(),
2933               diag::err_static_data_member_not_allowed_in_local_class)
2934            << Name << RD->getDeclName();
2935
2936        // C++ [class.union]p1: If a union contains a static data member,
2937        // the program is ill-formed.
2938        //
2939        // We also disallow static data members in anonymous structs.
2940        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2941          Diag(D.getIdentifierLoc(),
2942               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2943            << Name << RD->isUnion();
2944      }
2945    }
2946
2947    // Match up the template parameter lists with the scope specifier, then
2948    // determine whether we have a template or a template specialization.
2949    isExplicitSpecialization = false;
2950    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2951    bool Invalid = false;
2952    if (TemplateParameterList *TemplateParams
2953        = MatchTemplateParametersToScopeSpecifier(
2954                                                  D.getDeclSpec().getSourceRange().getBegin(),
2955                                                  D.getCXXScopeSpec(),
2956                                                  TemplateParamLists.get(),
2957                                                  TemplateParamLists.size(),
2958                                                  /*never a friend*/ false,
2959                                                  isExplicitSpecialization,
2960                                                  Invalid)) {
2961      // All but one template parameter lists have been matching.
2962      --NumMatchedTemplateParamLists;
2963
2964      if (TemplateParams->size() > 0) {
2965        // There is no such thing as a variable template.
2966        Diag(D.getIdentifierLoc(), diag::err_template_variable)
2967          << II
2968          << SourceRange(TemplateParams->getTemplateLoc(),
2969                         TemplateParams->getRAngleLoc());
2970        return 0;
2971      } else {
2972        // There is an extraneous 'template<>' for this variable. Complain
2973        // about it, but allow the declaration of the variable.
2974        Diag(TemplateParams->getTemplateLoc(),
2975             diag::err_template_variable_noparams)
2976          << II
2977          << SourceRange(TemplateParams->getTemplateLoc(),
2978                         TemplateParams->getRAngleLoc());
2979
2980        isExplicitSpecialization = true;
2981      }
2982    }
2983
2984    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2985                            II, R, TInfo, SC, SCAsWritten);
2986
2987    if (D.isInvalidType() || Invalid)
2988      NewVD->setInvalidDecl();
2989
2990    SetNestedNameSpecifier(NewVD, D);
2991
2992    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2993      NewVD->setTemplateParameterListsInfo(Context,
2994                                           NumMatchedTemplateParamLists,
2995                                           TemplateParamLists.release());
2996    }
2997  }
2998
2999  if (D.getDeclSpec().isThreadSpecified()) {
3000    if (NewVD->hasLocalStorage())
3001      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3002    else if (!Context.Target.isTLSSupported())
3003      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3004    else
3005      NewVD->setThreadSpecified(true);
3006  }
3007
3008  // Set the lexical context. If the declarator has a C++ scope specifier, the
3009  // lexical context will be different from the semantic context.
3010  NewVD->setLexicalDeclContext(CurContext);
3011
3012  // Handle attributes prior to checking for duplicates in MergeVarDecl
3013  ProcessDeclAttributes(S, NewVD, D);
3014
3015  // Handle GNU asm-label extension (encoded as an attribute).
3016  if (Expr *E = (Expr*)D.getAsmLabel()) {
3017    // The parser guarantees this is a string.
3018    StringLiteral *SE = cast<StringLiteral>(E);
3019    llvm::StringRef Label = SE->getString();
3020    if (S->getFnParent() != 0) {
3021      switch (SC) {
3022      case SC_None:
3023      case SC_Auto:
3024        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3025        break;
3026      case SC_Register:
3027        if (!Context.Target.isValidGCCRegisterName(Label))
3028          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3029        break;
3030      case SC_Static:
3031      case SC_Extern:
3032      case SC_PrivateExtern:
3033        break;
3034      }
3035    }
3036
3037    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3038                                                Context, Label));
3039  }
3040
3041  // Diagnose shadowed variables before filtering for scope.
3042  if (!D.getCXXScopeSpec().isSet())
3043    CheckShadow(S, NewVD, Previous);
3044
3045  // Don't consider existing declarations that are in a different
3046  // scope and are out-of-semantic-context declarations (if the new
3047  // declaration has linkage).
3048  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3049
3050  if (!getLangOptions().CPlusPlus)
3051    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3052  else {
3053    // Merge the decl with the existing one if appropriate.
3054    if (!Previous.empty()) {
3055      if (Previous.isSingleResult() &&
3056          isa<FieldDecl>(Previous.getFoundDecl()) &&
3057          D.getCXXScopeSpec().isSet()) {
3058        // The user tried to define a non-static data member
3059        // out-of-line (C++ [dcl.meaning]p1).
3060        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3061          << D.getCXXScopeSpec().getRange();
3062        Previous.clear();
3063        NewVD->setInvalidDecl();
3064      }
3065    } else if (D.getCXXScopeSpec().isSet()) {
3066      // No previous declaration in the qualifying scope.
3067      Diag(D.getIdentifierLoc(), diag::err_no_member)
3068        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3069        << D.getCXXScopeSpec().getRange();
3070      NewVD->setInvalidDecl();
3071    }
3072
3073    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3074
3075    // This is an explicit specialization of a static data member. Check it.
3076    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3077        CheckMemberSpecialization(NewVD, Previous))
3078      NewVD->setInvalidDecl();
3079  }
3080
3081  // attributes declared post-definition are currently ignored
3082  // FIXME: This should be handled in attribute merging, not
3083  // here.
3084  if (Previous.isSingleResult()) {
3085    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3086    if (Def && (Def = Def->getDefinition()) &&
3087        Def != NewVD && D.hasAttributes()) {
3088      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3089      Diag(Def->getLocation(), diag::note_previous_definition);
3090    }
3091  }
3092
3093  // If this is a locally-scoped extern C variable, update the map of
3094  // such variables.
3095  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3096      !NewVD->isInvalidDecl())
3097    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3098
3099  // If there's a #pragma GCC visibility in scope, and this isn't a class
3100  // member, set the visibility of this variable.
3101  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3102    AddPushedVisibilityAttribute(NewVD);
3103
3104  MarkUnusedFileScopedDecl(NewVD);
3105
3106  return NewVD;
3107}
3108
3109/// \brief Diagnose variable or built-in function shadowing.  Implements
3110/// -Wshadow.
3111///
3112/// This method is called whenever a VarDecl is added to a "useful"
3113/// scope.
3114///
3115/// \param S the scope in which the shadowing name is being declared
3116/// \param R the lookup of the name
3117///
3118void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3119  // Return if warning is ignored.
3120  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3121        Diagnostic::Ignored)
3122    return;
3123
3124  // Don't diagnose declarations at file scope.
3125  DeclContext *NewDC = D->getDeclContext();
3126  if (NewDC->isFileContext())
3127    return;
3128
3129  // Only diagnose if we're shadowing an unambiguous field or variable.
3130  if (R.getResultKind() != LookupResult::Found)
3131    return;
3132
3133  NamedDecl* ShadowedDecl = R.getFoundDecl();
3134  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3135    return;
3136
3137  // Fields are not shadowed by variables in C++ static methods.
3138  if (isa<FieldDecl>(ShadowedDecl))
3139    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3140      if (MD->isStatic())
3141        return;
3142
3143  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3144    if (shadowedVar->isExternC()) {
3145      // Don't warn for this case:
3146      //
3147      // @code
3148      // extern int bob;
3149      // void f() {
3150      //   extern int bob;
3151      // }
3152      // @endcode
3153      if (D->isExternC())
3154        return;
3155
3156      // For shadowing external vars, make sure that we point to the global
3157      // declaration, not a locally scoped extern declaration.
3158      for (VarDecl::redecl_iterator
3159             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3160           I != E; ++I)
3161        if (I->isFileVarDecl()) {
3162          ShadowedDecl = *I;
3163          break;
3164        }
3165    }
3166
3167  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3168
3169  // Only warn about certain kinds of shadowing for class members.
3170  if (NewDC && NewDC->isRecord()) {
3171    // In particular, don't warn about shadowing non-class members.
3172    if (!OldDC->isRecord())
3173      return;
3174
3175    // TODO: should we warn about static data members shadowing
3176    // static data members from base classes?
3177
3178    // TODO: don't diagnose for inaccessible shadowed members.
3179    // This is hard to do perfectly because we might friend the
3180    // shadowing context, but that's just a false negative.
3181  }
3182
3183  // Determine what kind of declaration we're shadowing.
3184  unsigned Kind;
3185  if (isa<RecordDecl>(OldDC)) {
3186    if (isa<FieldDecl>(ShadowedDecl))
3187      Kind = 3; // field
3188    else
3189      Kind = 2; // static data member
3190  } else if (OldDC->isFileContext())
3191    Kind = 1; // global
3192  else
3193    Kind = 0; // local
3194
3195  DeclarationName Name = R.getLookupName();
3196
3197  // Emit warning and note.
3198  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3199  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3200}
3201
3202/// \brief Check -Wshadow without the advantage of a previous lookup.
3203void Sema::CheckShadow(Scope *S, VarDecl *D) {
3204  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3205        Diagnostic::Ignored)
3206    return;
3207
3208  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3209                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3210  LookupName(R, S);
3211  CheckShadow(S, D, R);
3212}
3213
3214/// \brief Perform semantic checking on a newly-created variable
3215/// declaration.
3216///
3217/// This routine performs all of the type-checking required for a
3218/// variable declaration once it has been built. It is used both to
3219/// check variables after they have been parsed and their declarators
3220/// have been translated into a declaration, and to check variables
3221/// that have been instantiated from a template.
3222///
3223/// Sets NewVD->isInvalidDecl() if an error was encountered.
3224void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3225                                    LookupResult &Previous,
3226                                    bool &Redeclaration) {
3227  // If the decl is already known invalid, don't check it.
3228  if (NewVD->isInvalidDecl())
3229    return;
3230
3231  QualType T = NewVD->getType();
3232
3233  if (T->isObjCObjectType()) {
3234    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3235    return NewVD->setInvalidDecl();
3236  }
3237
3238  // Emit an error if an address space was applied to decl with local storage.
3239  // This includes arrays of objects with address space qualifiers, but not
3240  // automatic variables that point to other address spaces.
3241  // ISO/IEC TR 18037 S5.1.2
3242  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3243    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3244    return NewVD->setInvalidDecl();
3245  }
3246
3247  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3248      && !NewVD->hasAttr<BlocksAttr>())
3249    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3250
3251  bool isVM = T->isVariablyModifiedType();
3252  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3253      NewVD->hasAttr<BlocksAttr>())
3254    getCurFunction()->setHasBranchProtectedScope();
3255
3256  if ((isVM && NewVD->hasLinkage()) ||
3257      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3258    bool SizeIsNegative;
3259    llvm::APSInt Oversized;
3260    QualType FixedTy =
3261        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3262                                            Oversized);
3263
3264    if (FixedTy.isNull() && T->isVariableArrayType()) {
3265      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3266      // FIXME: This won't give the correct result for
3267      // int a[10][n];
3268      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3269
3270      if (NewVD->isFileVarDecl())
3271        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3272        << SizeRange;
3273      else if (NewVD->getStorageClass() == SC_Static)
3274        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3275        << SizeRange;
3276      else
3277        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3278        << SizeRange;
3279      return NewVD->setInvalidDecl();
3280    }
3281
3282    if (FixedTy.isNull()) {
3283      if (NewVD->isFileVarDecl())
3284        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3285      else
3286        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3287      return NewVD->setInvalidDecl();
3288    }
3289
3290    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3291    NewVD->setType(FixedTy);
3292  }
3293
3294  if (Previous.empty() && NewVD->isExternC()) {
3295    // Since we did not find anything by this name and we're declaring
3296    // an extern "C" variable, look for a non-visible extern "C"
3297    // declaration with the same name.
3298    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3299      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3300    if (Pos != LocallyScopedExternalDecls.end())
3301      Previous.addDecl(Pos->second);
3302  }
3303
3304  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3305    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3306      << T;
3307    return NewVD->setInvalidDecl();
3308  }
3309
3310  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3311    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3312    return NewVD->setInvalidDecl();
3313  }
3314
3315  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3316    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3317    return NewVD->setInvalidDecl();
3318  }
3319
3320  // Function pointers and references cannot have qualified function type, only
3321  // function pointer-to-members can do that.
3322  QualType Pointee;
3323  unsigned PtrOrRef = 0;
3324  if (const PointerType *Ptr = T->getAs<PointerType>())
3325    Pointee = Ptr->getPointeeType();
3326  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3327    Pointee = Ref->getPointeeType();
3328    PtrOrRef = 1;
3329  }
3330  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3331      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3332    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3333        << PtrOrRef;
3334    return NewVD->setInvalidDecl();
3335  }
3336
3337  if (!Previous.empty()) {
3338    Redeclaration = true;
3339    MergeVarDecl(NewVD, Previous);
3340  }
3341}
3342
3343/// \brief Data used with FindOverriddenMethod
3344struct FindOverriddenMethodData {
3345  Sema *S;
3346  CXXMethodDecl *Method;
3347};
3348
3349/// \brief Member lookup function that determines whether a given C++
3350/// method overrides a method in a base class, to be used with
3351/// CXXRecordDecl::lookupInBases().
3352static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3353                                 CXXBasePath &Path,
3354                                 void *UserData) {
3355  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3356
3357  FindOverriddenMethodData *Data
3358    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3359
3360  DeclarationName Name = Data->Method->getDeclName();
3361
3362  // FIXME: Do we care about other names here too?
3363  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3364    // We really want to find the base class destructor here.
3365    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3366    CanQualType CT = Data->S->Context.getCanonicalType(T);
3367
3368    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3369  }
3370
3371  for (Path.Decls = BaseRecord->lookup(Name);
3372       Path.Decls.first != Path.Decls.second;
3373       ++Path.Decls.first) {
3374    NamedDecl *D = *Path.Decls.first;
3375    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3376      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3377        return true;
3378    }
3379  }
3380
3381  return false;
3382}
3383
3384/// AddOverriddenMethods - See if a method overrides any in the base classes,
3385/// and if so, check that it's a valid override and remember it.
3386bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3387  // Look for virtual methods in base classes that this method might override.
3388  CXXBasePaths Paths;
3389  FindOverriddenMethodData Data;
3390  Data.Method = MD;
3391  Data.S = this;
3392  bool AddedAny = false;
3393  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3394    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3395         E = Paths.found_decls_end(); I != E; ++I) {
3396      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3397        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3398            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3399            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3400          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3401          AddedAny = true;
3402        }
3403      }
3404    }
3405  }
3406
3407  return AddedAny;
3408}
3409
3410static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3411  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3412                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3413  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3414  assert(!Prev.isAmbiguous() &&
3415         "Cannot have an ambiguity in previous-declaration lookup");
3416  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3417       Func != FuncEnd; ++Func) {
3418    if (isa<FunctionDecl>(*Func) &&
3419        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3420      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3421  }
3422}
3423
3424NamedDecl*
3425Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3426                              QualType R, TypeSourceInfo *TInfo,
3427                              LookupResult &Previous,
3428                              MultiTemplateParamsArg TemplateParamLists,
3429                              bool IsFunctionDefinition, bool &Redeclaration) {
3430  assert(R.getTypePtr()->isFunctionType());
3431
3432  // TODO: consider using NameInfo for diagnostic.
3433  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3434  DeclarationName Name = NameInfo.getName();
3435  FunctionDecl::StorageClass SC = SC_None;
3436  switch (D.getDeclSpec().getStorageClassSpec()) {
3437  default: assert(0 && "Unknown storage class!");
3438  case DeclSpec::SCS_auto:
3439  case DeclSpec::SCS_register:
3440  case DeclSpec::SCS_mutable:
3441    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3442         diag::err_typecheck_sclass_func);
3443    D.setInvalidType();
3444    break;
3445  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3446  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3447  case DeclSpec::SCS_static: {
3448    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3449      // C99 6.7.1p5:
3450      //   The declaration of an identifier for a function that has
3451      //   block scope shall have no explicit storage-class specifier
3452      //   other than extern
3453      // See also (C++ [dcl.stc]p4).
3454      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3455           diag::err_static_block_func);
3456      SC = SC_None;
3457    } else
3458      SC = SC_Static;
3459    break;
3460  }
3461  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3462  }
3463
3464  if (D.getDeclSpec().isThreadSpecified())
3465    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3466
3467  // Do not allow returning a objc interface by-value.
3468  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3469    Diag(D.getIdentifierLoc(),
3470         diag::err_object_cannot_be_passed_returned_by_value) << 0
3471    << R->getAs<FunctionType>()->getResultType();
3472    D.setInvalidType();
3473  }
3474
3475  FunctionDecl *NewFD;
3476  bool isInline = D.getDeclSpec().isInlineSpecified();
3477  bool isFriend = false;
3478  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3479  FunctionDecl::StorageClass SCAsWritten
3480    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3481  FunctionTemplateDecl *FunctionTemplate = 0;
3482  bool isExplicitSpecialization = false;
3483  bool isFunctionTemplateSpecialization = false;
3484  unsigned NumMatchedTemplateParamLists = 0;
3485
3486  if (!getLangOptions().CPlusPlus) {
3487    // Determine whether the function was written with a
3488    // prototype. This true when:
3489    //   - there is a prototype in the declarator, or
3490    //   - the type R of the function is some kind of typedef or other reference
3491    //     to a type name (which eventually refers to a function type).
3492    bool HasPrototype =
3493    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3494    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3495
3496    NewFD = FunctionDecl::Create(Context, DC,
3497                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3498                                 HasPrototype);
3499    if (D.isInvalidType())
3500      NewFD->setInvalidDecl();
3501
3502    // Set the lexical context.
3503    NewFD->setLexicalDeclContext(CurContext);
3504    // Filter out previous declarations that don't match the scope.
3505    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3506  } else {
3507    isFriend = D.getDeclSpec().isFriendSpecified();
3508    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3509    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3510    bool isVirtualOkay = false;
3511
3512    // Check that the return type is not an abstract class type.
3513    // For record types, this is done by the AbstractClassUsageDiagnoser once
3514    // the class has been completely parsed.
3515    if (!DC->isRecord() &&
3516      RequireNonAbstractType(D.getIdentifierLoc(),
3517                             R->getAs<FunctionType>()->getResultType(),
3518                             diag::err_abstract_type_in_decl,
3519                             AbstractReturnType))
3520      D.setInvalidType();
3521
3522
3523    if (isFriend) {
3524      // C++ [class.friend]p5
3525      //   A function can be defined in a friend declaration of a
3526      //   class . . . . Such a function is implicitly inline.
3527      isInline |= IsFunctionDefinition;
3528    }
3529
3530    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3531      // This is a C++ constructor declaration.
3532      assert(DC->isRecord() &&
3533             "Constructors can only be declared in a member context");
3534
3535      R = CheckConstructorDeclarator(D, R, SC);
3536
3537      // Create the new declaration
3538      NewFD = CXXConstructorDecl::Create(Context,
3539                                         cast<CXXRecordDecl>(DC),
3540                                         NameInfo, R, TInfo,
3541                                         isExplicit, isInline,
3542                                         /*isImplicitlyDeclared=*/false);
3543    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3544      // This is a C++ destructor declaration.
3545      if (DC->isRecord()) {
3546        R = CheckDestructorDeclarator(D, R, SC);
3547
3548        NewFD = CXXDestructorDecl::Create(Context,
3549                                          cast<CXXRecordDecl>(DC),
3550                                          NameInfo, R, TInfo,
3551                                          isInline,
3552                                          /*isImplicitlyDeclared=*/false);
3553        isVirtualOkay = true;
3554      } else {
3555        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3556
3557        // Create a FunctionDecl to satisfy the function definition parsing
3558        // code path.
3559        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3560                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3561                                     /*hasPrototype=*/true);
3562        D.setInvalidType();
3563      }
3564    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3565      if (!DC->isRecord()) {
3566        Diag(D.getIdentifierLoc(),
3567             diag::err_conv_function_not_member);
3568        return 0;
3569      }
3570
3571      CheckConversionDeclarator(D, R, SC);
3572      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3573                                        NameInfo, R, TInfo,
3574                                        isInline, isExplicit);
3575
3576      isVirtualOkay = true;
3577    } else if (DC->isRecord()) {
3578      // If the of the function is the same as the name of the record, then this
3579      // must be an invalid constructor that has a return type.
3580      // (The parser checks for a return type and makes the declarator a
3581      // constructor if it has no return type).
3582      // must have an invalid constructor that has a return type
3583      if (Name.getAsIdentifierInfo() &&
3584          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3585        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3586          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3587          << SourceRange(D.getIdentifierLoc());
3588        return 0;
3589      }
3590
3591      bool isStatic = SC == SC_Static;
3592
3593      // [class.free]p1:
3594      // Any allocation function for a class T is a static member
3595      // (even if not explicitly declared static).
3596      if (Name.getCXXOverloadedOperator() == OO_New ||
3597          Name.getCXXOverloadedOperator() == OO_Array_New)
3598        isStatic = true;
3599
3600      // [class.free]p6 Any deallocation function for a class X is a static member
3601      // (even if not explicitly declared static).
3602      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3603          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3604        isStatic = true;
3605
3606      // This is a C++ method declaration.
3607      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3608                                    NameInfo, R, TInfo,
3609                                    isStatic, SCAsWritten, isInline);
3610
3611      isVirtualOkay = !isStatic;
3612    } else {
3613      // Determine whether the function was written with a
3614      // prototype. This true when:
3615      //   - we're in C++ (where every function has a prototype),
3616      NewFD = FunctionDecl::Create(Context, DC,
3617                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3618                                   true/*HasPrototype*/);
3619    }
3620    SetNestedNameSpecifier(NewFD, D);
3621    isExplicitSpecialization = false;
3622    isFunctionTemplateSpecialization = false;
3623    NumMatchedTemplateParamLists = TemplateParamLists.size();
3624    if (D.isInvalidType())
3625      NewFD->setInvalidDecl();
3626
3627    // Set the lexical context. If the declarator has a C++
3628    // scope specifier, or is the object of a friend declaration, the
3629    // lexical context will be different from the semantic context.
3630    NewFD->setLexicalDeclContext(CurContext);
3631
3632    // Match up the template parameter lists with the scope specifier, then
3633    // determine whether we have a template or a template specialization.
3634    bool Invalid = false;
3635    if (TemplateParameterList *TemplateParams
3636        = MatchTemplateParametersToScopeSpecifier(
3637                                  D.getDeclSpec().getSourceRange().getBegin(),
3638                                  D.getCXXScopeSpec(),
3639                                  TemplateParamLists.get(),
3640                                  TemplateParamLists.size(),
3641                                  isFriend,
3642                                  isExplicitSpecialization,
3643                                  Invalid)) {
3644          // All but one template parameter lists have been matching.
3645          --NumMatchedTemplateParamLists;
3646
3647          if (TemplateParams->size() > 0) {
3648            // This is a function template
3649
3650            // Check that we can declare a template here.
3651            if (CheckTemplateDeclScope(S, TemplateParams))
3652              return 0;
3653
3654            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3655                                                      NewFD->getLocation(),
3656                                                      Name, TemplateParams,
3657                                                      NewFD);
3658            FunctionTemplate->setLexicalDeclContext(CurContext);
3659            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3660          } else {
3661            // This is a function template specialization.
3662            isFunctionTemplateSpecialization = true;
3663
3664            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3665            if (isFriend && isFunctionTemplateSpecialization) {
3666              // We want to remove the "template<>", found here.
3667              SourceRange RemoveRange = TemplateParams->getSourceRange();
3668
3669              // If we remove the template<> and the name is not a
3670              // template-id, we're actually silently creating a problem:
3671              // the friend declaration will refer to an untemplated decl,
3672              // and clearly the user wants a template specialization.  So
3673              // we need to insert '<>' after the name.
3674              SourceLocation InsertLoc;
3675              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3676                InsertLoc = D.getName().getSourceRange().getEnd();
3677                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3678              }
3679
3680              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3681              << Name << RemoveRange
3682              << FixItHint::CreateRemoval(RemoveRange)
3683              << FixItHint::CreateInsertion(InsertLoc, "<>");
3684            }
3685          }
3686        }
3687
3688    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3689      NewFD->setTemplateParameterListsInfo(Context,
3690                                           NumMatchedTemplateParamLists,
3691                                           TemplateParamLists.release());
3692    }
3693
3694    if (Invalid) {
3695      NewFD->setInvalidDecl();
3696      if (FunctionTemplate)
3697        FunctionTemplate->setInvalidDecl();
3698    }
3699
3700    // C++ [dcl.fct.spec]p5:
3701    //   The virtual specifier shall only be used in declarations of
3702    //   nonstatic class member functions that appear within a
3703    //   member-specification of a class declaration; see 10.3.
3704    //
3705    if (isVirtual && !NewFD->isInvalidDecl()) {
3706      if (!isVirtualOkay) {
3707        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3708             diag::err_virtual_non_function);
3709      } else if (!CurContext->isRecord()) {
3710        // 'virtual' was specified outside of the class.
3711        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3712             diag::err_virtual_out_of_class)
3713          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3714      } else if (NewFD->getDescribedFunctionTemplate()) {
3715        // C++ [temp.mem]p3:
3716        //  A member function template shall not be virtual.
3717        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3718             diag::err_virtual_member_function_template)
3719          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3720      } else {
3721        // Okay: Add virtual to the method.
3722        NewFD->setVirtualAsWritten(true);
3723      }
3724    }
3725
3726    // C++ [dcl.fct.spec]p3:
3727    //  The inline specifier shall not appear on a block scope function declaration.
3728    if (isInline && !NewFD->isInvalidDecl()) {
3729      if (CurContext->isFunctionOrMethod()) {
3730        // 'inline' is not allowed on block scope function declaration.
3731        Diag(D.getDeclSpec().getInlineSpecLoc(),
3732             diag::err_inline_declaration_block_scope) << Name
3733          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3734      }
3735    }
3736
3737    // C++ [dcl.fct.spec]p6:
3738    //  The explicit specifier shall be used only in the declaration of a
3739    //  constructor or conversion function within its class definition; see 12.3.1
3740    //  and 12.3.2.
3741    if (isExplicit && !NewFD->isInvalidDecl()) {
3742      if (!CurContext->isRecord()) {
3743        // 'explicit' was specified outside of the class.
3744        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3745             diag::err_explicit_out_of_class)
3746          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3747      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3748                 !isa<CXXConversionDecl>(NewFD)) {
3749        // 'explicit' was specified on a function that wasn't a constructor
3750        // or conversion function.
3751        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3752             diag::err_explicit_non_ctor_or_conv_function)
3753          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3754      }
3755    }
3756
3757    // Filter out previous declarations that don't match the scope.
3758    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3759
3760    if (isFriend) {
3761      // For now, claim that the objects have no previous declaration.
3762      if (FunctionTemplate) {
3763        FunctionTemplate->setObjectOfFriendDecl(false);
3764        FunctionTemplate->setAccess(AS_public);
3765      }
3766      NewFD->setObjectOfFriendDecl(false);
3767      NewFD->setAccess(AS_public);
3768    }
3769
3770    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3771      // A method is implicitly inline if it's defined in its class
3772      // definition.
3773      NewFD->setImplicitlyInline();
3774    }
3775
3776    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3777        !CurContext->isRecord()) {
3778      // C++ [class.static]p1:
3779      //   A data or function member of a class may be declared static
3780      //   in a class definition, in which case it is a static member of
3781      //   the class.
3782
3783      // Complain about the 'static' specifier if it's on an out-of-line
3784      // member function definition.
3785      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3786           diag::err_static_out_of_line)
3787        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3788    }
3789  }
3790
3791  // Handle GNU asm-label extension (encoded as an attribute).
3792  if (Expr *E = (Expr*) D.getAsmLabel()) {
3793    // The parser guarantees this is a string.
3794    StringLiteral *SE = cast<StringLiteral>(E);
3795    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3796                                                SE->getString()));
3797  }
3798
3799  // Copy the parameter declarations from the declarator D to the function
3800  // declaration NewFD, if they are available.  First scavenge them into Params.
3801  llvm::SmallVector<ParmVarDecl*, 16> Params;
3802  if (D.isFunctionDeclarator()) {
3803    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3804
3805    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3806    // function that takes no arguments, not a function that takes a
3807    // single void argument.
3808    // We let through "const void" here because Sema::GetTypeForDeclarator
3809    // already checks for that case.
3810    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3811        FTI.ArgInfo[0].Param &&
3812        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3813      // Empty arg list, don't push any params.
3814      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3815
3816      // In C++, the empty parameter-type-list must be spelled "void"; a
3817      // typedef of void is not permitted.
3818      if (getLangOptions().CPlusPlus &&
3819          Param->getType().getUnqualifiedType() != Context.VoidTy)
3820        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3821    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3822      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3823        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3824        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3825        Param->setDeclContext(NewFD);
3826        Params.push_back(Param);
3827
3828        if (Param->isInvalidDecl())
3829          NewFD->setInvalidDecl();
3830      }
3831    }
3832
3833  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3834    // When we're declaring a function with a typedef, typeof, etc as in the
3835    // following example, we'll need to synthesize (unnamed)
3836    // parameters for use in the declaration.
3837    //
3838    // @code
3839    // typedef void fn(int);
3840    // fn f;
3841    // @endcode
3842
3843    // Synthesize a parameter for each argument type.
3844    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3845         AE = FT->arg_type_end(); AI != AE; ++AI) {
3846      ParmVarDecl *Param =
3847        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3848      Params.push_back(Param);
3849    }
3850  } else {
3851    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3852           "Should not need args for typedef of non-prototype fn");
3853  }
3854  // Finally, we know we have the right number of parameters, install them.
3855  NewFD->setParams(Params.data(), Params.size());
3856
3857  // Process the non-inheritable attributes on this declaration.
3858  ProcessDeclAttributes(S, NewFD, D,
3859                        /*NonInheritable=*/true, /*Inheritable=*/false);
3860
3861  if (!getLangOptions().CPlusPlus) {
3862    // Perform semantic checking on the function declaration.
3863    bool isExplctSpecialization=false;
3864    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3865                             Redeclaration);
3866    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3867            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3868           "previous declaration set still overloaded");
3869  } else {
3870    // If the declarator is a template-id, translate the parser's template
3871    // argument list into our AST format.
3872    bool HasExplicitTemplateArgs = false;
3873    TemplateArgumentListInfo TemplateArgs;
3874    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3875      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3876      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3877      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3878      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3879                                         TemplateId->getTemplateArgs(),
3880                                         TemplateId->NumArgs);
3881      translateTemplateArguments(TemplateArgsPtr,
3882                                 TemplateArgs);
3883      TemplateArgsPtr.release();
3884
3885      HasExplicitTemplateArgs = true;
3886
3887      if (FunctionTemplate) {
3888        // Function template with explicit template arguments.
3889        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
3890          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
3891
3892        HasExplicitTemplateArgs = false;
3893      } else if (!isFunctionTemplateSpecialization &&
3894                 !D.getDeclSpec().isFriendSpecified()) {
3895        // We have encountered something that the user meant to be a
3896        // specialization (because it has explicitly-specified template
3897        // arguments) but that was not introduced with a "template<>" (or had
3898        // too few of them).
3899        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3900          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3901          << FixItHint::CreateInsertion(
3902                                        D.getDeclSpec().getSourceRange().getBegin(),
3903                                                  "template<> ");
3904        isFunctionTemplateSpecialization = true;
3905      } else {
3906        // "friend void foo<>(int);" is an implicit specialization decl.
3907        isFunctionTemplateSpecialization = true;
3908      }
3909    } else if (isFriend && isFunctionTemplateSpecialization) {
3910      // This combination is only possible in a recovery case;  the user
3911      // wrote something like:
3912      //   template <> friend void foo(int);
3913      // which we're recovering from as if the user had written:
3914      //   friend void foo<>(int);
3915      // Go ahead and fake up a template id.
3916      HasExplicitTemplateArgs = true;
3917        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3918      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3919    }
3920
3921    // If it's a friend (and only if it's a friend), it's possible
3922    // that either the specialized function type or the specialized
3923    // template is dependent, and therefore matching will fail.  In
3924    // this case, don't check the specialization yet.
3925    if (isFunctionTemplateSpecialization && isFriend &&
3926        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3927      assert(HasExplicitTemplateArgs &&
3928             "friend function specialization without template args");
3929      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3930                                                       Previous))
3931        NewFD->setInvalidDecl();
3932    } else if (isFunctionTemplateSpecialization) {
3933      if (CheckFunctionTemplateSpecialization(NewFD,
3934                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3935                                              Previous))
3936        NewFD->setInvalidDecl();
3937    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3938      if (CheckMemberSpecialization(NewFD, Previous))
3939          NewFD->setInvalidDecl();
3940    }
3941
3942    // Perform semantic checking on the function declaration.
3943    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3944                             Redeclaration);
3945
3946    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3947            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3948           "previous declaration set still overloaded");
3949
3950    NamedDecl *PrincipalDecl = (FunctionTemplate
3951                                ? cast<NamedDecl>(FunctionTemplate)
3952                                : NewFD);
3953
3954    if (isFriend && Redeclaration) {
3955      AccessSpecifier Access = AS_public;
3956      if (!NewFD->isInvalidDecl())
3957        Access = NewFD->getPreviousDeclaration()->getAccess();
3958
3959      NewFD->setAccess(Access);
3960      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3961
3962      PrincipalDecl->setObjectOfFriendDecl(true);
3963    }
3964
3965    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3966        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3967      PrincipalDecl->setNonMemberOperator();
3968
3969    // If we have a function template, check the template parameter
3970    // list. This will check and merge default template arguments.
3971    if (FunctionTemplate) {
3972      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3973      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3974                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3975                            D.getDeclSpec().isFriendSpecified()
3976                              ? (IsFunctionDefinition
3977                                   ? TPC_FriendFunctionTemplateDefinition
3978                                   : TPC_FriendFunctionTemplate)
3979                              : (D.getCXXScopeSpec().isSet() &&
3980                                 DC && DC->isRecord() &&
3981                                 DC->isDependentContext())
3982                                  ? TPC_ClassTemplateMember
3983                                  : TPC_FunctionTemplate);
3984    }
3985
3986    if (NewFD->isInvalidDecl()) {
3987      // Ignore all the rest of this.
3988    } else if (!Redeclaration) {
3989      // Fake up an access specifier if it's supposed to be a class member.
3990      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3991        NewFD->setAccess(AS_public);
3992
3993      // Qualified decls generally require a previous declaration.
3994      if (D.getCXXScopeSpec().isSet()) {
3995        // ...with the major exception of templated-scope or
3996        // dependent-scope friend declarations.
3997
3998        // TODO: we currently also suppress this check in dependent
3999        // contexts because (1) the parameter depth will be off when
4000        // matching friend templates and (2) we might actually be
4001        // selecting a friend based on a dependent factor.  But there
4002        // are situations where these conditions don't apply and we
4003        // can actually do this check immediately.
4004        if (isFriend &&
4005            (NumMatchedTemplateParamLists ||
4006             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4007             CurContext->isDependentContext())) {
4008              // ignore these
4009            } else {
4010              // The user tried to provide an out-of-line definition for a
4011              // function that is a member of a class or namespace, but there
4012              // was no such member function declared (C++ [class.mfct]p2,
4013              // C++ [namespace.memdef]p2). For example:
4014              //
4015              // class X {
4016              //   void f() const;
4017              // };
4018              //
4019              // void X::f() { } // ill-formed
4020              //
4021              // Complain about this problem, and attempt to suggest close
4022              // matches (e.g., those that differ only in cv-qualifiers and
4023              // whether the parameter types are references).
4024              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4025              << Name << DC << D.getCXXScopeSpec().getRange();
4026              NewFD->setInvalidDecl();
4027
4028              DiagnoseInvalidRedeclaration(*this, NewFD);
4029            }
4030
4031        // Unqualified local friend declarations are required to resolve
4032        // to something.
4033        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4034          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4035          NewFD->setInvalidDecl();
4036          DiagnoseInvalidRedeclaration(*this, NewFD);
4037        }
4038
4039    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4040               !isFriend && !isFunctionTemplateSpecialization &&
4041               !isExplicitSpecialization) {
4042      // An out-of-line member function declaration must also be a
4043      // definition (C++ [dcl.meaning]p1).
4044      // Note that this is not the case for explicit specializations of
4045      // function templates or member functions of class templates, per
4046      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4047      // for compatibility with old SWIG code which likes to generate them.
4048      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4049        << D.getCXXScopeSpec().getRange();
4050    }
4051  }
4052
4053
4054  // Handle attributes. We need to have merged decls when handling attributes
4055  // (for example to check for conflicts, etc).
4056  // FIXME: This needs to happen before we merge declarations. Then,
4057  // let attribute merging cope with attribute conflicts.
4058  ProcessDeclAttributes(S, NewFD, D,
4059                        /*NonInheritable=*/false, /*Inheritable=*/true);
4060
4061  // attributes declared post-definition are currently ignored
4062  // FIXME: This should happen during attribute merging
4063  if (Redeclaration && Previous.isSingleResult()) {
4064    const FunctionDecl *Def;
4065    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4066    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4067      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4068      Diag(Def->getLocation(), diag::note_previous_definition);
4069    }
4070  }
4071
4072  AddKnownFunctionAttributes(NewFD);
4073
4074  if (NewFD->hasAttr<OverloadableAttr>() &&
4075      !NewFD->getType()->getAs<FunctionProtoType>()) {
4076    Diag(NewFD->getLocation(),
4077         diag::err_attribute_overloadable_no_prototype)
4078      << NewFD;
4079
4080    // Turn this into a variadic function with no parameters.
4081    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4082    FunctionProtoType::ExtProtoInfo EPI;
4083    EPI.Variadic = true;
4084    EPI.ExtInfo = FT->getExtInfo();
4085
4086    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4087    NewFD->setType(R);
4088  }
4089
4090  // If there's a #pragma GCC visibility in scope, and this isn't a class
4091  // member, set the visibility of this function.
4092  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4093    AddPushedVisibilityAttribute(NewFD);
4094
4095  // If this is a locally-scoped extern C function, update the
4096  // map of such names.
4097  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4098      && !NewFD->isInvalidDecl())
4099    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4100
4101  // Set this FunctionDecl's range up to the right paren.
4102  NewFD->setLocEnd(D.getSourceRange().getEnd());
4103
4104  if (getLangOptions().CPlusPlus) {
4105    if (FunctionTemplate) {
4106      if (NewFD->isInvalidDecl())
4107        FunctionTemplate->setInvalidDecl();
4108      return FunctionTemplate;
4109    }
4110  }
4111
4112  MarkUnusedFileScopedDecl(NewFD);
4113
4114  if (getLangOptions().CUDA)
4115    if (IdentifierInfo *II = NewFD->getIdentifier())
4116      if (!NewFD->isInvalidDecl() &&
4117          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4118        if (II->isStr("cudaConfigureCall")) {
4119          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4120            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4121
4122          Context.setcudaConfigureCallDecl(NewFD);
4123        }
4124      }
4125
4126  return NewFD;
4127}
4128
4129/// \brief Perform semantic checking of a new function declaration.
4130///
4131/// Performs semantic analysis of the new function declaration
4132/// NewFD. This routine performs all semantic checking that does not
4133/// require the actual declarator involved in the declaration, and is
4134/// used both for the declaration of functions as they are parsed
4135/// (called via ActOnDeclarator) and for the declaration of functions
4136/// that have been instantiated via C++ template instantiation (called
4137/// via InstantiateDecl).
4138///
4139/// \param IsExplicitSpecialiation whether this new function declaration is
4140/// an explicit specialization of the previous declaration.
4141///
4142/// This sets NewFD->isInvalidDecl() to true if there was an error.
4143void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4144                                    LookupResult &Previous,
4145                                    bool IsExplicitSpecialization,
4146                                    bool &Redeclaration) {
4147  // If NewFD is already known erroneous, don't do any of this checking.
4148  if (NewFD->isInvalidDecl()) {
4149    // If this is a class member, mark the class invalid immediately.
4150    // This avoids some consistency errors later.
4151    if (isa<CXXMethodDecl>(NewFD))
4152      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4153
4154    return;
4155  }
4156
4157  if (NewFD->getResultType()->isVariablyModifiedType()) {
4158    // Functions returning a variably modified type violate C99 6.7.5.2p2
4159    // because all functions have linkage.
4160    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4161    return NewFD->setInvalidDecl();
4162  }
4163
4164  if (NewFD->isMain())
4165    CheckMain(NewFD);
4166
4167  // Check for a previous declaration of this name.
4168  if (Previous.empty() && NewFD->isExternC()) {
4169    // Since we did not find anything by this name and we're declaring
4170    // an extern "C" function, look for a non-visible extern "C"
4171    // declaration with the same name.
4172    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4173      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4174    if (Pos != LocallyScopedExternalDecls.end())
4175      Previous.addDecl(Pos->second);
4176  }
4177
4178  // Merge or overload the declaration with an existing declaration of
4179  // the same name, if appropriate.
4180  if (!Previous.empty()) {
4181    // Determine whether NewFD is an overload of PrevDecl or
4182    // a declaration that requires merging. If it's an overload,
4183    // there's no more work to do here; we'll just add the new
4184    // function to the scope.
4185
4186    NamedDecl *OldDecl = 0;
4187    if (!AllowOverloadingOfFunction(Previous, Context)) {
4188      Redeclaration = true;
4189      OldDecl = Previous.getFoundDecl();
4190    } else {
4191      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4192                            /*NewIsUsingDecl*/ false)) {
4193      case Ovl_Match:
4194        Redeclaration = true;
4195        break;
4196
4197      case Ovl_NonFunction:
4198        Redeclaration = true;
4199        break;
4200
4201      case Ovl_Overload:
4202        Redeclaration = false;
4203        break;
4204      }
4205
4206      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4207        // If a function name is overloadable in C, then every function
4208        // with that name must be marked "overloadable".
4209        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4210          << Redeclaration << NewFD;
4211        NamedDecl *OverloadedDecl = 0;
4212        if (Redeclaration)
4213          OverloadedDecl = OldDecl;
4214        else if (!Previous.empty())
4215          OverloadedDecl = Previous.getRepresentativeDecl();
4216        if (OverloadedDecl)
4217          Diag(OverloadedDecl->getLocation(),
4218               diag::note_attribute_overloadable_prev_overload);
4219        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4220                                                        Context));
4221      }
4222    }
4223
4224    if (Redeclaration) {
4225      // NewFD and OldDecl represent declarations that need to be
4226      // merged.
4227      if (MergeFunctionDecl(NewFD, OldDecl))
4228        return NewFD->setInvalidDecl();
4229
4230      Previous.clear();
4231      Previous.addDecl(OldDecl);
4232
4233      if (FunctionTemplateDecl *OldTemplateDecl
4234                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4235        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4236        FunctionTemplateDecl *NewTemplateDecl
4237          = NewFD->getDescribedFunctionTemplate();
4238        assert(NewTemplateDecl && "Template/non-template mismatch");
4239        if (CXXMethodDecl *Method
4240              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4241          Method->setAccess(OldTemplateDecl->getAccess());
4242          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4243        }
4244
4245        // If this is an explicit specialization of a member that is a function
4246        // template, mark it as a member specialization.
4247        if (IsExplicitSpecialization &&
4248            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4249          NewTemplateDecl->setMemberSpecialization();
4250          assert(OldTemplateDecl->isMemberSpecialization());
4251        }
4252      } else {
4253        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4254          NewFD->setAccess(OldDecl->getAccess());
4255        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4256      }
4257    }
4258  }
4259
4260  // Semantic checking for this function declaration (in isolation).
4261  if (getLangOptions().CPlusPlus) {
4262    // C++-specific checks.
4263    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4264      CheckConstructor(Constructor);
4265    } else if (CXXDestructorDecl *Destructor =
4266                dyn_cast<CXXDestructorDecl>(NewFD)) {
4267      CXXRecordDecl *Record = Destructor->getParent();
4268      QualType ClassType = Context.getTypeDeclType(Record);
4269
4270      // FIXME: Shouldn't we be able to perform this check even when the class
4271      // type is dependent? Both gcc and edg can handle that.
4272      if (!ClassType->isDependentType()) {
4273        DeclarationName Name
4274          = Context.DeclarationNames.getCXXDestructorName(
4275                                        Context.getCanonicalType(ClassType));
4276        if (NewFD->getDeclName() != Name) {
4277          Diag(NewFD->getLocation(), diag::err_destructor_name);
4278          return NewFD->setInvalidDecl();
4279        }
4280      }
4281    } else if (CXXConversionDecl *Conversion
4282               = dyn_cast<CXXConversionDecl>(NewFD)) {
4283      ActOnConversionDeclarator(Conversion);
4284    }
4285
4286    // Find any virtual functions that this function overrides.
4287    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4288      if (!Method->isFunctionTemplateSpecialization() &&
4289          !Method->getDescribedFunctionTemplate()) {
4290        if (AddOverriddenMethods(Method->getParent(), Method)) {
4291          // If the function was marked as "static", we have a problem.
4292          if (NewFD->getStorageClass() == SC_Static) {
4293            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4294              << NewFD->getDeclName();
4295            for (CXXMethodDecl::method_iterator
4296                      Overridden = Method->begin_overridden_methods(),
4297                   OverriddenEnd = Method->end_overridden_methods();
4298                 Overridden != OverriddenEnd;
4299                 ++Overridden) {
4300              Diag((*Overridden)->getLocation(),
4301                   diag::note_overridden_virtual_function);
4302            }
4303          }
4304        }
4305      }
4306    }
4307
4308    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4309    if (NewFD->isOverloadedOperator() &&
4310        CheckOverloadedOperatorDeclaration(NewFD))
4311      return NewFD->setInvalidDecl();
4312
4313    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4314    if (NewFD->getLiteralIdentifier() &&
4315        CheckLiteralOperatorDeclaration(NewFD))
4316      return NewFD->setInvalidDecl();
4317
4318    // In C++, check default arguments now that we have merged decls. Unless
4319    // the lexical context is the class, because in this case this is done
4320    // during delayed parsing anyway.
4321    if (!CurContext->isRecord())
4322      CheckCXXDefaultArguments(NewFD);
4323
4324    // If this function declares a builtin function, check the type of this
4325    // declaration against the expected type for the builtin.
4326    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4327      ASTContext::GetBuiltinTypeError Error;
4328      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4329      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4330        // The type of this function differs from the type of the builtin,
4331        // so forget about the builtin entirely.
4332        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4333      }
4334    }
4335  }
4336}
4337
4338void Sema::CheckMain(FunctionDecl* FD) {
4339  // C++ [basic.start.main]p3:  A program that declares main to be inline
4340  //   or static is ill-formed.
4341  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4342  //   shall not appear in a declaration of main.
4343  // static main is not an error under C99, but we should warn about it.
4344  bool isInline = FD->isInlineSpecified();
4345  bool isStatic = FD->getStorageClass() == SC_Static;
4346  if (isInline || isStatic) {
4347    unsigned diagID = diag::warn_unusual_main_decl;
4348    if (isInline || getLangOptions().CPlusPlus)
4349      diagID = diag::err_unusual_main_decl;
4350
4351    int which = isStatic + (isInline << 1) - 1;
4352    Diag(FD->getLocation(), diagID) << which;
4353  }
4354
4355  QualType T = FD->getType();
4356  assert(T->isFunctionType() && "function decl is not of function type");
4357  const FunctionType* FT = T->getAs<FunctionType>();
4358
4359  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4360    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4361    TypeLoc TL = TSI->getTypeLoc().IgnoreParens();
4362    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4363                                          diag::err_main_returns_nonint);
4364    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4365      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4366                                        "int");
4367    }
4368    FD->setInvalidDecl(true);
4369  }
4370
4371  // Treat protoless main() as nullary.
4372  if (isa<FunctionNoProtoType>(FT)) return;
4373
4374  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4375  unsigned nparams = FTP->getNumArgs();
4376  assert(FD->getNumParams() == nparams);
4377
4378  bool HasExtraParameters = (nparams > 3);
4379
4380  // Darwin passes an undocumented fourth argument of type char**.  If
4381  // other platforms start sprouting these, the logic below will start
4382  // getting shifty.
4383  if (nparams == 4 &&
4384      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4385    HasExtraParameters = false;
4386
4387  if (HasExtraParameters) {
4388    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4389    FD->setInvalidDecl(true);
4390    nparams = 3;
4391  }
4392
4393  // FIXME: a lot of the following diagnostics would be improved
4394  // if we had some location information about types.
4395
4396  QualType CharPP =
4397    Context.getPointerType(Context.getPointerType(Context.CharTy));
4398  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4399
4400  for (unsigned i = 0; i < nparams; ++i) {
4401    QualType AT = FTP->getArgType(i);
4402
4403    bool mismatch = true;
4404
4405    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4406      mismatch = false;
4407    else if (Expected[i] == CharPP) {
4408      // As an extension, the following forms are okay:
4409      //   char const **
4410      //   char const * const *
4411      //   char * const *
4412
4413      QualifierCollector qs;
4414      const PointerType* PT;
4415      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4416          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4417          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4418        qs.removeConst();
4419        mismatch = !qs.empty();
4420      }
4421    }
4422
4423    if (mismatch) {
4424      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4425      // TODO: suggest replacing given type with expected type
4426      FD->setInvalidDecl(true);
4427    }
4428  }
4429
4430  if (nparams == 1 && !FD->isInvalidDecl()) {
4431    Diag(FD->getLocation(), diag::warn_main_one_arg);
4432  }
4433
4434  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4435    Diag(FD->getLocation(), diag::err_main_template_decl);
4436    FD->setInvalidDecl();
4437  }
4438}
4439
4440bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4441  // FIXME: Need strict checking.  In C89, we need to check for
4442  // any assignment, increment, decrement, function-calls, or
4443  // commas outside of a sizeof.  In C99, it's the same list,
4444  // except that the aforementioned are allowed in unevaluated
4445  // expressions.  Everything else falls under the
4446  // "may accept other forms of constant expressions" exception.
4447  // (We never end up here for C++, so the constant expression
4448  // rules there don't matter.)
4449  if (Init->isConstantInitializer(Context, false))
4450    return false;
4451  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4452    << Init->getSourceRange();
4453  return true;
4454}
4455
4456void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4457  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4458}
4459
4460/// AddInitializerToDecl - Adds the initializer Init to the
4461/// declaration dcl. If DirectInit is true, this is C++ direct
4462/// initialization rather than copy initialization.
4463void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4464  // If there is no declaration, there was an error parsing it.  Just ignore
4465  // the initializer.
4466  if (RealDecl == 0)
4467    return;
4468
4469  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4470    // With declarators parsed the way they are, the parser cannot
4471    // distinguish between a normal initializer and a pure-specifier.
4472    // Thus this grotesque test.
4473    IntegerLiteral *IL;
4474    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4475        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4476      CheckPureMethod(Method, Init->getSourceRange());
4477    else {
4478      Diag(Method->getLocation(), diag::err_member_function_initialization)
4479        << Method->getDeclName() << Init->getSourceRange();
4480      Method->setInvalidDecl();
4481    }
4482    return;
4483  }
4484
4485  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4486  if (!VDecl) {
4487    if (getLangOptions().CPlusPlus &&
4488        RealDecl->getLexicalDeclContext()->isRecord() &&
4489        isa<NamedDecl>(RealDecl))
4490      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4491    else
4492      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4493    RealDecl->setInvalidDecl();
4494    return;
4495  }
4496
4497
4498
4499  // A definition must end up with a complete type, which means it must be
4500  // complete with the restriction that an array type might be completed by the
4501  // initializer; note that later code assumes this restriction.
4502  QualType BaseDeclType = VDecl->getType();
4503  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4504    BaseDeclType = Array->getElementType();
4505  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4506                          diag::err_typecheck_decl_incomplete_type)) {
4507    RealDecl->setInvalidDecl();
4508    return;
4509  }
4510
4511  // The variable can not have an abstract class type.
4512  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4513                             diag::err_abstract_type_in_decl,
4514                             AbstractVariableType))
4515    VDecl->setInvalidDecl();
4516
4517  const VarDecl *Def;
4518  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4519    Diag(VDecl->getLocation(), diag::err_redefinition)
4520      << VDecl->getDeclName();
4521    Diag(Def->getLocation(), diag::note_previous_definition);
4522    VDecl->setInvalidDecl();
4523    return;
4524  }
4525
4526  const VarDecl* PrevInit = 0;
4527  if (getLangOptions().CPlusPlus) {
4528    // C++ [class.static.data]p4
4529    //   If a static data member is of const integral or const
4530    //   enumeration type, its declaration in the class definition can
4531    //   specify a constant-initializer which shall be an integral
4532    //   constant expression (5.19). In that case, the member can appear
4533    //   in integral constant expressions. The member shall still be
4534    //   defined in a namespace scope if it is used in the program and the
4535    //   namespace scope definition shall not contain an initializer.
4536    //
4537    // We already performed a redefinition check above, but for static
4538    // data members we also need to check whether there was an in-class
4539    // declaration with an initializer.
4540    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4541      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4542      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4543      return;
4544    }
4545
4546    if (VDecl->hasLocalStorage())
4547      getCurFunction()->setHasBranchProtectedScope();
4548
4549    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4550      VDecl->setInvalidDecl();
4551      return;
4552    }
4553  }
4554
4555  // Capture the variable that is being initialized and the style of
4556  // initialization.
4557  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4558
4559  // FIXME: Poor source location information.
4560  InitializationKind Kind
4561    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4562                                                   Init->getLocStart(),
4563                                                   Init->getLocEnd())
4564                : InitializationKind::CreateCopy(VDecl->getLocation(),
4565                                                 Init->getLocStart());
4566
4567  // Get the decls type and save a reference for later, since
4568  // CheckInitializerTypes may change it.
4569  QualType DclT = VDecl->getType(), SavT = DclT;
4570  if (VDecl->isLocalVarDecl()) {
4571    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4572      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4573      VDecl->setInvalidDecl();
4574    } else if (!VDecl->isInvalidDecl()) {
4575      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4576      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4577                                                MultiExprArg(*this, &Init, 1),
4578                                                &DclT);
4579      if (Result.isInvalid()) {
4580        VDecl->setInvalidDecl();
4581        return;
4582      }
4583
4584      Init = Result.takeAs<Expr>();
4585
4586      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4587      // Don't check invalid declarations to avoid emitting useless diagnostics.
4588      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4589        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4590          CheckForConstantInitializer(Init, DclT);
4591      }
4592    }
4593  } else if (VDecl->isStaticDataMember() &&
4594             VDecl->getLexicalDeclContext()->isRecord()) {
4595    // This is an in-class initialization for a static data member, e.g.,
4596    //
4597    // struct S {
4598    //   static const int value = 17;
4599    // };
4600
4601    // Try to perform the initialization regardless.
4602    if (!VDecl->isInvalidDecl()) {
4603      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4604      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4605                                          MultiExprArg(*this, &Init, 1),
4606                                          &DclT);
4607      if (Result.isInvalid()) {
4608        VDecl->setInvalidDecl();
4609        return;
4610      }
4611
4612      Init = Result.takeAs<Expr>();
4613    }
4614
4615    // C++ [class.mem]p4:
4616    //   A member-declarator can contain a constant-initializer only
4617    //   if it declares a static member (9.4) of const integral or
4618    //   const enumeration type, see 9.4.2.
4619    QualType T = VDecl->getType();
4620
4621    // Do nothing on dependent types.
4622    if (T->isDependentType()) {
4623
4624    // Require constness.
4625    } else if (!T.isConstQualified()) {
4626      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4627        << Init->getSourceRange();
4628      VDecl->setInvalidDecl();
4629
4630    // We allow integer constant expressions in all cases.
4631    } else if (T->isIntegralOrEnumerationType()) {
4632      if (!Init->isValueDependent()) {
4633        // Check whether the expression is a constant expression.
4634        llvm::APSInt Value;
4635        SourceLocation Loc;
4636        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4637          Diag(Loc, diag::err_in_class_initializer_non_constant)
4638            << Init->getSourceRange();
4639          VDecl->setInvalidDecl();
4640        }
4641      }
4642
4643    // We allow floating-point constants as an extension in C++03, and
4644    // C++0x has far more complicated rules that we don't really
4645    // implement fully.
4646    } else {
4647      bool Allowed = false;
4648      if (getLangOptions().CPlusPlus0x) {
4649        Allowed = T->isLiteralType();
4650      } else if (T->isFloatingType()) { // also permits complex, which is ok
4651        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4652          << T << Init->getSourceRange();
4653        Allowed = true;
4654      }
4655
4656      if (!Allowed) {
4657        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4658          << T << Init->getSourceRange();
4659        VDecl->setInvalidDecl();
4660
4661      // TODO: there are probably expressions that pass here that shouldn't.
4662      } else if (!Init->isValueDependent() &&
4663                 !Init->isConstantInitializer(Context, false)) {
4664        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4665          << Init->getSourceRange();
4666        VDecl->setInvalidDecl();
4667      }
4668    }
4669  } else if (VDecl->isFileVarDecl()) {
4670    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4671        (!getLangOptions().CPlusPlus ||
4672         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4673      Diag(VDecl->getLocation(), diag::warn_extern_init);
4674    if (!VDecl->isInvalidDecl()) {
4675      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4676      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4677                                                MultiExprArg(*this, &Init, 1),
4678                                                &DclT);
4679      if (Result.isInvalid()) {
4680        VDecl->setInvalidDecl();
4681        return;
4682      }
4683
4684      Init = Result.takeAs<Expr>();
4685    }
4686
4687    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4688    // Don't check invalid declarations to avoid emitting useless diagnostics.
4689    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4690      // C99 6.7.8p4. All file scoped initializers need to be constant.
4691      CheckForConstantInitializer(Init, DclT);
4692    }
4693  }
4694  // If the type changed, it means we had an incomplete type that was
4695  // completed by the initializer. For example:
4696  //   int ary[] = { 1, 3, 5 };
4697  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4698  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4699    VDecl->setType(DclT);
4700    Init->setType(DclT);
4701  }
4702
4703
4704  // If this variable is a local declaration with record type, make sure it
4705  // doesn't have a flexible member initialization.  We only support this as a
4706  // global/static definition.
4707  if (VDecl->hasLocalStorage())
4708    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4709      if (RT->getDecl()->hasFlexibleArrayMember()) {
4710        // Check whether the initializer tries to initialize the flexible
4711        // array member itself to anything other than an empty initializer list.
4712        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4713          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4714                                         RT->getDecl()->field_end()) - 1;
4715          if (Index < ILE->getNumInits() &&
4716              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4717                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4718            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4719            VDecl->setInvalidDecl();
4720          }
4721        }
4722      }
4723
4724  // Check any implicit conversions within the expression.
4725  CheckImplicitConversions(Init, VDecl->getLocation());
4726
4727  Init = MaybeCreateExprWithCleanups(Init);
4728  // Attach the initializer to the decl.
4729  VDecl->setInit(Init);
4730
4731  CheckCompleteVariableDeclaration(VDecl);
4732}
4733
4734/// ActOnInitializerError - Given that there was an error parsing an
4735/// initializer for the given declaration, try to return to some form
4736/// of sanity.
4737void Sema::ActOnInitializerError(Decl *D) {
4738  // Our main concern here is re-establishing invariants like "a
4739  // variable's type is either dependent or complete".
4740  if (!D || D->isInvalidDecl()) return;
4741
4742  VarDecl *VD = dyn_cast<VarDecl>(D);
4743  if (!VD) return;
4744
4745  QualType Ty = VD->getType();
4746  if (Ty->isDependentType()) return;
4747
4748  // Require a complete type.
4749  if (RequireCompleteType(VD->getLocation(),
4750                          Context.getBaseElementType(Ty),
4751                          diag::err_typecheck_decl_incomplete_type)) {
4752    VD->setInvalidDecl();
4753    return;
4754  }
4755
4756  // Require an abstract type.
4757  if (RequireNonAbstractType(VD->getLocation(), Ty,
4758                             diag::err_abstract_type_in_decl,
4759                             AbstractVariableType)) {
4760    VD->setInvalidDecl();
4761    return;
4762  }
4763
4764  // Don't bother complaining about constructors or destructors,
4765  // though.
4766}
4767
4768void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4769                                  bool TypeContainsUndeducedAuto) {
4770  // If there is no declaration, there was an error parsing it. Just ignore it.
4771  if (RealDecl == 0)
4772    return;
4773
4774  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4775    QualType Type = Var->getType();
4776
4777    // C++0x [dcl.spec.auto]p3
4778    if (TypeContainsUndeducedAuto) {
4779      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4780        << Var->getDeclName() << Type;
4781      Var->setInvalidDecl();
4782      return;
4783    }
4784
4785    switch (Var->isThisDeclarationADefinition()) {
4786    case VarDecl::Definition:
4787      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4788        break;
4789
4790      // We have an out-of-line definition of a static data member
4791      // that has an in-class initializer, so we type-check this like
4792      // a declaration.
4793      //
4794      // Fall through
4795
4796    case VarDecl::DeclarationOnly:
4797      // It's only a declaration.
4798
4799      // Block scope. C99 6.7p7: If an identifier for an object is
4800      // declared with no linkage (C99 6.2.2p6), the type for the
4801      // object shall be complete.
4802      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4803          !Var->getLinkage() && !Var->isInvalidDecl() &&
4804          RequireCompleteType(Var->getLocation(), Type,
4805                              diag::err_typecheck_decl_incomplete_type))
4806        Var->setInvalidDecl();
4807
4808      // Make sure that the type is not abstract.
4809      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4810          RequireNonAbstractType(Var->getLocation(), Type,
4811                                 diag::err_abstract_type_in_decl,
4812                                 AbstractVariableType))
4813        Var->setInvalidDecl();
4814      return;
4815
4816    case VarDecl::TentativeDefinition:
4817      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4818      // object that has file scope without an initializer, and without a
4819      // storage-class specifier or with the storage-class specifier "static",
4820      // constitutes a tentative definition. Note: A tentative definition with
4821      // external linkage is valid (C99 6.2.2p5).
4822      if (!Var->isInvalidDecl()) {
4823        if (const IncompleteArrayType *ArrayT
4824                                    = Context.getAsIncompleteArrayType(Type)) {
4825          if (RequireCompleteType(Var->getLocation(),
4826                                  ArrayT->getElementType(),
4827                                  diag::err_illegal_decl_array_incomplete_type))
4828            Var->setInvalidDecl();
4829        } else if (Var->getStorageClass() == SC_Static) {
4830          // C99 6.9.2p3: If the declaration of an identifier for an object is
4831          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4832          // declared type shall not be an incomplete type.
4833          // NOTE: code such as the following
4834          //     static struct s;
4835          //     struct s { int a; };
4836          // is accepted by gcc. Hence here we issue a warning instead of
4837          // an error and we do not invalidate the static declaration.
4838          // NOTE: to avoid multiple warnings, only check the first declaration.
4839          if (Var->getPreviousDeclaration() == 0)
4840            RequireCompleteType(Var->getLocation(), Type,
4841                                diag::ext_typecheck_decl_incomplete_type);
4842        }
4843      }
4844
4845      // Record the tentative definition; we're done.
4846      if (!Var->isInvalidDecl())
4847        TentativeDefinitions.push_back(Var);
4848      return;
4849    }
4850
4851    // Provide a specific diagnostic for uninitialized variable
4852    // definitions with incomplete array type.
4853    if (Type->isIncompleteArrayType()) {
4854      Diag(Var->getLocation(),
4855           diag::err_typecheck_incomplete_array_needs_initializer);
4856      Var->setInvalidDecl();
4857      return;
4858    }
4859
4860    // Provide a specific diagnostic for uninitialized variable
4861    // definitions with reference type.
4862    if (Type->isReferenceType()) {
4863      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4864        << Var->getDeclName()
4865        << SourceRange(Var->getLocation(), Var->getLocation());
4866      Var->setInvalidDecl();
4867      return;
4868    }
4869
4870    // Do not attempt to type-check the default initializer for a
4871    // variable with dependent type.
4872    if (Type->isDependentType())
4873      return;
4874
4875    if (Var->isInvalidDecl())
4876      return;
4877
4878    if (RequireCompleteType(Var->getLocation(),
4879                            Context.getBaseElementType(Type),
4880                            diag::err_typecheck_decl_incomplete_type)) {
4881      Var->setInvalidDecl();
4882      return;
4883    }
4884
4885    // The variable can not have an abstract class type.
4886    if (RequireNonAbstractType(Var->getLocation(), Type,
4887                               diag::err_abstract_type_in_decl,
4888                               AbstractVariableType)) {
4889      Var->setInvalidDecl();
4890      return;
4891    }
4892
4893    const RecordType *Record
4894      = Context.getBaseElementType(Type)->getAs<RecordType>();
4895    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4896        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4897      // C++03 [dcl.init]p9:
4898      //   If no initializer is specified for an object, and the
4899      //   object is of (possibly cv-qualified) non-POD class type (or
4900      //   array thereof), the object shall be default-initialized; if
4901      //   the object is of const-qualified type, the underlying class
4902      //   type shall have a user-declared default
4903      //   constructor. Otherwise, if no initializer is specified for
4904      //   a non- static object, the object and its subobjects, if
4905      //   any, have an indeterminate initial value); if the object
4906      //   or any of its subobjects are of const-qualified type, the
4907      //   program is ill-formed.
4908      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4909    } else {
4910      // Check for jumps past the implicit initializer.  C++0x
4911      // clarifies that this applies to a "variable with automatic
4912      // storage duration", not a "local variable".
4913      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4914        getCurFunction()->setHasBranchProtectedScope();
4915
4916      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4917      InitializationKind Kind
4918        = InitializationKind::CreateDefault(Var->getLocation());
4919
4920      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4921      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4922                                        MultiExprArg(*this, 0, 0));
4923      if (Init.isInvalid())
4924        Var->setInvalidDecl();
4925      else if (Init.get())
4926        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4927    }
4928
4929    CheckCompleteVariableDeclaration(Var);
4930  }
4931}
4932
4933void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
4934  if (var->isInvalidDecl()) return;
4935
4936  // All the following checks are C++ only.
4937  if (!getLangOptions().CPlusPlus) return;
4938
4939  QualType baseType = Context.getBaseElementType(var->getType());
4940  if (baseType->isDependentType()) return;
4941
4942  // __block variables might require us to capture a copy-initializer.
4943  if (var->hasAttr<BlocksAttr>()) {
4944    // It's currently invalid to ever have a __block variable with an
4945    // array type; should we diagnose that here?
4946
4947    // Regardless, we don't want to ignore array nesting when
4948    // constructing this copy.
4949    QualType type = var->getType();
4950
4951    if (type->isStructureOrClassType()) {
4952      SourceLocation poi = var->getLocation();
4953      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
4954      ExprResult result =
4955        PerformCopyInitialization(
4956                        InitializedEntity::InitializeBlock(poi, type, false),
4957                                  poi, Owned(varRef));
4958      if (!result.isInvalid()) {
4959        result = MaybeCreateExprWithCleanups(result);
4960        Expr *init = result.takeAs<Expr>();
4961        Context.setBlockVarCopyInits(var, init);
4962      }
4963    }
4964  }
4965
4966  // Check for global constructors.
4967  if (!var->getDeclContext()->isDependentContext() &&
4968      var->hasGlobalStorage() &&
4969      !var->isStaticLocal() &&
4970      var->getInit() &&
4971      !var->getInit()->isConstantInitializer(Context,
4972                                             baseType->isReferenceType()))
4973    Diag(var->getLocation(), diag::warn_global_constructor)
4974      << var->getInit()->getSourceRange();
4975
4976  // Require the destructor.
4977  if (const RecordType *recordType = baseType->getAs<RecordType>())
4978    FinalizeVarWithDestructor(var, recordType);
4979}
4980
4981Sema::DeclGroupPtrTy
4982Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4983                              Decl **Group, unsigned NumDecls) {
4984  llvm::SmallVector<Decl*, 8> Decls;
4985
4986  if (DS.isTypeSpecOwned())
4987    Decls.push_back(DS.getRepAsDecl());
4988
4989  for (unsigned i = 0; i != NumDecls; ++i)
4990    if (Decl *D = Group[i])
4991      Decls.push_back(D);
4992
4993  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4994                                                   Decls.data(), Decls.size()));
4995}
4996
4997
4998/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4999/// to introduce parameters into function prototype scope.
5000Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5001  const DeclSpec &DS = D.getDeclSpec();
5002
5003  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5004  VarDecl::StorageClass StorageClass = SC_None;
5005  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5006  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5007    StorageClass = SC_Register;
5008    StorageClassAsWritten = SC_Register;
5009  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5010    Diag(DS.getStorageClassSpecLoc(),
5011         diag::err_invalid_storage_class_in_func_decl);
5012    D.getMutableDeclSpec().ClearStorageClassSpecs();
5013  }
5014
5015  if (D.getDeclSpec().isThreadSpecified())
5016    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5017
5018  DiagnoseFunctionSpecifiers(D);
5019
5020  TagDecl *OwnedDecl = 0;
5021  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5022  QualType parmDeclType = TInfo->getType();
5023
5024  if (getLangOptions().CPlusPlus) {
5025    // Check that there are no default arguments inside the type of this
5026    // parameter.
5027    CheckExtraCXXDefaultArguments(D);
5028
5029    if (OwnedDecl && OwnedDecl->isDefinition()) {
5030      // C++ [dcl.fct]p6:
5031      //   Types shall not be defined in return or parameter types.
5032      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5033        << Context.getTypeDeclType(OwnedDecl);
5034    }
5035
5036    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5037    if (D.getCXXScopeSpec().isSet()) {
5038      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5039        << D.getCXXScopeSpec().getRange();
5040      D.getCXXScopeSpec().clear();
5041    }
5042  }
5043
5044  // Ensure we have a valid name
5045  IdentifierInfo *II = 0;
5046  if (D.hasName()) {
5047    II = D.getIdentifier();
5048    if (!II) {
5049      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5050        << GetNameForDeclarator(D).getName().getAsString();
5051      D.setInvalidType(true);
5052    }
5053  }
5054
5055  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5056  if (II) {
5057    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5058                   ForRedeclaration);
5059    LookupName(R, S);
5060    if (R.isSingleResult()) {
5061      NamedDecl *PrevDecl = R.getFoundDecl();
5062      if (PrevDecl->isTemplateParameter()) {
5063        // Maybe we will complain about the shadowed template parameter.
5064        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5065        // Just pretend that we didn't see the previous declaration.
5066        PrevDecl = 0;
5067      } else if (S->isDeclScope(PrevDecl)) {
5068        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5069        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5070
5071        // Recover by removing the name
5072        II = 0;
5073        D.SetIdentifier(0, D.getIdentifierLoc());
5074        D.setInvalidType(true);
5075      }
5076    }
5077  }
5078
5079  // Temporarily put parameter variables in the translation unit, not
5080  // the enclosing context.  This prevents them from accidentally
5081  // looking like class members in C++.
5082  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5083                                    TInfo, parmDeclType, II,
5084                                    D.getIdentifierLoc(),
5085                                    StorageClass, StorageClassAsWritten);
5086
5087  if (D.isInvalidType())
5088    New->setInvalidDecl();
5089
5090  // Add the parameter declaration into this scope.
5091  S->AddDecl(New);
5092  if (II)
5093    IdResolver.AddDecl(New);
5094
5095  ProcessDeclAttributes(S, New, D);
5096
5097  if (New->hasAttr<BlocksAttr>()) {
5098    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5099  }
5100  return New;
5101}
5102
5103/// \brief Synthesizes a variable for a parameter arising from a
5104/// typedef.
5105ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5106                                              SourceLocation Loc,
5107                                              QualType T) {
5108  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5109                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5110                                           SC_None, SC_None, 0);
5111  Param->setImplicit();
5112  return Param;
5113}
5114
5115void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5116                                    ParmVarDecl * const *ParamEnd) {
5117  // Don't diagnose unused-parameter errors in template instantiations; we
5118  // will already have done so in the template itself.
5119  if (!ActiveTemplateInstantiations.empty())
5120    return;
5121
5122  for (; Param != ParamEnd; ++Param) {
5123    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5124        !(*Param)->hasAttr<UnusedAttr>()) {
5125      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5126        << (*Param)->getDeclName();
5127    }
5128  }
5129}
5130
5131void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5132                                                  ParmVarDecl * const *ParamEnd,
5133                                                  QualType ReturnTy,
5134                                                  NamedDecl *D) {
5135  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5136    return;
5137
5138  // Warn if the return value is pass-by-value and larger than the specified
5139  // threshold.
5140  if (ReturnTy->isPODType()) {
5141    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5142    if (Size > LangOpts.NumLargeByValueCopy)
5143      Diag(D->getLocation(), diag::warn_return_value_size)
5144          << D->getDeclName() << Size;
5145  }
5146
5147  // Warn if any parameter is pass-by-value and larger than the specified
5148  // threshold.
5149  for (; Param != ParamEnd; ++Param) {
5150    QualType T = (*Param)->getType();
5151    if (!T->isPODType())
5152      continue;
5153    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5154    if (Size > LangOpts.NumLargeByValueCopy)
5155      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5156          << (*Param)->getDeclName() << Size;
5157  }
5158}
5159
5160ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5161                                  TypeSourceInfo *TSInfo, QualType T,
5162                                  IdentifierInfo *Name,
5163                                  SourceLocation NameLoc,
5164                                  VarDecl::StorageClass StorageClass,
5165                                  VarDecl::StorageClass StorageClassAsWritten) {
5166  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5167                                         adjustParameterType(T), TSInfo,
5168                                         StorageClass, StorageClassAsWritten,
5169                                         0);
5170
5171  // Parameters can not be abstract class types.
5172  // For record types, this is done by the AbstractClassUsageDiagnoser once
5173  // the class has been completely parsed.
5174  if (!CurContext->isRecord() &&
5175      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5176                             AbstractParamType))
5177    New->setInvalidDecl();
5178
5179  // Parameter declarators cannot be interface types. All ObjC objects are
5180  // passed by reference.
5181  if (T->isObjCObjectType()) {
5182    Diag(NameLoc,
5183         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5184    New->setInvalidDecl();
5185  }
5186
5187  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5188  // duration shall not be qualified by an address-space qualifier."
5189  // Since all parameters have automatic store duration, they can not have
5190  // an address space.
5191  if (T.getAddressSpace() != 0) {
5192    Diag(NameLoc, diag::err_arg_with_address_space);
5193    New->setInvalidDecl();
5194  }
5195
5196  return New;
5197}
5198
5199void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5200                                           SourceLocation LocAfterDecls) {
5201  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5202
5203  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5204  // for a K&R function.
5205  if (!FTI.hasPrototype) {
5206    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5207      --i;
5208      if (FTI.ArgInfo[i].Param == 0) {
5209        llvm::SmallString<256> Code;
5210        llvm::raw_svector_ostream(Code) << "  int "
5211                                        << FTI.ArgInfo[i].Ident->getName()
5212                                        << ";\n";
5213        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5214          << FTI.ArgInfo[i].Ident
5215          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5216
5217        // Implicitly declare the argument as type 'int' for lack of a better
5218        // type.
5219        DeclSpec DS;
5220        const char* PrevSpec; // unused
5221        unsigned DiagID; // unused
5222        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5223                           PrevSpec, DiagID);
5224        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5225        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5226        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5227      }
5228    }
5229  }
5230}
5231
5232Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5233                                         Declarator &D) {
5234  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5235  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5236  Scope *ParentScope = FnBodyScope->getParent();
5237
5238  Decl *DP = HandleDeclarator(ParentScope, D,
5239                              MultiTemplateParamsArg(*this),
5240                              /*IsFunctionDefinition=*/true);
5241  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5242}
5243
5244static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5245  // Don't warn about invalid declarations.
5246  if (FD->isInvalidDecl())
5247    return false;
5248
5249  // Or declarations that aren't global.
5250  if (!FD->isGlobal())
5251    return false;
5252
5253  // Don't warn about C++ member functions.
5254  if (isa<CXXMethodDecl>(FD))
5255    return false;
5256
5257  // Don't warn about 'main'.
5258  if (FD->isMain())
5259    return false;
5260
5261  // Don't warn about inline functions.
5262  if (FD->isInlineSpecified())
5263    return false;
5264
5265  // Don't warn about function templates.
5266  if (FD->getDescribedFunctionTemplate())
5267    return false;
5268
5269  // Don't warn about function template specializations.
5270  if (FD->isFunctionTemplateSpecialization())
5271    return false;
5272
5273  bool MissingPrototype = true;
5274  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5275       Prev; Prev = Prev->getPreviousDeclaration()) {
5276    // Ignore any declarations that occur in function or method
5277    // scope, because they aren't visible from the header.
5278    if (Prev->getDeclContext()->isFunctionOrMethod())
5279      continue;
5280
5281    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5282    break;
5283  }
5284
5285  return MissingPrototype;
5286}
5287
5288Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5289  // Clear the last template instantiation error context.
5290  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5291
5292  if (!D)
5293    return D;
5294  FunctionDecl *FD = 0;
5295
5296  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5297    FD = FunTmpl->getTemplatedDecl();
5298  else
5299    FD = cast<FunctionDecl>(D);
5300
5301  // Enter a new function scope
5302  PushFunctionScope();
5303
5304  // See if this is a redefinition.
5305  // But don't complain if we're in GNU89 mode and the previous definition
5306  // was an extern inline function.
5307  const FunctionDecl *Definition;
5308  if (FD->hasBody(Definition) &&
5309      !canRedefineFunction(Definition, getLangOptions())) {
5310    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5311        Definition->getStorageClass() == SC_Extern)
5312      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5313        << FD->getDeclName() << getLangOptions().CPlusPlus;
5314    else
5315      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5316    Diag(Definition->getLocation(), diag::note_previous_definition);
5317  }
5318
5319  // Builtin functions cannot be defined.
5320  if (unsigned BuiltinID = FD->getBuiltinID()) {
5321    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5322      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5323      FD->setInvalidDecl();
5324    }
5325  }
5326
5327  // The return type of a function definition must be complete
5328  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5329  QualType ResultType = FD->getResultType();
5330  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5331      !FD->isInvalidDecl() &&
5332      RequireCompleteType(FD->getLocation(), ResultType,
5333                          diag::err_func_def_incomplete_result))
5334    FD->setInvalidDecl();
5335
5336  // GNU warning -Wmissing-prototypes:
5337  //   Warn if a global function is defined without a previous
5338  //   prototype declaration. This warning is issued even if the
5339  //   definition itself provides a prototype. The aim is to detect
5340  //   global functions that fail to be declared in header files.
5341  if (ShouldWarnAboutMissingPrototype(FD))
5342    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5343
5344  if (FnBodyScope)
5345    PushDeclContext(FnBodyScope, FD);
5346
5347  // Check the validity of our function parameters
5348  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5349                           /*CheckParameterNames=*/true);
5350
5351  // Introduce our parameters into the function scope
5352  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5353    ParmVarDecl *Param = FD->getParamDecl(p);
5354    Param->setOwningFunction(FD);
5355
5356    // If this has an identifier, add it to the scope stack.
5357    if (Param->getIdentifier() && FnBodyScope) {
5358      CheckShadow(FnBodyScope, Param);
5359
5360      PushOnScopeChains(Param, FnBodyScope);
5361    }
5362  }
5363
5364  // Checking attributes of current function definition
5365  // dllimport attribute.
5366  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5367  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5368    // dllimport attribute cannot be directly applied to definition.
5369    if (!DA->isInherited()) {
5370      Diag(FD->getLocation(),
5371           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5372        << "dllimport";
5373      FD->setInvalidDecl();
5374      return FD;
5375    }
5376
5377    // Visual C++ appears to not think this is an issue, so only issue
5378    // a warning when Microsoft extensions are disabled.
5379    if (!LangOpts.Microsoft) {
5380      // If a symbol previously declared dllimport is later defined, the
5381      // attribute is ignored in subsequent references, and a warning is
5382      // emitted.
5383      Diag(FD->getLocation(),
5384           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5385        << FD->getName() << "dllimport";
5386    }
5387  }
5388  return FD;
5389}
5390
5391/// \brief Given the set of return statements within a function body,
5392/// compute the variables that are subject to the named return value
5393/// optimization.
5394///
5395/// Each of the variables that is subject to the named return value
5396/// optimization will be marked as NRVO variables in the AST, and any
5397/// return statement that has a marked NRVO variable as its NRVO candidate can
5398/// use the named return value optimization.
5399///
5400/// This function applies a very simplistic algorithm for NRVO: if every return
5401/// statement in the function has the same NRVO candidate, that candidate is
5402/// the NRVO variable.
5403///
5404/// FIXME: Employ a smarter algorithm that accounts for multiple return
5405/// statements and the lifetimes of the NRVO candidates. We should be able to
5406/// find a maximal set of NRVO variables.
5407static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5408  ReturnStmt **Returns = Scope->Returns.data();
5409
5410  const VarDecl *NRVOCandidate = 0;
5411  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5412    if (!Returns[I]->getNRVOCandidate())
5413      return;
5414
5415    if (!NRVOCandidate)
5416      NRVOCandidate = Returns[I]->getNRVOCandidate();
5417    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5418      return;
5419  }
5420
5421  if (NRVOCandidate)
5422    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5423}
5424
5425Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5426  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5427}
5428
5429Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5430                                    bool IsInstantiation) {
5431  FunctionDecl *FD = 0;
5432  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5433  if (FunTmpl)
5434    FD = FunTmpl->getTemplatedDecl();
5435  else
5436    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5437
5438  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5439
5440  if (FD) {
5441    FD->setBody(Body);
5442    if (FD->isMain()) {
5443      // C and C++ allow for main to automagically return 0.
5444      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5445      FD->setHasImplicitReturnZero(true);
5446      WP.disableCheckFallThrough();
5447    }
5448
5449    if (!FD->isInvalidDecl()) {
5450      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5451      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5452                                             FD->getResultType(), FD);
5453
5454      // If this is a constructor, we need a vtable.
5455      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5456        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5457
5458      ComputeNRVO(Body, getCurFunction());
5459    }
5460
5461    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5462  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5463    assert(MD == getCurMethodDecl() && "Method parsing confused");
5464    MD->setBody(Body);
5465    if (Body)
5466      MD->setEndLoc(Body->getLocEnd());
5467    if (!MD->isInvalidDecl()) {
5468      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5469      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5470                                             MD->getResultType(), MD);
5471    }
5472  } else {
5473    return 0;
5474  }
5475
5476  // Verify and clean out per-function state.
5477
5478  // Check goto/label use.
5479  FunctionScopeInfo *CurFn = getCurFunction();
5480  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5481         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5482    LabelStmt *L = I->second;
5483
5484    // Verify that we have no forward references left.  If so, there was a goto
5485    // or address of a label taken, but no definition of it.  Label fwd
5486    // definitions are indicated with a null substmt.
5487    if (L->getSubStmt() != 0) {
5488      if (!L->isUsed())
5489        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5490      continue;
5491    }
5492
5493    // Emit error.
5494    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5495
5496    // At this point, we have gotos that use the bogus label.  Stitch it into
5497    // the function body so that they aren't leaked and that the AST is well
5498    // formed.
5499    if (Body == 0) {
5500      // The whole function wasn't parsed correctly.
5501      continue;
5502    }
5503
5504    // Otherwise, the body is valid: we want to stitch the label decl into the
5505    // function somewhere so that it is properly owned and so that the goto
5506    // has a valid target.  Do this by creating a new compound stmt with the
5507    // label in it.
5508
5509    // Give the label a sub-statement.
5510    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5511
5512    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5513                               cast<CXXTryStmt>(Body)->getTryBlock() :
5514                               cast<CompoundStmt>(Body);
5515    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5516                                          Compound->body_end());
5517    Elements.push_back(L);
5518    Compound->setStmts(Context, Elements.data(), Elements.size());
5519  }
5520
5521  if (Body) {
5522    // C++ constructors that have function-try-blocks can't have return
5523    // statements in the handlers of that block. (C++ [except.handle]p14)
5524    // Verify this.
5525    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5526      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5527
5528    // Verify that that gotos and switch cases don't jump into scopes illegally.
5529    // Verify that that gotos and switch cases don't jump into scopes illegally.
5530    if (getCurFunction()->NeedsScopeChecking() &&
5531        !dcl->isInvalidDecl() &&
5532        !hasAnyErrorsInThisFunction())
5533      DiagnoseInvalidJumps(Body);
5534
5535    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5536      if (!Destructor->getParent()->isDependentType())
5537        CheckDestructor(Destructor);
5538
5539      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5540                                             Destructor->getParent());
5541    }
5542
5543    // If any errors have occurred, clear out any temporaries that may have
5544    // been leftover. This ensures that these temporaries won't be picked up for
5545    // deletion in some later function.
5546    if (PP.getDiagnostics().hasErrorOccurred())
5547      ExprTemporaries.clear();
5548    else if (!isa<FunctionTemplateDecl>(dcl)) {
5549      // Since the body is valid, issue any analysis-based warnings that are
5550      // enabled.
5551      QualType ResultType;
5552      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5553        AnalysisWarnings.IssueWarnings(WP, FD);
5554      } else {
5555        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5556        AnalysisWarnings.IssueWarnings(WP, MD);
5557      }
5558    }
5559
5560    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5561  }
5562
5563  if (!IsInstantiation)
5564    PopDeclContext();
5565
5566  PopFunctionOrBlockScope();
5567
5568  // If any errors have occurred, clear out any temporaries that may have
5569  // been leftover. This ensures that these temporaries won't be picked up for
5570  // deletion in some later function.
5571  if (getDiagnostics().hasErrorOccurred())
5572    ExprTemporaries.clear();
5573
5574  return dcl;
5575}
5576
5577/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5578/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5579NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5580                                          IdentifierInfo &II, Scope *S) {
5581  // Before we produce a declaration for an implicitly defined
5582  // function, see whether there was a locally-scoped declaration of
5583  // this name as a function or variable. If so, use that
5584  // (non-visible) declaration, and complain about it.
5585  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5586    = LocallyScopedExternalDecls.find(&II);
5587  if (Pos != LocallyScopedExternalDecls.end()) {
5588    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5589    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5590    return Pos->second;
5591  }
5592
5593  // Extension in C99.  Legal in C90, but warn about it.
5594  if (II.getName().startswith("__builtin_"))
5595    Diag(Loc, diag::warn_builtin_unknown) << &II;
5596  else if (getLangOptions().C99)
5597    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5598  else
5599    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5600
5601  // Set a Declarator for the implicit definition: int foo();
5602  const char *Dummy;
5603  DeclSpec DS;
5604  unsigned DiagID;
5605  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5606  (void)Error; // Silence warning.
5607  assert(!Error && "Error setting up implicit decl!");
5608  Declarator D(DS, Declarator::BlockContext);
5609  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5610                                             false, false, SourceLocation(), 0,
5611                                             0, 0, true, SourceLocation(),
5612                                             false, SourceLocation(),
5613                                             false, 0,0,0, Loc, Loc, D),
5614                SourceLocation());
5615  D.SetIdentifier(&II, Loc);
5616
5617  // Insert this function into translation-unit scope.
5618
5619  DeclContext *PrevDC = CurContext;
5620  CurContext = Context.getTranslationUnitDecl();
5621
5622  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5623  FD->setImplicit();
5624
5625  CurContext = PrevDC;
5626
5627  AddKnownFunctionAttributes(FD);
5628
5629  return FD;
5630}
5631
5632/// \brief Adds any function attributes that we know a priori based on
5633/// the declaration of this function.
5634///
5635/// These attributes can apply both to implicitly-declared builtins
5636/// (like __builtin___printf_chk) or to library-declared functions
5637/// like NSLog or printf.
5638void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5639  if (FD->isInvalidDecl())
5640    return;
5641
5642  // If this is a built-in function, map its builtin attributes to
5643  // actual attributes.
5644  if (unsigned BuiltinID = FD->getBuiltinID()) {
5645    // Handle printf-formatting attributes.
5646    unsigned FormatIdx;
5647    bool HasVAListArg;
5648    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5649      if (!FD->getAttr<FormatAttr>())
5650        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5651                                                "printf", FormatIdx+1,
5652                                               HasVAListArg ? 0 : FormatIdx+2));
5653    }
5654    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5655                                             HasVAListArg)) {
5656     if (!FD->getAttr<FormatAttr>())
5657       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5658                                              "scanf", FormatIdx+1,
5659                                              HasVAListArg ? 0 : FormatIdx+2));
5660    }
5661
5662    // Mark const if we don't care about errno and that is the only
5663    // thing preventing the function from being const. This allows
5664    // IRgen to use LLVM intrinsics for such functions.
5665    if (!getLangOptions().MathErrno &&
5666        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5667      if (!FD->getAttr<ConstAttr>())
5668        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5669    }
5670
5671    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5672      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5673    if (Context.BuiltinInfo.isConst(BuiltinID))
5674      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5675  }
5676
5677  IdentifierInfo *Name = FD->getIdentifier();
5678  if (!Name)
5679    return;
5680  if ((!getLangOptions().CPlusPlus &&
5681       FD->getDeclContext()->isTranslationUnit()) ||
5682      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5683       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5684       LinkageSpecDecl::lang_c)) {
5685    // Okay: this could be a libc/libm/Objective-C function we know
5686    // about.
5687  } else
5688    return;
5689
5690  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5691    // FIXME: NSLog and NSLogv should be target specific
5692    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5693      // FIXME: We known better than our headers.
5694      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5695    } else
5696      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5697                                             "printf", 1,
5698                                             Name->isStr("NSLogv") ? 0 : 2));
5699  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5700    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5701    // target-specific builtins, perhaps?
5702    if (!FD->getAttr<FormatAttr>())
5703      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5704                                             "printf", 2,
5705                                             Name->isStr("vasprintf") ? 0 : 3));
5706  }
5707}
5708
5709TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5710                                    TypeSourceInfo *TInfo) {
5711  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5712  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5713
5714  if (!TInfo) {
5715    assert(D.isInvalidType() && "no declarator info for valid type");
5716    TInfo = Context.getTrivialTypeSourceInfo(T);
5717  }
5718
5719  // Scope manipulation handled by caller.
5720  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5721                                           D.getIdentifierLoc(),
5722                                           D.getIdentifier(),
5723                                           TInfo);
5724
5725  // Bail out immediately if we have an invalid declaration.
5726  if (D.isInvalidType()) {
5727    NewTD->setInvalidDecl();
5728    return NewTD;
5729  }
5730
5731  // C++ [dcl.typedef]p8:
5732  //   If the typedef declaration defines an unnamed class (or
5733  //   enum), the first typedef-name declared by the declaration
5734  //   to be that class type (or enum type) is used to denote the
5735  //   class type (or enum type) for linkage purposes only.
5736  // We need to check whether the type was declared in the declaration.
5737  switch (D.getDeclSpec().getTypeSpecType()) {
5738  case TST_enum:
5739  case TST_struct:
5740  case TST_union:
5741  case TST_class: {
5742    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5743
5744    // Do nothing if the tag is not anonymous or already has an
5745    // associated typedef (from an earlier typedef in this decl group).
5746    if (tagFromDeclSpec->getIdentifier()) break;
5747    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
5748
5749    // A well-formed anonymous tag must always be a TUK_Definition.
5750    assert(tagFromDeclSpec->isThisDeclarationADefinition());
5751
5752    // The type must match the tag exactly;  no qualifiers allowed.
5753    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
5754      break;
5755
5756    // Otherwise, set this is the anon-decl typedef for the tag.
5757    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
5758    break;
5759  }
5760
5761  default:
5762    break;
5763  }
5764
5765  return NewTD;
5766}
5767
5768
5769/// \brief Determine whether a tag with a given kind is acceptable
5770/// as a redeclaration of the given tag declaration.
5771///
5772/// \returns true if the new tag kind is acceptable, false otherwise.
5773bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5774                                        TagTypeKind NewTag,
5775                                        SourceLocation NewTagLoc,
5776                                        const IdentifierInfo &Name) {
5777  // C++ [dcl.type.elab]p3:
5778  //   The class-key or enum keyword present in the
5779  //   elaborated-type-specifier shall agree in kind with the
5780  //   declaration to which the name in the elaborated-type-specifier
5781  //   refers. This rule also applies to the form of
5782  //   elaborated-type-specifier that declares a class-name or
5783  //   friend class since it can be construed as referring to the
5784  //   definition of the class. Thus, in any
5785  //   elaborated-type-specifier, the enum keyword shall be used to
5786  //   refer to an enumeration (7.2), the union class-key shall be
5787  //   used to refer to a union (clause 9), and either the class or
5788  //   struct class-key shall be used to refer to a class (clause 9)
5789  //   declared using the class or struct class-key.
5790  TagTypeKind OldTag = Previous->getTagKind();
5791  if (OldTag == NewTag)
5792    return true;
5793
5794  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5795      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5796    // Warn about the struct/class tag mismatch.
5797    bool isTemplate = false;
5798    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5799      isTemplate = Record->getDescribedClassTemplate();
5800
5801    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5802      << (NewTag == TTK_Class)
5803      << isTemplate << &Name
5804      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5805                              OldTag == TTK_Class? "class" : "struct");
5806    Diag(Previous->getLocation(), diag::note_previous_use);
5807    return true;
5808  }
5809  return false;
5810}
5811
5812/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5813/// former case, Name will be non-null.  In the later case, Name will be null.
5814/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5815/// reference/declaration/definition of a tag.
5816Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5817                     SourceLocation KWLoc, CXXScopeSpec &SS,
5818                     IdentifierInfo *Name, SourceLocation NameLoc,
5819                     AttributeList *Attr, AccessSpecifier AS,
5820                     MultiTemplateParamsArg TemplateParameterLists,
5821                     bool &OwnedDecl, bool &IsDependent,
5822                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5823                     TypeResult UnderlyingType) {
5824  // If this is not a definition, it must have a name.
5825  assert((Name != 0 || TUK == TUK_Definition) &&
5826         "Nameless record must be a definition!");
5827  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5828
5829  OwnedDecl = false;
5830  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5831
5832  // FIXME: Check explicit specializations more carefully.
5833  bool isExplicitSpecialization = false;
5834  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5835  bool Invalid = false;
5836
5837  // We only need to do this matching if we have template parameters
5838  // or a scope specifier, which also conveniently avoids this work
5839  // for non-C++ cases.
5840  if (NumMatchedTemplateParamLists ||
5841      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5842    if (TemplateParameterList *TemplateParams
5843          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5844                                                TemplateParameterLists.get(),
5845                                               TemplateParameterLists.size(),
5846                                                    TUK == TUK_Friend,
5847                                                    isExplicitSpecialization,
5848                                                    Invalid)) {
5849      // All but one template parameter lists have been matching.
5850      --NumMatchedTemplateParamLists;
5851
5852      if (TemplateParams->size() > 0) {
5853        // This is a declaration or definition of a class template (which may
5854        // be a member of another template).
5855        if (Invalid)
5856          return 0;
5857
5858        OwnedDecl = false;
5859        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5860                                               SS, Name, NameLoc, Attr,
5861                                               TemplateParams,
5862                                               AS);
5863        TemplateParameterLists.release();
5864        return Result.get();
5865      } else {
5866        // The "template<>" header is extraneous.
5867        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5868          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5869        isExplicitSpecialization = true;
5870      }
5871    }
5872  }
5873
5874  // Figure out the underlying type if this a enum declaration. We need to do
5875  // this early, because it's needed to detect if this is an incompatible
5876  // redeclaration.
5877  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5878
5879  if (Kind == TTK_Enum) {
5880    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5881      // No underlying type explicitly specified, or we failed to parse the
5882      // type, default to int.
5883      EnumUnderlying = Context.IntTy.getTypePtr();
5884    else if (UnderlyingType.get()) {
5885      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5886      // integral type; any cv-qualification is ignored.
5887      TypeSourceInfo *TI = 0;
5888      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5889      EnumUnderlying = TI;
5890
5891      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5892
5893      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5894        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5895          << T;
5896        // Recover by falling back to int.
5897        EnumUnderlying = Context.IntTy.getTypePtr();
5898      }
5899
5900      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
5901                                          UPPC_FixedUnderlyingType))
5902        EnumUnderlying = Context.IntTy.getTypePtr();
5903
5904    } else if (getLangOptions().Microsoft)
5905      // Microsoft enums are always of int type.
5906      EnumUnderlying = Context.IntTy.getTypePtr();
5907  }
5908
5909  DeclContext *SearchDC = CurContext;
5910  DeclContext *DC = CurContext;
5911  bool isStdBadAlloc = false;
5912
5913  RedeclarationKind Redecl = ForRedeclaration;
5914  if (TUK == TUK_Friend || TUK == TUK_Reference)
5915    Redecl = NotForRedeclaration;
5916
5917  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5918
5919  if (Name && SS.isNotEmpty()) {
5920    // We have a nested-name tag ('struct foo::bar').
5921
5922    // Check for invalid 'foo::'.
5923    if (SS.isInvalid()) {
5924      Name = 0;
5925      goto CreateNewDecl;
5926    }
5927
5928    // If this is a friend or a reference to a class in a dependent
5929    // context, don't try to make a decl for it.
5930    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5931      DC = computeDeclContext(SS, false);
5932      if (!DC) {
5933        IsDependent = true;
5934        return 0;
5935      }
5936    } else {
5937      DC = computeDeclContext(SS, true);
5938      if (!DC) {
5939        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5940          << SS.getRange();
5941        return 0;
5942      }
5943    }
5944
5945    if (RequireCompleteDeclContext(SS, DC))
5946      return 0;
5947
5948    SearchDC = DC;
5949    // Look-up name inside 'foo::'.
5950    LookupQualifiedName(Previous, DC);
5951
5952    if (Previous.isAmbiguous())
5953      return 0;
5954
5955    if (Previous.empty()) {
5956      // Name lookup did not find anything. However, if the
5957      // nested-name-specifier refers to the current instantiation,
5958      // and that current instantiation has any dependent base
5959      // classes, we might find something at instantiation time: treat
5960      // this as a dependent elaborated-type-specifier.
5961      // But this only makes any sense for reference-like lookups.
5962      if (Previous.wasNotFoundInCurrentInstantiation() &&
5963          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5964        IsDependent = true;
5965        return 0;
5966      }
5967
5968      // A tag 'foo::bar' must already exist.
5969      Diag(NameLoc, diag::err_not_tag_in_scope)
5970        << Kind << Name << DC << SS.getRange();
5971      Name = 0;
5972      Invalid = true;
5973      goto CreateNewDecl;
5974    }
5975  } else if (Name) {
5976    // If this is a named struct, check to see if there was a previous forward
5977    // declaration or definition.
5978    // FIXME: We're looking into outer scopes here, even when we
5979    // shouldn't be. Doing so can result in ambiguities that we
5980    // shouldn't be diagnosing.
5981    LookupName(Previous, S);
5982
5983    // Note:  there used to be some attempt at recovery here.
5984    if (Previous.isAmbiguous())
5985      return 0;
5986
5987    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5988      // FIXME: This makes sure that we ignore the contexts associated
5989      // with C structs, unions, and enums when looking for a matching
5990      // tag declaration or definition. See the similar lookup tweak
5991      // in Sema::LookupName; is there a better way to deal with this?
5992      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5993        SearchDC = SearchDC->getParent();
5994    }
5995  } else if (S->isFunctionPrototypeScope()) {
5996    // If this is an enum declaration in function prototype scope, set its
5997    // initial context to the translation unit.
5998    SearchDC = Context.getTranslationUnitDecl();
5999  }
6000
6001  if (Previous.isSingleResult() &&
6002      Previous.getFoundDecl()->isTemplateParameter()) {
6003    // Maybe we will complain about the shadowed template parameter.
6004    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6005    // Just pretend that we didn't see the previous declaration.
6006    Previous.clear();
6007  }
6008
6009  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6010      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6011    // This is a declaration of or a reference to "std::bad_alloc".
6012    isStdBadAlloc = true;
6013
6014    if (Previous.empty() && StdBadAlloc) {
6015      // std::bad_alloc has been implicitly declared (but made invisible to
6016      // name lookup). Fill in this implicit declaration as the previous
6017      // declaration, so that the declarations get chained appropriately.
6018      Previous.addDecl(getStdBadAlloc());
6019    }
6020  }
6021
6022  // If we didn't find a previous declaration, and this is a reference
6023  // (or friend reference), move to the correct scope.  In C++, we
6024  // also need to do a redeclaration lookup there, just in case
6025  // there's a shadow friend decl.
6026  if (Name && Previous.empty() &&
6027      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6028    if (Invalid) goto CreateNewDecl;
6029    assert(SS.isEmpty());
6030
6031    if (TUK == TUK_Reference) {
6032      // C++ [basic.scope.pdecl]p5:
6033      //   -- for an elaborated-type-specifier of the form
6034      //
6035      //          class-key identifier
6036      //
6037      //      if the elaborated-type-specifier is used in the
6038      //      decl-specifier-seq or parameter-declaration-clause of a
6039      //      function defined in namespace scope, the identifier is
6040      //      declared as a class-name in the namespace that contains
6041      //      the declaration; otherwise, except as a friend
6042      //      declaration, the identifier is declared in the smallest
6043      //      non-class, non-function-prototype scope that contains the
6044      //      declaration.
6045      //
6046      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6047      // C structs and unions.
6048      //
6049      // It is an error in C++ to declare (rather than define) an enum
6050      // type, including via an elaborated type specifier.  We'll
6051      // diagnose that later; for now, declare the enum in the same
6052      // scope as we would have picked for any other tag type.
6053      //
6054      // GNU C also supports this behavior as part of its incomplete
6055      // enum types extension, while GNU C++ does not.
6056      //
6057      // Find the context where we'll be declaring the tag.
6058      // FIXME: We would like to maintain the current DeclContext as the
6059      // lexical context,
6060      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6061        SearchDC = SearchDC->getParent();
6062
6063      // Find the scope where we'll be declaring the tag.
6064      while (S->isClassScope() ||
6065             (getLangOptions().CPlusPlus &&
6066              S->isFunctionPrototypeScope()) ||
6067             ((S->getFlags() & Scope::DeclScope) == 0) ||
6068             (S->getEntity() &&
6069              ((DeclContext *)S->getEntity())->isTransparentContext()))
6070        S = S->getParent();
6071    } else {
6072      assert(TUK == TUK_Friend);
6073      // C++ [namespace.memdef]p3:
6074      //   If a friend declaration in a non-local class first declares a
6075      //   class or function, the friend class or function is a member of
6076      //   the innermost enclosing namespace.
6077      SearchDC = SearchDC->getEnclosingNamespaceContext();
6078    }
6079
6080    // In C++, we need to do a redeclaration lookup to properly
6081    // diagnose some problems.
6082    if (getLangOptions().CPlusPlus) {
6083      Previous.setRedeclarationKind(ForRedeclaration);
6084      LookupQualifiedName(Previous, SearchDC);
6085    }
6086  }
6087
6088  if (!Previous.empty()) {
6089    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6090
6091    // It's okay to have a tag decl in the same scope as a typedef
6092    // which hides a tag decl in the same scope.  Finding this
6093    // insanity with a redeclaration lookup can only actually happen
6094    // in C++.
6095    //
6096    // This is also okay for elaborated-type-specifiers, which is
6097    // technically forbidden by the current standard but which is
6098    // okay according to the likely resolution of an open issue;
6099    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6100    if (getLangOptions().CPlusPlus) {
6101      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6102        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6103          TagDecl *Tag = TT->getDecl();
6104          if (Tag->getDeclName() == Name &&
6105              Tag->getDeclContext()->getRedeclContext()
6106                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6107            PrevDecl = Tag;
6108            Previous.clear();
6109            Previous.addDecl(Tag);
6110            Previous.resolveKind();
6111          }
6112        }
6113      }
6114    }
6115
6116    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6117      // If this is a use of a previous tag, or if the tag is already declared
6118      // in the same scope (so that the definition/declaration completes or
6119      // rementions the tag), reuse the decl.
6120      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6121          isDeclInScope(PrevDecl, SearchDC, S)) {
6122        // Make sure that this wasn't declared as an enum and now used as a
6123        // struct or something similar.
6124        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6125          bool SafeToContinue
6126            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6127               Kind != TTK_Enum);
6128          if (SafeToContinue)
6129            Diag(KWLoc, diag::err_use_with_wrong_tag)
6130              << Name
6131              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6132                                              PrevTagDecl->getKindName());
6133          else
6134            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6135          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6136
6137          if (SafeToContinue)
6138            Kind = PrevTagDecl->getTagKind();
6139          else {
6140            // Recover by making this an anonymous redefinition.
6141            Name = 0;
6142            Previous.clear();
6143            Invalid = true;
6144          }
6145        }
6146
6147        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6148          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6149
6150          // All conflicts with previous declarations are recovered by
6151          // returning the previous declaration.
6152          if (ScopedEnum != PrevEnum->isScoped()) {
6153            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6154              << PrevEnum->isScoped();
6155            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6156            return PrevTagDecl;
6157          }
6158          else if (EnumUnderlying && PrevEnum->isFixed()) {
6159            QualType T;
6160            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6161                T = TI->getType();
6162            else
6163                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6164
6165            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6166              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6167                   diag::err_enum_redeclare_type_mismatch)
6168                << T
6169                << PrevEnum->getIntegerType();
6170              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6171              return PrevTagDecl;
6172            }
6173          }
6174          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6175            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6176              << PrevEnum->isFixed();
6177            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6178            return PrevTagDecl;
6179          }
6180        }
6181
6182        if (!Invalid) {
6183          // If this is a use, just return the declaration we found.
6184
6185          // FIXME: In the future, return a variant or some other clue
6186          // for the consumer of this Decl to know it doesn't own it.
6187          // For our current ASTs this shouldn't be a problem, but will
6188          // need to be changed with DeclGroups.
6189          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6190              TUK == TUK_Friend)
6191            return PrevTagDecl;
6192
6193          // Diagnose attempts to redefine a tag.
6194          if (TUK == TUK_Definition) {
6195            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6196              // If we're defining a specialization and the previous definition
6197              // is from an implicit instantiation, don't emit an error
6198              // here; we'll catch this in the general case below.
6199              if (!isExplicitSpecialization ||
6200                  !isa<CXXRecordDecl>(Def) ||
6201                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6202                                               == TSK_ExplicitSpecialization) {
6203                Diag(NameLoc, diag::err_redefinition) << Name;
6204                Diag(Def->getLocation(), diag::note_previous_definition);
6205                // If this is a redefinition, recover by making this
6206                // struct be anonymous, which will make any later
6207                // references get the previous definition.
6208                Name = 0;
6209                Previous.clear();
6210                Invalid = true;
6211              }
6212            } else {
6213              // If the type is currently being defined, complain
6214              // about a nested redefinition.
6215              const TagType *Tag
6216                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6217              if (Tag->isBeingDefined()) {
6218                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6219                Diag(PrevTagDecl->getLocation(),
6220                     diag::note_previous_definition);
6221                Name = 0;
6222                Previous.clear();
6223                Invalid = true;
6224              }
6225            }
6226
6227            // Okay, this is definition of a previously declared or referenced
6228            // tag PrevDecl. We're going to create a new Decl for it.
6229          }
6230        }
6231        // If we get here we have (another) forward declaration or we
6232        // have a definition.  Just create a new decl.
6233
6234      } else {
6235        // If we get here, this is a definition of a new tag type in a nested
6236        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6237        // new decl/type.  We set PrevDecl to NULL so that the entities
6238        // have distinct types.
6239        Previous.clear();
6240      }
6241      // If we get here, we're going to create a new Decl. If PrevDecl
6242      // is non-NULL, it's a definition of the tag declared by
6243      // PrevDecl. If it's NULL, we have a new definition.
6244
6245
6246    // Otherwise, PrevDecl is not a tag, but was found with tag
6247    // lookup.  This is only actually possible in C++, where a few
6248    // things like templates still live in the tag namespace.
6249    } else {
6250      assert(getLangOptions().CPlusPlus);
6251
6252      // Use a better diagnostic if an elaborated-type-specifier
6253      // found the wrong kind of type on the first
6254      // (non-redeclaration) lookup.
6255      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6256          !Previous.isForRedeclaration()) {
6257        unsigned Kind = 0;
6258        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6259        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6260        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6261        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6262        Invalid = true;
6263
6264      // Otherwise, only diagnose if the declaration is in scope.
6265      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6266        // do nothing
6267
6268      // Diagnose implicit declarations introduced by elaborated types.
6269      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6270        unsigned Kind = 0;
6271        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6272        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6273        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6274        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6275        Invalid = true;
6276
6277      // Otherwise it's a declaration.  Call out a particularly common
6278      // case here.
6279      } else if (isa<TypedefDecl>(PrevDecl)) {
6280        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6281          << Name
6282          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6283        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6284        Invalid = true;
6285
6286      // Otherwise, diagnose.
6287      } else {
6288        // The tag name clashes with something else in the target scope,
6289        // issue an error and recover by making this tag be anonymous.
6290        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6291        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6292        Name = 0;
6293        Invalid = true;
6294      }
6295
6296      // The existing declaration isn't relevant to us; we're in a
6297      // new scope, so clear out the previous declaration.
6298      Previous.clear();
6299    }
6300  }
6301
6302CreateNewDecl:
6303
6304  TagDecl *PrevDecl = 0;
6305  if (Previous.isSingleResult())
6306    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6307
6308  // If there is an identifier, use the location of the identifier as the
6309  // location of the decl, otherwise use the location of the struct/union
6310  // keyword.
6311  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6312
6313  // Otherwise, create a new declaration. If there is a previous
6314  // declaration of the same entity, the two will be linked via
6315  // PrevDecl.
6316  TagDecl *New;
6317
6318  bool IsForwardReference = false;
6319  if (Kind == TTK_Enum) {
6320    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6321    // enum X { A, B, C } D;    D should chain to X.
6322    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6323                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6324                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6325    // If this is an undefined enum, warn.
6326    if (TUK != TUK_Definition && !Invalid) {
6327      TagDecl *Def;
6328      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6329        // C++0x: 7.2p2: opaque-enum-declaration.
6330        // Conflicts are diagnosed above. Do nothing.
6331      }
6332      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6333        Diag(Loc, diag::ext_forward_ref_enum_def)
6334          << New;
6335        Diag(Def->getLocation(), diag::note_previous_definition);
6336      } else {
6337        unsigned DiagID = diag::ext_forward_ref_enum;
6338        if (getLangOptions().Microsoft)
6339          DiagID = diag::ext_ms_forward_ref_enum;
6340        else if (getLangOptions().CPlusPlus)
6341          DiagID = diag::err_forward_ref_enum;
6342        Diag(Loc, DiagID);
6343
6344        // If this is a forward-declared reference to an enumeration, make a
6345        // note of it; we won't actually be introducing the declaration into
6346        // the declaration context.
6347        if (TUK == TUK_Reference)
6348          IsForwardReference = true;
6349      }
6350    }
6351
6352    if (EnumUnderlying) {
6353      EnumDecl *ED = cast<EnumDecl>(New);
6354      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6355        ED->setIntegerTypeSourceInfo(TI);
6356      else
6357        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6358      ED->setPromotionType(ED->getIntegerType());
6359    }
6360
6361  } else {
6362    // struct/union/class
6363
6364    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6365    // struct X { int A; } D;    D should chain to X.
6366    if (getLangOptions().CPlusPlus) {
6367      // FIXME: Look for a way to use RecordDecl for simple structs.
6368      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6369                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6370
6371      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6372        StdBadAlloc = cast<CXXRecordDecl>(New);
6373    } else
6374      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6375                               cast_or_null<RecordDecl>(PrevDecl));
6376  }
6377
6378  // Maybe add qualifier info.
6379  if (SS.isNotEmpty()) {
6380    if (SS.isSet()) {
6381      NestedNameSpecifier *NNS
6382        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6383      New->setQualifierInfo(NNS, SS.getRange());
6384      if (NumMatchedTemplateParamLists > 0) {
6385        New->setTemplateParameterListsInfo(Context,
6386                                           NumMatchedTemplateParamLists,
6387                    (TemplateParameterList**) TemplateParameterLists.release());
6388      }
6389    }
6390    else
6391      Invalid = true;
6392  }
6393
6394  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6395    // Add alignment attributes if necessary; these attributes are checked when
6396    // the ASTContext lays out the structure.
6397    //
6398    // It is important for implementing the correct semantics that this
6399    // happen here (in act on tag decl). The #pragma pack stack is
6400    // maintained as a result of parser callbacks which can occur at
6401    // many points during the parsing of a struct declaration (because
6402    // the #pragma tokens are effectively skipped over during the
6403    // parsing of the struct).
6404    AddAlignmentAttributesForRecord(RD);
6405  }
6406
6407  // If this is a specialization of a member class (of a class template),
6408  // check the specialization.
6409  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6410    Invalid = true;
6411
6412  if (Invalid)
6413    New->setInvalidDecl();
6414
6415  if (Attr)
6416    ProcessDeclAttributeList(S, New, Attr);
6417
6418  // If we're declaring or defining a tag in function prototype scope
6419  // in C, note that this type can only be used within the function.
6420  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6421    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6422
6423  // Set the lexical context. If the tag has a C++ scope specifier, the
6424  // lexical context will be different from the semantic context.
6425  New->setLexicalDeclContext(CurContext);
6426
6427  // Mark this as a friend decl if applicable.
6428  if (TUK == TUK_Friend)
6429    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6430
6431  // Set the access specifier.
6432  if (!Invalid && SearchDC->isRecord())
6433    SetMemberAccessSpecifier(New, PrevDecl, AS);
6434
6435  if (TUK == TUK_Definition)
6436    New->startDefinition();
6437
6438  // If this has an identifier, add it to the scope stack.
6439  if (TUK == TUK_Friend) {
6440    // We might be replacing an existing declaration in the lookup tables;
6441    // if so, borrow its access specifier.
6442    if (PrevDecl)
6443      New->setAccess(PrevDecl->getAccess());
6444
6445    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6446    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6447    if (Name) // can be null along some error paths
6448      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6449        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6450  } else if (Name) {
6451    S = getNonFieldDeclScope(S);
6452    PushOnScopeChains(New, S, !IsForwardReference);
6453    if (IsForwardReference)
6454      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6455
6456  } else {
6457    CurContext->addDecl(New);
6458  }
6459
6460  // If this is the C FILE type, notify the AST context.
6461  if (IdentifierInfo *II = New->getIdentifier())
6462    if (!New->isInvalidDecl() &&
6463        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6464        II->isStr("FILE"))
6465      Context.setFILEDecl(New);
6466
6467  OwnedDecl = true;
6468  return New;
6469}
6470
6471void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6472  AdjustDeclIfTemplate(TagD);
6473  TagDecl *Tag = cast<TagDecl>(TagD);
6474
6475  // Enter the tag context.
6476  PushDeclContext(S, Tag);
6477}
6478
6479void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6480                                           ClassVirtSpecifiers &CVS,
6481                                           SourceLocation LBraceLoc) {
6482  AdjustDeclIfTemplate(TagD);
6483  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6484
6485  FieldCollector->StartClass();
6486
6487  if (!Record->getIdentifier())
6488    return;
6489
6490  if (CVS.isFinalSpecified())
6491    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6492  if (CVS.isExplicitSpecified())
6493    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6494
6495  // C++ [class]p2:
6496  //   [...] The class-name is also inserted into the scope of the
6497  //   class itself; this is known as the injected-class-name. For
6498  //   purposes of access checking, the injected-class-name is treated
6499  //   as if it were a public member name.
6500  CXXRecordDecl *InjectedClassName
6501    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6502                            CurContext, Record->getLocation(),
6503                            Record->getIdentifier(),
6504                            Record->getTagKeywordLoc(),
6505                            /*PrevDecl=*/0,
6506                            /*DelayTypeCreation=*/true);
6507  Context.getTypeDeclType(InjectedClassName, Record);
6508  InjectedClassName->setImplicit();
6509  InjectedClassName->setAccess(AS_public);
6510  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6511      InjectedClassName->setDescribedClassTemplate(Template);
6512  PushOnScopeChains(InjectedClassName, S);
6513  assert(InjectedClassName->isInjectedClassName() &&
6514         "Broken injected-class-name");
6515}
6516
6517void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6518                                    SourceLocation RBraceLoc) {
6519  AdjustDeclIfTemplate(TagD);
6520  TagDecl *Tag = cast<TagDecl>(TagD);
6521  Tag->setRBraceLoc(RBraceLoc);
6522
6523  if (isa<CXXRecordDecl>(Tag))
6524    FieldCollector->FinishClass();
6525
6526  // Exit this scope of this tag's definition.
6527  PopDeclContext();
6528
6529  // Notify the consumer that we've defined a tag.
6530  Consumer.HandleTagDeclDefinition(Tag);
6531}
6532
6533void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6534  AdjustDeclIfTemplate(TagD);
6535  TagDecl *Tag = cast<TagDecl>(TagD);
6536  Tag->setInvalidDecl();
6537
6538  // We're undoing ActOnTagStartDefinition here, not
6539  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6540  // the FieldCollector.
6541
6542  PopDeclContext();
6543}
6544
6545// Note that FieldName may be null for anonymous bitfields.
6546bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6547                          QualType FieldTy, const Expr *BitWidth,
6548                          bool *ZeroWidth) {
6549  // Default to true; that shouldn't confuse checks for emptiness
6550  if (ZeroWidth)
6551    *ZeroWidth = true;
6552
6553  // C99 6.7.2.1p4 - verify the field type.
6554  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6555  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6556    // Handle incomplete types with specific error.
6557    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6558      return true;
6559    if (FieldName)
6560      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6561        << FieldName << FieldTy << BitWidth->getSourceRange();
6562    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6563      << FieldTy << BitWidth->getSourceRange();
6564  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6565                                             UPPC_BitFieldWidth))
6566    return true;
6567
6568  // If the bit-width is type- or value-dependent, don't try to check
6569  // it now.
6570  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6571    return false;
6572
6573  llvm::APSInt Value;
6574  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6575    return true;
6576
6577  if (Value != 0 && ZeroWidth)
6578    *ZeroWidth = false;
6579
6580  // Zero-width bitfield is ok for anonymous field.
6581  if (Value == 0 && FieldName)
6582    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6583
6584  if (Value.isSigned() && Value.isNegative()) {
6585    if (FieldName)
6586      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6587               << FieldName << Value.toString(10);
6588    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6589      << Value.toString(10);
6590  }
6591
6592  if (!FieldTy->isDependentType()) {
6593    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6594    if (Value.getZExtValue() > TypeSize) {
6595      if (!getLangOptions().CPlusPlus) {
6596        if (FieldName)
6597          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6598            << FieldName << (unsigned)Value.getZExtValue()
6599            << (unsigned)TypeSize;
6600
6601        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6602          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6603      }
6604
6605      if (FieldName)
6606        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6607          << FieldName << (unsigned)Value.getZExtValue()
6608          << (unsigned)TypeSize;
6609      else
6610        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6611          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6612    }
6613  }
6614
6615  return false;
6616}
6617
6618/// ActOnField - Each field of a struct/union/class is passed into this in order
6619/// to create a FieldDecl object for it.
6620Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6621                                 SourceLocation DeclStart,
6622                                 Declarator &D, ExprTy *BitfieldWidth) {
6623  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6624                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6625                               AS_public);
6626  return Res;
6627}
6628
6629/// HandleField - Analyze a field of a C struct or a C++ data member.
6630///
6631FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6632                             SourceLocation DeclStart,
6633                             Declarator &D, Expr *BitWidth,
6634                             AccessSpecifier AS) {
6635  IdentifierInfo *II = D.getIdentifier();
6636  SourceLocation Loc = DeclStart;
6637  if (II) Loc = D.getIdentifierLoc();
6638
6639  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6640  QualType T = TInfo->getType();
6641  if (getLangOptions().CPlusPlus) {
6642    CheckExtraCXXDefaultArguments(D);
6643
6644    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6645                                        UPPC_DataMemberType)) {
6646      D.setInvalidType();
6647      T = Context.IntTy;
6648      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6649    }
6650  }
6651
6652  DiagnoseFunctionSpecifiers(D);
6653
6654  if (D.getDeclSpec().isThreadSpecified())
6655    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6656
6657  // Check to see if this name was declared as a member previously
6658  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6659  LookupName(Previous, S);
6660  assert((Previous.empty() || Previous.isOverloadedResult() ||
6661          Previous.isSingleResult())
6662    && "Lookup of member name should be either overloaded, single or null");
6663
6664  // If the name is overloaded then get any declaration else get the single result
6665  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6666    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6667
6668  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6669    // Maybe we will complain about the shadowed template parameter.
6670    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6671    // Just pretend that we didn't see the previous declaration.
6672    PrevDecl = 0;
6673  }
6674
6675  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6676    PrevDecl = 0;
6677
6678  bool Mutable
6679    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6680  SourceLocation TSSL = D.getSourceRange().getBegin();
6681  FieldDecl *NewFD
6682    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6683                     AS, PrevDecl, &D);
6684
6685  if (NewFD->isInvalidDecl())
6686    Record->setInvalidDecl();
6687
6688  if (NewFD->isInvalidDecl() && PrevDecl) {
6689    // Don't introduce NewFD into scope; there's already something
6690    // with the same name in the same scope.
6691  } else if (II) {
6692    PushOnScopeChains(NewFD, S);
6693  } else
6694    Record->addDecl(NewFD);
6695
6696  return NewFD;
6697}
6698
6699/// \brief Build a new FieldDecl and check its well-formedness.
6700///
6701/// This routine builds a new FieldDecl given the fields name, type,
6702/// record, etc. \p PrevDecl should refer to any previous declaration
6703/// with the same name and in the same scope as the field to be
6704/// created.
6705///
6706/// \returns a new FieldDecl.
6707///
6708/// \todo The Declarator argument is a hack. It will be removed once
6709FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6710                                TypeSourceInfo *TInfo,
6711                                RecordDecl *Record, SourceLocation Loc,
6712                                bool Mutable, Expr *BitWidth,
6713                                SourceLocation TSSL,
6714                                AccessSpecifier AS, NamedDecl *PrevDecl,
6715                                Declarator *D) {
6716  IdentifierInfo *II = Name.getAsIdentifierInfo();
6717  bool InvalidDecl = false;
6718  if (D) InvalidDecl = D->isInvalidType();
6719
6720  // If we receive a broken type, recover by assuming 'int' and
6721  // marking this declaration as invalid.
6722  if (T.isNull()) {
6723    InvalidDecl = true;
6724    T = Context.IntTy;
6725  }
6726
6727  QualType EltTy = Context.getBaseElementType(T);
6728  if (!EltTy->isDependentType() &&
6729      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6730    // Fields of incomplete type force their record to be invalid.
6731    Record->setInvalidDecl();
6732    InvalidDecl = true;
6733  }
6734
6735  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6736  // than a variably modified type.
6737  if (!InvalidDecl && T->isVariablyModifiedType()) {
6738    bool SizeIsNegative;
6739    llvm::APSInt Oversized;
6740    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6741                                                           SizeIsNegative,
6742                                                           Oversized);
6743    if (!FixedTy.isNull()) {
6744      Diag(Loc, diag::warn_illegal_constant_array_size);
6745      T = FixedTy;
6746    } else {
6747      if (SizeIsNegative)
6748        Diag(Loc, diag::err_typecheck_negative_array_size);
6749      else if (Oversized.getBoolValue())
6750        Diag(Loc, diag::err_array_too_large)
6751          << Oversized.toString(10);
6752      else
6753        Diag(Loc, diag::err_typecheck_field_variable_size);
6754      InvalidDecl = true;
6755    }
6756  }
6757
6758  // Fields can not have abstract class types
6759  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6760                                             diag::err_abstract_type_in_decl,
6761                                             AbstractFieldType))
6762    InvalidDecl = true;
6763
6764  bool ZeroWidth = false;
6765  // If this is declared as a bit-field, check the bit-field.
6766  if (!InvalidDecl && BitWidth &&
6767      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6768    InvalidDecl = true;
6769    BitWidth = 0;
6770    ZeroWidth = false;
6771  }
6772
6773  // Check that 'mutable' is consistent with the type of the declaration.
6774  if (!InvalidDecl && Mutable) {
6775    unsigned DiagID = 0;
6776    if (T->isReferenceType())
6777      DiagID = diag::err_mutable_reference;
6778    else if (T.isConstQualified())
6779      DiagID = diag::err_mutable_const;
6780
6781    if (DiagID) {
6782      SourceLocation ErrLoc = Loc;
6783      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6784        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6785      Diag(ErrLoc, DiagID);
6786      Mutable = false;
6787      InvalidDecl = true;
6788    }
6789  }
6790
6791  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6792                                       BitWidth, Mutable);
6793  if (InvalidDecl)
6794    NewFD->setInvalidDecl();
6795
6796  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6797    Diag(Loc, diag::err_duplicate_member) << II;
6798    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6799    NewFD->setInvalidDecl();
6800  }
6801
6802  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6803    if (Record->isUnion()) {
6804      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6805        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6806        if (RDecl->getDefinition()) {
6807          // C++ [class.union]p1: An object of a class with a non-trivial
6808          // constructor, a non-trivial copy constructor, a non-trivial
6809          // destructor, or a non-trivial copy assignment operator
6810          // cannot be a member of a union, nor can an array of such
6811          // objects.
6812          // TODO: C++0x alters this restriction significantly.
6813          if (CheckNontrivialField(NewFD))
6814            NewFD->setInvalidDecl();
6815        }
6816      }
6817
6818      // C++ [class.union]p1: If a union contains a member of reference type,
6819      // the program is ill-formed.
6820      if (EltTy->isReferenceType()) {
6821        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6822          << NewFD->getDeclName() << EltTy;
6823        NewFD->setInvalidDecl();
6824      }
6825    }
6826  }
6827
6828  // FIXME: We need to pass in the attributes given an AST
6829  // representation, not a parser representation.
6830  if (D)
6831    // FIXME: What to pass instead of TUScope?
6832    ProcessDeclAttributes(TUScope, NewFD, *D);
6833
6834  if (T.isObjCGCWeak())
6835    Diag(Loc, diag::warn_attribute_weak_on_field);
6836
6837  NewFD->setAccess(AS);
6838  return NewFD;
6839}
6840
6841bool Sema::CheckNontrivialField(FieldDecl *FD) {
6842  assert(FD);
6843  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6844
6845  if (FD->isInvalidDecl())
6846    return true;
6847
6848  QualType EltTy = Context.getBaseElementType(FD->getType());
6849  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6850    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6851    if (RDecl->getDefinition()) {
6852      // We check for copy constructors before constructors
6853      // because otherwise we'll never get complaints about
6854      // copy constructors.
6855
6856      CXXSpecialMember member = CXXInvalid;
6857      if (!RDecl->hasTrivialCopyConstructor())
6858        member = CXXCopyConstructor;
6859      else if (!RDecl->hasTrivialConstructor())
6860        member = CXXConstructor;
6861      else if (!RDecl->hasTrivialCopyAssignment())
6862        member = CXXCopyAssignment;
6863      else if (!RDecl->hasTrivialDestructor())
6864        member = CXXDestructor;
6865
6866      if (member != CXXInvalid) {
6867        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6868              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6869        DiagnoseNontrivial(RT, member);
6870        return true;
6871      }
6872    }
6873  }
6874
6875  return false;
6876}
6877
6878/// DiagnoseNontrivial - Given that a class has a non-trivial
6879/// special member, figure out why.
6880void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6881  QualType QT(T, 0U);
6882  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6883
6884  // Check whether the member was user-declared.
6885  switch (member) {
6886  case CXXInvalid:
6887    break;
6888
6889  case CXXConstructor:
6890    if (RD->hasUserDeclaredConstructor()) {
6891      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6892      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6893        const FunctionDecl *body = 0;
6894        ci->hasBody(body);
6895        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6896          SourceLocation CtorLoc = ci->getLocation();
6897          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6898          return;
6899        }
6900      }
6901
6902      assert(0 && "found no user-declared constructors");
6903      return;
6904    }
6905    break;
6906
6907  case CXXCopyConstructor:
6908    if (RD->hasUserDeclaredCopyConstructor()) {
6909      SourceLocation CtorLoc =
6910        RD->getCopyConstructor(Context, 0)->getLocation();
6911      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6912      return;
6913    }
6914    break;
6915
6916  case CXXCopyAssignment:
6917    if (RD->hasUserDeclaredCopyAssignment()) {
6918      // FIXME: this should use the location of the copy
6919      // assignment, not the type.
6920      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6921      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6922      return;
6923    }
6924    break;
6925
6926  case CXXDestructor:
6927    if (RD->hasUserDeclaredDestructor()) {
6928      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6929      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6930      return;
6931    }
6932    break;
6933  }
6934
6935  typedef CXXRecordDecl::base_class_iterator base_iter;
6936
6937  // Virtual bases and members inhibit trivial copying/construction,
6938  // but not trivial destruction.
6939  if (member != CXXDestructor) {
6940    // Check for virtual bases.  vbases includes indirect virtual bases,
6941    // so we just iterate through the direct bases.
6942    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6943      if (bi->isVirtual()) {
6944        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6945        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6946        return;
6947      }
6948
6949    // Check for virtual methods.
6950    typedef CXXRecordDecl::method_iterator meth_iter;
6951    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6952         ++mi) {
6953      if (mi->isVirtual()) {
6954        SourceLocation MLoc = mi->getSourceRange().getBegin();
6955        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6956        return;
6957      }
6958    }
6959  }
6960
6961  bool (CXXRecordDecl::*hasTrivial)() const;
6962  switch (member) {
6963  case CXXConstructor:
6964    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6965  case CXXCopyConstructor:
6966    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6967  case CXXCopyAssignment:
6968    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6969  case CXXDestructor:
6970    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6971  default:
6972    assert(0 && "unexpected special member"); return;
6973  }
6974
6975  // Check for nontrivial bases (and recurse).
6976  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6977    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6978    assert(BaseRT && "Don't know how to handle dependent bases");
6979    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6980    if (!(BaseRecTy->*hasTrivial)()) {
6981      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6982      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6983      DiagnoseNontrivial(BaseRT, member);
6984      return;
6985    }
6986  }
6987
6988  // Check for nontrivial members (and recurse).
6989  typedef RecordDecl::field_iterator field_iter;
6990  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6991       ++fi) {
6992    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6993    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6994      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6995
6996      if (!(EltRD->*hasTrivial)()) {
6997        SourceLocation FLoc = (*fi)->getLocation();
6998        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6999        DiagnoseNontrivial(EltRT, member);
7000        return;
7001      }
7002    }
7003  }
7004
7005  assert(0 && "found no explanation for non-trivial member");
7006}
7007
7008/// TranslateIvarVisibility - Translate visibility from a token ID to an
7009///  AST enum value.
7010static ObjCIvarDecl::AccessControl
7011TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7012  switch (ivarVisibility) {
7013  default: assert(0 && "Unknown visitibility kind");
7014  case tok::objc_private: return ObjCIvarDecl::Private;
7015  case tok::objc_public: return ObjCIvarDecl::Public;
7016  case tok::objc_protected: return ObjCIvarDecl::Protected;
7017  case tok::objc_package: return ObjCIvarDecl::Package;
7018  }
7019}
7020
7021/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7022/// in order to create an IvarDecl object for it.
7023Decl *Sema::ActOnIvar(Scope *S,
7024                                SourceLocation DeclStart,
7025                                Decl *IntfDecl,
7026                                Declarator &D, ExprTy *BitfieldWidth,
7027                                tok::ObjCKeywordKind Visibility) {
7028
7029  IdentifierInfo *II = D.getIdentifier();
7030  Expr *BitWidth = (Expr*)BitfieldWidth;
7031  SourceLocation Loc = DeclStart;
7032  if (II) Loc = D.getIdentifierLoc();
7033
7034  // FIXME: Unnamed fields can be handled in various different ways, for
7035  // example, unnamed unions inject all members into the struct namespace!
7036
7037  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7038  QualType T = TInfo->getType();
7039
7040  if (BitWidth) {
7041    // 6.7.2.1p3, 6.7.2.1p4
7042    if (VerifyBitField(Loc, II, T, BitWidth)) {
7043      D.setInvalidType();
7044      BitWidth = 0;
7045    }
7046  } else {
7047    // Not a bitfield.
7048
7049    // validate II.
7050
7051  }
7052  if (T->isReferenceType()) {
7053    Diag(Loc, diag::err_ivar_reference_type);
7054    D.setInvalidType();
7055  }
7056  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7057  // than a variably modified type.
7058  else if (T->isVariablyModifiedType()) {
7059    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7060    D.setInvalidType();
7061  }
7062
7063  // Get the visibility (access control) for this ivar.
7064  ObjCIvarDecl::AccessControl ac =
7065    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7066                                        : ObjCIvarDecl::None;
7067  // Must set ivar's DeclContext to its enclosing interface.
7068  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7069  ObjCContainerDecl *EnclosingContext;
7070  if (ObjCImplementationDecl *IMPDecl =
7071      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7072    if (!LangOpts.ObjCNonFragileABI2) {
7073    // Case of ivar declared in an implementation. Context is that of its class.
7074      EnclosingContext = IMPDecl->getClassInterface();
7075      assert(EnclosingContext && "Implementation has no class interface!");
7076    }
7077    else
7078      EnclosingContext = EnclosingDecl;
7079  } else {
7080    if (ObjCCategoryDecl *CDecl =
7081        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7082      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7083        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7084        return 0;
7085      }
7086    }
7087    EnclosingContext = EnclosingDecl;
7088  }
7089
7090  // Construct the decl.
7091  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7092                                             EnclosingContext, Loc, II, T,
7093                                             TInfo, ac, (Expr *)BitfieldWidth);
7094
7095  if (II) {
7096    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7097                                           ForRedeclaration);
7098    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7099        && !isa<TagDecl>(PrevDecl)) {
7100      Diag(Loc, diag::err_duplicate_member) << II;
7101      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7102      NewID->setInvalidDecl();
7103    }
7104  }
7105
7106  // Process attributes attached to the ivar.
7107  ProcessDeclAttributes(S, NewID, D);
7108
7109  if (D.isInvalidType())
7110    NewID->setInvalidDecl();
7111
7112  if (II) {
7113    // FIXME: When interfaces are DeclContexts, we'll need to add
7114    // these to the interface.
7115    S->AddDecl(NewID);
7116    IdResolver.AddDecl(NewID);
7117  }
7118
7119  return NewID;
7120}
7121
7122/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7123/// class and class extensions. For every class @interface and class
7124/// extension @interface, if the last ivar is a bitfield of any type,
7125/// then add an implicit `char :0` ivar to the end of that interface.
7126void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7127                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7128  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7129    return;
7130
7131  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7132  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7133
7134  if (!Ivar->isBitField())
7135    return;
7136  uint64_t BitFieldSize =
7137    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7138  if (BitFieldSize == 0)
7139    return;
7140  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7141  if (!ID) {
7142    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7143      if (!CD->IsClassExtension())
7144        return;
7145    }
7146    // No need to add this to end of @implementation.
7147    else
7148      return;
7149  }
7150  // All conditions are met. Add a new bitfield to the tail end of ivars.
7151  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7152  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7153
7154  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7155                              DeclLoc, 0,
7156                              Context.CharTy,
7157                              Context.CreateTypeSourceInfo(Context.CharTy),
7158                              ObjCIvarDecl::Private, BW,
7159                              true);
7160  AllIvarDecls.push_back(Ivar);
7161}
7162
7163void Sema::ActOnFields(Scope* S,
7164                       SourceLocation RecLoc, Decl *EnclosingDecl,
7165                       Decl **Fields, unsigned NumFields,
7166                       SourceLocation LBrac, SourceLocation RBrac,
7167                       AttributeList *Attr) {
7168  assert(EnclosingDecl && "missing record or interface decl");
7169
7170  // If the decl this is being inserted into is invalid, then it may be a
7171  // redeclaration or some other bogus case.  Don't try to add fields to it.
7172  if (EnclosingDecl->isInvalidDecl()) {
7173    // FIXME: Deallocate fields?
7174    return;
7175  }
7176
7177
7178  // Verify that all the fields are okay.
7179  unsigned NumNamedMembers = 0;
7180  llvm::SmallVector<FieldDecl*, 32> RecFields;
7181
7182  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7183  for (unsigned i = 0; i != NumFields; ++i) {
7184    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7185
7186    // Get the type for the field.
7187    const Type *FDTy = FD->getType().getTypePtr();
7188
7189    if (!FD->isAnonymousStructOrUnion()) {
7190      // Remember all fields written by the user.
7191      RecFields.push_back(FD);
7192    }
7193
7194    // If the field is already invalid for some reason, don't emit more
7195    // diagnostics about it.
7196    if (FD->isInvalidDecl()) {
7197      EnclosingDecl->setInvalidDecl();
7198      continue;
7199    }
7200
7201    // C99 6.7.2.1p2:
7202    //   A structure or union shall not contain a member with
7203    //   incomplete or function type (hence, a structure shall not
7204    //   contain an instance of itself, but may contain a pointer to
7205    //   an instance of itself), except that the last member of a
7206    //   structure with more than one named member may have incomplete
7207    //   array type; such a structure (and any union containing,
7208    //   possibly recursively, a member that is such a structure)
7209    //   shall not be a member of a structure or an element of an
7210    //   array.
7211    if (FDTy->isFunctionType()) {
7212      // Field declared as a function.
7213      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7214        << FD->getDeclName();
7215      FD->setInvalidDecl();
7216      EnclosingDecl->setInvalidDecl();
7217      continue;
7218    } else if (FDTy->isIncompleteArrayType() && Record &&
7219               ((i == NumFields - 1 && !Record->isUnion()) ||
7220                (getLangOptions().Microsoft &&
7221                 (i == NumFields - 1 || Record->isUnion())))) {
7222      // Flexible array member.
7223      // Microsoft is more permissive regarding flexible array.
7224      // It will accept flexible array in union and also
7225      // as the sole element of a struct/class.
7226      if (getLangOptions().Microsoft) {
7227        if (Record->isUnion())
7228          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7229            << FD->getDeclName();
7230        else if (NumFields == 1)
7231          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7232            << FD->getDeclName() << Record->getTagKind();
7233      } else  if (NumNamedMembers < 1) {
7234        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7235          << FD->getDeclName();
7236        FD->setInvalidDecl();
7237        EnclosingDecl->setInvalidDecl();
7238        continue;
7239      }
7240      if (!FD->getType()->isDependentType() &&
7241          !Context.getBaseElementType(FD->getType())->isPODType()) {
7242        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7243          << FD->getDeclName() << FD->getType();
7244        FD->setInvalidDecl();
7245        EnclosingDecl->setInvalidDecl();
7246        continue;
7247      }
7248      // Okay, we have a legal flexible array member at the end of the struct.
7249      if (Record)
7250        Record->setHasFlexibleArrayMember(true);
7251    } else if (!FDTy->isDependentType() &&
7252               RequireCompleteType(FD->getLocation(), FD->getType(),
7253                                   diag::err_field_incomplete)) {
7254      // Incomplete type
7255      FD->setInvalidDecl();
7256      EnclosingDecl->setInvalidDecl();
7257      continue;
7258    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7259      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7260        // If this is a member of a union, then entire union becomes "flexible".
7261        if (Record && Record->isUnion()) {
7262          Record->setHasFlexibleArrayMember(true);
7263        } else {
7264          // If this is a struct/class and this is not the last element, reject
7265          // it.  Note that GCC supports variable sized arrays in the middle of
7266          // structures.
7267          if (i != NumFields-1)
7268            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7269              << FD->getDeclName() << FD->getType();
7270          else {
7271            // We support flexible arrays at the end of structs in
7272            // other structs as an extension.
7273            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7274              << FD->getDeclName();
7275            if (Record)
7276              Record->setHasFlexibleArrayMember(true);
7277          }
7278        }
7279      }
7280      if (Record && FDTTy->getDecl()->hasObjectMember())
7281        Record->setHasObjectMember(true);
7282    } else if (FDTy->isObjCObjectType()) {
7283      /// A field cannot be an Objective-c object
7284      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7285      FD->setInvalidDecl();
7286      EnclosingDecl->setInvalidDecl();
7287      continue;
7288    } else if (getLangOptions().ObjC1 &&
7289               getLangOptions().getGCMode() != LangOptions::NonGC &&
7290               Record &&
7291               (FD->getType()->isObjCObjectPointerType() ||
7292                FD->getType().isObjCGCStrong()))
7293      Record->setHasObjectMember(true);
7294    else if (Context.getAsArrayType(FD->getType())) {
7295      QualType BaseType = Context.getBaseElementType(FD->getType());
7296      if (Record && BaseType->isRecordType() &&
7297          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7298        Record->setHasObjectMember(true);
7299    }
7300    // Keep track of the number of named members.
7301    if (FD->getIdentifier())
7302      ++NumNamedMembers;
7303  }
7304
7305  // Okay, we successfully defined 'Record'.
7306  if (Record) {
7307    bool Completed = false;
7308    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7309      if (!CXXRecord->isInvalidDecl()) {
7310        // Set access bits correctly on the directly-declared conversions.
7311        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7312        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7313             I != E; ++I)
7314          Convs->setAccess(I, (*I)->getAccess());
7315
7316        if (!CXXRecord->isDependentType()) {
7317          // Add any implicitly-declared members to this class.
7318          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7319
7320          // If we have virtual base classes, we may end up finding multiple
7321          // final overriders for a given virtual function. Check for this
7322          // problem now.
7323          if (CXXRecord->getNumVBases()) {
7324            CXXFinalOverriderMap FinalOverriders;
7325            CXXRecord->getFinalOverriders(FinalOverriders);
7326
7327            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7328                                             MEnd = FinalOverriders.end();
7329                 M != MEnd; ++M) {
7330              for (OverridingMethods::iterator SO = M->second.begin(),
7331                                            SOEnd = M->second.end();
7332                   SO != SOEnd; ++SO) {
7333                assert(SO->second.size() > 0 &&
7334                       "Virtual function without overridding functions?");
7335                if (SO->second.size() == 1)
7336                  continue;
7337
7338                // C++ [class.virtual]p2:
7339                //   In a derived class, if a virtual member function of a base
7340                //   class subobject has more than one final overrider the
7341                //   program is ill-formed.
7342                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7343                  << (NamedDecl *)M->first << Record;
7344                Diag(M->first->getLocation(),
7345                     diag::note_overridden_virtual_function);
7346                for (OverridingMethods::overriding_iterator
7347                          OM = SO->second.begin(),
7348                       OMEnd = SO->second.end();
7349                     OM != OMEnd; ++OM)
7350                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7351                    << (NamedDecl *)M->first << OM->Method->getParent();
7352
7353                Record->setInvalidDecl();
7354              }
7355            }
7356            CXXRecord->completeDefinition(&FinalOverriders);
7357            Completed = true;
7358          }
7359        }
7360      }
7361    }
7362
7363    if (!Completed)
7364      Record->completeDefinition();
7365  } else {
7366    ObjCIvarDecl **ClsFields =
7367      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7368    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7369      ID->setLocEnd(RBrac);
7370      // Add ivar's to class's DeclContext.
7371      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7372        ClsFields[i]->setLexicalDeclContext(ID);
7373        ID->addDecl(ClsFields[i]);
7374      }
7375      // Must enforce the rule that ivars in the base classes may not be
7376      // duplicates.
7377      if (ID->getSuperClass())
7378        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7379    } else if (ObjCImplementationDecl *IMPDecl =
7380                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7381      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7382      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7383        // Ivar declared in @implementation never belongs to the implementation.
7384        // Only it is in implementation's lexical context.
7385        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7386      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7387    } else if (ObjCCategoryDecl *CDecl =
7388                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7389      // case of ivars in class extension; all other cases have been
7390      // reported as errors elsewhere.
7391      // FIXME. Class extension does not have a LocEnd field.
7392      // CDecl->setLocEnd(RBrac);
7393      // Add ivar's to class extension's DeclContext.
7394      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7395        ClsFields[i]->setLexicalDeclContext(CDecl);
7396        CDecl->addDecl(ClsFields[i]);
7397      }
7398    }
7399  }
7400
7401  if (Attr)
7402    ProcessDeclAttributeList(S, Record, Attr);
7403
7404  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7405  // set the visibility of this record.
7406  if (Record && !Record->getDeclContext()->isRecord())
7407    AddPushedVisibilityAttribute(Record);
7408}
7409
7410/// \brief Determine whether the given integral value is representable within
7411/// the given type T.
7412static bool isRepresentableIntegerValue(ASTContext &Context,
7413                                        llvm::APSInt &Value,
7414                                        QualType T) {
7415  assert(T->isIntegralType(Context) && "Integral type required!");
7416  unsigned BitWidth = Context.getIntWidth(T);
7417
7418  if (Value.isUnsigned() || Value.isNonNegative()) {
7419    if (T->isSignedIntegerType())
7420      --BitWidth;
7421    return Value.getActiveBits() <= BitWidth;
7422  }
7423  return Value.getMinSignedBits() <= BitWidth;
7424}
7425
7426// \brief Given an integral type, return the next larger integral type
7427// (or a NULL type of no such type exists).
7428static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7429  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7430  // enum checking below.
7431  assert(T->isIntegralType(Context) && "Integral type required!");
7432  const unsigned NumTypes = 4;
7433  QualType SignedIntegralTypes[NumTypes] = {
7434    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7435  };
7436  QualType UnsignedIntegralTypes[NumTypes] = {
7437    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7438    Context.UnsignedLongLongTy
7439  };
7440
7441  unsigned BitWidth = Context.getTypeSize(T);
7442  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7443                                            : UnsignedIntegralTypes;
7444  for (unsigned I = 0; I != NumTypes; ++I)
7445    if (Context.getTypeSize(Types[I]) > BitWidth)
7446      return Types[I];
7447
7448  return QualType();
7449}
7450
7451EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7452                                          EnumConstantDecl *LastEnumConst,
7453                                          SourceLocation IdLoc,
7454                                          IdentifierInfo *Id,
7455                                          Expr *Val) {
7456  unsigned IntWidth = Context.Target.getIntWidth();
7457  llvm::APSInt EnumVal(IntWidth);
7458  QualType EltTy;
7459
7460  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7461    Val = 0;
7462
7463  if (Val) {
7464    if (Enum->isDependentType() || Val->isTypeDependent())
7465      EltTy = Context.DependentTy;
7466    else {
7467      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7468      SourceLocation ExpLoc;
7469      if (!Val->isValueDependent() &&
7470          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7471        Val = 0;
7472      } else {
7473        if (!getLangOptions().CPlusPlus) {
7474          // C99 6.7.2.2p2:
7475          //   The expression that defines the value of an enumeration constant
7476          //   shall be an integer constant expression that has a value
7477          //   representable as an int.
7478
7479          // Complain if the value is not representable in an int.
7480          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7481            Diag(IdLoc, diag::ext_enum_value_not_int)
7482              << EnumVal.toString(10) << Val->getSourceRange()
7483              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7484          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7485            // Force the type of the expression to 'int'.
7486            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7487          }
7488        }
7489
7490        if (Enum->isFixed()) {
7491          EltTy = Enum->getIntegerType();
7492
7493          // C++0x [dcl.enum]p5:
7494          //   ... if the initializing value of an enumerator cannot be
7495          //   represented by the underlying type, the program is ill-formed.
7496          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7497            if (getLangOptions().Microsoft) {
7498              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7499              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7500            } else
7501              Diag(IdLoc, diag::err_enumerator_too_large)
7502                << EltTy;
7503          } else
7504            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7505        }
7506        else {
7507          // C++0x [dcl.enum]p5:
7508          //   If the underlying type is not fixed, the type of each enumerator
7509          //   is the type of its initializing value:
7510          //     - If an initializer is specified for an enumerator, the
7511          //       initializing value has the same type as the expression.
7512          EltTy = Val->getType();
7513        }
7514      }
7515    }
7516  }
7517
7518  if (!Val) {
7519    if (Enum->isDependentType())
7520      EltTy = Context.DependentTy;
7521    else if (!LastEnumConst) {
7522      // C++0x [dcl.enum]p5:
7523      //   If the underlying type is not fixed, the type of each enumerator
7524      //   is the type of its initializing value:
7525      //     - If no initializer is specified for the first enumerator, the
7526      //       initializing value has an unspecified integral type.
7527      //
7528      // GCC uses 'int' for its unspecified integral type, as does
7529      // C99 6.7.2.2p3.
7530      if (Enum->isFixed()) {
7531        EltTy = Enum->getIntegerType();
7532      }
7533      else {
7534        EltTy = Context.IntTy;
7535      }
7536    } else {
7537      // Assign the last value + 1.
7538      EnumVal = LastEnumConst->getInitVal();
7539      ++EnumVal;
7540      EltTy = LastEnumConst->getType();
7541
7542      // Check for overflow on increment.
7543      if (EnumVal < LastEnumConst->getInitVal()) {
7544        // C++0x [dcl.enum]p5:
7545        //   If the underlying type is not fixed, the type of each enumerator
7546        //   is the type of its initializing value:
7547        //
7548        //     - Otherwise the type of the initializing value is the same as
7549        //       the type of the initializing value of the preceding enumerator
7550        //       unless the incremented value is not representable in that type,
7551        //       in which case the type is an unspecified integral type
7552        //       sufficient to contain the incremented value. If no such type
7553        //       exists, the program is ill-formed.
7554        QualType T = getNextLargerIntegralType(Context, EltTy);
7555        if (T.isNull() || Enum->isFixed()) {
7556          // There is no integral type larger enough to represent this
7557          // value. Complain, then allow the value to wrap around.
7558          EnumVal = LastEnumConst->getInitVal();
7559          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7560          ++EnumVal;
7561          if (Enum->isFixed())
7562            // When the underlying type is fixed, this is ill-formed.
7563            Diag(IdLoc, diag::err_enumerator_wrapped)
7564              << EnumVal.toString(10)
7565              << EltTy;
7566          else
7567            Diag(IdLoc, diag::warn_enumerator_too_large)
7568              << EnumVal.toString(10);
7569        } else {
7570          EltTy = T;
7571        }
7572
7573        // Retrieve the last enumerator's value, extent that type to the
7574        // type that is supposed to be large enough to represent the incremented
7575        // value, then increment.
7576        EnumVal = LastEnumConst->getInitVal();
7577        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7578        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7579        ++EnumVal;
7580
7581        // If we're not in C++, diagnose the overflow of enumerator values,
7582        // which in C99 means that the enumerator value is not representable in
7583        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7584        // permits enumerator values that are representable in some larger
7585        // integral type.
7586        if (!getLangOptions().CPlusPlus && !T.isNull())
7587          Diag(IdLoc, diag::warn_enum_value_overflow);
7588      } else if (!getLangOptions().CPlusPlus &&
7589                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7590        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7591        Diag(IdLoc, diag::ext_enum_value_not_int)
7592          << EnumVal.toString(10) << 1;
7593      }
7594    }
7595  }
7596
7597  if (!EltTy->isDependentType()) {
7598    // Make the enumerator value match the signedness and size of the
7599    // enumerator's type.
7600    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7601    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7602  }
7603
7604  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7605                                  Val, EnumVal);
7606}
7607
7608
7609Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7610                              SourceLocation IdLoc, IdentifierInfo *Id,
7611                              AttributeList *Attr,
7612                              SourceLocation EqualLoc, ExprTy *val) {
7613  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7614  EnumConstantDecl *LastEnumConst =
7615    cast_or_null<EnumConstantDecl>(lastEnumConst);
7616  Expr *Val = static_cast<Expr*>(val);
7617
7618  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7619  // we find one that is.
7620  S = getNonFieldDeclScope(S);
7621
7622  // Verify that there isn't already something declared with this name in this
7623  // scope.
7624  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7625                                         ForRedeclaration);
7626  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7627    // Maybe we will complain about the shadowed template parameter.
7628    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7629    // Just pretend that we didn't see the previous declaration.
7630    PrevDecl = 0;
7631  }
7632
7633  if (PrevDecl) {
7634    // When in C++, we may get a TagDecl with the same name; in this case the
7635    // enum constant will 'hide' the tag.
7636    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7637           "Received TagDecl when not in C++!");
7638    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7639      if (isa<EnumConstantDecl>(PrevDecl))
7640        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7641      else
7642        Diag(IdLoc, diag::err_redefinition) << Id;
7643      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7644      return 0;
7645    }
7646  }
7647
7648  // C++ [class.mem]p13:
7649  //   If T is the name of a class, then each of the following shall have a
7650  //   name different from T:
7651  //     - every enumerator of every member of class T that is an enumerated
7652  //       type
7653  if (CXXRecordDecl *Record
7654                      = dyn_cast<CXXRecordDecl>(
7655                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7656    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7657      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7658
7659  EnumConstantDecl *New =
7660    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7661
7662  if (New) {
7663    // Process attributes.
7664    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7665
7666    // Register this decl in the current scope stack.
7667    New->setAccess(TheEnumDecl->getAccess());
7668    PushOnScopeChains(New, S);
7669  }
7670
7671  return New;
7672}
7673
7674void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7675                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7676                         Decl **Elements, unsigned NumElements,
7677                         Scope *S, AttributeList *Attr) {
7678  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7679  QualType EnumType = Context.getTypeDeclType(Enum);
7680
7681  if (Attr)
7682    ProcessDeclAttributeList(S, Enum, Attr);
7683
7684  if (Enum->isDependentType()) {
7685    for (unsigned i = 0; i != NumElements; ++i) {
7686      EnumConstantDecl *ECD =
7687        cast_or_null<EnumConstantDecl>(Elements[i]);
7688      if (!ECD) continue;
7689
7690      ECD->setType(EnumType);
7691    }
7692
7693    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7694    return;
7695  }
7696
7697  // TODO: If the result value doesn't fit in an int, it must be a long or long
7698  // long value.  ISO C does not support this, but GCC does as an extension,
7699  // emit a warning.
7700  unsigned IntWidth = Context.Target.getIntWidth();
7701  unsigned CharWidth = Context.Target.getCharWidth();
7702  unsigned ShortWidth = Context.Target.getShortWidth();
7703
7704  // Verify that all the values are okay, compute the size of the values, and
7705  // reverse the list.
7706  unsigned NumNegativeBits = 0;
7707  unsigned NumPositiveBits = 0;
7708
7709  // Keep track of whether all elements have type int.
7710  bool AllElementsInt = true;
7711
7712  for (unsigned i = 0; i != NumElements; ++i) {
7713    EnumConstantDecl *ECD =
7714      cast_or_null<EnumConstantDecl>(Elements[i]);
7715    if (!ECD) continue;  // Already issued a diagnostic.
7716
7717    const llvm::APSInt &InitVal = ECD->getInitVal();
7718
7719    // Keep track of the size of positive and negative values.
7720    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7721      NumPositiveBits = std::max(NumPositiveBits,
7722                                 (unsigned)InitVal.getActiveBits());
7723    else
7724      NumNegativeBits = std::max(NumNegativeBits,
7725                                 (unsigned)InitVal.getMinSignedBits());
7726
7727    // Keep track of whether every enum element has type int (very commmon).
7728    if (AllElementsInt)
7729      AllElementsInt = ECD->getType() == Context.IntTy;
7730  }
7731
7732  // Figure out the type that should be used for this enum.
7733  QualType BestType;
7734  unsigned BestWidth;
7735
7736  // C++0x N3000 [conv.prom]p3:
7737  //   An rvalue of an unscoped enumeration type whose underlying
7738  //   type is not fixed can be converted to an rvalue of the first
7739  //   of the following types that can represent all the values of
7740  //   the enumeration: int, unsigned int, long int, unsigned long
7741  //   int, long long int, or unsigned long long int.
7742  // C99 6.4.4.3p2:
7743  //   An identifier declared as an enumeration constant has type int.
7744  // The C99 rule is modified by a gcc extension
7745  QualType BestPromotionType;
7746
7747  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7748  // -fshort-enums is the equivalent to specifying the packed attribute on all
7749  // enum definitions.
7750  if (LangOpts.ShortEnums)
7751    Packed = true;
7752
7753  if (Enum->isFixed()) {
7754    BestType = BestPromotionType = Enum->getIntegerType();
7755    // We don't need to set BestWidth, because BestType is going to be the type
7756    // of the enumerators, but we do anyway because otherwise some compilers
7757    // warn that it might be used uninitialized.
7758    BestWidth = CharWidth;
7759  }
7760  else if (NumNegativeBits) {
7761    // If there is a negative value, figure out the smallest integer type (of
7762    // int/long/longlong) that fits.
7763    // If it's packed, check also if it fits a char or a short.
7764    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7765      BestType = Context.SignedCharTy;
7766      BestWidth = CharWidth;
7767    } else if (Packed && NumNegativeBits <= ShortWidth &&
7768               NumPositiveBits < ShortWidth) {
7769      BestType = Context.ShortTy;
7770      BestWidth = ShortWidth;
7771    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7772      BestType = Context.IntTy;
7773      BestWidth = IntWidth;
7774    } else {
7775      BestWidth = Context.Target.getLongWidth();
7776
7777      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7778        BestType = Context.LongTy;
7779      } else {
7780        BestWidth = Context.Target.getLongLongWidth();
7781
7782        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7783          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7784        BestType = Context.LongLongTy;
7785      }
7786    }
7787    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7788  } else {
7789    // If there is no negative value, figure out the smallest type that fits
7790    // all of the enumerator values.
7791    // If it's packed, check also if it fits a char or a short.
7792    if (Packed && NumPositiveBits <= CharWidth) {
7793      BestType = Context.UnsignedCharTy;
7794      BestPromotionType = Context.IntTy;
7795      BestWidth = CharWidth;
7796    } else if (Packed && NumPositiveBits <= ShortWidth) {
7797      BestType = Context.UnsignedShortTy;
7798      BestPromotionType = Context.IntTy;
7799      BestWidth = ShortWidth;
7800    } else if (NumPositiveBits <= IntWidth) {
7801      BestType = Context.UnsignedIntTy;
7802      BestWidth = IntWidth;
7803      BestPromotionType
7804        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7805                           ? Context.UnsignedIntTy : Context.IntTy;
7806    } else if (NumPositiveBits <=
7807               (BestWidth = Context.Target.getLongWidth())) {
7808      BestType = Context.UnsignedLongTy;
7809      BestPromotionType
7810        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7811                           ? Context.UnsignedLongTy : Context.LongTy;
7812    } else {
7813      BestWidth = Context.Target.getLongLongWidth();
7814      assert(NumPositiveBits <= BestWidth &&
7815             "How could an initializer get larger than ULL?");
7816      BestType = Context.UnsignedLongLongTy;
7817      BestPromotionType
7818        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7819                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7820    }
7821  }
7822
7823  // Loop over all of the enumerator constants, changing their types to match
7824  // the type of the enum if needed.
7825  for (unsigned i = 0; i != NumElements; ++i) {
7826    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7827    if (!ECD) continue;  // Already issued a diagnostic.
7828
7829    // Standard C says the enumerators have int type, but we allow, as an
7830    // extension, the enumerators to be larger than int size.  If each
7831    // enumerator value fits in an int, type it as an int, otherwise type it the
7832    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7833    // that X has type 'int', not 'unsigned'.
7834
7835    // Determine whether the value fits into an int.
7836    llvm::APSInt InitVal = ECD->getInitVal();
7837
7838    // If it fits into an integer type, force it.  Otherwise force it to match
7839    // the enum decl type.
7840    QualType NewTy;
7841    unsigned NewWidth;
7842    bool NewSign;
7843    if (!getLangOptions().CPlusPlus &&
7844        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7845      NewTy = Context.IntTy;
7846      NewWidth = IntWidth;
7847      NewSign = true;
7848    } else if (ECD->getType() == BestType) {
7849      // Already the right type!
7850      if (getLangOptions().CPlusPlus)
7851        // C++ [dcl.enum]p4: Following the closing brace of an
7852        // enum-specifier, each enumerator has the type of its
7853        // enumeration.
7854        ECD->setType(EnumType);
7855      continue;
7856    } else {
7857      NewTy = BestType;
7858      NewWidth = BestWidth;
7859      NewSign = BestType->isSignedIntegerType();
7860    }
7861
7862    // Adjust the APSInt value.
7863    InitVal = InitVal.extOrTrunc(NewWidth);
7864    InitVal.setIsSigned(NewSign);
7865    ECD->setInitVal(InitVal);
7866
7867    // Adjust the Expr initializer and type.
7868    if (ECD->getInitExpr() &&
7869	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
7870      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7871                                                CK_IntegralCast,
7872                                                ECD->getInitExpr(),
7873                                                /*base paths*/ 0,
7874                                                VK_RValue));
7875    if (getLangOptions().CPlusPlus)
7876      // C++ [dcl.enum]p4: Following the closing brace of an
7877      // enum-specifier, each enumerator has the type of its
7878      // enumeration.
7879      ECD->setType(EnumType);
7880    else
7881      ECD->setType(NewTy);
7882  }
7883
7884  Enum->completeDefinition(BestType, BestPromotionType,
7885                           NumPositiveBits, NumNegativeBits);
7886}
7887
7888Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7889  StringLiteral *AsmString = cast<StringLiteral>(expr);
7890
7891  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7892                                                   Loc, AsmString);
7893  CurContext->addDecl(New);
7894  return New;
7895}
7896
7897void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7898                             SourceLocation PragmaLoc,
7899                             SourceLocation NameLoc) {
7900  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7901
7902  if (PrevDecl) {
7903    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7904  } else {
7905    (void)WeakUndeclaredIdentifiers.insert(
7906      std::pair<IdentifierInfo*,WeakInfo>
7907        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7908  }
7909}
7910
7911void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7912                                IdentifierInfo* AliasName,
7913                                SourceLocation PragmaLoc,
7914                                SourceLocation NameLoc,
7915                                SourceLocation AliasNameLoc) {
7916  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7917                                    LookupOrdinaryName);
7918  WeakInfo W = WeakInfo(Name, NameLoc);
7919
7920  if (PrevDecl) {
7921    if (!PrevDecl->hasAttr<AliasAttr>())
7922      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7923        DeclApplyPragmaWeak(TUScope, ND, W);
7924  } else {
7925    (void)WeakUndeclaredIdentifiers.insert(
7926      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7927  }
7928}
7929