SemaDecl.cpp revision 181e3ecc0907ae0103586a9f4db52241995a8267
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679          UnqualifiedDiag = diag::err_unknown_typename_suggest;
680          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681        }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862  if ((NextToken.is(tok::identifier) ||
863       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
866    DiagnoseUseOfDecl(Type, NameLoc);
867    QualType T = Context.getTypeDeclType(Type);
868    if (SS.isNotEmpty())
869      return buildNestedType(*this, SS, T, NameLoc);
870    return ParsedType::make(T);
871  }
872
873  if (FirstDecl->isCXXClassMember())
874    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
875
876  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
877  return BuildDeclarationNameExpr(SS, Result, ADL);
878}
879
880// Determines the context to return to after temporarily entering a
881// context.  This depends in an unnecessarily complicated way on the
882// exact ordering of callbacks from the parser.
883DeclContext *Sema::getContainingDC(DeclContext *DC) {
884
885  // Functions defined inline within classes aren't parsed until we've
886  // finished parsing the top-level class, so the top-level class is
887  // the context we'll need to return to.
888  if (isa<FunctionDecl>(DC)) {
889    DC = DC->getLexicalParent();
890
891    // A function not defined within a class will always return to its
892    // lexical context.
893    if (!isa<CXXRecordDecl>(DC))
894      return DC;
895
896    // A C++ inline method/friend is parsed *after* the topmost class
897    // it was declared in is fully parsed ("complete");  the topmost
898    // class is the context we need to return to.
899    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
900      DC = RD;
901
902    // Return the declaration context of the topmost class the inline method is
903    // declared in.
904    return DC;
905  }
906
907  return DC->getLexicalParent();
908}
909
910void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
911  assert(getContainingDC(DC) == CurContext &&
912      "The next DeclContext should be lexically contained in the current one.");
913  CurContext = DC;
914  S->setEntity(DC);
915}
916
917void Sema::PopDeclContext() {
918  assert(CurContext && "DeclContext imbalance!");
919
920  CurContext = getContainingDC(CurContext);
921  assert(CurContext && "Popped translation unit!");
922}
923
924/// EnterDeclaratorContext - Used when we must lookup names in the context
925/// of a declarator's nested name specifier.
926///
927void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
928  // C++0x [basic.lookup.unqual]p13:
929  //   A name used in the definition of a static data member of class
930  //   X (after the qualified-id of the static member) is looked up as
931  //   if the name was used in a member function of X.
932  // C++0x [basic.lookup.unqual]p14:
933  //   If a variable member of a namespace is defined outside of the
934  //   scope of its namespace then any name used in the definition of
935  //   the variable member (after the declarator-id) is looked up as
936  //   if the definition of the variable member occurred in its
937  //   namespace.
938  // Both of these imply that we should push a scope whose context
939  // is the semantic context of the declaration.  We can't use
940  // PushDeclContext here because that context is not necessarily
941  // lexically contained in the current context.  Fortunately,
942  // the containing scope should have the appropriate information.
943
944  assert(!S->getEntity() && "scope already has entity");
945
946#ifndef NDEBUG
947  Scope *Ancestor = S->getParent();
948  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
949  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
950#endif
951
952  CurContext = DC;
953  S->setEntity(DC);
954}
955
956void Sema::ExitDeclaratorContext(Scope *S) {
957  assert(S->getEntity() == CurContext && "Context imbalance!");
958
959  // Switch back to the lexical context.  The safety of this is
960  // enforced by an assert in EnterDeclaratorContext.
961  Scope *Ancestor = S->getParent();
962  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
963  CurContext = (DeclContext*) Ancestor->getEntity();
964
965  // We don't need to do anything with the scope, which is going to
966  // disappear.
967}
968
969
970void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
971  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
972  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
973    // We assume that the caller has already called
974    // ActOnReenterTemplateScope
975    FD = TFD->getTemplatedDecl();
976  }
977  if (!FD)
978    return;
979
980  // Same implementation as PushDeclContext, but enters the context
981  // from the lexical parent, rather than the top-level class.
982  assert(CurContext == FD->getLexicalParent() &&
983    "The next DeclContext should be lexically contained in the current one.");
984  CurContext = FD;
985  S->setEntity(CurContext);
986
987  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
988    ParmVarDecl *Param = FD->getParamDecl(P);
989    // If the parameter has an identifier, then add it to the scope
990    if (Param->getIdentifier()) {
991      S->AddDecl(Param);
992      IdResolver.AddDecl(Param);
993    }
994  }
995}
996
997
998void Sema::ActOnExitFunctionContext() {
999  // Same implementation as PopDeclContext, but returns to the lexical parent,
1000  // rather than the top-level class.
1001  assert(CurContext && "DeclContext imbalance!");
1002  CurContext = CurContext->getLexicalParent();
1003  assert(CurContext && "Popped translation unit!");
1004}
1005
1006
1007/// \brief Determine whether we allow overloading of the function
1008/// PrevDecl with another declaration.
1009///
1010/// This routine determines whether overloading is possible, not
1011/// whether some new function is actually an overload. It will return
1012/// true in C++ (where we can always provide overloads) or, as an
1013/// extension, in C when the previous function is already an
1014/// overloaded function declaration or has the "overloadable"
1015/// attribute.
1016static bool AllowOverloadingOfFunction(LookupResult &Previous,
1017                                       ASTContext &Context) {
1018  if (Context.getLangOpts().CPlusPlus)
1019    return true;
1020
1021  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1022    return true;
1023
1024  return (Previous.getResultKind() == LookupResult::Found
1025          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1026}
1027
1028/// Add this decl to the scope shadowed decl chains.
1029void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1030  // Move up the scope chain until we find the nearest enclosing
1031  // non-transparent context. The declaration will be introduced into this
1032  // scope.
1033  while (S->getEntity() &&
1034         ((DeclContext *)S->getEntity())->isTransparentContext())
1035    S = S->getParent();
1036
1037  // Add scoped declarations into their context, so that they can be
1038  // found later. Declarations without a context won't be inserted
1039  // into any context.
1040  if (AddToContext)
1041    CurContext->addDecl(D);
1042
1043  // Out-of-line definitions shouldn't be pushed into scope in C++.
1044  // Out-of-line variable and function definitions shouldn't even in C.
1045  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1046      D->isOutOfLine() &&
1047      !D->getDeclContext()->getRedeclContext()->Equals(
1048        D->getLexicalDeclContext()->getRedeclContext()))
1049    return;
1050
1051  // Template instantiations should also not be pushed into scope.
1052  if (isa<FunctionDecl>(D) &&
1053      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1054    return;
1055
1056  // If this replaces anything in the current scope,
1057  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1058                               IEnd = IdResolver.end();
1059  for (; I != IEnd; ++I) {
1060    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1061      S->RemoveDecl(*I);
1062      IdResolver.RemoveDecl(*I);
1063
1064      // Should only need to replace one decl.
1065      break;
1066    }
1067  }
1068
1069  S->AddDecl(D);
1070
1071  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1072    // Implicitly-generated labels may end up getting generated in an order that
1073    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1074    // the label at the appropriate place in the identifier chain.
1075    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1076      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1077      if (IDC == CurContext) {
1078        if (!S->isDeclScope(*I))
1079          continue;
1080      } else if (IDC->Encloses(CurContext))
1081        break;
1082    }
1083
1084    IdResolver.InsertDeclAfter(I, D);
1085  } else {
1086    IdResolver.AddDecl(D);
1087  }
1088}
1089
1090void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1091  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1092    TUScope->AddDecl(D);
1093}
1094
1095bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1096                         bool ExplicitInstantiationOrSpecialization) {
1097  return IdResolver.isDeclInScope(D, Ctx, S,
1098                                  ExplicitInstantiationOrSpecialization);
1099}
1100
1101Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1102  DeclContext *TargetDC = DC->getPrimaryContext();
1103  do {
1104    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1105      if (ScopeDC->getPrimaryContext() == TargetDC)
1106        return S;
1107  } while ((S = S->getParent()));
1108
1109  return 0;
1110}
1111
1112static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1113                                            DeclContext*,
1114                                            ASTContext&);
1115
1116/// Filters out lookup results that don't fall within the given scope
1117/// as determined by isDeclInScope.
1118void Sema::FilterLookupForScope(LookupResult &R,
1119                                DeclContext *Ctx, Scope *S,
1120                                bool ConsiderLinkage,
1121                                bool ExplicitInstantiationOrSpecialization) {
1122  LookupResult::Filter F = R.makeFilter();
1123  while (F.hasNext()) {
1124    NamedDecl *D = F.next();
1125
1126    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1127      continue;
1128
1129    if (ConsiderLinkage &&
1130        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1131      continue;
1132
1133    F.erase();
1134  }
1135
1136  F.done();
1137}
1138
1139static bool isUsingDecl(NamedDecl *D) {
1140  return isa<UsingShadowDecl>(D) ||
1141         isa<UnresolvedUsingTypenameDecl>(D) ||
1142         isa<UnresolvedUsingValueDecl>(D);
1143}
1144
1145/// Removes using shadow declarations from the lookup results.
1146static void RemoveUsingDecls(LookupResult &R) {
1147  LookupResult::Filter F = R.makeFilter();
1148  while (F.hasNext())
1149    if (isUsingDecl(F.next()))
1150      F.erase();
1151
1152  F.done();
1153}
1154
1155/// \brief Check for this common pattern:
1156/// @code
1157/// class S {
1158///   S(const S&); // DO NOT IMPLEMENT
1159///   void operator=(const S&); // DO NOT IMPLEMENT
1160/// };
1161/// @endcode
1162static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1163  // FIXME: Should check for private access too but access is set after we get
1164  // the decl here.
1165  if (D->doesThisDeclarationHaveABody())
1166    return false;
1167
1168  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1169    return CD->isCopyConstructor();
1170  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1171    return Method->isCopyAssignmentOperator();
1172  return false;
1173}
1174
1175// We need this to handle
1176//
1177// typedef struct {
1178//   void *foo() { return 0; }
1179// } A;
1180//
1181// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1182// for example. If 'A', foo will have external linkage. If we have '*A',
1183// foo will have no linkage. Since we can't know untill we get to the end
1184// of the typedef, this function finds out if D might have non external linkage.
1185// Callers should verify at the end of the TU if it D has external linkage or
1186// not.
1187bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1188  const DeclContext *DC = D->getDeclContext();
1189  while (!DC->isTranslationUnit()) {
1190    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1191      if (!RD->hasNameForLinkage())
1192        return true;
1193    }
1194    DC = DC->getParent();
1195  }
1196
1197  return !D->isExternallyVisible();
1198}
1199
1200bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1201  assert(D);
1202
1203  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1204    return false;
1205
1206  // Ignore class templates.
1207  if (D->getDeclContext()->isDependentContext() ||
1208      D->getLexicalDeclContext()->isDependentContext())
1209    return false;
1210
1211  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1212    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1213      return false;
1214
1215    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1216      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1217        return false;
1218    } else {
1219      // 'static inline' functions are used in headers; don't warn.
1220      // Make sure we get the storage class from the canonical declaration,
1221      // since otherwise we will get spurious warnings on specialized
1222      // static template functions.
1223      if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1224          FD->isInlineSpecified())
1225        return false;
1226    }
1227
1228    if (FD->doesThisDeclarationHaveABody() &&
1229        Context.DeclMustBeEmitted(FD))
1230      return false;
1231  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1232    // Don't warn on variables of const-qualified or reference type, since their
1233    // values can be used even if though they're not odr-used, and because const
1234    // qualified variables can appear in headers in contexts where they're not
1235    // intended to be used.
1236    // FIXME: Use more principled rules for these exemptions.
1237    if (!VD->isFileVarDecl() ||
1238        VD->getType().isConstQualified() ||
1239        VD->getType()->isReferenceType() ||
1240        Context.DeclMustBeEmitted(VD))
1241      return false;
1242
1243    if (VD->isStaticDataMember() &&
1244        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1245      return false;
1246
1247  } else {
1248    return false;
1249  }
1250
1251  // Only warn for unused decls internal to the translation unit.
1252  return mightHaveNonExternalLinkage(D);
1253}
1254
1255void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1256  if (!D)
1257    return;
1258
1259  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1260    const FunctionDecl *First = FD->getFirstDeclaration();
1261    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1262      return; // First should already be in the vector.
1263  }
1264
1265  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1266    const VarDecl *First = VD->getFirstDeclaration();
1267    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1268      return; // First should already be in the vector.
1269  }
1270
1271  if (ShouldWarnIfUnusedFileScopedDecl(D))
1272    UnusedFileScopedDecls.push_back(D);
1273}
1274
1275static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1276  if (D->isInvalidDecl())
1277    return false;
1278
1279  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1280    return false;
1281
1282  if (isa<LabelDecl>(D))
1283    return true;
1284
1285  // White-list anything that isn't a local variable.
1286  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1287      !D->getDeclContext()->isFunctionOrMethod())
1288    return false;
1289
1290  // Types of valid local variables should be complete, so this should succeed.
1291  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1292
1293    // White-list anything with an __attribute__((unused)) type.
1294    QualType Ty = VD->getType();
1295
1296    // Only look at the outermost level of typedef.
1297    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1298      if (TT->getDecl()->hasAttr<UnusedAttr>())
1299        return false;
1300    }
1301
1302    // If we failed to complete the type for some reason, or if the type is
1303    // dependent, don't diagnose the variable.
1304    if (Ty->isIncompleteType() || Ty->isDependentType())
1305      return false;
1306
1307    if (const TagType *TT = Ty->getAs<TagType>()) {
1308      const TagDecl *Tag = TT->getDecl();
1309      if (Tag->hasAttr<UnusedAttr>())
1310        return false;
1311
1312      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1313        if (!RD->hasTrivialDestructor())
1314          return false;
1315
1316        if (const Expr *Init = VD->getInit()) {
1317          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1318            Init = Cleanups->getSubExpr();
1319          const CXXConstructExpr *Construct =
1320            dyn_cast<CXXConstructExpr>(Init);
1321          if (Construct && !Construct->isElidable()) {
1322            CXXConstructorDecl *CD = Construct->getConstructor();
1323            if (!CD->isTrivial())
1324              return false;
1325          }
1326        }
1327      }
1328    }
1329
1330    // TODO: __attribute__((unused)) templates?
1331  }
1332
1333  return true;
1334}
1335
1336static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1337                                     FixItHint &Hint) {
1338  if (isa<LabelDecl>(D)) {
1339    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1340                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1341    if (AfterColon.isInvalid())
1342      return;
1343    Hint = FixItHint::CreateRemoval(CharSourceRange::
1344                                    getCharRange(D->getLocStart(), AfterColon));
1345  }
1346  return;
1347}
1348
1349/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1350/// unless they are marked attr(unused).
1351void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1352  FixItHint Hint;
1353  if (!ShouldDiagnoseUnusedDecl(D))
1354    return;
1355
1356  GenerateFixForUnusedDecl(D, Context, Hint);
1357
1358  unsigned DiagID;
1359  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1360    DiagID = diag::warn_unused_exception_param;
1361  else if (isa<LabelDecl>(D))
1362    DiagID = diag::warn_unused_label;
1363  else
1364    DiagID = diag::warn_unused_variable;
1365
1366  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1367}
1368
1369static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1370  // Verify that we have no forward references left.  If so, there was a goto
1371  // or address of a label taken, but no definition of it.  Label fwd
1372  // definitions are indicated with a null substmt.
1373  if (L->getStmt() == 0)
1374    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1375}
1376
1377void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1378  if (S->decl_empty()) return;
1379  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1380         "Scope shouldn't contain decls!");
1381
1382  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1383       I != E; ++I) {
1384    Decl *TmpD = (*I);
1385    assert(TmpD && "This decl didn't get pushed??");
1386
1387    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1388    NamedDecl *D = cast<NamedDecl>(TmpD);
1389
1390    if (!D->getDeclName()) continue;
1391
1392    // Diagnose unused variables in this scope.
1393    if (!S->hasUnrecoverableErrorOccurred())
1394      DiagnoseUnusedDecl(D);
1395
1396    // If this was a forward reference to a label, verify it was defined.
1397    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1398      CheckPoppedLabel(LD, *this);
1399
1400    // Remove this name from our lexical scope.
1401    IdResolver.RemoveDecl(D);
1402  }
1403}
1404
1405void Sema::ActOnStartFunctionDeclarator() {
1406  ++InFunctionDeclarator;
1407}
1408
1409void Sema::ActOnEndFunctionDeclarator() {
1410  assert(InFunctionDeclarator);
1411  --InFunctionDeclarator;
1412}
1413
1414/// \brief Look for an Objective-C class in the translation unit.
1415///
1416/// \param Id The name of the Objective-C class we're looking for. If
1417/// typo-correction fixes this name, the Id will be updated
1418/// to the fixed name.
1419///
1420/// \param IdLoc The location of the name in the translation unit.
1421///
1422/// \param DoTypoCorrection If true, this routine will attempt typo correction
1423/// if there is no class with the given name.
1424///
1425/// \returns The declaration of the named Objective-C class, or NULL if the
1426/// class could not be found.
1427ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1428                                              SourceLocation IdLoc,
1429                                              bool DoTypoCorrection) {
1430  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1431  // creation from this context.
1432  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1433
1434  if (!IDecl && DoTypoCorrection) {
1435    // Perform typo correction at the given location, but only if we
1436    // find an Objective-C class name.
1437    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1438    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1439                                       LookupOrdinaryName, TUScope, NULL,
1440                                       Validator)) {
1441      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1442      Diag(IdLoc, diag::err_undef_interface_suggest)
1443        << Id << IDecl->getDeclName()
1444        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1445      Diag(IDecl->getLocation(), diag::note_previous_decl)
1446        << IDecl->getDeclName();
1447
1448      Id = IDecl->getIdentifier();
1449    }
1450  }
1451  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1452  // This routine must always return a class definition, if any.
1453  if (Def && Def->getDefinition())
1454      Def = Def->getDefinition();
1455  return Def;
1456}
1457
1458/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1459/// from S, where a non-field would be declared. This routine copes
1460/// with the difference between C and C++ scoping rules in structs and
1461/// unions. For example, the following code is well-formed in C but
1462/// ill-formed in C++:
1463/// @code
1464/// struct S6 {
1465///   enum { BAR } e;
1466/// };
1467///
1468/// void test_S6() {
1469///   struct S6 a;
1470///   a.e = BAR;
1471/// }
1472/// @endcode
1473/// For the declaration of BAR, this routine will return a different
1474/// scope. The scope S will be the scope of the unnamed enumeration
1475/// within S6. In C++, this routine will return the scope associated
1476/// with S6, because the enumeration's scope is a transparent
1477/// context but structures can contain non-field names. In C, this
1478/// routine will return the translation unit scope, since the
1479/// enumeration's scope is a transparent context and structures cannot
1480/// contain non-field names.
1481Scope *Sema::getNonFieldDeclScope(Scope *S) {
1482  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1483         (S->getEntity() &&
1484          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1485         (S->isClassScope() && !getLangOpts().CPlusPlus))
1486    S = S->getParent();
1487  return S;
1488}
1489
1490/// \brief Looks up the declaration of "struct objc_super" and
1491/// saves it for later use in building builtin declaration of
1492/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1493/// pre-existing declaration exists no action takes place.
1494static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1495                                        IdentifierInfo *II) {
1496  if (!II->isStr("objc_msgSendSuper"))
1497    return;
1498  ASTContext &Context = ThisSema.Context;
1499
1500  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1501                      SourceLocation(), Sema::LookupTagName);
1502  ThisSema.LookupName(Result, S);
1503  if (Result.getResultKind() == LookupResult::Found)
1504    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1505      Context.setObjCSuperType(Context.getTagDeclType(TD));
1506}
1507
1508/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1509/// file scope.  lazily create a decl for it. ForRedeclaration is true
1510/// if we're creating this built-in in anticipation of redeclaring the
1511/// built-in.
1512NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1513                                     Scope *S, bool ForRedeclaration,
1514                                     SourceLocation Loc) {
1515  LookupPredefedObjCSuperType(*this, S, II);
1516
1517  Builtin::ID BID = (Builtin::ID)bid;
1518
1519  ASTContext::GetBuiltinTypeError Error;
1520  QualType R = Context.GetBuiltinType(BID, Error);
1521  switch (Error) {
1522  case ASTContext::GE_None:
1523    // Okay
1524    break;
1525
1526  case ASTContext::GE_Missing_stdio:
1527    if (ForRedeclaration)
1528      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1529        << Context.BuiltinInfo.GetName(BID);
1530    return 0;
1531
1532  case ASTContext::GE_Missing_setjmp:
1533    if (ForRedeclaration)
1534      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1535        << Context.BuiltinInfo.GetName(BID);
1536    return 0;
1537
1538  case ASTContext::GE_Missing_ucontext:
1539    if (ForRedeclaration)
1540      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1541        << Context.BuiltinInfo.GetName(BID);
1542    return 0;
1543  }
1544
1545  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1546    Diag(Loc, diag::ext_implicit_lib_function_decl)
1547      << Context.BuiltinInfo.GetName(BID)
1548      << R;
1549    if (Context.BuiltinInfo.getHeaderName(BID) &&
1550        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1551          != DiagnosticsEngine::Ignored)
1552      Diag(Loc, diag::note_please_include_header)
1553        << Context.BuiltinInfo.getHeaderName(BID)
1554        << Context.BuiltinInfo.GetName(BID);
1555  }
1556
1557  FunctionDecl *New = FunctionDecl::Create(Context,
1558                                           Context.getTranslationUnitDecl(),
1559                                           Loc, Loc, II, R, /*TInfo=*/0,
1560                                           SC_Extern,
1561                                           false,
1562                                           /*hasPrototype=*/true);
1563  New->setImplicit();
1564
1565  // Create Decl objects for each parameter, adding them to the
1566  // FunctionDecl.
1567  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1568    SmallVector<ParmVarDecl*, 16> Params;
1569    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1570      ParmVarDecl *parm =
1571        ParmVarDecl::Create(Context, New, SourceLocation(),
1572                            SourceLocation(), 0,
1573                            FT->getArgType(i), /*TInfo=*/0,
1574                            SC_None, 0);
1575      parm->setScopeInfo(0, i);
1576      Params.push_back(parm);
1577    }
1578    New->setParams(Params);
1579  }
1580
1581  AddKnownFunctionAttributes(New);
1582
1583  // TUScope is the translation-unit scope to insert this function into.
1584  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1585  // relate Scopes to DeclContexts, and probably eliminate CurContext
1586  // entirely, but we're not there yet.
1587  DeclContext *SavedContext = CurContext;
1588  CurContext = Context.getTranslationUnitDecl();
1589  PushOnScopeChains(New, TUScope);
1590  CurContext = SavedContext;
1591  return New;
1592}
1593
1594/// \brief Filter out any previous declarations that the given declaration
1595/// should not consider because they are not permitted to conflict, e.g.,
1596/// because they come from hidden sub-modules and do not refer to the same
1597/// entity.
1598static void filterNonConflictingPreviousDecls(ASTContext &context,
1599                                              NamedDecl *decl,
1600                                              LookupResult &previous){
1601  // This is only interesting when modules are enabled.
1602  if (!context.getLangOpts().Modules)
1603    return;
1604
1605  // Empty sets are uninteresting.
1606  if (previous.empty())
1607    return;
1608
1609  LookupResult::Filter filter = previous.makeFilter();
1610  while (filter.hasNext()) {
1611    NamedDecl *old = filter.next();
1612
1613    // Non-hidden declarations are never ignored.
1614    if (!old->isHidden())
1615      continue;
1616
1617    if (!old->isExternallyVisible())
1618      filter.erase();
1619  }
1620
1621  filter.done();
1622}
1623
1624bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1625  QualType OldType;
1626  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1627    OldType = OldTypedef->getUnderlyingType();
1628  else
1629    OldType = Context.getTypeDeclType(Old);
1630  QualType NewType = New->getUnderlyingType();
1631
1632  if (NewType->isVariablyModifiedType()) {
1633    // Must not redefine a typedef with a variably-modified type.
1634    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1635    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1636      << Kind << NewType;
1637    if (Old->getLocation().isValid())
1638      Diag(Old->getLocation(), diag::note_previous_definition);
1639    New->setInvalidDecl();
1640    return true;
1641  }
1642
1643  if (OldType != NewType &&
1644      !OldType->isDependentType() &&
1645      !NewType->isDependentType() &&
1646      !Context.hasSameType(OldType, NewType)) {
1647    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1648    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1649      << Kind << NewType << OldType;
1650    if (Old->getLocation().isValid())
1651      Diag(Old->getLocation(), diag::note_previous_definition);
1652    New->setInvalidDecl();
1653    return true;
1654  }
1655  return false;
1656}
1657
1658/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1659/// same name and scope as a previous declaration 'Old'.  Figure out
1660/// how to resolve this situation, merging decls or emitting
1661/// diagnostics as appropriate. If there was an error, set New to be invalid.
1662///
1663void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1664  // If the new decl is known invalid already, don't bother doing any
1665  // merging checks.
1666  if (New->isInvalidDecl()) return;
1667
1668  // Allow multiple definitions for ObjC built-in typedefs.
1669  // FIXME: Verify the underlying types are equivalent!
1670  if (getLangOpts().ObjC1) {
1671    const IdentifierInfo *TypeID = New->getIdentifier();
1672    switch (TypeID->getLength()) {
1673    default: break;
1674    case 2:
1675      {
1676        if (!TypeID->isStr("id"))
1677          break;
1678        QualType T = New->getUnderlyingType();
1679        if (!T->isPointerType())
1680          break;
1681        if (!T->isVoidPointerType()) {
1682          QualType PT = T->getAs<PointerType>()->getPointeeType();
1683          if (!PT->isStructureType())
1684            break;
1685        }
1686        Context.setObjCIdRedefinitionType(T);
1687        // Install the built-in type for 'id', ignoring the current definition.
1688        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1689        return;
1690      }
1691    case 5:
1692      if (!TypeID->isStr("Class"))
1693        break;
1694      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1695      // Install the built-in type for 'Class', ignoring the current definition.
1696      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1697      return;
1698    case 3:
1699      if (!TypeID->isStr("SEL"))
1700        break;
1701      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1702      // Install the built-in type for 'SEL', ignoring the current definition.
1703      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1704      return;
1705    }
1706    // Fall through - the typedef name was not a builtin type.
1707  }
1708
1709  // Verify the old decl was also a type.
1710  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1711  if (!Old) {
1712    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1713      << New->getDeclName();
1714
1715    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1716    if (OldD->getLocation().isValid())
1717      Diag(OldD->getLocation(), diag::note_previous_definition);
1718
1719    return New->setInvalidDecl();
1720  }
1721
1722  // If the old declaration is invalid, just give up here.
1723  if (Old->isInvalidDecl())
1724    return New->setInvalidDecl();
1725
1726  // If the typedef types are not identical, reject them in all languages and
1727  // with any extensions enabled.
1728  if (isIncompatibleTypedef(Old, New))
1729    return;
1730
1731  // The types match.  Link up the redeclaration chain if the old
1732  // declaration was a typedef.
1733  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1734    New->setPreviousDeclaration(Typedef);
1735
1736  if (getLangOpts().MicrosoftExt)
1737    return;
1738
1739  if (getLangOpts().CPlusPlus) {
1740    // C++ [dcl.typedef]p2:
1741    //   In a given non-class scope, a typedef specifier can be used to
1742    //   redefine the name of any type declared in that scope to refer
1743    //   to the type to which it already refers.
1744    if (!isa<CXXRecordDecl>(CurContext))
1745      return;
1746
1747    // C++0x [dcl.typedef]p4:
1748    //   In a given class scope, a typedef specifier can be used to redefine
1749    //   any class-name declared in that scope that is not also a typedef-name
1750    //   to refer to the type to which it already refers.
1751    //
1752    // This wording came in via DR424, which was a correction to the
1753    // wording in DR56, which accidentally banned code like:
1754    //
1755    //   struct S {
1756    //     typedef struct A { } A;
1757    //   };
1758    //
1759    // in the C++03 standard. We implement the C++0x semantics, which
1760    // allow the above but disallow
1761    //
1762    //   struct S {
1763    //     typedef int I;
1764    //     typedef int I;
1765    //   };
1766    //
1767    // since that was the intent of DR56.
1768    if (!isa<TypedefNameDecl>(Old))
1769      return;
1770
1771    Diag(New->getLocation(), diag::err_redefinition)
1772      << New->getDeclName();
1773    Diag(Old->getLocation(), diag::note_previous_definition);
1774    return New->setInvalidDecl();
1775  }
1776
1777  // Modules always permit redefinition of typedefs, as does C11.
1778  if (getLangOpts().Modules || getLangOpts().C11)
1779    return;
1780
1781  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1782  // is normally mapped to an error, but can be controlled with
1783  // -Wtypedef-redefinition.  If either the original or the redefinition is
1784  // in a system header, don't emit this for compatibility with GCC.
1785  if (getDiagnostics().getSuppressSystemWarnings() &&
1786      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1787       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1788    return;
1789
1790  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1791    << New->getDeclName();
1792  Diag(Old->getLocation(), diag::note_previous_definition);
1793  return;
1794}
1795
1796/// DeclhasAttr - returns true if decl Declaration already has the target
1797/// attribute.
1798static bool
1799DeclHasAttr(const Decl *D, const Attr *A) {
1800  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1801  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1802  // responsible for making sure they are consistent.
1803  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1804  if (AA)
1805    return false;
1806
1807  // The following thread safety attributes can also be duplicated.
1808  switch (A->getKind()) {
1809    case attr::ExclusiveLocksRequired:
1810    case attr::SharedLocksRequired:
1811    case attr::LocksExcluded:
1812    case attr::ExclusiveLockFunction:
1813    case attr::SharedLockFunction:
1814    case attr::UnlockFunction:
1815    case attr::ExclusiveTrylockFunction:
1816    case attr::SharedTrylockFunction:
1817    case attr::GuardedBy:
1818    case attr::PtGuardedBy:
1819    case attr::AcquiredBefore:
1820    case attr::AcquiredAfter:
1821      return false;
1822    default:
1823      ;
1824  }
1825
1826  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1827  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1828  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1829    if ((*i)->getKind() == A->getKind()) {
1830      if (Ann) {
1831        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1832          return true;
1833        continue;
1834      }
1835      // FIXME: Don't hardcode this check
1836      if (OA && isa<OwnershipAttr>(*i))
1837        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1838      return true;
1839    }
1840
1841  return false;
1842}
1843
1844static bool isAttributeTargetADefinition(Decl *D) {
1845  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1846    return VD->isThisDeclarationADefinition();
1847  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1848    return TD->isCompleteDefinition() || TD->isBeingDefined();
1849  return true;
1850}
1851
1852/// Merge alignment attributes from \p Old to \p New, taking into account the
1853/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1854///
1855/// \return \c true if any attributes were added to \p New.
1856static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1857  // Look for alignas attributes on Old, and pick out whichever attribute
1858  // specifies the strictest alignment requirement.
1859  AlignedAttr *OldAlignasAttr = 0;
1860  AlignedAttr *OldStrictestAlignAttr = 0;
1861  unsigned OldAlign = 0;
1862  for (specific_attr_iterator<AlignedAttr>
1863         I = Old->specific_attr_begin<AlignedAttr>(),
1864         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1865    // FIXME: We have no way of representing inherited dependent alignments
1866    // in a case like:
1867    //   template<int A, int B> struct alignas(A) X;
1868    //   template<int A, int B> struct alignas(B) X {};
1869    // For now, we just ignore any alignas attributes which are not on the
1870    // definition in such a case.
1871    if (I->isAlignmentDependent())
1872      return false;
1873
1874    if (I->isAlignas())
1875      OldAlignasAttr = *I;
1876
1877    unsigned Align = I->getAlignment(S.Context);
1878    if (Align > OldAlign) {
1879      OldAlign = Align;
1880      OldStrictestAlignAttr = *I;
1881    }
1882  }
1883
1884  // Look for alignas attributes on New.
1885  AlignedAttr *NewAlignasAttr = 0;
1886  unsigned NewAlign = 0;
1887  for (specific_attr_iterator<AlignedAttr>
1888         I = New->specific_attr_begin<AlignedAttr>(),
1889         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1890    if (I->isAlignmentDependent())
1891      return false;
1892
1893    if (I->isAlignas())
1894      NewAlignasAttr = *I;
1895
1896    unsigned Align = I->getAlignment(S.Context);
1897    if (Align > NewAlign)
1898      NewAlign = Align;
1899  }
1900
1901  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1902    // Both declarations have 'alignas' attributes. We require them to match.
1903    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1904    // fall short. (If two declarations both have alignas, they must both match
1905    // every definition, and so must match each other if there is a definition.)
1906
1907    // If either declaration only contains 'alignas(0)' specifiers, then it
1908    // specifies the natural alignment for the type.
1909    if (OldAlign == 0 || NewAlign == 0) {
1910      QualType Ty;
1911      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1912        Ty = VD->getType();
1913      else
1914        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1915
1916      if (OldAlign == 0)
1917        OldAlign = S.Context.getTypeAlign(Ty);
1918      if (NewAlign == 0)
1919        NewAlign = S.Context.getTypeAlign(Ty);
1920    }
1921
1922    if (OldAlign != NewAlign) {
1923      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1924        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1925        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1926      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1927    }
1928  }
1929
1930  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1931    // C++11 [dcl.align]p6:
1932    //   if any declaration of an entity has an alignment-specifier,
1933    //   every defining declaration of that entity shall specify an
1934    //   equivalent alignment.
1935    // C11 6.7.5/7:
1936    //   If the definition of an object does not have an alignment
1937    //   specifier, any other declaration of that object shall also
1938    //   have no alignment specifier.
1939    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1940      << OldAlignasAttr->isC11();
1941    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1942      << OldAlignasAttr->isC11();
1943  }
1944
1945  bool AnyAdded = false;
1946
1947  // Ensure we have an attribute representing the strictest alignment.
1948  if (OldAlign > NewAlign) {
1949    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1950    Clone->setInherited(true);
1951    New->addAttr(Clone);
1952    AnyAdded = true;
1953  }
1954
1955  // Ensure we have an alignas attribute if the old declaration had one.
1956  if (OldAlignasAttr && !NewAlignasAttr &&
1957      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1958    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1959    Clone->setInherited(true);
1960    New->addAttr(Clone);
1961    AnyAdded = true;
1962  }
1963
1964  return AnyAdded;
1965}
1966
1967static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1968                               bool Override) {
1969  InheritableAttr *NewAttr = NULL;
1970  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1971  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1972    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1973                                      AA->getIntroduced(), AA->getDeprecated(),
1974                                      AA->getObsoleted(), AA->getUnavailable(),
1975                                      AA->getMessage(), Override,
1976                                      AttrSpellingListIndex);
1977  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1978    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1979                                    AttrSpellingListIndex);
1980  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1981    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1982                                        AttrSpellingListIndex);
1983  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1984    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1985                                   AttrSpellingListIndex);
1986  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1987    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1988                                   AttrSpellingListIndex);
1989  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1990    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1991                                FA->getFormatIdx(), FA->getFirstArg(),
1992                                AttrSpellingListIndex);
1993  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1994    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1995                                 AttrSpellingListIndex);
1996  else if (isa<AlignedAttr>(Attr))
1997    // AlignedAttrs are handled separately, because we need to handle all
1998    // such attributes on a declaration at the same time.
1999    NewAttr = 0;
2000  else if (!DeclHasAttr(D, Attr))
2001    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2002
2003  if (NewAttr) {
2004    NewAttr->setInherited(true);
2005    D->addAttr(NewAttr);
2006    return true;
2007  }
2008
2009  return false;
2010}
2011
2012static const Decl *getDefinition(const Decl *D) {
2013  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2014    return TD->getDefinition();
2015  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2016    return VD->getDefinition();
2017  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2018    const FunctionDecl* Def;
2019    if (FD->hasBody(Def))
2020      return Def;
2021  }
2022  return NULL;
2023}
2024
2025static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2026  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2027       I != E; ++I) {
2028    Attr *Attribute = *I;
2029    if (Attribute->getKind() == Kind)
2030      return true;
2031  }
2032  return false;
2033}
2034
2035/// checkNewAttributesAfterDef - If we already have a definition, check that
2036/// there are no new attributes in this declaration.
2037static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2038  if (!New->hasAttrs())
2039    return;
2040
2041  const Decl *Def = getDefinition(Old);
2042  if (!Def || Def == New)
2043    return;
2044
2045  AttrVec &NewAttributes = New->getAttrs();
2046  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2047    const Attr *NewAttribute = NewAttributes[I];
2048    if (hasAttribute(Def, NewAttribute->getKind())) {
2049      ++I;
2050      continue; // regular attr merging will take care of validating this.
2051    }
2052
2053    if (isa<C11NoReturnAttr>(NewAttribute)) {
2054      // C's _Noreturn is allowed to be added to a function after it is defined.
2055      ++I;
2056      continue;
2057    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2058      if (AA->isAlignas()) {
2059        // C++11 [dcl.align]p6:
2060        //   if any declaration of an entity has an alignment-specifier,
2061        //   every defining declaration of that entity shall specify an
2062        //   equivalent alignment.
2063        // C11 6.7.5/7:
2064        //   If the definition of an object does not have an alignment
2065        //   specifier, any other declaration of that object shall also
2066        //   have no alignment specifier.
2067        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2068          << AA->isC11();
2069        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2070          << AA->isC11();
2071        NewAttributes.erase(NewAttributes.begin() + I);
2072        --E;
2073        continue;
2074      }
2075    }
2076
2077    S.Diag(NewAttribute->getLocation(),
2078           diag::warn_attribute_precede_definition);
2079    S.Diag(Def->getLocation(), diag::note_previous_definition);
2080    NewAttributes.erase(NewAttributes.begin() + I);
2081    --E;
2082  }
2083}
2084
2085/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2086void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2087                               AvailabilityMergeKind AMK) {
2088  if (!Old->hasAttrs() && !New->hasAttrs())
2089    return;
2090
2091  // attributes declared post-definition are currently ignored
2092  checkNewAttributesAfterDef(*this, New, Old);
2093
2094  if (!Old->hasAttrs())
2095    return;
2096
2097  bool foundAny = New->hasAttrs();
2098
2099  // Ensure that any moving of objects within the allocated map is done before
2100  // we process them.
2101  if (!foundAny) New->setAttrs(AttrVec());
2102
2103  for (specific_attr_iterator<InheritableAttr>
2104         i = Old->specific_attr_begin<InheritableAttr>(),
2105         e = Old->specific_attr_end<InheritableAttr>();
2106       i != e; ++i) {
2107    bool Override = false;
2108    // Ignore deprecated/unavailable/availability attributes if requested.
2109    if (isa<DeprecatedAttr>(*i) ||
2110        isa<UnavailableAttr>(*i) ||
2111        isa<AvailabilityAttr>(*i)) {
2112      switch (AMK) {
2113      case AMK_None:
2114        continue;
2115
2116      case AMK_Redeclaration:
2117        break;
2118
2119      case AMK_Override:
2120        Override = true;
2121        break;
2122      }
2123    }
2124
2125    if (mergeDeclAttribute(*this, New, *i, Override))
2126      foundAny = true;
2127  }
2128
2129  if (mergeAlignedAttrs(*this, New, Old))
2130    foundAny = true;
2131
2132  if (!foundAny) New->dropAttrs();
2133}
2134
2135/// mergeParamDeclAttributes - Copy attributes from the old parameter
2136/// to the new one.
2137static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2138                                     const ParmVarDecl *oldDecl,
2139                                     Sema &S) {
2140  // C++11 [dcl.attr.depend]p2:
2141  //   The first declaration of a function shall specify the
2142  //   carries_dependency attribute for its declarator-id if any declaration
2143  //   of the function specifies the carries_dependency attribute.
2144  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2145      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2146    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2147           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2148    // Find the first declaration of the parameter.
2149    // FIXME: Should we build redeclaration chains for function parameters?
2150    const FunctionDecl *FirstFD =
2151      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2152    const ParmVarDecl *FirstVD =
2153      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2154    S.Diag(FirstVD->getLocation(),
2155           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2156  }
2157
2158  if (!oldDecl->hasAttrs())
2159    return;
2160
2161  bool foundAny = newDecl->hasAttrs();
2162
2163  // Ensure that any moving of objects within the allocated map is
2164  // done before we process them.
2165  if (!foundAny) newDecl->setAttrs(AttrVec());
2166
2167  for (specific_attr_iterator<InheritableParamAttr>
2168       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2169       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2170    if (!DeclHasAttr(newDecl, *i)) {
2171      InheritableAttr *newAttr =
2172        cast<InheritableParamAttr>((*i)->clone(S.Context));
2173      newAttr->setInherited(true);
2174      newDecl->addAttr(newAttr);
2175      foundAny = true;
2176    }
2177  }
2178
2179  if (!foundAny) newDecl->dropAttrs();
2180}
2181
2182namespace {
2183
2184/// Used in MergeFunctionDecl to keep track of function parameters in
2185/// C.
2186struct GNUCompatibleParamWarning {
2187  ParmVarDecl *OldParm;
2188  ParmVarDecl *NewParm;
2189  QualType PromotedType;
2190};
2191
2192}
2193
2194/// getSpecialMember - get the special member enum for a method.
2195Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2196  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2197    if (Ctor->isDefaultConstructor())
2198      return Sema::CXXDefaultConstructor;
2199
2200    if (Ctor->isCopyConstructor())
2201      return Sema::CXXCopyConstructor;
2202
2203    if (Ctor->isMoveConstructor())
2204      return Sema::CXXMoveConstructor;
2205  } else if (isa<CXXDestructorDecl>(MD)) {
2206    return Sema::CXXDestructor;
2207  } else if (MD->isCopyAssignmentOperator()) {
2208    return Sema::CXXCopyAssignment;
2209  } else if (MD->isMoveAssignmentOperator()) {
2210    return Sema::CXXMoveAssignment;
2211  }
2212
2213  return Sema::CXXInvalid;
2214}
2215
2216/// canRedefineFunction - checks if a function can be redefined. Currently,
2217/// only extern inline functions can be redefined, and even then only in
2218/// GNU89 mode.
2219static bool canRedefineFunction(const FunctionDecl *FD,
2220                                const LangOptions& LangOpts) {
2221  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2222          !LangOpts.CPlusPlus &&
2223          FD->isInlineSpecified() &&
2224          FD->getStorageClass() == SC_Extern);
2225}
2226
2227/// Is the given calling convention the ABI default for the given
2228/// declaration?
2229static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2230  CallingConv ABIDefaultCC;
2231  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2232    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2233  } else {
2234    // Free C function or a static method.
2235    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2236  }
2237  return ABIDefaultCC == CC;
2238}
2239
2240template <typename T>
2241static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2242  const DeclContext *DC = Old->getDeclContext();
2243  if (DC->isRecord())
2244    return false;
2245
2246  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2247  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2248    return true;
2249  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2250    return true;
2251  return false;
2252}
2253
2254/// MergeFunctionDecl - We just parsed a function 'New' from
2255/// declarator D which has the same name and scope as a previous
2256/// declaration 'Old'.  Figure out how to resolve this situation,
2257/// merging decls or emitting diagnostics as appropriate.
2258///
2259/// In C++, New and Old must be declarations that are not
2260/// overloaded. Use IsOverload to determine whether New and Old are
2261/// overloaded, and to select the Old declaration that New should be
2262/// merged with.
2263///
2264/// Returns true if there was an error, false otherwise.
2265bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2266  // Verify the old decl was also a function.
2267  FunctionDecl *Old = 0;
2268  if (FunctionTemplateDecl *OldFunctionTemplate
2269        = dyn_cast<FunctionTemplateDecl>(OldD))
2270    Old = OldFunctionTemplate->getTemplatedDecl();
2271  else
2272    Old = dyn_cast<FunctionDecl>(OldD);
2273  if (!Old) {
2274    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2275      if (New->getFriendObjectKind()) {
2276        Diag(New->getLocation(), diag::err_using_decl_friend);
2277        Diag(Shadow->getTargetDecl()->getLocation(),
2278             diag::note_using_decl_target);
2279        Diag(Shadow->getUsingDecl()->getLocation(),
2280             diag::note_using_decl) << 0;
2281        return true;
2282      }
2283
2284      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2285      Diag(Shadow->getTargetDecl()->getLocation(),
2286           diag::note_using_decl_target);
2287      Diag(Shadow->getUsingDecl()->getLocation(),
2288           diag::note_using_decl) << 0;
2289      return true;
2290    }
2291
2292    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2293      << New->getDeclName();
2294    Diag(OldD->getLocation(), diag::note_previous_definition);
2295    return true;
2296  }
2297
2298  // Determine whether the previous declaration was a definition,
2299  // implicit declaration, or a declaration.
2300  diag::kind PrevDiag;
2301  if (Old->isThisDeclarationADefinition())
2302    PrevDiag = diag::note_previous_definition;
2303  else if (Old->isImplicit())
2304    PrevDiag = diag::note_previous_implicit_declaration;
2305  else
2306    PrevDiag = diag::note_previous_declaration;
2307
2308  QualType OldQType = Context.getCanonicalType(Old->getType());
2309  QualType NewQType = Context.getCanonicalType(New->getType());
2310
2311  // Don't complain about this if we're in GNU89 mode and the old function
2312  // is an extern inline function.
2313  // Don't complain about specializations. They are not supposed to have
2314  // storage classes.
2315  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2316      New->getStorageClass() == SC_Static &&
2317      Old->hasExternalFormalLinkage() &&
2318      !New->getTemplateSpecializationInfo() &&
2319      !canRedefineFunction(Old, getLangOpts())) {
2320    if (getLangOpts().MicrosoftExt) {
2321      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2322      Diag(Old->getLocation(), PrevDiag);
2323    } else {
2324      Diag(New->getLocation(), diag::err_static_non_static) << New;
2325      Diag(Old->getLocation(), PrevDiag);
2326      return true;
2327    }
2328  }
2329
2330  // If a function is first declared with a calling convention, but is
2331  // later declared or defined without one, the second decl assumes the
2332  // calling convention of the first.
2333  //
2334  // It's OK if a function is first declared without a calling convention,
2335  // but is later declared or defined with the default calling convention.
2336  //
2337  // For the new decl, we have to look at the NON-canonical type to tell the
2338  // difference between a function that really doesn't have a calling
2339  // convention and one that is declared cdecl. That's because in
2340  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2341  // because it is the default calling convention.
2342  //
2343  // Note also that we DO NOT return at this point, because we still have
2344  // other tests to run.
2345  const FunctionType *OldType = cast<FunctionType>(OldQType);
2346  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2347  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2348  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2349  bool RequiresAdjustment = false;
2350  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2351    // Fast path: nothing to do.
2352
2353  // Inherit the CC from the previous declaration if it was specified
2354  // there but not here.
2355  } else if (NewTypeInfo.getCC() == CC_Default) {
2356    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2357    RequiresAdjustment = true;
2358
2359  // Don't complain about mismatches when the default CC is
2360  // effectively the same as the explict one. Only Old decl contains correct
2361  // information about storage class of CXXMethod.
2362  } else if (OldTypeInfo.getCC() == CC_Default &&
2363             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2364    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2365    RequiresAdjustment = true;
2366
2367  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2368                                     NewTypeInfo.getCC())) {
2369    // Calling conventions really aren't compatible, so complain.
2370    Diag(New->getLocation(), diag::err_cconv_change)
2371      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2372      << (OldTypeInfo.getCC() == CC_Default)
2373      << (OldTypeInfo.getCC() == CC_Default ? "" :
2374          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2375    Diag(Old->getLocation(), diag::note_previous_declaration);
2376    return true;
2377  }
2378
2379  // FIXME: diagnose the other way around?
2380  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2381    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2382    RequiresAdjustment = true;
2383  }
2384
2385  // Merge regparm attribute.
2386  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2387      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2388    if (NewTypeInfo.getHasRegParm()) {
2389      Diag(New->getLocation(), diag::err_regparm_mismatch)
2390        << NewType->getRegParmType()
2391        << OldType->getRegParmType();
2392      Diag(Old->getLocation(), diag::note_previous_declaration);
2393      return true;
2394    }
2395
2396    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2397    RequiresAdjustment = true;
2398  }
2399
2400  // Merge ns_returns_retained attribute.
2401  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2402    if (NewTypeInfo.getProducesResult()) {
2403      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2404      Diag(Old->getLocation(), diag::note_previous_declaration);
2405      return true;
2406    }
2407
2408    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2409    RequiresAdjustment = true;
2410  }
2411
2412  if (RequiresAdjustment) {
2413    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2414    New->setType(QualType(NewType, 0));
2415    NewQType = Context.getCanonicalType(New->getType());
2416  }
2417
2418  // If this redeclaration makes the function inline, we may need to add it to
2419  // UndefinedButUsed.
2420  if (!Old->isInlined() && New->isInlined() &&
2421      !New->hasAttr<GNUInlineAttr>() &&
2422      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2423      Old->isUsed(false) &&
2424      !Old->isDefined() && !New->isThisDeclarationADefinition())
2425    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2426                                           SourceLocation()));
2427
2428  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2429  // about it.
2430  if (New->hasAttr<GNUInlineAttr>() &&
2431      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2432    UndefinedButUsed.erase(Old->getCanonicalDecl());
2433  }
2434
2435  if (getLangOpts().CPlusPlus) {
2436    // (C++98 13.1p2):
2437    //   Certain function declarations cannot be overloaded:
2438    //     -- Function declarations that differ only in the return type
2439    //        cannot be overloaded.
2440
2441    // Go back to the type source info to compare the declared return types,
2442    // per C++1y [dcl.type.auto]p??:
2443    //   Redeclarations or specializations of a function or function template
2444    //   with a declared return type that uses a placeholder type shall also
2445    //   use that placeholder, not a deduced type.
2446    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2447      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2448      : OldType)->getResultType();
2449    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2450      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2451      : NewType)->getResultType();
2452    QualType ResQT;
2453    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2454      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2455          OldDeclaredReturnType->isObjCObjectPointerType())
2456        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2457      if (ResQT.isNull()) {
2458        if (New->isCXXClassMember() && New->isOutOfLine())
2459          Diag(New->getLocation(),
2460               diag::err_member_def_does_not_match_ret_type) << New;
2461        else
2462          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2463        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2464        return true;
2465      }
2466      else
2467        NewQType = ResQT;
2468    }
2469
2470    QualType OldReturnType = OldType->getResultType();
2471    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2472    if (OldReturnType != NewReturnType) {
2473      // If this function has a deduced return type and has already been
2474      // defined, copy the deduced value from the old declaration.
2475      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2476      if (OldAT && OldAT->isDeduced()) {
2477        New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
2478        NewQType = Context.getCanonicalType(
2479            SubstAutoType(NewQType, OldAT->getDeducedType()));
2480      }
2481    }
2482
2483    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2484    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2485    if (OldMethod && NewMethod) {
2486      // Preserve triviality.
2487      NewMethod->setTrivial(OldMethod->isTrivial());
2488
2489      // MSVC allows explicit template specialization at class scope:
2490      // 2 CXMethodDecls referring to the same function will be injected.
2491      // We don't want a redeclartion error.
2492      bool IsClassScopeExplicitSpecialization =
2493                              OldMethod->isFunctionTemplateSpecialization() &&
2494                              NewMethod->isFunctionTemplateSpecialization();
2495      bool isFriend = NewMethod->getFriendObjectKind();
2496
2497      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2498          !IsClassScopeExplicitSpecialization) {
2499        //    -- Member function declarations with the same name and the
2500        //       same parameter types cannot be overloaded if any of them
2501        //       is a static member function declaration.
2502        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2503          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2504          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2505          return true;
2506        }
2507
2508        // C++ [class.mem]p1:
2509        //   [...] A member shall not be declared twice in the
2510        //   member-specification, except that a nested class or member
2511        //   class template can be declared and then later defined.
2512        if (ActiveTemplateInstantiations.empty()) {
2513          unsigned NewDiag;
2514          if (isa<CXXConstructorDecl>(OldMethod))
2515            NewDiag = diag::err_constructor_redeclared;
2516          else if (isa<CXXDestructorDecl>(NewMethod))
2517            NewDiag = diag::err_destructor_redeclared;
2518          else if (isa<CXXConversionDecl>(NewMethod))
2519            NewDiag = diag::err_conv_function_redeclared;
2520          else
2521            NewDiag = diag::err_member_redeclared;
2522
2523          Diag(New->getLocation(), NewDiag);
2524        } else {
2525          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2526            << New << New->getType();
2527        }
2528        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2529
2530      // Complain if this is an explicit declaration of a special
2531      // member that was initially declared implicitly.
2532      //
2533      // As an exception, it's okay to befriend such methods in order
2534      // to permit the implicit constructor/destructor/operator calls.
2535      } else if (OldMethod->isImplicit()) {
2536        if (isFriend) {
2537          NewMethod->setImplicit();
2538        } else {
2539          Diag(NewMethod->getLocation(),
2540               diag::err_definition_of_implicitly_declared_member)
2541            << New << getSpecialMember(OldMethod);
2542          return true;
2543        }
2544      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2545        Diag(NewMethod->getLocation(),
2546             diag::err_definition_of_explicitly_defaulted_member)
2547          << getSpecialMember(OldMethod);
2548        return true;
2549      }
2550    }
2551
2552    // C++11 [dcl.attr.noreturn]p1:
2553    //   The first declaration of a function shall specify the noreturn
2554    //   attribute if any declaration of that function specifies the noreturn
2555    //   attribute.
2556    if (New->hasAttr<CXX11NoReturnAttr>() &&
2557        !Old->hasAttr<CXX11NoReturnAttr>()) {
2558      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2559           diag::err_noreturn_missing_on_first_decl);
2560      Diag(Old->getFirstDeclaration()->getLocation(),
2561           diag::note_noreturn_missing_first_decl);
2562    }
2563
2564    // C++11 [dcl.attr.depend]p2:
2565    //   The first declaration of a function shall specify the
2566    //   carries_dependency attribute for its declarator-id if any declaration
2567    //   of the function specifies the carries_dependency attribute.
2568    if (New->hasAttr<CarriesDependencyAttr>() &&
2569        !Old->hasAttr<CarriesDependencyAttr>()) {
2570      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2571           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2572      Diag(Old->getFirstDeclaration()->getLocation(),
2573           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2574    }
2575
2576    // (C++98 8.3.5p3):
2577    //   All declarations for a function shall agree exactly in both the
2578    //   return type and the parameter-type-list.
2579    // We also want to respect all the extended bits except noreturn.
2580
2581    // noreturn should now match unless the old type info didn't have it.
2582    QualType OldQTypeForComparison = OldQType;
2583    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2584      assert(OldQType == QualType(OldType, 0));
2585      const FunctionType *OldTypeForComparison
2586        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2587      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2588      assert(OldQTypeForComparison.isCanonical());
2589    }
2590
2591    if (haveIncompatibleLanguageLinkages(Old, New)) {
2592      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2593      Diag(Old->getLocation(), PrevDiag);
2594      return true;
2595    }
2596
2597    if (OldQTypeForComparison == NewQType)
2598      return MergeCompatibleFunctionDecls(New, Old, S);
2599
2600    // Fall through for conflicting redeclarations and redefinitions.
2601  }
2602
2603  // C: Function types need to be compatible, not identical. This handles
2604  // duplicate function decls like "void f(int); void f(enum X);" properly.
2605  if (!getLangOpts().CPlusPlus &&
2606      Context.typesAreCompatible(OldQType, NewQType)) {
2607    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2608    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2609    const FunctionProtoType *OldProto = 0;
2610    if (isa<FunctionNoProtoType>(NewFuncType) &&
2611        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2612      // The old declaration provided a function prototype, but the
2613      // new declaration does not. Merge in the prototype.
2614      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2615      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2616                                                 OldProto->arg_type_end());
2617      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2618                                         ParamTypes,
2619                                         OldProto->getExtProtoInfo());
2620      New->setType(NewQType);
2621      New->setHasInheritedPrototype();
2622
2623      // Synthesize a parameter for each argument type.
2624      SmallVector<ParmVarDecl*, 16> Params;
2625      for (FunctionProtoType::arg_type_iterator
2626             ParamType = OldProto->arg_type_begin(),
2627             ParamEnd = OldProto->arg_type_end();
2628           ParamType != ParamEnd; ++ParamType) {
2629        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2630                                                 SourceLocation(),
2631                                                 SourceLocation(), 0,
2632                                                 *ParamType, /*TInfo=*/0,
2633                                                 SC_None,
2634                                                 0);
2635        Param->setScopeInfo(0, Params.size());
2636        Param->setImplicit();
2637        Params.push_back(Param);
2638      }
2639
2640      New->setParams(Params);
2641    }
2642
2643    return MergeCompatibleFunctionDecls(New, Old, S);
2644  }
2645
2646  // GNU C permits a K&R definition to follow a prototype declaration
2647  // if the declared types of the parameters in the K&R definition
2648  // match the types in the prototype declaration, even when the
2649  // promoted types of the parameters from the K&R definition differ
2650  // from the types in the prototype. GCC then keeps the types from
2651  // the prototype.
2652  //
2653  // If a variadic prototype is followed by a non-variadic K&R definition,
2654  // the K&R definition becomes variadic.  This is sort of an edge case, but
2655  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2656  // C99 6.9.1p8.
2657  if (!getLangOpts().CPlusPlus &&
2658      Old->hasPrototype() && !New->hasPrototype() &&
2659      New->getType()->getAs<FunctionProtoType>() &&
2660      Old->getNumParams() == New->getNumParams()) {
2661    SmallVector<QualType, 16> ArgTypes;
2662    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2663    const FunctionProtoType *OldProto
2664      = Old->getType()->getAs<FunctionProtoType>();
2665    const FunctionProtoType *NewProto
2666      = New->getType()->getAs<FunctionProtoType>();
2667
2668    // Determine whether this is the GNU C extension.
2669    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2670                                               NewProto->getResultType());
2671    bool LooseCompatible = !MergedReturn.isNull();
2672    for (unsigned Idx = 0, End = Old->getNumParams();
2673         LooseCompatible && Idx != End; ++Idx) {
2674      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2675      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2676      if (Context.typesAreCompatible(OldParm->getType(),
2677                                     NewProto->getArgType(Idx))) {
2678        ArgTypes.push_back(NewParm->getType());
2679      } else if (Context.typesAreCompatible(OldParm->getType(),
2680                                            NewParm->getType(),
2681                                            /*CompareUnqualified=*/true)) {
2682        GNUCompatibleParamWarning Warn
2683          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2684        Warnings.push_back(Warn);
2685        ArgTypes.push_back(NewParm->getType());
2686      } else
2687        LooseCompatible = false;
2688    }
2689
2690    if (LooseCompatible) {
2691      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2692        Diag(Warnings[Warn].NewParm->getLocation(),
2693             diag::ext_param_promoted_not_compatible_with_prototype)
2694          << Warnings[Warn].PromotedType
2695          << Warnings[Warn].OldParm->getType();
2696        if (Warnings[Warn].OldParm->getLocation().isValid())
2697          Diag(Warnings[Warn].OldParm->getLocation(),
2698               diag::note_previous_declaration);
2699      }
2700
2701      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2702                                           OldProto->getExtProtoInfo()));
2703      return MergeCompatibleFunctionDecls(New, Old, S);
2704    }
2705
2706    // Fall through to diagnose conflicting types.
2707  }
2708
2709  // A function that has already been declared has been redeclared or
2710  // defined with a different type; show an appropriate diagnostic.
2711
2712  // If the previous declaration was an implicitly-generated builtin
2713  // declaration, then at the very least we should use a specialized note.
2714  unsigned BuiltinID;
2715  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2716    // If it's actually a library-defined builtin function like 'malloc'
2717    // or 'printf', just warn about the incompatible redeclaration.
2718    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2719      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2720      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2721        << Old << Old->getType();
2722
2723      // If this is a global redeclaration, just forget hereafter
2724      // about the "builtin-ness" of the function.
2725      //
2726      // Doing this for local extern declarations is problematic.  If
2727      // the builtin declaration remains visible, a second invalid
2728      // local declaration will produce a hard error; if it doesn't
2729      // remain visible, a single bogus local redeclaration (which is
2730      // actually only a warning) could break all the downstream code.
2731      if (!New->getDeclContext()->isFunctionOrMethod())
2732        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2733
2734      return false;
2735    }
2736
2737    PrevDiag = diag::note_previous_builtin_declaration;
2738  }
2739
2740  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2741  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2742  return true;
2743}
2744
2745/// \brief Completes the merge of two function declarations that are
2746/// known to be compatible.
2747///
2748/// This routine handles the merging of attributes and other
2749/// properties of function declarations form the old declaration to
2750/// the new declaration, once we know that New is in fact a
2751/// redeclaration of Old.
2752///
2753/// \returns false
2754bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2755                                        Scope *S) {
2756  // Merge the attributes
2757  mergeDeclAttributes(New, Old);
2758
2759  // Merge "pure" flag.
2760  if (Old->isPure())
2761    New->setPure();
2762
2763  // Merge "used" flag.
2764  if (Old->isUsed(false))
2765    New->setUsed();
2766
2767  // Merge attributes from the parameters.  These can mismatch with K&R
2768  // declarations.
2769  if (New->getNumParams() == Old->getNumParams())
2770    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2771      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2772                               *this);
2773
2774  if (getLangOpts().CPlusPlus)
2775    return MergeCXXFunctionDecl(New, Old, S);
2776
2777  // Merge the function types so the we get the composite types for the return
2778  // and argument types.
2779  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2780  if (!Merged.isNull())
2781    New->setType(Merged);
2782
2783  return false;
2784}
2785
2786
2787void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2788                                ObjCMethodDecl *oldMethod) {
2789
2790  // Merge the attributes, including deprecated/unavailable
2791  AvailabilityMergeKind MergeKind =
2792    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2793                                                   : AMK_Override;
2794  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2795
2796  // Merge attributes from the parameters.
2797  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2798                                       oe = oldMethod->param_end();
2799  for (ObjCMethodDecl::param_iterator
2800         ni = newMethod->param_begin(), ne = newMethod->param_end();
2801       ni != ne && oi != oe; ++ni, ++oi)
2802    mergeParamDeclAttributes(*ni, *oi, *this);
2803
2804  CheckObjCMethodOverride(newMethod, oldMethod);
2805}
2806
2807/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2808/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2809/// emitting diagnostics as appropriate.
2810///
2811/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2812/// to here in AddInitializerToDecl. We can't check them before the initializer
2813/// is attached.
2814void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2815  if (New->isInvalidDecl() || Old->isInvalidDecl())
2816    return;
2817
2818  QualType MergedT;
2819  if (getLangOpts().CPlusPlus) {
2820    if (New->getType()->isUndeducedType()) {
2821      // We don't know what the new type is until the initializer is attached.
2822      return;
2823    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2824      // These could still be something that needs exception specs checked.
2825      return MergeVarDeclExceptionSpecs(New, Old);
2826    }
2827    // C++ [basic.link]p10:
2828    //   [...] the types specified by all declarations referring to a given
2829    //   object or function shall be identical, except that declarations for an
2830    //   array object can specify array types that differ by the presence or
2831    //   absence of a major array bound (8.3.4).
2832    else if (Old->getType()->isIncompleteArrayType() &&
2833             New->getType()->isArrayType()) {
2834      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2835      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2836      if (Context.hasSameType(OldArray->getElementType(),
2837                              NewArray->getElementType()))
2838        MergedT = New->getType();
2839    } else if (Old->getType()->isArrayType() &&
2840             New->getType()->isIncompleteArrayType()) {
2841      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2842      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2843      if (Context.hasSameType(OldArray->getElementType(),
2844                              NewArray->getElementType()))
2845        MergedT = Old->getType();
2846    } else if (New->getType()->isObjCObjectPointerType()
2847               && Old->getType()->isObjCObjectPointerType()) {
2848        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2849                                                        Old->getType());
2850    }
2851  } else {
2852    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2853  }
2854  if (MergedT.isNull()) {
2855    Diag(New->getLocation(), diag::err_redefinition_different_type)
2856      << New->getDeclName() << New->getType() << Old->getType();
2857    Diag(Old->getLocation(), diag::note_previous_definition);
2858    return New->setInvalidDecl();
2859  }
2860
2861  // Don't actually update the type on the new declaration if the old
2862  // declaration was a extern declaration in a different scope.
2863  if (!OldWasHidden)
2864    New->setType(MergedT);
2865}
2866
2867/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2868/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2869/// situation, merging decls or emitting diagnostics as appropriate.
2870///
2871/// Tentative definition rules (C99 6.9.2p2) are checked by
2872/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2873/// definitions here, since the initializer hasn't been attached.
2874///
2875void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2876                        bool PreviousWasHidden) {
2877  // If the new decl is already invalid, don't do any other checking.
2878  if (New->isInvalidDecl())
2879    return;
2880
2881  // Verify the old decl was also a variable.
2882  VarDecl *Old = 0;
2883  if (!Previous.isSingleResult() ||
2884      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2885    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2886      << New->getDeclName();
2887    Diag(Previous.getRepresentativeDecl()->getLocation(),
2888         diag::note_previous_definition);
2889    return New->setInvalidDecl();
2890  }
2891
2892  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2893    return;
2894
2895  // C++ [class.mem]p1:
2896  //   A member shall not be declared twice in the member-specification [...]
2897  //
2898  // Here, we need only consider static data members.
2899  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2900    Diag(New->getLocation(), diag::err_duplicate_member)
2901      << New->getIdentifier();
2902    Diag(Old->getLocation(), diag::note_previous_declaration);
2903    New->setInvalidDecl();
2904  }
2905
2906  mergeDeclAttributes(New, Old);
2907  // Warn if an already-declared variable is made a weak_import in a subsequent
2908  // declaration
2909  if (New->getAttr<WeakImportAttr>() &&
2910      Old->getStorageClass() == SC_None &&
2911      !Old->getAttr<WeakImportAttr>()) {
2912    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2913    Diag(Old->getLocation(), diag::note_previous_definition);
2914    // Remove weak_import attribute on new declaration.
2915    New->dropAttr<WeakImportAttr>();
2916  }
2917
2918  // Merge the types.
2919  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2920  if (New->isInvalidDecl())
2921    return;
2922
2923  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2924  if (New->getStorageClass() == SC_Static &&
2925      !New->isStaticDataMember() &&
2926      Old->hasExternalFormalLinkage()) {
2927    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2928    Diag(Old->getLocation(), diag::note_previous_definition);
2929    return New->setInvalidDecl();
2930  }
2931  // C99 6.2.2p4:
2932  //   For an identifier declared with the storage-class specifier
2933  //   extern in a scope in which a prior declaration of that
2934  //   identifier is visible,23) if the prior declaration specifies
2935  //   internal or external linkage, the linkage of the identifier at
2936  //   the later declaration is the same as the linkage specified at
2937  //   the prior declaration. If no prior declaration is visible, or
2938  //   if the prior declaration specifies no linkage, then the
2939  //   identifier has external linkage.
2940  if (New->hasExternalStorage() && Old->hasLinkage())
2941    /* Okay */;
2942  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2943           !New->isStaticDataMember() &&
2944           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2945    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2946    Diag(Old->getLocation(), diag::note_previous_definition);
2947    return New->setInvalidDecl();
2948  }
2949
2950  // Check if extern is followed by non-extern and vice-versa.
2951  if (New->hasExternalStorage() &&
2952      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2953    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2954    Diag(Old->getLocation(), diag::note_previous_definition);
2955    return New->setInvalidDecl();
2956  }
2957  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2958      !New->hasExternalStorage()) {
2959    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2960    Diag(Old->getLocation(), diag::note_previous_definition);
2961    return New->setInvalidDecl();
2962  }
2963
2964  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2965
2966  // FIXME: The test for external storage here seems wrong? We still
2967  // need to check for mismatches.
2968  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2969      // Don't complain about out-of-line definitions of static members.
2970      !(Old->getLexicalDeclContext()->isRecord() &&
2971        !New->getLexicalDeclContext()->isRecord())) {
2972    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2973    Diag(Old->getLocation(), diag::note_previous_definition);
2974    return New->setInvalidDecl();
2975  }
2976
2977  if (New->getTLSKind() != Old->getTLSKind()) {
2978    if (!Old->getTLSKind()) {
2979      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2980      Diag(Old->getLocation(), diag::note_previous_declaration);
2981    } else if (!New->getTLSKind()) {
2982      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2983      Diag(Old->getLocation(), diag::note_previous_declaration);
2984    } else {
2985      // Do not allow redeclaration to change the variable between requiring
2986      // static and dynamic initialization.
2987      // FIXME: GCC allows this, but uses the TLS keyword on the first
2988      // declaration to determine the kind. Do we need to be compatible here?
2989      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
2990        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
2991      Diag(Old->getLocation(), diag::note_previous_declaration);
2992    }
2993  }
2994
2995  // C++ doesn't have tentative definitions, so go right ahead and check here.
2996  const VarDecl *Def;
2997  if (getLangOpts().CPlusPlus &&
2998      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2999      (Def = Old->getDefinition())) {
3000    Diag(New->getLocation(), diag::err_redefinition)
3001      << New->getDeclName();
3002    Diag(Def->getLocation(), diag::note_previous_definition);
3003    New->setInvalidDecl();
3004    return;
3005  }
3006
3007  if (haveIncompatibleLanguageLinkages(Old, New)) {
3008    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3009    Diag(Old->getLocation(), diag::note_previous_definition);
3010    New->setInvalidDecl();
3011    return;
3012  }
3013
3014  // Merge "used" flag.
3015  if (Old->isUsed(false))
3016    New->setUsed();
3017
3018  // Keep a chain of previous declarations.
3019  New->setPreviousDeclaration(Old);
3020
3021  // Inherit access appropriately.
3022  New->setAccess(Old->getAccess());
3023}
3024
3025/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3026/// no declarator (e.g. "struct foo;") is parsed.
3027Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3028                                       DeclSpec &DS) {
3029  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3030}
3031
3032/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3033/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3034/// parameters to cope with template friend declarations.
3035Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3036                                       DeclSpec &DS,
3037                                       MultiTemplateParamsArg TemplateParams,
3038                                       bool IsExplicitInstantiation) {
3039  Decl *TagD = 0;
3040  TagDecl *Tag = 0;
3041  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3042      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3043      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3044      DS.getTypeSpecType() == DeclSpec::TST_union ||
3045      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3046    TagD = DS.getRepAsDecl();
3047
3048    if (!TagD) // We probably had an error
3049      return 0;
3050
3051    // Note that the above type specs guarantee that the
3052    // type rep is a Decl, whereas in many of the others
3053    // it's a Type.
3054    if (isa<TagDecl>(TagD))
3055      Tag = cast<TagDecl>(TagD);
3056    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3057      Tag = CTD->getTemplatedDecl();
3058  }
3059
3060  if (Tag) {
3061    getASTContext().addUnnamedTag(Tag);
3062    Tag->setFreeStanding();
3063    if (Tag->isInvalidDecl())
3064      return Tag;
3065  }
3066
3067  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3068    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3069    // or incomplete types shall not be restrict-qualified."
3070    if (TypeQuals & DeclSpec::TQ_restrict)
3071      Diag(DS.getRestrictSpecLoc(),
3072           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3073           << DS.getSourceRange();
3074  }
3075
3076  if (DS.isConstexprSpecified()) {
3077    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3078    // and definitions of functions and variables.
3079    if (Tag)
3080      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3081        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3082            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3083            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3084            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3085    else
3086      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3087    // Don't emit warnings after this error.
3088    return TagD;
3089  }
3090
3091  DiagnoseFunctionSpecifiers(DS);
3092
3093  if (DS.isFriendSpecified()) {
3094    // If we're dealing with a decl but not a TagDecl, assume that
3095    // whatever routines created it handled the friendship aspect.
3096    if (TagD && !Tag)
3097      return 0;
3098    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3099  }
3100
3101  CXXScopeSpec &SS = DS.getTypeSpecScope();
3102  bool IsExplicitSpecialization =
3103    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3104  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3105      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3106    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3107    // nested-name-specifier unless it is an explicit instantiation
3108    // or an explicit specialization.
3109    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3110    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3111      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3112          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3113          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3114          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3115      << SS.getRange();
3116    return 0;
3117  }
3118
3119  // Track whether this decl-specifier declares anything.
3120  bool DeclaresAnything = true;
3121
3122  // Handle anonymous struct definitions.
3123  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3124    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3125        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3126      if (getLangOpts().CPlusPlus ||
3127          Record->getDeclContext()->isRecord())
3128        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3129
3130      DeclaresAnything = false;
3131    }
3132  }
3133
3134  // Check for Microsoft C extension: anonymous struct member.
3135  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3136      CurContext->isRecord() &&
3137      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3138    // Handle 2 kinds of anonymous struct:
3139    //   struct STRUCT;
3140    // and
3141    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3142    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3143    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3144        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3145         DS.getRepAsType().get()->isStructureType())) {
3146      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3147        << DS.getSourceRange();
3148      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3149    }
3150  }
3151
3152  // Skip all the checks below if we have a type error.
3153  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3154      (TagD && TagD->isInvalidDecl()))
3155    return TagD;
3156
3157  if (getLangOpts().CPlusPlus &&
3158      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3159    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3160      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3161          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3162        DeclaresAnything = false;
3163
3164  if (!DS.isMissingDeclaratorOk()) {
3165    // Customize diagnostic for a typedef missing a name.
3166    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3167      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3168        << DS.getSourceRange();
3169    else
3170      DeclaresAnything = false;
3171  }
3172
3173  if (DS.isModulePrivateSpecified() &&
3174      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3175    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3176      << Tag->getTagKind()
3177      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3178
3179  ActOnDocumentableDecl(TagD);
3180
3181  // C 6.7/2:
3182  //   A declaration [...] shall declare at least a declarator [...], a tag,
3183  //   or the members of an enumeration.
3184  // C++ [dcl.dcl]p3:
3185  //   [If there are no declarators], and except for the declaration of an
3186  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3187  //   names into the program, or shall redeclare a name introduced by a
3188  //   previous declaration.
3189  if (!DeclaresAnything) {
3190    // In C, we allow this as a (popular) extension / bug. Don't bother
3191    // producing further diagnostics for redundant qualifiers after this.
3192    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3193    return TagD;
3194  }
3195
3196  // C++ [dcl.stc]p1:
3197  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3198  //   init-declarator-list of the declaration shall not be empty.
3199  // C++ [dcl.fct.spec]p1:
3200  //   If a cv-qualifier appears in a decl-specifier-seq, the
3201  //   init-declarator-list of the declaration shall not be empty.
3202  //
3203  // Spurious qualifiers here appear to be valid in C.
3204  unsigned DiagID = diag::warn_standalone_specifier;
3205  if (getLangOpts().CPlusPlus)
3206    DiagID = diag::ext_standalone_specifier;
3207
3208  // Note that a linkage-specification sets a storage class, but
3209  // 'extern "C" struct foo;' is actually valid and not theoretically
3210  // useless.
3211  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3212    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3213      Diag(DS.getStorageClassSpecLoc(), DiagID)
3214        << DeclSpec::getSpecifierName(SCS);
3215
3216  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3217    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3218      << DeclSpec::getSpecifierName(TSCS);
3219  if (DS.getTypeQualifiers()) {
3220    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3221      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3222    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3223      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3224    // Restrict is covered above.
3225    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3226      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3227  }
3228
3229  // Warn about ignored type attributes, for example:
3230  // __attribute__((aligned)) struct A;
3231  // Attributes should be placed after tag to apply to type declaration.
3232  if (!DS.getAttributes().empty()) {
3233    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3234    if (TypeSpecType == DeclSpec::TST_class ||
3235        TypeSpecType == DeclSpec::TST_struct ||
3236        TypeSpecType == DeclSpec::TST_interface ||
3237        TypeSpecType == DeclSpec::TST_union ||
3238        TypeSpecType == DeclSpec::TST_enum) {
3239      AttributeList* attrs = DS.getAttributes().getList();
3240      while (attrs) {
3241        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3242        << attrs->getName()
3243        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3244            TypeSpecType == DeclSpec::TST_struct ? 1 :
3245            TypeSpecType == DeclSpec::TST_union ? 2 :
3246            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3247        attrs = attrs->getNext();
3248      }
3249    }
3250  }
3251
3252  return TagD;
3253}
3254
3255/// We are trying to inject an anonymous member into the given scope;
3256/// check if there's an existing declaration that can't be overloaded.
3257///
3258/// \return true if this is a forbidden redeclaration
3259static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3260                                         Scope *S,
3261                                         DeclContext *Owner,
3262                                         DeclarationName Name,
3263                                         SourceLocation NameLoc,
3264                                         unsigned diagnostic) {
3265  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3266                 Sema::ForRedeclaration);
3267  if (!SemaRef.LookupName(R, S)) return false;
3268
3269  if (R.getAsSingle<TagDecl>())
3270    return false;
3271
3272  // Pick a representative declaration.
3273  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3274  assert(PrevDecl && "Expected a non-null Decl");
3275
3276  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3277    return false;
3278
3279  SemaRef.Diag(NameLoc, diagnostic) << Name;
3280  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3281
3282  return true;
3283}
3284
3285/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3286/// anonymous struct or union AnonRecord into the owning context Owner
3287/// and scope S. This routine will be invoked just after we realize
3288/// that an unnamed union or struct is actually an anonymous union or
3289/// struct, e.g.,
3290///
3291/// @code
3292/// union {
3293///   int i;
3294///   float f;
3295/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3296///    // f into the surrounding scope.x
3297/// @endcode
3298///
3299/// This routine is recursive, injecting the names of nested anonymous
3300/// structs/unions into the owning context and scope as well.
3301static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3302                                                DeclContext *Owner,
3303                                                RecordDecl *AnonRecord,
3304                                                AccessSpecifier AS,
3305                              SmallVector<NamedDecl*, 2> &Chaining,
3306                                                      bool MSAnonStruct) {
3307  unsigned diagKind
3308    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3309                            : diag::err_anonymous_struct_member_redecl;
3310
3311  bool Invalid = false;
3312
3313  // Look every FieldDecl and IndirectFieldDecl with a name.
3314  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3315                               DEnd = AnonRecord->decls_end();
3316       D != DEnd; ++D) {
3317    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3318        cast<NamedDecl>(*D)->getDeclName()) {
3319      ValueDecl *VD = cast<ValueDecl>(*D);
3320      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3321                                       VD->getLocation(), diagKind)) {
3322        // C++ [class.union]p2:
3323        //   The names of the members of an anonymous union shall be
3324        //   distinct from the names of any other entity in the
3325        //   scope in which the anonymous union is declared.
3326        Invalid = true;
3327      } else {
3328        // C++ [class.union]p2:
3329        //   For the purpose of name lookup, after the anonymous union
3330        //   definition, the members of the anonymous union are
3331        //   considered to have been defined in the scope in which the
3332        //   anonymous union is declared.
3333        unsigned OldChainingSize = Chaining.size();
3334        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3335          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3336               PE = IF->chain_end(); PI != PE; ++PI)
3337            Chaining.push_back(*PI);
3338        else
3339          Chaining.push_back(VD);
3340
3341        assert(Chaining.size() >= 2);
3342        NamedDecl **NamedChain =
3343          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3344        for (unsigned i = 0; i < Chaining.size(); i++)
3345          NamedChain[i] = Chaining[i];
3346
3347        IndirectFieldDecl* IndirectField =
3348          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3349                                    VD->getIdentifier(), VD->getType(),
3350                                    NamedChain, Chaining.size());
3351
3352        IndirectField->setAccess(AS);
3353        IndirectField->setImplicit();
3354        SemaRef.PushOnScopeChains(IndirectField, S);
3355
3356        // That includes picking up the appropriate access specifier.
3357        if (AS != AS_none) IndirectField->setAccess(AS);
3358
3359        Chaining.resize(OldChainingSize);
3360      }
3361    }
3362  }
3363
3364  return Invalid;
3365}
3366
3367/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3368/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3369/// illegal input values are mapped to SC_None.
3370static StorageClass
3371StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3372  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3373  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3374         "Parser allowed 'typedef' as storage class VarDecl.");
3375  switch (StorageClassSpec) {
3376  case DeclSpec::SCS_unspecified:    return SC_None;
3377  case DeclSpec::SCS_extern:
3378    if (DS.isExternInLinkageSpec())
3379      return SC_None;
3380    return SC_Extern;
3381  case DeclSpec::SCS_static:         return SC_Static;
3382  case DeclSpec::SCS_auto:           return SC_Auto;
3383  case DeclSpec::SCS_register:       return SC_Register;
3384  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3385    // Illegal SCSs map to None: error reporting is up to the caller.
3386  case DeclSpec::SCS_mutable:        // Fall through.
3387  case DeclSpec::SCS_typedef:        return SC_None;
3388  }
3389  llvm_unreachable("unknown storage class specifier");
3390}
3391
3392/// BuildAnonymousStructOrUnion - Handle the declaration of an
3393/// anonymous structure or union. Anonymous unions are a C++ feature
3394/// (C++ [class.union]) and a C11 feature; anonymous structures
3395/// are a C11 feature and GNU C++ extension.
3396Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3397                                             AccessSpecifier AS,
3398                                             RecordDecl *Record) {
3399  DeclContext *Owner = Record->getDeclContext();
3400
3401  // Diagnose whether this anonymous struct/union is an extension.
3402  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3403    Diag(Record->getLocation(), diag::ext_anonymous_union);
3404  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3405    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3406  else if (!Record->isUnion() && !getLangOpts().C11)
3407    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3408
3409  // C and C++ require different kinds of checks for anonymous
3410  // structs/unions.
3411  bool Invalid = false;
3412  if (getLangOpts().CPlusPlus) {
3413    const char* PrevSpec = 0;
3414    unsigned DiagID;
3415    if (Record->isUnion()) {
3416      // C++ [class.union]p6:
3417      //   Anonymous unions declared in a named namespace or in the
3418      //   global namespace shall be declared static.
3419      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3420          (isa<TranslationUnitDecl>(Owner) ||
3421           (isa<NamespaceDecl>(Owner) &&
3422            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3423        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3424          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3425
3426        // Recover by adding 'static'.
3427        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3428                               PrevSpec, DiagID);
3429      }
3430      // C++ [class.union]p6:
3431      //   A storage class is not allowed in a declaration of an
3432      //   anonymous union in a class scope.
3433      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3434               isa<RecordDecl>(Owner)) {
3435        Diag(DS.getStorageClassSpecLoc(),
3436             diag::err_anonymous_union_with_storage_spec)
3437          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3438
3439        // Recover by removing the storage specifier.
3440        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3441                               SourceLocation(),
3442                               PrevSpec, DiagID);
3443      }
3444    }
3445
3446    // Ignore const/volatile/restrict qualifiers.
3447    if (DS.getTypeQualifiers()) {
3448      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3449        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3450          << Record->isUnion() << "const"
3451          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3452      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3453        Diag(DS.getVolatileSpecLoc(),
3454             diag::ext_anonymous_struct_union_qualified)
3455          << Record->isUnion() << "volatile"
3456          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3457      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3458        Diag(DS.getRestrictSpecLoc(),
3459             diag::ext_anonymous_struct_union_qualified)
3460          << Record->isUnion() << "restrict"
3461          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3462      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3463        Diag(DS.getAtomicSpecLoc(),
3464             diag::ext_anonymous_struct_union_qualified)
3465          << Record->isUnion() << "_Atomic"
3466          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3467
3468      DS.ClearTypeQualifiers();
3469    }
3470
3471    // C++ [class.union]p2:
3472    //   The member-specification of an anonymous union shall only
3473    //   define non-static data members. [Note: nested types and
3474    //   functions cannot be declared within an anonymous union. ]
3475    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3476                                 MemEnd = Record->decls_end();
3477         Mem != MemEnd; ++Mem) {
3478      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3479        // C++ [class.union]p3:
3480        //   An anonymous union shall not have private or protected
3481        //   members (clause 11).
3482        assert(FD->getAccess() != AS_none);
3483        if (FD->getAccess() != AS_public) {
3484          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3485            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3486          Invalid = true;
3487        }
3488
3489        // C++ [class.union]p1
3490        //   An object of a class with a non-trivial constructor, a non-trivial
3491        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3492        //   assignment operator cannot be a member of a union, nor can an
3493        //   array of such objects.
3494        if (CheckNontrivialField(FD))
3495          Invalid = true;
3496      } else if ((*Mem)->isImplicit()) {
3497        // Any implicit members are fine.
3498      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3499        // This is a type that showed up in an
3500        // elaborated-type-specifier inside the anonymous struct or
3501        // union, but which actually declares a type outside of the
3502        // anonymous struct or union. It's okay.
3503      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3504        if (!MemRecord->isAnonymousStructOrUnion() &&
3505            MemRecord->getDeclName()) {
3506          // Visual C++ allows type definition in anonymous struct or union.
3507          if (getLangOpts().MicrosoftExt)
3508            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3509              << (int)Record->isUnion();
3510          else {
3511            // This is a nested type declaration.
3512            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3513              << (int)Record->isUnion();
3514            Invalid = true;
3515          }
3516        } else {
3517          // This is an anonymous type definition within another anonymous type.
3518          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3519          // not part of standard C++.
3520          Diag(MemRecord->getLocation(),
3521               diag::ext_anonymous_record_with_anonymous_type)
3522            << (int)Record->isUnion();
3523        }
3524      } else if (isa<AccessSpecDecl>(*Mem)) {
3525        // Any access specifier is fine.
3526      } else {
3527        // We have something that isn't a non-static data
3528        // member. Complain about it.
3529        unsigned DK = diag::err_anonymous_record_bad_member;
3530        if (isa<TypeDecl>(*Mem))
3531          DK = diag::err_anonymous_record_with_type;
3532        else if (isa<FunctionDecl>(*Mem))
3533          DK = diag::err_anonymous_record_with_function;
3534        else if (isa<VarDecl>(*Mem))
3535          DK = diag::err_anonymous_record_with_static;
3536
3537        // Visual C++ allows type definition in anonymous struct or union.
3538        if (getLangOpts().MicrosoftExt &&
3539            DK == diag::err_anonymous_record_with_type)
3540          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3541            << (int)Record->isUnion();
3542        else {
3543          Diag((*Mem)->getLocation(), DK)
3544              << (int)Record->isUnion();
3545          Invalid = true;
3546        }
3547      }
3548    }
3549  }
3550
3551  if (!Record->isUnion() && !Owner->isRecord()) {
3552    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3553      << (int)getLangOpts().CPlusPlus;
3554    Invalid = true;
3555  }
3556
3557  // Mock up a declarator.
3558  Declarator Dc(DS, Declarator::MemberContext);
3559  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3560  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3561
3562  // Create a declaration for this anonymous struct/union.
3563  NamedDecl *Anon = 0;
3564  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3565    Anon = FieldDecl::Create(Context, OwningClass,
3566                             DS.getLocStart(),
3567                             Record->getLocation(),
3568                             /*IdentifierInfo=*/0,
3569                             Context.getTypeDeclType(Record),
3570                             TInfo,
3571                             /*BitWidth=*/0, /*Mutable=*/false,
3572                             /*InitStyle=*/ICIS_NoInit);
3573    Anon->setAccess(AS);
3574    if (getLangOpts().CPlusPlus)
3575      FieldCollector->Add(cast<FieldDecl>(Anon));
3576  } else {
3577    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3578    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3579    if (SCSpec == DeclSpec::SCS_mutable) {
3580      // mutable can only appear on non-static class members, so it's always
3581      // an error here
3582      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3583      Invalid = true;
3584      SC = SC_None;
3585    }
3586
3587    Anon = VarDecl::Create(Context, Owner,
3588                           DS.getLocStart(),
3589                           Record->getLocation(), /*IdentifierInfo=*/0,
3590                           Context.getTypeDeclType(Record),
3591                           TInfo, SC);
3592
3593    // Default-initialize the implicit variable. This initialization will be
3594    // trivial in almost all cases, except if a union member has an in-class
3595    // initializer:
3596    //   union { int n = 0; };
3597    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3598  }
3599  Anon->setImplicit();
3600
3601  // Add the anonymous struct/union object to the current
3602  // context. We'll be referencing this object when we refer to one of
3603  // its members.
3604  Owner->addDecl(Anon);
3605
3606  // Inject the members of the anonymous struct/union into the owning
3607  // context and into the identifier resolver chain for name lookup
3608  // purposes.
3609  SmallVector<NamedDecl*, 2> Chain;
3610  Chain.push_back(Anon);
3611
3612  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3613                                          Chain, false))
3614    Invalid = true;
3615
3616  // Mark this as an anonymous struct/union type. Note that we do not
3617  // do this until after we have already checked and injected the
3618  // members of this anonymous struct/union type, because otherwise
3619  // the members could be injected twice: once by DeclContext when it
3620  // builds its lookup table, and once by
3621  // InjectAnonymousStructOrUnionMembers.
3622  Record->setAnonymousStructOrUnion(true);
3623
3624  if (Invalid)
3625    Anon->setInvalidDecl();
3626
3627  return Anon;
3628}
3629
3630/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3631/// Microsoft C anonymous structure.
3632/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3633/// Example:
3634///
3635/// struct A { int a; };
3636/// struct B { struct A; int b; };
3637///
3638/// void foo() {
3639///   B var;
3640///   var.a = 3;
3641/// }
3642///
3643Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3644                                           RecordDecl *Record) {
3645
3646  // If there is no Record, get the record via the typedef.
3647  if (!Record)
3648    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3649
3650  // Mock up a declarator.
3651  Declarator Dc(DS, Declarator::TypeNameContext);
3652  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3653  assert(TInfo && "couldn't build declarator info for anonymous struct");
3654
3655  // Create a declaration for this anonymous struct.
3656  NamedDecl* Anon = FieldDecl::Create(Context,
3657                             cast<RecordDecl>(CurContext),
3658                             DS.getLocStart(),
3659                             DS.getLocStart(),
3660                             /*IdentifierInfo=*/0,
3661                             Context.getTypeDeclType(Record),
3662                             TInfo,
3663                             /*BitWidth=*/0, /*Mutable=*/false,
3664                             /*InitStyle=*/ICIS_NoInit);
3665  Anon->setImplicit();
3666
3667  // Add the anonymous struct object to the current context.
3668  CurContext->addDecl(Anon);
3669
3670  // Inject the members of the anonymous struct into the current
3671  // context and into the identifier resolver chain for name lookup
3672  // purposes.
3673  SmallVector<NamedDecl*, 2> Chain;
3674  Chain.push_back(Anon);
3675
3676  RecordDecl *RecordDef = Record->getDefinition();
3677  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3678                                                        RecordDef, AS_none,
3679                                                        Chain, true))
3680    Anon->setInvalidDecl();
3681
3682  return Anon;
3683}
3684
3685/// GetNameForDeclarator - Determine the full declaration name for the
3686/// given Declarator.
3687DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3688  return GetNameFromUnqualifiedId(D.getName());
3689}
3690
3691/// \brief Retrieves the declaration name from a parsed unqualified-id.
3692DeclarationNameInfo
3693Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3694  DeclarationNameInfo NameInfo;
3695  NameInfo.setLoc(Name.StartLocation);
3696
3697  switch (Name.getKind()) {
3698
3699  case UnqualifiedId::IK_ImplicitSelfParam:
3700  case UnqualifiedId::IK_Identifier:
3701    NameInfo.setName(Name.Identifier);
3702    NameInfo.setLoc(Name.StartLocation);
3703    return NameInfo;
3704
3705  case UnqualifiedId::IK_OperatorFunctionId:
3706    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3707                                           Name.OperatorFunctionId.Operator));
3708    NameInfo.setLoc(Name.StartLocation);
3709    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3710      = Name.OperatorFunctionId.SymbolLocations[0];
3711    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3712      = Name.EndLocation.getRawEncoding();
3713    return NameInfo;
3714
3715  case UnqualifiedId::IK_LiteralOperatorId:
3716    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3717                                                           Name.Identifier));
3718    NameInfo.setLoc(Name.StartLocation);
3719    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3720    return NameInfo;
3721
3722  case UnqualifiedId::IK_ConversionFunctionId: {
3723    TypeSourceInfo *TInfo;
3724    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3725    if (Ty.isNull())
3726      return DeclarationNameInfo();
3727    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3728                                               Context.getCanonicalType(Ty)));
3729    NameInfo.setLoc(Name.StartLocation);
3730    NameInfo.setNamedTypeInfo(TInfo);
3731    return NameInfo;
3732  }
3733
3734  case UnqualifiedId::IK_ConstructorName: {
3735    TypeSourceInfo *TInfo;
3736    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3737    if (Ty.isNull())
3738      return DeclarationNameInfo();
3739    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3740                                              Context.getCanonicalType(Ty)));
3741    NameInfo.setLoc(Name.StartLocation);
3742    NameInfo.setNamedTypeInfo(TInfo);
3743    return NameInfo;
3744  }
3745
3746  case UnqualifiedId::IK_ConstructorTemplateId: {
3747    // In well-formed code, we can only have a constructor
3748    // template-id that refers to the current context, so go there
3749    // to find the actual type being constructed.
3750    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3751    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3752      return DeclarationNameInfo();
3753
3754    // Determine the type of the class being constructed.
3755    QualType CurClassType = Context.getTypeDeclType(CurClass);
3756
3757    // FIXME: Check two things: that the template-id names the same type as
3758    // CurClassType, and that the template-id does not occur when the name
3759    // was qualified.
3760
3761    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3762                                    Context.getCanonicalType(CurClassType)));
3763    NameInfo.setLoc(Name.StartLocation);
3764    // FIXME: should we retrieve TypeSourceInfo?
3765    NameInfo.setNamedTypeInfo(0);
3766    return NameInfo;
3767  }
3768
3769  case UnqualifiedId::IK_DestructorName: {
3770    TypeSourceInfo *TInfo;
3771    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3772    if (Ty.isNull())
3773      return DeclarationNameInfo();
3774    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3775                                              Context.getCanonicalType(Ty)));
3776    NameInfo.setLoc(Name.StartLocation);
3777    NameInfo.setNamedTypeInfo(TInfo);
3778    return NameInfo;
3779  }
3780
3781  case UnqualifiedId::IK_TemplateId: {
3782    TemplateName TName = Name.TemplateId->Template.get();
3783    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3784    return Context.getNameForTemplate(TName, TNameLoc);
3785  }
3786
3787  } // switch (Name.getKind())
3788
3789  llvm_unreachable("Unknown name kind");
3790}
3791
3792static QualType getCoreType(QualType Ty) {
3793  do {
3794    if (Ty->isPointerType() || Ty->isReferenceType())
3795      Ty = Ty->getPointeeType();
3796    else if (Ty->isArrayType())
3797      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3798    else
3799      return Ty.withoutLocalFastQualifiers();
3800  } while (true);
3801}
3802
3803/// hasSimilarParameters - Determine whether the C++ functions Declaration
3804/// and Definition have "nearly" matching parameters. This heuristic is
3805/// used to improve diagnostics in the case where an out-of-line function
3806/// definition doesn't match any declaration within the class or namespace.
3807/// Also sets Params to the list of indices to the parameters that differ
3808/// between the declaration and the definition. If hasSimilarParameters
3809/// returns true and Params is empty, then all of the parameters match.
3810static bool hasSimilarParameters(ASTContext &Context,
3811                                     FunctionDecl *Declaration,
3812                                     FunctionDecl *Definition,
3813                                     SmallVectorImpl<unsigned> &Params) {
3814  Params.clear();
3815  if (Declaration->param_size() != Definition->param_size())
3816    return false;
3817  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3818    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3819    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3820
3821    // The parameter types are identical
3822    if (Context.hasSameType(DefParamTy, DeclParamTy))
3823      continue;
3824
3825    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3826    QualType DefParamBaseTy = getCoreType(DefParamTy);
3827    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3828    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3829
3830    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3831        (DeclTyName && DeclTyName == DefTyName))
3832      Params.push_back(Idx);
3833    else  // The two parameters aren't even close
3834      return false;
3835  }
3836
3837  return true;
3838}
3839
3840/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3841/// declarator needs to be rebuilt in the current instantiation.
3842/// Any bits of declarator which appear before the name are valid for
3843/// consideration here.  That's specifically the type in the decl spec
3844/// and the base type in any member-pointer chunks.
3845static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3846                                                    DeclarationName Name) {
3847  // The types we specifically need to rebuild are:
3848  //   - typenames, typeofs, and decltypes
3849  //   - types which will become injected class names
3850  // Of course, we also need to rebuild any type referencing such a
3851  // type.  It's safest to just say "dependent", but we call out a
3852  // few cases here.
3853
3854  DeclSpec &DS = D.getMutableDeclSpec();
3855  switch (DS.getTypeSpecType()) {
3856  case DeclSpec::TST_typename:
3857  case DeclSpec::TST_typeofType:
3858  case DeclSpec::TST_underlyingType:
3859  case DeclSpec::TST_atomic: {
3860    // Grab the type from the parser.
3861    TypeSourceInfo *TSI = 0;
3862    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3863    if (T.isNull() || !T->isDependentType()) break;
3864
3865    // Make sure there's a type source info.  This isn't really much
3866    // of a waste; most dependent types should have type source info
3867    // attached already.
3868    if (!TSI)
3869      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3870
3871    // Rebuild the type in the current instantiation.
3872    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3873    if (!TSI) return true;
3874
3875    // Store the new type back in the decl spec.
3876    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3877    DS.UpdateTypeRep(LocType);
3878    break;
3879  }
3880
3881  case DeclSpec::TST_decltype:
3882  case DeclSpec::TST_typeofExpr: {
3883    Expr *E = DS.getRepAsExpr();
3884    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3885    if (Result.isInvalid()) return true;
3886    DS.UpdateExprRep(Result.get());
3887    break;
3888  }
3889
3890  default:
3891    // Nothing to do for these decl specs.
3892    break;
3893  }
3894
3895  // It doesn't matter what order we do this in.
3896  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3897    DeclaratorChunk &Chunk = D.getTypeObject(I);
3898
3899    // The only type information in the declarator which can come
3900    // before the declaration name is the base type of a member
3901    // pointer.
3902    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3903      continue;
3904
3905    // Rebuild the scope specifier in-place.
3906    CXXScopeSpec &SS = Chunk.Mem.Scope();
3907    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3908      return true;
3909  }
3910
3911  return false;
3912}
3913
3914Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3915  D.setFunctionDefinitionKind(FDK_Declaration);
3916  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3917
3918  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3919      Dcl && Dcl->getDeclContext()->isFileContext())
3920    Dcl->setTopLevelDeclInObjCContainer();
3921
3922  return Dcl;
3923}
3924
3925/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3926///   If T is the name of a class, then each of the following shall have a
3927///   name different from T:
3928///     - every static data member of class T;
3929///     - every member function of class T
3930///     - every member of class T that is itself a type;
3931/// \returns true if the declaration name violates these rules.
3932bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3933                                   DeclarationNameInfo NameInfo) {
3934  DeclarationName Name = NameInfo.getName();
3935
3936  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3937    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3938      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3939      return true;
3940    }
3941
3942  return false;
3943}
3944
3945/// \brief Diagnose a declaration whose declarator-id has the given
3946/// nested-name-specifier.
3947///
3948/// \param SS The nested-name-specifier of the declarator-id.
3949///
3950/// \param DC The declaration context to which the nested-name-specifier
3951/// resolves.
3952///
3953/// \param Name The name of the entity being declared.
3954///
3955/// \param Loc The location of the name of the entity being declared.
3956///
3957/// \returns true if we cannot safely recover from this error, false otherwise.
3958bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3959                                        DeclarationName Name,
3960                                      SourceLocation Loc) {
3961  DeclContext *Cur = CurContext;
3962  while (isa<LinkageSpecDecl>(Cur))
3963    Cur = Cur->getParent();
3964
3965  // C++ [dcl.meaning]p1:
3966  //   A declarator-id shall not be qualified except for the definition
3967  //   of a member function (9.3) or static data member (9.4) outside of
3968  //   its class, the definition or explicit instantiation of a function
3969  //   or variable member of a namespace outside of its namespace, or the
3970  //   definition of an explicit specialization outside of its namespace,
3971  //   or the declaration of a friend function that is a member of
3972  //   another class or namespace (11.3). [...]
3973
3974  // The user provided a superfluous scope specifier that refers back to the
3975  // class or namespaces in which the entity is already declared.
3976  //
3977  // class X {
3978  //   void X::f();
3979  // };
3980  if (Cur->Equals(DC)) {
3981    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3982                                   : diag::err_member_extra_qualification)
3983      << Name << FixItHint::CreateRemoval(SS.getRange());
3984    SS.clear();
3985    return false;
3986  }
3987
3988  // Check whether the qualifying scope encloses the scope of the original
3989  // declaration.
3990  if (!Cur->Encloses(DC)) {
3991    if (Cur->isRecord())
3992      Diag(Loc, diag::err_member_qualification)
3993        << Name << SS.getRange();
3994    else if (isa<TranslationUnitDecl>(DC))
3995      Diag(Loc, diag::err_invalid_declarator_global_scope)
3996        << Name << SS.getRange();
3997    else if (isa<FunctionDecl>(Cur))
3998      Diag(Loc, diag::err_invalid_declarator_in_function)
3999        << Name << SS.getRange();
4000    else
4001      Diag(Loc, diag::err_invalid_declarator_scope)
4002      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4003
4004    return true;
4005  }
4006
4007  if (Cur->isRecord()) {
4008    // Cannot qualify members within a class.
4009    Diag(Loc, diag::err_member_qualification)
4010      << Name << SS.getRange();
4011    SS.clear();
4012
4013    // C++ constructors and destructors with incorrect scopes can break
4014    // our AST invariants by having the wrong underlying types. If
4015    // that's the case, then drop this declaration entirely.
4016    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4017         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4018        !Context.hasSameType(Name.getCXXNameType(),
4019                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4020      return true;
4021
4022    return false;
4023  }
4024
4025  // C++11 [dcl.meaning]p1:
4026  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4027  //   not begin with a decltype-specifer"
4028  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4029  while (SpecLoc.getPrefix())
4030    SpecLoc = SpecLoc.getPrefix();
4031  if (dyn_cast_or_null<DecltypeType>(
4032        SpecLoc.getNestedNameSpecifier()->getAsType()))
4033    Diag(Loc, diag::err_decltype_in_declarator)
4034      << SpecLoc.getTypeLoc().getSourceRange();
4035
4036  return false;
4037}
4038
4039NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4040                                  MultiTemplateParamsArg TemplateParamLists) {
4041  // TODO: consider using NameInfo for diagnostic.
4042  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4043  DeclarationName Name = NameInfo.getName();
4044
4045  // All of these full declarators require an identifier.  If it doesn't have
4046  // one, the ParsedFreeStandingDeclSpec action should be used.
4047  if (!Name) {
4048    if (!D.isInvalidType())  // Reject this if we think it is valid.
4049      Diag(D.getDeclSpec().getLocStart(),
4050           diag::err_declarator_need_ident)
4051        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4052    return 0;
4053  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4054    return 0;
4055
4056  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4057  // we find one that is.
4058  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4059         (S->getFlags() & Scope::TemplateParamScope) != 0)
4060    S = S->getParent();
4061
4062  DeclContext *DC = CurContext;
4063  if (D.getCXXScopeSpec().isInvalid())
4064    D.setInvalidType();
4065  else if (D.getCXXScopeSpec().isSet()) {
4066    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4067                                        UPPC_DeclarationQualifier))
4068      return 0;
4069
4070    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4071    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4072    if (!DC) {
4073      // If we could not compute the declaration context, it's because the
4074      // declaration context is dependent but does not refer to a class,
4075      // class template, or class template partial specialization. Complain
4076      // and return early, to avoid the coming semantic disaster.
4077      Diag(D.getIdentifierLoc(),
4078           diag::err_template_qualified_declarator_no_match)
4079        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4080        << D.getCXXScopeSpec().getRange();
4081      return 0;
4082    }
4083    bool IsDependentContext = DC->isDependentContext();
4084
4085    if (!IsDependentContext &&
4086        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4087      return 0;
4088
4089    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4090      Diag(D.getIdentifierLoc(),
4091           diag::err_member_def_undefined_record)
4092        << Name << DC << D.getCXXScopeSpec().getRange();
4093      D.setInvalidType();
4094    } else if (!D.getDeclSpec().isFriendSpecified()) {
4095      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4096                                      Name, D.getIdentifierLoc())) {
4097        if (DC->isRecord())
4098          return 0;
4099
4100        D.setInvalidType();
4101      }
4102    }
4103
4104    // Check whether we need to rebuild the type of the given
4105    // declaration in the current instantiation.
4106    if (EnteringContext && IsDependentContext &&
4107        TemplateParamLists.size() != 0) {
4108      ContextRAII SavedContext(*this, DC);
4109      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4110        D.setInvalidType();
4111    }
4112  }
4113
4114  if (DiagnoseClassNameShadow(DC, NameInfo))
4115    // If this is a typedef, we'll end up spewing multiple diagnostics.
4116    // Just return early; it's safer.
4117    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4118      return 0;
4119
4120  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4121  QualType R = TInfo->getType();
4122
4123  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4124                                      UPPC_DeclarationType))
4125    D.setInvalidType();
4126
4127  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4128                        ForRedeclaration);
4129
4130  // See if this is a redefinition of a variable in the same scope.
4131  if (!D.getCXXScopeSpec().isSet()) {
4132    bool IsLinkageLookup = false;
4133
4134    // If the declaration we're planning to build will be a function
4135    // or object with linkage, then look for another declaration with
4136    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4137    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4138      /* Do nothing*/;
4139    else if (R->isFunctionType()) {
4140      if (CurContext->isFunctionOrMethod() ||
4141          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4142        IsLinkageLookup = true;
4143    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4144      IsLinkageLookup = true;
4145    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4146             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4147      IsLinkageLookup = true;
4148
4149    if (IsLinkageLookup)
4150      Previous.clear(LookupRedeclarationWithLinkage);
4151
4152    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4153  } else { // Something like "int foo::x;"
4154    LookupQualifiedName(Previous, DC);
4155
4156    // C++ [dcl.meaning]p1:
4157    //   When the declarator-id is qualified, the declaration shall refer to a
4158    //  previously declared member of the class or namespace to which the
4159    //  qualifier refers (or, in the case of a namespace, of an element of the
4160    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4161    //  thereof; [...]
4162    //
4163    // Note that we already checked the context above, and that we do not have
4164    // enough information to make sure that Previous contains the declaration
4165    // we want to match. For example, given:
4166    //
4167    //   class X {
4168    //     void f();
4169    //     void f(float);
4170    //   };
4171    //
4172    //   void X::f(int) { } // ill-formed
4173    //
4174    // In this case, Previous will point to the overload set
4175    // containing the two f's declared in X, but neither of them
4176    // matches.
4177
4178    // C++ [dcl.meaning]p1:
4179    //   [...] the member shall not merely have been introduced by a
4180    //   using-declaration in the scope of the class or namespace nominated by
4181    //   the nested-name-specifier of the declarator-id.
4182    RemoveUsingDecls(Previous);
4183  }
4184
4185  if (Previous.isSingleResult() &&
4186      Previous.getFoundDecl()->isTemplateParameter()) {
4187    // Maybe we will complain about the shadowed template parameter.
4188    if (!D.isInvalidType())
4189      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4190                                      Previous.getFoundDecl());
4191
4192    // Just pretend that we didn't see the previous declaration.
4193    Previous.clear();
4194  }
4195
4196  // In C++, the previous declaration we find might be a tag type
4197  // (class or enum). In this case, the new declaration will hide the
4198  // tag type. Note that this does does not apply if we're declaring a
4199  // typedef (C++ [dcl.typedef]p4).
4200  if (Previous.isSingleTagDecl() &&
4201      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4202    Previous.clear();
4203
4204  // Check that there are no default arguments other than in the parameters
4205  // of a function declaration (C++ only).
4206  if (getLangOpts().CPlusPlus)
4207    CheckExtraCXXDefaultArguments(D);
4208
4209  NamedDecl *New;
4210
4211  bool AddToScope = true;
4212  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4213    if (TemplateParamLists.size()) {
4214      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4215      return 0;
4216    }
4217
4218    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4219  } else if (R->isFunctionType()) {
4220    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4221                                  TemplateParamLists,
4222                                  AddToScope);
4223  } else {
4224    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4225                                  TemplateParamLists);
4226  }
4227
4228  if (New == 0)
4229    return 0;
4230
4231  // If this has an identifier and is not an invalid redeclaration or
4232  // function template specialization, add it to the scope stack.
4233  if (New->getDeclName() && AddToScope &&
4234       !(D.isRedeclaration() && New->isInvalidDecl()))
4235    PushOnScopeChains(New, S);
4236
4237  return New;
4238}
4239
4240/// Helper method to turn variable array types into constant array
4241/// types in certain situations which would otherwise be errors (for
4242/// GCC compatibility).
4243static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4244                                                    ASTContext &Context,
4245                                                    bool &SizeIsNegative,
4246                                                    llvm::APSInt &Oversized) {
4247  // This method tries to turn a variable array into a constant
4248  // array even when the size isn't an ICE.  This is necessary
4249  // for compatibility with code that depends on gcc's buggy
4250  // constant expression folding, like struct {char x[(int)(char*)2];}
4251  SizeIsNegative = false;
4252  Oversized = 0;
4253
4254  if (T->isDependentType())
4255    return QualType();
4256
4257  QualifierCollector Qs;
4258  const Type *Ty = Qs.strip(T);
4259
4260  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4261    QualType Pointee = PTy->getPointeeType();
4262    QualType FixedType =
4263        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4264                                            Oversized);
4265    if (FixedType.isNull()) return FixedType;
4266    FixedType = Context.getPointerType(FixedType);
4267    return Qs.apply(Context, FixedType);
4268  }
4269  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4270    QualType Inner = PTy->getInnerType();
4271    QualType FixedType =
4272        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4273                                            Oversized);
4274    if (FixedType.isNull()) return FixedType;
4275    FixedType = Context.getParenType(FixedType);
4276    return Qs.apply(Context, FixedType);
4277  }
4278
4279  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4280  if (!VLATy)
4281    return QualType();
4282  // FIXME: We should probably handle this case
4283  if (VLATy->getElementType()->isVariablyModifiedType())
4284    return QualType();
4285
4286  llvm::APSInt Res;
4287  if (!VLATy->getSizeExpr() ||
4288      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4289    return QualType();
4290
4291  // Check whether the array size is negative.
4292  if (Res.isSigned() && Res.isNegative()) {
4293    SizeIsNegative = true;
4294    return QualType();
4295  }
4296
4297  // Check whether the array is too large to be addressed.
4298  unsigned ActiveSizeBits
4299    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4300                                              Res);
4301  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4302    Oversized = Res;
4303    return QualType();
4304  }
4305
4306  return Context.getConstantArrayType(VLATy->getElementType(),
4307                                      Res, ArrayType::Normal, 0);
4308}
4309
4310static void
4311FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4312  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4313    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4314    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4315                                      DstPTL.getPointeeLoc());
4316    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4317    return;
4318  }
4319  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4320    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4321    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4322                                      DstPTL.getInnerLoc());
4323    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4324    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4325    return;
4326  }
4327  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4328  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4329  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4330  TypeLoc DstElemTL = DstATL.getElementLoc();
4331  DstElemTL.initializeFullCopy(SrcElemTL);
4332  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4333  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4334  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4335}
4336
4337/// Helper method to turn variable array types into constant array
4338/// types in certain situations which would otherwise be errors (for
4339/// GCC compatibility).
4340static TypeSourceInfo*
4341TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4342                                              ASTContext &Context,
4343                                              bool &SizeIsNegative,
4344                                              llvm::APSInt &Oversized) {
4345  QualType FixedTy
4346    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4347                                          SizeIsNegative, Oversized);
4348  if (FixedTy.isNull())
4349    return 0;
4350  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4351  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4352                                    FixedTInfo->getTypeLoc());
4353  return FixedTInfo;
4354}
4355
4356/// \brief Register the given locally-scoped extern "C" declaration so
4357/// that it can be found later for redeclarations
4358void
4359Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4360                                       const LookupResult &Previous,
4361                                       Scope *S) {
4362  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4363         "Decl is not a locally-scoped decl!");
4364  // Note that we have a locally-scoped external with this name.
4365  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4366}
4367
4368llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4369Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4370  if (ExternalSource) {
4371    // Load locally-scoped external decls from the external source.
4372    SmallVector<NamedDecl *, 4> Decls;
4373    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4374    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4375      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4376        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4377      if (Pos == LocallyScopedExternCDecls.end())
4378        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4379    }
4380  }
4381
4382  return LocallyScopedExternCDecls.find(Name);
4383}
4384
4385/// \brief Diagnose function specifiers on a declaration of an identifier that
4386/// does not identify a function.
4387void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4388  // FIXME: We should probably indicate the identifier in question to avoid
4389  // confusion for constructs like "inline int a(), b;"
4390  if (DS.isInlineSpecified())
4391    Diag(DS.getInlineSpecLoc(),
4392         diag::err_inline_non_function);
4393
4394  if (DS.isVirtualSpecified())
4395    Diag(DS.getVirtualSpecLoc(),
4396         diag::err_virtual_non_function);
4397
4398  if (DS.isExplicitSpecified())
4399    Diag(DS.getExplicitSpecLoc(),
4400         diag::err_explicit_non_function);
4401
4402  if (DS.isNoreturnSpecified())
4403    Diag(DS.getNoreturnSpecLoc(),
4404         diag::err_noreturn_non_function);
4405}
4406
4407NamedDecl*
4408Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4409                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4410  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4411  if (D.getCXXScopeSpec().isSet()) {
4412    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4413      << D.getCXXScopeSpec().getRange();
4414    D.setInvalidType();
4415    // Pretend we didn't see the scope specifier.
4416    DC = CurContext;
4417    Previous.clear();
4418  }
4419
4420  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4421
4422  if (D.getDeclSpec().isConstexprSpecified())
4423    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4424      << 1;
4425
4426  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4427    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4428      << D.getName().getSourceRange();
4429    return 0;
4430  }
4431
4432  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4433  if (!NewTD) return 0;
4434
4435  // Handle attributes prior to checking for duplicates in MergeVarDecl
4436  ProcessDeclAttributes(S, NewTD, D);
4437
4438  CheckTypedefForVariablyModifiedType(S, NewTD);
4439
4440  bool Redeclaration = D.isRedeclaration();
4441  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4442  D.setRedeclaration(Redeclaration);
4443  return ND;
4444}
4445
4446void
4447Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4448  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4449  // then it shall have block scope.
4450  // Note that variably modified types must be fixed before merging the decl so
4451  // that redeclarations will match.
4452  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4453  QualType T = TInfo->getType();
4454  if (T->isVariablyModifiedType()) {
4455    getCurFunction()->setHasBranchProtectedScope();
4456
4457    if (S->getFnParent() == 0) {
4458      bool SizeIsNegative;
4459      llvm::APSInt Oversized;
4460      TypeSourceInfo *FixedTInfo =
4461        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4462                                                      SizeIsNegative,
4463                                                      Oversized);
4464      if (FixedTInfo) {
4465        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4466        NewTD->setTypeSourceInfo(FixedTInfo);
4467      } else {
4468        if (SizeIsNegative)
4469          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4470        else if (T->isVariableArrayType())
4471          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4472        else if (Oversized.getBoolValue())
4473          Diag(NewTD->getLocation(), diag::err_array_too_large)
4474            << Oversized.toString(10);
4475        else
4476          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4477        NewTD->setInvalidDecl();
4478      }
4479    }
4480  }
4481}
4482
4483
4484/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4485/// declares a typedef-name, either using the 'typedef' type specifier or via
4486/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4487NamedDecl*
4488Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4489                           LookupResult &Previous, bool &Redeclaration) {
4490  // Merge the decl with the existing one if appropriate. If the decl is
4491  // in an outer scope, it isn't the same thing.
4492  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4493                       /*ExplicitInstantiationOrSpecialization=*/false);
4494  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4495  if (!Previous.empty()) {
4496    Redeclaration = true;
4497    MergeTypedefNameDecl(NewTD, Previous);
4498  }
4499
4500  // If this is the C FILE type, notify the AST context.
4501  if (IdentifierInfo *II = NewTD->getIdentifier())
4502    if (!NewTD->isInvalidDecl() &&
4503        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4504      if (II->isStr("FILE"))
4505        Context.setFILEDecl(NewTD);
4506      else if (II->isStr("jmp_buf"))
4507        Context.setjmp_bufDecl(NewTD);
4508      else if (II->isStr("sigjmp_buf"))
4509        Context.setsigjmp_bufDecl(NewTD);
4510      else if (II->isStr("ucontext_t"))
4511        Context.setucontext_tDecl(NewTD);
4512    }
4513
4514  return NewTD;
4515}
4516
4517/// \brief Determines whether the given declaration is an out-of-scope
4518/// previous declaration.
4519///
4520/// This routine should be invoked when name lookup has found a
4521/// previous declaration (PrevDecl) that is not in the scope where a
4522/// new declaration by the same name is being introduced. If the new
4523/// declaration occurs in a local scope, previous declarations with
4524/// linkage may still be considered previous declarations (C99
4525/// 6.2.2p4-5, C++ [basic.link]p6).
4526///
4527/// \param PrevDecl the previous declaration found by name
4528/// lookup
4529///
4530/// \param DC the context in which the new declaration is being
4531/// declared.
4532///
4533/// \returns true if PrevDecl is an out-of-scope previous declaration
4534/// for a new delcaration with the same name.
4535static bool
4536isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4537                                ASTContext &Context) {
4538  if (!PrevDecl)
4539    return false;
4540
4541  if (!PrevDecl->hasLinkage())
4542    return false;
4543
4544  if (Context.getLangOpts().CPlusPlus) {
4545    // C++ [basic.link]p6:
4546    //   If there is a visible declaration of an entity with linkage
4547    //   having the same name and type, ignoring entities declared
4548    //   outside the innermost enclosing namespace scope, the block
4549    //   scope declaration declares that same entity and receives the
4550    //   linkage of the previous declaration.
4551    DeclContext *OuterContext = DC->getRedeclContext();
4552    if (!OuterContext->isFunctionOrMethod())
4553      // This rule only applies to block-scope declarations.
4554      return false;
4555
4556    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4557    if (PrevOuterContext->isRecord())
4558      // We found a member function: ignore it.
4559      return false;
4560
4561    // Find the innermost enclosing namespace for the new and
4562    // previous declarations.
4563    OuterContext = OuterContext->getEnclosingNamespaceContext();
4564    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4565
4566    // The previous declaration is in a different namespace, so it
4567    // isn't the same function.
4568    if (!OuterContext->Equals(PrevOuterContext))
4569      return false;
4570  }
4571
4572  return true;
4573}
4574
4575static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4576  CXXScopeSpec &SS = D.getCXXScopeSpec();
4577  if (!SS.isSet()) return;
4578  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4579}
4580
4581bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4582  QualType type = decl->getType();
4583  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4584  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4585    // Various kinds of declaration aren't allowed to be __autoreleasing.
4586    unsigned kind = -1U;
4587    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4588      if (var->hasAttr<BlocksAttr>())
4589        kind = 0; // __block
4590      else if (!var->hasLocalStorage())
4591        kind = 1; // global
4592    } else if (isa<ObjCIvarDecl>(decl)) {
4593      kind = 3; // ivar
4594    } else if (isa<FieldDecl>(decl)) {
4595      kind = 2; // field
4596    }
4597
4598    if (kind != -1U) {
4599      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4600        << kind;
4601    }
4602  } else if (lifetime == Qualifiers::OCL_None) {
4603    // Try to infer lifetime.
4604    if (!type->isObjCLifetimeType())
4605      return false;
4606
4607    lifetime = type->getObjCARCImplicitLifetime();
4608    type = Context.getLifetimeQualifiedType(type, lifetime);
4609    decl->setType(type);
4610  }
4611
4612  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4613    // Thread-local variables cannot have lifetime.
4614    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4615        var->getTLSKind()) {
4616      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4617        << var->getType();
4618      return true;
4619    }
4620  }
4621
4622  return false;
4623}
4624
4625static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4626  // 'weak' only applies to declarations with external linkage.
4627  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4628    if (!ND.isExternallyVisible()) {
4629      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4630      ND.dropAttr<WeakAttr>();
4631    }
4632  }
4633  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4634    if (ND.isExternallyVisible()) {
4635      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4636      ND.dropAttr<WeakRefAttr>();
4637    }
4638  }
4639}
4640
4641/// Given that we are within the definition of the given function,
4642/// will that definition behave like C99's 'inline', where the
4643/// definition is discarded except for optimization purposes?
4644static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4645  // Try to avoid calling GetGVALinkageForFunction.
4646
4647  // All cases of this require the 'inline' keyword.
4648  if (!FD->isInlined()) return false;
4649
4650  // This is only possible in C++ with the gnu_inline attribute.
4651  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4652    return false;
4653
4654  // Okay, go ahead and call the relatively-more-expensive function.
4655
4656#ifndef NDEBUG
4657  // AST quite reasonably asserts that it's working on a function
4658  // definition.  We don't really have a way to tell it that we're
4659  // currently defining the function, so just lie to it in +Asserts
4660  // builds.  This is an awful hack.
4661  FD->setLazyBody(1);
4662#endif
4663
4664  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4665
4666#ifndef NDEBUG
4667  FD->setLazyBody(0);
4668#endif
4669
4670  return isC99Inline;
4671}
4672
4673static bool shouldConsiderLinkage(const VarDecl *VD) {
4674  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4675  if (DC->isFunctionOrMethod())
4676    return VD->hasExternalStorage();
4677  if (DC->isFileContext())
4678    return true;
4679  if (DC->isRecord())
4680    return false;
4681  llvm_unreachable("Unexpected context");
4682}
4683
4684static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4685  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4686  if (DC->isFileContext() || DC->isFunctionOrMethod())
4687    return true;
4688  if (DC->isRecord())
4689    return false;
4690  llvm_unreachable("Unexpected context");
4691}
4692
4693NamedDecl*
4694Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4695                              TypeSourceInfo *TInfo, LookupResult &Previous,
4696                              MultiTemplateParamsArg TemplateParamLists) {
4697  QualType R = TInfo->getType();
4698  DeclarationName Name = GetNameForDeclarator(D).getName();
4699
4700  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4701  VarDecl::StorageClass SC =
4702    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4703
4704  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4705    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4706    // half array type (unless the cl_khr_fp16 extension is enabled).
4707    if (Context.getBaseElementType(R)->isHalfType()) {
4708      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4709      D.setInvalidType();
4710    }
4711  }
4712
4713  if (SCSpec == DeclSpec::SCS_mutable) {
4714    // mutable can only appear on non-static class members, so it's always
4715    // an error here
4716    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4717    D.setInvalidType();
4718    SC = SC_None;
4719  }
4720
4721  IdentifierInfo *II = Name.getAsIdentifierInfo();
4722  if (!II) {
4723    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4724      << Name;
4725    return 0;
4726  }
4727
4728  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4729
4730  if (!DC->isRecord() && S->getFnParent() == 0) {
4731    // C99 6.9p2: The storage-class specifiers auto and register shall not
4732    // appear in the declaration specifiers in an external declaration.
4733    if (SC == SC_Auto || SC == SC_Register) {
4734
4735      // If this is a register variable with an asm label specified, then this
4736      // is a GNU extension.
4737      if (SC == SC_Register && D.getAsmLabel())
4738        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4739      else
4740        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4741      D.setInvalidType();
4742    }
4743  }
4744
4745  if (getLangOpts().OpenCL) {
4746    // Set up the special work-group-local storage class for variables in the
4747    // OpenCL __local address space.
4748    if (R.getAddressSpace() == LangAS::opencl_local) {
4749      SC = SC_OpenCLWorkGroupLocal;
4750    }
4751
4752    // OpenCL v1.2 s6.9.b p4:
4753    // The sampler type cannot be used with the __local and __global address
4754    // space qualifiers.
4755    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4756      R.getAddressSpace() == LangAS::opencl_global)) {
4757      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4758    }
4759
4760    // OpenCL 1.2 spec, p6.9 r:
4761    // The event type cannot be used to declare a program scope variable.
4762    // The event type cannot be used with the __local, __constant and __global
4763    // address space qualifiers.
4764    if (R->isEventT()) {
4765      if (S->getParent() == 0) {
4766        Diag(D.getLocStart(), diag::err_event_t_global_var);
4767        D.setInvalidType();
4768      }
4769
4770      if (R.getAddressSpace()) {
4771        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4772        D.setInvalidType();
4773      }
4774    }
4775  }
4776
4777  bool isExplicitSpecialization = false;
4778  VarDecl *NewVD;
4779  if (!getLangOpts().CPlusPlus) {
4780    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4781                            D.getIdentifierLoc(), II,
4782                            R, TInfo, SC);
4783
4784    if (D.isInvalidType())
4785      NewVD->setInvalidDecl();
4786  } else {
4787    if (DC->isRecord() && !CurContext->isRecord()) {
4788      // This is an out-of-line definition of a static data member.
4789      if (SC == SC_Static) {
4790        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4791             diag::err_static_out_of_line)
4792          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4793      }
4794    }
4795    if (SC == SC_Static && CurContext->isRecord()) {
4796      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4797        if (RD->isLocalClass())
4798          Diag(D.getIdentifierLoc(),
4799               diag::err_static_data_member_not_allowed_in_local_class)
4800            << Name << RD->getDeclName();
4801
4802        // C++98 [class.union]p1: If a union contains a static data member,
4803        // the program is ill-formed. C++11 drops this restriction.
4804        if (RD->isUnion())
4805          Diag(D.getIdentifierLoc(),
4806               getLangOpts().CPlusPlus11
4807                 ? diag::warn_cxx98_compat_static_data_member_in_union
4808                 : diag::ext_static_data_member_in_union) << Name;
4809        // We conservatively disallow static data members in anonymous structs.
4810        else if (!RD->getDeclName())
4811          Diag(D.getIdentifierLoc(),
4812               diag::err_static_data_member_not_allowed_in_anon_struct)
4813            << Name << RD->isUnion();
4814      }
4815    }
4816
4817    // Match up the template parameter lists with the scope specifier, then
4818    // determine whether we have a template or a template specialization.
4819    isExplicitSpecialization = false;
4820    bool Invalid = false;
4821    if (TemplateParameterList *TemplateParams
4822        = MatchTemplateParametersToScopeSpecifier(
4823                                  D.getDeclSpec().getLocStart(),
4824                                                  D.getIdentifierLoc(),
4825                                                  D.getCXXScopeSpec(),
4826                                                  TemplateParamLists.data(),
4827                                                  TemplateParamLists.size(),
4828                                                  /*never a friend*/ false,
4829                                                  isExplicitSpecialization,
4830                                                  Invalid)) {
4831      if (TemplateParams->size() > 0) {
4832        // There is no such thing as a variable template.
4833        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4834          << II
4835          << SourceRange(TemplateParams->getTemplateLoc(),
4836                         TemplateParams->getRAngleLoc());
4837        return 0;
4838      } else {
4839        // There is an extraneous 'template<>' for this variable. Complain
4840        // about it, but allow the declaration of the variable.
4841        Diag(TemplateParams->getTemplateLoc(),
4842             diag::err_template_variable_noparams)
4843          << II
4844          << SourceRange(TemplateParams->getTemplateLoc(),
4845                         TemplateParams->getRAngleLoc());
4846      }
4847    }
4848
4849    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4850                            D.getIdentifierLoc(), II,
4851                            R, TInfo, SC);
4852
4853    // If this decl has an auto type in need of deduction, make a note of the
4854    // Decl so we can diagnose uses of it in its own initializer.
4855    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
4856      ParsingInitForAutoVars.insert(NewVD);
4857
4858    if (D.isInvalidType() || Invalid)
4859      NewVD->setInvalidDecl();
4860
4861    SetNestedNameSpecifier(NewVD, D);
4862
4863    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4864      NewVD->setTemplateParameterListsInfo(Context,
4865                                           TemplateParamLists.size(),
4866                                           TemplateParamLists.data());
4867    }
4868
4869    if (D.getDeclSpec().isConstexprSpecified())
4870      NewVD->setConstexpr(true);
4871  }
4872
4873  // Set the lexical context. If the declarator has a C++ scope specifier, the
4874  // lexical context will be different from the semantic context.
4875  NewVD->setLexicalDeclContext(CurContext);
4876
4877  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
4878    if (NewVD->hasLocalStorage()) {
4879      // C++11 [dcl.stc]p4:
4880      //   When thread_local is applied to a variable of block scope the
4881      //   storage-class-specifier static is implied if it does not appear
4882      //   explicitly.
4883      // Core issue: 'static' is not implied if the variable is declared
4884      //   'extern'.
4885      if (SCSpec == DeclSpec::SCS_unspecified &&
4886          TSCS == DeclSpec::TSCS_thread_local &&
4887          DC->isFunctionOrMethod())
4888        NewVD->setTSCSpec(TSCS);
4889      else
4890        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4891             diag::err_thread_non_global)
4892          << DeclSpec::getSpecifierName(TSCS);
4893    } else if (!Context.getTargetInfo().isTLSSupported())
4894      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4895           diag::err_thread_unsupported);
4896    else
4897      NewVD->setTSCSpec(TSCS);
4898  }
4899
4900  // C99 6.7.4p3
4901  //   An inline definition of a function with external linkage shall
4902  //   not contain a definition of a modifiable object with static or
4903  //   thread storage duration...
4904  // We only apply this when the function is required to be defined
4905  // elsewhere, i.e. when the function is not 'extern inline'.  Note
4906  // that a local variable with thread storage duration still has to
4907  // be marked 'static'.  Also note that it's possible to get these
4908  // semantics in C++ using __attribute__((gnu_inline)).
4909  if (SC == SC_Static && S->getFnParent() != 0 &&
4910      !NewVD->getType().isConstQualified()) {
4911    FunctionDecl *CurFD = getCurFunctionDecl();
4912    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
4913      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4914           diag::warn_static_local_in_extern_inline);
4915      MaybeSuggestAddingStaticToDecl(CurFD);
4916    }
4917  }
4918
4919  if (D.getDeclSpec().isModulePrivateSpecified()) {
4920    if (isExplicitSpecialization)
4921      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4922        << 2
4923        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4924    else if (NewVD->hasLocalStorage())
4925      Diag(NewVD->getLocation(), diag::err_module_private_local)
4926        << 0 << NewVD->getDeclName()
4927        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4928        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4929    else
4930      NewVD->setModulePrivate();
4931  }
4932
4933  // Handle attributes prior to checking for duplicates in MergeVarDecl
4934  ProcessDeclAttributes(S, NewVD, D);
4935
4936  if (NewVD->hasAttrs())
4937    CheckAlignasUnderalignment(NewVD);
4938
4939  if (getLangOpts().CUDA) {
4940    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4941    // storage [duration]."
4942    if (SC == SC_None && S->getFnParent() != 0 &&
4943        (NewVD->hasAttr<CUDASharedAttr>() ||
4944         NewVD->hasAttr<CUDAConstantAttr>())) {
4945      NewVD->setStorageClass(SC_Static);
4946    }
4947  }
4948
4949  // In auto-retain/release, infer strong retension for variables of
4950  // retainable type.
4951  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4952    NewVD->setInvalidDecl();
4953
4954  // Handle GNU asm-label extension (encoded as an attribute).
4955  if (Expr *E = (Expr*)D.getAsmLabel()) {
4956    // The parser guarantees this is a string.
4957    StringLiteral *SE = cast<StringLiteral>(E);
4958    StringRef Label = SE->getString();
4959    if (S->getFnParent() != 0) {
4960      switch (SC) {
4961      case SC_None:
4962      case SC_Auto:
4963        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4964        break;
4965      case SC_Register:
4966        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4967          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4968        break;
4969      case SC_Static:
4970      case SC_Extern:
4971      case SC_PrivateExtern:
4972      case SC_OpenCLWorkGroupLocal:
4973        break;
4974      }
4975    }
4976
4977    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4978                                                Context, Label));
4979  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4980    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4981      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4982    if (I != ExtnameUndeclaredIdentifiers.end()) {
4983      NewVD->addAttr(I->second);
4984      ExtnameUndeclaredIdentifiers.erase(I);
4985    }
4986  }
4987
4988  // Diagnose shadowed variables before filtering for scope.
4989  if (!D.getCXXScopeSpec().isSet())
4990    CheckShadow(S, NewVD, Previous);
4991
4992  // Don't consider existing declarations that are in a different
4993  // scope and are out-of-semantic-context declarations (if the new
4994  // declaration has linkage).
4995  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
4996                       isExplicitSpecialization);
4997
4998  if (!getLangOpts().CPlusPlus) {
4999    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5000  } else {
5001    // Merge the decl with the existing one if appropriate.
5002    if (!Previous.empty()) {
5003      if (Previous.isSingleResult() &&
5004          isa<FieldDecl>(Previous.getFoundDecl()) &&
5005          D.getCXXScopeSpec().isSet()) {
5006        // The user tried to define a non-static data member
5007        // out-of-line (C++ [dcl.meaning]p1).
5008        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5009          << D.getCXXScopeSpec().getRange();
5010        Previous.clear();
5011        NewVD->setInvalidDecl();
5012      }
5013    } else if (D.getCXXScopeSpec().isSet()) {
5014      // No previous declaration in the qualifying scope.
5015      Diag(D.getIdentifierLoc(), diag::err_no_member)
5016        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5017        << D.getCXXScopeSpec().getRange();
5018      NewVD->setInvalidDecl();
5019    }
5020
5021    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5022
5023    // This is an explicit specialization of a static data member. Check it.
5024    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
5025        CheckMemberSpecialization(NewVD, Previous))
5026      NewVD->setInvalidDecl();
5027  }
5028
5029  ProcessPragmaWeak(S, NewVD);
5030  checkAttributesAfterMerging(*this, *NewVD);
5031
5032  // If this is a locally-scoped extern C variable, update the map of
5033  // such variables.
5034  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
5035      !NewVD->isInvalidDecl())
5036    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
5037
5038  return NewVD;
5039}
5040
5041/// \brief Diagnose variable or built-in function shadowing.  Implements
5042/// -Wshadow.
5043///
5044/// This method is called whenever a VarDecl is added to a "useful"
5045/// scope.
5046///
5047/// \param S the scope in which the shadowing name is being declared
5048/// \param R the lookup of the name
5049///
5050void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5051  // Return if warning is ignored.
5052  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5053        DiagnosticsEngine::Ignored)
5054    return;
5055
5056  // Don't diagnose declarations at file scope.
5057  if (D->hasGlobalStorage())
5058    return;
5059
5060  DeclContext *NewDC = D->getDeclContext();
5061
5062  // Only diagnose if we're shadowing an unambiguous field or variable.
5063  if (R.getResultKind() != LookupResult::Found)
5064    return;
5065
5066  NamedDecl* ShadowedDecl = R.getFoundDecl();
5067  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5068    return;
5069
5070  // Fields are not shadowed by variables in C++ static methods.
5071  if (isa<FieldDecl>(ShadowedDecl))
5072    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5073      if (MD->isStatic())
5074        return;
5075
5076  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5077    if (shadowedVar->isExternC()) {
5078      // For shadowing external vars, make sure that we point to the global
5079      // declaration, not a locally scoped extern declaration.
5080      for (VarDecl::redecl_iterator
5081             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5082           I != E; ++I)
5083        if (I->isFileVarDecl()) {
5084          ShadowedDecl = *I;
5085          break;
5086        }
5087    }
5088
5089  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5090
5091  // Only warn about certain kinds of shadowing for class members.
5092  if (NewDC && NewDC->isRecord()) {
5093    // In particular, don't warn about shadowing non-class members.
5094    if (!OldDC->isRecord())
5095      return;
5096
5097    // TODO: should we warn about static data members shadowing
5098    // static data members from base classes?
5099
5100    // TODO: don't diagnose for inaccessible shadowed members.
5101    // This is hard to do perfectly because we might friend the
5102    // shadowing context, but that's just a false negative.
5103  }
5104
5105  // Determine what kind of declaration we're shadowing.
5106  unsigned Kind;
5107  if (isa<RecordDecl>(OldDC)) {
5108    if (isa<FieldDecl>(ShadowedDecl))
5109      Kind = 3; // field
5110    else
5111      Kind = 2; // static data member
5112  } else if (OldDC->isFileContext())
5113    Kind = 1; // global
5114  else
5115    Kind = 0; // local
5116
5117  DeclarationName Name = R.getLookupName();
5118
5119  // Emit warning and note.
5120  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5121  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5122}
5123
5124/// \brief Check -Wshadow without the advantage of a previous lookup.
5125void Sema::CheckShadow(Scope *S, VarDecl *D) {
5126  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5127        DiagnosticsEngine::Ignored)
5128    return;
5129
5130  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5131                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5132  LookupName(R, S);
5133  CheckShadow(S, D, R);
5134}
5135
5136template<typename T>
5137static bool mayConflictWithNonVisibleExternC(const T *ND) {
5138  const DeclContext *DC = ND->getDeclContext();
5139  if (DC->getRedeclContext()->isTranslationUnit())
5140    return true;
5141
5142  // We know that is the first decl we see, other than function local
5143  // extern C ones. If this is C++ and the decl is not in a extern C context
5144  // it cannot have C language linkage. Avoid calling isExternC in that case.
5145  // We need to this because of code like
5146  //
5147  // namespace { struct bar {}; }
5148  // auto foo = bar();
5149  //
5150  // This code runs before the init of foo is set, and therefore before
5151  // the type of foo is known. Not knowing the type we cannot know its linkage
5152  // unless it is in an extern C block.
5153  if (!ND->isInExternCContext()) {
5154    const ASTContext &Context = ND->getASTContext();
5155    if (Context.getLangOpts().CPlusPlus)
5156      return false;
5157  }
5158
5159  return ND->isExternC();
5160}
5161
5162void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5163  // If the decl is already known invalid, don't check it.
5164  if (NewVD->isInvalidDecl())
5165    return;
5166
5167  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5168  QualType T = TInfo->getType();
5169
5170  // Defer checking an 'auto' type until its initializer is attached.
5171  if (T->isUndeducedType())
5172    return;
5173
5174  if (T->isObjCObjectType()) {
5175    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5176      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5177    T = Context.getObjCObjectPointerType(T);
5178    NewVD->setType(T);
5179  }
5180
5181  // Emit an error if an address space was applied to decl with local storage.
5182  // This includes arrays of objects with address space qualifiers, but not
5183  // automatic variables that point to other address spaces.
5184  // ISO/IEC TR 18037 S5.1.2
5185  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5186    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5187    NewVD->setInvalidDecl();
5188    return;
5189  }
5190
5191  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5192  // __constant address space.
5193  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5194      && T.getAddressSpace() != LangAS::opencl_constant
5195      && !T->isSamplerT()){
5196    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5197    NewVD->setInvalidDecl();
5198    return;
5199  }
5200
5201  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5202  // scope.
5203  if ((getLangOpts().OpenCLVersion >= 120)
5204      && NewVD->isStaticLocal()) {
5205    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5206    NewVD->setInvalidDecl();
5207    return;
5208  }
5209
5210  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5211      && !NewVD->hasAttr<BlocksAttr>()) {
5212    if (getLangOpts().getGC() != LangOptions::NonGC)
5213      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5214    else {
5215      assert(!getLangOpts().ObjCAutoRefCount);
5216      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5217    }
5218  }
5219
5220  bool isVM = T->isVariablyModifiedType();
5221  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5222      NewVD->hasAttr<BlocksAttr>())
5223    getCurFunction()->setHasBranchProtectedScope();
5224
5225  if ((isVM && NewVD->hasLinkage()) ||
5226      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5227    bool SizeIsNegative;
5228    llvm::APSInt Oversized;
5229    TypeSourceInfo *FixedTInfo =
5230      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5231                                                    SizeIsNegative, Oversized);
5232    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5233      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5234      // FIXME: This won't give the correct result for
5235      // int a[10][n];
5236      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5237
5238      if (NewVD->isFileVarDecl())
5239        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5240        << SizeRange;
5241      else if (NewVD->isStaticLocal())
5242        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5243        << SizeRange;
5244      else
5245        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5246        << SizeRange;
5247      NewVD->setInvalidDecl();
5248      return;
5249    }
5250
5251    if (FixedTInfo == 0) {
5252      if (NewVD->isFileVarDecl())
5253        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5254      else
5255        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5256      NewVD->setInvalidDecl();
5257      return;
5258    }
5259
5260    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5261    NewVD->setType(FixedTInfo->getType());
5262    NewVD->setTypeSourceInfo(FixedTInfo);
5263  }
5264
5265  if (T->isVoidType() && NewVD->isThisDeclarationADefinition()) {
5266    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5267      << T;
5268    NewVD->setInvalidDecl();
5269    return;
5270  }
5271
5272  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5273    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5274    NewVD->setInvalidDecl();
5275    return;
5276  }
5277
5278  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5279    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5280    NewVD->setInvalidDecl();
5281    return;
5282  }
5283
5284  if (NewVD->isConstexpr() && !T->isDependentType() &&
5285      RequireLiteralType(NewVD->getLocation(), T,
5286                         diag::err_constexpr_var_non_literal)) {
5287    // Can't perform this check until the type is deduced.
5288    NewVD->setInvalidDecl();
5289    return;
5290  }
5291}
5292
5293/// \brief Perform semantic checking on a newly-created variable
5294/// declaration.
5295///
5296/// This routine performs all of the type-checking required for a
5297/// variable declaration once it has been built. It is used both to
5298/// check variables after they have been parsed and their declarators
5299/// have been translated into a declaration, and to check variables
5300/// that have been instantiated from a template.
5301///
5302/// Sets NewVD->isInvalidDecl() if an error was encountered.
5303///
5304/// Returns true if the variable declaration is a redeclaration.
5305bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5306                                    LookupResult &Previous) {
5307  CheckVariableDeclarationType(NewVD);
5308
5309  // If the decl is already known invalid, don't check it.
5310  if (NewVD->isInvalidDecl())
5311    return false;
5312
5313  // If we did not find anything by this name, look for a non-visible
5314  // extern "C" declaration with the same name.
5315  //
5316  // Clang has a lot of problems with extern local declarations.
5317  // The actual standards text here is:
5318  //
5319  // C++11 [basic.link]p6:
5320  //   The name of a function declared in block scope and the name
5321  //   of a variable declared by a block scope extern declaration
5322  //   have linkage. If there is a visible declaration of an entity
5323  //   with linkage having the same name and type, ignoring entities
5324  //   declared outside the innermost enclosing namespace scope, the
5325  //   block scope declaration declares that same entity and
5326  //   receives the linkage of the previous declaration.
5327  //
5328  // C11 6.2.7p4:
5329  //   For an identifier with internal or external linkage declared
5330  //   in a scope in which a prior declaration of that identifier is
5331  //   visible, if the prior declaration specifies internal or
5332  //   external linkage, the type of the identifier at the later
5333  //   declaration becomes the composite type.
5334  //
5335  // The most important point here is that we're not allowed to
5336  // update our understanding of the type according to declarations
5337  // not in scope.
5338  bool PreviousWasHidden = false;
5339  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5340    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5341      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5342    if (Pos != LocallyScopedExternCDecls.end()) {
5343      Previous.addDecl(Pos->second);
5344      PreviousWasHidden = true;
5345    }
5346  }
5347
5348  // Filter out any non-conflicting previous declarations.
5349  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5350
5351  if (!Previous.empty()) {
5352    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5353    return true;
5354  }
5355  return false;
5356}
5357
5358/// \brief Data used with FindOverriddenMethod
5359struct FindOverriddenMethodData {
5360  Sema *S;
5361  CXXMethodDecl *Method;
5362};
5363
5364/// \brief Member lookup function that determines whether a given C++
5365/// method overrides a method in a base class, to be used with
5366/// CXXRecordDecl::lookupInBases().
5367static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5368                                 CXXBasePath &Path,
5369                                 void *UserData) {
5370  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5371
5372  FindOverriddenMethodData *Data
5373    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5374
5375  DeclarationName Name = Data->Method->getDeclName();
5376
5377  // FIXME: Do we care about other names here too?
5378  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5379    // We really want to find the base class destructor here.
5380    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5381    CanQualType CT = Data->S->Context.getCanonicalType(T);
5382
5383    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5384  }
5385
5386  for (Path.Decls = BaseRecord->lookup(Name);
5387       !Path.Decls.empty();
5388       Path.Decls = Path.Decls.slice(1)) {
5389    NamedDecl *D = Path.Decls.front();
5390    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5391      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5392        return true;
5393    }
5394  }
5395
5396  return false;
5397}
5398
5399namespace {
5400  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5401}
5402/// \brief Report an error regarding overriding, along with any relevant
5403/// overriden methods.
5404///
5405/// \param DiagID the primary error to report.
5406/// \param MD the overriding method.
5407/// \param OEK which overrides to include as notes.
5408static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5409                            OverrideErrorKind OEK = OEK_All) {
5410  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5411  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5412                                      E = MD->end_overridden_methods();
5413       I != E; ++I) {
5414    // This check (& the OEK parameter) could be replaced by a predicate, but
5415    // without lambdas that would be overkill. This is still nicer than writing
5416    // out the diag loop 3 times.
5417    if ((OEK == OEK_All) ||
5418        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5419        (OEK == OEK_Deleted && (*I)->isDeleted()))
5420      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5421  }
5422}
5423
5424/// AddOverriddenMethods - See if a method overrides any in the base classes,
5425/// and if so, check that it's a valid override and remember it.
5426bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5427  // Look for virtual methods in base classes that this method might override.
5428  CXXBasePaths Paths;
5429  FindOverriddenMethodData Data;
5430  Data.Method = MD;
5431  Data.S = this;
5432  bool hasDeletedOverridenMethods = false;
5433  bool hasNonDeletedOverridenMethods = false;
5434  bool AddedAny = false;
5435  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5436    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5437         E = Paths.found_decls_end(); I != E; ++I) {
5438      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5439        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5440        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5441            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5442            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5443            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5444          hasDeletedOverridenMethods |= OldMD->isDeleted();
5445          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5446          AddedAny = true;
5447        }
5448      }
5449    }
5450  }
5451
5452  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5453    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5454  }
5455  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5456    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5457  }
5458
5459  return AddedAny;
5460}
5461
5462namespace {
5463  // Struct for holding all of the extra arguments needed by
5464  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5465  struct ActOnFDArgs {
5466    Scope *S;
5467    Declarator &D;
5468    MultiTemplateParamsArg TemplateParamLists;
5469    bool AddToScope;
5470  };
5471}
5472
5473namespace {
5474
5475// Callback to only accept typo corrections that have a non-zero edit distance.
5476// Also only accept corrections that have the same parent decl.
5477class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5478 public:
5479  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5480                            CXXRecordDecl *Parent)
5481      : Context(Context), OriginalFD(TypoFD),
5482        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5483
5484  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5485    if (candidate.getEditDistance() == 0)
5486      return false;
5487
5488    SmallVector<unsigned, 1> MismatchedParams;
5489    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5490                                          CDeclEnd = candidate.end();
5491         CDecl != CDeclEnd; ++CDecl) {
5492      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5493
5494      if (FD && !FD->hasBody() &&
5495          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5496        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5497          CXXRecordDecl *Parent = MD->getParent();
5498          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5499            return true;
5500        } else if (!ExpectedParent) {
5501          return true;
5502        }
5503      }
5504    }
5505
5506    return false;
5507  }
5508
5509 private:
5510  ASTContext &Context;
5511  FunctionDecl *OriginalFD;
5512  CXXRecordDecl *ExpectedParent;
5513};
5514
5515}
5516
5517/// \brief Generate diagnostics for an invalid function redeclaration.
5518///
5519/// This routine handles generating the diagnostic messages for an invalid
5520/// function redeclaration, including finding possible similar declarations
5521/// or performing typo correction if there are no previous declarations with
5522/// the same name.
5523///
5524/// Returns a NamedDecl iff typo correction was performed and substituting in
5525/// the new declaration name does not cause new errors.
5526static NamedDecl* DiagnoseInvalidRedeclaration(
5527    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5528    ActOnFDArgs &ExtraArgs) {
5529  NamedDecl *Result = NULL;
5530  DeclarationName Name = NewFD->getDeclName();
5531  DeclContext *NewDC = NewFD->getDeclContext();
5532  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5533                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5534  SmallVector<unsigned, 1> MismatchedParams;
5535  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5536  TypoCorrection Correction;
5537  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5538                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5539  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5540                                  : diag::err_member_def_does_not_match;
5541
5542  NewFD->setInvalidDecl();
5543  SemaRef.LookupQualifiedName(Prev, NewDC);
5544  assert(!Prev.isAmbiguous() &&
5545         "Cannot have an ambiguity in previous-declaration lookup");
5546  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5547  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5548                                      MD ? MD->getParent() : 0);
5549  if (!Prev.empty()) {
5550    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5551         Func != FuncEnd; ++Func) {
5552      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5553      if (FD &&
5554          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5555        // Add 1 to the index so that 0 can mean the mismatch didn't
5556        // involve a parameter
5557        unsigned ParamNum =
5558            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5559        NearMatches.push_back(std::make_pair(FD, ParamNum));
5560      }
5561    }
5562  // If the qualified name lookup yielded nothing, try typo correction
5563  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5564                                         Prev.getLookupKind(), 0, 0,
5565                                         Validator, NewDC))) {
5566    // Trap errors.
5567    Sema::SFINAETrap Trap(SemaRef);
5568
5569    // Set up everything for the call to ActOnFunctionDeclarator
5570    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5571                              ExtraArgs.D.getIdentifierLoc());
5572    Previous.clear();
5573    Previous.setLookupName(Correction.getCorrection());
5574    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5575                                    CDeclEnd = Correction.end();
5576         CDecl != CDeclEnd; ++CDecl) {
5577      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5578      if (FD && !FD->hasBody() &&
5579          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5580        Previous.addDecl(FD);
5581      }
5582    }
5583    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5584    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5585    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5586    // eliminate the need for the parameter pack ExtraArgs.
5587    Result = SemaRef.ActOnFunctionDeclarator(
5588        ExtraArgs.S, ExtraArgs.D,
5589        Correction.getCorrectionDecl()->getDeclContext(),
5590        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5591        ExtraArgs.AddToScope);
5592    if (Trap.hasErrorOccurred()) {
5593      // Pretend the typo correction never occurred
5594      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5595                                ExtraArgs.D.getIdentifierLoc());
5596      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5597      Previous.clear();
5598      Previous.setLookupName(Name);
5599      Result = NULL;
5600    } else {
5601      for (LookupResult::iterator Func = Previous.begin(),
5602                               FuncEnd = Previous.end();
5603           Func != FuncEnd; ++Func) {
5604        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5605          NearMatches.push_back(std::make_pair(FD, 0));
5606      }
5607    }
5608    if (NearMatches.empty()) {
5609      // Ignore the correction if it didn't yield any close FunctionDecl matches
5610      Correction = TypoCorrection();
5611    } else {
5612      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5613                             : diag::err_member_def_does_not_match_suggest;
5614    }
5615  }
5616
5617  if (Correction) {
5618    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5619    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5620    // turn causes the correction to fully qualify the name. If we fix
5621    // CorrectTypo to minimally qualify then this change should be good.
5622    SourceRange FixItLoc(NewFD->getLocation());
5623    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5624    if (Correction.getCorrectionSpecifier() && SS.isValid())
5625      FixItLoc.setBegin(SS.getBeginLoc());
5626    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5627        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5628        << FixItHint::CreateReplacement(
5629            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5630  } else {
5631    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5632        << Name << NewDC << NewFD->getLocation();
5633  }
5634
5635  bool NewFDisConst = false;
5636  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5637    NewFDisConst = NewMD->isConst();
5638
5639  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5640       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5641       NearMatch != NearMatchEnd; ++NearMatch) {
5642    FunctionDecl *FD = NearMatch->first;
5643    bool FDisConst = false;
5644    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5645      FDisConst = MD->isConst();
5646
5647    if (unsigned Idx = NearMatch->second) {
5648      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5649      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5650      if (Loc.isInvalid()) Loc = FD->getLocation();
5651      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5652          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5653    } else if (Correction) {
5654      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5655          << Correction.getQuoted(SemaRef.getLangOpts());
5656    } else if (FDisConst != NewFDisConst) {
5657      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5658          << NewFDisConst << FD->getSourceRange().getEnd();
5659    } else
5660      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5661  }
5662  return Result;
5663}
5664
5665static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5666                                                          Declarator &D) {
5667  switch (D.getDeclSpec().getStorageClassSpec()) {
5668  default: llvm_unreachable("Unknown storage class!");
5669  case DeclSpec::SCS_auto:
5670  case DeclSpec::SCS_register:
5671  case DeclSpec::SCS_mutable:
5672    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5673                 diag::err_typecheck_sclass_func);
5674    D.setInvalidType();
5675    break;
5676  case DeclSpec::SCS_unspecified: break;
5677  case DeclSpec::SCS_extern:
5678    if (D.getDeclSpec().isExternInLinkageSpec())
5679      return SC_None;
5680    return SC_Extern;
5681  case DeclSpec::SCS_static: {
5682    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5683      // C99 6.7.1p5:
5684      //   The declaration of an identifier for a function that has
5685      //   block scope shall have no explicit storage-class specifier
5686      //   other than extern
5687      // See also (C++ [dcl.stc]p4).
5688      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5689                   diag::err_static_block_func);
5690      break;
5691    } else
5692      return SC_Static;
5693  }
5694  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5695  }
5696
5697  // No explicit storage class has already been returned
5698  return SC_None;
5699}
5700
5701static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5702                                           DeclContext *DC, QualType &R,
5703                                           TypeSourceInfo *TInfo,
5704                                           FunctionDecl::StorageClass SC,
5705                                           bool &IsVirtualOkay) {
5706  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5707  DeclarationName Name = NameInfo.getName();
5708
5709  FunctionDecl *NewFD = 0;
5710  bool isInline = D.getDeclSpec().isInlineSpecified();
5711
5712  if (!SemaRef.getLangOpts().CPlusPlus) {
5713    // Determine whether the function was written with a
5714    // prototype. This true when:
5715    //   - there is a prototype in the declarator, or
5716    //   - the type R of the function is some kind of typedef or other reference
5717    //     to a type name (which eventually refers to a function type).
5718    bool HasPrototype =
5719      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5720      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5721
5722    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5723                                 D.getLocStart(), NameInfo, R,
5724                                 TInfo, SC, isInline,
5725                                 HasPrototype, false);
5726    if (D.isInvalidType())
5727      NewFD->setInvalidDecl();
5728
5729    // Set the lexical context.
5730    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5731
5732    return NewFD;
5733  }
5734
5735  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5736  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5737
5738  // Check that the return type is not an abstract class type.
5739  // For record types, this is done by the AbstractClassUsageDiagnoser once
5740  // the class has been completely parsed.
5741  if (!DC->isRecord() &&
5742      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5743                                     R->getAs<FunctionType>()->getResultType(),
5744                                     diag::err_abstract_type_in_decl,
5745                                     SemaRef.AbstractReturnType))
5746    D.setInvalidType();
5747
5748  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5749    // This is a C++ constructor declaration.
5750    assert(DC->isRecord() &&
5751           "Constructors can only be declared in a member context");
5752
5753    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5754    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5755                                      D.getLocStart(), NameInfo,
5756                                      R, TInfo, isExplicit, isInline,
5757                                      /*isImplicitlyDeclared=*/false,
5758                                      isConstexpr);
5759
5760  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5761    // This is a C++ destructor declaration.
5762    if (DC->isRecord()) {
5763      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5764      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5765      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5766                                        SemaRef.Context, Record,
5767                                        D.getLocStart(),
5768                                        NameInfo, R, TInfo, isInline,
5769                                        /*isImplicitlyDeclared=*/false);
5770
5771      // If the class is complete, then we now create the implicit exception
5772      // specification. If the class is incomplete or dependent, we can't do
5773      // it yet.
5774      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5775          Record->getDefinition() && !Record->isBeingDefined() &&
5776          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5777        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5778      }
5779
5780      IsVirtualOkay = true;
5781      return NewDD;
5782
5783    } else {
5784      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5785      D.setInvalidType();
5786
5787      // Create a FunctionDecl to satisfy the function definition parsing
5788      // code path.
5789      return FunctionDecl::Create(SemaRef.Context, DC,
5790                                  D.getLocStart(),
5791                                  D.getIdentifierLoc(), Name, R, TInfo,
5792                                  SC, isInline,
5793                                  /*hasPrototype=*/true, isConstexpr);
5794    }
5795
5796  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5797    if (!DC->isRecord()) {
5798      SemaRef.Diag(D.getIdentifierLoc(),
5799           diag::err_conv_function_not_member);
5800      return 0;
5801    }
5802
5803    SemaRef.CheckConversionDeclarator(D, R, SC);
5804    IsVirtualOkay = true;
5805    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5806                                     D.getLocStart(), NameInfo,
5807                                     R, TInfo, isInline, isExplicit,
5808                                     isConstexpr, SourceLocation());
5809
5810  } else if (DC->isRecord()) {
5811    // If the name of the function is the same as the name of the record,
5812    // then this must be an invalid constructor that has a return type.
5813    // (The parser checks for a return type and makes the declarator a
5814    // constructor if it has no return type).
5815    if (Name.getAsIdentifierInfo() &&
5816        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5817      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5818        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5819        << SourceRange(D.getIdentifierLoc());
5820      return 0;
5821    }
5822
5823    // This is a C++ method declaration.
5824    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
5825                                               cast<CXXRecordDecl>(DC),
5826                                               D.getLocStart(), NameInfo, R,
5827                                               TInfo, SC, isInline,
5828                                               isConstexpr, SourceLocation());
5829    IsVirtualOkay = !Ret->isStatic();
5830    return Ret;
5831  } else {
5832    // Determine whether the function was written with a
5833    // prototype. This true when:
5834    //   - we're in C++ (where every function has a prototype),
5835    return FunctionDecl::Create(SemaRef.Context, DC,
5836                                D.getLocStart(),
5837                                NameInfo, R, TInfo, SC, isInline,
5838                                true/*HasPrototype*/, isConstexpr);
5839  }
5840}
5841
5842void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5843  // In C++, the empty parameter-type-list must be spelled "void"; a
5844  // typedef of void is not permitted.
5845  if (getLangOpts().CPlusPlus &&
5846      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5847    bool IsTypeAlias = false;
5848    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5849      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5850    else if (const TemplateSpecializationType *TST =
5851               Param->getType()->getAs<TemplateSpecializationType>())
5852      IsTypeAlias = TST->isTypeAlias();
5853    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5854      << IsTypeAlias;
5855  }
5856}
5857
5858NamedDecl*
5859Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5860                              TypeSourceInfo *TInfo, LookupResult &Previous,
5861                              MultiTemplateParamsArg TemplateParamLists,
5862                              bool &AddToScope) {
5863  QualType R = TInfo->getType();
5864
5865  assert(R.getTypePtr()->isFunctionType());
5866
5867  // TODO: consider using NameInfo for diagnostic.
5868  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5869  DeclarationName Name = NameInfo.getName();
5870  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5871
5872  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5873    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5874         diag::err_invalid_thread)
5875      << DeclSpec::getSpecifierName(TSCS);
5876
5877  // Do not allow returning a objc interface by-value.
5878  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5879    Diag(D.getIdentifierLoc(),
5880         diag::err_object_cannot_be_passed_returned_by_value) << 0
5881    << R->getAs<FunctionType>()->getResultType()
5882    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5883
5884    QualType T = R->getAs<FunctionType>()->getResultType();
5885    T = Context.getObjCObjectPointerType(T);
5886    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5887      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5888      R = Context.getFunctionType(T,
5889                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5890                                                     FPT->getNumArgs()),
5891                                  EPI);
5892    }
5893    else if (isa<FunctionNoProtoType>(R))
5894      R = Context.getFunctionNoProtoType(T);
5895  }
5896
5897  bool isFriend = false;
5898  FunctionTemplateDecl *FunctionTemplate = 0;
5899  bool isExplicitSpecialization = false;
5900  bool isFunctionTemplateSpecialization = false;
5901
5902  bool isDependentClassScopeExplicitSpecialization = false;
5903  bool HasExplicitTemplateArgs = false;
5904  TemplateArgumentListInfo TemplateArgs;
5905
5906  bool isVirtualOkay = false;
5907
5908  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5909                                              isVirtualOkay);
5910  if (!NewFD) return 0;
5911
5912  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5913    NewFD->setTopLevelDeclInObjCContainer();
5914
5915  if (getLangOpts().CPlusPlus) {
5916    bool isInline = D.getDeclSpec().isInlineSpecified();
5917    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5918    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5919    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5920    isFriend = D.getDeclSpec().isFriendSpecified();
5921    if (isFriend && !isInline && D.isFunctionDefinition()) {
5922      // C++ [class.friend]p5
5923      //   A function can be defined in a friend declaration of a
5924      //   class . . . . Such a function is implicitly inline.
5925      NewFD->setImplicitlyInline();
5926    }
5927
5928    // If this is a method defined in an __interface, and is not a constructor
5929    // or an overloaded operator, then set the pure flag (isVirtual will already
5930    // return true).
5931    if (const CXXRecordDecl *Parent =
5932          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5933      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5934        NewFD->setPure(true);
5935    }
5936
5937    SetNestedNameSpecifier(NewFD, D);
5938    isExplicitSpecialization = false;
5939    isFunctionTemplateSpecialization = false;
5940    if (D.isInvalidType())
5941      NewFD->setInvalidDecl();
5942
5943    // Set the lexical context. If the declarator has a C++
5944    // scope specifier, or is the object of a friend declaration, the
5945    // lexical context will be different from the semantic context.
5946    NewFD->setLexicalDeclContext(CurContext);
5947
5948    // Match up the template parameter lists with the scope specifier, then
5949    // determine whether we have a template or a template specialization.
5950    bool Invalid = false;
5951    if (TemplateParameterList *TemplateParams
5952          = MatchTemplateParametersToScopeSpecifier(
5953                                  D.getDeclSpec().getLocStart(),
5954                                  D.getIdentifierLoc(),
5955                                  D.getCXXScopeSpec(),
5956                                  TemplateParamLists.data(),
5957                                  TemplateParamLists.size(),
5958                                  isFriend,
5959                                  isExplicitSpecialization,
5960                                  Invalid)) {
5961      if (TemplateParams->size() > 0) {
5962        // This is a function template
5963
5964        // Check that we can declare a template here.
5965        if (CheckTemplateDeclScope(S, TemplateParams))
5966          return 0;
5967
5968        // A destructor cannot be a template.
5969        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5970          Diag(NewFD->getLocation(), diag::err_destructor_template);
5971          return 0;
5972        }
5973
5974        // If we're adding a template to a dependent context, we may need to
5975        // rebuilding some of the types used within the template parameter list,
5976        // now that we know what the current instantiation is.
5977        if (DC->isDependentContext()) {
5978          ContextRAII SavedContext(*this, DC);
5979          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5980            Invalid = true;
5981        }
5982
5983
5984        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5985                                                        NewFD->getLocation(),
5986                                                        Name, TemplateParams,
5987                                                        NewFD);
5988        FunctionTemplate->setLexicalDeclContext(CurContext);
5989        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5990
5991        // For source fidelity, store the other template param lists.
5992        if (TemplateParamLists.size() > 1) {
5993          NewFD->setTemplateParameterListsInfo(Context,
5994                                               TemplateParamLists.size() - 1,
5995                                               TemplateParamLists.data());
5996        }
5997      } else {
5998        // This is a function template specialization.
5999        isFunctionTemplateSpecialization = true;
6000        // For source fidelity, store all the template param lists.
6001        NewFD->setTemplateParameterListsInfo(Context,
6002                                             TemplateParamLists.size(),
6003                                             TemplateParamLists.data());
6004
6005        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6006        if (isFriend) {
6007          // We want to remove the "template<>", found here.
6008          SourceRange RemoveRange = TemplateParams->getSourceRange();
6009
6010          // If we remove the template<> and the name is not a
6011          // template-id, we're actually silently creating a problem:
6012          // the friend declaration will refer to an untemplated decl,
6013          // and clearly the user wants a template specialization.  So
6014          // we need to insert '<>' after the name.
6015          SourceLocation InsertLoc;
6016          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6017            InsertLoc = D.getName().getSourceRange().getEnd();
6018            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6019          }
6020
6021          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6022            << Name << RemoveRange
6023            << FixItHint::CreateRemoval(RemoveRange)
6024            << FixItHint::CreateInsertion(InsertLoc, "<>");
6025        }
6026      }
6027    }
6028    else {
6029      // All template param lists were matched against the scope specifier:
6030      // this is NOT (an explicit specialization of) a template.
6031      if (TemplateParamLists.size() > 0)
6032        // For source fidelity, store all the template param lists.
6033        NewFD->setTemplateParameterListsInfo(Context,
6034                                             TemplateParamLists.size(),
6035                                             TemplateParamLists.data());
6036    }
6037
6038    if (Invalid) {
6039      NewFD->setInvalidDecl();
6040      if (FunctionTemplate)
6041        FunctionTemplate->setInvalidDecl();
6042    }
6043
6044    // C++ [dcl.fct.spec]p5:
6045    //   The virtual specifier shall only be used in declarations of
6046    //   nonstatic class member functions that appear within a
6047    //   member-specification of a class declaration; see 10.3.
6048    //
6049    if (isVirtual && !NewFD->isInvalidDecl()) {
6050      if (!isVirtualOkay) {
6051        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6052             diag::err_virtual_non_function);
6053      } else if (!CurContext->isRecord()) {
6054        // 'virtual' was specified outside of the class.
6055        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6056             diag::err_virtual_out_of_class)
6057          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6058      } else if (NewFD->getDescribedFunctionTemplate()) {
6059        // C++ [temp.mem]p3:
6060        //  A member function template shall not be virtual.
6061        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6062             diag::err_virtual_member_function_template)
6063          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6064      } else {
6065        // Okay: Add virtual to the method.
6066        NewFD->setVirtualAsWritten(true);
6067      }
6068
6069      if (getLangOpts().CPlusPlus1y &&
6070          NewFD->getResultType()->isUndeducedType())
6071        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6072    }
6073
6074    // C++ [dcl.fct.spec]p3:
6075    //  The inline specifier shall not appear on a block scope function
6076    //  declaration.
6077    if (isInline && !NewFD->isInvalidDecl()) {
6078      if (CurContext->isFunctionOrMethod()) {
6079        // 'inline' is not allowed on block scope function declaration.
6080        Diag(D.getDeclSpec().getInlineSpecLoc(),
6081             diag::err_inline_declaration_block_scope) << Name
6082          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6083      }
6084    }
6085
6086    // C++ [dcl.fct.spec]p6:
6087    //  The explicit specifier shall be used only in the declaration of a
6088    //  constructor or conversion function within its class definition;
6089    //  see 12.3.1 and 12.3.2.
6090    if (isExplicit && !NewFD->isInvalidDecl()) {
6091      if (!CurContext->isRecord()) {
6092        // 'explicit' was specified outside of the class.
6093        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6094             diag::err_explicit_out_of_class)
6095          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6096      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6097                 !isa<CXXConversionDecl>(NewFD)) {
6098        // 'explicit' was specified on a function that wasn't a constructor
6099        // or conversion function.
6100        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6101             diag::err_explicit_non_ctor_or_conv_function)
6102          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6103      }
6104    }
6105
6106    if (isConstexpr) {
6107      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6108      // are implicitly inline.
6109      NewFD->setImplicitlyInline();
6110
6111      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6112      // be either constructors or to return a literal type. Therefore,
6113      // destructors cannot be declared constexpr.
6114      if (isa<CXXDestructorDecl>(NewFD))
6115        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6116    }
6117
6118    // If __module_private__ was specified, mark the function accordingly.
6119    if (D.getDeclSpec().isModulePrivateSpecified()) {
6120      if (isFunctionTemplateSpecialization) {
6121        SourceLocation ModulePrivateLoc
6122          = D.getDeclSpec().getModulePrivateSpecLoc();
6123        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6124          << 0
6125          << FixItHint::CreateRemoval(ModulePrivateLoc);
6126      } else {
6127        NewFD->setModulePrivate();
6128        if (FunctionTemplate)
6129          FunctionTemplate->setModulePrivate();
6130      }
6131    }
6132
6133    if (isFriend) {
6134      // For now, claim that the objects have no previous declaration.
6135      if (FunctionTemplate) {
6136        FunctionTemplate->setObjectOfFriendDecl(false);
6137        FunctionTemplate->setAccess(AS_public);
6138      }
6139      NewFD->setObjectOfFriendDecl(false);
6140      NewFD->setAccess(AS_public);
6141    }
6142
6143    // If a function is defined as defaulted or deleted, mark it as such now.
6144    switch (D.getFunctionDefinitionKind()) {
6145      case FDK_Declaration:
6146      case FDK_Definition:
6147        break;
6148
6149      case FDK_Defaulted:
6150        NewFD->setDefaulted();
6151        break;
6152
6153      case FDK_Deleted:
6154        NewFD->setDeletedAsWritten();
6155        break;
6156    }
6157
6158    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6159        D.isFunctionDefinition()) {
6160      // C++ [class.mfct]p2:
6161      //   A member function may be defined (8.4) in its class definition, in
6162      //   which case it is an inline member function (7.1.2)
6163      NewFD->setImplicitlyInline();
6164    }
6165
6166    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6167        !CurContext->isRecord()) {
6168      // C++ [class.static]p1:
6169      //   A data or function member of a class may be declared static
6170      //   in a class definition, in which case it is a static member of
6171      //   the class.
6172
6173      // Complain about the 'static' specifier if it's on an out-of-line
6174      // member function definition.
6175      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6176           diag::err_static_out_of_line)
6177        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6178    }
6179
6180    // C++11 [except.spec]p15:
6181    //   A deallocation function with no exception-specification is treated
6182    //   as if it were specified with noexcept(true).
6183    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6184    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6185         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6186        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6187      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6188      EPI.ExceptionSpecType = EST_BasicNoexcept;
6189      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6190                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6191                                                         FPT->getNumArgs()),
6192                                             EPI));
6193    }
6194  }
6195
6196  // Filter out previous declarations that don't match the scope.
6197  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6198                       isExplicitSpecialization ||
6199                       isFunctionTemplateSpecialization);
6200
6201  // Handle GNU asm-label extension (encoded as an attribute).
6202  if (Expr *E = (Expr*) D.getAsmLabel()) {
6203    // The parser guarantees this is a string.
6204    StringLiteral *SE = cast<StringLiteral>(E);
6205    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6206                                                SE->getString()));
6207  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6208    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6209      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6210    if (I != ExtnameUndeclaredIdentifiers.end()) {
6211      NewFD->addAttr(I->second);
6212      ExtnameUndeclaredIdentifiers.erase(I);
6213    }
6214  }
6215
6216  // Copy the parameter declarations from the declarator D to the function
6217  // declaration NewFD, if they are available.  First scavenge them into Params.
6218  SmallVector<ParmVarDecl*, 16> Params;
6219  if (D.isFunctionDeclarator()) {
6220    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6221
6222    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6223    // function that takes no arguments, not a function that takes a
6224    // single void argument.
6225    // We let through "const void" here because Sema::GetTypeForDeclarator
6226    // already checks for that case.
6227    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6228        FTI.ArgInfo[0].Param &&
6229        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6230      // Empty arg list, don't push any params.
6231      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6232    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6233      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6234        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6235        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6236        Param->setDeclContext(NewFD);
6237        Params.push_back(Param);
6238
6239        if (Param->isInvalidDecl())
6240          NewFD->setInvalidDecl();
6241      }
6242    }
6243
6244  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6245    // When we're declaring a function with a typedef, typeof, etc as in the
6246    // following example, we'll need to synthesize (unnamed)
6247    // parameters for use in the declaration.
6248    //
6249    // @code
6250    // typedef void fn(int);
6251    // fn f;
6252    // @endcode
6253
6254    // Synthesize a parameter for each argument type.
6255    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6256         AE = FT->arg_type_end(); AI != AE; ++AI) {
6257      ParmVarDecl *Param =
6258        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6259      Param->setScopeInfo(0, Params.size());
6260      Params.push_back(Param);
6261    }
6262  } else {
6263    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6264           "Should not need args for typedef of non-prototype fn");
6265  }
6266
6267  // Finally, we know we have the right number of parameters, install them.
6268  NewFD->setParams(Params);
6269
6270  // Find all anonymous symbols defined during the declaration of this function
6271  // and add to NewFD. This lets us track decls such 'enum Y' in:
6272  //
6273  //   void f(enum Y {AA} x) {}
6274  //
6275  // which would otherwise incorrectly end up in the translation unit scope.
6276  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6277  DeclsInPrototypeScope.clear();
6278
6279  if (D.getDeclSpec().isNoreturnSpecified())
6280    NewFD->addAttr(
6281        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6282                                       Context));
6283
6284  // Process the non-inheritable attributes on this declaration.
6285  ProcessDeclAttributes(S, NewFD, D,
6286                        /*NonInheritable=*/true, /*Inheritable=*/false);
6287
6288  // Functions returning a variably modified type violate C99 6.7.5.2p2
6289  // because all functions have linkage.
6290  if (!NewFD->isInvalidDecl() &&
6291      NewFD->getResultType()->isVariablyModifiedType()) {
6292    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6293    NewFD->setInvalidDecl();
6294  }
6295
6296  // Handle attributes.
6297  ProcessDeclAttributes(S, NewFD, D,
6298                        /*NonInheritable=*/false, /*Inheritable=*/true);
6299
6300  QualType RetType = NewFD->getResultType();
6301  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6302      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6303  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6304      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6305    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6306    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6307      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6308                                                        Context));
6309    }
6310  }
6311
6312  if (!getLangOpts().CPlusPlus) {
6313    // Perform semantic checking on the function declaration.
6314    bool isExplicitSpecialization=false;
6315    if (!NewFD->isInvalidDecl()) {
6316      if (NewFD->isMain())
6317        CheckMain(NewFD, D.getDeclSpec());
6318      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6319                                                  isExplicitSpecialization));
6320    }
6321    // Make graceful recovery from an invalid redeclaration.
6322    else if (!Previous.empty())
6323           D.setRedeclaration(true);
6324    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6325            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6326           "previous declaration set still overloaded");
6327  } else {
6328    // If the declarator is a template-id, translate the parser's template
6329    // argument list into our AST format.
6330    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6331      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6332      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6333      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6334      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6335                                         TemplateId->NumArgs);
6336      translateTemplateArguments(TemplateArgsPtr,
6337                                 TemplateArgs);
6338
6339      HasExplicitTemplateArgs = true;
6340
6341      if (NewFD->isInvalidDecl()) {
6342        HasExplicitTemplateArgs = false;
6343      } else if (FunctionTemplate) {
6344        // Function template with explicit template arguments.
6345        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6346          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6347
6348        HasExplicitTemplateArgs = false;
6349      } else if (!isFunctionTemplateSpecialization &&
6350                 !D.getDeclSpec().isFriendSpecified()) {
6351        // We have encountered something that the user meant to be a
6352        // specialization (because it has explicitly-specified template
6353        // arguments) but that was not introduced with a "template<>" (or had
6354        // too few of them).
6355        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6356          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6357          << FixItHint::CreateInsertion(
6358                                    D.getDeclSpec().getLocStart(),
6359                                        "template<> ");
6360        isFunctionTemplateSpecialization = true;
6361      } else {
6362        // "friend void foo<>(int);" is an implicit specialization decl.
6363        isFunctionTemplateSpecialization = true;
6364      }
6365    } else if (isFriend && isFunctionTemplateSpecialization) {
6366      // This combination is only possible in a recovery case;  the user
6367      // wrote something like:
6368      //   template <> friend void foo(int);
6369      // which we're recovering from as if the user had written:
6370      //   friend void foo<>(int);
6371      // Go ahead and fake up a template id.
6372      HasExplicitTemplateArgs = true;
6373        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6374      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6375    }
6376
6377    // If it's a friend (and only if it's a friend), it's possible
6378    // that either the specialized function type or the specialized
6379    // template is dependent, and therefore matching will fail.  In
6380    // this case, don't check the specialization yet.
6381    bool InstantiationDependent = false;
6382    if (isFunctionTemplateSpecialization && isFriend &&
6383        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6384         TemplateSpecializationType::anyDependentTemplateArguments(
6385            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6386            InstantiationDependent))) {
6387      assert(HasExplicitTemplateArgs &&
6388             "friend function specialization without template args");
6389      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6390                                                       Previous))
6391        NewFD->setInvalidDecl();
6392    } else if (isFunctionTemplateSpecialization) {
6393      if (CurContext->isDependentContext() && CurContext->isRecord()
6394          && !isFriend) {
6395        isDependentClassScopeExplicitSpecialization = true;
6396        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6397          diag::ext_function_specialization_in_class :
6398          diag::err_function_specialization_in_class)
6399          << NewFD->getDeclName();
6400      } else if (CheckFunctionTemplateSpecialization(NewFD,
6401                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6402                                                     Previous))
6403        NewFD->setInvalidDecl();
6404
6405      // C++ [dcl.stc]p1:
6406      //   A storage-class-specifier shall not be specified in an explicit
6407      //   specialization (14.7.3)
6408      if (SC != SC_None) {
6409        if (SC != NewFD->getTemplateSpecializationInfo()->getTemplate()->getTemplatedDecl()->getStorageClass())
6410          Diag(NewFD->getLocation(),
6411               diag::err_explicit_specialization_inconsistent_storage_class)
6412            << SC
6413            << FixItHint::CreateRemoval(
6414                                      D.getDeclSpec().getStorageClassSpecLoc());
6415
6416        else
6417          Diag(NewFD->getLocation(),
6418               diag::ext_explicit_specialization_storage_class)
6419            << FixItHint::CreateRemoval(
6420                                      D.getDeclSpec().getStorageClassSpecLoc());
6421      }
6422
6423    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6424      if (CheckMemberSpecialization(NewFD, Previous))
6425          NewFD->setInvalidDecl();
6426    }
6427
6428    // Perform semantic checking on the function declaration.
6429    if (!isDependentClassScopeExplicitSpecialization) {
6430      if (NewFD->isInvalidDecl()) {
6431        // If this is a class member, mark the class invalid immediately.
6432        // This avoids some consistency errors later.
6433        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6434          methodDecl->getParent()->setInvalidDecl();
6435      } else {
6436        if (NewFD->isMain())
6437          CheckMain(NewFD, D.getDeclSpec());
6438        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6439                                                    isExplicitSpecialization));
6440      }
6441    }
6442
6443    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6444            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6445           "previous declaration set still overloaded");
6446
6447    NamedDecl *PrincipalDecl = (FunctionTemplate
6448                                ? cast<NamedDecl>(FunctionTemplate)
6449                                : NewFD);
6450
6451    if (isFriend && D.isRedeclaration()) {
6452      AccessSpecifier Access = AS_public;
6453      if (!NewFD->isInvalidDecl())
6454        Access = NewFD->getPreviousDecl()->getAccess();
6455
6456      NewFD->setAccess(Access);
6457      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6458
6459      PrincipalDecl->setObjectOfFriendDecl(true);
6460    }
6461
6462    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6463        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6464      PrincipalDecl->setNonMemberOperator();
6465
6466    // If we have a function template, check the template parameter
6467    // list. This will check and merge default template arguments.
6468    if (FunctionTemplate) {
6469      FunctionTemplateDecl *PrevTemplate =
6470                                     FunctionTemplate->getPreviousDecl();
6471      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6472                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6473                            D.getDeclSpec().isFriendSpecified()
6474                              ? (D.isFunctionDefinition()
6475                                   ? TPC_FriendFunctionTemplateDefinition
6476                                   : TPC_FriendFunctionTemplate)
6477                              : (D.getCXXScopeSpec().isSet() &&
6478                                 DC && DC->isRecord() &&
6479                                 DC->isDependentContext())
6480                                  ? TPC_ClassTemplateMember
6481                                  : TPC_FunctionTemplate);
6482    }
6483
6484    if (NewFD->isInvalidDecl()) {
6485      // Ignore all the rest of this.
6486    } else if (!D.isRedeclaration()) {
6487      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6488                                       AddToScope };
6489      // Fake up an access specifier if it's supposed to be a class member.
6490      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6491        NewFD->setAccess(AS_public);
6492
6493      // Qualified decls generally require a previous declaration.
6494      if (D.getCXXScopeSpec().isSet()) {
6495        // ...with the major exception of templated-scope or
6496        // dependent-scope friend declarations.
6497
6498        // TODO: we currently also suppress this check in dependent
6499        // contexts because (1) the parameter depth will be off when
6500        // matching friend templates and (2) we might actually be
6501        // selecting a friend based on a dependent factor.  But there
6502        // are situations where these conditions don't apply and we
6503        // can actually do this check immediately.
6504        if (isFriend &&
6505            (TemplateParamLists.size() ||
6506             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6507             CurContext->isDependentContext())) {
6508          // ignore these
6509        } else {
6510          // The user tried to provide an out-of-line definition for a
6511          // function that is a member of a class or namespace, but there
6512          // was no such member function declared (C++ [class.mfct]p2,
6513          // C++ [namespace.memdef]p2). For example:
6514          //
6515          // class X {
6516          //   void f() const;
6517          // };
6518          //
6519          // void X::f() { } // ill-formed
6520          //
6521          // Complain about this problem, and attempt to suggest close
6522          // matches (e.g., those that differ only in cv-qualifiers and
6523          // whether the parameter types are references).
6524
6525          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6526                                                               NewFD,
6527                                                               ExtraArgs)) {
6528            AddToScope = ExtraArgs.AddToScope;
6529            return Result;
6530          }
6531        }
6532
6533        // Unqualified local friend declarations are required to resolve
6534        // to something.
6535      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6536        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6537                                                             NewFD,
6538                                                             ExtraArgs)) {
6539          AddToScope = ExtraArgs.AddToScope;
6540          return Result;
6541        }
6542      }
6543
6544    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6545               !isFriend && !isFunctionTemplateSpecialization &&
6546               !isExplicitSpecialization) {
6547      // An out-of-line member function declaration must also be a
6548      // definition (C++ [dcl.meaning]p1).
6549      // Note that this is not the case for explicit specializations of
6550      // function templates or member functions of class templates, per
6551      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6552      // extension for compatibility with old SWIG code which likes to
6553      // generate them.
6554      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6555        << D.getCXXScopeSpec().getRange();
6556    }
6557  }
6558
6559  ProcessPragmaWeak(S, NewFD);
6560  checkAttributesAfterMerging(*this, *NewFD);
6561
6562  AddKnownFunctionAttributes(NewFD);
6563
6564  if (NewFD->hasAttr<OverloadableAttr>() &&
6565      !NewFD->getType()->getAs<FunctionProtoType>()) {
6566    Diag(NewFD->getLocation(),
6567         diag::err_attribute_overloadable_no_prototype)
6568      << NewFD;
6569
6570    // Turn this into a variadic function with no parameters.
6571    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6572    FunctionProtoType::ExtProtoInfo EPI;
6573    EPI.Variadic = true;
6574    EPI.ExtInfo = FT->getExtInfo();
6575
6576    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
6577    NewFD->setType(R);
6578  }
6579
6580  // If there's a #pragma GCC visibility in scope, and this isn't a class
6581  // member, set the visibility of this function.
6582  if (!DC->isRecord() && NewFD->isExternallyVisible())
6583    AddPushedVisibilityAttribute(NewFD);
6584
6585  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6586  // marking the function.
6587  AddCFAuditedAttribute(NewFD);
6588
6589  // If this is a locally-scoped extern C function, update the
6590  // map of such names.
6591  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6592      && !NewFD->isInvalidDecl())
6593    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6594
6595  // Set this FunctionDecl's range up to the right paren.
6596  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6597
6598  if (getLangOpts().CPlusPlus) {
6599    if (FunctionTemplate) {
6600      if (NewFD->isInvalidDecl())
6601        FunctionTemplate->setInvalidDecl();
6602      return FunctionTemplate;
6603    }
6604  }
6605
6606  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6607    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6608    if ((getLangOpts().OpenCLVersion >= 120)
6609        && (SC == SC_Static)) {
6610      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6611      D.setInvalidType();
6612    }
6613
6614    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6615    if (!NewFD->getResultType()->isVoidType()) {
6616      Diag(D.getIdentifierLoc(),
6617           diag::err_expected_kernel_void_return_type);
6618      D.setInvalidType();
6619    }
6620
6621    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6622         PE = NewFD->param_end(); PI != PE; ++PI) {
6623      ParmVarDecl *Param = *PI;
6624      QualType PT = Param->getType();
6625
6626      // OpenCL v1.2 s6.9.a:
6627      // A kernel function argument cannot be declared as a
6628      // pointer to a pointer type.
6629      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6630        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6631        D.setInvalidType();
6632      }
6633
6634      // OpenCL v1.2 s6.8 n:
6635      // A kernel function argument cannot be declared
6636      // of event_t type.
6637      if (PT->isEventT()) {
6638        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6639        D.setInvalidType();
6640      }
6641    }
6642  }
6643
6644  MarkUnusedFileScopedDecl(NewFD);
6645
6646  if (getLangOpts().CUDA)
6647    if (IdentifierInfo *II = NewFD->getIdentifier())
6648      if (!NewFD->isInvalidDecl() &&
6649          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6650        if (II->isStr("cudaConfigureCall")) {
6651          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6652            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6653
6654          Context.setcudaConfigureCallDecl(NewFD);
6655        }
6656      }
6657
6658  // Here we have an function template explicit specialization at class scope.
6659  // The actually specialization will be postponed to template instatiation
6660  // time via the ClassScopeFunctionSpecializationDecl node.
6661  if (isDependentClassScopeExplicitSpecialization) {
6662    ClassScopeFunctionSpecializationDecl *NewSpec =
6663                         ClassScopeFunctionSpecializationDecl::Create(
6664                                Context, CurContext, SourceLocation(),
6665                                cast<CXXMethodDecl>(NewFD),
6666                                HasExplicitTemplateArgs, TemplateArgs);
6667    CurContext->addDecl(NewSpec);
6668    AddToScope = false;
6669  }
6670
6671  return NewFD;
6672}
6673
6674/// \brief Perform semantic checking of a new function declaration.
6675///
6676/// Performs semantic analysis of the new function declaration
6677/// NewFD. This routine performs all semantic checking that does not
6678/// require the actual declarator involved in the declaration, and is
6679/// used both for the declaration of functions as they are parsed
6680/// (called via ActOnDeclarator) and for the declaration of functions
6681/// that have been instantiated via C++ template instantiation (called
6682/// via InstantiateDecl).
6683///
6684/// \param IsExplicitSpecialization whether this new function declaration is
6685/// an explicit specialization of the previous declaration.
6686///
6687/// This sets NewFD->isInvalidDecl() to true if there was an error.
6688///
6689/// \returns true if the function declaration is a redeclaration.
6690bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6691                                    LookupResult &Previous,
6692                                    bool IsExplicitSpecialization) {
6693  assert(!NewFD->getResultType()->isVariablyModifiedType()
6694         && "Variably modified return types are not handled here");
6695
6696  // Check for a previous declaration of this name.
6697  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6698    // Since we did not find anything by this name, look for a non-visible
6699    // extern "C" declaration with the same name.
6700    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6701      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6702    if (Pos != LocallyScopedExternCDecls.end())
6703      Previous.addDecl(Pos->second);
6704  }
6705
6706  // Filter out any non-conflicting previous declarations.
6707  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6708
6709  bool Redeclaration = false;
6710  NamedDecl *OldDecl = 0;
6711
6712  // Merge or overload the declaration with an existing declaration of
6713  // the same name, if appropriate.
6714  if (!Previous.empty()) {
6715    // Determine whether NewFD is an overload of PrevDecl or
6716    // a declaration that requires merging. If it's an overload,
6717    // there's no more work to do here; we'll just add the new
6718    // function to the scope.
6719    if (!AllowOverloadingOfFunction(Previous, Context)) {
6720      NamedDecl *Candidate = Previous.getFoundDecl();
6721      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
6722        Redeclaration = true;
6723        OldDecl = Candidate;
6724      }
6725    } else {
6726      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6727                            /*NewIsUsingDecl*/ false)) {
6728      case Ovl_Match:
6729        Redeclaration = true;
6730        break;
6731
6732      case Ovl_NonFunction:
6733        Redeclaration = true;
6734        break;
6735
6736      case Ovl_Overload:
6737        Redeclaration = false;
6738        break;
6739      }
6740
6741      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6742        // If a function name is overloadable in C, then every function
6743        // with that name must be marked "overloadable".
6744        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6745          << Redeclaration << NewFD;
6746        NamedDecl *OverloadedDecl = 0;
6747        if (Redeclaration)
6748          OverloadedDecl = OldDecl;
6749        else if (!Previous.empty())
6750          OverloadedDecl = Previous.getRepresentativeDecl();
6751        if (OverloadedDecl)
6752          Diag(OverloadedDecl->getLocation(),
6753               diag::note_attribute_overloadable_prev_overload);
6754        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6755                                                        Context));
6756      }
6757    }
6758  }
6759
6760  // C++11 [dcl.constexpr]p8:
6761  //   A constexpr specifier for a non-static member function that is not
6762  //   a constructor declares that member function to be const.
6763  //
6764  // This needs to be delayed until we know whether this is an out-of-line
6765  // definition of a static member function.
6766  //
6767  // This rule is not present in C++1y, so we produce a backwards
6768  // compatibility warning whenever it happens in C++11.
6769  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6770  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
6771      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
6772      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6773    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6774    if (FunctionTemplateDecl *OldTD =
6775          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6776      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6777    if (!OldMD || !OldMD->isStatic()) {
6778      const FunctionProtoType *FPT =
6779        MD->getType()->castAs<FunctionProtoType>();
6780      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6781      EPI.TypeQuals |= Qualifiers::Const;
6782      MD->setType(Context.getFunctionType(FPT->getResultType(),
6783                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6784                                                         FPT->getNumArgs()),
6785                                          EPI));
6786
6787      // Warn that we did this, if we're not performing template instantiation.
6788      // In that case, we'll have warned already when the template was defined.
6789      if (ActiveTemplateInstantiations.empty()) {
6790        SourceLocation AddConstLoc;
6791        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
6792                .IgnoreParens().getAs<FunctionTypeLoc>())
6793          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
6794
6795        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
6796          << FixItHint::CreateInsertion(AddConstLoc, " const");
6797      }
6798    }
6799  }
6800
6801  if (Redeclaration) {
6802    // NewFD and OldDecl represent declarations that need to be
6803    // merged.
6804    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6805      NewFD->setInvalidDecl();
6806      return Redeclaration;
6807    }
6808
6809    Previous.clear();
6810    Previous.addDecl(OldDecl);
6811
6812    if (FunctionTemplateDecl *OldTemplateDecl
6813                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6814      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6815      FunctionTemplateDecl *NewTemplateDecl
6816        = NewFD->getDescribedFunctionTemplate();
6817      assert(NewTemplateDecl && "Template/non-template mismatch");
6818      if (CXXMethodDecl *Method
6819            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6820        Method->setAccess(OldTemplateDecl->getAccess());
6821        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6822      }
6823
6824      // If this is an explicit specialization of a member that is a function
6825      // template, mark it as a member specialization.
6826      if (IsExplicitSpecialization &&
6827          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6828        NewTemplateDecl->setMemberSpecialization();
6829        assert(OldTemplateDecl->isMemberSpecialization());
6830      }
6831
6832    } else {
6833      // This needs to happen first so that 'inline' propagates.
6834      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6835
6836      if (isa<CXXMethodDecl>(NewFD)) {
6837        // A valid redeclaration of a C++ method must be out-of-line,
6838        // but (unfortunately) it's not necessarily a definition
6839        // because of templates, which means that the previous
6840        // declaration is not necessarily from the class definition.
6841
6842        // For just setting the access, that doesn't matter.
6843        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6844        NewFD->setAccess(oldMethod->getAccess());
6845
6846        // Update the key-function state if necessary for this ABI.
6847        if (NewFD->isInlined() &&
6848            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6849          // setNonKeyFunction needs to work with the original
6850          // declaration from the class definition, and isVirtual() is
6851          // just faster in that case, so map back to that now.
6852          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6853          if (oldMethod->isVirtual()) {
6854            Context.setNonKeyFunction(oldMethod);
6855          }
6856        }
6857      }
6858    }
6859  }
6860
6861  // Semantic checking for this function declaration (in isolation).
6862  if (getLangOpts().CPlusPlus) {
6863    // C++-specific checks.
6864    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6865      CheckConstructor(Constructor);
6866    } else if (CXXDestructorDecl *Destructor =
6867                dyn_cast<CXXDestructorDecl>(NewFD)) {
6868      CXXRecordDecl *Record = Destructor->getParent();
6869      QualType ClassType = Context.getTypeDeclType(Record);
6870
6871      // FIXME: Shouldn't we be able to perform this check even when the class
6872      // type is dependent? Both gcc and edg can handle that.
6873      if (!ClassType->isDependentType()) {
6874        DeclarationName Name
6875          = Context.DeclarationNames.getCXXDestructorName(
6876                                        Context.getCanonicalType(ClassType));
6877        if (NewFD->getDeclName() != Name) {
6878          Diag(NewFD->getLocation(), diag::err_destructor_name);
6879          NewFD->setInvalidDecl();
6880          return Redeclaration;
6881        }
6882      }
6883    } else if (CXXConversionDecl *Conversion
6884               = dyn_cast<CXXConversionDecl>(NewFD)) {
6885      ActOnConversionDeclarator(Conversion);
6886    }
6887
6888    // Find any virtual functions that this function overrides.
6889    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6890      if (!Method->isFunctionTemplateSpecialization() &&
6891          !Method->getDescribedFunctionTemplate() &&
6892          Method->isCanonicalDecl()) {
6893        if (AddOverriddenMethods(Method->getParent(), Method)) {
6894          // If the function was marked as "static", we have a problem.
6895          if (NewFD->getStorageClass() == SC_Static) {
6896            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6897          }
6898        }
6899      }
6900
6901      if (Method->isStatic())
6902        checkThisInStaticMemberFunctionType(Method);
6903    }
6904
6905    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6906    if (NewFD->isOverloadedOperator() &&
6907        CheckOverloadedOperatorDeclaration(NewFD)) {
6908      NewFD->setInvalidDecl();
6909      return Redeclaration;
6910    }
6911
6912    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6913    if (NewFD->getLiteralIdentifier() &&
6914        CheckLiteralOperatorDeclaration(NewFD)) {
6915      NewFD->setInvalidDecl();
6916      return Redeclaration;
6917    }
6918
6919    // In C++, check default arguments now that we have merged decls. Unless
6920    // the lexical context is the class, because in this case this is done
6921    // during delayed parsing anyway.
6922    if (!CurContext->isRecord())
6923      CheckCXXDefaultArguments(NewFD);
6924
6925    // If this function declares a builtin function, check the type of this
6926    // declaration against the expected type for the builtin.
6927    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6928      ASTContext::GetBuiltinTypeError Error;
6929      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6930      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6931      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6932        // The type of this function differs from the type of the builtin,
6933        // so forget about the builtin entirely.
6934        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6935      }
6936    }
6937
6938    // If this function is declared as being extern "C", then check to see if
6939    // the function returns a UDT (class, struct, or union type) that is not C
6940    // compatible, and if it does, warn the user.
6941    // But, issue any diagnostic on the first declaration only.
6942    if (NewFD->isExternC() && Previous.empty()) {
6943      QualType R = NewFD->getResultType();
6944      if (R->isIncompleteType() && !R->isVoidType())
6945        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6946            << NewFD << R;
6947      else if (!R.isPODType(Context) && !R->isVoidType() &&
6948               !R->isObjCObjectPointerType())
6949        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6950    }
6951  }
6952  return Redeclaration;
6953}
6954
6955static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6956  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6957  if (!TSI)
6958    return SourceRange();
6959
6960  TypeLoc TL = TSI->getTypeLoc();
6961  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6962  if (!FunctionTL)
6963    return SourceRange();
6964
6965  TypeLoc ResultTL = FunctionTL.getResultLoc();
6966  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6967    return ResultTL.getSourceRange();
6968
6969  return SourceRange();
6970}
6971
6972void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6973  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6974  //   static or constexpr is ill-formed.
6975  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6976  //   appear in a declaration of main.
6977  // static main is not an error under C99, but we should warn about it.
6978  // We accept _Noreturn main as an extension.
6979  if (FD->getStorageClass() == SC_Static)
6980    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6981         ? diag::err_static_main : diag::warn_static_main)
6982      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6983  if (FD->isInlineSpecified())
6984    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6985      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6986  if (DS.isNoreturnSpecified()) {
6987    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6988    SourceRange NoreturnRange(NoreturnLoc,
6989                              PP.getLocForEndOfToken(NoreturnLoc));
6990    Diag(NoreturnLoc, diag::ext_noreturn_main);
6991    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6992      << FixItHint::CreateRemoval(NoreturnRange);
6993  }
6994  if (FD->isConstexpr()) {
6995    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6996      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6997    FD->setConstexpr(false);
6998  }
6999
7000  QualType T = FD->getType();
7001  assert(T->isFunctionType() && "function decl is not of function type");
7002  const FunctionType* FT = T->castAs<FunctionType>();
7003
7004  // All the standards say that main() should should return 'int'.
7005  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7006    // In C and C++, main magically returns 0 if you fall off the end;
7007    // set the flag which tells us that.
7008    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7009    FD->setHasImplicitReturnZero(true);
7010
7011  // In C with GNU extensions we allow main() to have non-integer return
7012  // type, but we should warn about the extension, and we disable the
7013  // implicit-return-zero rule.
7014  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7015    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7016
7017    SourceRange ResultRange = getResultSourceRange(FD);
7018    if (ResultRange.isValid())
7019      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7020          << FixItHint::CreateReplacement(ResultRange, "int");
7021
7022  // Otherwise, this is just a flat-out error.
7023  } else {
7024    SourceRange ResultRange = getResultSourceRange(FD);
7025    if (ResultRange.isValid())
7026      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7027          << FixItHint::CreateReplacement(ResultRange, "int");
7028    else
7029      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7030
7031    FD->setInvalidDecl(true);
7032  }
7033
7034  // Treat protoless main() as nullary.
7035  if (isa<FunctionNoProtoType>(FT)) return;
7036
7037  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7038  unsigned nparams = FTP->getNumArgs();
7039  assert(FD->getNumParams() == nparams);
7040
7041  bool HasExtraParameters = (nparams > 3);
7042
7043  // Darwin passes an undocumented fourth argument of type char**.  If
7044  // other platforms start sprouting these, the logic below will start
7045  // getting shifty.
7046  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7047    HasExtraParameters = false;
7048
7049  if (HasExtraParameters) {
7050    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7051    FD->setInvalidDecl(true);
7052    nparams = 3;
7053  }
7054
7055  // FIXME: a lot of the following diagnostics would be improved
7056  // if we had some location information about types.
7057
7058  QualType CharPP =
7059    Context.getPointerType(Context.getPointerType(Context.CharTy));
7060  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7061
7062  for (unsigned i = 0; i < nparams; ++i) {
7063    QualType AT = FTP->getArgType(i);
7064
7065    bool mismatch = true;
7066
7067    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7068      mismatch = false;
7069    else if (Expected[i] == CharPP) {
7070      // As an extension, the following forms are okay:
7071      //   char const **
7072      //   char const * const *
7073      //   char * const *
7074
7075      QualifierCollector qs;
7076      const PointerType* PT;
7077      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7078          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7079          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7080                              Context.CharTy)) {
7081        qs.removeConst();
7082        mismatch = !qs.empty();
7083      }
7084    }
7085
7086    if (mismatch) {
7087      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7088      // TODO: suggest replacing given type with expected type
7089      FD->setInvalidDecl(true);
7090    }
7091  }
7092
7093  if (nparams == 1 && !FD->isInvalidDecl()) {
7094    Diag(FD->getLocation(), diag::warn_main_one_arg);
7095  }
7096
7097  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7098    Diag(FD->getLocation(), diag::err_main_template_decl);
7099    FD->setInvalidDecl();
7100  }
7101}
7102
7103bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7104  // FIXME: Need strict checking.  In C89, we need to check for
7105  // any assignment, increment, decrement, function-calls, or
7106  // commas outside of a sizeof.  In C99, it's the same list,
7107  // except that the aforementioned are allowed in unevaluated
7108  // expressions.  Everything else falls under the
7109  // "may accept other forms of constant expressions" exception.
7110  // (We never end up here for C++, so the constant expression
7111  // rules there don't matter.)
7112  if (Init->isConstantInitializer(Context, false))
7113    return false;
7114  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7115    << Init->getSourceRange();
7116  return true;
7117}
7118
7119namespace {
7120  // Visits an initialization expression to see if OrigDecl is evaluated in
7121  // its own initialization and throws a warning if it does.
7122  class SelfReferenceChecker
7123      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7124    Sema &S;
7125    Decl *OrigDecl;
7126    bool isRecordType;
7127    bool isPODType;
7128    bool isReferenceType;
7129
7130  public:
7131    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7132
7133    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7134                                                    S(S), OrigDecl(OrigDecl) {
7135      isPODType = false;
7136      isRecordType = false;
7137      isReferenceType = false;
7138      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7139        isPODType = VD->getType().isPODType(S.Context);
7140        isRecordType = VD->getType()->isRecordType();
7141        isReferenceType = VD->getType()->isReferenceType();
7142      }
7143    }
7144
7145    // For most expressions, the cast is directly above the DeclRefExpr.
7146    // For conditional operators, the cast can be outside the conditional
7147    // operator if both expressions are DeclRefExpr's.
7148    void HandleValue(Expr *E) {
7149      if (isReferenceType)
7150        return;
7151      E = E->IgnoreParenImpCasts();
7152      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7153        HandleDeclRefExpr(DRE);
7154        return;
7155      }
7156
7157      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7158        HandleValue(CO->getTrueExpr());
7159        HandleValue(CO->getFalseExpr());
7160        return;
7161      }
7162
7163      if (isa<MemberExpr>(E)) {
7164        Expr *Base = E->IgnoreParenImpCasts();
7165        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7166          // Check for static member variables and don't warn on them.
7167          if (!isa<FieldDecl>(ME->getMemberDecl()))
7168            return;
7169          Base = ME->getBase()->IgnoreParenImpCasts();
7170        }
7171        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7172          HandleDeclRefExpr(DRE);
7173        return;
7174      }
7175    }
7176
7177    // Reference types are handled here since all uses of references are
7178    // bad, not just r-value uses.
7179    void VisitDeclRefExpr(DeclRefExpr *E) {
7180      if (isReferenceType)
7181        HandleDeclRefExpr(E);
7182    }
7183
7184    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7185      if (E->getCastKind() == CK_LValueToRValue ||
7186          (isRecordType && E->getCastKind() == CK_NoOp))
7187        HandleValue(E->getSubExpr());
7188
7189      Inherited::VisitImplicitCastExpr(E);
7190    }
7191
7192    void VisitMemberExpr(MemberExpr *E) {
7193      // Don't warn on arrays since they can be treated as pointers.
7194      if (E->getType()->canDecayToPointerType()) return;
7195
7196      // Warn when a non-static method call is followed by non-static member
7197      // field accesses, which is followed by a DeclRefExpr.
7198      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7199      bool Warn = (MD && !MD->isStatic());
7200      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7201      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7202        if (!isa<FieldDecl>(ME->getMemberDecl()))
7203          Warn = false;
7204        Base = ME->getBase()->IgnoreParenImpCasts();
7205      }
7206
7207      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7208        if (Warn)
7209          HandleDeclRefExpr(DRE);
7210        return;
7211      }
7212
7213      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7214      // Visit that expression.
7215      Visit(Base);
7216    }
7217
7218    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7219      if (E->getNumArgs() > 0)
7220        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7221          HandleDeclRefExpr(DRE);
7222
7223      Inherited::VisitCXXOperatorCallExpr(E);
7224    }
7225
7226    void VisitUnaryOperator(UnaryOperator *E) {
7227      // For POD record types, addresses of its own members are well-defined.
7228      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7229          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7230        if (!isPODType)
7231          HandleValue(E->getSubExpr());
7232        return;
7233      }
7234      Inherited::VisitUnaryOperator(E);
7235    }
7236
7237    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7238
7239    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7240      Decl* ReferenceDecl = DRE->getDecl();
7241      if (OrigDecl != ReferenceDecl) return;
7242      unsigned diag;
7243      if (isReferenceType) {
7244        diag = diag::warn_uninit_self_reference_in_reference_init;
7245      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7246        diag = diag::warn_static_self_reference_in_init;
7247      } else {
7248        diag = diag::warn_uninit_self_reference_in_init;
7249      }
7250
7251      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7252                            S.PDiag(diag)
7253                              << DRE->getNameInfo().getName()
7254                              << OrigDecl->getLocation()
7255                              << DRE->getSourceRange());
7256    }
7257  };
7258
7259  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7260  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7261                                 bool DirectInit) {
7262    // Parameters arguments are occassionially constructed with itself,
7263    // for instance, in recursive functions.  Skip them.
7264    if (isa<ParmVarDecl>(OrigDecl))
7265      return;
7266
7267    E = E->IgnoreParens();
7268
7269    // Skip checking T a = a where T is not a record or reference type.
7270    // Doing so is a way to silence uninitialized warnings.
7271    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7272      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7273        if (ICE->getCastKind() == CK_LValueToRValue)
7274          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7275            if (DRE->getDecl() == OrigDecl)
7276              return;
7277
7278    SelfReferenceChecker(S, OrigDecl).Visit(E);
7279  }
7280}
7281
7282/// AddInitializerToDecl - Adds the initializer Init to the
7283/// declaration dcl. If DirectInit is true, this is C++ direct
7284/// initialization rather than copy initialization.
7285void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7286                                bool DirectInit, bool TypeMayContainAuto) {
7287  // If there is no declaration, there was an error parsing it.  Just ignore
7288  // the initializer.
7289  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7290    return;
7291
7292  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7293    // With declarators parsed the way they are, the parser cannot
7294    // distinguish between a normal initializer and a pure-specifier.
7295    // Thus this grotesque test.
7296    IntegerLiteral *IL;
7297    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7298        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7299      CheckPureMethod(Method, Init->getSourceRange());
7300    else {
7301      Diag(Method->getLocation(), diag::err_member_function_initialization)
7302        << Method->getDeclName() << Init->getSourceRange();
7303      Method->setInvalidDecl();
7304    }
7305    return;
7306  }
7307
7308  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7309  if (!VDecl) {
7310    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7311    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7312    RealDecl->setInvalidDecl();
7313    return;
7314  }
7315
7316  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7317
7318  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7319  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7320    Expr *DeduceInit = Init;
7321    // Initializer could be a C++ direct-initializer. Deduction only works if it
7322    // contains exactly one expression.
7323    if (CXXDirectInit) {
7324      if (CXXDirectInit->getNumExprs() == 0) {
7325        // It isn't possible to write this directly, but it is possible to
7326        // end up in this situation with "auto x(some_pack...);"
7327        Diag(CXXDirectInit->getLocStart(),
7328             diag::err_auto_var_init_no_expression)
7329          << VDecl->getDeclName() << VDecl->getType()
7330          << VDecl->getSourceRange();
7331        RealDecl->setInvalidDecl();
7332        return;
7333      } else if (CXXDirectInit->getNumExprs() > 1) {
7334        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7335             diag::err_auto_var_init_multiple_expressions)
7336          << VDecl->getDeclName() << VDecl->getType()
7337          << VDecl->getSourceRange();
7338        RealDecl->setInvalidDecl();
7339        return;
7340      } else {
7341        DeduceInit = CXXDirectInit->getExpr(0);
7342      }
7343    }
7344
7345    // Expressions default to 'id' when we're in a debugger.
7346    bool DefaultedToAuto = false;
7347    if (getLangOpts().DebuggerCastResultToId &&
7348        Init->getType() == Context.UnknownAnyTy) {
7349      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7350      if (Result.isInvalid()) {
7351        VDecl->setInvalidDecl();
7352        return;
7353      }
7354      Init = Result.take();
7355      DefaultedToAuto = true;
7356    }
7357
7358    QualType DeducedType;
7359    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7360            DAR_Failed)
7361      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7362    if (DeducedType.isNull()) {
7363      RealDecl->setInvalidDecl();
7364      return;
7365    }
7366    VDecl->setType(DeducedType);
7367    assert(VDecl->isLinkageValid());
7368
7369    // In ARC, infer lifetime.
7370    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7371      VDecl->setInvalidDecl();
7372
7373    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7374    // 'id' instead of a specific object type prevents most of our usual checks.
7375    // We only want to warn outside of template instantiations, though:
7376    // inside a template, the 'id' could have come from a parameter.
7377    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7378        DeducedType->isObjCIdType()) {
7379      SourceLocation Loc =
7380          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7381      Diag(Loc, diag::warn_auto_var_is_id)
7382        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7383    }
7384
7385    // If this is a redeclaration, check that the type we just deduced matches
7386    // the previously declared type.
7387    if (VarDecl *Old = VDecl->getPreviousDecl())
7388      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7389
7390    // Check the deduced type is valid for a variable declaration.
7391    CheckVariableDeclarationType(VDecl);
7392    if (VDecl->isInvalidDecl())
7393      return;
7394  }
7395
7396  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7397    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7398    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7399    VDecl->setInvalidDecl();
7400    return;
7401  }
7402
7403  if (!VDecl->getType()->isDependentType()) {
7404    // A definition must end up with a complete type, which means it must be
7405    // complete with the restriction that an array type might be completed by
7406    // the initializer; note that later code assumes this restriction.
7407    QualType BaseDeclType = VDecl->getType();
7408    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7409      BaseDeclType = Array->getElementType();
7410    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7411                            diag::err_typecheck_decl_incomplete_type)) {
7412      RealDecl->setInvalidDecl();
7413      return;
7414    }
7415
7416    // The variable can not have an abstract class type.
7417    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7418                               diag::err_abstract_type_in_decl,
7419                               AbstractVariableType))
7420      VDecl->setInvalidDecl();
7421  }
7422
7423  const VarDecl *Def;
7424  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7425    Diag(VDecl->getLocation(), diag::err_redefinition)
7426      << VDecl->getDeclName();
7427    Diag(Def->getLocation(), diag::note_previous_definition);
7428    VDecl->setInvalidDecl();
7429    return;
7430  }
7431
7432  const VarDecl* PrevInit = 0;
7433  if (getLangOpts().CPlusPlus) {
7434    // C++ [class.static.data]p4
7435    //   If a static data member is of const integral or const
7436    //   enumeration type, its declaration in the class definition can
7437    //   specify a constant-initializer which shall be an integral
7438    //   constant expression (5.19). In that case, the member can appear
7439    //   in integral constant expressions. The member shall still be
7440    //   defined in a namespace scope if it is used in the program and the
7441    //   namespace scope definition shall not contain an initializer.
7442    //
7443    // We already performed a redefinition check above, but for static
7444    // data members we also need to check whether there was an in-class
7445    // declaration with an initializer.
7446    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7447      Diag(VDecl->getLocation(), diag::err_redefinition)
7448        << VDecl->getDeclName();
7449      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7450      return;
7451    }
7452
7453    if (VDecl->hasLocalStorage())
7454      getCurFunction()->setHasBranchProtectedScope();
7455
7456    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7457      VDecl->setInvalidDecl();
7458      return;
7459    }
7460  }
7461
7462  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7463  // a kernel function cannot be initialized."
7464  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7465    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7466    VDecl->setInvalidDecl();
7467    return;
7468  }
7469
7470  // Get the decls type and save a reference for later, since
7471  // CheckInitializerTypes may change it.
7472  QualType DclT = VDecl->getType(), SavT = DclT;
7473
7474  // Expressions default to 'id' when we're in a debugger
7475  // and we are assigning it to a variable of Objective-C pointer type.
7476  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7477      Init->getType() == Context.UnknownAnyTy) {
7478    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7479    if (Result.isInvalid()) {
7480      VDecl->setInvalidDecl();
7481      return;
7482    }
7483    Init = Result.take();
7484  }
7485
7486  // Perform the initialization.
7487  if (!VDecl->isInvalidDecl()) {
7488    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7489    InitializationKind Kind
7490      = DirectInit ?
7491          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7492                                                           Init->getLocStart(),
7493                                                           Init->getLocEnd())
7494                        : InitializationKind::CreateDirectList(
7495                                                          VDecl->getLocation())
7496                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7497                                                    Init->getLocStart());
7498
7499    MultiExprArg Args = Init;
7500    if (CXXDirectInit)
7501      Args = MultiExprArg(CXXDirectInit->getExprs(),
7502                          CXXDirectInit->getNumExprs());
7503
7504    InitializationSequence InitSeq(*this, Entity, Kind, Args);
7505    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
7506    if (Result.isInvalid()) {
7507      VDecl->setInvalidDecl();
7508      return;
7509    }
7510
7511    Init = Result.takeAs<Expr>();
7512  }
7513
7514  // Check for self-references within variable initializers.
7515  // Variables declared within a function/method body (except for references)
7516  // are handled by a dataflow analysis.
7517  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7518      VDecl->getType()->isReferenceType()) {
7519    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7520  }
7521
7522  // If the type changed, it means we had an incomplete type that was
7523  // completed by the initializer. For example:
7524  //   int ary[] = { 1, 3, 5 };
7525  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7526  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7527    VDecl->setType(DclT);
7528
7529  if (!VDecl->isInvalidDecl()) {
7530    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7531
7532    if (VDecl->hasAttr<BlocksAttr>())
7533      checkRetainCycles(VDecl, Init);
7534
7535    // It is safe to assign a weak reference into a strong variable.
7536    // Although this code can still have problems:
7537    //   id x = self.weakProp;
7538    //   id y = self.weakProp;
7539    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7540    // paths through the function. This should be revisited if
7541    // -Wrepeated-use-of-weak is made flow-sensitive.
7542    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7543      DiagnosticsEngine::Level Level =
7544        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7545                                 Init->getLocStart());
7546      if (Level != DiagnosticsEngine::Ignored)
7547        getCurFunction()->markSafeWeakUse(Init);
7548    }
7549  }
7550
7551  // The initialization is usually a full-expression.
7552  //
7553  // FIXME: If this is a braced initialization of an aggregate, it is not
7554  // an expression, and each individual field initializer is a separate
7555  // full-expression. For instance, in:
7556  //
7557  //   struct Temp { ~Temp(); };
7558  //   struct S { S(Temp); };
7559  //   struct T { S a, b; } t = { Temp(), Temp() }
7560  //
7561  // we should destroy the first Temp before constructing the second.
7562  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7563                                          false,
7564                                          VDecl->isConstexpr());
7565  if (Result.isInvalid()) {
7566    VDecl->setInvalidDecl();
7567    return;
7568  }
7569  Init = Result.take();
7570
7571  // Attach the initializer to the decl.
7572  VDecl->setInit(Init);
7573
7574  if (VDecl->isLocalVarDecl()) {
7575    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7576    // static storage duration shall be constant expressions or string literals.
7577    // C++ does not have this restriction.
7578    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7579        VDecl->getStorageClass() == SC_Static)
7580      CheckForConstantInitializer(Init, DclT);
7581  } else if (VDecl->isStaticDataMember() &&
7582             VDecl->getLexicalDeclContext()->isRecord()) {
7583    // This is an in-class initialization for a static data member, e.g.,
7584    //
7585    // struct S {
7586    //   static const int value = 17;
7587    // };
7588
7589    // C++ [class.mem]p4:
7590    //   A member-declarator can contain a constant-initializer only
7591    //   if it declares a static member (9.4) of const integral or
7592    //   const enumeration type, see 9.4.2.
7593    //
7594    // C++11 [class.static.data]p3:
7595    //   If a non-volatile const static data member is of integral or
7596    //   enumeration type, its declaration in the class definition can
7597    //   specify a brace-or-equal-initializer in which every initalizer-clause
7598    //   that is an assignment-expression is a constant expression. A static
7599    //   data member of literal type can be declared in the class definition
7600    //   with the constexpr specifier; if so, its declaration shall specify a
7601    //   brace-or-equal-initializer in which every initializer-clause that is
7602    //   an assignment-expression is a constant expression.
7603
7604    // Do nothing on dependent types.
7605    if (DclT->isDependentType()) {
7606
7607    // Allow any 'static constexpr' members, whether or not they are of literal
7608    // type. We separately check that every constexpr variable is of literal
7609    // type.
7610    } else if (VDecl->isConstexpr()) {
7611
7612    // Require constness.
7613    } else if (!DclT.isConstQualified()) {
7614      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7615        << Init->getSourceRange();
7616      VDecl->setInvalidDecl();
7617
7618    // We allow integer constant expressions in all cases.
7619    } else if (DclT->isIntegralOrEnumerationType()) {
7620      // Check whether the expression is a constant expression.
7621      SourceLocation Loc;
7622      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7623        // In C++11, a non-constexpr const static data member with an
7624        // in-class initializer cannot be volatile.
7625        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7626      else if (Init->isValueDependent())
7627        ; // Nothing to check.
7628      else if (Init->isIntegerConstantExpr(Context, &Loc))
7629        ; // Ok, it's an ICE!
7630      else if (Init->isEvaluatable(Context)) {
7631        // If we can constant fold the initializer through heroics, accept it,
7632        // but report this as a use of an extension for -pedantic.
7633        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7634          << Init->getSourceRange();
7635      } else {
7636        // Otherwise, this is some crazy unknown case.  Report the issue at the
7637        // location provided by the isIntegerConstantExpr failed check.
7638        Diag(Loc, diag::err_in_class_initializer_non_constant)
7639          << Init->getSourceRange();
7640        VDecl->setInvalidDecl();
7641      }
7642
7643    // We allow foldable floating-point constants as an extension.
7644    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7645      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7646      // it anyway and provide a fixit to add the 'constexpr'.
7647      if (getLangOpts().CPlusPlus11) {
7648        Diag(VDecl->getLocation(),
7649             diag::ext_in_class_initializer_float_type_cxx11)
7650            << DclT << Init->getSourceRange();
7651        Diag(VDecl->getLocStart(),
7652             diag::note_in_class_initializer_float_type_cxx11)
7653            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7654      } else {
7655        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7656          << DclT << Init->getSourceRange();
7657
7658        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7659          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7660            << Init->getSourceRange();
7661          VDecl->setInvalidDecl();
7662        }
7663      }
7664
7665    // Suggest adding 'constexpr' in C++11 for literal types.
7666    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
7667      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7668        << DclT << Init->getSourceRange()
7669        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7670      VDecl->setConstexpr(true);
7671
7672    } else {
7673      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7674        << DclT << Init->getSourceRange();
7675      VDecl->setInvalidDecl();
7676    }
7677  } else if (VDecl->isFileVarDecl()) {
7678    if (VDecl->getStorageClass() == SC_Extern &&
7679        (!getLangOpts().CPlusPlus ||
7680         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
7681           VDecl->isExternC())))
7682      Diag(VDecl->getLocation(), diag::warn_extern_init);
7683
7684    // C99 6.7.8p4. All file scoped initializers need to be constant.
7685    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7686      CheckForConstantInitializer(Init, DclT);
7687    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
7688             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
7689             !Init->isValueDependent() && !VDecl->isConstexpr() &&
7690             !Init->isConstantInitializer(
7691                 Context, VDecl->getType()->isReferenceType())) {
7692      // GNU C++98 edits for __thread, [basic.start.init]p4:
7693      //   An object of thread storage duration shall not require dynamic
7694      //   initialization.
7695      // FIXME: Need strict checking here.
7696      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
7697      if (getLangOpts().CPlusPlus11)
7698        Diag(VDecl->getLocation(), diag::note_use_thread_local);
7699    }
7700  }
7701
7702  // We will represent direct-initialization similarly to copy-initialization:
7703  //    int x(1);  -as-> int x = 1;
7704  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7705  //
7706  // Clients that want to distinguish between the two forms, can check for
7707  // direct initializer using VarDecl::getInitStyle().
7708  // A major benefit is that clients that don't particularly care about which
7709  // exactly form was it (like the CodeGen) can handle both cases without
7710  // special case code.
7711
7712  // C++ 8.5p11:
7713  // The form of initialization (using parentheses or '=') is generally
7714  // insignificant, but does matter when the entity being initialized has a
7715  // class type.
7716  if (CXXDirectInit) {
7717    assert(DirectInit && "Call-style initializer must be direct init.");
7718    VDecl->setInitStyle(VarDecl::CallInit);
7719  } else if (DirectInit) {
7720    // This must be list-initialization. No other way is direct-initialization.
7721    VDecl->setInitStyle(VarDecl::ListInit);
7722  }
7723
7724  CheckCompleteVariableDeclaration(VDecl);
7725}
7726
7727/// ActOnInitializerError - Given that there was an error parsing an
7728/// initializer for the given declaration, try to return to some form
7729/// of sanity.
7730void Sema::ActOnInitializerError(Decl *D) {
7731  // Our main concern here is re-establishing invariants like "a
7732  // variable's type is either dependent or complete".
7733  if (!D || D->isInvalidDecl()) return;
7734
7735  VarDecl *VD = dyn_cast<VarDecl>(D);
7736  if (!VD) return;
7737
7738  // Auto types are meaningless if we can't make sense of the initializer.
7739  if (ParsingInitForAutoVars.count(D)) {
7740    D->setInvalidDecl();
7741    return;
7742  }
7743
7744  QualType Ty = VD->getType();
7745  if (Ty->isDependentType()) return;
7746
7747  // Require a complete type.
7748  if (RequireCompleteType(VD->getLocation(),
7749                          Context.getBaseElementType(Ty),
7750                          diag::err_typecheck_decl_incomplete_type)) {
7751    VD->setInvalidDecl();
7752    return;
7753  }
7754
7755  // Require an abstract type.
7756  if (RequireNonAbstractType(VD->getLocation(), Ty,
7757                             diag::err_abstract_type_in_decl,
7758                             AbstractVariableType)) {
7759    VD->setInvalidDecl();
7760    return;
7761  }
7762
7763  // Don't bother complaining about constructors or destructors,
7764  // though.
7765}
7766
7767void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7768                                  bool TypeMayContainAuto) {
7769  // If there is no declaration, there was an error parsing it. Just ignore it.
7770  if (RealDecl == 0)
7771    return;
7772
7773  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7774    QualType Type = Var->getType();
7775
7776    // C++11 [dcl.spec.auto]p3
7777    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7778      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7779        << Var->getDeclName() << Type;
7780      Var->setInvalidDecl();
7781      return;
7782    }
7783
7784    // C++11 [class.static.data]p3: A static data member can be declared with
7785    // the constexpr specifier; if so, its declaration shall specify
7786    // a brace-or-equal-initializer.
7787    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7788    // the definition of a variable [...] or the declaration of a static data
7789    // member.
7790    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7791      if (Var->isStaticDataMember())
7792        Diag(Var->getLocation(),
7793             diag::err_constexpr_static_mem_var_requires_init)
7794          << Var->getDeclName();
7795      else
7796        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7797      Var->setInvalidDecl();
7798      return;
7799    }
7800
7801    switch (Var->isThisDeclarationADefinition()) {
7802    case VarDecl::Definition:
7803      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7804        break;
7805
7806      // We have an out-of-line definition of a static data member
7807      // that has an in-class initializer, so we type-check this like
7808      // a declaration.
7809      //
7810      // Fall through
7811
7812    case VarDecl::DeclarationOnly:
7813      // It's only a declaration.
7814
7815      // Block scope. C99 6.7p7: If an identifier for an object is
7816      // declared with no linkage (C99 6.2.2p6), the type for the
7817      // object shall be complete.
7818      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7819          !Var->hasLinkage() && !Var->isInvalidDecl() &&
7820          RequireCompleteType(Var->getLocation(), Type,
7821                              diag::err_typecheck_decl_incomplete_type))
7822        Var->setInvalidDecl();
7823
7824      // Make sure that the type is not abstract.
7825      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7826          RequireNonAbstractType(Var->getLocation(), Type,
7827                                 diag::err_abstract_type_in_decl,
7828                                 AbstractVariableType))
7829        Var->setInvalidDecl();
7830      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7831          Var->getStorageClass() == SC_PrivateExtern) {
7832        Diag(Var->getLocation(), diag::warn_private_extern);
7833        Diag(Var->getLocation(), diag::note_private_extern);
7834      }
7835
7836      return;
7837
7838    case VarDecl::TentativeDefinition:
7839      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7840      // object that has file scope without an initializer, and without a
7841      // storage-class specifier or with the storage-class specifier "static",
7842      // constitutes a tentative definition. Note: A tentative definition with
7843      // external linkage is valid (C99 6.2.2p5).
7844      if (!Var->isInvalidDecl()) {
7845        if (const IncompleteArrayType *ArrayT
7846                                    = Context.getAsIncompleteArrayType(Type)) {
7847          if (RequireCompleteType(Var->getLocation(),
7848                                  ArrayT->getElementType(),
7849                                  diag::err_illegal_decl_array_incomplete_type))
7850            Var->setInvalidDecl();
7851        } else if (Var->getStorageClass() == SC_Static) {
7852          // C99 6.9.2p3: If the declaration of an identifier for an object is
7853          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7854          // declared type shall not be an incomplete type.
7855          // NOTE: code such as the following
7856          //     static struct s;
7857          //     struct s { int a; };
7858          // is accepted by gcc. Hence here we issue a warning instead of
7859          // an error and we do not invalidate the static declaration.
7860          // NOTE: to avoid multiple warnings, only check the first declaration.
7861          if (Var->getPreviousDecl() == 0)
7862            RequireCompleteType(Var->getLocation(), Type,
7863                                diag::ext_typecheck_decl_incomplete_type);
7864        }
7865      }
7866
7867      // Record the tentative definition; we're done.
7868      if (!Var->isInvalidDecl())
7869        TentativeDefinitions.push_back(Var);
7870      return;
7871    }
7872
7873    // Provide a specific diagnostic for uninitialized variable
7874    // definitions with incomplete array type.
7875    if (Type->isIncompleteArrayType()) {
7876      Diag(Var->getLocation(),
7877           diag::err_typecheck_incomplete_array_needs_initializer);
7878      Var->setInvalidDecl();
7879      return;
7880    }
7881
7882    // Provide a specific diagnostic for uninitialized variable
7883    // definitions with reference type.
7884    if (Type->isReferenceType()) {
7885      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7886        << Var->getDeclName()
7887        << SourceRange(Var->getLocation(), Var->getLocation());
7888      Var->setInvalidDecl();
7889      return;
7890    }
7891
7892    // Do not attempt to type-check the default initializer for a
7893    // variable with dependent type.
7894    if (Type->isDependentType())
7895      return;
7896
7897    if (Var->isInvalidDecl())
7898      return;
7899
7900    if (RequireCompleteType(Var->getLocation(),
7901                            Context.getBaseElementType(Type),
7902                            diag::err_typecheck_decl_incomplete_type)) {
7903      Var->setInvalidDecl();
7904      return;
7905    }
7906
7907    // The variable can not have an abstract class type.
7908    if (RequireNonAbstractType(Var->getLocation(), Type,
7909                               diag::err_abstract_type_in_decl,
7910                               AbstractVariableType)) {
7911      Var->setInvalidDecl();
7912      return;
7913    }
7914
7915    // Check for jumps past the implicit initializer.  C++0x
7916    // clarifies that this applies to a "variable with automatic
7917    // storage duration", not a "local variable".
7918    // C++11 [stmt.dcl]p3
7919    //   A program that jumps from a point where a variable with automatic
7920    //   storage duration is not in scope to a point where it is in scope is
7921    //   ill-formed unless the variable has scalar type, class type with a
7922    //   trivial default constructor and a trivial destructor, a cv-qualified
7923    //   version of one of these types, or an array of one of the preceding
7924    //   types and is declared without an initializer.
7925    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7926      if (const RecordType *Record
7927            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7928        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7929        // Mark the function for further checking even if the looser rules of
7930        // C++11 do not require such checks, so that we can diagnose
7931        // incompatibilities with C++98.
7932        if (!CXXRecord->isPOD())
7933          getCurFunction()->setHasBranchProtectedScope();
7934      }
7935    }
7936
7937    // C++03 [dcl.init]p9:
7938    //   If no initializer is specified for an object, and the
7939    //   object is of (possibly cv-qualified) non-POD class type (or
7940    //   array thereof), the object shall be default-initialized; if
7941    //   the object is of const-qualified type, the underlying class
7942    //   type shall have a user-declared default
7943    //   constructor. Otherwise, if no initializer is specified for
7944    //   a non- static object, the object and its subobjects, if
7945    //   any, have an indeterminate initial value); if the object
7946    //   or any of its subobjects are of const-qualified type, the
7947    //   program is ill-formed.
7948    // C++0x [dcl.init]p11:
7949    //   If no initializer is specified for an object, the object is
7950    //   default-initialized; [...].
7951    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7952    InitializationKind Kind
7953      = InitializationKind::CreateDefault(Var->getLocation());
7954
7955    InitializationSequence InitSeq(*this, Entity, Kind, None);
7956    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
7957    if (Init.isInvalid())
7958      Var->setInvalidDecl();
7959    else if (Init.get()) {
7960      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7961      // This is important for template substitution.
7962      Var->setInitStyle(VarDecl::CallInit);
7963    }
7964
7965    CheckCompleteVariableDeclaration(Var);
7966  }
7967}
7968
7969void Sema::ActOnCXXForRangeDecl(Decl *D) {
7970  VarDecl *VD = dyn_cast<VarDecl>(D);
7971  if (!VD) {
7972    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7973    D->setInvalidDecl();
7974    return;
7975  }
7976
7977  VD->setCXXForRangeDecl(true);
7978
7979  // for-range-declaration cannot be given a storage class specifier.
7980  int Error = -1;
7981  switch (VD->getStorageClass()) {
7982  case SC_None:
7983    break;
7984  case SC_Extern:
7985    Error = 0;
7986    break;
7987  case SC_Static:
7988    Error = 1;
7989    break;
7990  case SC_PrivateExtern:
7991    Error = 2;
7992    break;
7993  case SC_Auto:
7994    Error = 3;
7995    break;
7996  case SC_Register:
7997    Error = 4;
7998    break;
7999  case SC_OpenCLWorkGroupLocal:
8000    llvm_unreachable("Unexpected storage class");
8001  }
8002  if (VD->isConstexpr())
8003    Error = 5;
8004  if (Error != -1) {
8005    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8006      << VD->getDeclName() << Error;
8007    D->setInvalidDecl();
8008  }
8009}
8010
8011void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8012  if (var->isInvalidDecl()) return;
8013
8014  // In ARC, don't allow jumps past the implicit initialization of a
8015  // local retaining variable.
8016  if (getLangOpts().ObjCAutoRefCount &&
8017      var->hasLocalStorage()) {
8018    switch (var->getType().getObjCLifetime()) {
8019    case Qualifiers::OCL_None:
8020    case Qualifiers::OCL_ExplicitNone:
8021    case Qualifiers::OCL_Autoreleasing:
8022      break;
8023
8024    case Qualifiers::OCL_Weak:
8025    case Qualifiers::OCL_Strong:
8026      getCurFunction()->setHasBranchProtectedScope();
8027      break;
8028    }
8029  }
8030
8031  if (var->isThisDeclarationADefinition() &&
8032      var->isExternallyVisible() &&
8033      getDiagnostics().getDiagnosticLevel(
8034                       diag::warn_missing_variable_declarations,
8035                       var->getLocation())) {
8036    // Find a previous declaration that's not a definition.
8037    VarDecl *prev = var->getPreviousDecl();
8038    while (prev && prev->isThisDeclarationADefinition())
8039      prev = prev->getPreviousDecl();
8040
8041    if (!prev)
8042      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8043  }
8044
8045  if (var->getTLSKind() == VarDecl::TLS_Static &&
8046      var->getType().isDestructedType()) {
8047    // GNU C++98 edits for __thread, [basic.start.term]p3:
8048    //   The type of an object with thread storage duration shall not
8049    //   have a non-trivial destructor.
8050    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8051    if (getLangOpts().CPlusPlus11)
8052      Diag(var->getLocation(), diag::note_use_thread_local);
8053  }
8054
8055  // All the following checks are C++ only.
8056  if (!getLangOpts().CPlusPlus) return;
8057
8058  QualType type = var->getType();
8059  if (type->isDependentType()) return;
8060
8061  // __block variables might require us to capture a copy-initializer.
8062  if (var->hasAttr<BlocksAttr>()) {
8063    // It's currently invalid to ever have a __block variable with an
8064    // array type; should we diagnose that here?
8065
8066    // Regardless, we don't want to ignore array nesting when
8067    // constructing this copy.
8068    if (type->isStructureOrClassType()) {
8069      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8070      SourceLocation poi = var->getLocation();
8071      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8072      ExprResult result
8073        = PerformMoveOrCopyInitialization(
8074            InitializedEntity::InitializeBlock(poi, type, false),
8075            var, var->getType(), varRef, /*AllowNRVO=*/true);
8076      if (!result.isInvalid()) {
8077        result = MaybeCreateExprWithCleanups(result);
8078        Expr *init = result.takeAs<Expr>();
8079        Context.setBlockVarCopyInits(var, init);
8080      }
8081    }
8082  }
8083
8084  Expr *Init = var->getInit();
8085  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8086  QualType baseType = Context.getBaseElementType(type);
8087
8088  if (!var->getDeclContext()->isDependentContext() &&
8089      Init && !Init->isValueDependent()) {
8090    if (IsGlobal && !var->isConstexpr() &&
8091        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8092                                            var->getLocation())
8093          != DiagnosticsEngine::Ignored &&
8094        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8095      Diag(var->getLocation(), diag::warn_global_constructor)
8096        << Init->getSourceRange();
8097
8098    if (var->isConstexpr()) {
8099      SmallVector<PartialDiagnosticAt, 8> Notes;
8100      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8101        SourceLocation DiagLoc = var->getLocation();
8102        // If the note doesn't add any useful information other than a source
8103        // location, fold it into the primary diagnostic.
8104        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8105              diag::note_invalid_subexpr_in_const_expr) {
8106          DiagLoc = Notes[0].first;
8107          Notes.clear();
8108        }
8109        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8110          << var << Init->getSourceRange();
8111        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8112          Diag(Notes[I].first, Notes[I].second);
8113      }
8114    } else if (var->isUsableInConstantExpressions(Context)) {
8115      // Check whether the initializer of a const variable of integral or
8116      // enumeration type is an ICE now, since we can't tell whether it was
8117      // initialized by a constant expression if we check later.
8118      var->checkInitIsICE();
8119    }
8120  }
8121
8122  // Require the destructor.
8123  if (const RecordType *recordType = baseType->getAs<RecordType>())
8124    FinalizeVarWithDestructor(var, recordType);
8125}
8126
8127/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8128/// any semantic actions necessary after any initializer has been attached.
8129void
8130Sema::FinalizeDeclaration(Decl *ThisDecl) {
8131  // Note that we are no longer parsing the initializer for this declaration.
8132  ParsingInitForAutoVars.erase(ThisDecl);
8133
8134  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8135  if (!VD)
8136    return;
8137
8138  const DeclContext *DC = VD->getDeclContext();
8139  // If there's a #pragma GCC visibility in scope, and this isn't a class
8140  // member, set the visibility of this variable.
8141  if (!DC->isRecord() && VD->isExternallyVisible())
8142    AddPushedVisibilityAttribute(VD);
8143
8144  if (VD->isFileVarDecl())
8145    MarkUnusedFileScopedDecl(VD);
8146
8147  // Now we have parsed the initializer and can update the table of magic
8148  // tag values.
8149  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8150      !VD->getType()->isIntegralOrEnumerationType())
8151    return;
8152
8153  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8154         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8155         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8156       I != E; ++I) {
8157    const Expr *MagicValueExpr = VD->getInit();
8158    if (!MagicValueExpr) {
8159      continue;
8160    }
8161    llvm::APSInt MagicValueInt;
8162    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8163      Diag(I->getRange().getBegin(),
8164           diag::err_type_tag_for_datatype_not_ice)
8165        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8166      continue;
8167    }
8168    if (MagicValueInt.getActiveBits() > 64) {
8169      Diag(I->getRange().getBegin(),
8170           diag::err_type_tag_for_datatype_too_large)
8171        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8172      continue;
8173    }
8174    uint64_t MagicValue = MagicValueInt.getZExtValue();
8175    RegisterTypeTagForDatatype(I->getArgumentKind(),
8176                               MagicValue,
8177                               I->getMatchingCType(),
8178                               I->getLayoutCompatible(),
8179                               I->getMustBeNull());
8180  }
8181}
8182
8183Sema::DeclGroupPtrTy
8184Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8185                              Decl **Group, unsigned NumDecls) {
8186  SmallVector<Decl*, 8> Decls;
8187
8188  if (DS.isTypeSpecOwned())
8189    Decls.push_back(DS.getRepAsDecl());
8190
8191  for (unsigned i = 0; i != NumDecls; ++i)
8192    if (Decl *D = Group[i])
8193      Decls.push_back(D);
8194
8195  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8196    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8197      getASTContext().addUnnamedTag(Tag);
8198
8199  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8200                              DS.containsPlaceholderType());
8201}
8202
8203/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8204/// group, performing any necessary semantic checking.
8205Sema::DeclGroupPtrTy
8206Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8207                           bool TypeMayContainAuto) {
8208  // C++0x [dcl.spec.auto]p7:
8209  //   If the type deduced for the template parameter U is not the same in each
8210  //   deduction, the program is ill-formed.
8211  // FIXME: When initializer-list support is added, a distinction is needed
8212  // between the deduced type U and the deduced type which 'auto' stands for.
8213  //   auto a = 0, b = { 1, 2, 3 };
8214  // is legal because the deduced type U is 'int' in both cases.
8215  if (TypeMayContainAuto && NumDecls > 1) {
8216    QualType Deduced;
8217    CanQualType DeducedCanon;
8218    VarDecl *DeducedDecl = 0;
8219    for (unsigned i = 0; i != NumDecls; ++i) {
8220      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8221        AutoType *AT = D->getType()->getContainedAutoType();
8222        // Don't reissue diagnostics when instantiating a template.
8223        if (AT && D->isInvalidDecl())
8224          break;
8225        QualType U = AT ? AT->getDeducedType() : QualType();
8226        if (!U.isNull()) {
8227          CanQualType UCanon = Context.getCanonicalType(U);
8228          if (Deduced.isNull()) {
8229            Deduced = U;
8230            DeducedCanon = UCanon;
8231            DeducedDecl = D;
8232          } else if (DeducedCanon != UCanon) {
8233            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8234                 diag::err_auto_different_deductions)
8235              << (AT->isDecltypeAuto() ? 1 : 0)
8236              << Deduced << DeducedDecl->getDeclName()
8237              << U << D->getDeclName()
8238              << DeducedDecl->getInit()->getSourceRange()
8239              << D->getInit()->getSourceRange();
8240            D->setInvalidDecl();
8241            break;
8242          }
8243        }
8244      }
8245    }
8246  }
8247
8248  ActOnDocumentableDecls(Group, NumDecls);
8249
8250  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8251}
8252
8253void Sema::ActOnDocumentableDecl(Decl *D) {
8254  ActOnDocumentableDecls(&D, 1);
8255}
8256
8257void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8258  // Don't parse the comment if Doxygen diagnostics are ignored.
8259  if (NumDecls == 0 || !Group[0])
8260   return;
8261
8262  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8263                               Group[0]->getLocation())
8264        == DiagnosticsEngine::Ignored)
8265    return;
8266
8267  if (NumDecls >= 2) {
8268    // This is a decl group.  Normally it will contain only declarations
8269    // procuded from declarator list.  But in case we have any definitions or
8270    // additional declaration references:
8271    //   'typedef struct S {} S;'
8272    //   'typedef struct S *S;'
8273    //   'struct S *pS;'
8274    // FinalizeDeclaratorGroup adds these as separate declarations.
8275    Decl *MaybeTagDecl = Group[0];
8276    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8277      Group++;
8278      NumDecls--;
8279    }
8280  }
8281
8282  // See if there are any new comments that are not attached to a decl.
8283  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8284  if (!Comments.empty() &&
8285      !Comments.back()->isAttached()) {
8286    // There is at least one comment that not attached to a decl.
8287    // Maybe it should be attached to one of these decls?
8288    //
8289    // Note that this way we pick up not only comments that precede the
8290    // declaration, but also comments that *follow* the declaration -- thanks to
8291    // the lookahead in the lexer: we've consumed the semicolon and looked
8292    // ahead through comments.
8293    for (unsigned i = 0; i != NumDecls; ++i)
8294      Context.getCommentForDecl(Group[i], &PP);
8295  }
8296}
8297
8298/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8299/// to introduce parameters into function prototype scope.
8300Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8301  const DeclSpec &DS = D.getDeclSpec();
8302
8303  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8304  // C++03 [dcl.stc]p2 also permits 'auto'.
8305  VarDecl::StorageClass StorageClass = SC_None;
8306  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8307    StorageClass = SC_Register;
8308  } else if (getLangOpts().CPlusPlus &&
8309             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8310    StorageClass = SC_Auto;
8311  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8312    Diag(DS.getStorageClassSpecLoc(),
8313         diag::err_invalid_storage_class_in_func_decl);
8314    D.getMutableDeclSpec().ClearStorageClassSpecs();
8315  }
8316
8317  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8318    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8319      << DeclSpec::getSpecifierName(TSCS);
8320  if (DS.isConstexprSpecified())
8321    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8322      << 0;
8323
8324  DiagnoseFunctionSpecifiers(DS);
8325
8326  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8327  QualType parmDeclType = TInfo->getType();
8328
8329  if (getLangOpts().CPlusPlus) {
8330    // Check that there are no default arguments inside the type of this
8331    // parameter.
8332    CheckExtraCXXDefaultArguments(D);
8333
8334    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8335    if (D.getCXXScopeSpec().isSet()) {
8336      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8337        << D.getCXXScopeSpec().getRange();
8338      D.getCXXScopeSpec().clear();
8339    }
8340  }
8341
8342  // Ensure we have a valid name
8343  IdentifierInfo *II = 0;
8344  if (D.hasName()) {
8345    II = D.getIdentifier();
8346    if (!II) {
8347      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8348        << GetNameForDeclarator(D).getName().getAsString();
8349      D.setInvalidType(true);
8350    }
8351  }
8352
8353  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8354  if (II) {
8355    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8356                   ForRedeclaration);
8357    LookupName(R, S);
8358    if (R.isSingleResult()) {
8359      NamedDecl *PrevDecl = R.getFoundDecl();
8360      if (PrevDecl->isTemplateParameter()) {
8361        // Maybe we will complain about the shadowed template parameter.
8362        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8363        // Just pretend that we didn't see the previous declaration.
8364        PrevDecl = 0;
8365      } else if (S->isDeclScope(PrevDecl)) {
8366        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8367        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8368
8369        // Recover by removing the name
8370        II = 0;
8371        D.SetIdentifier(0, D.getIdentifierLoc());
8372        D.setInvalidType(true);
8373      }
8374    }
8375  }
8376
8377  // Temporarily put parameter variables in the translation unit, not
8378  // the enclosing context.  This prevents them from accidentally
8379  // looking like class members in C++.
8380  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8381                                    D.getLocStart(),
8382                                    D.getIdentifierLoc(), II,
8383                                    parmDeclType, TInfo,
8384                                    StorageClass);
8385
8386  if (D.isInvalidType())
8387    New->setInvalidDecl();
8388
8389  assert(S->isFunctionPrototypeScope());
8390  assert(S->getFunctionPrototypeDepth() >= 1);
8391  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8392                    S->getNextFunctionPrototypeIndex());
8393
8394  // Add the parameter declaration into this scope.
8395  S->AddDecl(New);
8396  if (II)
8397    IdResolver.AddDecl(New);
8398
8399  ProcessDeclAttributes(S, New, D);
8400
8401  if (D.getDeclSpec().isModulePrivateSpecified())
8402    Diag(New->getLocation(), diag::err_module_private_local)
8403      << 1 << New->getDeclName()
8404      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8405      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8406
8407  if (New->hasAttr<BlocksAttr>()) {
8408    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8409  }
8410  return New;
8411}
8412
8413/// \brief Synthesizes a variable for a parameter arising from a
8414/// typedef.
8415ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8416                                              SourceLocation Loc,
8417                                              QualType T) {
8418  /* FIXME: setting StartLoc == Loc.
8419     Would it be worth to modify callers so as to provide proper source
8420     location for the unnamed parameters, embedding the parameter's type? */
8421  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8422                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8423                                           SC_None, 0);
8424  Param->setImplicit();
8425  return Param;
8426}
8427
8428void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8429                                    ParmVarDecl * const *ParamEnd) {
8430  // Don't diagnose unused-parameter errors in template instantiations; we
8431  // will already have done so in the template itself.
8432  if (!ActiveTemplateInstantiations.empty())
8433    return;
8434
8435  for (; Param != ParamEnd; ++Param) {
8436    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8437        !(*Param)->hasAttr<UnusedAttr>()) {
8438      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8439        << (*Param)->getDeclName();
8440    }
8441  }
8442}
8443
8444void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8445                                                  ParmVarDecl * const *ParamEnd,
8446                                                  QualType ReturnTy,
8447                                                  NamedDecl *D) {
8448  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8449    return;
8450
8451  // Warn if the return value is pass-by-value and larger than the specified
8452  // threshold.
8453  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8454    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8455    if (Size > LangOpts.NumLargeByValueCopy)
8456      Diag(D->getLocation(), diag::warn_return_value_size)
8457          << D->getDeclName() << Size;
8458  }
8459
8460  // Warn if any parameter is pass-by-value and larger than the specified
8461  // threshold.
8462  for (; Param != ParamEnd; ++Param) {
8463    QualType T = (*Param)->getType();
8464    if (T->isDependentType() || !T.isPODType(Context))
8465      continue;
8466    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8467    if (Size > LangOpts.NumLargeByValueCopy)
8468      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8469          << (*Param)->getDeclName() << Size;
8470  }
8471}
8472
8473ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8474                                  SourceLocation NameLoc, IdentifierInfo *Name,
8475                                  QualType T, TypeSourceInfo *TSInfo,
8476                                  VarDecl::StorageClass StorageClass) {
8477  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8478  if (getLangOpts().ObjCAutoRefCount &&
8479      T.getObjCLifetime() == Qualifiers::OCL_None &&
8480      T->isObjCLifetimeType()) {
8481
8482    Qualifiers::ObjCLifetime lifetime;
8483
8484    // Special cases for arrays:
8485    //   - if it's const, use __unsafe_unretained
8486    //   - otherwise, it's an error
8487    if (T->isArrayType()) {
8488      if (!T.isConstQualified()) {
8489        DelayedDiagnostics.add(
8490            sema::DelayedDiagnostic::makeForbiddenType(
8491            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8492      }
8493      lifetime = Qualifiers::OCL_ExplicitNone;
8494    } else {
8495      lifetime = T->getObjCARCImplicitLifetime();
8496    }
8497    T = Context.getLifetimeQualifiedType(T, lifetime);
8498  }
8499
8500  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8501                                         Context.getAdjustedParameterType(T),
8502                                         TSInfo,
8503                                         StorageClass, 0);
8504
8505  // Parameters can not be abstract class types.
8506  // For record types, this is done by the AbstractClassUsageDiagnoser once
8507  // the class has been completely parsed.
8508  if (!CurContext->isRecord() &&
8509      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8510                             AbstractParamType))
8511    New->setInvalidDecl();
8512
8513  // Parameter declarators cannot be interface types. All ObjC objects are
8514  // passed by reference.
8515  if (T->isObjCObjectType()) {
8516    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8517    Diag(NameLoc,
8518         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8519      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8520    T = Context.getObjCObjectPointerType(T);
8521    New->setType(T);
8522  }
8523
8524  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8525  // duration shall not be qualified by an address-space qualifier."
8526  // Since all parameters have automatic store duration, they can not have
8527  // an address space.
8528  if (T.getAddressSpace() != 0) {
8529    Diag(NameLoc, diag::err_arg_with_address_space);
8530    New->setInvalidDecl();
8531  }
8532
8533  return New;
8534}
8535
8536void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8537                                           SourceLocation LocAfterDecls) {
8538  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8539
8540  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8541  // for a K&R function.
8542  if (!FTI.hasPrototype) {
8543    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8544      --i;
8545      if (FTI.ArgInfo[i].Param == 0) {
8546        SmallString<256> Code;
8547        llvm::raw_svector_ostream(Code) << "  int "
8548                                        << FTI.ArgInfo[i].Ident->getName()
8549                                        << ";\n";
8550        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8551          << FTI.ArgInfo[i].Ident
8552          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8553
8554        // Implicitly declare the argument as type 'int' for lack of a better
8555        // type.
8556        AttributeFactory attrs;
8557        DeclSpec DS(attrs);
8558        const char* PrevSpec; // unused
8559        unsigned DiagID; // unused
8560        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8561                           PrevSpec, DiagID);
8562        // Use the identifier location for the type source range.
8563        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8564        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8565        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8566        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8567        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8568      }
8569    }
8570  }
8571}
8572
8573Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8574  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8575  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8576  Scope *ParentScope = FnBodyScope->getParent();
8577
8578  D.setFunctionDefinitionKind(FDK_Definition);
8579  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8580  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8581}
8582
8583static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8584                             const FunctionDecl*& PossibleZeroParamPrototype) {
8585  // Don't warn about invalid declarations.
8586  if (FD->isInvalidDecl())
8587    return false;
8588
8589  // Or declarations that aren't global.
8590  if (!FD->isGlobal())
8591    return false;
8592
8593  // Don't warn about C++ member functions.
8594  if (isa<CXXMethodDecl>(FD))
8595    return false;
8596
8597  // Don't warn about 'main'.
8598  if (FD->isMain())
8599    return false;
8600
8601  // Don't warn about inline functions.
8602  if (FD->isInlined())
8603    return false;
8604
8605  // Don't warn about function templates.
8606  if (FD->getDescribedFunctionTemplate())
8607    return false;
8608
8609  // Don't warn about function template specializations.
8610  if (FD->isFunctionTemplateSpecialization())
8611    return false;
8612
8613  // Don't warn for OpenCL kernels.
8614  if (FD->hasAttr<OpenCLKernelAttr>())
8615    return false;
8616
8617  bool MissingPrototype = true;
8618  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8619       Prev; Prev = Prev->getPreviousDecl()) {
8620    // Ignore any declarations that occur in function or method
8621    // scope, because they aren't visible from the header.
8622    if (Prev->getDeclContext()->isFunctionOrMethod())
8623      continue;
8624
8625    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8626    if (FD->getNumParams() == 0)
8627      PossibleZeroParamPrototype = Prev;
8628    break;
8629  }
8630
8631  return MissingPrototype;
8632}
8633
8634void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8635  // Don't complain if we're in GNU89 mode and the previous definition
8636  // was an extern inline function.
8637  const FunctionDecl *Definition;
8638  if (FD->isDefined(Definition) &&
8639      !canRedefineFunction(Definition, getLangOpts())) {
8640    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8641        Definition->getStorageClass() == SC_Extern)
8642      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8643        << FD->getDeclName() << getLangOpts().CPlusPlus;
8644    else
8645      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8646    Diag(Definition->getLocation(), diag::note_previous_definition);
8647    FD->setInvalidDecl();
8648  }
8649}
8650
8651Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8652  // Clear the last template instantiation error context.
8653  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8654
8655  if (!D)
8656    return D;
8657  FunctionDecl *FD = 0;
8658
8659  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8660    FD = FunTmpl->getTemplatedDecl();
8661  else
8662    FD = cast<FunctionDecl>(D);
8663
8664  // Enter a new function scope
8665  PushFunctionScope();
8666
8667  // See if this is a redefinition.
8668  if (!FD->isLateTemplateParsed())
8669    CheckForFunctionRedefinition(FD);
8670
8671  // Builtin functions cannot be defined.
8672  if (unsigned BuiltinID = FD->getBuiltinID()) {
8673    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8674      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8675      FD->setInvalidDecl();
8676    }
8677  }
8678
8679  // The return type of a function definition must be complete
8680  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8681  QualType ResultType = FD->getResultType();
8682  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8683      !FD->isInvalidDecl() &&
8684      RequireCompleteType(FD->getLocation(), ResultType,
8685                          diag::err_func_def_incomplete_result))
8686    FD->setInvalidDecl();
8687
8688  // GNU warning -Wmissing-prototypes:
8689  //   Warn if a global function is defined without a previous
8690  //   prototype declaration. This warning is issued even if the
8691  //   definition itself provides a prototype. The aim is to detect
8692  //   global functions that fail to be declared in header files.
8693  const FunctionDecl *PossibleZeroParamPrototype = 0;
8694  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8695    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8696
8697    if (PossibleZeroParamPrototype) {
8698      // We found a declaration that is not a prototype,
8699      // but that could be a zero-parameter prototype
8700      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8701      TypeLoc TL = TI->getTypeLoc();
8702      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8703        Diag(PossibleZeroParamPrototype->getLocation(),
8704             diag::note_declaration_not_a_prototype)
8705          << PossibleZeroParamPrototype
8706          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8707    }
8708  }
8709
8710  if (FnBodyScope)
8711    PushDeclContext(FnBodyScope, FD);
8712
8713  // Check the validity of our function parameters
8714  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8715                           /*CheckParameterNames=*/true);
8716
8717  // Introduce our parameters into the function scope
8718  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8719    ParmVarDecl *Param = FD->getParamDecl(p);
8720    Param->setOwningFunction(FD);
8721
8722    // If this has an identifier, add it to the scope stack.
8723    if (Param->getIdentifier() && FnBodyScope) {
8724      CheckShadow(FnBodyScope, Param);
8725
8726      PushOnScopeChains(Param, FnBodyScope);
8727    }
8728  }
8729
8730  // If we had any tags defined in the function prototype,
8731  // introduce them into the function scope.
8732  if (FnBodyScope) {
8733    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8734           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8735      NamedDecl *D = *I;
8736
8737      // Some of these decls (like enums) may have been pinned to the translation unit
8738      // for lack of a real context earlier. If so, remove from the translation unit
8739      // and reattach to the current context.
8740      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8741        // Is the decl actually in the context?
8742        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8743               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8744          if (*DI == D) {
8745            Context.getTranslationUnitDecl()->removeDecl(D);
8746            break;
8747          }
8748        }
8749        // Either way, reassign the lexical decl context to our FunctionDecl.
8750        D->setLexicalDeclContext(CurContext);
8751      }
8752
8753      // If the decl has a non-null name, make accessible in the current scope.
8754      if (!D->getName().empty())
8755        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8756
8757      // Similarly, dive into enums and fish their constants out, making them
8758      // accessible in this scope.
8759      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8760        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8761               EE = ED->enumerator_end(); EI != EE; ++EI)
8762          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8763      }
8764    }
8765  }
8766
8767  // Ensure that the function's exception specification is instantiated.
8768  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8769    ResolveExceptionSpec(D->getLocation(), FPT);
8770
8771  // Checking attributes of current function definition
8772  // dllimport attribute.
8773  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8774  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8775    // dllimport attribute cannot be directly applied to definition.
8776    // Microsoft accepts dllimport for functions defined within class scope.
8777    if (!DA->isInherited() &&
8778        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8779      Diag(FD->getLocation(),
8780           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8781        << "dllimport";
8782      FD->setInvalidDecl();
8783      return D;
8784    }
8785
8786    // Visual C++ appears to not think this is an issue, so only issue
8787    // a warning when Microsoft extensions are disabled.
8788    if (!LangOpts.MicrosoftExt) {
8789      // If a symbol previously declared dllimport is later defined, the
8790      // attribute is ignored in subsequent references, and a warning is
8791      // emitted.
8792      Diag(FD->getLocation(),
8793           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8794        << FD->getName() << "dllimport";
8795    }
8796  }
8797  // We want to attach documentation to original Decl (which might be
8798  // a function template).
8799  ActOnDocumentableDecl(D);
8800  return D;
8801}
8802
8803/// \brief Given the set of return statements within a function body,
8804/// compute the variables that are subject to the named return value
8805/// optimization.
8806///
8807/// Each of the variables that is subject to the named return value
8808/// optimization will be marked as NRVO variables in the AST, and any
8809/// return statement that has a marked NRVO variable as its NRVO candidate can
8810/// use the named return value optimization.
8811///
8812/// This function applies a very simplistic algorithm for NRVO: if every return
8813/// statement in the function has the same NRVO candidate, that candidate is
8814/// the NRVO variable.
8815///
8816/// FIXME: Employ a smarter algorithm that accounts for multiple return
8817/// statements and the lifetimes of the NRVO candidates. We should be able to
8818/// find a maximal set of NRVO variables.
8819void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8820  ReturnStmt **Returns = Scope->Returns.data();
8821
8822  const VarDecl *NRVOCandidate = 0;
8823  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8824    if (!Returns[I]->getNRVOCandidate())
8825      return;
8826
8827    if (!NRVOCandidate)
8828      NRVOCandidate = Returns[I]->getNRVOCandidate();
8829    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8830      return;
8831  }
8832
8833  if (NRVOCandidate)
8834    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8835}
8836
8837bool Sema::canSkipFunctionBody(Decl *D) {
8838  if (!Consumer.shouldSkipFunctionBody(D))
8839    return false;
8840
8841  if (isa<ObjCMethodDecl>(D))
8842    return true;
8843
8844  FunctionDecl *FD = 0;
8845  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8846    FD = FTD->getTemplatedDecl();
8847  else
8848    FD = cast<FunctionDecl>(D);
8849
8850  // We cannot skip the body of a function (or function template) which is
8851  // constexpr, since we may need to evaluate its body in order to parse the
8852  // rest of the file.
8853  // We cannot skip the body of a function with an undeduced return type,
8854  // because any callers of that function need to know the type.
8855  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
8856}
8857
8858Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8859  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8860    FD->setHasSkippedBody();
8861  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8862    MD->setHasSkippedBody();
8863  return ActOnFinishFunctionBody(Decl, 0);
8864}
8865
8866Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8867  return ActOnFinishFunctionBody(D, BodyArg, false);
8868}
8869
8870Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8871                                    bool IsInstantiation) {
8872  FunctionDecl *FD = 0;
8873  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8874  if (FunTmpl)
8875    FD = FunTmpl->getTemplatedDecl();
8876  else
8877    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8878
8879  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8880  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8881
8882  if (FD) {
8883    FD->setBody(Body);
8884
8885    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
8886        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
8887      // If the function has a deduced result type but contains no 'return'
8888      // statements, the result type as written must be exactly 'auto', and
8889      // the deduced result type is 'void'.
8890      if (!FD->getResultType()->getAs<AutoType>()) {
8891        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
8892          << FD->getResultType();
8893        FD->setInvalidDecl();
8894      } else {
8895        // Substitute 'void' for the 'auto' in the type.
8896        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
8897            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
8898        Context.adjustDeducedFunctionResultType(
8899            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
8900      }
8901    }
8902
8903    // The only way to be included in UndefinedButUsed is if there is an
8904    // ODR use before the definition. Avoid the expensive map lookup if this
8905    // is the first declaration.
8906    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8907      if (!FD->isExternallyVisible())
8908        UndefinedButUsed.erase(FD);
8909      else if (FD->isInlined() &&
8910               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8911               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8912        UndefinedButUsed.erase(FD);
8913    }
8914
8915    // If the function implicitly returns zero (like 'main') or is naked,
8916    // don't complain about missing return statements.
8917    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8918      WP.disableCheckFallThrough();
8919
8920    // MSVC permits the use of pure specifier (=0) on function definition,
8921    // defined at class scope, warn about this non standard construct.
8922    if (getLangOpts().MicrosoftExt && FD->isPure())
8923      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8924
8925    if (!FD->isInvalidDecl()) {
8926      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8927      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8928                                             FD->getResultType(), FD);
8929
8930      // If this is a constructor, we need a vtable.
8931      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8932        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8933
8934      // Try to apply the named return value optimization. We have to check
8935      // if we can do this here because lambdas keep return statements around
8936      // to deduce an implicit return type.
8937      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8938          !FD->isDependentContext())
8939        computeNRVO(Body, getCurFunction());
8940    }
8941
8942    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8943           "Function parsing confused");
8944  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8945    assert(MD == getCurMethodDecl() && "Method parsing confused");
8946    MD->setBody(Body);
8947    if (!MD->isInvalidDecl()) {
8948      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8949      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8950                                             MD->getResultType(), MD);
8951
8952      if (Body)
8953        computeNRVO(Body, getCurFunction());
8954    }
8955    if (getCurFunction()->ObjCShouldCallSuper) {
8956      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8957        << MD->getSelector().getAsString();
8958      getCurFunction()->ObjCShouldCallSuper = false;
8959    }
8960  } else {
8961    return 0;
8962  }
8963
8964  assert(!getCurFunction()->ObjCShouldCallSuper &&
8965         "This should only be set for ObjC methods, which should have been "
8966         "handled in the block above.");
8967
8968  // Verify and clean out per-function state.
8969  if (Body) {
8970    // C++ constructors that have function-try-blocks can't have return
8971    // statements in the handlers of that block. (C++ [except.handle]p14)
8972    // Verify this.
8973    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8974      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8975
8976    // Verify that gotos and switch cases don't jump into scopes illegally.
8977    if (getCurFunction()->NeedsScopeChecking() &&
8978        !dcl->isInvalidDecl() &&
8979        !hasAnyUnrecoverableErrorsInThisFunction() &&
8980        !PP.isCodeCompletionEnabled())
8981      DiagnoseInvalidJumps(Body);
8982
8983    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8984      if (!Destructor->getParent()->isDependentType())
8985        CheckDestructor(Destructor);
8986
8987      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8988                                             Destructor->getParent());
8989    }
8990
8991    // If any errors have occurred, clear out any temporaries that may have
8992    // been leftover. This ensures that these temporaries won't be picked up for
8993    // deletion in some later function.
8994    if (PP.getDiagnostics().hasErrorOccurred() ||
8995        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8996      DiscardCleanupsInEvaluationContext();
8997    }
8998    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8999        !isa<FunctionTemplateDecl>(dcl)) {
9000      // Since the body is valid, issue any analysis-based warnings that are
9001      // enabled.
9002      ActivePolicy = &WP;
9003    }
9004
9005    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9006        (!CheckConstexprFunctionDecl(FD) ||
9007         !CheckConstexprFunctionBody(FD, Body)))
9008      FD->setInvalidDecl();
9009
9010    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9011    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9012    assert(MaybeODRUseExprs.empty() &&
9013           "Leftover expressions for odr-use checking");
9014  }
9015
9016  if (!IsInstantiation)
9017    PopDeclContext();
9018
9019  PopFunctionScopeInfo(ActivePolicy, dcl);
9020
9021  // If any errors have occurred, clear out any temporaries that may have
9022  // been leftover. This ensures that these temporaries won't be picked up for
9023  // deletion in some later function.
9024  if (getDiagnostics().hasErrorOccurred()) {
9025    DiscardCleanupsInEvaluationContext();
9026  }
9027
9028  return dcl;
9029}
9030
9031
9032/// When we finish delayed parsing of an attribute, we must attach it to the
9033/// relevant Decl.
9034void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9035                                       ParsedAttributes &Attrs) {
9036  // Always attach attributes to the underlying decl.
9037  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9038    D = TD->getTemplatedDecl();
9039  ProcessDeclAttributeList(S, D, Attrs.getList());
9040
9041  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9042    if (Method->isStatic())
9043      checkThisInStaticMemberFunctionAttributes(Method);
9044}
9045
9046
9047/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9048/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9049NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9050                                          IdentifierInfo &II, Scope *S) {
9051  // Before we produce a declaration for an implicitly defined
9052  // function, see whether there was a locally-scoped declaration of
9053  // this name as a function or variable. If so, use that
9054  // (non-visible) declaration, and complain about it.
9055  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
9056    = findLocallyScopedExternCDecl(&II);
9057  if (Pos != LocallyScopedExternCDecls.end()) {
9058    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
9059    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
9060    return Pos->second;
9061  }
9062
9063  // Extension in C99.  Legal in C90, but warn about it.
9064  unsigned diag_id;
9065  if (II.getName().startswith("__builtin_"))
9066    diag_id = diag::warn_builtin_unknown;
9067  else if (getLangOpts().C99)
9068    diag_id = diag::ext_implicit_function_decl;
9069  else
9070    diag_id = diag::warn_implicit_function_decl;
9071  Diag(Loc, diag_id) << &II;
9072
9073  // Because typo correction is expensive, only do it if the implicit
9074  // function declaration is going to be treated as an error.
9075  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9076    TypoCorrection Corrected;
9077    DeclFilterCCC<FunctionDecl> Validator;
9078    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9079                                      LookupOrdinaryName, S, 0, Validator))) {
9080      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9081      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9082      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9083
9084      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9085          << FixItHint::CreateReplacement(Loc, CorrectedStr);
9086
9087      if (Func->getLocation().isValid()
9088          && !II.getName().startswith("__builtin_"))
9089        Diag(Func->getLocation(), diag::note_previous_decl)
9090            << CorrectedQuotedStr;
9091    }
9092  }
9093
9094  // Set a Declarator for the implicit definition: int foo();
9095  const char *Dummy;
9096  AttributeFactory attrFactory;
9097  DeclSpec DS(attrFactory);
9098  unsigned DiagID;
9099  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9100  (void)Error; // Silence warning.
9101  assert(!Error && "Error setting up implicit decl!");
9102  SourceLocation NoLoc;
9103  Declarator D(DS, Declarator::BlockContext);
9104  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9105                                             /*IsAmbiguous=*/false,
9106                                             /*RParenLoc=*/NoLoc,
9107                                             /*ArgInfo=*/0,
9108                                             /*NumArgs=*/0,
9109                                             /*EllipsisLoc=*/NoLoc,
9110                                             /*RParenLoc=*/NoLoc,
9111                                             /*TypeQuals=*/0,
9112                                             /*RefQualifierIsLvalueRef=*/true,
9113                                             /*RefQualifierLoc=*/NoLoc,
9114                                             /*ConstQualifierLoc=*/NoLoc,
9115                                             /*VolatileQualifierLoc=*/NoLoc,
9116                                             /*MutableLoc=*/NoLoc,
9117                                             EST_None,
9118                                             /*ESpecLoc=*/NoLoc,
9119                                             /*Exceptions=*/0,
9120                                             /*ExceptionRanges=*/0,
9121                                             /*NumExceptions=*/0,
9122                                             /*NoexceptExpr=*/0,
9123                                             Loc, Loc, D),
9124                DS.getAttributes(),
9125                SourceLocation());
9126  D.SetIdentifier(&II, Loc);
9127
9128  // Insert this function into translation-unit scope.
9129
9130  DeclContext *PrevDC = CurContext;
9131  CurContext = Context.getTranslationUnitDecl();
9132
9133  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9134  FD->setImplicit();
9135
9136  CurContext = PrevDC;
9137
9138  AddKnownFunctionAttributes(FD);
9139
9140  return FD;
9141}
9142
9143/// \brief Adds any function attributes that we know a priori based on
9144/// the declaration of this function.
9145///
9146/// These attributes can apply both to implicitly-declared builtins
9147/// (like __builtin___printf_chk) or to library-declared functions
9148/// like NSLog or printf.
9149///
9150/// We need to check for duplicate attributes both here and where user-written
9151/// attributes are applied to declarations.
9152void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9153  if (FD->isInvalidDecl())
9154    return;
9155
9156  // If this is a built-in function, map its builtin attributes to
9157  // actual attributes.
9158  if (unsigned BuiltinID = FD->getBuiltinID()) {
9159    // Handle printf-formatting attributes.
9160    unsigned FormatIdx;
9161    bool HasVAListArg;
9162    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9163      if (!FD->getAttr<FormatAttr>()) {
9164        const char *fmt = "printf";
9165        unsigned int NumParams = FD->getNumParams();
9166        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9167            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9168          fmt = "NSString";
9169        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9170                                               fmt, FormatIdx+1,
9171                                               HasVAListArg ? 0 : FormatIdx+2));
9172      }
9173    }
9174    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9175                                             HasVAListArg)) {
9176     if (!FD->getAttr<FormatAttr>())
9177       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9178                                              "scanf", FormatIdx+1,
9179                                              HasVAListArg ? 0 : FormatIdx+2));
9180    }
9181
9182    // Mark const if we don't care about errno and that is the only
9183    // thing preventing the function from being const. This allows
9184    // IRgen to use LLVM intrinsics for such functions.
9185    if (!getLangOpts().MathErrno &&
9186        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9187      if (!FD->getAttr<ConstAttr>())
9188        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9189    }
9190
9191    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9192        !FD->getAttr<ReturnsTwiceAttr>())
9193      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9194    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9195      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9196    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9197      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9198  }
9199
9200  IdentifierInfo *Name = FD->getIdentifier();
9201  if (!Name)
9202    return;
9203  if ((!getLangOpts().CPlusPlus &&
9204       FD->getDeclContext()->isTranslationUnit()) ||
9205      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9206       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9207       LinkageSpecDecl::lang_c)) {
9208    // Okay: this could be a libc/libm/Objective-C function we know
9209    // about.
9210  } else
9211    return;
9212
9213  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9214    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9215    // target-specific builtins, perhaps?
9216    if (!FD->getAttr<FormatAttr>())
9217      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9218                                             "printf", 2,
9219                                             Name->isStr("vasprintf") ? 0 : 3));
9220  }
9221
9222  if (Name->isStr("__CFStringMakeConstantString")) {
9223    // We already have a __builtin___CFStringMakeConstantString,
9224    // but builds that use -fno-constant-cfstrings don't go through that.
9225    if (!FD->getAttr<FormatArgAttr>())
9226      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9227  }
9228}
9229
9230TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9231                                    TypeSourceInfo *TInfo) {
9232  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9233  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9234
9235  if (!TInfo) {
9236    assert(D.isInvalidType() && "no declarator info for valid type");
9237    TInfo = Context.getTrivialTypeSourceInfo(T);
9238  }
9239
9240  // Scope manipulation handled by caller.
9241  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9242                                           D.getLocStart(),
9243                                           D.getIdentifierLoc(),
9244                                           D.getIdentifier(),
9245                                           TInfo);
9246
9247  // Bail out immediately if we have an invalid declaration.
9248  if (D.isInvalidType()) {
9249    NewTD->setInvalidDecl();
9250    return NewTD;
9251  }
9252
9253  if (D.getDeclSpec().isModulePrivateSpecified()) {
9254    if (CurContext->isFunctionOrMethod())
9255      Diag(NewTD->getLocation(), diag::err_module_private_local)
9256        << 2 << NewTD->getDeclName()
9257        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9258        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9259    else
9260      NewTD->setModulePrivate();
9261  }
9262
9263  // C++ [dcl.typedef]p8:
9264  //   If the typedef declaration defines an unnamed class (or
9265  //   enum), the first typedef-name declared by the declaration
9266  //   to be that class type (or enum type) is used to denote the
9267  //   class type (or enum type) for linkage purposes only.
9268  // We need to check whether the type was declared in the declaration.
9269  switch (D.getDeclSpec().getTypeSpecType()) {
9270  case TST_enum:
9271  case TST_struct:
9272  case TST_interface:
9273  case TST_union:
9274  case TST_class: {
9275    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9276
9277    // Do nothing if the tag is not anonymous or already has an
9278    // associated typedef (from an earlier typedef in this decl group).
9279    if (tagFromDeclSpec->getIdentifier()) break;
9280    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9281
9282    // A well-formed anonymous tag must always be a TUK_Definition.
9283    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9284
9285    // The type must match the tag exactly;  no qualifiers allowed.
9286    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9287      break;
9288
9289    // Otherwise, set this is the anon-decl typedef for the tag.
9290    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9291    break;
9292  }
9293
9294  default:
9295    break;
9296  }
9297
9298  return NewTD;
9299}
9300
9301
9302/// \brief Check that this is a valid underlying type for an enum declaration.
9303bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9304  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9305  QualType T = TI->getType();
9306
9307  if (T->isDependentType())
9308    return false;
9309
9310  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9311    if (BT->isInteger())
9312      return false;
9313
9314  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9315  return true;
9316}
9317
9318/// Check whether this is a valid redeclaration of a previous enumeration.
9319/// \return true if the redeclaration was invalid.
9320bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9321                                  QualType EnumUnderlyingTy,
9322                                  const EnumDecl *Prev) {
9323  bool IsFixed = !EnumUnderlyingTy.isNull();
9324
9325  if (IsScoped != Prev->isScoped()) {
9326    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9327      << Prev->isScoped();
9328    Diag(Prev->getLocation(), diag::note_previous_use);
9329    return true;
9330  }
9331
9332  if (IsFixed && Prev->isFixed()) {
9333    if (!EnumUnderlyingTy->isDependentType() &&
9334        !Prev->getIntegerType()->isDependentType() &&
9335        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9336                                        Prev->getIntegerType())) {
9337      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9338        << EnumUnderlyingTy << Prev->getIntegerType();
9339      Diag(Prev->getLocation(), diag::note_previous_use);
9340      return true;
9341    }
9342  } else if (IsFixed != Prev->isFixed()) {
9343    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9344      << Prev->isFixed();
9345    Diag(Prev->getLocation(), diag::note_previous_use);
9346    return true;
9347  }
9348
9349  return false;
9350}
9351
9352/// \brief Get diagnostic %select index for tag kind for
9353/// redeclaration diagnostic message.
9354/// WARNING: Indexes apply to particular diagnostics only!
9355///
9356/// \returns diagnostic %select index.
9357static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9358  switch (Tag) {
9359  case TTK_Struct: return 0;
9360  case TTK_Interface: return 1;
9361  case TTK_Class:  return 2;
9362  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9363  }
9364}
9365
9366/// \brief Determine if tag kind is a class-key compatible with
9367/// class for redeclaration (class, struct, or __interface).
9368///
9369/// \returns true iff the tag kind is compatible.
9370static bool isClassCompatTagKind(TagTypeKind Tag)
9371{
9372  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9373}
9374
9375/// \brief Determine whether a tag with a given kind is acceptable
9376/// as a redeclaration of the given tag declaration.
9377///
9378/// \returns true if the new tag kind is acceptable, false otherwise.
9379bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9380                                        TagTypeKind NewTag, bool isDefinition,
9381                                        SourceLocation NewTagLoc,
9382                                        const IdentifierInfo &Name) {
9383  // C++ [dcl.type.elab]p3:
9384  //   The class-key or enum keyword present in the
9385  //   elaborated-type-specifier shall agree in kind with the
9386  //   declaration to which the name in the elaborated-type-specifier
9387  //   refers. This rule also applies to the form of
9388  //   elaborated-type-specifier that declares a class-name or
9389  //   friend class since it can be construed as referring to the
9390  //   definition of the class. Thus, in any
9391  //   elaborated-type-specifier, the enum keyword shall be used to
9392  //   refer to an enumeration (7.2), the union class-key shall be
9393  //   used to refer to a union (clause 9), and either the class or
9394  //   struct class-key shall be used to refer to a class (clause 9)
9395  //   declared using the class or struct class-key.
9396  TagTypeKind OldTag = Previous->getTagKind();
9397  if (!isDefinition || !isClassCompatTagKind(NewTag))
9398    if (OldTag == NewTag)
9399      return true;
9400
9401  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9402    // Warn about the struct/class tag mismatch.
9403    bool isTemplate = false;
9404    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9405      isTemplate = Record->getDescribedClassTemplate();
9406
9407    if (!ActiveTemplateInstantiations.empty()) {
9408      // In a template instantiation, do not offer fix-its for tag mismatches
9409      // since they usually mess up the template instead of fixing the problem.
9410      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9411        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9412        << getRedeclDiagFromTagKind(OldTag);
9413      return true;
9414    }
9415
9416    if (isDefinition) {
9417      // On definitions, check previous tags and issue a fix-it for each
9418      // one that doesn't match the current tag.
9419      if (Previous->getDefinition()) {
9420        // Don't suggest fix-its for redefinitions.
9421        return true;
9422      }
9423
9424      bool previousMismatch = false;
9425      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9426           E(Previous->redecls_end()); I != E; ++I) {
9427        if (I->getTagKind() != NewTag) {
9428          if (!previousMismatch) {
9429            previousMismatch = true;
9430            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9431              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9432              << getRedeclDiagFromTagKind(I->getTagKind());
9433          }
9434          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9435            << getRedeclDiagFromTagKind(NewTag)
9436            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9437                 TypeWithKeyword::getTagTypeKindName(NewTag));
9438        }
9439      }
9440      return true;
9441    }
9442
9443    // Check for a previous definition.  If current tag and definition
9444    // are same type, do nothing.  If no definition, but disagree with
9445    // with previous tag type, give a warning, but no fix-it.
9446    const TagDecl *Redecl = Previous->getDefinition() ?
9447                            Previous->getDefinition() : Previous;
9448    if (Redecl->getTagKind() == NewTag) {
9449      return true;
9450    }
9451
9452    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9453      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9454      << getRedeclDiagFromTagKind(OldTag);
9455    Diag(Redecl->getLocation(), diag::note_previous_use);
9456
9457    // If there is a previous defintion, suggest a fix-it.
9458    if (Previous->getDefinition()) {
9459        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9460          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9461          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9462               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9463    }
9464
9465    return true;
9466  }
9467  return false;
9468}
9469
9470/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9471/// former case, Name will be non-null.  In the later case, Name will be null.
9472/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9473/// reference/declaration/definition of a tag.
9474Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9475                     SourceLocation KWLoc, CXXScopeSpec &SS,
9476                     IdentifierInfo *Name, SourceLocation NameLoc,
9477                     AttributeList *Attr, AccessSpecifier AS,
9478                     SourceLocation ModulePrivateLoc,
9479                     MultiTemplateParamsArg TemplateParameterLists,
9480                     bool &OwnedDecl, bool &IsDependent,
9481                     SourceLocation ScopedEnumKWLoc,
9482                     bool ScopedEnumUsesClassTag,
9483                     TypeResult UnderlyingType) {
9484  // If this is not a definition, it must have a name.
9485  IdentifierInfo *OrigName = Name;
9486  assert((Name != 0 || TUK == TUK_Definition) &&
9487         "Nameless record must be a definition!");
9488  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9489
9490  OwnedDecl = false;
9491  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9492  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9493
9494  // FIXME: Check explicit specializations more carefully.
9495  bool isExplicitSpecialization = false;
9496  bool Invalid = false;
9497
9498  // We only need to do this matching if we have template parameters
9499  // or a scope specifier, which also conveniently avoids this work
9500  // for non-C++ cases.
9501  if (TemplateParameterLists.size() > 0 ||
9502      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9503    if (TemplateParameterList *TemplateParams
9504          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9505                                                TemplateParameterLists.data(),
9506                                                TemplateParameterLists.size(),
9507                                                    TUK == TUK_Friend,
9508                                                    isExplicitSpecialization,
9509                                                    Invalid)) {
9510      if (Kind == TTK_Enum) {
9511        Diag(KWLoc, diag::err_enum_template);
9512        return 0;
9513      }
9514
9515      if (TemplateParams->size() > 0) {
9516        // This is a declaration or definition of a class template (which may
9517        // be a member of another template).
9518
9519        if (Invalid)
9520          return 0;
9521
9522        OwnedDecl = false;
9523        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9524                                               SS, Name, NameLoc, Attr,
9525                                               TemplateParams, AS,
9526                                               ModulePrivateLoc,
9527                                               TemplateParameterLists.size()-1,
9528                                               TemplateParameterLists.data());
9529        return Result.get();
9530      } else {
9531        // The "template<>" header is extraneous.
9532        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9533          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9534        isExplicitSpecialization = true;
9535      }
9536    }
9537  }
9538
9539  // Figure out the underlying type if this a enum declaration. We need to do
9540  // this early, because it's needed to detect if this is an incompatible
9541  // redeclaration.
9542  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9543
9544  if (Kind == TTK_Enum) {
9545    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9546      // No underlying type explicitly specified, or we failed to parse the
9547      // type, default to int.
9548      EnumUnderlying = Context.IntTy.getTypePtr();
9549    else if (UnderlyingType.get()) {
9550      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9551      // integral type; any cv-qualification is ignored.
9552      TypeSourceInfo *TI = 0;
9553      GetTypeFromParser(UnderlyingType.get(), &TI);
9554      EnumUnderlying = TI;
9555
9556      if (CheckEnumUnderlyingType(TI))
9557        // Recover by falling back to int.
9558        EnumUnderlying = Context.IntTy.getTypePtr();
9559
9560      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9561                                          UPPC_FixedUnderlyingType))
9562        EnumUnderlying = Context.IntTy.getTypePtr();
9563
9564    } else if (getLangOpts().MicrosoftMode)
9565      // Microsoft enums are always of int type.
9566      EnumUnderlying = Context.IntTy.getTypePtr();
9567  }
9568
9569  DeclContext *SearchDC = CurContext;
9570  DeclContext *DC = CurContext;
9571  bool isStdBadAlloc = false;
9572
9573  RedeclarationKind Redecl = ForRedeclaration;
9574  if (TUK == TUK_Friend || TUK == TUK_Reference)
9575    Redecl = NotForRedeclaration;
9576
9577  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9578
9579  if (Name && SS.isNotEmpty()) {
9580    // We have a nested-name tag ('struct foo::bar').
9581
9582    // Check for invalid 'foo::'.
9583    if (SS.isInvalid()) {
9584      Name = 0;
9585      goto CreateNewDecl;
9586    }
9587
9588    // If this is a friend or a reference to a class in a dependent
9589    // context, don't try to make a decl for it.
9590    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9591      DC = computeDeclContext(SS, false);
9592      if (!DC) {
9593        IsDependent = true;
9594        return 0;
9595      }
9596    } else {
9597      DC = computeDeclContext(SS, true);
9598      if (!DC) {
9599        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9600          << SS.getRange();
9601        return 0;
9602      }
9603    }
9604
9605    if (RequireCompleteDeclContext(SS, DC))
9606      return 0;
9607
9608    SearchDC = DC;
9609    // Look-up name inside 'foo::'.
9610    LookupQualifiedName(Previous, DC);
9611
9612    if (Previous.isAmbiguous())
9613      return 0;
9614
9615    if (Previous.empty()) {
9616      // Name lookup did not find anything. However, if the
9617      // nested-name-specifier refers to the current instantiation,
9618      // and that current instantiation has any dependent base
9619      // classes, we might find something at instantiation time: treat
9620      // this as a dependent elaborated-type-specifier.
9621      // But this only makes any sense for reference-like lookups.
9622      if (Previous.wasNotFoundInCurrentInstantiation() &&
9623          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9624        IsDependent = true;
9625        return 0;
9626      }
9627
9628      // A tag 'foo::bar' must already exist.
9629      Diag(NameLoc, diag::err_not_tag_in_scope)
9630        << Kind << Name << DC << SS.getRange();
9631      Name = 0;
9632      Invalid = true;
9633      goto CreateNewDecl;
9634    }
9635  } else if (Name) {
9636    // If this is a named struct, check to see if there was a previous forward
9637    // declaration or definition.
9638    // FIXME: We're looking into outer scopes here, even when we
9639    // shouldn't be. Doing so can result in ambiguities that we
9640    // shouldn't be diagnosing.
9641    LookupName(Previous, S);
9642
9643    // When declaring or defining a tag, ignore ambiguities introduced
9644    // by types using'ed into this scope.
9645    if (Previous.isAmbiguous() &&
9646        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9647      LookupResult::Filter F = Previous.makeFilter();
9648      while (F.hasNext()) {
9649        NamedDecl *ND = F.next();
9650        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9651          F.erase();
9652      }
9653      F.done();
9654    }
9655
9656    // C++11 [namespace.memdef]p3:
9657    //   If the name in a friend declaration is neither qualified nor
9658    //   a template-id and the declaration is a function or an
9659    //   elaborated-type-specifier, the lookup to determine whether
9660    //   the entity has been previously declared shall not consider
9661    //   any scopes outside the innermost enclosing namespace.
9662    //
9663    // Does it matter that this should be by scope instead of by
9664    // semantic context?
9665    if (!Previous.empty() && TUK == TUK_Friend) {
9666      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9667      LookupResult::Filter F = Previous.makeFilter();
9668      while (F.hasNext()) {
9669        NamedDecl *ND = F.next();
9670        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9671        if (DC->isFileContext() && !EnclosingNS->Encloses(ND->getDeclContext()))
9672          F.erase();
9673      }
9674      F.done();
9675    }
9676
9677    // Note:  there used to be some attempt at recovery here.
9678    if (Previous.isAmbiguous())
9679      return 0;
9680
9681    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9682      // FIXME: This makes sure that we ignore the contexts associated
9683      // with C structs, unions, and enums when looking for a matching
9684      // tag declaration or definition. See the similar lookup tweak
9685      // in Sema::LookupName; is there a better way to deal with this?
9686      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9687        SearchDC = SearchDC->getParent();
9688    }
9689  } else if (S->isFunctionPrototypeScope()) {
9690    // If this is an enum declaration in function prototype scope, set its
9691    // initial context to the translation unit.
9692    // FIXME: [citation needed]
9693    SearchDC = Context.getTranslationUnitDecl();
9694  }
9695
9696  if (Previous.isSingleResult() &&
9697      Previous.getFoundDecl()->isTemplateParameter()) {
9698    // Maybe we will complain about the shadowed template parameter.
9699    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9700    // Just pretend that we didn't see the previous declaration.
9701    Previous.clear();
9702  }
9703
9704  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9705      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9706    // This is a declaration of or a reference to "std::bad_alloc".
9707    isStdBadAlloc = true;
9708
9709    if (Previous.empty() && StdBadAlloc) {
9710      // std::bad_alloc has been implicitly declared (but made invisible to
9711      // name lookup). Fill in this implicit declaration as the previous
9712      // declaration, so that the declarations get chained appropriately.
9713      Previous.addDecl(getStdBadAlloc());
9714    }
9715  }
9716
9717  // If we didn't find a previous declaration, and this is a reference
9718  // (or friend reference), move to the correct scope.  In C++, we
9719  // also need to do a redeclaration lookup there, just in case
9720  // there's a shadow friend decl.
9721  if (Name && Previous.empty() &&
9722      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9723    if (Invalid) goto CreateNewDecl;
9724    assert(SS.isEmpty());
9725
9726    if (TUK == TUK_Reference) {
9727      // C++ [basic.scope.pdecl]p5:
9728      //   -- for an elaborated-type-specifier of the form
9729      //
9730      //          class-key identifier
9731      //
9732      //      if the elaborated-type-specifier is used in the
9733      //      decl-specifier-seq or parameter-declaration-clause of a
9734      //      function defined in namespace scope, the identifier is
9735      //      declared as a class-name in the namespace that contains
9736      //      the declaration; otherwise, except as a friend
9737      //      declaration, the identifier is declared in the smallest
9738      //      non-class, non-function-prototype scope that contains the
9739      //      declaration.
9740      //
9741      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9742      // C structs and unions.
9743      //
9744      // It is an error in C++ to declare (rather than define) an enum
9745      // type, including via an elaborated type specifier.  We'll
9746      // diagnose that later; for now, declare the enum in the same
9747      // scope as we would have picked for any other tag type.
9748      //
9749      // GNU C also supports this behavior as part of its incomplete
9750      // enum types extension, while GNU C++ does not.
9751      //
9752      // Find the context where we'll be declaring the tag.
9753      // FIXME: We would like to maintain the current DeclContext as the
9754      // lexical context,
9755      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9756        SearchDC = SearchDC->getParent();
9757
9758      // Find the scope where we'll be declaring the tag.
9759      while (S->isClassScope() ||
9760             (getLangOpts().CPlusPlus &&
9761              S->isFunctionPrototypeScope()) ||
9762             ((S->getFlags() & Scope::DeclScope) == 0) ||
9763             (S->getEntity() &&
9764              ((DeclContext *)S->getEntity())->isTransparentContext()))
9765        S = S->getParent();
9766    } else {
9767      assert(TUK == TUK_Friend);
9768      // C++ [namespace.memdef]p3:
9769      //   If a friend declaration in a non-local class first declares a
9770      //   class or function, the friend class or function is a member of
9771      //   the innermost enclosing namespace.
9772      SearchDC = SearchDC->getEnclosingNamespaceContext();
9773    }
9774
9775    // In C++, we need to do a redeclaration lookup to properly
9776    // diagnose some problems.
9777    if (getLangOpts().CPlusPlus) {
9778      Previous.setRedeclarationKind(ForRedeclaration);
9779      LookupQualifiedName(Previous, SearchDC);
9780    }
9781  }
9782
9783  if (!Previous.empty()) {
9784    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9785
9786    // It's okay to have a tag decl in the same scope as a typedef
9787    // which hides a tag decl in the same scope.  Finding this
9788    // insanity with a redeclaration lookup can only actually happen
9789    // in C++.
9790    //
9791    // This is also okay for elaborated-type-specifiers, which is
9792    // technically forbidden by the current standard but which is
9793    // okay according to the likely resolution of an open issue;
9794    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9795    if (getLangOpts().CPlusPlus) {
9796      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9797        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9798          TagDecl *Tag = TT->getDecl();
9799          if (Tag->getDeclName() == Name &&
9800              Tag->getDeclContext()->getRedeclContext()
9801                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9802            PrevDecl = Tag;
9803            Previous.clear();
9804            Previous.addDecl(Tag);
9805            Previous.resolveKind();
9806          }
9807        }
9808      }
9809    }
9810
9811    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9812      // If this is a use of a previous tag, or if the tag is already declared
9813      // in the same scope (so that the definition/declaration completes or
9814      // rementions the tag), reuse the decl.
9815      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9816          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9817        // Make sure that this wasn't declared as an enum and now used as a
9818        // struct or something similar.
9819        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9820                                          TUK == TUK_Definition, KWLoc,
9821                                          *Name)) {
9822          bool SafeToContinue
9823            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9824               Kind != TTK_Enum);
9825          if (SafeToContinue)
9826            Diag(KWLoc, diag::err_use_with_wrong_tag)
9827              << Name
9828              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9829                                              PrevTagDecl->getKindName());
9830          else
9831            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9832          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9833
9834          if (SafeToContinue)
9835            Kind = PrevTagDecl->getTagKind();
9836          else {
9837            // Recover by making this an anonymous redefinition.
9838            Name = 0;
9839            Previous.clear();
9840            Invalid = true;
9841          }
9842        }
9843
9844        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9845          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9846
9847          // If this is an elaborated-type-specifier for a scoped enumeration,
9848          // the 'class' keyword is not necessary and not permitted.
9849          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9850            if (ScopedEnum)
9851              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9852                << PrevEnum->isScoped()
9853                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9854            return PrevTagDecl;
9855          }
9856
9857          QualType EnumUnderlyingTy;
9858          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9859            EnumUnderlyingTy = TI->getType();
9860          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9861            EnumUnderlyingTy = QualType(T, 0);
9862
9863          // All conflicts with previous declarations are recovered by
9864          // returning the previous declaration, unless this is a definition,
9865          // in which case we want the caller to bail out.
9866          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9867                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9868            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9869        }
9870
9871        if (!Invalid) {
9872          // If this is a use, just return the declaration we found.
9873
9874          // FIXME: In the future, return a variant or some other clue
9875          // for the consumer of this Decl to know it doesn't own it.
9876          // For our current ASTs this shouldn't be a problem, but will
9877          // need to be changed with DeclGroups.
9878          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9879               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9880            return PrevTagDecl;
9881
9882          // Diagnose attempts to redefine a tag.
9883          if (TUK == TUK_Definition) {
9884            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9885              // If we're defining a specialization and the previous definition
9886              // is from an implicit instantiation, don't emit an error
9887              // here; we'll catch this in the general case below.
9888              bool IsExplicitSpecializationAfterInstantiation = false;
9889              if (isExplicitSpecialization) {
9890                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9891                  IsExplicitSpecializationAfterInstantiation =
9892                    RD->getTemplateSpecializationKind() !=
9893                    TSK_ExplicitSpecialization;
9894                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9895                  IsExplicitSpecializationAfterInstantiation =
9896                    ED->getTemplateSpecializationKind() !=
9897                    TSK_ExplicitSpecialization;
9898              }
9899
9900              if (!IsExplicitSpecializationAfterInstantiation) {
9901                // A redeclaration in function prototype scope in C isn't
9902                // visible elsewhere, so merely issue a warning.
9903                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9904                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9905                else
9906                  Diag(NameLoc, diag::err_redefinition) << Name;
9907                Diag(Def->getLocation(), diag::note_previous_definition);
9908                // If this is a redefinition, recover by making this
9909                // struct be anonymous, which will make any later
9910                // references get the previous definition.
9911                Name = 0;
9912                Previous.clear();
9913                Invalid = true;
9914              }
9915            } else {
9916              // If the type is currently being defined, complain
9917              // about a nested redefinition.
9918              const TagType *Tag
9919                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9920              if (Tag->isBeingDefined()) {
9921                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9922                Diag(PrevTagDecl->getLocation(),
9923                     diag::note_previous_definition);
9924                Name = 0;
9925                Previous.clear();
9926                Invalid = true;
9927              }
9928            }
9929
9930            // Okay, this is definition of a previously declared or referenced
9931            // tag PrevDecl. We're going to create a new Decl for it.
9932          }
9933        }
9934        // If we get here we have (another) forward declaration or we
9935        // have a definition.  Just create a new decl.
9936
9937      } else {
9938        // If we get here, this is a definition of a new tag type in a nested
9939        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9940        // new decl/type.  We set PrevDecl to NULL so that the entities
9941        // have distinct types.
9942        Previous.clear();
9943      }
9944      // If we get here, we're going to create a new Decl. If PrevDecl
9945      // is non-NULL, it's a definition of the tag declared by
9946      // PrevDecl. If it's NULL, we have a new definition.
9947
9948
9949    // Otherwise, PrevDecl is not a tag, but was found with tag
9950    // lookup.  This is only actually possible in C++, where a few
9951    // things like templates still live in the tag namespace.
9952    } else {
9953      // Use a better diagnostic if an elaborated-type-specifier
9954      // found the wrong kind of type on the first
9955      // (non-redeclaration) lookup.
9956      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9957          !Previous.isForRedeclaration()) {
9958        unsigned Kind = 0;
9959        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9960        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9961        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9962        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9963        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9964        Invalid = true;
9965
9966      // Otherwise, only diagnose if the declaration is in scope.
9967      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9968                                isExplicitSpecialization)) {
9969        // do nothing
9970
9971      // Diagnose implicit declarations introduced by elaborated types.
9972      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9973        unsigned Kind = 0;
9974        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9975        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9976        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9977        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9978        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9979        Invalid = true;
9980
9981      // Otherwise it's a declaration.  Call out a particularly common
9982      // case here.
9983      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9984        unsigned Kind = 0;
9985        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9986        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9987          << Name << Kind << TND->getUnderlyingType();
9988        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9989        Invalid = true;
9990
9991      // Otherwise, diagnose.
9992      } else {
9993        // The tag name clashes with something else in the target scope,
9994        // issue an error and recover by making this tag be anonymous.
9995        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9996        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9997        Name = 0;
9998        Invalid = true;
9999      }
10000
10001      // The existing declaration isn't relevant to us; we're in a
10002      // new scope, so clear out the previous declaration.
10003      Previous.clear();
10004    }
10005  }
10006
10007CreateNewDecl:
10008
10009  TagDecl *PrevDecl = 0;
10010  if (Previous.isSingleResult())
10011    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10012
10013  // If there is an identifier, use the location of the identifier as the
10014  // location of the decl, otherwise use the location of the struct/union
10015  // keyword.
10016  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10017
10018  // Otherwise, create a new declaration. If there is a previous
10019  // declaration of the same entity, the two will be linked via
10020  // PrevDecl.
10021  TagDecl *New;
10022
10023  bool IsForwardReference = false;
10024  if (Kind == TTK_Enum) {
10025    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10026    // enum X { A, B, C } D;    D should chain to X.
10027    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10028                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10029                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10030    // If this is an undefined enum, warn.
10031    if (TUK != TUK_Definition && !Invalid) {
10032      TagDecl *Def;
10033      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10034          cast<EnumDecl>(New)->isFixed()) {
10035        // C++0x: 7.2p2: opaque-enum-declaration.
10036        // Conflicts are diagnosed above. Do nothing.
10037      }
10038      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10039        Diag(Loc, diag::ext_forward_ref_enum_def)
10040          << New;
10041        Diag(Def->getLocation(), diag::note_previous_definition);
10042      } else {
10043        unsigned DiagID = diag::ext_forward_ref_enum;
10044        if (getLangOpts().MicrosoftMode)
10045          DiagID = diag::ext_ms_forward_ref_enum;
10046        else if (getLangOpts().CPlusPlus)
10047          DiagID = diag::err_forward_ref_enum;
10048        Diag(Loc, DiagID);
10049
10050        // If this is a forward-declared reference to an enumeration, make a
10051        // note of it; we won't actually be introducing the declaration into
10052        // the declaration context.
10053        if (TUK == TUK_Reference)
10054          IsForwardReference = true;
10055      }
10056    }
10057
10058    if (EnumUnderlying) {
10059      EnumDecl *ED = cast<EnumDecl>(New);
10060      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10061        ED->setIntegerTypeSourceInfo(TI);
10062      else
10063        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10064      ED->setPromotionType(ED->getIntegerType());
10065    }
10066
10067  } else {
10068    // struct/union/class
10069
10070    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10071    // struct X { int A; } D;    D should chain to X.
10072    if (getLangOpts().CPlusPlus) {
10073      // FIXME: Look for a way to use RecordDecl for simple structs.
10074      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10075                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10076
10077      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10078        StdBadAlloc = cast<CXXRecordDecl>(New);
10079    } else
10080      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10081                               cast_or_null<RecordDecl>(PrevDecl));
10082  }
10083
10084  // Maybe add qualifier info.
10085  if (SS.isNotEmpty()) {
10086    if (SS.isSet()) {
10087      // If this is either a declaration or a definition, check the
10088      // nested-name-specifier against the current context. We don't do this
10089      // for explicit specializations, because they have similar checking
10090      // (with more specific diagnostics) in the call to
10091      // CheckMemberSpecialization, below.
10092      if (!isExplicitSpecialization &&
10093          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10094          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10095        Invalid = true;
10096
10097      New->setQualifierInfo(SS.getWithLocInContext(Context));
10098      if (TemplateParameterLists.size() > 0) {
10099        New->setTemplateParameterListsInfo(Context,
10100                                           TemplateParameterLists.size(),
10101                                           TemplateParameterLists.data());
10102      }
10103    }
10104    else
10105      Invalid = true;
10106  }
10107
10108  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10109    // Add alignment attributes if necessary; these attributes are checked when
10110    // the ASTContext lays out the structure.
10111    //
10112    // It is important for implementing the correct semantics that this
10113    // happen here (in act on tag decl). The #pragma pack stack is
10114    // maintained as a result of parser callbacks which can occur at
10115    // many points during the parsing of a struct declaration (because
10116    // the #pragma tokens are effectively skipped over during the
10117    // parsing of the struct).
10118    if (TUK == TUK_Definition) {
10119      AddAlignmentAttributesForRecord(RD);
10120      AddMsStructLayoutForRecord(RD);
10121    }
10122  }
10123
10124  if (ModulePrivateLoc.isValid()) {
10125    if (isExplicitSpecialization)
10126      Diag(New->getLocation(), diag::err_module_private_specialization)
10127        << 2
10128        << FixItHint::CreateRemoval(ModulePrivateLoc);
10129    // __module_private__ does not apply to local classes. However, we only
10130    // diagnose this as an error when the declaration specifiers are
10131    // freestanding. Here, we just ignore the __module_private__.
10132    else if (!SearchDC->isFunctionOrMethod())
10133      New->setModulePrivate();
10134  }
10135
10136  // If this is a specialization of a member class (of a class template),
10137  // check the specialization.
10138  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10139    Invalid = true;
10140
10141  if (Invalid)
10142    New->setInvalidDecl();
10143
10144  if (Attr)
10145    ProcessDeclAttributeList(S, New, Attr);
10146
10147  // If we're declaring or defining a tag in function prototype scope
10148  // in C, note that this type can only be used within the function.
10149  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10150    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10151
10152  // Set the lexical context. If the tag has a C++ scope specifier, the
10153  // lexical context will be different from the semantic context.
10154  New->setLexicalDeclContext(CurContext);
10155
10156  // Mark this as a friend decl if applicable.
10157  // In Microsoft mode, a friend declaration also acts as a forward
10158  // declaration so we always pass true to setObjectOfFriendDecl to make
10159  // the tag name visible.
10160  if (TUK == TUK_Friend)
10161    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
10162                               getLangOpts().MicrosoftExt);
10163
10164  // Set the access specifier.
10165  if (!Invalid && SearchDC->isRecord())
10166    SetMemberAccessSpecifier(New, PrevDecl, AS);
10167
10168  if (TUK == TUK_Definition)
10169    New->startDefinition();
10170
10171  // If this has an identifier, add it to the scope stack.
10172  if (TUK == TUK_Friend) {
10173    // We might be replacing an existing declaration in the lookup tables;
10174    // if so, borrow its access specifier.
10175    if (PrevDecl)
10176      New->setAccess(PrevDecl->getAccess());
10177
10178    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10179    DC->makeDeclVisibleInContext(New);
10180    if (Name) // can be null along some error paths
10181      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10182        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10183  } else if (Name) {
10184    S = getNonFieldDeclScope(S);
10185    PushOnScopeChains(New, S, !IsForwardReference);
10186    if (IsForwardReference)
10187      SearchDC->makeDeclVisibleInContext(New);
10188
10189  } else {
10190    CurContext->addDecl(New);
10191  }
10192
10193  // If this is the C FILE type, notify the AST context.
10194  if (IdentifierInfo *II = New->getIdentifier())
10195    if (!New->isInvalidDecl() &&
10196        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10197        II->isStr("FILE"))
10198      Context.setFILEDecl(New);
10199
10200  // If we were in function prototype scope (and not in C++ mode), add this
10201  // tag to the list of decls to inject into the function definition scope.
10202  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10203      InFunctionDeclarator && Name)
10204    DeclsInPrototypeScope.push_back(New);
10205
10206  if (PrevDecl)
10207    mergeDeclAttributes(New, PrevDecl);
10208
10209  // If there's a #pragma GCC visibility in scope, set the visibility of this
10210  // record.
10211  AddPushedVisibilityAttribute(New);
10212
10213  OwnedDecl = true;
10214  // In C++, don't return an invalid declaration. We can't recover well from
10215  // the cases where we make the type anonymous.
10216  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10217}
10218
10219void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10220  AdjustDeclIfTemplate(TagD);
10221  TagDecl *Tag = cast<TagDecl>(TagD);
10222
10223  // Enter the tag context.
10224  PushDeclContext(S, Tag);
10225
10226  ActOnDocumentableDecl(TagD);
10227
10228  // If there's a #pragma GCC visibility in scope, set the visibility of this
10229  // record.
10230  AddPushedVisibilityAttribute(Tag);
10231}
10232
10233Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10234  assert(isa<ObjCContainerDecl>(IDecl) &&
10235         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10236  DeclContext *OCD = cast<DeclContext>(IDecl);
10237  assert(getContainingDC(OCD) == CurContext &&
10238      "The next DeclContext should be lexically contained in the current one.");
10239  CurContext = OCD;
10240  return IDecl;
10241}
10242
10243void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10244                                           SourceLocation FinalLoc,
10245                                           SourceLocation LBraceLoc) {
10246  AdjustDeclIfTemplate(TagD);
10247  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10248
10249  FieldCollector->StartClass();
10250
10251  if (!Record->getIdentifier())
10252    return;
10253
10254  if (FinalLoc.isValid())
10255    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10256
10257  // C++ [class]p2:
10258  //   [...] The class-name is also inserted into the scope of the
10259  //   class itself; this is known as the injected-class-name. For
10260  //   purposes of access checking, the injected-class-name is treated
10261  //   as if it were a public member name.
10262  CXXRecordDecl *InjectedClassName
10263    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10264                            Record->getLocStart(), Record->getLocation(),
10265                            Record->getIdentifier(),
10266                            /*PrevDecl=*/0,
10267                            /*DelayTypeCreation=*/true);
10268  Context.getTypeDeclType(InjectedClassName, Record);
10269  InjectedClassName->setImplicit();
10270  InjectedClassName->setAccess(AS_public);
10271  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10272      InjectedClassName->setDescribedClassTemplate(Template);
10273  PushOnScopeChains(InjectedClassName, S);
10274  assert(InjectedClassName->isInjectedClassName() &&
10275         "Broken injected-class-name");
10276}
10277
10278void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10279                                    SourceLocation RBraceLoc) {
10280  AdjustDeclIfTemplate(TagD);
10281  TagDecl *Tag = cast<TagDecl>(TagD);
10282  Tag->setRBraceLoc(RBraceLoc);
10283
10284  // Make sure we "complete" the definition even it is invalid.
10285  if (Tag->isBeingDefined()) {
10286    assert(Tag->isInvalidDecl() && "We should already have completed it");
10287    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10288      RD->completeDefinition();
10289  }
10290
10291  if (isa<CXXRecordDecl>(Tag))
10292    FieldCollector->FinishClass();
10293
10294  // Exit this scope of this tag's definition.
10295  PopDeclContext();
10296
10297  if (getCurLexicalContext()->isObjCContainer() &&
10298      Tag->getDeclContext()->isFileContext())
10299    Tag->setTopLevelDeclInObjCContainer();
10300
10301  // Notify the consumer that we've defined a tag.
10302  Consumer.HandleTagDeclDefinition(Tag);
10303}
10304
10305void Sema::ActOnObjCContainerFinishDefinition() {
10306  // Exit this scope of this interface definition.
10307  PopDeclContext();
10308}
10309
10310void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10311  assert(DC == CurContext && "Mismatch of container contexts");
10312  OriginalLexicalContext = DC;
10313  ActOnObjCContainerFinishDefinition();
10314}
10315
10316void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10317  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10318  OriginalLexicalContext = 0;
10319}
10320
10321void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10322  AdjustDeclIfTemplate(TagD);
10323  TagDecl *Tag = cast<TagDecl>(TagD);
10324  Tag->setInvalidDecl();
10325
10326  // Make sure we "complete" the definition even it is invalid.
10327  if (Tag->isBeingDefined()) {
10328    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10329      RD->completeDefinition();
10330  }
10331
10332  // We're undoing ActOnTagStartDefinition here, not
10333  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10334  // the FieldCollector.
10335
10336  PopDeclContext();
10337}
10338
10339// Note that FieldName may be null for anonymous bitfields.
10340ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10341                                IdentifierInfo *FieldName,
10342                                QualType FieldTy, Expr *BitWidth,
10343                                bool *ZeroWidth) {
10344  // Default to true; that shouldn't confuse checks for emptiness
10345  if (ZeroWidth)
10346    *ZeroWidth = true;
10347
10348  // C99 6.7.2.1p4 - verify the field type.
10349  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10350  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10351    // Handle incomplete types with specific error.
10352    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10353      return ExprError();
10354    if (FieldName)
10355      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10356        << FieldName << FieldTy << BitWidth->getSourceRange();
10357    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10358      << FieldTy << BitWidth->getSourceRange();
10359  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10360                                             UPPC_BitFieldWidth))
10361    return ExprError();
10362
10363  // If the bit-width is type- or value-dependent, don't try to check
10364  // it now.
10365  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10366    return Owned(BitWidth);
10367
10368  llvm::APSInt Value;
10369  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10370  if (ICE.isInvalid())
10371    return ICE;
10372  BitWidth = ICE.take();
10373
10374  if (Value != 0 && ZeroWidth)
10375    *ZeroWidth = false;
10376
10377  // Zero-width bitfield is ok for anonymous field.
10378  if (Value == 0 && FieldName)
10379    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10380
10381  if (Value.isSigned() && Value.isNegative()) {
10382    if (FieldName)
10383      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10384               << FieldName << Value.toString(10);
10385    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10386      << Value.toString(10);
10387  }
10388
10389  if (!FieldTy->isDependentType()) {
10390    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10391    if (Value.getZExtValue() > TypeSize) {
10392      if (!getLangOpts().CPlusPlus) {
10393        if (FieldName)
10394          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10395            << FieldName << (unsigned)Value.getZExtValue()
10396            << (unsigned)TypeSize;
10397
10398        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10399          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10400      }
10401
10402      if (FieldName)
10403        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10404          << FieldName << (unsigned)Value.getZExtValue()
10405          << (unsigned)TypeSize;
10406      else
10407        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10408          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10409    }
10410  }
10411
10412  return Owned(BitWidth);
10413}
10414
10415/// ActOnField - Each field of a C struct/union is passed into this in order
10416/// to create a FieldDecl object for it.
10417Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10418                       Declarator &D, Expr *BitfieldWidth) {
10419  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10420                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10421                               /*InitStyle=*/ICIS_NoInit, AS_public);
10422  return Res;
10423}
10424
10425/// HandleField - Analyze a field of a C struct or a C++ data member.
10426///
10427FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10428                             SourceLocation DeclStart,
10429                             Declarator &D, Expr *BitWidth,
10430                             InClassInitStyle InitStyle,
10431                             AccessSpecifier AS) {
10432  IdentifierInfo *II = D.getIdentifier();
10433  SourceLocation Loc = DeclStart;
10434  if (II) Loc = D.getIdentifierLoc();
10435
10436  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10437  QualType T = TInfo->getType();
10438  if (getLangOpts().CPlusPlus) {
10439    CheckExtraCXXDefaultArguments(D);
10440
10441    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10442                                        UPPC_DataMemberType)) {
10443      D.setInvalidType();
10444      T = Context.IntTy;
10445      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10446    }
10447  }
10448
10449  // TR 18037 does not allow fields to be declared with address spaces.
10450  if (T.getQualifiers().hasAddressSpace()) {
10451    Diag(Loc, diag::err_field_with_address_space);
10452    D.setInvalidType();
10453  }
10454
10455  // OpenCL 1.2 spec, s6.9 r:
10456  // The event type cannot be used to declare a structure or union field.
10457  if (LangOpts.OpenCL && T->isEventT()) {
10458    Diag(Loc, diag::err_event_t_struct_field);
10459    D.setInvalidType();
10460  }
10461
10462  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10463
10464  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
10465    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
10466         diag::err_invalid_thread)
10467      << DeclSpec::getSpecifierName(TSCS);
10468
10469  // Check to see if this name was declared as a member previously
10470  NamedDecl *PrevDecl = 0;
10471  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10472  LookupName(Previous, S);
10473  switch (Previous.getResultKind()) {
10474    case LookupResult::Found:
10475    case LookupResult::FoundUnresolvedValue:
10476      PrevDecl = Previous.getAsSingle<NamedDecl>();
10477      break;
10478
10479    case LookupResult::FoundOverloaded:
10480      PrevDecl = Previous.getRepresentativeDecl();
10481      break;
10482
10483    case LookupResult::NotFound:
10484    case LookupResult::NotFoundInCurrentInstantiation:
10485    case LookupResult::Ambiguous:
10486      break;
10487  }
10488  Previous.suppressDiagnostics();
10489
10490  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10491    // Maybe we will complain about the shadowed template parameter.
10492    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10493    // Just pretend that we didn't see the previous declaration.
10494    PrevDecl = 0;
10495  }
10496
10497  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10498    PrevDecl = 0;
10499
10500  bool Mutable
10501    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10502  SourceLocation TSSL = D.getLocStart();
10503  FieldDecl *NewFD
10504    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10505                     TSSL, AS, PrevDecl, &D);
10506
10507  if (NewFD->isInvalidDecl())
10508    Record->setInvalidDecl();
10509
10510  if (D.getDeclSpec().isModulePrivateSpecified())
10511    NewFD->setModulePrivate();
10512
10513  if (NewFD->isInvalidDecl() && PrevDecl) {
10514    // Don't introduce NewFD into scope; there's already something
10515    // with the same name in the same scope.
10516  } else if (II) {
10517    PushOnScopeChains(NewFD, S);
10518  } else
10519    Record->addDecl(NewFD);
10520
10521  return NewFD;
10522}
10523
10524/// \brief Build a new FieldDecl and check its well-formedness.
10525///
10526/// This routine builds a new FieldDecl given the fields name, type,
10527/// record, etc. \p PrevDecl should refer to any previous declaration
10528/// with the same name and in the same scope as the field to be
10529/// created.
10530///
10531/// \returns a new FieldDecl.
10532///
10533/// \todo The Declarator argument is a hack. It will be removed once
10534FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10535                                TypeSourceInfo *TInfo,
10536                                RecordDecl *Record, SourceLocation Loc,
10537                                bool Mutable, Expr *BitWidth,
10538                                InClassInitStyle InitStyle,
10539                                SourceLocation TSSL,
10540                                AccessSpecifier AS, NamedDecl *PrevDecl,
10541                                Declarator *D) {
10542  IdentifierInfo *II = Name.getAsIdentifierInfo();
10543  bool InvalidDecl = false;
10544  if (D) InvalidDecl = D->isInvalidType();
10545
10546  // If we receive a broken type, recover by assuming 'int' and
10547  // marking this declaration as invalid.
10548  if (T.isNull()) {
10549    InvalidDecl = true;
10550    T = Context.IntTy;
10551  }
10552
10553  QualType EltTy = Context.getBaseElementType(T);
10554  if (!EltTy->isDependentType()) {
10555    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10556      // Fields of incomplete type force their record to be invalid.
10557      Record->setInvalidDecl();
10558      InvalidDecl = true;
10559    } else {
10560      NamedDecl *Def;
10561      EltTy->isIncompleteType(&Def);
10562      if (Def && Def->isInvalidDecl()) {
10563        Record->setInvalidDecl();
10564        InvalidDecl = true;
10565      }
10566    }
10567  }
10568
10569  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10570  if (BitWidth && getLangOpts().OpenCL) {
10571    Diag(Loc, diag::err_opencl_bitfields);
10572    InvalidDecl = true;
10573  }
10574
10575  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10576  // than a variably modified type.
10577  if (!InvalidDecl && T->isVariablyModifiedType()) {
10578    bool SizeIsNegative;
10579    llvm::APSInt Oversized;
10580
10581    TypeSourceInfo *FixedTInfo =
10582      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10583                                                    SizeIsNegative,
10584                                                    Oversized);
10585    if (FixedTInfo) {
10586      Diag(Loc, diag::warn_illegal_constant_array_size);
10587      TInfo = FixedTInfo;
10588      T = FixedTInfo->getType();
10589    } else {
10590      if (SizeIsNegative)
10591        Diag(Loc, diag::err_typecheck_negative_array_size);
10592      else if (Oversized.getBoolValue())
10593        Diag(Loc, diag::err_array_too_large)
10594          << Oversized.toString(10);
10595      else
10596        Diag(Loc, diag::err_typecheck_field_variable_size);
10597      InvalidDecl = true;
10598    }
10599  }
10600
10601  // Fields can not have abstract class types
10602  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10603                                             diag::err_abstract_type_in_decl,
10604                                             AbstractFieldType))
10605    InvalidDecl = true;
10606
10607  bool ZeroWidth = false;
10608  // If this is declared as a bit-field, check the bit-field.
10609  if (!InvalidDecl && BitWidth) {
10610    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10611    if (!BitWidth) {
10612      InvalidDecl = true;
10613      BitWidth = 0;
10614      ZeroWidth = false;
10615    }
10616  }
10617
10618  // Check that 'mutable' is consistent with the type of the declaration.
10619  if (!InvalidDecl && Mutable) {
10620    unsigned DiagID = 0;
10621    if (T->isReferenceType())
10622      DiagID = diag::err_mutable_reference;
10623    else if (T.isConstQualified())
10624      DiagID = diag::err_mutable_const;
10625
10626    if (DiagID) {
10627      SourceLocation ErrLoc = Loc;
10628      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10629        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10630      Diag(ErrLoc, DiagID);
10631      Mutable = false;
10632      InvalidDecl = true;
10633    }
10634  }
10635
10636  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10637                                       BitWidth, Mutable, InitStyle);
10638  if (InvalidDecl)
10639    NewFD->setInvalidDecl();
10640
10641  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10642    Diag(Loc, diag::err_duplicate_member) << II;
10643    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10644    NewFD->setInvalidDecl();
10645  }
10646
10647  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10648    if (Record->isUnion()) {
10649      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10650        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10651        if (RDecl->getDefinition()) {
10652          // C++ [class.union]p1: An object of a class with a non-trivial
10653          // constructor, a non-trivial copy constructor, a non-trivial
10654          // destructor, or a non-trivial copy assignment operator
10655          // cannot be a member of a union, nor can an array of such
10656          // objects.
10657          if (CheckNontrivialField(NewFD))
10658            NewFD->setInvalidDecl();
10659        }
10660      }
10661
10662      // C++ [class.union]p1: If a union contains a member of reference type,
10663      // the program is ill-formed.
10664      if (EltTy->isReferenceType()) {
10665        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10666          << NewFD->getDeclName() << EltTy;
10667        NewFD->setInvalidDecl();
10668      }
10669    }
10670  }
10671
10672  // FIXME: We need to pass in the attributes given an AST
10673  // representation, not a parser representation.
10674  if (D) {
10675    // FIXME: The current scope is almost... but not entirely... correct here.
10676    ProcessDeclAttributes(getCurScope(), NewFD, *D);
10677
10678    if (NewFD->hasAttrs())
10679      CheckAlignasUnderalignment(NewFD);
10680  }
10681
10682  // In auto-retain/release, infer strong retension for fields of
10683  // retainable type.
10684  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10685    NewFD->setInvalidDecl();
10686
10687  if (T.isObjCGCWeak())
10688    Diag(Loc, diag::warn_attribute_weak_on_field);
10689
10690  NewFD->setAccess(AS);
10691  return NewFD;
10692}
10693
10694bool Sema::CheckNontrivialField(FieldDecl *FD) {
10695  assert(FD);
10696  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10697
10698  if (FD->isInvalidDecl())
10699    return true;
10700
10701  QualType EltTy = Context.getBaseElementType(FD->getType());
10702  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10703    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10704    if (RDecl->getDefinition()) {
10705      // We check for copy constructors before constructors
10706      // because otherwise we'll never get complaints about
10707      // copy constructors.
10708
10709      CXXSpecialMember member = CXXInvalid;
10710      // We're required to check for any non-trivial constructors. Since the
10711      // implicit default constructor is suppressed if there are any
10712      // user-declared constructors, we just need to check that there is a
10713      // trivial default constructor and a trivial copy constructor. (We don't
10714      // worry about move constructors here, since this is a C++98 check.)
10715      if (RDecl->hasNonTrivialCopyConstructor())
10716        member = CXXCopyConstructor;
10717      else if (!RDecl->hasTrivialDefaultConstructor())
10718        member = CXXDefaultConstructor;
10719      else if (RDecl->hasNonTrivialCopyAssignment())
10720        member = CXXCopyAssignment;
10721      else if (RDecl->hasNonTrivialDestructor())
10722        member = CXXDestructor;
10723
10724      if (member != CXXInvalid) {
10725        if (!getLangOpts().CPlusPlus11 &&
10726            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10727          // Objective-C++ ARC: it is an error to have a non-trivial field of
10728          // a union. However, system headers in Objective-C programs
10729          // occasionally have Objective-C lifetime objects within unions,
10730          // and rather than cause the program to fail, we make those
10731          // members unavailable.
10732          SourceLocation Loc = FD->getLocation();
10733          if (getSourceManager().isInSystemHeader(Loc)) {
10734            if (!FD->hasAttr<UnavailableAttr>())
10735              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10736                                  "this system field has retaining ownership"));
10737            return false;
10738          }
10739        }
10740
10741        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10742               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10743               diag::err_illegal_union_or_anon_struct_member)
10744          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10745        DiagnoseNontrivial(RDecl, member);
10746        return !getLangOpts().CPlusPlus11;
10747      }
10748    }
10749  }
10750
10751  return false;
10752}
10753
10754/// TranslateIvarVisibility - Translate visibility from a token ID to an
10755///  AST enum value.
10756static ObjCIvarDecl::AccessControl
10757TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10758  switch (ivarVisibility) {
10759  default: llvm_unreachable("Unknown visitibility kind");
10760  case tok::objc_private: return ObjCIvarDecl::Private;
10761  case tok::objc_public: return ObjCIvarDecl::Public;
10762  case tok::objc_protected: return ObjCIvarDecl::Protected;
10763  case tok::objc_package: return ObjCIvarDecl::Package;
10764  }
10765}
10766
10767/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10768/// in order to create an IvarDecl object for it.
10769Decl *Sema::ActOnIvar(Scope *S,
10770                                SourceLocation DeclStart,
10771                                Declarator &D, Expr *BitfieldWidth,
10772                                tok::ObjCKeywordKind Visibility) {
10773
10774  IdentifierInfo *II = D.getIdentifier();
10775  Expr *BitWidth = (Expr*)BitfieldWidth;
10776  SourceLocation Loc = DeclStart;
10777  if (II) Loc = D.getIdentifierLoc();
10778
10779  // FIXME: Unnamed fields can be handled in various different ways, for
10780  // example, unnamed unions inject all members into the struct namespace!
10781
10782  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10783  QualType T = TInfo->getType();
10784
10785  if (BitWidth) {
10786    // 6.7.2.1p3, 6.7.2.1p4
10787    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10788    if (!BitWidth)
10789      D.setInvalidType();
10790  } else {
10791    // Not a bitfield.
10792
10793    // validate II.
10794
10795  }
10796  if (T->isReferenceType()) {
10797    Diag(Loc, diag::err_ivar_reference_type);
10798    D.setInvalidType();
10799  }
10800  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10801  // than a variably modified type.
10802  else if (T->isVariablyModifiedType()) {
10803    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10804    D.setInvalidType();
10805  }
10806
10807  // Get the visibility (access control) for this ivar.
10808  ObjCIvarDecl::AccessControl ac =
10809    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10810                                        : ObjCIvarDecl::None;
10811  // Must set ivar's DeclContext to its enclosing interface.
10812  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10813  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10814    return 0;
10815  ObjCContainerDecl *EnclosingContext;
10816  if (ObjCImplementationDecl *IMPDecl =
10817      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10818    if (LangOpts.ObjCRuntime.isFragile()) {
10819    // Case of ivar declared in an implementation. Context is that of its class.
10820      EnclosingContext = IMPDecl->getClassInterface();
10821      assert(EnclosingContext && "Implementation has no class interface!");
10822    }
10823    else
10824      EnclosingContext = EnclosingDecl;
10825  } else {
10826    if (ObjCCategoryDecl *CDecl =
10827        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10828      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10829        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10830        return 0;
10831      }
10832    }
10833    EnclosingContext = EnclosingDecl;
10834  }
10835
10836  // Construct the decl.
10837  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10838                                             DeclStart, Loc, II, T,
10839                                             TInfo, ac, (Expr *)BitfieldWidth);
10840
10841  if (II) {
10842    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10843                                           ForRedeclaration);
10844    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10845        && !isa<TagDecl>(PrevDecl)) {
10846      Diag(Loc, diag::err_duplicate_member) << II;
10847      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10848      NewID->setInvalidDecl();
10849    }
10850  }
10851
10852  // Process attributes attached to the ivar.
10853  ProcessDeclAttributes(S, NewID, D);
10854
10855  if (D.isInvalidType())
10856    NewID->setInvalidDecl();
10857
10858  // In ARC, infer 'retaining' for ivars of retainable type.
10859  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10860    NewID->setInvalidDecl();
10861
10862  if (D.getDeclSpec().isModulePrivateSpecified())
10863    NewID->setModulePrivate();
10864
10865  if (II) {
10866    // FIXME: When interfaces are DeclContexts, we'll need to add
10867    // these to the interface.
10868    S->AddDecl(NewID);
10869    IdResolver.AddDecl(NewID);
10870  }
10871
10872  if (LangOpts.ObjCRuntime.isNonFragile() &&
10873      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10874    Diag(Loc, diag::warn_ivars_in_interface);
10875
10876  return NewID;
10877}
10878
10879/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10880/// class and class extensions. For every class \@interface and class
10881/// extension \@interface, if the last ivar is a bitfield of any type,
10882/// then add an implicit `char :0` ivar to the end of that interface.
10883void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10884                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10885  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10886    return;
10887
10888  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10889  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10890
10891  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10892    return;
10893  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10894  if (!ID) {
10895    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10896      if (!CD->IsClassExtension())
10897        return;
10898    }
10899    // No need to add this to end of @implementation.
10900    else
10901      return;
10902  }
10903  // All conditions are met. Add a new bitfield to the tail end of ivars.
10904  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10905  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10906
10907  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10908                              DeclLoc, DeclLoc, 0,
10909                              Context.CharTy,
10910                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10911                                                               DeclLoc),
10912                              ObjCIvarDecl::Private, BW,
10913                              true);
10914  AllIvarDecls.push_back(Ivar);
10915}
10916
10917void Sema::ActOnFields(Scope* S,
10918                       SourceLocation RecLoc, Decl *EnclosingDecl,
10919                       llvm::ArrayRef<Decl *> Fields,
10920                       SourceLocation LBrac, SourceLocation RBrac,
10921                       AttributeList *Attr) {
10922  assert(EnclosingDecl && "missing record or interface decl");
10923
10924  // If this is an Objective-C @implementation or category and we have
10925  // new fields here we should reset the layout of the interface since
10926  // it will now change.
10927  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10928    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10929    switch (DC->getKind()) {
10930    default: break;
10931    case Decl::ObjCCategory:
10932      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10933      break;
10934    case Decl::ObjCImplementation:
10935      Context.
10936        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10937      break;
10938    }
10939  }
10940
10941  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10942
10943  // Start counting up the number of named members; make sure to include
10944  // members of anonymous structs and unions in the total.
10945  unsigned NumNamedMembers = 0;
10946  if (Record) {
10947    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10948                                   e = Record->decls_end(); i != e; i++) {
10949      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10950        if (IFD->getDeclName())
10951          ++NumNamedMembers;
10952    }
10953  }
10954
10955  // Verify that all the fields are okay.
10956  SmallVector<FieldDecl*, 32> RecFields;
10957
10958  bool ARCErrReported = false;
10959  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10960       i != end; ++i) {
10961    FieldDecl *FD = cast<FieldDecl>(*i);
10962
10963    // Get the type for the field.
10964    const Type *FDTy = FD->getType().getTypePtr();
10965
10966    if (!FD->isAnonymousStructOrUnion()) {
10967      // Remember all fields written by the user.
10968      RecFields.push_back(FD);
10969    }
10970
10971    // If the field is already invalid for some reason, don't emit more
10972    // diagnostics about it.
10973    if (FD->isInvalidDecl()) {
10974      EnclosingDecl->setInvalidDecl();
10975      continue;
10976    }
10977
10978    // C99 6.7.2.1p2:
10979    //   A structure or union shall not contain a member with
10980    //   incomplete or function type (hence, a structure shall not
10981    //   contain an instance of itself, but may contain a pointer to
10982    //   an instance of itself), except that the last member of a
10983    //   structure with more than one named member may have incomplete
10984    //   array type; such a structure (and any union containing,
10985    //   possibly recursively, a member that is such a structure)
10986    //   shall not be a member of a structure or an element of an
10987    //   array.
10988    if (FDTy->isFunctionType()) {
10989      // Field declared as a function.
10990      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10991        << FD->getDeclName();
10992      FD->setInvalidDecl();
10993      EnclosingDecl->setInvalidDecl();
10994      continue;
10995    } else if (FDTy->isIncompleteArrayType() && Record &&
10996               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10997                ((getLangOpts().MicrosoftExt ||
10998                  getLangOpts().CPlusPlus) &&
10999                 (i + 1 == Fields.end() || Record->isUnion())))) {
11000      // Flexible array member.
11001      // Microsoft and g++ is more permissive regarding flexible array.
11002      // It will accept flexible array in union and also
11003      // as the sole element of a struct/class.
11004      if (getLangOpts().MicrosoftExt) {
11005        if (Record->isUnion())
11006          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11007            << FD->getDeclName();
11008        else if (Fields.size() == 1)
11009          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11010            << FD->getDeclName() << Record->getTagKind();
11011      } else if (getLangOpts().CPlusPlus) {
11012        if (Record->isUnion())
11013          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11014            << FD->getDeclName();
11015        else if (Fields.size() == 1)
11016          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11017            << FD->getDeclName() << Record->getTagKind();
11018      } else if (!getLangOpts().C99) {
11019      if (Record->isUnion())
11020        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11021          << FD->getDeclName();
11022      else
11023        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11024          << FD->getDeclName() << Record->getTagKind();
11025      } else if (NumNamedMembers < 1) {
11026        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11027          << FD->getDeclName();
11028        FD->setInvalidDecl();
11029        EnclosingDecl->setInvalidDecl();
11030        continue;
11031      }
11032      if (!FD->getType()->isDependentType() &&
11033          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11034        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11035          << FD->getDeclName() << FD->getType();
11036        FD->setInvalidDecl();
11037        EnclosingDecl->setInvalidDecl();
11038        continue;
11039      }
11040      // Okay, we have a legal flexible array member at the end of the struct.
11041      if (Record)
11042        Record->setHasFlexibleArrayMember(true);
11043    } else if (!FDTy->isDependentType() &&
11044               RequireCompleteType(FD->getLocation(), FD->getType(),
11045                                   diag::err_field_incomplete)) {
11046      // Incomplete type
11047      FD->setInvalidDecl();
11048      EnclosingDecl->setInvalidDecl();
11049      continue;
11050    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11051      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11052        // If this is a member of a union, then entire union becomes "flexible".
11053        if (Record && Record->isUnion()) {
11054          Record->setHasFlexibleArrayMember(true);
11055        } else {
11056          // If this is a struct/class and this is not the last element, reject
11057          // it.  Note that GCC supports variable sized arrays in the middle of
11058          // structures.
11059          if (i + 1 != Fields.end())
11060            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11061              << FD->getDeclName() << FD->getType();
11062          else {
11063            // We support flexible arrays at the end of structs in
11064            // other structs as an extension.
11065            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11066              << FD->getDeclName();
11067            if (Record)
11068              Record->setHasFlexibleArrayMember(true);
11069          }
11070        }
11071      }
11072      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11073          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11074                                 diag::err_abstract_type_in_decl,
11075                                 AbstractIvarType)) {
11076        // Ivars can not have abstract class types
11077        FD->setInvalidDecl();
11078      }
11079      if (Record && FDTTy->getDecl()->hasObjectMember())
11080        Record->setHasObjectMember(true);
11081      if (Record && FDTTy->getDecl()->hasVolatileMember())
11082        Record->setHasVolatileMember(true);
11083    } else if (FDTy->isObjCObjectType()) {
11084      /// A field cannot be an Objective-c object
11085      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11086        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11087      QualType T = Context.getObjCObjectPointerType(FD->getType());
11088      FD->setType(T);
11089    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11090               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11091      // It's an error in ARC if a field has lifetime.
11092      // We don't want to report this in a system header, though,
11093      // so we just make the field unavailable.
11094      // FIXME: that's really not sufficient; we need to make the type
11095      // itself invalid to, say, initialize or copy.
11096      QualType T = FD->getType();
11097      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11098      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11099        SourceLocation loc = FD->getLocation();
11100        if (getSourceManager().isInSystemHeader(loc)) {
11101          if (!FD->hasAttr<UnavailableAttr>()) {
11102            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11103                              "this system field has retaining ownership"));
11104          }
11105        } else {
11106          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11107            << T->isBlockPointerType() << Record->getTagKind();
11108        }
11109        ARCErrReported = true;
11110      }
11111    } else if (getLangOpts().ObjC1 &&
11112               getLangOpts().getGC() != LangOptions::NonGC &&
11113               Record && !Record->hasObjectMember()) {
11114      if (FD->getType()->isObjCObjectPointerType() ||
11115          FD->getType().isObjCGCStrong())
11116        Record->setHasObjectMember(true);
11117      else if (Context.getAsArrayType(FD->getType())) {
11118        QualType BaseType = Context.getBaseElementType(FD->getType());
11119        if (BaseType->isRecordType() &&
11120            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11121          Record->setHasObjectMember(true);
11122        else if (BaseType->isObjCObjectPointerType() ||
11123                 BaseType.isObjCGCStrong())
11124               Record->setHasObjectMember(true);
11125      }
11126    }
11127    if (Record && FD->getType().isVolatileQualified())
11128      Record->setHasVolatileMember(true);
11129    // Keep track of the number of named members.
11130    if (FD->getIdentifier())
11131      ++NumNamedMembers;
11132  }
11133
11134  // Okay, we successfully defined 'Record'.
11135  if (Record) {
11136    bool Completed = false;
11137    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11138      if (!CXXRecord->isInvalidDecl()) {
11139        // Set access bits correctly on the directly-declared conversions.
11140        for (CXXRecordDecl::conversion_iterator
11141               I = CXXRecord->conversion_begin(),
11142               E = CXXRecord->conversion_end(); I != E; ++I)
11143          I.setAccess((*I)->getAccess());
11144
11145        if (!CXXRecord->isDependentType()) {
11146          // Adjust user-defined destructor exception spec.
11147          if (getLangOpts().CPlusPlus11 &&
11148              CXXRecord->hasUserDeclaredDestructor())
11149            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
11150
11151          // Add any implicitly-declared members to this class.
11152          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11153
11154          // If we have virtual base classes, we may end up finding multiple
11155          // final overriders for a given virtual function. Check for this
11156          // problem now.
11157          if (CXXRecord->getNumVBases()) {
11158            CXXFinalOverriderMap FinalOverriders;
11159            CXXRecord->getFinalOverriders(FinalOverriders);
11160
11161            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11162                                             MEnd = FinalOverriders.end();
11163                 M != MEnd; ++M) {
11164              for (OverridingMethods::iterator SO = M->second.begin(),
11165                                            SOEnd = M->second.end();
11166                   SO != SOEnd; ++SO) {
11167                assert(SO->second.size() > 0 &&
11168                       "Virtual function without overridding functions?");
11169                if (SO->second.size() == 1)
11170                  continue;
11171
11172                // C++ [class.virtual]p2:
11173                //   In a derived class, if a virtual member function of a base
11174                //   class subobject has more than one final overrider the
11175                //   program is ill-formed.
11176                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11177                  << (const NamedDecl *)M->first << Record;
11178                Diag(M->first->getLocation(),
11179                     diag::note_overridden_virtual_function);
11180                for (OverridingMethods::overriding_iterator
11181                          OM = SO->second.begin(),
11182                       OMEnd = SO->second.end();
11183                     OM != OMEnd; ++OM)
11184                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11185                    << (const NamedDecl *)M->first << OM->Method->getParent();
11186
11187                Record->setInvalidDecl();
11188              }
11189            }
11190            CXXRecord->completeDefinition(&FinalOverriders);
11191            Completed = true;
11192          }
11193        }
11194      }
11195    }
11196
11197    if (!Completed)
11198      Record->completeDefinition();
11199
11200    if (Record->hasAttrs())
11201      CheckAlignasUnderalignment(Record);
11202  } else {
11203    ObjCIvarDecl **ClsFields =
11204      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11205    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11206      ID->setEndOfDefinitionLoc(RBrac);
11207      // Add ivar's to class's DeclContext.
11208      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11209        ClsFields[i]->setLexicalDeclContext(ID);
11210        ID->addDecl(ClsFields[i]);
11211      }
11212      // Must enforce the rule that ivars in the base classes may not be
11213      // duplicates.
11214      if (ID->getSuperClass())
11215        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11216    } else if (ObjCImplementationDecl *IMPDecl =
11217                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11218      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11219      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11220        // Ivar declared in @implementation never belongs to the implementation.
11221        // Only it is in implementation's lexical context.
11222        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11223      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11224      IMPDecl->setIvarLBraceLoc(LBrac);
11225      IMPDecl->setIvarRBraceLoc(RBrac);
11226    } else if (ObjCCategoryDecl *CDecl =
11227                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11228      // case of ivars in class extension; all other cases have been
11229      // reported as errors elsewhere.
11230      // FIXME. Class extension does not have a LocEnd field.
11231      // CDecl->setLocEnd(RBrac);
11232      // Add ivar's to class extension's DeclContext.
11233      // Diagnose redeclaration of private ivars.
11234      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11235      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11236        if (IDecl) {
11237          if (const ObjCIvarDecl *ClsIvar =
11238              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11239            Diag(ClsFields[i]->getLocation(),
11240                 diag::err_duplicate_ivar_declaration);
11241            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11242            continue;
11243          }
11244          for (ObjCInterfaceDecl::known_extensions_iterator
11245                 Ext = IDecl->known_extensions_begin(),
11246                 ExtEnd = IDecl->known_extensions_end();
11247               Ext != ExtEnd; ++Ext) {
11248            if (const ObjCIvarDecl *ClsExtIvar
11249                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11250              Diag(ClsFields[i]->getLocation(),
11251                   diag::err_duplicate_ivar_declaration);
11252              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11253              continue;
11254            }
11255          }
11256        }
11257        ClsFields[i]->setLexicalDeclContext(CDecl);
11258        CDecl->addDecl(ClsFields[i]);
11259      }
11260      CDecl->setIvarLBraceLoc(LBrac);
11261      CDecl->setIvarRBraceLoc(RBrac);
11262    }
11263  }
11264
11265  if (Attr)
11266    ProcessDeclAttributeList(S, Record, Attr);
11267}
11268
11269/// \brief Determine whether the given integral value is representable within
11270/// the given type T.
11271static bool isRepresentableIntegerValue(ASTContext &Context,
11272                                        llvm::APSInt &Value,
11273                                        QualType T) {
11274  assert(T->isIntegralType(Context) && "Integral type required!");
11275  unsigned BitWidth = Context.getIntWidth(T);
11276
11277  if (Value.isUnsigned() || Value.isNonNegative()) {
11278    if (T->isSignedIntegerOrEnumerationType())
11279      --BitWidth;
11280    return Value.getActiveBits() <= BitWidth;
11281  }
11282  return Value.getMinSignedBits() <= BitWidth;
11283}
11284
11285// \brief Given an integral type, return the next larger integral type
11286// (or a NULL type of no such type exists).
11287static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11288  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11289  // enum checking below.
11290  assert(T->isIntegralType(Context) && "Integral type required!");
11291  const unsigned NumTypes = 4;
11292  QualType SignedIntegralTypes[NumTypes] = {
11293    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11294  };
11295  QualType UnsignedIntegralTypes[NumTypes] = {
11296    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11297    Context.UnsignedLongLongTy
11298  };
11299
11300  unsigned BitWidth = Context.getTypeSize(T);
11301  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11302                                                        : UnsignedIntegralTypes;
11303  for (unsigned I = 0; I != NumTypes; ++I)
11304    if (Context.getTypeSize(Types[I]) > BitWidth)
11305      return Types[I];
11306
11307  return QualType();
11308}
11309
11310EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11311                                          EnumConstantDecl *LastEnumConst,
11312                                          SourceLocation IdLoc,
11313                                          IdentifierInfo *Id,
11314                                          Expr *Val) {
11315  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11316  llvm::APSInt EnumVal(IntWidth);
11317  QualType EltTy;
11318
11319  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11320    Val = 0;
11321
11322  if (Val)
11323    Val = DefaultLvalueConversion(Val).take();
11324
11325  if (Val) {
11326    if (Enum->isDependentType() || Val->isTypeDependent())
11327      EltTy = Context.DependentTy;
11328    else {
11329      SourceLocation ExpLoc;
11330      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11331          !getLangOpts().MicrosoftMode) {
11332        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11333        // constant-expression in the enumerator-definition shall be a converted
11334        // constant expression of the underlying type.
11335        EltTy = Enum->getIntegerType();
11336        ExprResult Converted =
11337          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11338                                           CCEK_Enumerator);
11339        if (Converted.isInvalid())
11340          Val = 0;
11341        else
11342          Val = Converted.take();
11343      } else if (!Val->isValueDependent() &&
11344                 !(Val = VerifyIntegerConstantExpression(Val,
11345                                                         &EnumVal).take())) {
11346        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11347      } else {
11348        if (Enum->isFixed()) {
11349          EltTy = Enum->getIntegerType();
11350
11351          // In Obj-C and Microsoft mode, require the enumeration value to be
11352          // representable in the underlying type of the enumeration. In C++11,
11353          // we perform a non-narrowing conversion as part of converted constant
11354          // expression checking.
11355          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11356            if (getLangOpts().MicrosoftMode) {
11357              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11358              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11359            } else
11360              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11361          } else
11362            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11363        } else if (getLangOpts().CPlusPlus) {
11364          // C++11 [dcl.enum]p5:
11365          //   If the underlying type is not fixed, the type of each enumerator
11366          //   is the type of its initializing value:
11367          //     - If an initializer is specified for an enumerator, the
11368          //       initializing value has the same type as the expression.
11369          EltTy = Val->getType();
11370        } else {
11371          // C99 6.7.2.2p2:
11372          //   The expression that defines the value of an enumeration constant
11373          //   shall be an integer constant expression that has a value
11374          //   representable as an int.
11375
11376          // Complain if the value is not representable in an int.
11377          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11378            Diag(IdLoc, diag::ext_enum_value_not_int)
11379              << EnumVal.toString(10) << Val->getSourceRange()
11380              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11381          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11382            // Force the type of the expression to 'int'.
11383            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11384          }
11385          EltTy = Val->getType();
11386        }
11387      }
11388    }
11389  }
11390
11391  if (!Val) {
11392    if (Enum->isDependentType())
11393      EltTy = Context.DependentTy;
11394    else if (!LastEnumConst) {
11395      // C++0x [dcl.enum]p5:
11396      //   If the underlying type is not fixed, the type of each enumerator
11397      //   is the type of its initializing value:
11398      //     - If no initializer is specified for the first enumerator, the
11399      //       initializing value has an unspecified integral type.
11400      //
11401      // GCC uses 'int' for its unspecified integral type, as does
11402      // C99 6.7.2.2p3.
11403      if (Enum->isFixed()) {
11404        EltTy = Enum->getIntegerType();
11405      }
11406      else {
11407        EltTy = Context.IntTy;
11408      }
11409    } else {
11410      // Assign the last value + 1.
11411      EnumVal = LastEnumConst->getInitVal();
11412      ++EnumVal;
11413      EltTy = LastEnumConst->getType();
11414
11415      // Check for overflow on increment.
11416      if (EnumVal < LastEnumConst->getInitVal()) {
11417        // C++0x [dcl.enum]p5:
11418        //   If the underlying type is not fixed, the type of each enumerator
11419        //   is the type of its initializing value:
11420        //
11421        //     - Otherwise the type of the initializing value is the same as
11422        //       the type of the initializing value of the preceding enumerator
11423        //       unless the incremented value is not representable in that type,
11424        //       in which case the type is an unspecified integral type
11425        //       sufficient to contain the incremented value. If no such type
11426        //       exists, the program is ill-formed.
11427        QualType T = getNextLargerIntegralType(Context, EltTy);
11428        if (T.isNull() || Enum->isFixed()) {
11429          // There is no integral type larger enough to represent this
11430          // value. Complain, then allow the value to wrap around.
11431          EnumVal = LastEnumConst->getInitVal();
11432          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11433          ++EnumVal;
11434          if (Enum->isFixed())
11435            // When the underlying type is fixed, this is ill-formed.
11436            Diag(IdLoc, diag::err_enumerator_wrapped)
11437              << EnumVal.toString(10)
11438              << EltTy;
11439          else
11440            Diag(IdLoc, diag::warn_enumerator_too_large)
11441              << EnumVal.toString(10);
11442        } else {
11443          EltTy = T;
11444        }
11445
11446        // Retrieve the last enumerator's value, extent that type to the
11447        // type that is supposed to be large enough to represent the incremented
11448        // value, then increment.
11449        EnumVal = LastEnumConst->getInitVal();
11450        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11451        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11452        ++EnumVal;
11453
11454        // If we're not in C++, diagnose the overflow of enumerator values,
11455        // which in C99 means that the enumerator value is not representable in
11456        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11457        // permits enumerator values that are representable in some larger
11458        // integral type.
11459        if (!getLangOpts().CPlusPlus && !T.isNull())
11460          Diag(IdLoc, diag::warn_enum_value_overflow);
11461      } else if (!getLangOpts().CPlusPlus &&
11462                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11463        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11464        Diag(IdLoc, diag::ext_enum_value_not_int)
11465          << EnumVal.toString(10) << 1;
11466      }
11467    }
11468  }
11469
11470  if (!EltTy->isDependentType()) {
11471    // Make the enumerator value match the signedness and size of the
11472    // enumerator's type.
11473    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11474    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11475  }
11476
11477  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11478                                  Val, EnumVal);
11479}
11480
11481
11482Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11483                              SourceLocation IdLoc, IdentifierInfo *Id,
11484                              AttributeList *Attr,
11485                              SourceLocation EqualLoc, Expr *Val) {
11486  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11487  EnumConstantDecl *LastEnumConst =
11488    cast_or_null<EnumConstantDecl>(lastEnumConst);
11489
11490  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11491  // we find one that is.
11492  S = getNonFieldDeclScope(S);
11493
11494  // Verify that there isn't already something declared with this name in this
11495  // scope.
11496  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11497                                         ForRedeclaration);
11498  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11499    // Maybe we will complain about the shadowed template parameter.
11500    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11501    // Just pretend that we didn't see the previous declaration.
11502    PrevDecl = 0;
11503  }
11504
11505  if (PrevDecl) {
11506    // When in C++, we may get a TagDecl with the same name; in this case the
11507    // enum constant will 'hide' the tag.
11508    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11509           "Received TagDecl when not in C++!");
11510    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11511      if (isa<EnumConstantDecl>(PrevDecl))
11512        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11513      else
11514        Diag(IdLoc, diag::err_redefinition) << Id;
11515      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11516      return 0;
11517    }
11518  }
11519
11520  // C++ [class.mem]p15:
11521  // If T is the name of a class, then each of the following shall have a name
11522  // different from T:
11523  // - every enumerator of every member of class T that is an unscoped
11524  // enumerated type
11525  if (CXXRecordDecl *Record
11526                      = dyn_cast<CXXRecordDecl>(
11527                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11528    if (!TheEnumDecl->isScoped() &&
11529        Record->getIdentifier() && Record->getIdentifier() == Id)
11530      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11531
11532  EnumConstantDecl *New =
11533    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11534
11535  if (New) {
11536    // Process attributes.
11537    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11538
11539    // Register this decl in the current scope stack.
11540    New->setAccess(TheEnumDecl->getAccess());
11541    PushOnScopeChains(New, S);
11542  }
11543
11544  ActOnDocumentableDecl(New);
11545
11546  return New;
11547}
11548
11549// Returns true when the enum initial expression does not trigger the
11550// duplicate enum warning.  A few common cases are exempted as follows:
11551// Element2 = Element1
11552// Element2 = Element1 + 1
11553// Element2 = Element1 - 1
11554// Where Element2 and Element1 are from the same enum.
11555static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11556  Expr *InitExpr = ECD->getInitExpr();
11557  if (!InitExpr)
11558    return true;
11559  InitExpr = InitExpr->IgnoreImpCasts();
11560
11561  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11562    if (!BO->isAdditiveOp())
11563      return true;
11564    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11565    if (!IL)
11566      return true;
11567    if (IL->getValue() != 1)
11568      return true;
11569
11570    InitExpr = BO->getLHS();
11571  }
11572
11573  // This checks if the elements are from the same enum.
11574  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11575  if (!DRE)
11576    return true;
11577
11578  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11579  if (!EnumConstant)
11580    return true;
11581
11582  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11583      Enum)
11584    return true;
11585
11586  return false;
11587}
11588
11589struct DupKey {
11590  int64_t val;
11591  bool isTombstoneOrEmptyKey;
11592  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11593    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11594};
11595
11596static DupKey GetDupKey(const llvm::APSInt& Val) {
11597  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11598                false);
11599}
11600
11601struct DenseMapInfoDupKey {
11602  static DupKey getEmptyKey() { return DupKey(0, true); }
11603  static DupKey getTombstoneKey() { return DupKey(1, true); }
11604  static unsigned getHashValue(const DupKey Key) {
11605    return (unsigned)(Key.val * 37);
11606  }
11607  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11608    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11609           LHS.val == RHS.val;
11610  }
11611};
11612
11613// Emits a warning when an element is implicitly set a value that
11614// a previous element has already been set to.
11615static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
11616                                        EnumDecl *Enum,
11617                                        QualType EnumType) {
11618  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11619                                 Enum->getLocation()) ==
11620      DiagnosticsEngine::Ignored)
11621    return;
11622  // Avoid anonymous enums
11623  if (!Enum->getIdentifier())
11624    return;
11625
11626  // Only check for small enums.
11627  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11628    return;
11629
11630  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11631  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11632
11633  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11634  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11635          ValueToVectorMap;
11636
11637  DuplicatesVector DupVector;
11638  ValueToVectorMap EnumMap;
11639
11640  // Populate the EnumMap with all values represented by enum constants without
11641  // an initialier.
11642  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11643    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11644
11645    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11646    // this constant.  Skip this enum since it may be ill-formed.
11647    if (!ECD) {
11648      return;
11649    }
11650
11651    if (ECD->getInitExpr())
11652      continue;
11653
11654    DupKey Key = GetDupKey(ECD->getInitVal());
11655    DeclOrVector &Entry = EnumMap[Key];
11656
11657    // First time encountering this value.
11658    if (Entry.isNull())
11659      Entry = ECD;
11660  }
11661
11662  // Create vectors for any values that has duplicates.
11663  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11664    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11665    if (!ValidDuplicateEnum(ECD, Enum))
11666      continue;
11667
11668    DupKey Key = GetDupKey(ECD->getInitVal());
11669
11670    DeclOrVector& Entry = EnumMap[Key];
11671    if (Entry.isNull())
11672      continue;
11673
11674    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11675      // Ensure constants are different.
11676      if (D == ECD)
11677        continue;
11678
11679      // Create new vector and push values onto it.
11680      ECDVector *Vec = new ECDVector();
11681      Vec->push_back(D);
11682      Vec->push_back(ECD);
11683
11684      // Update entry to point to the duplicates vector.
11685      Entry = Vec;
11686
11687      // Store the vector somewhere we can consult later for quick emission of
11688      // diagnostics.
11689      DupVector.push_back(Vec);
11690      continue;
11691    }
11692
11693    ECDVector *Vec = Entry.get<ECDVector*>();
11694    // Make sure constants are not added more than once.
11695    if (*Vec->begin() == ECD)
11696      continue;
11697
11698    Vec->push_back(ECD);
11699  }
11700
11701  // Emit diagnostics.
11702  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11703                                  DupVectorEnd = DupVector.end();
11704       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11705    ECDVector *Vec = *DupVectorIter;
11706    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11707
11708    // Emit warning for one enum constant.
11709    ECDVector::iterator I = Vec->begin();
11710    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11711      << (*I)->getName() << (*I)->getInitVal().toString(10)
11712      << (*I)->getSourceRange();
11713    ++I;
11714
11715    // Emit one note for each of the remaining enum constants with
11716    // the same value.
11717    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11718      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11719        << (*I)->getName() << (*I)->getInitVal().toString(10)
11720        << (*I)->getSourceRange();
11721    delete Vec;
11722  }
11723}
11724
11725void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11726                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11727                         ArrayRef<Decl *> Elements,
11728                         Scope *S, AttributeList *Attr) {
11729  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11730  QualType EnumType = Context.getTypeDeclType(Enum);
11731
11732  if (Attr)
11733    ProcessDeclAttributeList(S, Enum, Attr);
11734
11735  if (Enum->isDependentType()) {
11736    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11737      EnumConstantDecl *ECD =
11738        cast_or_null<EnumConstantDecl>(Elements[i]);
11739      if (!ECD) continue;
11740
11741      ECD->setType(EnumType);
11742    }
11743
11744    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11745    return;
11746  }
11747
11748  // TODO: If the result value doesn't fit in an int, it must be a long or long
11749  // long value.  ISO C does not support this, but GCC does as an extension,
11750  // emit a warning.
11751  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11752  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11753  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11754
11755  // Verify that all the values are okay, compute the size of the values, and
11756  // reverse the list.
11757  unsigned NumNegativeBits = 0;
11758  unsigned NumPositiveBits = 0;
11759
11760  // Keep track of whether all elements have type int.
11761  bool AllElementsInt = true;
11762
11763  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11764    EnumConstantDecl *ECD =
11765      cast_or_null<EnumConstantDecl>(Elements[i]);
11766    if (!ECD) continue;  // Already issued a diagnostic.
11767
11768    const llvm::APSInt &InitVal = ECD->getInitVal();
11769
11770    // Keep track of the size of positive and negative values.
11771    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11772      NumPositiveBits = std::max(NumPositiveBits,
11773                                 (unsigned)InitVal.getActiveBits());
11774    else
11775      NumNegativeBits = std::max(NumNegativeBits,
11776                                 (unsigned)InitVal.getMinSignedBits());
11777
11778    // Keep track of whether every enum element has type int (very commmon).
11779    if (AllElementsInt)
11780      AllElementsInt = ECD->getType() == Context.IntTy;
11781  }
11782
11783  // Figure out the type that should be used for this enum.
11784  QualType BestType;
11785  unsigned BestWidth;
11786
11787  // C++0x N3000 [conv.prom]p3:
11788  //   An rvalue of an unscoped enumeration type whose underlying
11789  //   type is not fixed can be converted to an rvalue of the first
11790  //   of the following types that can represent all the values of
11791  //   the enumeration: int, unsigned int, long int, unsigned long
11792  //   int, long long int, or unsigned long long int.
11793  // C99 6.4.4.3p2:
11794  //   An identifier declared as an enumeration constant has type int.
11795  // The C99 rule is modified by a gcc extension
11796  QualType BestPromotionType;
11797
11798  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11799  // -fshort-enums is the equivalent to specifying the packed attribute on all
11800  // enum definitions.
11801  if (LangOpts.ShortEnums)
11802    Packed = true;
11803
11804  if (Enum->isFixed()) {
11805    BestType = Enum->getIntegerType();
11806    if (BestType->isPromotableIntegerType())
11807      BestPromotionType = Context.getPromotedIntegerType(BestType);
11808    else
11809      BestPromotionType = BestType;
11810    // We don't need to set BestWidth, because BestType is going to be the type
11811    // of the enumerators, but we do anyway because otherwise some compilers
11812    // warn that it might be used uninitialized.
11813    BestWidth = CharWidth;
11814  }
11815  else if (NumNegativeBits) {
11816    // If there is a negative value, figure out the smallest integer type (of
11817    // int/long/longlong) that fits.
11818    // If it's packed, check also if it fits a char or a short.
11819    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11820      BestType = Context.SignedCharTy;
11821      BestWidth = CharWidth;
11822    } else if (Packed && NumNegativeBits <= ShortWidth &&
11823               NumPositiveBits < ShortWidth) {
11824      BestType = Context.ShortTy;
11825      BestWidth = ShortWidth;
11826    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11827      BestType = Context.IntTy;
11828      BestWidth = IntWidth;
11829    } else {
11830      BestWidth = Context.getTargetInfo().getLongWidth();
11831
11832      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11833        BestType = Context.LongTy;
11834      } else {
11835        BestWidth = Context.getTargetInfo().getLongLongWidth();
11836
11837        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11838          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11839        BestType = Context.LongLongTy;
11840      }
11841    }
11842    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11843  } else {
11844    // If there is no negative value, figure out the smallest type that fits
11845    // all of the enumerator values.
11846    // If it's packed, check also if it fits a char or a short.
11847    if (Packed && NumPositiveBits <= CharWidth) {
11848      BestType = Context.UnsignedCharTy;
11849      BestPromotionType = Context.IntTy;
11850      BestWidth = CharWidth;
11851    } else if (Packed && NumPositiveBits <= ShortWidth) {
11852      BestType = Context.UnsignedShortTy;
11853      BestPromotionType = Context.IntTy;
11854      BestWidth = ShortWidth;
11855    } else if (NumPositiveBits <= IntWidth) {
11856      BestType = Context.UnsignedIntTy;
11857      BestWidth = IntWidth;
11858      BestPromotionType
11859        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11860                           ? Context.UnsignedIntTy : Context.IntTy;
11861    } else if (NumPositiveBits <=
11862               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11863      BestType = Context.UnsignedLongTy;
11864      BestPromotionType
11865        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11866                           ? Context.UnsignedLongTy : Context.LongTy;
11867    } else {
11868      BestWidth = Context.getTargetInfo().getLongLongWidth();
11869      assert(NumPositiveBits <= BestWidth &&
11870             "How could an initializer get larger than ULL?");
11871      BestType = Context.UnsignedLongLongTy;
11872      BestPromotionType
11873        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11874                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11875    }
11876  }
11877
11878  // Loop over all of the enumerator constants, changing their types to match
11879  // the type of the enum if needed.
11880  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11881    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11882    if (!ECD) continue;  // Already issued a diagnostic.
11883
11884    // Standard C says the enumerators have int type, but we allow, as an
11885    // extension, the enumerators to be larger than int size.  If each
11886    // enumerator value fits in an int, type it as an int, otherwise type it the
11887    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11888    // that X has type 'int', not 'unsigned'.
11889
11890    // Determine whether the value fits into an int.
11891    llvm::APSInt InitVal = ECD->getInitVal();
11892
11893    // If it fits into an integer type, force it.  Otherwise force it to match
11894    // the enum decl type.
11895    QualType NewTy;
11896    unsigned NewWidth;
11897    bool NewSign;
11898    if (!getLangOpts().CPlusPlus &&
11899        !Enum->isFixed() &&
11900        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11901      NewTy = Context.IntTy;
11902      NewWidth = IntWidth;
11903      NewSign = true;
11904    } else if (ECD->getType() == BestType) {
11905      // Already the right type!
11906      if (getLangOpts().CPlusPlus)
11907        // C++ [dcl.enum]p4: Following the closing brace of an
11908        // enum-specifier, each enumerator has the type of its
11909        // enumeration.
11910        ECD->setType(EnumType);
11911      continue;
11912    } else {
11913      NewTy = BestType;
11914      NewWidth = BestWidth;
11915      NewSign = BestType->isSignedIntegerOrEnumerationType();
11916    }
11917
11918    // Adjust the APSInt value.
11919    InitVal = InitVal.extOrTrunc(NewWidth);
11920    InitVal.setIsSigned(NewSign);
11921    ECD->setInitVal(InitVal);
11922
11923    // Adjust the Expr initializer and type.
11924    if (ECD->getInitExpr() &&
11925        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11926      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11927                                                CK_IntegralCast,
11928                                                ECD->getInitExpr(),
11929                                                /*base paths*/ 0,
11930                                                VK_RValue));
11931    if (getLangOpts().CPlusPlus)
11932      // C++ [dcl.enum]p4: Following the closing brace of an
11933      // enum-specifier, each enumerator has the type of its
11934      // enumeration.
11935      ECD->setType(EnumType);
11936    else
11937      ECD->setType(NewTy);
11938  }
11939
11940  Enum->completeDefinition(BestType, BestPromotionType,
11941                           NumPositiveBits, NumNegativeBits);
11942
11943  // If we're declaring a function, ensure this decl isn't forgotten about -
11944  // it needs to go into the function scope.
11945  if (InFunctionDeclarator)
11946    DeclsInPrototypeScope.push_back(Enum);
11947
11948  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
11949
11950  // Now that the enum type is defined, ensure it's not been underaligned.
11951  if (Enum->hasAttrs())
11952    CheckAlignasUnderalignment(Enum);
11953}
11954
11955Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11956                                  SourceLocation StartLoc,
11957                                  SourceLocation EndLoc) {
11958  StringLiteral *AsmString = cast<StringLiteral>(expr);
11959
11960  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11961                                                   AsmString, StartLoc,
11962                                                   EndLoc);
11963  CurContext->addDecl(New);
11964  return New;
11965}
11966
11967DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11968                                   SourceLocation ImportLoc,
11969                                   ModuleIdPath Path) {
11970  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11971                                                Module::AllVisible,
11972                                                /*IsIncludeDirective=*/false);
11973  if (!Mod)
11974    return true;
11975
11976  SmallVector<SourceLocation, 2> IdentifierLocs;
11977  Module *ModCheck = Mod;
11978  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11979    // If we've run out of module parents, just drop the remaining identifiers.
11980    // We need the length to be consistent.
11981    if (!ModCheck)
11982      break;
11983    ModCheck = ModCheck->Parent;
11984
11985    IdentifierLocs.push_back(Path[I].second);
11986  }
11987
11988  ImportDecl *Import = ImportDecl::Create(Context,
11989                                          Context.getTranslationUnitDecl(),
11990                                          AtLoc.isValid()? AtLoc : ImportLoc,
11991                                          Mod, IdentifierLocs);
11992  Context.getTranslationUnitDecl()->addDecl(Import);
11993  return Import;
11994}
11995
11996void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11997  // Create the implicit import declaration.
11998  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11999  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12000                                                   Loc, Mod, Loc);
12001  TU->addDecl(ImportD);
12002  Consumer.HandleImplicitImportDecl(ImportD);
12003
12004  // Make the module visible.
12005  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12006                                         /*Complain=*/false);
12007}
12008
12009void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12010                                      IdentifierInfo* AliasName,
12011                                      SourceLocation PragmaLoc,
12012                                      SourceLocation NameLoc,
12013                                      SourceLocation AliasNameLoc) {
12014  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12015                                    LookupOrdinaryName);
12016  AsmLabelAttr *Attr =
12017     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12018
12019  if (PrevDecl)
12020    PrevDecl->addAttr(Attr);
12021  else
12022    (void)ExtnameUndeclaredIdentifiers.insert(
12023      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12024}
12025
12026void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12027                             SourceLocation PragmaLoc,
12028                             SourceLocation NameLoc) {
12029  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12030
12031  if (PrevDecl) {
12032    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12033  } else {
12034    (void)WeakUndeclaredIdentifiers.insert(
12035      std::pair<IdentifierInfo*,WeakInfo>
12036        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12037  }
12038}
12039
12040void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12041                                IdentifierInfo* AliasName,
12042                                SourceLocation PragmaLoc,
12043                                SourceLocation NameLoc,
12044                                SourceLocation AliasNameLoc) {
12045  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12046                                    LookupOrdinaryName);
12047  WeakInfo W = WeakInfo(Name, NameLoc);
12048
12049  if (PrevDecl) {
12050    if (!PrevDecl->hasAttr<AliasAttr>())
12051      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12052        DeclApplyPragmaWeak(TUScope, ND, W);
12053  } else {
12054    (void)WeakUndeclaredIdentifiers.insert(
12055      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12056  }
12057}
12058
12059Decl *Sema::getObjCDeclContext() const {
12060  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12061}
12062
12063AvailabilityResult Sema::getCurContextAvailability() const {
12064  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12065  return D->getAvailability();
12066}
12067