SemaDecl.cpp revision 1994615488b9c729eb7c3c854a6d5e1c1ca78bde
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  if (isa<ObjCMethodDecl>(DC))
347    return Context.getTranslationUnitDecl();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(DeclPtrTy::make(*I));
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(DeclPtrTy::make(D));
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479static bool isOutOfScopePreviousDeclaration(NamedDecl *,
480                                            DeclContext*,
481                                            ASTContext&);
482
483/// Filters out lookup results that don't fall within the given scope
484/// as determined by isDeclInScope.
485static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
486                                 DeclContext *Ctx, Scope *S,
487                                 bool ConsiderLinkage) {
488  LookupResult::Filter F = R.makeFilter();
489  while (F.hasNext()) {
490    NamedDecl *D = F.next();
491
492    if (SemaRef.isDeclInScope(D, Ctx, S))
493      continue;
494
495    if (ConsiderLinkage &&
496        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
497      continue;
498
499    F.erase();
500  }
501
502  F.done();
503}
504
505static bool isUsingDecl(NamedDecl *D) {
506  return isa<UsingShadowDecl>(D) ||
507         isa<UnresolvedUsingTypenameDecl>(D) ||
508         isa<UnresolvedUsingValueDecl>(D);
509}
510
511/// Removes using shadow declarations from the lookup results.
512static void RemoveUsingDecls(LookupResult &R) {
513  LookupResult::Filter F = R.makeFilter();
514  while (F.hasNext())
515    if (isUsingDecl(F.next()))
516      F.erase();
517
518  F.done();
519}
520
521static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
522  if (D->isInvalidDecl())
523    return false;
524
525  if (D->isUsed() || D->hasAttr<UnusedAttr>())
526    return false;
527
528  // White-list anything that isn't a local variable.
529  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
530      !D->getDeclContext()->isFunctionOrMethod())
531    return false;
532
533  // Types of valid local variables should be complete, so this should succeed.
534  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
535
536    // White-list anything with an __attribute__((unused)) type.
537    QualType Ty = VD->getType();
538
539    // Only look at the outermost level of typedef.
540    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
541      if (TT->getDecl()->hasAttr<UnusedAttr>())
542        return false;
543    }
544
545    // If we failed to complete the type for some reason, or if the type is
546    // dependent, don't diagnose the variable.
547    if (Ty->isIncompleteType() || Ty->isDependentType())
548      return false;
549
550    if (const TagType *TT = Ty->getAs<TagType>()) {
551      const TagDecl *Tag = TT->getDecl();
552      if (Tag->hasAttr<UnusedAttr>())
553        return false;
554
555      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
556        // FIXME: Checking for the presence of a user-declared constructor
557        // isn't completely accurate; we'd prefer to check that the initializer
558        // has no side effects.
559        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
560          return false;
561      }
562    }
563
564    // TODO: __attribute__((unused)) templates?
565  }
566
567  return true;
568}
569
570void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
571  if (!ShouldDiagnoseUnusedDecl(D))
572    return;
573
574  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
575    Diag(D->getLocation(), diag::warn_unused_exception_param)
576    << D->getDeclName();
577  else
578    Diag(D->getLocation(), diag::warn_unused_variable)
579    << D->getDeclName();
580}
581
582void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
583  if (S->decl_empty()) return;
584  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
585         "Scope shouldn't contain decls!");
586
587  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
588       I != E; ++I) {
589    Decl *TmpD = (*I).getAs<Decl>();
590    assert(TmpD && "This decl didn't get pushed??");
591
592    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
593    NamedDecl *D = cast<NamedDecl>(TmpD);
594
595    if (!D->getDeclName()) continue;
596
597    // Diagnose unused variables in this scope.
598    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
599      DiagnoseUnusedDecl(D);
600
601    // Remove this name from our lexical scope.
602    IdResolver.RemoveDecl(D);
603  }
604}
605
606/// \brief Look for an Objective-C class in the translation unit.
607///
608/// \param Id The name of the Objective-C class we're looking for. If
609/// typo-correction fixes this name, the Id will be updated
610/// to the fixed name.
611///
612/// \param IdLoc The location of the name in the translation unit.
613///
614/// \param TypoCorrection If true, this routine will attempt typo correction
615/// if there is no class with the given name.
616///
617/// \returns The declaration of the named Objective-C class, or NULL if the
618/// class could not be found.
619ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
620                                              SourceLocation IdLoc,
621                                              bool TypoCorrection) {
622  // The third "scope" argument is 0 since we aren't enabling lazy built-in
623  // creation from this context.
624  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
625
626  if (!IDecl && TypoCorrection) {
627    // Perform typo correction at the given location, but only if we
628    // find an Objective-C class name.
629    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
630    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
631        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
632      Diag(IdLoc, diag::err_undef_interface_suggest)
633        << Id << IDecl->getDeclName()
634        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
635      Diag(IDecl->getLocation(), diag::note_previous_decl)
636        << IDecl->getDeclName();
637
638      Id = IDecl->getIdentifier();
639    }
640  }
641
642  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
643}
644
645/// getNonFieldDeclScope - Retrieves the innermost scope, starting
646/// from S, where a non-field would be declared. This routine copes
647/// with the difference between C and C++ scoping rules in structs and
648/// unions. For example, the following code is well-formed in C but
649/// ill-formed in C++:
650/// @code
651/// struct S6 {
652///   enum { BAR } e;
653/// };
654///
655/// void test_S6() {
656///   struct S6 a;
657///   a.e = BAR;
658/// }
659/// @endcode
660/// For the declaration of BAR, this routine will return a different
661/// scope. The scope S will be the scope of the unnamed enumeration
662/// within S6. In C++, this routine will return the scope associated
663/// with S6, because the enumeration's scope is a transparent
664/// context but structures can contain non-field names. In C, this
665/// routine will return the translation unit scope, since the
666/// enumeration's scope is a transparent context and structures cannot
667/// contain non-field names.
668Scope *Sema::getNonFieldDeclScope(Scope *S) {
669  while (((S->getFlags() & Scope::DeclScope) == 0) ||
670         (S->getEntity() &&
671          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
672         (S->isClassScope() && !getLangOptions().CPlusPlus))
673    S = S->getParent();
674  return S;
675}
676
677void Sema::InitBuiltinVaListType() {
678  if (!Context.getBuiltinVaListType().isNull())
679    return;
680
681  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
682  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
683                                       LookupOrdinaryName, ForRedeclaration);
684  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
685  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
686}
687
688/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
689/// file scope.  lazily create a decl for it. ForRedeclaration is true
690/// if we're creating this built-in in anticipation of redeclaring the
691/// built-in.
692NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
693                                     Scope *S, bool ForRedeclaration,
694                                     SourceLocation Loc) {
695  Builtin::ID BID = (Builtin::ID)bid;
696
697  if (Context.BuiltinInfo.hasVAListUse(BID))
698    InitBuiltinVaListType();
699
700  ASTContext::GetBuiltinTypeError Error;
701  QualType R = Context.GetBuiltinType(BID, Error);
702  switch (Error) {
703  case ASTContext::GE_None:
704    // Okay
705    break;
706
707  case ASTContext::GE_Missing_stdio:
708    if (ForRedeclaration)
709      Diag(Loc, diag::err_implicit_decl_requires_stdio)
710        << Context.BuiltinInfo.GetName(BID);
711    return 0;
712
713  case ASTContext::GE_Missing_setjmp:
714    if (ForRedeclaration)
715      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
716        << Context.BuiltinInfo.GetName(BID);
717    return 0;
718  }
719
720  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
721    Diag(Loc, diag::ext_implicit_lib_function_decl)
722      << Context.BuiltinInfo.GetName(BID)
723      << R;
724    if (Context.BuiltinInfo.getHeaderName(BID) &&
725        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
726          != Diagnostic::Ignored)
727      Diag(Loc, diag::note_please_include_header)
728        << Context.BuiltinInfo.getHeaderName(BID)
729        << Context.BuiltinInfo.GetName(BID);
730  }
731
732  FunctionDecl *New = FunctionDecl::Create(Context,
733                                           Context.getTranslationUnitDecl(),
734                                           Loc, II, R, /*TInfo=*/0,
735                                           FunctionDecl::Extern,
736                                           FunctionDecl::None, false,
737                                           /*hasPrototype=*/true);
738  New->setImplicit();
739
740  // Create Decl objects for each parameter, adding them to the
741  // FunctionDecl.
742  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
743    llvm::SmallVector<ParmVarDecl*, 16> Params;
744    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
745      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
746                                           FT->getArgType(i), /*TInfo=*/0,
747                                           VarDecl::None, VarDecl::None, 0));
748    New->setParams(Params.data(), Params.size());
749  }
750
751  AddKnownFunctionAttributes(New);
752
753  // TUScope is the translation-unit scope to insert this function into.
754  // FIXME: This is hideous. We need to teach PushOnScopeChains to
755  // relate Scopes to DeclContexts, and probably eliminate CurContext
756  // entirely, but we're not there yet.
757  DeclContext *SavedContext = CurContext;
758  CurContext = Context.getTranslationUnitDecl();
759  PushOnScopeChains(New, TUScope);
760  CurContext = SavedContext;
761  return New;
762}
763
764/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
765/// same name and scope as a previous declaration 'Old'.  Figure out
766/// how to resolve this situation, merging decls or emitting
767/// diagnostics as appropriate. If there was an error, set New to be invalid.
768///
769void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
770  // If the new decl is known invalid already, don't bother doing any
771  // merging checks.
772  if (New->isInvalidDecl()) return;
773
774  // Allow multiple definitions for ObjC built-in typedefs.
775  // FIXME: Verify the underlying types are equivalent!
776  if (getLangOptions().ObjC1) {
777    const IdentifierInfo *TypeID = New->getIdentifier();
778    switch (TypeID->getLength()) {
779    default: break;
780    case 2:
781      if (!TypeID->isStr("id"))
782        break;
783      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
784      // Install the built-in type for 'id', ignoring the current definition.
785      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
786      return;
787    case 5:
788      if (!TypeID->isStr("Class"))
789        break;
790      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
791      // Install the built-in type for 'Class', ignoring the current definition.
792      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
793      return;
794    case 3:
795      if (!TypeID->isStr("SEL"))
796        break;
797      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
798      // Install the built-in type for 'SEL', ignoring the current definition.
799      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
800      return;
801    case 8:
802      if (!TypeID->isStr("Protocol"))
803        break;
804      Context.setObjCProtoType(New->getUnderlyingType());
805      return;
806    }
807    // Fall through - the typedef name was not a builtin type.
808  }
809
810  // Verify the old decl was also a type.
811  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
812  if (!Old) {
813    Diag(New->getLocation(), diag::err_redefinition_different_kind)
814      << New->getDeclName();
815
816    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
817    if (OldD->getLocation().isValid())
818      Diag(OldD->getLocation(), diag::note_previous_definition);
819
820    return New->setInvalidDecl();
821  }
822
823  // If the old declaration is invalid, just give up here.
824  if (Old->isInvalidDecl())
825    return New->setInvalidDecl();
826
827  // Determine the "old" type we'll use for checking and diagnostics.
828  QualType OldType;
829  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
830    OldType = OldTypedef->getUnderlyingType();
831  else
832    OldType = Context.getTypeDeclType(Old);
833
834  // If the typedef types are not identical, reject them in all languages and
835  // with any extensions enabled.
836
837  if (OldType != New->getUnderlyingType() &&
838      Context.getCanonicalType(OldType) !=
839      Context.getCanonicalType(New->getUnderlyingType())) {
840    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
841      << New->getUnderlyingType() << OldType;
842    if (Old->getLocation().isValid())
843      Diag(Old->getLocation(), diag::note_previous_definition);
844    return New->setInvalidDecl();
845  }
846
847  // The types match.  Link up the redeclaration chain if the old
848  // declaration was a typedef.
849  // FIXME: this is a potential source of wierdness if the type
850  // spellings don't match exactly.
851  if (isa<TypedefDecl>(Old))
852    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
853
854  if (getLangOptions().Microsoft)
855    return;
856
857  if (getLangOptions().CPlusPlus) {
858    // C++ [dcl.typedef]p2:
859    //   In a given non-class scope, a typedef specifier can be used to
860    //   redefine the name of any type declared in that scope to refer
861    //   to the type to which it already refers.
862    if (!isa<CXXRecordDecl>(CurContext))
863      return;
864
865    // C++0x [dcl.typedef]p4:
866    //   In a given class scope, a typedef specifier can be used to redefine
867    //   any class-name declared in that scope that is not also a typedef-name
868    //   to refer to the type to which it already refers.
869    //
870    // This wording came in via DR424, which was a correction to the
871    // wording in DR56, which accidentally banned code like:
872    //
873    //   struct S {
874    //     typedef struct A { } A;
875    //   };
876    //
877    // in the C++03 standard. We implement the C++0x semantics, which
878    // allow the above but disallow
879    //
880    //   struct S {
881    //     typedef int I;
882    //     typedef int I;
883    //   };
884    //
885    // since that was the intent of DR56.
886    if (!isa<TypedefDecl >(Old))
887      return;
888
889    Diag(New->getLocation(), diag::err_redefinition)
890      << New->getDeclName();
891    Diag(Old->getLocation(), diag::note_previous_definition);
892    return New->setInvalidDecl();
893  }
894
895  // If we have a redefinition of a typedef in C, emit a warning.  This warning
896  // is normally mapped to an error, but can be controlled with
897  // -Wtypedef-redefinition.  If either the original or the redefinition is
898  // in a system header, don't emit this for compatibility with GCC.
899  if (getDiagnostics().getSuppressSystemWarnings() &&
900      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
901       Context.getSourceManager().isInSystemHeader(New->getLocation())))
902    return;
903
904  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
905    << New->getDeclName();
906  Diag(Old->getLocation(), diag::note_previous_definition);
907  return;
908}
909
910/// DeclhasAttr - returns true if decl Declaration already has the target
911/// attribute.
912static bool
913DeclHasAttr(const Decl *decl, const Attr *target) {
914  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
915    if (attr->getKind() == target->getKind())
916      return true;
917
918  return false;
919}
920
921/// MergeAttributes - append attributes from the Old decl to the New one.
922static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
923  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
924    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
925      Attr *NewAttr = attr->clone(C);
926      NewAttr->setInherited(true);
927      New->addAttr(NewAttr);
928    }
929  }
930}
931
932/// Used in MergeFunctionDecl to keep track of function parameters in
933/// C.
934struct GNUCompatibleParamWarning {
935  ParmVarDecl *OldParm;
936  ParmVarDecl *NewParm;
937  QualType PromotedType;
938};
939
940
941/// getSpecialMember - get the special member enum for a method.
942Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
943  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
944    if (Ctor->isCopyConstructor())
945      return Sema::CXXCopyConstructor;
946
947    return Sema::CXXConstructor;
948  }
949
950  if (isa<CXXDestructorDecl>(MD))
951    return Sema::CXXDestructor;
952
953  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
954  return Sema::CXXCopyAssignment;
955}
956
957/// canRedefineFunction - checks if a function can be redefined. Currently,
958/// only extern inline functions can be redefined, and even then only in
959/// GNU89 mode.
960static bool canRedefineFunction(const FunctionDecl *FD,
961                                const LangOptions& LangOpts) {
962  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
963          FD->isInlineSpecified() &&
964          FD->getStorageClass() == FunctionDecl::Extern);
965}
966
967/// MergeFunctionDecl - We just parsed a function 'New' from
968/// declarator D which has the same name and scope as a previous
969/// declaration 'Old'.  Figure out how to resolve this situation,
970/// merging decls or emitting diagnostics as appropriate.
971///
972/// In C++, New and Old must be declarations that are not
973/// overloaded. Use IsOverload to determine whether New and Old are
974/// overloaded, and to select the Old declaration that New should be
975/// merged with.
976///
977/// Returns true if there was an error, false otherwise.
978bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
979  // Verify the old decl was also a function.
980  FunctionDecl *Old = 0;
981  if (FunctionTemplateDecl *OldFunctionTemplate
982        = dyn_cast<FunctionTemplateDecl>(OldD))
983    Old = OldFunctionTemplate->getTemplatedDecl();
984  else
985    Old = dyn_cast<FunctionDecl>(OldD);
986  if (!Old) {
987    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
988      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
989      Diag(Shadow->getTargetDecl()->getLocation(),
990           diag::note_using_decl_target);
991      Diag(Shadow->getUsingDecl()->getLocation(),
992           diag::note_using_decl) << 0;
993      return true;
994    }
995
996    Diag(New->getLocation(), diag::err_redefinition_different_kind)
997      << New->getDeclName();
998    Diag(OldD->getLocation(), diag::note_previous_definition);
999    return true;
1000  }
1001
1002  // Determine whether the previous declaration was a definition,
1003  // implicit declaration, or a declaration.
1004  diag::kind PrevDiag;
1005  if (Old->isThisDeclarationADefinition())
1006    PrevDiag = diag::note_previous_definition;
1007  else if (Old->isImplicit())
1008    PrevDiag = diag::note_previous_implicit_declaration;
1009  else
1010    PrevDiag = diag::note_previous_declaration;
1011
1012  QualType OldQType = Context.getCanonicalType(Old->getType());
1013  QualType NewQType = Context.getCanonicalType(New->getType());
1014
1015  // Don't complain about this if we're in GNU89 mode and the old function
1016  // is an extern inline function.
1017  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1018      New->getStorageClass() == FunctionDecl::Static &&
1019      Old->getStorageClass() != FunctionDecl::Static &&
1020      !canRedefineFunction(Old, getLangOptions())) {
1021    Diag(New->getLocation(), diag::err_static_non_static)
1022      << New;
1023    Diag(Old->getLocation(), PrevDiag);
1024    return true;
1025  }
1026
1027  // If a function is first declared with a calling convention, but is
1028  // later declared or defined without one, the second decl assumes the
1029  // calling convention of the first.
1030  //
1031  // For the new decl, we have to look at the NON-canonical type to tell the
1032  // difference between a function that really doesn't have a calling
1033  // convention and one that is declared cdecl. That's because in
1034  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1035  // because it is the default calling convention.
1036  //
1037  // Note also that we DO NOT return at this point, because we still have
1038  // other tests to run.
1039  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1040  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1041  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1042  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1043  if (OldTypeInfo.getCC() != CC_Default &&
1044      NewTypeInfo.getCC() == CC_Default) {
1045    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1046    New->setType(NewQType);
1047    NewQType = Context.getCanonicalType(NewQType);
1048  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1049                                     NewTypeInfo.getCC())) {
1050    // Calling conventions really aren't compatible, so complain.
1051    Diag(New->getLocation(), diag::err_cconv_change)
1052      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1053      << (OldTypeInfo.getCC() == CC_Default)
1054      << (OldTypeInfo.getCC() == CC_Default ? "" :
1055          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1056    Diag(Old->getLocation(), diag::note_previous_declaration);
1057    return true;
1058  }
1059
1060  // FIXME: diagnose the other way around?
1061  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1062    NewQType = Context.getNoReturnType(NewQType);
1063    New->setType(NewQType);
1064    assert(NewQType.isCanonical());
1065  }
1066
1067  // Merge regparm attribute.
1068  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1069    if (NewType->getRegParmType()) {
1070      Diag(New->getLocation(), diag::err_regparm_mismatch)
1071        << NewType->getRegParmType()
1072        << OldType->getRegParmType();
1073      Diag(Old->getLocation(), diag::note_previous_declaration);
1074      return true;
1075    }
1076
1077    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1078    New->setType(NewQType);
1079    assert(NewQType.isCanonical());
1080  }
1081
1082  if (getLangOptions().CPlusPlus) {
1083    // (C++98 13.1p2):
1084    //   Certain function declarations cannot be overloaded:
1085    //     -- Function declarations that differ only in the return type
1086    //        cannot be overloaded.
1087    QualType OldReturnType
1088      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1089    QualType NewReturnType
1090      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1091    QualType ResQT;
1092    if (OldReturnType != NewReturnType) {
1093      if (NewReturnType->isObjCObjectPointerType()
1094          && OldReturnType->isObjCObjectPointerType())
1095        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1096      if (ResQT.isNull()) {
1097        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1098        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1099        return true;
1100      }
1101      else
1102        NewQType = ResQT;
1103    }
1104
1105    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1106    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1107    if (OldMethod && NewMethod) {
1108      // Preserve triviality.
1109      NewMethod->setTrivial(OldMethod->isTrivial());
1110
1111      bool isFriend = NewMethod->getFriendObjectKind();
1112
1113      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1114        //    -- Member function declarations with the same name and the
1115        //       same parameter types cannot be overloaded if any of them
1116        //       is a static member function declaration.
1117        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1118          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1119          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1120          return true;
1121        }
1122
1123        // C++ [class.mem]p1:
1124        //   [...] A member shall not be declared twice in the
1125        //   member-specification, except that a nested class or member
1126        //   class template can be declared and then later defined.
1127        unsigned NewDiag;
1128        if (isa<CXXConstructorDecl>(OldMethod))
1129          NewDiag = diag::err_constructor_redeclared;
1130        else if (isa<CXXDestructorDecl>(NewMethod))
1131          NewDiag = diag::err_destructor_redeclared;
1132        else if (isa<CXXConversionDecl>(NewMethod))
1133          NewDiag = diag::err_conv_function_redeclared;
1134        else
1135          NewDiag = diag::err_member_redeclared;
1136
1137        Diag(New->getLocation(), NewDiag);
1138        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1139
1140      // Complain if this is an explicit declaration of a special
1141      // member that was initially declared implicitly.
1142      //
1143      // As an exception, it's okay to befriend such methods in order
1144      // to permit the implicit constructor/destructor/operator calls.
1145      } else if (OldMethod->isImplicit()) {
1146        if (isFriend) {
1147          NewMethod->setImplicit();
1148        } else {
1149          Diag(NewMethod->getLocation(),
1150               diag::err_definition_of_implicitly_declared_member)
1151            << New << getSpecialMember(OldMethod);
1152          return true;
1153        }
1154      }
1155    }
1156
1157    // (C++98 8.3.5p3):
1158    //   All declarations for a function shall agree exactly in both the
1159    //   return type and the parameter-type-list.
1160    // attributes should be ignored when comparing.
1161    if (Context.getNoReturnType(OldQType, false) ==
1162        Context.getNoReturnType(NewQType, false))
1163      return MergeCompatibleFunctionDecls(New, Old);
1164
1165    // Fall through for conflicting redeclarations and redefinitions.
1166  }
1167
1168  // C: Function types need to be compatible, not identical. This handles
1169  // duplicate function decls like "void f(int); void f(enum X);" properly.
1170  if (!getLangOptions().CPlusPlus &&
1171      Context.typesAreCompatible(OldQType, NewQType)) {
1172    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1173    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1174    const FunctionProtoType *OldProto = 0;
1175    if (isa<FunctionNoProtoType>(NewFuncType) &&
1176        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1177      // The old declaration provided a function prototype, but the
1178      // new declaration does not. Merge in the prototype.
1179      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1180      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1181                                                 OldProto->arg_type_end());
1182      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1183                                         ParamTypes.data(), ParamTypes.size(),
1184                                         OldProto->isVariadic(),
1185                                         OldProto->getTypeQuals(),
1186                                         false, false, 0, 0,
1187                                         OldProto->getExtInfo());
1188      New->setType(NewQType);
1189      New->setHasInheritedPrototype();
1190
1191      // Synthesize a parameter for each argument type.
1192      llvm::SmallVector<ParmVarDecl*, 16> Params;
1193      for (FunctionProtoType::arg_type_iterator
1194             ParamType = OldProto->arg_type_begin(),
1195             ParamEnd = OldProto->arg_type_end();
1196           ParamType != ParamEnd; ++ParamType) {
1197        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1198                                                 SourceLocation(), 0,
1199                                                 *ParamType, /*TInfo=*/0,
1200                                                 VarDecl::None, VarDecl::None,
1201                                                 0);
1202        Param->setImplicit();
1203        Params.push_back(Param);
1204      }
1205
1206      New->setParams(Params.data(), Params.size());
1207    }
1208
1209    return MergeCompatibleFunctionDecls(New, Old);
1210  }
1211
1212  // GNU C permits a K&R definition to follow a prototype declaration
1213  // if the declared types of the parameters in the K&R definition
1214  // match the types in the prototype declaration, even when the
1215  // promoted types of the parameters from the K&R definition differ
1216  // from the types in the prototype. GCC then keeps the types from
1217  // the prototype.
1218  //
1219  // If a variadic prototype is followed by a non-variadic K&R definition,
1220  // the K&R definition becomes variadic.  This is sort of an edge case, but
1221  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1222  // C99 6.9.1p8.
1223  if (!getLangOptions().CPlusPlus &&
1224      Old->hasPrototype() && !New->hasPrototype() &&
1225      New->getType()->getAs<FunctionProtoType>() &&
1226      Old->getNumParams() == New->getNumParams()) {
1227    llvm::SmallVector<QualType, 16> ArgTypes;
1228    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1229    const FunctionProtoType *OldProto
1230      = Old->getType()->getAs<FunctionProtoType>();
1231    const FunctionProtoType *NewProto
1232      = New->getType()->getAs<FunctionProtoType>();
1233
1234    // Determine whether this is the GNU C extension.
1235    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1236                                               NewProto->getResultType());
1237    bool LooseCompatible = !MergedReturn.isNull();
1238    for (unsigned Idx = 0, End = Old->getNumParams();
1239         LooseCompatible && Idx != End; ++Idx) {
1240      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1241      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1242      if (Context.typesAreCompatible(OldParm->getType(),
1243                                     NewProto->getArgType(Idx))) {
1244        ArgTypes.push_back(NewParm->getType());
1245      } else if (Context.typesAreCompatible(OldParm->getType(),
1246                                            NewParm->getType())) {
1247        GNUCompatibleParamWarning Warn
1248          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1249        Warnings.push_back(Warn);
1250        ArgTypes.push_back(NewParm->getType());
1251      } else
1252        LooseCompatible = false;
1253    }
1254
1255    if (LooseCompatible) {
1256      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1257        Diag(Warnings[Warn].NewParm->getLocation(),
1258             diag::ext_param_promoted_not_compatible_with_prototype)
1259          << Warnings[Warn].PromotedType
1260          << Warnings[Warn].OldParm->getType();
1261        Diag(Warnings[Warn].OldParm->getLocation(),
1262             diag::note_previous_declaration);
1263      }
1264
1265      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1266                                           ArgTypes.size(),
1267                                           OldProto->isVariadic(), 0,
1268                                           false, false, 0, 0,
1269                                           OldProto->getExtInfo()));
1270      return MergeCompatibleFunctionDecls(New, Old);
1271    }
1272
1273    // Fall through to diagnose conflicting types.
1274  }
1275
1276  // A function that has already been declared has been redeclared or defined
1277  // with a different type- show appropriate diagnostic
1278  if (unsigned BuiltinID = Old->getBuiltinID()) {
1279    // The user has declared a builtin function with an incompatible
1280    // signature.
1281    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1282      // The function the user is redeclaring is a library-defined
1283      // function like 'malloc' or 'printf'. Warn about the
1284      // redeclaration, then pretend that we don't know about this
1285      // library built-in.
1286      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1287      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1288        << Old << Old->getType();
1289      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1290      Old->setInvalidDecl();
1291      return false;
1292    }
1293
1294    PrevDiag = diag::note_previous_builtin_declaration;
1295  }
1296
1297  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1298  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1299  return true;
1300}
1301
1302/// \brief Completes the merge of two function declarations that are
1303/// known to be compatible.
1304///
1305/// This routine handles the merging of attributes and other
1306/// properties of function declarations form the old declaration to
1307/// the new declaration, once we know that New is in fact a
1308/// redeclaration of Old.
1309///
1310/// \returns false
1311bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1312  // Merge the attributes
1313  MergeAttributes(New, Old, Context);
1314
1315  // Merge the storage class.
1316  if (Old->getStorageClass() != FunctionDecl::Extern &&
1317      Old->getStorageClass() != FunctionDecl::None)
1318    New->setStorageClass(Old->getStorageClass());
1319
1320  // Merge "pure" flag.
1321  if (Old->isPure())
1322    New->setPure();
1323
1324  // Merge the "deleted" flag.
1325  if (Old->isDeleted())
1326    New->setDeleted();
1327
1328  if (getLangOptions().CPlusPlus)
1329    return MergeCXXFunctionDecl(New, Old);
1330
1331  return false;
1332}
1333
1334/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1335/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1336/// situation, merging decls or emitting diagnostics as appropriate.
1337///
1338/// Tentative definition rules (C99 6.9.2p2) are checked by
1339/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1340/// definitions here, since the initializer hasn't been attached.
1341///
1342void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1343  // If the new decl is already invalid, don't do any other checking.
1344  if (New->isInvalidDecl())
1345    return;
1346
1347  // Verify the old decl was also a variable.
1348  VarDecl *Old = 0;
1349  if (!Previous.isSingleResult() ||
1350      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1351    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1352      << New->getDeclName();
1353    Diag(Previous.getRepresentativeDecl()->getLocation(),
1354         diag::note_previous_definition);
1355    return New->setInvalidDecl();
1356  }
1357
1358  MergeAttributes(New, Old, Context);
1359
1360  // Merge the types
1361  QualType MergedT;
1362  if (getLangOptions().CPlusPlus) {
1363    if (Context.hasSameType(New->getType(), Old->getType()))
1364      MergedT = New->getType();
1365    // C++ [basic.link]p10:
1366    //   [...] the types specified by all declarations referring to a given
1367    //   object or function shall be identical, except that declarations for an
1368    //   array object can specify array types that differ by the presence or
1369    //   absence of a major array bound (8.3.4).
1370    else if (Old->getType()->isIncompleteArrayType() &&
1371             New->getType()->isArrayType()) {
1372      CanQual<ArrayType> OldArray
1373        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1374      CanQual<ArrayType> NewArray
1375        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1376      if (OldArray->getElementType() == NewArray->getElementType())
1377        MergedT = New->getType();
1378    } else if (Old->getType()->isArrayType() &&
1379             New->getType()->isIncompleteArrayType()) {
1380      CanQual<ArrayType> OldArray
1381        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1382      CanQual<ArrayType> NewArray
1383        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1384      if (OldArray->getElementType() == NewArray->getElementType())
1385        MergedT = Old->getType();
1386    } else if (New->getType()->isObjCObjectPointerType()
1387               && Old->getType()->isObjCObjectPointerType()) {
1388        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1389    }
1390  } else {
1391    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1392  }
1393  if (MergedT.isNull()) {
1394    Diag(New->getLocation(), diag::err_redefinition_different_type)
1395      << New->getDeclName();
1396    Diag(Old->getLocation(), diag::note_previous_definition);
1397    return New->setInvalidDecl();
1398  }
1399  New->setType(MergedT);
1400
1401  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1402  if (New->getStorageClass() == VarDecl::Static &&
1403      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1404    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1405    Diag(Old->getLocation(), diag::note_previous_definition);
1406    return New->setInvalidDecl();
1407  }
1408  // C99 6.2.2p4:
1409  //   For an identifier declared with the storage-class specifier
1410  //   extern in a scope in which a prior declaration of that
1411  //   identifier is visible,23) if the prior declaration specifies
1412  //   internal or external linkage, the linkage of the identifier at
1413  //   the later declaration is the same as the linkage specified at
1414  //   the prior declaration. If no prior declaration is visible, or
1415  //   if the prior declaration specifies no linkage, then the
1416  //   identifier has external linkage.
1417  if (New->hasExternalStorage() && Old->hasLinkage())
1418    /* Okay */;
1419  else if (New->getStorageClass() != VarDecl::Static &&
1420           Old->getStorageClass() == VarDecl::Static) {
1421    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1422    Diag(Old->getLocation(), diag::note_previous_definition);
1423    return New->setInvalidDecl();
1424  }
1425
1426  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1427
1428  // FIXME: The test for external storage here seems wrong? We still
1429  // need to check for mismatches.
1430  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1431      // Don't complain about out-of-line definitions of static members.
1432      !(Old->getLexicalDeclContext()->isRecord() &&
1433        !New->getLexicalDeclContext()->isRecord())) {
1434    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1435    Diag(Old->getLocation(), diag::note_previous_definition);
1436    return New->setInvalidDecl();
1437  }
1438
1439  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1440    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1441    Diag(Old->getLocation(), diag::note_previous_definition);
1442  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1443    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1444    Diag(Old->getLocation(), diag::note_previous_definition);
1445  }
1446
1447  // C++ doesn't have tentative definitions, so go right ahead and check here.
1448  const VarDecl *Def;
1449  if (getLangOptions().CPlusPlus &&
1450      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1451      (Def = Old->getDefinition())) {
1452    Diag(New->getLocation(), diag::err_redefinition)
1453      << New->getDeclName();
1454    Diag(Def->getLocation(), diag::note_previous_definition);
1455    New->setInvalidDecl();
1456    return;
1457  }
1458  // c99 6.2.2 P4.
1459  // For an identifier declared with the storage-class specifier extern in a
1460  // scope in which a prior declaration of that identifier is visible, if
1461  // the prior declaration specifies internal or external linkage, the linkage
1462  // of the identifier at the later declaration is the same as the linkage
1463  // specified at the prior declaration.
1464  // FIXME. revisit this code.
1465  if (New->hasExternalStorage() &&
1466      Old->getLinkage() == InternalLinkage &&
1467      New->getDeclContext() == Old->getDeclContext())
1468    New->setStorageClass(Old->getStorageClass());
1469
1470  // Keep a chain of previous declarations.
1471  New->setPreviousDeclaration(Old);
1472
1473  // Inherit access appropriately.
1474  New->setAccess(Old->getAccess());
1475}
1476
1477/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1478/// no declarator (e.g. "struct foo;") is parsed.
1479Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1480                                                 DeclSpec &DS) {
1481  // FIXME: Error on auto/register at file scope
1482  // FIXME: Error on inline/virtual/explicit
1483  // FIXME: Warn on useless __thread
1484  // FIXME: Warn on useless const/volatile
1485  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1486  // FIXME: Warn on useless attributes
1487  Decl *TagD = 0;
1488  TagDecl *Tag = 0;
1489  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1490      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1491      DS.getTypeSpecType() == DeclSpec::TST_union ||
1492      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1493    TagD = static_cast<Decl *>(DS.getTypeRep());
1494
1495    if (!TagD) // We probably had an error
1496      return DeclPtrTy();
1497
1498    // Note that the above type specs guarantee that the
1499    // type rep is a Decl, whereas in many of the others
1500    // it's a Type.
1501    Tag = dyn_cast<TagDecl>(TagD);
1502  }
1503
1504  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1505    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1506    // or incomplete types shall not be restrict-qualified."
1507    if (TypeQuals & DeclSpec::TQ_restrict)
1508      Diag(DS.getRestrictSpecLoc(),
1509           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1510           << DS.getSourceRange();
1511  }
1512
1513  if (DS.isFriendSpecified()) {
1514    // If we're dealing with a class template decl, assume that the
1515    // template routines are handling it.
1516    if (TagD && isa<ClassTemplateDecl>(TagD))
1517      return DeclPtrTy();
1518    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1519  }
1520
1521  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1522    // If there are attributes in the DeclSpec, apply them to the record.
1523    if (const AttributeList *AL = DS.getAttributes())
1524      ProcessDeclAttributeList(S, Record, AL);
1525
1526    if (!Record->getDeclName() && Record->isDefinition() &&
1527        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1528      if (getLangOptions().CPlusPlus ||
1529          Record->getDeclContext()->isRecord())
1530        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1531
1532      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1533        << DS.getSourceRange();
1534    }
1535
1536    // Microsoft allows unnamed struct/union fields. Don't complain
1537    // about them.
1538    // FIXME: Should we support Microsoft's extensions in this area?
1539    if (Record->getDeclName() && getLangOptions().Microsoft)
1540      return DeclPtrTy::make(Tag);
1541  }
1542
1543  if (getLangOptions().CPlusPlus &&
1544      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1545    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1546      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1547          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1548        Diag(Enum->getLocation(), diag::ext_no_declarators)
1549          << DS.getSourceRange();
1550
1551  if (!DS.isMissingDeclaratorOk() &&
1552      DS.getTypeSpecType() != DeclSpec::TST_error) {
1553    // Warn about typedefs of enums without names, since this is an
1554    // extension in both Microsoft and GNU.
1555    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1556        Tag && isa<EnumDecl>(Tag)) {
1557      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1558        << DS.getSourceRange();
1559      return DeclPtrTy::make(Tag);
1560    }
1561
1562    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1563      << DS.getSourceRange();
1564  }
1565
1566  return DeclPtrTy::make(TagD);
1567}
1568
1569/// We are trying to inject an anonymous member into the given scope;
1570/// check if there's an existing declaration that can't be overloaded.
1571///
1572/// \return true if this is a forbidden redeclaration
1573static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1574                                         Scope *S,
1575                                         DeclContext *Owner,
1576                                         DeclarationName Name,
1577                                         SourceLocation NameLoc,
1578                                         unsigned diagnostic) {
1579  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1580                 Sema::ForRedeclaration);
1581  if (!SemaRef.LookupName(R, S)) return false;
1582
1583  if (R.getAsSingle<TagDecl>())
1584    return false;
1585
1586  // Pick a representative declaration.
1587  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1588  if (PrevDecl && Owner->isRecord()) {
1589    RecordDecl *Record = cast<RecordDecl>(Owner);
1590    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1591      return false;
1592  }
1593
1594  SemaRef.Diag(NameLoc, diagnostic) << Name;
1595  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1596
1597  return true;
1598}
1599
1600/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1601/// anonymous struct or union AnonRecord into the owning context Owner
1602/// and scope S. This routine will be invoked just after we realize
1603/// that an unnamed union or struct is actually an anonymous union or
1604/// struct, e.g.,
1605///
1606/// @code
1607/// union {
1608///   int i;
1609///   float f;
1610/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1611///    // f into the surrounding scope.x
1612/// @endcode
1613///
1614/// This routine is recursive, injecting the names of nested anonymous
1615/// structs/unions into the owning context and scope as well.
1616static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1617                                                DeclContext *Owner,
1618                                                RecordDecl *AnonRecord,
1619                                                AccessSpecifier AS) {
1620  unsigned diagKind
1621    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1622                            : diag::err_anonymous_struct_member_redecl;
1623
1624  bool Invalid = false;
1625  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1626                               FEnd = AnonRecord->field_end();
1627       F != FEnd; ++F) {
1628    if ((*F)->getDeclName()) {
1629      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1630                                       (*F)->getLocation(), diagKind)) {
1631        // C++ [class.union]p2:
1632        //   The names of the members of an anonymous union shall be
1633        //   distinct from the names of any other entity in the
1634        //   scope in which the anonymous union is declared.
1635        Invalid = true;
1636      } else {
1637        // C++ [class.union]p2:
1638        //   For the purpose of name lookup, after the anonymous union
1639        //   definition, the members of the anonymous union are
1640        //   considered to have been defined in the scope in which the
1641        //   anonymous union is declared.
1642        Owner->makeDeclVisibleInContext(*F);
1643        S->AddDecl(Sema::DeclPtrTy::make(*F));
1644        SemaRef.IdResolver.AddDecl(*F);
1645
1646        // That includes picking up the appropriate access specifier.
1647        if (AS != AS_none) (*F)->setAccess(AS);
1648      }
1649    } else if (const RecordType *InnerRecordType
1650                 = (*F)->getType()->getAs<RecordType>()) {
1651      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1652      if (InnerRecord->isAnonymousStructOrUnion())
1653        Invalid = Invalid ||
1654          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1655                                              InnerRecord, AS);
1656    }
1657  }
1658
1659  return Invalid;
1660}
1661
1662/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1663/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1664/// illegal input values are mapped to VarDecl::None.
1665/// If the input declaration context is a linkage specification
1666/// with no braces, then Extern is mapped to None.
1667static VarDecl::StorageClass
1668StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1669                                      DeclContext *DC) {
1670  switch (StorageClassSpec) {
1671  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1672  case DeclSpec::SCS_extern:
1673    // If the current context is a C++ linkage specification
1674    // having no braces, then the keyword "extern" is properly part
1675    // of the linkage specification itself, rather than being
1676    // the written storage class specifier.
1677    return (DC && isa<LinkageSpecDecl>(DC) &&
1678            !cast<LinkageSpecDecl>(DC)->hasBraces())
1679      ? VarDecl::None : VarDecl::Extern;
1680  case DeclSpec::SCS_static:         return VarDecl::Static;
1681  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1682  case DeclSpec::SCS_register:       return VarDecl::Register;
1683  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1684    // Illegal SCSs map to None: error reporting is up to the caller.
1685  case DeclSpec::SCS_mutable:        // Fall through.
1686  case DeclSpec::SCS_typedef:        return VarDecl::None;
1687  }
1688  llvm_unreachable("unknown storage class specifier");
1689}
1690
1691/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1692/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1693/// illegal input values are mapped to FunctionDecl::None.
1694/// If the input declaration context is a linkage specification
1695/// with no braces, then Extern is mapped to None.
1696static FunctionDecl::StorageClass
1697StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1698                                           DeclContext *DC) {
1699  switch (StorageClassSpec) {
1700  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1701  case DeclSpec::SCS_extern:
1702    // If the current context is a C++ linkage specification
1703    // having no braces, then the keyword "extern" is properly part
1704    // of the linkage specification itself, rather than being
1705    // the written storage class specifier.
1706    return (DC && isa<LinkageSpecDecl>(DC) &&
1707            !cast<LinkageSpecDecl>(DC)->hasBraces())
1708      ? FunctionDecl::None : FunctionDecl::Extern;
1709  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1710  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1711    // Illegal SCSs map to None: error reporting is up to the caller.
1712  case DeclSpec::SCS_auto:           // Fall through.
1713  case DeclSpec::SCS_mutable:        // Fall through.
1714  case DeclSpec::SCS_register:       // Fall through.
1715  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1716  }
1717  llvm_unreachable("unknown storage class specifier");
1718}
1719
1720/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1721/// anonymous structure or union. Anonymous unions are a C++ feature
1722/// (C++ [class.union]) and a GNU C extension; anonymous structures
1723/// are a GNU C and GNU C++ extension.
1724Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1725                                                  AccessSpecifier AS,
1726                                                  RecordDecl *Record) {
1727  DeclContext *Owner = Record->getDeclContext();
1728
1729  // Diagnose whether this anonymous struct/union is an extension.
1730  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1731    Diag(Record->getLocation(), diag::ext_anonymous_union);
1732  else if (!Record->isUnion())
1733    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1734
1735  // C and C++ require different kinds of checks for anonymous
1736  // structs/unions.
1737  bool Invalid = false;
1738  if (getLangOptions().CPlusPlus) {
1739    const char* PrevSpec = 0;
1740    unsigned DiagID;
1741    // C++ [class.union]p3:
1742    //   Anonymous unions declared in a named namespace or in the
1743    //   global namespace shall be declared static.
1744    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1745        (isa<TranslationUnitDecl>(Owner) ||
1746         (isa<NamespaceDecl>(Owner) &&
1747          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1748      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1749      Invalid = true;
1750
1751      // Recover by adding 'static'.
1752      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1753                             PrevSpec, DiagID);
1754    }
1755    // C++ [class.union]p3:
1756    //   A storage class is not allowed in a declaration of an
1757    //   anonymous union in a class scope.
1758    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1759             isa<RecordDecl>(Owner)) {
1760      Diag(DS.getStorageClassSpecLoc(),
1761           diag::err_anonymous_union_with_storage_spec);
1762      Invalid = true;
1763
1764      // Recover by removing the storage specifier.
1765      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1766                             PrevSpec, DiagID);
1767    }
1768
1769    // C++ [class.union]p2:
1770    //   The member-specification of an anonymous union shall only
1771    //   define non-static data members. [Note: nested types and
1772    //   functions cannot be declared within an anonymous union. ]
1773    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1774                                 MemEnd = Record->decls_end();
1775         Mem != MemEnd; ++Mem) {
1776      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1777        // C++ [class.union]p3:
1778        //   An anonymous union shall not have private or protected
1779        //   members (clause 11).
1780        assert(FD->getAccess() != AS_none);
1781        if (FD->getAccess() != AS_public) {
1782          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1783            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1784          Invalid = true;
1785        }
1786      } else if ((*Mem)->isImplicit()) {
1787        // Any implicit members are fine.
1788      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1789        // This is a type that showed up in an
1790        // elaborated-type-specifier inside the anonymous struct or
1791        // union, but which actually declares a type outside of the
1792        // anonymous struct or union. It's okay.
1793      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1794        if (!MemRecord->isAnonymousStructOrUnion() &&
1795            MemRecord->getDeclName()) {
1796          // This is a nested type declaration.
1797          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1798            << (int)Record->isUnion();
1799          Invalid = true;
1800        }
1801      } else if (isa<AccessSpecDecl>(*Mem)) {
1802        // Any access specifier is fine.
1803      } else {
1804        // We have something that isn't a non-static data
1805        // member. Complain about it.
1806        unsigned DK = diag::err_anonymous_record_bad_member;
1807        if (isa<TypeDecl>(*Mem))
1808          DK = diag::err_anonymous_record_with_type;
1809        else if (isa<FunctionDecl>(*Mem))
1810          DK = diag::err_anonymous_record_with_function;
1811        else if (isa<VarDecl>(*Mem))
1812          DK = diag::err_anonymous_record_with_static;
1813        Diag((*Mem)->getLocation(), DK)
1814            << (int)Record->isUnion();
1815          Invalid = true;
1816      }
1817    }
1818  }
1819
1820  if (!Record->isUnion() && !Owner->isRecord()) {
1821    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1822      << (int)getLangOptions().CPlusPlus;
1823    Invalid = true;
1824  }
1825
1826  // Mock up a declarator.
1827  Declarator Dc(DS, Declarator::TypeNameContext);
1828  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1829  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1830
1831  // Create a declaration for this anonymous struct/union.
1832  NamedDecl *Anon = 0;
1833  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1834    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1835                             /*IdentifierInfo=*/0,
1836                             Context.getTypeDeclType(Record),
1837                             TInfo,
1838                             /*BitWidth=*/0, /*Mutable=*/false);
1839    Anon->setAccess(AS);
1840    if (getLangOptions().CPlusPlus) {
1841      FieldCollector->Add(cast<FieldDecl>(Anon));
1842      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1843        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1844    }
1845  } else {
1846    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1847    assert(SCSpec != DeclSpec::SCS_typedef &&
1848           "Parser allowed 'typedef' as storage class VarDecl.");
1849    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1850    if (SCSpec == DeclSpec::SCS_mutable) {
1851      // mutable can only appear on non-static class members, so it's always
1852      // an error here
1853      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1854      Invalid = true;
1855      SC = VarDecl::None;
1856    }
1857    SCSpec = DS.getStorageClassSpecAsWritten();
1858    VarDecl::StorageClass SCAsWritten
1859      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1860
1861    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1862                           /*IdentifierInfo=*/0,
1863                           Context.getTypeDeclType(Record),
1864                           TInfo, SC, SCAsWritten);
1865  }
1866  Anon->setImplicit();
1867
1868  // Add the anonymous struct/union object to the current
1869  // context. We'll be referencing this object when we refer to one of
1870  // its members.
1871  Owner->addDecl(Anon);
1872
1873  // Inject the members of the anonymous struct/union into the owning
1874  // context and into the identifier resolver chain for name lookup
1875  // purposes.
1876  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1877    Invalid = true;
1878
1879  // Mark this as an anonymous struct/union type. Note that we do not
1880  // do this until after we have already checked and injected the
1881  // members of this anonymous struct/union type, because otherwise
1882  // the members could be injected twice: once by DeclContext when it
1883  // builds its lookup table, and once by
1884  // InjectAnonymousStructOrUnionMembers.
1885  Record->setAnonymousStructOrUnion(true);
1886
1887  if (Invalid)
1888    Anon->setInvalidDecl();
1889
1890  return DeclPtrTy::make(Anon);
1891}
1892
1893
1894/// GetNameForDeclarator - Determine the full declaration name for the
1895/// given Declarator.
1896DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1897  return GetNameFromUnqualifiedId(D.getName());
1898}
1899
1900/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1901DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1902  switch (Name.getKind()) {
1903    case UnqualifiedId::IK_Identifier:
1904      return DeclarationName(Name.Identifier);
1905
1906    case UnqualifiedId::IK_OperatorFunctionId:
1907      return Context.DeclarationNames.getCXXOperatorName(
1908                                              Name.OperatorFunctionId.Operator);
1909
1910    case UnqualifiedId::IK_LiteralOperatorId:
1911      return Context.DeclarationNames.getCXXLiteralOperatorName(
1912                                                               Name.Identifier);
1913
1914    case UnqualifiedId::IK_ConversionFunctionId: {
1915      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1916      if (Ty.isNull())
1917        return DeclarationName();
1918
1919      return Context.DeclarationNames.getCXXConversionFunctionName(
1920                                                  Context.getCanonicalType(Ty));
1921    }
1922
1923    case UnqualifiedId::IK_ConstructorName: {
1924      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1925      if (Ty.isNull())
1926        return DeclarationName();
1927
1928      return Context.DeclarationNames.getCXXConstructorName(
1929                                                  Context.getCanonicalType(Ty));
1930    }
1931
1932    case UnqualifiedId::IK_ConstructorTemplateId: {
1933      // In well-formed code, we can only have a constructor
1934      // template-id that refers to the current context, so go there
1935      // to find the actual type being constructed.
1936      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1937      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1938        return DeclarationName();
1939
1940      // Determine the type of the class being constructed.
1941      QualType CurClassType = Context.getTypeDeclType(CurClass);
1942
1943      // FIXME: Check two things: that the template-id names the same type as
1944      // CurClassType, and that the template-id does not occur when the name
1945      // was qualified.
1946
1947      return Context.DeclarationNames.getCXXConstructorName(
1948                                       Context.getCanonicalType(CurClassType));
1949    }
1950
1951    case UnqualifiedId::IK_DestructorName: {
1952      QualType Ty = GetTypeFromParser(Name.DestructorName);
1953      if (Ty.isNull())
1954        return DeclarationName();
1955
1956      return Context.DeclarationNames.getCXXDestructorName(
1957                                                           Context.getCanonicalType(Ty));
1958    }
1959
1960    case UnqualifiedId::IK_TemplateId: {
1961      TemplateName TName
1962        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1963      return Context.getNameForTemplate(TName);
1964    }
1965  }
1966
1967  assert(false && "Unknown name kind");
1968  return DeclarationName();
1969}
1970
1971/// isNearlyMatchingFunction - Determine whether the C++ functions
1972/// Declaration and Definition are "nearly" matching. This heuristic
1973/// is used to improve diagnostics in the case where an out-of-line
1974/// function definition doesn't match any declaration within
1975/// the class or namespace.
1976static bool isNearlyMatchingFunction(ASTContext &Context,
1977                                     FunctionDecl *Declaration,
1978                                     FunctionDecl *Definition) {
1979  if (Declaration->param_size() != Definition->param_size())
1980    return false;
1981  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1982    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1983    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1984
1985    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1986                                        DefParamTy.getNonReferenceType()))
1987      return false;
1988  }
1989
1990  return true;
1991}
1992
1993/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1994/// declarator needs to be rebuilt in the current instantiation.
1995/// Any bits of declarator which appear before the name are valid for
1996/// consideration here.  That's specifically the type in the decl spec
1997/// and the base type in any member-pointer chunks.
1998static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1999                                                    DeclarationName Name) {
2000  // The types we specifically need to rebuild are:
2001  //   - typenames, typeofs, and decltypes
2002  //   - types which will become injected class names
2003  // Of course, we also need to rebuild any type referencing such a
2004  // type.  It's safest to just say "dependent", but we call out a
2005  // few cases here.
2006
2007  DeclSpec &DS = D.getMutableDeclSpec();
2008  switch (DS.getTypeSpecType()) {
2009  case DeclSpec::TST_typename:
2010  case DeclSpec::TST_typeofType:
2011  case DeclSpec::TST_typeofExpr:
2012  case DeclSpec::TST_decltype: {
2013    // Grab the type from the parser.
2014    TypeSourceInfo *TSI = 0;
2015    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2016    if (T.isNull() || !T->isDependentType()) break;
2017
2018    // Make sure there's a type source info.  This isn't really much
2019    // of a waste; most dependent types should have type source info
2020    // attached already.
2021    if (!TSI)
2022      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2023
2024    // Rebuild the type in the current instantiation.
2025    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2026    if (!TSI) return true;
2027
2028    // Store the new type back in the decl spec.
2029    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2030    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2031    break;
2032  }
2033
2034  default:
2035    // Nothing to do for these decl specs.
2036    break;
2037  }
2038
2039  // It doesn't matter what order we do this in.
2040  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2041    DeclaratorChunk &Chunk = D.getTypeObject(I);
2042
2043    // The only type information in the declarator which can come
2044    // before the declaration name is the base type of a member
2045    // pointer.
2046    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2047      continue;
2048
2049    // Rebuild the scope specifier in-place.
2050    CXXScopeSpec &SS = Chunk.Mem.Scope();
2051    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2052      return true;
2053  }
2054
2055  return false;
2056}
2057
2058Sema::DeclPtrTy
2059Sema::HandleDeclarator(Scope *S, Declarator &D,
2060                       MultiTemplateParamsArg TemplateParamLists,
2061                       bool IsFunctionDefinition) {
2062  DeclarationName Name = GetNameForDeclarator(D);
2063
2064  // All of these full declarators require an identifier.  If it doesn't have
2065  // one, the ParsedFreeStandingDeclSpec action should be used.
2066  if (!Name) {
2067    if (!D.isInvalidType())  // Reject this if we think it is valid.
2068      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2069           diag::err_declarator_need_ident)
2070        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2071    return DeclPtrTy();
2072  }
2073
2074  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2075  // we find one that is.
2076  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2077         (S->getFlags() & Scope::TemplateParamScope) != 0)
2078    S = S->getParent();
2079
2080  DeclContext *DC = CurContext;
2081  if (D.getCXXScopeSpec().isInvalid())
2082    D.setInvalidType();
2083  else if (D.getCXXScopeSpec().isSet()) {
2084    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2085    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2086    if (!DC) {
2087      // If we could not compute the declaration context, it's because the
2088      // declaration context is dependent but does not refer to a class,
2089      // class template, or class template partial specialization. Complain
2090      // and return early, to avoid the coming semantic disaster.
2091      Diag(D.getIdentifierLoc(),
2092           diag::err_template_qualified_declarator_no_match)
2093        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2094        << D.getCXXScopeSpec().getRange();
2095      return DeclPtrTy();
2096    }
2097
2098    bool IsDependentContext = DC->isDependentContext();
2099
2100    if (!IsDependentContext &&
2101        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2102      return DeclPtrTy();
2103
2104    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2105      Diag(D.getIdentifierLoc(),
2106           diag::err_member_def_undefined_record)
2107        << Name << DC << D.getCXXScopeSpec().getRange();
2108      D.setInvalidType();
2109    }
2110
2111    // Check whether we need to rebuild the type of the given
2112    // declaration in the current instantiation.
2113    if (EnteringContext && IsDependentContext &&
2114        TemplateParamLists.size() != 0) {
2115      ContextRAII SavedContext(*this, DC);
2116      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2117        D.setInvalidType();
2118    }
2119  }
2120
2121  NamedDecl *New;
2122
2123  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2124  QualType R = TInfo->getType();
2125
2126  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2127                        ForRedeclaration);
2128
2129  // See if this is a redefinition of a variable in the same scope.
2130  if (!D.getCXXScopeSpec().isSet()) {
2131    bool IsLinkageLookup = false;
2132
2133    // If the declaration we're planning to build will be a function
2134    // or object with linkage, then look for another declaration with
2135    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2136    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2137      /* Do nothing*/;
2138    else if (R->isFunctionType()) {
2139      if (CurContext->isFunctionOrMethod() ||
2140          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2141        IsLinkageLookup = true;
2142    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2143      IsLinkageLookup = true;
2144    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2145             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2146      IsLinkageLookup = true;
2147
2148    if (IsLinkageLookup)
2149      Previous.clear(LookupRedeclarationWithLinkage);
2150
2151    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2152  } else { // Something like "int foo::x;"
2153    LookupQualifiedName(Previous, DC);
2154
2155    // Don't consider using declarations as previous declarations for
2156    // out-of-line members.
2157    RemoveUsingDecls(Previous);
2158
2159    // C++ 7.3.1.2p2:
2160    // Members (including explicit specializations of templates) of a named
2161    // namespace can also be defined outside that namespace by explicit
2162    // qualification of the name being defined, provided that the entity being
2163    // defined was already declared in the namespace and the definition appears
2164    // after the point of declaration in a namespace that encloses the
2165    // declarations namespace.
2166    //
2167    // Note that we only check the context at this point. We don't yet
2168    // have enough information to make sure that PrevDecl is actually
2169    // the declaration we want to match. For example, given:
2170    //
2171    //   class X {
2172    //     void f();
2173    //     void f(float);
2174    //   };
2175    //
2176    //   void X::f(int) { } // ill-formed
2177    //
2178    // In this case, PrevDecl will point to the overload set
2179    // containing the two f's declared in X, but neither of them
2180    // matches.
2181
2182    // First check whether we named the global scope.
2183    if (isa<TranslationUnitDecl>(DC)) {
2184      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2185        << Name << D.getCXXScopeSpec().getRange();
2186    } else {
2187      DeclContext *Cur = CurContext;
2188      while (isa<LinkageSpecDecl>(Cur))
2189        Cur = Cur->getParent();
2190      if (!Cur->Encloses(DC)) {
2191        // The qualifying scope doesn't enclose the original declaration.
2192        // Emit diagnostic based on current scope.
2193        SourceLocation L = D.getIdentifierLoc();
2194        SourceRange R = D.getCXXScopeSpec().getRange();
2195        if (isa<FunctionDecl>(Cur))
2196          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2197        else
2198          Diag(L, diag::err_invalid_declarator_scope)
2199            << Name << cast<NamedDecl>(DC) << R;
2200        D.setInvalidType();
2201      }
2202    }
2203  }
2204
2205  if (Previous.isSingleResult() &&
2206      Previous.getFoundDecl()->isTemplateParameter()) {
2207    // Maybe we will complain about the shadowed template parameter.
2208    if (!D.isInvalidType())
2209      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2210                                          Previous.getFoundDecl()))
2211        D.setInvalidType();
2212
2213    // Just pretend that we didn't see the previous declaration.
2214    Previous.clear();
2215  }
2216
2217  // In C++, the previous declaration we find might be a tag type
2218  // (class or enum). In this case, the new declaration will hide the
2219  // tag type. Note that this does does not apply if we're declaring a
2220  // typedef (C++ [dcl.typedef]p4).
2221  if (Previous.isSingleTagDecl() &&
2222      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2223    Previous.clear();
2224
2225  bool Redeclaration = false;
2226  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2227    if (TemplateParamLists.size()) {
2228      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2229      return DeclPtrTy();
2230    }
2231
2232    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2233  } else if (R->isFunctionType()) {
2234    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2235                                  move(TemplateParamLists),
2236                                  IsFunctionDefinition, Redeclaration);
2237  } else {
2238    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2239                                  move(TemplateParamLists),
2240                                  Redeclaration);
2241  }
2242
2243  if (New == 0)
2244    return DeclPtrTy();
2245
2246  // If this has an identifier and is not an invalid redeclaration or
2247  // function template specialization, add it to the scope stack.
2248  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2249    PushOnScopeChains(New, S);
2250
2251  return DeclPtrTy::make(New);
2252}
2253
2254/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2255/// types into constant array types in certain situations which would otherwise
2256/// be errors (for GCC compatibility).
2257static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2258                                                    ASTContext &Context,
2259                                                    bool &SizeIsNegative) {
2260  // This method tries to turn a variable array into a constant
2261  // array even when the size isn't an ICE.  This is necessary
2262  // for compatibility with code that depends on gcc's buggy
2263  // constant expression folding, like struct {char x[(int)(char*)2];}
2264  SizeIsNegative = false;
2265
2266  QualifierCollector Qs;
2267  const Type *Ty = Qs.strip(T);
2268
2269  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2270    QualType Pointee = PTy->getPointeeType();
2271    QualType FixedType =
2272        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2273    if (FixedType.isNull()) return FixedType;
2274    FixedType = Context.getPointerType(FixedType);
2275    return Qs.apply(FixedType);
2276  }
2277
2278  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2279  if (!VLATy)
2280    return QualType();
2281  // FIXME: We should probably handle this case
2282  if (VLATy->getElementType()->isVariablyModifiedType())
2283    return QualType();
2284
2285  Expr::EvalResult EvalResult;
2286  if (!VLATy->getSizeExpr() ||
2287      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2288      !EvalResult.Val.isInt())
2289    return QualType();
2290
2291  llvm::APSInt &Res = EvalResult.Val.getInt();
2292  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2293    // TODO: preserve the size expression in declarator info
2294    return Context.getConstantArrayType(VLATy->getElementType(),
2295                                        Res, ArrayType::Normal, 0);
2296  }
2297
2298  SizeIsNegative = true;
2299  return QualType();
2300}
2301
2302/// \brief Register the given locally-scoped external C declaration so
2303/// that it can be found later for redeclarations
2304void
2305Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2306                                       const LookupResult &Previous,
2307                                       Scope *S) {
2308  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2309         "Decl is not a locally-scoped decl!");
2310  // Note that we have a locally-scoped external with this name.
2311  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2312
2313  if (!Previous.isSingleResult())
2314    return;
2315
2316  NamedDecl *PrevDecl = Previous.getFoundDecl();
2317
2318  // If there was a previous declaration of this variable, it may be
2319  // in our identifier chain. Update the identifier chain with the new
2320  // declaration.
2321  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2322    // The previous declaration was found on the identifer resolver
2323    // chain, so remove it from its scope.
2324    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2325      S = S->getParent();
2326
2327    if (S)
2328      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2329  }
2330}
2331
2332/// \brief Diagnose function specifiers on a declaration of an identifier that
2333/// does not identify a function.
2334void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2335  // FIXME: We should probably indicate the identifier in question to avoid
2336  // confusion for constructs like "inline int a(), b;"
2337  if (D.getDeclSpec().isInlineSpecified())
2338    Diag(D.getDeclSpec().getInlineSpecLoc(),
2339         diag::err_inline_non_function);
2340
2341  if (D.getDeclSpec().isVirtualSpecified())
2342    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2343         diag::err_virtual_non_function);
2344
2345  if (D.getDeclSpec().isExplicitSpecified())
2346    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2347         diag::err_explicit_non_function);
2348}
2349
2350NamedDecl*
2351Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2352                             QualType R,  TypeSourceInfo *TInfo,
2353                             LookupResult &Previous, bool &Redeclaration) {
2354  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2355  if (D.getCXXScopeSpec().isSet()) {
2356    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2357      << D.getCXXScopeSpec().getRange();
2358    D.setInvalidType();
2359    // Pretend we didn't see the scope specifier.
2360    DC = CurContext;
2361    Previous.clear();
2362  }
2363
2364  if (getLangOptions().CPlusPlus) {
2365    // Check that there are no default arguments (C++ only).
2366    CheckExtraCXXDefaultArguments(D);
2367  }
2368
2369  DiagnoseFunctionSpecifiers(D);
2370
2371  if (D.getDeclSpec().isThreadSpecified())
2372    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2373
2374  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2375    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2376      << D.getName().getSourceRange();
2377    return 0;
2378  }
2379
2380  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2381  if (!NewTD) return 0;
2382
2383  // Handle attributes prior to checking for duplicates in MergeVarDecl
2384  ProcessDeclAttributes(S, NewTD, D);
2385
2386  // Merge the decl with the existing one if appropriate. If the decl is
2387  // in an outer scope, it isn't the same thing.
2388  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2389  if (!Previous.empty()) {
2390    Redeclaration = true;
2391    MergeTypeDefDecl(NewTD, Previous);
2392  }
2393
2394  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2395  // then it shall have block scope.
2396  QualType T = NewTD->getUnderlyingType();
2397  if (T->isVariablyModifiedType()) {
2398    FunctionNeedsScopeChecking() = true;
2399
2400    if (S->getFnParent() == 0) {
2401      bool SizeIsNegative;
2402      QualType FixedTy =
2403          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2404      if (!FixedTy.isNull()) {
2405        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2406        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2407      } else {
2408        if (SizeIsNegative)
2409          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2410        else if (T->isVariableArrayType())
2411          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2412        else
2413          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2414        NewTD->setInvalidDecl();
2415      }
2416    }
2417  }
2418
2419  // If this is the C FILE type, notify the AST context.
2420  if (IdentifierInfo *II = NewTD->getIdentifier())
2421    if (!NewTD->isInvalidDecl() &&
2422        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2423      if (II->isStr("FILE"))
2424        Context.setFILEDecl(NewTD);
2425      else if (II->isStr("jmp_buf"))
2426        Context.setjmp_bufDecl(NewTD);
2427      else if (II->isStr("sigjmp_buf"))
2428        Context.setsigjmp_bufDecl(NewTD);
2429    }
2430
2431  return NewTD;
2432}
2433
2434/// \brief Determines whether the given declaration is an out-of-scope
2435/// previous declaration.
2436///
2437/// This routine should be invoked when name lookup has found a
2438/// previous declaration (PrevDecl) that is not in the scope where a
2439/// new declaration by the same name is being introduced. If the new
2440/// declaration occurs in a local scope, previous declarations with
2441/// linkage may still be considered previous declarations (C99
2442/// 6.2.2p4-5, C++ [basic.link]p6).
2443///
2444/// \param PrevDecl the previous declaration found by name
2445/// lookup
2446///
2447/// \param DC the context in which the new declaration is being
2448/// declared.
2449///
2450/// \returns true if PrevDecl is an out-of-scope previous declaration
2451/// for a new delcaration with the same name.
2452static bool
2453isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2454                                ASTContext &Context) {
2455  if (!PrevDecl)
2456    return 0;
2457
2458  if (!PrevDecl->hasLinkage())
2459    return false;
2460
2461  if (Context.getLangOptions().CPlusPlus) {
2462    // C++ [basic.link]p6:
2463    //   If there is a visible declaration of an entity with linkage
2464    //   having the same name and type, ignoring entities declared
2465    //   outside the innermost enclosing namespace scope, the block
2466    //   scope declaration declares that same entity and receives the
2467    //   linkage of the previous declaration.
2468    DeclContext *OuterContext = DC->getLookupContext();
2469    if (!OuterContext->isFunctionOrMethod())
2470      // This rule only applies to block-scope declarations.
2471      return false;
2472    else {
2473      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2474      if (PrevOuterContext->isRecord())
2475        // We found a member function: ignore it.
2476        return false;
2477      else {
2478        // Find the innermost enclosing namespace for the new and
2479        // previous declarations.
2480        while (!OuterContext->isFileContext())
2481          OuterContext = OuterContext->getParent();
2482        while (!PrevOuterContext->isFileContext())
2483          PrevOuterContext = PrevOuterContext->getParent();
2484
2485        // The previous declaration is in a different namespace, so it
2486        // isn't the same function.
2487        if (OuterContext->getPrimaryContext() !=
2488            PrevOuterContext->getPrimaryContext())
2489          return false;
2490      }
2491    }
2492  }
2493
2494  return true;
2495}
2496
2497static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2498  CXXScopeSpec &SS = D.getCXXScopeSpec();
2499  if (!SS.isSet()) return;
2500  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2501                       SS.getRange());
2502}
2503
2504NamedDecl*
2505Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2506                              QualType R, TypeSourceInfo *TInfo,
2507                              LookupResult &Previous,
2508                              MultiTemplateParamsArg TemplateParamLists,
2509                              bool &Redeclaration) {
2510  DeclarationName Name = GetNameForDeclarator(D);
2511
2512  // Check that there are no default arguments (C++ only).
2513  if (getLangOptions().CPlusPlus)
2514    CheckExtraCXXDefaultArguments(D);
2515
2516  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2517  assert(SCSpec != DeclSpec::SCS_typedef &&
2518         "Parser allowed 'typedef' as storage class VarDecl.");
2519  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2520  if (SCSpec == DeclSpec::SCS_mutable) {
2521    // mutable can only appear on non-static class members, so it's always
2522    // an error here
2523    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2524    D.setInvalidType();
2525    SC = VarDecl::None;
2526  }
2527  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2528  VarDecl::StorageClass SCAsWritten
2529    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2530
2531  IdentifierInfo *II = Name.getAsIdentifierInfo();
2532  if (!II) {
2533    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2534      << Name.getAsString();
2535    return 0;
2536  }
2537
2538  DiagnoseFunctionSpecifiers(D);
2539
2540  if (!DC->isRecord() && S->getFnParent() == 0) {
2541    // C99 6.9p2: The storage-class specifiers auto and register shall not
2542    // appear in the declaration specifiers in an external declaration.
2543    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2544
2545      // If this is a register variable with an asm label specified, then this
2546      // is a GNU extension.
2547      if (SC == VarDecl::Register && D.getAsmLabel())
2548        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2549      else
2550        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2551      D.setInvalidType();
2552    }
2553  }
2554  if (DC->isRecord() && !CurContext->isRecord()) {
2555    // This is an out-of-line definition of a static data member.
2556    if (SC == VarDecl::Static) {
2557      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2558           diag::err_static_out_of_line)
2559        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2560    } else if (SC == VarDecl::None)
2561      SC = VarDecl::Static;
2562  }
2563  if (SC == VarDecl::Static) {
2564    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2565      if (RD->isLocalClass())
2566        Diag(D.getIdentifierLoc(),
2567             diag::err_static_data_member_not_allowed_in_local_class)
2568          << Name << RD->getDeclName();
2569    }
2570  }
2571
2572  // Match up the template parameter lists with the scope specifier, then
2573  // determine whether we have a template or a template specialization.
2574  bool isExplicitSpecialization = false;
2575  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2576  bool Invalid = false;
2577  if (TemplateParameterList *TemplateParams
2578        = MatchTemplateParametersToScopeSpecifier(
2579                                  D.getDeclSpec().getSourceRange().getBegin(),
2580                                                  D.getCXXScopeSpec(),
2581                        (TemplateParameterList**)TemplateParamLists.get(),
2582                                                   TemplateParamLists.size(),
2583                                                  /*never a friend*/ false,
2584                                                  isExplicitSpecialization,
2585                                                  Invalid)) {
2586    // All but one template parameter lists have been matching.
2587    --NumMatchedTemplateParamLists;
2588
2589    if (TemplateParams->size() > 0) {
2590      // There is no such thing as a variable template.
2591      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2592        << II
2593        << SourceRange(TemplateParams->getTemplateLoc(),
2594                       TemplateParams->getRAngleLoc());
2595      return 0;
2596    } else {
2597      // There is an extraneous 'template<>' for this variable. Complain
2598      // about it, but allow the declaration of the variable.
2599      Diag(TemplateParams->getTemplateLoc(),
2600           diag::err_template_variable_noparams)
2601        << II
2602        << SourceRange(TemplateParams->getTemplateLoc(),
2603                       TemplateParams->getRAngleLoc());
2604
2605      isExplicitSpecialization = true;
2606    }
2607  }
2608
2609  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2610                                   II, R, TInfo, SC, SCAsWritten);
2611
2612  if (D.isInvalidType() || Invalid)
2613    NewVD->setInvalidDecl();
2614
2615  SetNestedNameSpecifier(NewVD, D);
2616
2617  if (NumMatchedTemplateParamLists > 0) {
2618    NewVD->setTemplateParameterListsInfo(Context,
2619                                         NumMatchedTemplateParamLists,
2620                        (TemplateParameterList**)TemplateParamLists.release());
2621  }
2622
2623  if (D.getDeclSpec().isThreadSpecified()) {
2624    if (NewVD->hasLocalStorage())
2625      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2626    else if (!Context.Target.isTLSSupported())
2627      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2628    else
2629      NewVD->setThreadSpecified(true);
2630  }
2631
2632  // Set the lexical context. If the declarator has a C++ scope specifier, the
2633  // lexical context will be different from the semantic context.
2634  NewVD->setLexicalDeclContext(CurContext);
2635
2636  // Handle attributes prior to checking for duplicates in MergeVarDecl
2637  ProcessDeclAttributes(S, NewVD, D);
2638
2639  // Handle GNU asm-label extension (encoded as an attribute).
2640  if (Expr *E = (Expr*) D.getAsmLabel()) {
2641    // The parser guarantees this is a string.
2642    StringLiteral *SE = cast<StringLiteral>(E);
2643    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2644  }
2645
2646  // Diagnose shadowed variables before filtering for scope.
2647  if (!D.getCXXScopeSpec().isSet())
2648    CheckShadow(S, NewVD, Previous);
2649
2650  // Don't consider existing declarations that are in a different
2651  // scope and are out-of-semantic-context declarations (if the new
2652  // declaration has linkage).
2653  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2654
2655  // Merge the decl with the existing one if appropriate.
2656  if (!Previous.empty()) {
2657    if (Previous.isSingleResult() &&
2658        isa<FieldDecl>(Previous.getFoundDecl()) &&
2659        D.getCXXScopeSpec().isSet()) {
2660      // The user tried to define a non-static data member
2661      // out-of-line (C++ [dcl.meaning]p1).
2662      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2663        << D.getCXXScopeSpec().getRange();
2664      Previous.clear();
2665      NewVD->setInvalidDecl();
2666    }
2667  } else if (D.getCXXScopeSpec().isSet()) {
2668    // No previous declaration in the qualifying scope.
2669    Diag(D.getIdentifierLoc(), diag::err_no_member)
2670      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2671      << D.getCXXScopeSpec().getRange();
2672    NewVD->setInvalidDecl();
2673  }
2674
2675  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2676
2677  // This is an explicit specialization of a static data member. Check it.
2678  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2679      CheckMemberSpecialization(NewVD, Previous))
2680    NewVD->setInvalidDecl();
2681
2682  // attributes declared post-definition are currently ignored
2683  if (Previous.isSingleResult()) {
2684    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2685    if (Def && (Def = Def->getDefinition()) &&
2686        Def != NewVD && D.hasAttributes()) {
2687      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2688      Diag(Def->getLocation(), diag::note_previous_definition);
2689    }
2690  }
2691
2692  // If this is a locally-scoped extern C variable, update the map of
2693  // such variables.
2694  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2695      !NewVD->isInvalidDecl())
2696    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2697
2698  return NewVD;
2699}
2700
2701/// \brief Diagnose variable or built-in function shadowing.  Implements
2702/// -Wshadow.
2703///
2704/// This method is called whenever a VarDecl is added to a "useful"
2705/// scope.
2706///
2707/// \param S the scope in which the shadowing name is being declared
2708/// \param R the lookup of the name
2709///
2710void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2711  // Return if warning is ignored.
2712  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2713    return;
2714
2715  // Don't diagnose declarations at file scope.  The scope might not
2716  // have a DeclContext if (e.g.) we're parsing a function prototype.
2717  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2718  if (NewDC && NewDC->isFileContext())
2719    return;
2720
2721  // Only diagnose if we're shadowing an unambiguous field or variable.
2722  if (R.getResultKind() != LookupResult::Found)
2723    return;
2724
2725  NamedDecl* ShadowedDecl = R.getFoundDecl();
2726  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2727    return;
2728
2729  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2730
2731  // Only warn about certain kinds of shadowing for class members.
2732  if (NewDC && NewDC->isRecord()) {
2733    // In particular, don't warn about shadowing non-class members.
2734    if (!OldDC->isRecord())
2735      return;
2736
2737    // TODO: should we warn about static data members shadowing
2738    // static data members from base classes?
2739
2740    // TODO: don't diagnose for inaccessible shadowed members.
2741    // This is hard to do perfectly because we might friend the
2742    // shadowing context, but that's just a false negative.
2743  }
2744
2745  // Determine what kind of declaration we're shadowing.
2746  unsigned Kind;
2747  if (isa<RecordDecl>(OldDC)) {
2748    if (isa<FieldDecl>(ShadowedDecl))
2749      Kind = 3; // field
2750    else
2751      Kind = 2; // static data member
2752  } else if (OldDC->isFileContext())
2753    Kind = 1; // global
2754  else
2755    Kind = 0; // local
2756
2757  DeclarationName Name = R.getLookupName();
2758
2759  // Emit warning and note.
2760  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2761  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2762}
2763
2764/// \brief Check -Wshadow without the advantage of a previous lookup.
2765void Sema::CheckShadow(Scope *S, VarDecl *D) {
2766  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2767                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2768  LookupName(R, S);
2769  CheckShadow(S, D, R);
2770}
2771
2772/// \brief Perform semantic checking on a newly-created variable
2773/// declaration.
2774///
2775/// This routine performs all of the type-checking required for a
2776/// variable declaration once it has been built. It is used both to
2777/// check variables after they have been parsed and their declarators
2778/// have been translated into a declaration, and to check variables
2779/// that have been instantiated from a template.
2780///
2781/// Sets NewVD->isInvalidDecl() if an error was encountered.
2782void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2783                                    LookupResult &Previous,
2784                                    bool &Redeclaration) {
2785  // If the decl is already known invalid, don't check it.
2786  if (NewVD->isInvalidDecl())
2787    return;
2788
2789  QualType T = NewVD->getType();
2790
2791  if (T->isObjCObjectType()) {
2792    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2793    return NewVD->setInvalidDecl();
2794  }
2795
2796  // Emit an error if an address space was applied to decl with local storage.
2797  // This includes arrays of objects with address space qualifiers, but not
2798  // automatic variables that point to other address spaces.
2799  // ISO/IEC TR 18037 S5.1.2
2800  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2801    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2802    return NewVD->setInvalidDecl();
2803  }
2804
2805  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2806      && !NewVD->hasAttr<BlocksAttr>())
2807    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2808
2809  bool isVM = T->isVariablyModifiedType();
2810  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2811      NewVD->hasAttr<BlocksAttr>() ||
2812      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2813      // However, this turns on the scope checker for everything with a variable
2814      // which may impact compile time.  See if we can find a better solution
2815      // to this, perhaps only checking functions that contain gotos in C++?
2816      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2817    FunctionNeedsScopeChecking() = true;
2818
2819  if ((isVM && NewVD->hasLinkage()) ||
2820      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2821    bool SizeIsNegative;
2822    QualType FixedTy =
2823        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2824
2825    if (FixedTy.isNull() && T->isVariableArrayType()) {
2826      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2827      // FIXME: This won't give the correct result for
2828      // int a[10][n];
2829      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2830
2831      if (NewVD->isFileVarDecl())
2832        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2833        << SizeRange;
2834      else if (NewVD->getStorageClass() == VarDecl::Static)
2835        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2836        << SizeRange;
2837      else
2838        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2839        << SizeRange;
2840      return NewVD->setInvalidDecl();
2841    }
2842
2843    if (FixedTy.isNull()) {
2844      if (NewVD->isFileVarDecl())
2845        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2846      else
2847        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2848      return NewVD->setInvalidDecl();
2849    }
2850
2851    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2852    NewVD->setType(FixedTy);
2853  }
2854
2855  if (Previous.empty() && NewVD->isExternC()) {
2856    // Since we did not find anything by this name and we're declaring
2857    // an extern "C" variable, look for a non-visible extern "C"
2858    // declaration with the same name.
2859    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2860      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2861    if (Pos != LocallyScopedExternalDecls.end())
2862      Previous.addDecl(Pos->second);
2863  }
2864
2865  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2866    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2867      << T;
2868    return NewVD->setInvalidDecl();
2869  }
2870
2871  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2872    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2873    return NewVD->setInvalidDecl();
2874  }
2875
2876  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2877    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2878    return NewVD->setInvalidDecl();
2879  }
2880
2881  // Function pointers and references cannot have qualified function type, only
2882  // function pointer-to-members can do that.
2883  QualType Pointee;
2884  unsigned PtrOrRef = 0;
2885  if (const PointerType *Ptr = T->getAs<PointerType>())
2886    Pointee = Ptr->getPointeeType();
2887  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
2888    Pointee = Ref->getPointeeType();
2889    PtrOrRef = 1;
2890  }
2891  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
2892      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
2893    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
2894        << PtrOrRef;
2895    return NewVD->setInvalidDecl();
2896  }
2897
2898  if (!Previous.empty()) {
2899    Redeclaration = true;
2900    MergeVarDecl(NewVD, Previous);
2901  }
2902}
2903
2904/// \brief Data used with FindOverriddenMethod
2905struct FindOverriddenMethodData {
2906  Sema *S;
2907  CXXMethodDecl *Method;
2908};
2909
2910/// \brief Member lookup function that determines whether a given C++
2911/// method overrides a method in a base class, to be used with
2912/// CXXRecordDecl::lookupInBases().
2913static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2914                                 CXXBasePath &Path,
2915                                 void *UserData) {
2916  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2917
2918  FindOverriddenMethodData *Data
2919    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2920
2921  DeclarationName Name = Data->Method->getDeclName();
2922
2923  // FIXME: Do we care about other names here too?
2924  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2925    // We really want to find the base class destructor here.
2926    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2927    CanQualType CT = Data->S->Context.getCanonicalType(T);
2928
2929    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2930  }
2931
2932  for (Path.Decls = BaseRecord->lookup(Name);
2933       Path.Decls.first != Path.Decls.second;
2934       ++Path.Decls.first) {
2935    NamedDecl *D = *Path.Decls.first;
2936    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2937      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2938        return true;
2939    }
2940  }
2941
2942  return false;
2943}
2944
2945/// AddOverriddenMethods - See if a method overrides any in the base classes,
2946/// and if so, check that it's a valid override and remember it.
2947void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2948  // Look for virtual methods in base classes that this method might override.
2949  CXXBasePaths Paths;
2950  FindOverriddenMethodData Data;
2951  Data.Method = MD;
2952  Data.S = this;
2953  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2954    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2955         E = Paths.found_decls_end(); I != E; ++I) {
2956      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2957        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2958            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2959            !CheckOverridingFunctionAttributes(MD, OldMD))
2960          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2961      }
2962    }
2963  }
2964}
2965
2966NamedDecl*
2967Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2968                              QualType R, TypeSourceInfo *TInfo,
2969                              LookupResult &Previous,
2970                              MultiTemplateParamsArg TemplateParamLists,
2971                              bool IsFunctionDefinition, bool &Redeclaration) {
2972  assert(R.getTypePtr()->isFunctionType());
2973
2974  DeclarationName Name = GetNameForDeclarator(D);
2975  FunctionDecl::StorageClass SC = FunctionDecl::None;
2976  switch (D.getDeclSpec().getStorageClassSpec()) {
2977  default: assert(0 && "Unknown storage class!");
2978  case DeclSpec::SCS_auto:
2979  case DeclSpec::SCS_register:
2980  case DeclSpec::SCS_mutable:
2981    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2982         diag::err_typecheck_sclass_func);
2983    D.setInvalidType();
2984    break;
2985  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2986  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2987  case DeclSpec::SCS_static: {
2988    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2989      // C99 6.7.1p5:
2990      //   The declaration of an identifier for a function that has
2991      //   block scope shall have no explicit storage-class specifier
2992      //   other than extern
2993      // See also (C++ [dcl.stc]p4).
2994      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2995           diag::err_static_block_func);
2996      SC = FunctionDecl::None;
2997    } else
2998      SC = FunctionDecl::Static;
2999    break;
3000  }
3001  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3002  }
3003
3004  if (D.getDeclSpec().isThreadSpecified())
3005    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3006
3007  bool isFriend = D.getDeclSpec().isFriendSpecified();
3008  bool isInline = D.getDeclSpec().isInlineSpecified();
3009  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3010  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3011
3012  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3013  FunctionDecl::StorageClass SCAsWritten
3014    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
3015
3016  // Check that the return type is not an abstract class type.
3017  // For record types, this is done by the AbstractClassUsageDiagnoser once
3018  // the class has been completely parsed.
3019  if (!DC->isRecord() &&
3020      RequireNonAbstractType(D.getIdentifierLoc(),
3021                             R->getAs<FunctionType>()->getResultType(),
3022                             diag::err_abstract_type_in_decl,
3023                             AbstractReturnType))
3024    D.setInvalidType();
3025
3026  // Do not allow returning a objc interface by-value.
3027  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3028    Diag(D.getIdentifierLoc(),
3029         diag::err_object_cannot_be_passed_returned_by_value) << 0
3030      << R->getAs<FunctionType>()->getResultType();
3031    D.setInvalidType();
3032  }
3033
3034  bool isVirtualOkay = false;
3035  FunctionDecl *NewFD;
3036
3037  if (isFriend) {
3038    // C++ [class.friend]p5
3039    //   A function can be defined in a friend declaration of a
3040    //   class . . . . Such a function is implicitly inline.
3041    isInline |= IsFunctionDefinition;
3042  }
3043
3044  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3045    // This is a C++ constructor declaration.
3046    assert(DC->isRecord() &&
3047           "Constructors can only be declared in a member context");
3048
3049    R = CheckConstructorDeclarator(D, R, SC);
3050
3051    // Create the new declaration
3052    NewFD = CXXConstructorDecl::Create(Context,
3053                                       cast<CXXRecordDecl>(DC),
3054                                       D.getIdentifierLoc(), Name, R, TInfo,
3055                                       isExplicit, isInline,
3056                                       /*isImplicitlyDeclared=*/false);
3057  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3058    // This is a C++ destructor declaration.
3059    if (DC->isRecord()) {
3060      R = CheckDestructorDeclarator(D, R, SC);
3061
3062      NewFD = CXXDestructorDecl::Create(Context,
3063                                        cast<CXXRecordDecl>(DC),
3064                                        D.getIdentifierLoc(), Name, R,
3065                                        isInline,
3066                                        /*isImplicitlyDeclared=*/false);
3067      NewFD->setTypeSourceInfo(TInfo);
3068
3069      isVirtualOkay = true;
3070    } else {
3071      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3072
3073      // Create a FunctionDecl to satisfy the function definition parsing
3074      // code path.
3075      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3076                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3077                                   /*hasPrototype=*/true);
3078      D.setInvalidType();
3079    }
3080  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3081    if (!DC->isRecord()) {
3082      Diag(D.getIdentifierLoc(),
3083           diag::err_conv_function_not_member);
3084      return 0;
3085    }
3086
3087    CheckConversionDeclarator(D, R, SC);
3088    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3089                                      D.getIdentifierLoc(), Name, R, TInfo,
3090                                      isInline, isExplicit);
3091
3092    isVirtualOkay = true;
3093  } else if (DC->isRecord()) {
3094    // If the of the function is the same as the name of the record, then this
3095    // must be an invalid constructor that has a return type.
3096    // (The parser checks for a return type and makes the declarator a
3097    // constructor if it has no return type).
3098    // must have an invalid constructor that has a return type
3099    if (Name.getAsIdentifierInfo() &&
3100        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3101      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3102        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3103        << SourceRange(D.getIdentifierLoc());
3104      return 0;
3105    }
3106
3107    bool isStatic = SC == FunctionDecl::Static;
3108
3109    // [class.free]p1:
3110    // Any allocation function for a class T is a static member
3111    // (even if not explicitly declared static).
3112    if (Name.getCXXOverloadedOperator() == OO_New ||
3113        Name.getCXXOverloadedOperator() == OO_Array_New)
3114      isStatic = true;
3115
3116    // [class.free]p6 Any deallocation function for a class X is a static member
3117    // (even if not explicitly declared static).
3118    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3119        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3120      isStatic = true;
3121
3122    // This is a C++ method declaration.
3123    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3124                                  D.getIdentifierLoc(), Name, R, TInfo,
3125                                  isStatic, SCAsWritten, isInline);
3126
3127    isVirtualOkay = !isStatic;
3128  } else {
3129    // Determine whether the function was written with a
3130    // prototype. This true when:
3131    //   - we're in C++ (where every function has a prototype),
3132    //   - there is a prototype in the declarator, or
3133    //   - the type R of the function is some kind of typedef or other reference
3134    //     to a type name (which eventually refers to a function type).
3135    bool HasPrototype =
3136       getLangOptions().CPlusPlus ||
3137       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3138       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3139
3140    NewFD = FunctionDecl::Create(Context, DC,
3141                                 D.getIdentifierLoc(),
3142                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3143                                 HasPrototype);
3144  }
3145
3146  if (D.isInvalidType())
3147    NewFD->setInvalidDecl();
3148
3149  SetNestedNameSpecifier(NewFD, D);
3150
3151  // Set the lexical context. If the declarator has a C++
3152  // scope specifier, or is the object of a friend declaration, the
3153  // lexical context will be different from the semantic context.
3154  NewFD->setLexicalDeclContext(CurContext);
3155
3156  // Match up the template parameter lists with the scope specifier, then
3157  // determine whether we have a template or a template specialization.
3158  FunctionTemplateDecl *FunctionTemplate = 0;
3159  bool isExplicitSpecialization = false;
3160  bool isFunctionTemplateSpecialization = false;
3161  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3162  bool Invalid = false;
3163  if (TemplateParameterList *TemplateParams
3164        = MatchTemplateParametersToScopeSpecifier(
3165                                  D.getDeclSpec().getSourceRange().getBegin(),
3166                                  D.getCXXScopeSpec(),
3167                           (TemplateParameterList**)TemplateParamLists.get(),
3168                                                  TemplateParamLists.size(),
3169                                                  isFriend,
3170                                                  isExplicitSpecialization,
3171                                                  Invalid)) {
3172    // All but one template parameter lists have been matching.
3173    --NumMatchedTemplateParamLists;
3174
3175    if (TemplateParams->size() > 0) {
3176      // This is a function template
3177
3178      // Check that we can declare a template here.
3179      if (CheckTemplateDeclScope(S, TemplateParams))
3180        return 0;
3181
3182      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3183                                                      NewFD->getLocation(),
3184                                                      Name, TemplateParams,
3185                                                      NewFD);
3186      FunctionTemplate->setLexicalDeclContext(CurContext);
3187      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3188    } else {
3189      // This is a function template specialization.
3190      isFunctionTemplateSpecialization = true;
3191
3192      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3193      if (isFriend && isFunctionTemplateSpecialization) {
3194        // We want to remove the "template<>", found here.
3195        SourceRange RemoveRange = TemplateParams->getSourceRange();
3196
3197        // If we remove the template<> and the name is not a
3198        // template-id, we're actually silently creating a problem:
3199        // the friend declaration will refer to an untemplated decl,
3200        // and clearly the user wants a template specialization.  So
3201        // we need to insert '<>' after the name.
3202        SourceLocation InsertLoc;
3203        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3204          InsertLoc = D.getName().getSourceRange().getEnd();
3205          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3206        }
3207
3208        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3209          << Name << RemoveRange
3210          << FixItHint::CreateRemoval(RemoveRange)
3211          << FixItHint::CreateInsertion(InsertLoc, "<>");
3212      }
3213    }
3214  }
3215
3216  if (NumMatchedTemplateParamLists > 0) {
3217    NewFD->setTemplateParameterListsInfo(Context,
3218                                         NumMatchedTemplateParamLists,
3219                        (TemplateParameterList**)TemplateParamLists.release());
3220  }
3221
3222  if (Invalid) {
3223    NewFD->setInvalidDecl();
3224    if (FunctionTemplate)
3225      FunctionTemplate->setInvalidDecl();
3226  }
3227
3228  // C++ [dcl.fct.spec]p5:
3229  //   The virtual specifier shall only be used in declarations of
3230  //   nonstatic class member functions that appear within a
3231  //   member-specification of a class declaration; see 10.3.
3232  //
3233  if (isVirtual && !NewFD->isInvalidDecl()) {
3234    if (!isVirtualOkay) {
3235       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3236           diag::err_virtual_non_function);
3237    } else if (!CurContext->isRecord()) {
3238      // 'virtual' was specified outside of the class.
3239      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3240        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3241    } else {
3242      // Okay: Add virtual to the method.
3243      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3244      CurClass->setMethodAsVirtual(NewFD);
3245    }
3246  }
3247
3248  // C++ [dcl.fct.spec]p6:
3249  //  The explicit specifier shall be used only in the declaration of a
3250  //  constructor or conversion function within its class definition; see 12.3.1
3251  //  and 12.3.2.
3252  if (isExplicit && !NewFD->isInvalidDecl()) {
3253    if (!CurContext->isRecord()) {
3254      // 'explicit' was specified outside of the class.
3255      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3256           diag::err_explicit_out_of_class)
3257        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3258    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3259               !isa<CXXConversionDecl>(NewFD)) {
3260      // 'explicit' was specified on a function that wasn't a constructor
3261      // or conversion function.
3262      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3263           diag::err_explicit_non_ctor_or_conv_function)
3264        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3265    }
3266  }
3267
3268  // Filter out previous declarations that don't match the scope.
3269  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3270
3271  if (isFriend) {
3272    // DC is the namespace in which the function is being declared.
3273    assert((DC->isFileContext() || !Previous.empty()) &&
3274           "previously-undeclared friend function being created "
3275           "in a non-namespace context");
3276
3277    // For now, claim that the objects have no previous declaration.
3278    if (FunctionTemplate) {
3279      FunctionTemplate->setObjectOfFriendDecl(false);
3280      FunctionTemplate->setAccess(AS_public);
3281    }
3282    NewFD->setObjectOfFriendDecl(false);
3283    NewFD->setAccess(AS_public);
3284  }
3285
3286  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3287      !CurContext->isRecord()) {
3288    // C++ [class.static]p1:
3289    //   A data or function member of a class may be declared static
3290    //   in a class definition, in which case it is a static member of
3291    //   the class.
3292
3293    // Complain about the 'static' specifier if it's on an out-of-line
3294    // member function definition.
3295    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3296         diag::err_static_out_of_line)
3297      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3298  }
3299
3300  // Handle GNU asm-label extension (encoded as an attribute).
3301  if (Expr *E = (Expr*) D.getAsmLabel()) {
3302    // The parser guarantees this is a string.
3303    StringLiteral *SE = cast<StringLiteral>(E);
3304    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3305  }
3306
3307  // Copy the parameter declarations from the declarator D to the function
3308  // declaration NewFD, if they are available.  First scavenge them into Params.
3309  llvm::SmallVector<ParmVarDecl*, 16> Params;
3310  if (D.getNumTypeObjects() > 0) {
3311    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3312
3313    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3314    // function that takes no arguments, not a function that takes a
3315    // single void argument.
3316    // We let through "const void" here because Sema::GetTypeForDeclarator
3317    // already checks for that case.
3318    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3319        FTI.ArgInfo[0].Param &&
3320        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3321      // Empty arg list, don't push any params.
3322      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3323
3324      // In C++, the empty parameter-type-list must be spelled "void"; a
3325      // typedef of void is not permitted.
3326      if (getLangOptions().CPlusPlus &&
3327          Param->getType().getUnqualifiedType() != Context.VoidTy)
3328        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3329      // FIXME: Leaks decl?
3330    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3331      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3332        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3333        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3334        Param->setDeclContext(NewFD);
3335        Params.push_back(Param);
3336
3337        if (Param->isInvalidDecl())
3338          NewFD->setInvalidDecl();
3339      }
3340    }
3341
3342  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3343    // When we're declaring a function with a typedef, typeof, etc as in the
3344    // following example, we'll need to synthesize (unnamed)
3345    // parameters for use in the declaration.
3346    //
3347    // @code
3348    // typedef void fn(int);
3349    // fn f;
3350    // @endcode
3351
3352    // Synthesize a parameter for each argument type.
3353    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3354         AE = FT->arg_type_end(); AI != AE; ++AI) {
3355      ParmVarDecl *Param =
3356        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3357      Params.push_back(Param);
3358    }
3359  } else {
3360    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3361           "Should not need args for typedef of non-prototype fn");
3362  }
3363  // Finally, we know we have the right number of parameters, install them.
3364  NewFD->setParams(Params.data(), Params.size());
3365
3366  // If the declarator is a template-id, translate the parser's template
3367  // argument list into our AST format.
3368  bool HasExplicitTemplateArgs = false;
3369  TemplateArgumentListInfo TemplateArgs;
3370  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3371    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3372    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3373    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3374    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3375                                       TemplateId->getTemplateArgs(),
3376                                       TemplateId->NumArgs);
3377    translateTemplateArguments(TemplateArgsPtr,
3378                               TemplateArgs);
3379    TemplateArgsPtr.release();
3380
3381    HasExplicitTemplateArgs = true;
3382
3383    if (FunctionTemplate) {
3384      // FIXME: Diagnose function template with explicit template
3385      // arguments.
3386      HasExplicitTemplateArgs = false;
3387    } else if (!isFunctionTemplateSpecialization &&
3388               !D.getDeclSpec().isFriendSpecified()) {
3389      // We have encountered something that the user meant to be a
3390      // specialization (because it has explicitly-specified template
3391      // arguments) but that was not introduced with a "template<>" (or had
3392      // too few of them).
3393      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3394        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3395        << FixItHint::CreateInsertion(
3396                                   D.getDeclSpec().getSourceRange().getBegin(),
3397                                                 "template<> ");
3398      isFunctionTemplateSpecialization = true;
3399    } else {
3400      // "friend void foo<>(int);" is an implicit specialization decl.
3401      isFunctionTemplateSpecialization = true;
3402    }
3403  } else if (isFriend && isFunctionTemplateSpecialization) {
3404    // This combination is only possible in a recovery case;  the user
3405    // wrote something like:
3406    //   template <> friend void foo(int);
3407    // which we're recovering from as if the user had written:
3408    //   friend void foo<>(int);
3409    // Go ahead and fake up a template id.
3410    HasExplicitTemplateArgs = true;
3411    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3412    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3413  }
3414
3415  // If it's a friend (and only if it's a friend), it's possible
3416  // that either the specialized function type or the specialized
3417  // template is dependent, and therefore matching will fail.  In
3418  // this case, don't check the specialization yet.
3419  if (isFunctionTemplateSpecialization && isFriend &&
3420      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3421    assert(HasExplicitTemplateArgs &&
3422           "friend function specialization without template args");
3423    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3424                                                     Previous))
3425      NewFD->setInvalidDecl();
3426  } else if (isFunctionTemplateSpecialization) {
3427    if (CheckFunctionTemplateSpecialization(NewFD,
3428                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3429                                            Previous))
3430      NewFD->setInvalidDecl();
3431  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3432    if (CheckMemberSpecialization(NewFD, Previous))
3433      NewFD->setInvalidDecl();
3434  }
3435
3436  // Perform semantic checking on the function declaration.
3437  bool OverloadableAttrRequired = false; // FIXME: HACK!
3438  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3439                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3440
3441  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3442          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3443         "previous declaration set still overloaded");
3444
3445  NamedDecl *PrincipalDecl = (FunctionTemplate
3446                              ? cast<NamedDecl>(FunctionTemplate)
3447                              : NewFD);
3448
3449  if (isFriend && Redeclaration) {
3450    AccessSpecifier Access = AS_public;
3451    if (!NewFD->isInvalidDecl())
3452      Access = NewFD->getPreviousDeclaration()->getAccess();
3453
3454    NewFD->setAccess(Access);
3455    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3456
3457    PrincipalDecl->setObjectOfFriendDecl(true);
3458  }
3459
3460  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3461      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3462    PrincipalDecl->setNonMemberOperator();
3463
3464  // If we have a function template, check the template parameter
3465  // list. This will check and merge default template arguments.
3466  if (FunctionTemplate) {
3467    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3468    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3469                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3470             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3471                                                : TPC_FunctionTemplate);
3472  }
3473
3474  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3475    // Fake up an access specifier if it's supposed to be a class member.
3476    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3477      NewFD->setAccess(AS_public);
3478
3479    // An out-of-line member function declaration must also be a
3480    // definition (C++ [dcl.meaning]p1).
3481    // Note that this is not the case for explicit specializations of
3482    // function templates or member functions of class templates, per
3483    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3484    // for compatibility with old SWIG code which likes to generate them.
3485    if (!IsFunctionDefinition && !isFriend &&
3486        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3487      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3488        << D.getCXXScopeSpec().getRange();
3489    }
3490    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3491      // The user tried to provide an out-of-line definition for a
3492      // function that is a member of a class or namespace, but there
3493      // was no such member function declared (C++ [class.mfct]p2,
3494      // C++ [namespace.memdef]p2). For example:
3495      //
3496      // class X {
3497      //   void f() const;
3498      // };
3499      //
3500      // void X::f() { } // ill-formed
3501      //
3502      // Complain about this problem, and attempt to suggest close
3503      // matches (e.g., those that differ only in cv-qualifiers and
3504      // whether the parameter types are references).
3505      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3506        << Name << DC << D.getCXXScopeSpec().getRange();
3507      NewFD->setInvalidDecl();
3508
3509      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3510                        ForRedeclaration);
3511      LookupQualifiedName(Prev, DC);
3512      assert(!Prev.isAmbiguous() &&
3513             "Cannot have an ambiguity in previous-declaration lookup");
3514      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3515           Func != FuncEnd; ++Func) {
3516        if (isa<FunctionDecl>(*Func) &&
3517            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3518          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3519      }
3520    }
3521  }
3522
3523  // Handle attributes. We need to have merged decls when handling attributes
3524  // (for example to check for conflicts, etc).
3525  // FIXME: This needs to happen before we merge declarations. Then,
3526  // let attribute merging cope with attribute conflicts.
3527  ProcessDeclAttributes(S, NewFD, D);
3528
3529  // attributes declared post-definition are currently ignored
3530  if (Redeclaration && Previous.isSingleResult()) {
3531    const FunctionDecl *Def;
3532    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3533    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3534      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3535      Diag(Def->getLocation(), diag::note_previous_definition);
3536    }
3537  }
3538
3539  AddKnownFunctionAttributes(NewFD);
3540
3541  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3542    // If a function name is overloadable in C, then every function
3543    // with that name must be marked "overloadable".
3544    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3545      << Redeclaration << NewFD;
3546    if (!Previous.empty())
3547      Diag(Previous.getRepresentativeDecl()->getLocation(),
3548           diag::note_attribute_overloadable_prev_overload);
3549    NewFD->addAttr(::new (Context) OverloadableAttr());
3550  }
3551
3552  // If this is a locally-scoped extern C function, update the
3553  // map of such names.
3554  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3555      && !NewFD->isInvalidDecl())
3556    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3557
3558  // Set this FunctionDecl's range up to the right paren.
3559  NewFD->setLocEnd(D.getSourceRange().getEnd());
3560
3561  if (FunctionTemplate && NewFD->isInvalidDecl())
3562    FunctionTemplate->setInvalidDecl();
3563
3564  if (FunctionTemplate)
3565    return FunctionTemplate;
3566
3567
3568  // Keep track of static, non-inlined function definitions that
3569  // have not been used. We will warn later.
3570  // FIXME: Also include static functions declared but not defined.
3571  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3572      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3573      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3574      && !NewFD->hasAttr<ConstructorAttr>()
3575      && !NewFD->hasAttr<DestructorAttr>())
3576    UnusedStaticFuncs.push_back(NewFD);
3577
3578  return NewFD;
3579}
3580
3581/// \brief Perform semantic checking of a new function declaration.
3582///
3583/// Performs semantic analysis of the new function declaration
3584/// NewFD. This routine performs all semantic checking that does not
3585/// require the actual declarator involved in the declaration, and is
3586/// used both for the declaration of functions as they are parsed
3587/// (called via ActOnDeclarator) and for the declaration of functions
3588/// that have been instantiated via C++ template instantiation (called
3589/// via InstantiateDecl).
3590///
3591/// \param IsExplicitSpecialiation whether this new function declaration is
3592/// an explicit specialization of the previous declaration.
3593///
3594/// This sets NewFD->isInvalidDecl() to true if there was an error.
3595void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3596                                    LookupResult &Previous,
3597                                    bool IsExplicitSpecialization,
3598                                    bool &Redeclaration,
3599                                    bool &OverloadableAttrRequired) {
3600  // If NewFD is already known erroneous, don't do any of this checking.
3601  if (NewFD->isInvalidDecl())
3602    return;
3603
3604  if (NewFD->getResultType()->isVariablyModifiedType()) {
3605    // Functions returning a variably modified type violate C99 6.7.5.2p2
3606    // because all functions have linkage.
3607    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3608    return NewFD->setInvalidDecl();
3609  }
3610
3611  if (NewFD->isMain())
3612    CheckMain(NewFD);
3613
3614  // Check for a previous declaration of this name.
3615  if (Previous.empty() && NewFD->isExternC()) {
3616    // Since we did not find anything by this name and we're declaring
3617    // an extern "C" function, look for a non-visible extern "C"
3618    // declaration with the same name.
3619    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3620      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3621    if (Pos != LocallyScopedExternalDecls.end())
3622      Previous.addDecl(Pos->second);
3623  }
3624
3625  // Merge or overload the declaration with an existing declaration of
3626  // the same name, if appropriate.
3627  if (!Previous.empty()) {
3628    // Determine whether NewFD is an overload of PrevDecl or
3629    // a declaration that requires merging. If it's an overload,
3630    // there's no more work to do here; we'll just add the new
3631    // function to the scope.
3632
3633    NamedDecl *OldDecl = 0;
3634    if (!AllowOverloadingOfFunction(Previous, Context)) {
3635      Redeclaration = true;
3636      OldDecl = Previous.getFoundDecl();
3637    } else {
3638      if (!getLangOptions().CPlusPlus) {
3639        OverloadableAttrRequired = true;
3640
3641        // Functions marked "overloadable" must have a prototype (that
3642        // we can't get through declaration merging).
3643        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3644          Diag(NewFD->getLocation(),
3645               diag::err_attribute_overloadable_no_prototype)
3646            << NewFD;
3647          Redeclaration = true;
3648
3649          // Turn this into a variadic function with no parameters.
3650          QualType R = Context.getFunctionType(
3651                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3652                     0, 0, true, 0, false, false, 0, 0,
3653                     FunctionType::ExtInfo());
3654          NewFD->setType(R);
3655          return NewFD->setInvalidDecl();
3656        }
3657      }
3658
3659      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3660                            /*NewIsUsingDecl*/ false)) {
3661      case Ovl_Match:
3662        Redeclaration = true;
3663        break;
3664
3665      case Ovl_NonFunction:
3666        Redeclaration = true;
3667        break;
3668
3669      case Ovl_Overload:
3670        Redeclaration = false;
3671        break;
3672      }
3673    }
3674
3675    if (Redeclaration) {
3676      // NewFD and OldDecl represent declarations that need to be
3677      // merged.
3678      if (MergeFunctionDecl(NewFD, OldDecl))
3679        return NewFD->setInvalidDecl();
3680
3681      Previous.clear();
3682      Previous.addDecl(OldDecl);
3683
3684      if (FunctionTemplateDecl *OldTemplateDecl
3685                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3686        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3687        FunctionTemplateDecl *NewTemplateDecl
3688          = NewFD->getDescribedFunctionTemplate();
3689        assert(NewTemplateDecl && "Template/non-template mismatch");
3690        if (CXXMethodDecl *Method
3691              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3692          Method->setAccess(OldTemplateDecl->getAccess());
3693          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3694        }
3695
3696        // If this is an explicit specialization of a member that is a function
3697        // template, mark it as a member specialization.
3698        if (IsExplicitSpecialization &&
3699            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3700          NewTemplateDecl->setMemberSpecialization();
3701          assert(OldTemplateDecl->isMemberSpecialization());
3702        }
3703      } else {
3704        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3705          NewFD->setAccess(OldDecl->getAccess());
3706        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3707      }
3708    }
3709  }
3710
3711  // Semantic checking for this function declaration (in isolation).
3712  if (getLangOptions().CPlusPlus) {
3713    // C++-specific checks.
3714    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3715      CheckConstructor(Constructor);
3716    } else if (CXXDestructorDecl *Destructor =
3717                dyn_cast<CXXDestructorDecl>(NewFD)) {
3718      CXXRecordDecl *Record = Destructor->getParent();
3719      QualType ClassType = Context.getTypeDeclType(Record);
3720
3721      // FIXME: Shouldn't we be able to perform this check even when the class
3722      // type is dependent? Both gcc and edg can handle that.
3723      if (!ClassType->isDependentType()) {
3724        DeclarationName Name
3725          = Context.DeclarationNames.getCXXDestructorName(
3726                                        Context.getCanonicalType(ClassType));
3727        if (NewFD->getDeclName() != Name) {
3728          Diag(NewFD->getLocation(), diag::err_destructor_name);
3729          return NewFD->setInvalidDecl();
3730        }
3731      }
3732
3733      Record->setUserDeclaredDestructor(true);
3734      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3735      // user-defined destructor.
3736      Record->setPOD(false);
3737
3738      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3739      // declared destructor.
3740      // FIXME: C++0x: don't do this for "= default" destructors
3741      Record->setHasTrivialDestructor(false);
3742    } else if (CXXConversionDecl *Conversion
3743               = dyn_cast<CXXConversionDecl>(NewFD)) {
3744      ActOnConversionDeclarator(Conversion);
3745    }
3746
3747    // Find any virtual functions that this function overrides.
3748    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3749      if (!Method->isFunctionTemplateSpecialization() &&
3750          !Method->getDescribedFunctionTemplate())
3751        AddOverriddenMethods(Method->getParent(), Method);
3752    }
3753
3754    // Additional checks for the destructor; make sure we do this after we
3755    // figure out whether the destructor is virtual.
3756    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3757      if (!Destructor->getParent()->isDependentType())
3758        CheckDestructor(Destructor);
3759
3760    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3761    if (NewFD->isOverloadedOperator() &&
3762        CheckOverloadedOperatorDeclaration(NewFD))
3763      return NewFD->setInvalidDecl();
3764
3765    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3766    if (NewFD->getLiteralIdentifier() &&
3767        CheckLiteralOperatorDeclaration(NewFD))
3768      return NewFD->setInvalidDecl();
3769
3770    // In C++, check default arguments now that we have merged decls. Unless
3771    // the lexical context is the class, because in this case this is done
3772    // during delayed parsing anyway.
3773    if (!CurContext->isRecord())
3774      CheckCXXDefaultArguments(NewFD);
3775  }
3776}
3777
3778void Sema::CheckMain(FunctionDecl* FD) {
3779  // C++ [basic.start.main]p3:  A program that declares main to be inline
3780  //   or static is ill-formed.
3781  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3782  //   shall not appear in a declaration of main.
3783  // static main is not an error under C99, but we should warn about it.
3784  bool isInline = FD->isInlineSpecified();
3785  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3786  if (isInline || isStatic) {
3787    unsigned diagID = diag::warn_unusual_main_decl;
3788    if (isInline || getLangOptions().CPlusPlus)
3789      diagID = diag::err_unusual_main_decl;
3790
3791    int which = isStatic + (isInline << 1) - 1;
3792    Diag(FD->getLocation(), diagID) << which;
3793  }
3794
3795  QualType T = FD->getType();
3796  assert(T->isFunctionType() && "function decl is not of function type");
3797  const FunctionType* FT = T->getAs<FunctionType>();
3798
3799  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3800    // TODO: add a replacement fixit to turn the return type into 'int'.
3801    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3802    FD->setInvalidDecl(true);
3803  }
3804
3805  // Treat protoless main() as nullary.
3806  if (isa<FunctionNoProtoType>(FT)) return;
3807
3808  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3809  unsigned nparams = FTP->getNumArgs();
3810  assert(FD->getNumParams() == nparams);
3811
3812  bool HasExtraParameters = (nparams > 3);
3813
3814  // Darwin passes an undocumented fourth argument of type char**.  If
3815  // other platforms start sprouting these, the logic below will start
3816  // getting shifty.
3817  if (nparams == 4 &&
3818      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3819    HasExtraParameters = false;
3820
3821  if (HasExtraParameters) {
3822    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3823    FD->setInvalidDecl(true);
3824    nparams = 3;
3825  }
3826
3827  // FIXME: a lot of the following diagnostics would be improved
3828  // if we had some location information about types.
3829
3830  QualType CharPP =
3831    Context.getPointerType(Context.getPointerType(Context.CharTy));
3832  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3833
3834  for (unsigned i = 0; i < nparams; ++i) {
3835    QualType AT = FTP->getArgType(i);
3836
3837    bool mismatch = true;
3838
3839    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3840      mismatch = false;
3841    else if (Expected[i] == CharPP) {
3842      // As an extension, the following forms are okay:
3843      //   char const **
3844      //   char const * const *
3845      //   char * const *
3846
3847      QualifierCollector qs;
3848      const PointerType* PT;
3849      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3850          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3851          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3852        qs.removeConst();
3853        mismatch = !qs.empty();
3854      }
3855    }
3856
3857    if (mismatch) {
3858      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3859      // TODO: suggest replacing given type with expected type
3860      FD->setInvalidDecl(true);
3861    }
3862  }
3863
3864  if (nparams == 1 && !FD->isInvalidDecl()) {
3865    Diag(FD->getLocation(), diag::warn_main_one_arg);
3866  }
3867}
3868
3869bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3870  // FIXME: Need strict checking.  In C89, we need to check for
3871  // any assignment, increment, decrement, function-calls, or
3872  // commas outside of a sizeof.  In C99, it's the same list,
3873  // except that the aforementioned are allowed in unevaluated
3874  // expressions.  Everything else falls under the
3875  // "may accept other forms of constant expressions" exception.
3876  // (We never end up here for C++, so the constant expression
3877  // rules there don't matter.)
3878  if (Init->isConstantInitializer(Context))
3879    return false;
3880  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3881    << Init->getSourceRange();
3882  return true;
3883}
3884
3885void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3886  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3887}
3888
3889/// AddInitializerToDecl - Adds the initializer Init to the
3890/// declaration dcl. If DirectInit is true, this is C++ direct
3891/// initialization rather than copy initialization.
3892void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3893  Decl *RealDecl = dcl.getAs<Decl>();
3894  // If there is no declaration, there was an error parsing it.  Just ignore
3895  // the initializer.
3896  if (RealDecl == 0)
3897    return;
3898
3899  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3900    // With declarators parsed the way they are, the parser cannot
3901    // distinguish between a normal initializer and a pure-specifier.
3902    // Thus this grotesque test.
3903    IntegerLiteral *IL;
3904    Expr *Init = static_cast<Expr *>(init.get());
3905    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3906        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3907      CheckPureMethod(Method, Init->getSourceRange());
3908    else {
3909      Diag(Method->getLocation(), diag::err_member_function_initialization)
3910        << Method->getDeclName() << Init->getSourceRange();
3911      Method->setInvalidDecl();
3912    }
3913    return;
3914  }
3915
3916  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3917  if (!VDecl) {
3918    if (getLangOptions().CPlusPlus &&
3919        RealDecl->getLexicalDeclContext()->isRecord() &&
3920        isa<NamedDecl>(RealDecl))
3921      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3922        << cast<NamedDecl>(RealDecl)->getDeclName();
3923    else
3924      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3925    RealDecl->setInvalidDecl();
3926    return;
3927  }
3928
3929  // A definition must end up with a complete type, which means it must be
3930  // complete with the restriction that an array type might be completed by the
3931  // initializer; note that later code assumes this restriction.
3932  QualType BaseDeclType = VDecl->getType();
3933  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3934    BaseDeclType = Array->getElementType();
3935  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3936                          diag::err_typecheck_decl_incomplete_type)) {
3937    RealDecl->setInvalidDecl();
3938    return;
3939  }
3940
3941  // The variable can not have an abstract class type.
3942  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3943                             diag::err_abstract_type_in_decl,
3944                             AbstractVariableType))
3945    VDecl->setInvalidDecl();
3946
3947  const VarDecl *Def;
3948  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3949    Diag(VDecl->getLocation(), diag::err_redefinition)
3950      << VDecl->getDeclName();
3951    Diag(Def->getLocation(), diag::note_previous_definition);
3952    VDecl->setInvalidDecl();
3953    return;
3954  }
3955
3956  // Take ownership of the expression, now that we're sure we have somewhere
3957  // to put it.
3958  Expr *Init = init.takeAs<Expr>();
3959  assert(Init && "missing initializer");
3960
3961  // Capture the variable that is being initialized and the style of
3962  // initialization.
3963  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3964
3965  // FIXME: Poor source location information.
3966  InitializationKind Kind
3967    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3968                                                   Init->getLocStart(),
3969                                                   Init->getLocEnd())
3970                : InitializationKind::CreateCopy(VDecl->getLocation(),
3971                                                 Init->getLocStart());
3972
3973  // Get the decls type and save a reference for later, since
3974  // CheckInitializerTypes may change it.
3975  QualType DclT = VDecl->getType(), SavT = DclT;
3976  if (VDecl->isBlockVarDecl()) {
3977    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3978      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3979      VDecl->setInvalidDecl();
3980    } else if (!VDecl->isInvalidDecl()) {
3981      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3982      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3983                                          MultiExprArg(*this, (void**)&Init, 1),
3984                                                &DclT);
3985      if (Result.isInvalid()) {
3986        VDecl->setInvalidDecl();
3987        return;
3988      }
3989
3990      Init = Result.takeAs<Expr>();
3991
3992      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3993      // Don't check invalid declarations to avoid emitting useless diagnostics.
3994      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3995        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3996          CheckForConstantInitializer(Init, DclT);
3997      }
3998    }
3999  } else if (VDecl->isStaticDataMember() &&
4000             VDecl->getLexicalDeclContext()->isRecord()) {
4001    // This is an in-class initialization for a static data member, e.g.,
4002    //
4003    // struct S {
4004    //   static const int value = 17;
4005    // };
4006
4007    // Attach the initializer
4008    VDecl->setInit(Init);
4009
4010    // C++ [class.mem]p4:
4011    //   A member-declarator can contain a constant-initializer only
4012    //   if it declares a static member (9.4) of const integral or
4013    //   const enumeration type, see 9.4.2.
4014    QualType T = VDecl->getType();
4015    if (!T->isDependentType() &&
4016        (!Context.getCanonicalType(T).isConstQualified() ||
4017         !T->isIntegralOrEnumerationType())) {
4018      Diag(VDecl->getLocation(), diag::err_member_initialization)
4019        << VDecl->getDeclName() << Init->getSourceRange();
4020      VDecl->setInvalidDecl();
4021    } else {
4022      // C++ [class.static.data]p4:
4023      //   If a static data member is of const integral or const
4024      //   enumeration type, its declaration in the class definition
4025      //   can specify a constant-initializer which shall be an
4026      //   integral constant expression (5.19).
4027      if (!Init->isTypeDependent() &&
4028          !Init->getType()->isIntegralOrEnumerationType()) {
4029        // We have a non-dependent, non-integral or enumeration type.
4030        Diag(Init->getSourceRange().getBegin(),
4031             diag::err_in_class_initializer_non_integral_type)
4032          << Init->getType() << Init->getSourceRange();
4033        VDecl->setInvalidDecl();
4034      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4035        // Check whether the expression is a constant expression.
4036        llvm::APSInt Value;
4037        SourceLocation Loc;
4038        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4039          Diag(Loc, diag::err_in_class_initializer_non_constant)
4040            << Init->getSourceRange();
4041          VDecl->setInvalidDecl();
4042        } else if (!VDecl->getType()->isDependentType())
4043          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4044      }
4045    }
4046  } else if (VDecl->isFileVarDecl()) {
4047    if (VDecl->getStorageClass() == VarDecl::Extern &&
4048        (!getLangOptions().CPlusPlus ||
4049         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4050      Diag(VDecl->getLocation(), diag::warn_extern_init);
4051    if (!VDecl->isInvalidDecl()) {
4052      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4053      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4054                                          MultiExprArg(*this, (void**)&Init, 1),
4055                                                &DclT);
4056      if (Result.isInvalid()) {
4057        VDecl->setInvalidDecl();
4058        return;
4059      }
4060
4061      Init = Result.takeAs<Expr>();
4062    }
4063
4064    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4065    // Don't check invalid declarations to avoid emitting useless diagnostics.
4066    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4067      // C99 6.7.8p4. All file scoped initializers need to be constant.
4068      CheckForConstantInitializer(Init, DclT);
4069    }
4070  }
4071  // If the type changed, it means we had an incomplete type that was
4072  // completed by the initializer. For example:
4073  //   int ary[] = { 1, 3, 5 };
4074  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4075  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4076    VDecl->setType(DclT);
4077    Init->setType(DclT);
4078  }
4079
4080  Init = MaybeCreateCXXExprWithTemporaries(Init);
4081  // Attach the initializer to the decl.
4082  VDecl->setInit(Init);
4083
4084  if (getLangOptions().CPlusPlus) {
4085    // Make sure we mark the destructor as used if necessary.
4086    QualType InitType = VDecl->getType();
4087    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4088      InitType = Context.getBaseElementType(Array);
4089    if (const RecordType *Record = InitType->getAs<RecordType>())
4090      FinalizeVarWithDestructor(VDecl, Record);
4091  }
4092
4093  return;
4094}
4095
4096/// ActOnInitializerError - Given that there was an error parsing an
4097/// initializer for the given declaration, try to return to some form
4098/// of sanity.
4099void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4100  // Our main concern here is re-establishing invariants like "a
4101  // variable's type is either dependent or complete".
4102  Decl *D = dcl.getAs<Decl>();
4103  if (!D || D->isInvalidDecl()) return;
4104
4105  VarDecl *VD = dyn_cast<VarDecl>(D);
4106  if (!VD) return;
4107
4108  QualType Ty = VD->getType();
4109  if (Ty->isDependentType()) return;
4110
4111  // Require a complete type.
4112  if (RequireCompleteType(VD->getLocation(),
4113                          Context.getBaseElementType(Ty),
4114                          diag::err_typecheck_decl_incomplete_type)) {
4115    VD->setInvalidDecl();
4116    return;
4117  }
4118
4119  // Require an abstract type.
4120  if (RequireNonAbstractType(VD->getLocation(), Ty,
4121                             diag::err_abstract_type_in_decl,
4122                             AbstractVariableType)) {
4123    VD->setInvalidDecl();
4124    return;
4125  }
4126
4127  // Don't bother complaining about constructors or destructors,
4128  // though.
4129}
4130
4131void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4132                                  bool TypeContainsUndeducedAuto) {
4133  Decl *RealDecl = dcl.getAs<Decl>();
4134
4135  // If there is no declaration, there was an error parsing it. Just ignore it.
4136  if (RealDecl == 0)
4137    return;
4138
4139  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4140    QualType Type = Var->getType();
4141
4142    // C++0x [dcl.spec.auto]p3
4143    if (TypeContainsUndeducedAuto) {
4144      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4145        << Var->getDeclName() << Type;
4146      Var->setInvalidDecl();
4147      return;
4148    }
4149
4150    switch (Var->isThisDeclarationADefinition()) {
4151    case VarDecl::Definition:
4152      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4153        break;
4154
4155      // We have an out-of-line definition of a static data member
4156      // that has an in-class initializer, so we type-check this like
4157      // a declaration.
4158      //
4159      // Fall through
4160
4161    case VarDecl::DeclarationOnly:
4162      // It's only a declaration.
4163
4164      // Block scope. C99 6.7p7: If an identifier for an object is
4165      // declared with no linkage (C99 6.2.2p6), the type for the
4166      // object shall be complete.
4167      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4168          !Var->getLinkage() && !Var->isInvalidDecl() &&
4169          RequireCompleteType(Var->getLocation(), Type,
4170                              diag::err_typecheck_decl_incomplete_type))
4171        Var->setInvalidDecl();
4172
4173      // Make sure that the type is not abstract.
4174      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4175          RequireNonAbstractType(Var->getLocation(), Type,
4176                                 diag::err_abstract_type_in_decl,
4177                                 AbstractVariableType))
4178        Var->setInvalidDecl();
4179      return;
4180
4181    case VarDecl::TentativeDefinition:
4182      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4183      // object that has file scope without an initializer, and without a
4184      // storage-class specifier or with the storage-class specifier "static",
4185      // constitutes a tentative definition. Note: A tentative definition with
4186      // external linkage is valid (C99 6.2.2p5).
4187      if (!Var->isInvalidDecl()) {
4188        if (const IncompleteArrayType *ArrayT
4189                                    = Context.getAsIncompleteArrayType(Type)) {
4190          if (RequireCompleteType(Var->getLocation(),
4191                                  ArrayT->getElementType(),
4192                                  diag::err_illegal_decl_array_incomplete_type))
4193            Var->setInvalidDecl();
4194        } else if (Var->getStorageClass() == VarDecl::Static) {
4195          // C99 6.9.2p3: If the declaration of an identifier for an object is
4196          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4197          // declared type shall not be an incomplete type.
4198          // NOTE: code such as the following
4199          //     static struct s;
4200          //     struct s { int a; };
4201          // is accepted by gcc. Hence here we issue a warning instead of
4202          // an error and we do not invalidate the static declaration.
4203          // NOTE: to avoid multiple warnings, only check the first declaration.
4204          if (Var->getPreviousDeclaration() == 0)
4205            RequireCompleteType(Var->getLocation(), Type,
4206                                diag::ext_typecheck_decl_incomplete_type);
4207        }
4208      }
4209
4210      // Record the tentative definition; we're done.
4211      if (!Var->isInvalidDecl())
4212        TentativeDefinitions.push_back(Var);
4213      return;
4214    }
4215
4216    // Provide a specific diagnostic for uninitialized variable
4217    // definitions with incomplete array type.
4218    if (Type->isIncompleteArrayType()) {
4219      Diag(Var->getLocation(),
4220           diag::err_typecheck_incomplete_array_needs_initializer);
4221      Var->setInvalidDecl();
4222      return;
4223    }
4224
4225   // Provide a specific diagnostic for uninitialized variable
4226   // definitions with reference type.
4227   if (Type->isReferenceType()) {
4228     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4229       << Var->getDeclName()
4230       << SourceRange(Var->getLocation(), Var->getLocation());
4231     Var->setInvalidDecl();
4232     return;
4233   }
4234
4235    // Do not attempt to type-check the default initializer for a
4236    // variable with dependent type.
4237    if (Type->isDependentType())
4238      return;
4239
4240    if (Var->isInvalidDecl())
4241      return;
4242
4243    if (RequireCompleteType(Var->getLocation(),
4244                            Context.getBaseElementType(Type),
4245                            diag::err_typecheck_decl_incomplete_type)) {
4246      Var->setInvalidDecl();
4247      return;
4248    }
4249
4250    // The variable can not have an abstract class type.
4251    if (RequireNonAbstractType(Var->getLocation(), Type,
4252                               diag::err_abstract_type_in_decl,
4253                               AbstractVariableType)) {
4254      Var->setInvalidDecl();
4255      return;
4256    }
4257
4258    const RecordType *Record
4259      = Context.getBaseElementType(Type)->getAs<RecordType>();
4260    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4261        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4262      // C++03 [dcl.init]p9:
4263      //   If no initializer is specified for an object, and the
4264      //   object is of (possibly cv-qualified) non-POD class type (or
4265      //   array thereof), the object shall be default-initialized; if
4266      //   the object is of const-qualified type, the underlying class
4267      //   type shall have a user-declared default
4268      //   constructor. Otherwise, if no initializer is specified for
4269      //   a non- static object, the object and its subobjects, if
4270      //   any, have an indeterminate initial value); if the object
4271      //   or any of its subobjects are of const-qualified type, the
4272      //   program is ill-formed.
4273      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4274    } else {
4275      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4276      InitializationKind Kind
4277        = InitializationKind::CreateDefault(Var->getLocation());
4278
4279      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4280      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4281                                              MultiExprArg(*this, 0, 0));
4282      if (Init.isInvalid())
4283        Var->setInvalidDecl();
4284      else if (Init.get())
4285        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4286    }
4287
4288    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4289      FinalizeVarWithDestructor(Var, Record);
4290  }
4291}
4292
4293Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4294                                                   DeclPtrTy *Group,
4295                                                   unsigned NumDecls) {
4296  llvm::SmallVector<Decl*, 8> Decls;
4297
4298  if (DS.isTypeSpecOwned())
4299    Decls.push_back((Decl*)DS.getTypeRep());
4300
4301  for (unsigned i = 0; i != NumDecls; ++i)
4302    if (Decl *D = Group[i].getAs<Decl>())
4303      Decls.push_back(D);
4304
4305  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4306                                                   Decls.data(), Decls.size()));
4307}
4308
4309
4310/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4311/// to introduce parameters into function prototype scope.
4312Sema::DeclPtrTy
4313Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4314  const DeclSpec &DS = D.getDeclSpec();
4315
4316  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4317  VarDecl::StorageClass StorageClass = VarDecl::None;
4318  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4319  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4320    StorageClass = VarDecl::Register;
4321    StorageClassAsWritten = VarDecl::Register;
4322  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4323    Diag(DS.getStorageClassSpecLoc(),
4324         diag::err_invalid_storage_class_in_func_decl);
4325    D.getMutableDeclSpec().ClearStorageClassSpecs();
4326  }
4327
4328  if (D.getDeclSpec().isThreadSpecified())
4329    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4330
4331  DiagnoseFunctionSpecifiers(D);
4332
4333  // Check that there are no default arguments inside the type of this
4334  // parameter (C++ only).
4335  if (getLangOptions().CPlusPlus)
4336    CheckExtraCXXDefaultArguments(D);
4337
4338  TagDecl *OwnedDecl = 0;
4339  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4340  QualType parmDeclType = TInfo->getType();
4341
4342  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4343    // C++ [dcl.fct]p6:
4344    //   Types shall not be defined in return or parameter types.
4345    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4346      << Context.getTypeDeclType(OwnedDecl);
4347  }
4348
4349  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4350  IdentifierInfo *II = D.getIdentifier();
4351  if (II) {
4352    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4353                   ForRedeclaration);
4354    LookupName(R, S);
4355    if (R.isSingleResult()) {
4356      NamedDecl *PrevDecl = R.getFoundDecl();
4357      if (PrevDecl->isTemplateParameter()) {
4358        // Maybe we will complain about the shadowed template parameter.
4359        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4360        // Just pretend that we didn't see the previous declaration.
4361        PrevDecl = 0;
4362      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4363        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4364        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4365
4366        // Recover by removing the name
4367        II = 0;
4368        D.SetIdentifier(0, D.getIdentifierLoc());
4369        D.setInvalidType(true);
4370      }
4371    }
4372  }
4373
4374  // Temporarily put parameter variables in the translation unit, not
4375  // the enclosing context.  This prevents them from accidentally
4376  // looking like class members in C++.
4377  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4378                                    TInfo, parmDeclType, II,
4379                                    D.getIdentifierLoc(),
4380                                    StorageClass, StorageClassAsWritten);
4381
4382  if (D.isInvalidType())
4383    New->setInvalidDecl();
4384
4385  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4386  if (D.getCXXScopeSpec().isSet()) {
4387    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4388      << D.getCXXScopeSpec().getRange();
4389    New->setInvalidDecl();
4390  }
4391
4392  // Add the parameter declaration into this scope.
4393  S->AddDecl(DeclPtrTy::make(New));
4394  if (II)
4395    IdResolver.AddDecl(New);
4396
4397  ProcessDeclAttributes(S, New, D);
4398
4399  if (New->hasAttr<BlocksAttr>()) {
4400    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4401  }
4402  return DeclPtrTy::make(New);
4403}
4404
4405/// \brief Synthesizes a variable for a parameter arising from a
4406/// typedef.
4407ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4408                                              SourceLocation Loc,
4409                                              QualType T) {
4410  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4411                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4412                                           VarDecl::None, VarDecl::None, 0);
4413  Param->setImplicit();
4414  return Param;
4415}
4416
4417ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4418                                  TypeSourceInfo *TSInfo, QualType T,
4419                                  IdentifierInfo *Name,
4420                                  SourceLocation NameLoc,
4421                                  VarDecl::StorageClass StorageClass,
4422                                  VarDecl::StorageClass StorageClassAsWritten) {
4423  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4424                                         adjustParameterType(T), TSInfo,
4425                                         StorageClass, StorageClassAsWritten,
4426                                         0);
4427
4428  // Parameters can not be abstract class types.
4429  // For record types, this is done by the AbstractClassUsageDiagnoser once
4430  // the class has been completely parsed.
4431  if (!CurContext->isRecord() &&
4432      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4433                             AbstractParamType))
4434    New->setInvalidDecl();
4435
4436  // Parameter declarators cannot be interface types. All ObjC objects are
4437  // passed by reference.
4438  if (T->isObjCObjectType()) {
4439    Diag(NameLoc,
4440         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4441    New->setInvalidDecl();
4442  }
4443
4444  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4445  // duration shall not be qualified by an address-space qualifier."
4446  // Since all parameters have automatic store duration, they can not have
4447  // an address space.
4448  if (T.getAddressSpace() != 0) {
4449    Diag(NameLoc, diag::err_arg_with_address_space);
4450    New->setInvalidDecl();
4451  }
4452
4453  return New;
4454}
4455
4456void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4457                                           SourceLocation LocAfterDecls) {
4458  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4459         "Not a function declarator!");
4460  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4461
4462  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4463  // for a K&R function.
4464  if (!FTI.hasPrototype) {
4465    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4466      --i;
4467      if (FTI.ArgInfo[i].Param == 0) {
4468        llvm::SmallString<256> Code;
4469        llvm::raw_svector_ostream(Code) << "  int "
4470                                        << FTI.ArgInfo[i].Ident->getName()
4471                                        << ";\n";
4472        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4473          << FTI.ArgInfo[i].Ident
4474          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4475
4476        // Implicitly declare the argument as type 'int' for lack of a better
4477        // type.
4478        DeclSpec DS;
4479        const char* PrevSpec; // unused
4480        unsigned DiagID; // unused
4481        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4482                           PrevSpec, DiagID);
4483        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4484        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4485        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4486      }
4487    }
4488  }
4489}
4490
4491Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4492                                              Declarator &D) {
4493  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4494  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4495         "Not a function declarator!");
4496  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4497
4498  if (FTI.hasPrototype) {
4499    // FIXME: Diagnose arguments without names in C.
4500  }
4501
4502  Scope *ParentScope = FnBodyScope->getParent();
4503
4504  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4505                                  MultiTemplateParamsArg(*this),
4506                                  /*IsFunctionDefinition=*/true);
4507  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4508}
4509
4510static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4511  // Don't warn about invalid declarations.
4512  if (FD->isInvalidDecl())
4513    return false;
4514
4515  // Or declarations that aren't global.
4516  if (!FD->isGlobal())
4517    return false;
4518
4519  // Don't warn about C++ member functions.
4520  if (isa<CXXMethodDecl>(FD))
4521    return false;
4522
4523  // Don't warn about 'main'.
4524  if (FD->isMain())
4525    return false;
4526
4527  // Don't warn about inline functions.
4528  if (FD->isInlineSpecified())
4529    return false;
4530
4531  // Don't warn about function templates.
4532  if (FD->getDescribedFunctionTemplate())
4533    return false;
4534
4535  // Don't warn about function template specializations.
4536  if (FD->isFunctionTemplateSpecialization())
4537    return false;
4538
4539  bool MissingPrototype = true;
4540  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4541       Prev; Prev = Prev->getPreviousDeclaration()) {
4542    // Ignore any declarations that occur in function or method
4543    // scope, because they aren't visible from the header.
4544    if (Prev->getDeclContext()->isFunctionOrMethod())
4545      continue;
4546
4547    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4548    break;
4549  }
4550
4551  return MissingPrototype;
4552}
4553
4554Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4555  // Clear the last template instantiation error context.
4556  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4557
4558  if (!D)
4559    return D;
4560  FunctionDecl *FD = 0;
4561
4562  if (FunctionTemplateDecl *FunTmpl
4563        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4564    FD = FunTmpl->getTemplatedDecl();
4565  else
4566    FD = cast<FunctionDecl>(D.getAs<Decl>());
4567
4568  // Enter a new function scope
4569  PushFunctionScope();
4570
4571  // See if this is a redefinition.
4572  // But don't complain if we're in GNU89 mode and the previous definition
4573  // was an extern inline function.
4574  const FunctionDecl *Definition;
4575  if (FD->hasBody(Definition) &&
4576      !canRedefineFunction(Definition, getLangOptions())) {
4577    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4578    Diag(Definition->getLocation(), diag::note_previous_definition);
4579  }
4580
4581  // Builtin functions cannot be defined.
4582  if (unsigned BuiltinID = FD->getBuiltinID()) {
4583    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4584      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4585      FD->setInvalidDecl();
4586    }
4587  }
4588
4589  // The return type of a function definition must be complete
4590  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4591  QualType ResultType = FD->getResultType();
4592  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4593      !FD->isInvalidDecl() &&
4594      RequireCompleteType(FD->getLocation(), ResultType,
4595                          diag::err_func_def_incomplete_result))
4596    FD->setInvalidDecl();
4597
4598  // GNU warning -Wmissing-prototypes:
4599  //   Warn if a global function is defined without a previous
4600  //   prototype declaration. This warning is issued even if the
4601  //   definition itself provides a prototype. The aim is to detect
4602  //   global functions that fail to be declared in header files.
4603  if (ShouldWarnAboutMissingPrototype(FD))
4604    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4605
4606  if (FnBodyScope)
4607    PushDeclContext(FnBodyScope, FD);
4608
4609  // Check the validity of our function parameters
4610  CheckParmsForFunctionDef(FD);
4611
4612  bool ShouldCheckShadow =
4613    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4614
4615  // Introduce our parameters into the function scope
4616  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4617    ParmVarDecl *Param = FD->getParamDecl(p);
4618    Param->setOwningFunction(FD);
4619
4620    // If this has an identifier, add it to the scope stack.
4621    if (Param->getIdentifier() && FnBodyScope) {
4622      if (ShouldCheckShadow)
4623        CheckShadow(FnBodyScope, Param);
4624
4625      PushOnScopeChains(Param, FnBodyScope);
4626    }
4627  }
4628
4629  // Checking attributes of current function definition
4630  // dllimport attribute.
4631  if (FD->getAttr<DLLImportAttr>() &&
4632      (!FD->getAttr<DLLExportAttr>())) {
4633    // dllimport attribute cannot be applied to definition.
4634    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4635      Diag(FD->getLocation(),
4636           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4637        << "dllimport";
4638      FD->setInvalidDecl();
4639      return DeclPtrTy::make(FD);
4640    }
4641
4642    // Visual C++ appears to not think this is an issue, so only issue
4643    // a warning when Microsoft extensions are disabled.
4644    if (!LangOpts.Microsoft) {
4645      // If a symbol previously declared dllimport is later defined, the
4646      // attribute is ignored in subsequent references, and a warning is
4647      // emitted.
4648      Diag(FD->getLocation(),
4649           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4650        << FD->getNameAsCString() << "dllimport";
4651    }
4652  }
4653  return DeclPtrTy::make(FD);
4654}
4655
4656/// \brief Given the set of return statements within a function body,
4657/// compute the variables that are subject to the named return value
4658/// optimization.
4659///
4660/// Each of the variables that is subject to the named return value
4661/// optimization will be marked as NRVO variables in the AST, and any
4662/// return statement that has a marked NRVO variable as its NRVO candidate can
4663/// use the named return value optimization.
4664///
4665/// This function applies a very simplistic algorithm for NRVO: if every return
4666/// statement in the function has the same NRVO candidate, that candidate is
4667/// the NRVO variable.
4668///
4669/// FIXME: Employ a smarter algorithm that accounts for multiple return
4670/// statements and the lifetimes of the NRVO candidates. We should be able to
4671/// find a maximal set of NRVO variables.
4672static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4673  const VarDecl *NRVOCandidate = 0;
4674  for (unsigned I = 0; I != NumReturns; ++I) {
4675    if (!Returns[I]->getNRVOCandidate())
4676      return;
4677
4678    if (!NRVOCandidate)
4679      NRVOCandidate = Returns[I]->getNRVOCandidate();
4680    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4681      return;
4682  }
4683
4684  if (NRVOCandidate)
4685    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4686}
4687
4688Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4689  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4690}
4691
4692Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4693                                              bool IsInstantiation) {
4694  Decl *dcl = D.getAs<Decl>();
4695  Stmt *Body = BodyArg.takeAs<Stmt>();
4696
4697  FunctionDecl *FD = 0;
4698  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4699  if (FunTmpl)
4700    FD = FunTmpl->getTemplatedDecl();
4701  else
4702    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4703
4704  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4705
4706  if (FD) {
4707    FD->setBody(Body);
4708    if (FD->isMain()) {
4709      // C and C++ allow for main to automagically return 0.
4710      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4711      FD->setHasImplicitReturnZero(true);
4712      WP.disableCheckFallThrough();
4713    }
4714
4715    if (!FD->isInvalidDecl()) {
4716      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4717
4718      // If this is a constructor, we need a vtable.
4719      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4720        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4721
4722      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4723                  FunctionScopes.back()->Returns.size());
4724    }
4725
4726    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4727  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4728    assert(MD == getCurMethodDecl() && "Method parsing confused");
4729    MD->setBody(Body);
4730    MD->setEndLoc(Body->getLocEnd());
4731    if (!MD->isInvalidDecl())
4732      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4733  } else {
4734    return DeclPtrTy();
4735  }
4736
4737  // Verify and clean out per-function state.
4738
4739  // Check goto/label use.
4740  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4741       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4742    LabelStmt *L = I->second;
4743
4744    // Verify that we have no forward references left.  If so, there was a goto
4745    // or address of a label taken, but no definition of it.  Label fwd
4746    // definitions are indicated with a null substmt.
4747    if (L->getSubStmt() != 0)
4748      continue;
4749
4750    // Emit error.
4751    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4752
4753    // At this point, we have gotos that use the bogus label.  Stitch it into
4754    // the function body so that they aren't leaked and that the AST is well
4755    // formed.
4756    if (Body == 0) {
4757      // The whole function wasn't parsed correctly.
4758      continue;
4759    }
4760
4761    // Otherwise, the body is valid: we want to stitch the label decl into the
4762    // function somewhere so that it is properly owned and so that the goto
4763    // has a valid target.  Do this by creating a new compound stmt with the
4764    // label in it.
4765
4766    // Give the label a sub-statement.
4767    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4768
4769    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4770                               cast<CXXTryStmt>(Body)->getTryBlock() :
4771                               cast<CompoundStmt>(Body);
4772    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4773                                          Compound->body_end());
4774    Elements.push_back(L);
4775    Compound->setStmts(Context, Elements.data(), Elements.size());
4776  }
4777
4778  if (Body) {
4779    // C++ constructors that have function-try-blocks can't have return
4780    // statements in the handlers of that block. (C++ [except.handle]p14)
4781    // Verify this.
4782    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4783      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4784
4785    // Verify that that gotos and switch cases don't jump into scopes illegally.
4786    // Verify that that gotos and switch cases don't jump into scopes illegally.
4787    if (FunctionNeedsScopeChecking() &&
4788        !dcl->isInvalidDecl() &&
4789        !hasAnyErrorsInThisFunction())
4790      DiagnoseInvalidJumps(Body);
4791
4792    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4793      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4794                                             Destructor->getParent());
4795
4796    // If any errors have occurred, clear out any temporaries that may have
4797    // been leftover. This ensures that these temporaries won't be picked up for
4798    // deletion in some later function.
4799    if (PP.getDiagnostics().hasErrorOccurred())
4800      ExprTemporaries.clear();
4801    else if (!isa<FunctionTemplateDecl>(dcl)) {
4802      // Since the body is valid, issue any analysis-based warnings that are
4803      // enabled.
4804      QualType ResultType;
4805      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4806        ResultType = FD->getResultType();
4807      }
4808      else {
4809        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4810        ResultType = MD->getResultType();
4811      }
4812      AnalysisWarnings.IssueWarnings(WP, dcl);
4813    }
4814
4815    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4816  }
4817
4818  if (!IsInstantiation)
4819    PopDeclContext();
4820
4821  PopFunctionOrBlockScope();
4822
4823  // If any errors have occurred, clear out any temporaries that may have
4824  // been leftover. This ensures that these temporaries won't be picked up for
4825  // deletion in some later function.
4826  if (getDiagnostics().hasErrorOccurred())
4827    ExprTemporaries.clear();
4828
4829  return D;
4830}
4831
4832/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4833/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4834NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4835                                          IdentifierInfo &II, Scope *S) {
4836  // Before we produce a declaration for an implicitly defined
4837  // function, see whether there was a locally-scoped declaration of
4838  // this name as a function or variable. If so, use that
4839  // (non-visible) declaration, and complain about it.
4840  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4841    = LocallyScopedExternalDecls.find(&II);
4842  if (Pos != LocallyScopedExternalDecls.end()) {
4843    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4844    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4845    return Pos->second;
4846  }
4847
4848  // Extension in C99.  Legal in C90, but warn about it.
4849  if (II.getName().startswith("__builtin_"))
4850    Diag(Loc, diag::warn_builtin_unknown) << &II;
4851  else if (getLangOptions().C99)
4852    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4853  else
4854    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4855
4856  // Set a Declarator for the implicit definition: int foo();
4857  const char *Dummy;
4858  DeclSpec DS;
4859  unsigned DiagID;
4860  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4861  Error = Error; // Silence warning.
4862  assert(!Error && "Error setting up implicit decl!");
4863  Declarator D(DS, Declarator::BlockContext);
4864  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4865                                             0, 0, false, SourceLocation(),
4866                                             false, 0,0,0, Loc, Loc, D),
4867                SourceLocation());
4868  D.SetIdentifier(&II, Loc);
4869
4870  // Insert this function into translation-unit scope.
4871
4872  DeclContext *PrevDC = CurContext;
4873  CurContext = Context.getTranslationUnitDecl();
4874
4875  FunctionDecl *FD =
4876 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4877  FD->setImplicit();
4878
4879  CurContext = PrevDC;
4880
4881  AddKnownFunctionAttributes(FD);
4882
4883  return FD;
4884}
4885
4886/// \brief Adds any function attributes that we know a priori based on
4887/// the declaration of this function.
4888///
4889/// These attributes can apply both to implicitly-declared builtins
4890/// (like __builtin___printf_chk) or to library-declared functions
4891/// like NSLog or printf.
4892void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4893  if (FD->isInvalidDecl())
4894    return;
4895
4896  // If this is a built-in function, map its builtin attributes to
4897  // actual attributes.
4898  if (unsigned BuiltinID = FD->getBuiltinID()) {
4899    // Handle printf-formatting attributes.
4900    unsigned FormatIdx;
4901    bool HasVAListArg;
4902    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4903      if (!FD->getAttr<FormatAttr>())
4904        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4905                                               HasVAListArg ? 0 : FormatIdx+2));
4906    }
4907    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
4908                                             HasVAListArg)) {
4909     if (!FD->getAttr<FormatAttr>())
4910       FD->addAttr(::new (Context) FormatAttr(Context, "scanf", FormatIdx+1,
4911                                              HasVAListArg ? 0 : FormatIdx+2));
4912    }
4913
4914    // Mark const if we don't care about errno and that is the only
4915    // thing preventing the function from being const. This allows
4916    // IRgen to use LLVM intrinsics for such functions.
4917    if (!getLangOptions().MathErrno &&
4918        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4919      if (!FD->getAttr<ConstAttr>())
4920        FD->addAttr(::new (Context) ConstAttr());
4921    }
4922
4923    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4924      FD->setType(Context.getNoReturnType(FD->getType()));
4925    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4926      FD->addAttr(::new (Context) NoThrowAttr());
4927    if (Context.BuiltinInfo.isConst(BuiltinID))
4928      FD->addAttr(::new (Context) ConstAttr());
4929  }
4930
4931  IdentifierInfo *Name = FD->getIdentifier();
4932  if (!Name)
4933    return;
4934  if ((!getLangOptions().CPlusPlus &&
4935       FD->getDeclContext()->isTranslationUnit()) ||
4936      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4937       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4938       LinkageSpecDecl::lang_c)) {
4939    // Okay: this could be a libc/libm/Objective-C function we know
4940    // about.
4941  } else
4942    return;
4943
4944  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4945    // FIXME: NSLog and NSLogv should be target specific
4946    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4947      // FIXME: We known better than our headers.
4948      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4949    } else
4950      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4951                                             Name->isStr("NSLogv") ? 0 : 2));
4952  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4953    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4954    // target-specific builtins, perhaps?
4955    if (!FD->getAttr<FormatAttr>())
4956      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4957                                             Name->isStr("vasprintf") ? 0 : 3));
4958  }
4959}
4960
4961TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4962                                    TypeSourceInfo *TInfo) {
4963  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4964  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4965
4966  if (!TInfo) {
4967    assert(D.isInvalidType() && "no declarator info for valid type");
4968    TInfo = Context.getTrivialTypeSourceInfo(T);
4969  }
4970
4971  // Scope manipulation handled by caller.
4972  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4973                                           D.getIdentifierLoc(),
4974                                           D.getIdentifier(),
4975                                           TInfo);
4976
4977  if (const TagType *TT = T->getAs<TagType>()) {
4978    TagDecl *TD = TT->getDecl();
4979
4980    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4981    // keep track of the TypedefDecl.
4982    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4983      TD->setTypedefForAnonDecl(NewTD);
4984  }
4985
4986  if (D.isInvalidType())
4987    NewTD->setInvalidDecl();
4988  return NewTD;
4989}
4990
4991
4992/// \brief Determine whether a tag with a given kind is acceptable
4993/// as a redeclaration of the given tag declaration.
4994///
4995/// \returns true if the new tag kind is acceptable, false otherwise.
4996bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4997                                        TagTypeKind NewTag,
4998                                        SourceLocation NewTagLoc,
4999                                        const IdentifierInfo &Name) {
5000  // C++ [dcl.type.elab]p3:
5001  //   The class-key or enum keyword present in the
5002  //   elaborated-type-specifier shall agree in kind with the
5003  //   declaration to which the name in the elaborated-type-specifier
5004  //   refers. This rule also applies to the form of
5005  //   elaborated-type-specifier that declares a class-name or
5006  //   friend class since it can be construed as referring to the
5007  //   definition of the class. Thus, in any
5008  //   elaborated-type-specifier, the enum keyword shall be used to
5009  //   refer to an enumeration (7.2), the union class-key shall be
5010  //   used to refer to a union (clause 9), and either the class or
5011  //   struct class-key shall be used to refer to a class (clause 9)
5012  //   declared using the class or struct class-key.
5013  TagTypeKind OldTag = Previous->getTagKind();
5014  if (OldTag == NewTag)
5015    return true;
5016
5017  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5018      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5019    // Warn about the struct/class tag mismatch.
5020    bool isTemplate = false;
5021    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5022      isTemplate = Record->getDescribedClassTemplate();
5023
5024    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5025      << (NewTag == TTK_Class)
5026      << isTemplate << &Name
5027      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5028                              OldTag == TTK_Class? "class" : "struct");
5029    Diag(Previous->getLocation(), diag::note_previous_use);
5030    return true;
5031  }
5032  return false;
5033}
5034
5035/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5036/// former case, Name will be non-null.  In the later case, Name will be null.
5037/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5038/// reference/declaration/definition of a tag.
5039Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5040                               SourceLocation KWLoc, CXXScopeSpec &SS,
5041                               IdentifierInfo *Name, SourceLocation NameLoc,
5042                               AttributeList *Attr, AccessSpecifier AS,
5043                               MultiTemplateParamsArg TemplateParameterLists,
5044                               bool &OwnedDecl, bool &IsDependent) {
5045  // If this is not a definition, it must have a name.
5046  assert((Name != 0 || TUK == TUK_Definition) &&
5047         "Nameless record must be a definition!");
5048
5049  OwnedDecl = false;
5050  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5051
5052  // FIXME: Check explicit specializations more carefully.
5053  bool isExplicitSpecialization = false;
5054  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5055  bool Invalid = false;
5056  if (TUK != TUK_Reference) {
5057    if (TemplateParameterList *TemplateParams
5058          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5059                        (TemplateParameterList**)TemplateParameterLists.get(),
5060                                              TemplateParameterLists.size(),
5061                                                    TUK == TUK_Friend,
5062                                                    isExplicitSpecialization,
5063                                                    Invalid)) {
5064      // All but one template parameter lists have been matching.
5065      --NumMatchedTemplateParamLists;
5066
5067      if (TemplateParams->size() > 0) {
5068        // This is a declaration or definition of a class template (which may
5069        // be a member of another template).
5070        if (Invalid)
5071          return DeclPtrTy();
5072
5073        OwnedDecl = false;
5074        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5075                                               SS, Name, NameLoc, Attr,
5076                                               TemplateParams,
5077                                               AS);
5078        TemplateParameterLists.release();
5079        return Result.get();
5080      } else {
5081        // The "template<>" header is extraneous.
5082        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5083          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5084        isExplicitSpecialization = true;
5085      }
5086    }
5087  }
5088
5089  DeclContext *SearchDC = CurContext;
5090  DeclContext *DC = CurContext;
5091  bool isStdBadAlloc = false;
5092
5093  RedeclarationKind Redecl = ForRedeclaration;
5094  if (TUK == TUK_Friend || TUK == TUK_Reference)
5095    Redecl = NotForRedeclaration;
5096
5097  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5098
5099  if (Name && SS.isNotEmpty()) {
5100    // We have a nested-name tag ('struct foo::bar').
5101
5102    // Check for invalid 'foo::'.
5103    if (SS.isInvalid()) {
5104      Name = 0;
5105      goto CreateNewDecl;
5106    }
5107
5108    // If this is a friend or a reference to a class in a dependent
5109    // context, don't try to make a decl for it.
5110    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5111      DC = computeDeclContext(SS, false);
5112      if (!DC) {
5113        IsDependent = true;
5114        return DeclPtrTy();
5115      }
5116    } else {
5117      DC = computeDeclContext(SS, true);
5118      if (!DC) {
5119        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5120          << SS.getRange();
5121        return DeclPtrTy();
5122      }
5123    }
5124
5125    if (RequireCompleteDeclContext(SS, DC))
5126      return DeclPtrTy::make((Decl *)0);
5127
5128    SearchDC = DC;
5129    // Look-up name inside 'foo::'.
5130    LookupQualifiedName(Previous, DC);
5131
5132    if (Previous.isAmbiguous())
5133      return DeclPtrTy();
5134
5135    if (Previous.empty()) {
5136      // Name lookup did not find anything. However, if the
5137      // nested-name-specifier refers to the current instantiation,
5138      // and that current instantiation has any dependent base
5139      // classes, we might find something at instantiation time: treat
5140      // this as a dependent elaborated-type-specifier.
5141      if (Previous.wasNotFoundInCurrentInstantiation()) {
5142        IsDependent = true;
5143        return DeclPtrTy();
5144      }
5145
5146      // A tag 'foo::bar' must already exist.
5147      Diag(NameLoc, diag::err_not_tag_in_scope)
5148        << Kind << Name << DC << SS.getRange();
5149      Name = 0;
5150      Invalid = true;
5151      goto CreateNewDecl;
5152    }
5153  } else if (Name) {
5154    // If this is a named struct, check to see if there was a previous forward
5155    // declaration or definition.
5156    // FIXME: We're looking into outer scopes here, even when we
5157    // shouldn't be. Doing so can result in ambiguities that we
5158    // shouldn't be diagnosing.
5159    LookupName(Previous, S);
5160
5161    // Note:  there used to be some attempt at recovery here.
5162    if (Previous.isAmbiguous())
5163      return DeclPtrTy();
5164
5165    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5166      // FIXME: This makes sure that we ignore the contexts associated
5167      // with C structs, unions, and enums when looking for a matching
5168      // tag declaration or definition. See the similar lookup tweak
5169      // in Sema::LookupName; is there a better way to deal with this?
5170      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5171        SearchDC = SearchDC->getParent();
5172    }
5173  }
5174
5175  if (Previous.isSingleResult() &&
5176      Previous.getFoundDecl()->isTemplateParameter()) {
5177    // Maybe we will complain about the shadowed template parameter.
5178    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5179    // Just pretend that we didn't see the previous declaration.
5180    Previous.clear();
5181  }
5182
5183  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5184      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5185    // This is a declaration of or a reference to "std::bad_alloc".
5186    isStdBadAlloc = true;
5187
5188    if (Previous.empty() && StdBadAlloc) {
5189      // std::bad_alloc has been implicitly declared (but made invisible to
5190      // name lookup). Fill in this implicit declaration as the previous
5191      // declaration, so that the declarations get chained appropriately.
5192      Previous.addDecl(StdBadAlloc);
5193    }
5194  }
5195
5196  // If we didn't find a previous declaration, and this is a reference
5197  // (or friend reference), move to the correct scope.  In C++, we
5198  // also need to do a redeclaration lookup there, just in case
5199  // there's a shadow friend decl.
5200  if (Name && Previous.empty() &&
5201      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5202    if (Invalid) goto CreateNewDecl;
5203    assert(SS.isEmpty());
5204
5205    if (TUK == TUK_Reference) {
5206      // C++ [basic.scope.pdecl]p5:
5207      //   -- for an elaborated-type-specifier of the form
5208      //
5209      //          class-key identifier
5210      //
5211      //      if the elaborated-type-specifier is used in the
5212      //      decl-specifier-seq or parameter-declaration-clause of a
5213      //      function defined in namespace scope, the identifier is
5214      //      declared as a class-name in the namespace that contains
5215      //      the declaration; otherwise, except as a friend
5216      //      declaration, the identifier is declared in the smallest
5217      //      non-class, non-function-prototype scope that contains the
5218      //      declaration.
5219      //
5220      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5221      // C structs and unions.
5222      //
5223      // It is an error in C++ to declare (rather than define) an enum
5224      // type, including via an elaborated type specifier.  We'll
5225      // diagnose that later; for now, declare the enum in the same
5226      // scope as we would have picked for any other tag type.
5227      //
5228      // GNU C also supports this behavior as part of its incomplete
5229      // enum types extension, while GNU C++ does not.
5230      //
5231      // Find the context where we'll be declaring the tag.
5232      // FIXME: We would like to maintain the current DeclContext as the
5233      // lexical context,
5234      while (SearchDC->isRecord())
5235        SearchDC = SearchDC->getParent();
5236
5237      // Find the scope where we'll be declaring the tag.
5238      while (S->isClassScope() ||
5239             (getLangOptions().CPlusPlus &&
5240              S->isFunctionPrototypeScope()) ||
5241             ((S->getFlags() & Scope::DeclScope) == 0) ||
5242             (S->getEntity() &&
5243              ((DeclContext *)S->getEntity())->isTransparentContext()))
5244        S = S->getParent();
5245    } else {
5246      assert(TUK == TUK_Friend);
5247      // C++ [namespace.memdef]p3:
5248      //   If a friend declaration in a non-local class first declares a
5249      //   class or function, the friend class or function is a member of
5250      //   the innermost enclosing namespace.
5251      SearchDC = SearchDC->getEnclosingNamespaceContext();
5252    }
5253
5254    // In C++, we need to do a redeclaration lookup to properly
5255    // diagnose some problems.
5256    if (getLangOptions().CPlusPlus) {
5257      Previous.setRedeclarationKind(ForRedeclaration);
5258      LookupQualifiedName(Previous, SearchDC);
5259    }
5260  }
5261
5262  if (!Previous.empty()) {
5263    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5264
5265    // It's okay to have a tag decl in the same scope as a typedef
5266    // which hides a tag decl in the same scope.  Finding this
5267    // insanity with a redeclaration lookup can only actually happen
5268    // in C++.
5269    //
5270    // This is also okay for elaborated-type-specifiers, which is
5271    // technically forbidden by the current standard but which is
5272    // okay according to the likely resolution of an open issue;
5273    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5274    if (getLangOptions().CPlusPlus) {
5275      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5276        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5277          TagDecl *Tag = TT->getDecl();
5278          if (Tag->getDeclName() == Name &&
5279              Tag->getDeclContext()->getLookupContext()
5280                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5281            PrevDecl = Tag;
5282            Previous.clear();
5283            Previous.addDecl(Tag);
5284          }
5285        }
5286      }
5287    }
5288
5289    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5290      // If this is a use of a previous tag, or if the tag is already declared
5291      // in the same scope (so that the definition/declaration completes or
5292      // rementions the tag), reuse the decl.
5293      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5294          isDeclInScope(PrevDecl, SearchDC, S)) {
5295        // Make sure that this wasn't declared as an enum and now used as a
5296        // struct or something similar.
5297        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5298          bool SafeToContinue
5299            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5300               Kind != TTK_Enum);
5301          if (SafeToContinue)
5302            Diag(KWLoc, diag::err_use_with_wrong_tag)
5303              << Name
5304              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5305                                              PrevTagDecl->getKindName());
5306          else
5307            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5308          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5309
5310          if (SafeToContinue)
5311            Kind = PrevTagDecl->getTagKind();
5312          else {
5313            // Recover by making this an anonymous redefinition.
5314            Name = 0;
5315            Previous.clear();
5316            Invalid = true;
5317          }
5318        }
5319
5320        if (!Invalid) {
5321          // If this is a use, just return the declaration we found.
5322
5323          // FIXME: In the future, return a variant or some other clue
5324          // for the consumer of this Decl to know it doesn't own it.
5325          // For our current ASTs this shouldn't be a problem, but will
5326          // need to be changed with DeclGroups.
5327          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5328              TUK == TUK_Friend)
5329            return DeclPtrTy::make(PrevTagDecl);
5330
5331          // Diagnose attempts to redefine a tag.
5332          if (TUK == TUK_Definition) {
5333            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5334              // If we're defining a specialization and the previous definition
5335              // is from an implicit instantiation, don't emit an error
5336              // here; we'll catch this in the general case below.
5337              if (!isExplicitSpecialization ||
5338                  !isa<CXXRecordDecl>(Def) ||
5339                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5340                                               == TSK_ExplicitSpecialization) {
5341                Diag(NameLoc, diag::err_redefinition) << Name;
5342                Diag(Def->getLocation(), diag::note_previous_definition);
5343                // If this is a redefinition, recover by making this
5344                // struct be anonymous, which will make any later
5345                // references get the previous definition.
5346                Name = 0;
5347                Previous.clear();
5348                Invalid = true;
5349              }
5350            } else {
5351              // If the type is currently being defined, complain
5352              // about a nested redefinition.
5353              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5354              if (Tag->isBeingDefined()) {
5355                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5356                Diag(PrevTagDecl->getLocation(),
5357                     diag::note_previous_definition);
5358                Name = 0;
5359                Previous.clear();
5360                Invalid = true;
5361              }
5362            }
5363
5364            // Okay, this is definition of a previously declared or referenced
5365            // tag PrevDecl. We're going to create a new Decl for it.
5366          }
5367        }
5368        // If we get here we have (another) forward declaration or we
5369        // have a definition.  Just create a new decl.
5370
5371      } else {
5372        // If we get here, this is a definition of a new tag type in a nested
5373        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5374        // new decl/type.  We set PrevDecl to NULL so that the entities
5375        // have distinct types.
5376        Previous.clear();
5377      }
5378      // If we get here, we're going to create a new Decl. If PrevDecl
5379      // is non-NULL, it's a definition of the tag declared by
5380      // PrevDecl. If it's NULL, we have a new definition.
5381
5382
5383    // Otherwise, PrevDecl is not a tag, but was found with tag
5384    // lookup.  This is only actually possible in C++, where a few
5385    // things like templates still live in the tag namespace.
5386    } else {
5387      assert(getLangOptions().CPlusPlus);
5388
5389      // Use a better diagnostic if an elaborated-type-specifier
5390      // found the wrong kind of type on the first
5391      // (non-redeclaration) lookup.
5392      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5393          !Previous.isForRedeclaration()) {
5394        unsigned Kind = 0;
5395        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5396        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5397        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5398        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5399        Invalid = true;
5400
5401      // Otherwise, only diagnose if the declaration is in scope.
5402      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5403        // do nothing
5404
5405      // Diagnose implicit declarations introduced by elaborated types.
5406      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5407        unsigned Kind = 0;
5408        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5409        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5410        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5411        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5412        Invalid = true;
5413
5414      // Otherwise it's a declaration.  Call out a particularly common
5415      // case here.
5416      } else if (isa<TypedefDecl>(PrevDecl)) {
5417        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5418          << Name
5419          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5420        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5421        Invalid = true;
5422
5423      // Otherwise, diagnose.
5424      } else {
5425        // The tag name clashes with something else in the target scope,
5426        // issue an error and recover by making this tag be anonymous.
5427        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5428        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5429        Name = 0;
5430        Invalid = true;
5431      }
5432
5433      // The existing declaration isn't relevant to us; we're in a
5434      // new scope, so clear out the previous declaration.
5435      Previous.clear();
5436    }
5437  }
5438
5439CreateNewDecl:
5440
5441  TagDecl *PrevDecl = 0;
5442  if (Previous.isSingleResult())
5443    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5444
5445  // If there is an identifier, use the location of the identifier as the
5446  // location of the decl, otherwise use the location of the struct/union
5447  // keyword.
5448  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5449
5450  // Otherwise, create a new declaration. If there is a previous
5451  // declaration of the same entity, the two will be linked via
5452  // PrevDecl.
5453  TagDecl *New;
5454
5455  if (Kind == TTK_Enum) {
5456    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5457    // enum X { A, B, C } D;    D should chain to X.
5458    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5459                           cast_or_null<EnumDecl>(PrevDecl));
5460    // If this is an undefined enum, warn.
5461    if (TUK != TUK_Definition && !Invalid) {
5462      TagDecl *Def;
5463      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5464        Diag(Loc, diag::ext_forward_ref_enum_def)
5465          << New;
5466        Diag(Def->getLocation(), diag::note_previous_definition);
5467      } else {
5468        Diag(Loc,
5469             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5470                                       : diag::ext_forward_ref_enum);
5471      }
5472    }
5473  } else {
5474    // struct/union/class
5475
5476    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5477    // struct X { int A; } D;    D should chain to X.
5478    if (getLangOptions().CPlusPlus) {
5479      // FIXME: Look for a way to use RecordDecl for simple structs.
5480      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5481                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5482
5483      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5484        StdBadAlloc = cast<CXXRecordDecl>(New);
5485    } else
5486      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5487                               cast_or_null<RecordDecl>(PrevDecl));
5488  }
5489
5490  // Maybe add qualifier info.
5491  if (SS.isNotEmpty()) {
5492    if (SS.isSet()) {
5493      NestedNameSpecifier *NNS
5494        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5495      New->setQualifierInfo(NNS, SS.getRange());
5496      if (NumMatchedTemplateParamLists > 0) {
5497        New->setTemplateParameterListsInfo(Context,
5498                                           NumMatchedTemplateParamLists,
5499                    (TemplateParameterList**) TemplateParameterLists.release());
5500      }
5501    }
5502    else
5503      Invalid = true;
5504  }
5505
5506  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5507    // Add alignment attributes if necessary; these attributes are checked when
5508    // the ASTContext lays out the structure.
5509    //
5510    // It is important for implementing the correct semantics that this
5511    // happen here (in act on tag decl). The #pragma pack stack is
5512    // maintained as a result of parser callbacks which can occur at
5513    // many points during the parsing of a struct declaration (because
5514    // the #pragma tokens are effectively skipped over during the
5515    // parsing of the struct).
5516    AddAlignmentAttributesForRecord(RD);
5517  }
5518
5519  // If this is a specialization of a member class (of a class template),
5520  // check the specialization.
5521  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5522    Invalid = true;
5523
5524  if (Invalid)
5525    New->setInvalidDecl();
5526
5527  if (Attr)
5528    ProcessDeclAttributeList(S, New, Attr);
5529
5530  // If we're declaring or defining a tag in function prototype scope
5531  // in C, note that this type can only be used within the function.
5532  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5533    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5534
5535  // Set the lexical context. If the tag has a C++ scope specifier, the
5536  // lexical context will be different from the semantic context.
5537  New->setLexicalDeclContext(CurContext);
5538
5539  // Mark this as a friend decl if applicable.
5540  if (TUK == TUK_Friend)
5541    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5542
5543  // Set the access specifier.
5544  if (!Invalid && SearchDC->isRecord())
5545    SetMemberAccessSpecifier(New, PrevDecl, AS);
5546
5547  if (TUK == TUK_Definition)
5548    New->startDefinition();
5549
5550  // If this has an identifier, add it to the scope stack.
5551  if (TUK == TUK_Friend) {
5552    // We might be replacing an existing declaration in the lookup tables;
5553    // if so, borrow its access specifier.
5554    if (PrevDecl)
5555      New->setAccess(PrevDecl->getAccess());
5556
5557    DeclContext *DC = New->getDeclContext()->getLookupContext();
5558    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5559    if (Name) // can be null along some error paths
5560      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5561        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5562  } else if (Name) {
5563    S = getNonFieldDeclScope(S);
5564    PushOnScopeChains(New, S);
5565  } else {
5566    CurContext->addDecl(New);
5567  }
5568
5569  // If this is the C FILE type, notify the AST context.
5570  if (IdentifierInfo *II = New->getIdentifier())
5571    if (!New->isInvalidDecl() &&
5572        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5573        II->isStr("FILE"))
5574      Context.setFILEDecl(New);
5575
5576  OwnedDecl = true;
5577  return DeclPtrTy::make(New);
5578}
5579
5580void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5581  AdjustDeclIfTemplate(TagD);
5582  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5583
5584  // Enter the tag context.
5585  PushDeclContext(S, Tag);
5586}
5587
5588void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5589                                           SourceLocation LBraceLoc) {
5590  AdjustDeclIfTemplate(TagD);
5591  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5592
5593  FieldCollector->StartClass();
5594
5595  if (!Record->getIdentifier())
5596    return;
5597
5598  // C++ [class]p2:
5599  //   [...] The class-name is also inserted into the scope of the
5600  //   class itself; this is known as the injected-class-name. For
5601  //   purposes of access checking, the injected-class-name is treated
5602  //   as if it were a public member name.
5603  CXXRecordDecl *InjectedClassName
5604    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5605                            CurContext, Record->getLocation(),
5606                            Record->getIdentifier(),
5607                            Record->getTagKeywordLoc(),
5608                            Record);
5609  InjectedClassName->setImplicit();
5610  InjectedClassName->setAccess(AS_public);
5611  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5612      InjectedClassName->setDescribedClassTemplate(Template);
5613  PushOnScopeChains(InjectedClassName, S);
5614  assert(InjectedClassName->isInjectedClassName() &&
5615         "Broken injected-class-name");
5616}
5617
5618void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5619                                    SourceLocation RBraceLoc) {
5620  AdjustDeclIfTemplate(TagD);
5621  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5622  Tag->setRBraceLoc(RBraceLoc);
5623
5624  if (isa<CXXRecordDecl>(Tag))
5625    FieldCollector->FinishClass();
5626
5627  // Exit this scope of this tag's definition.
5628  PopDeclContext();
5629
5630  // Notify the consumer that we've defined a tag.
5631  Consumer.HandleTagDeclDefinition(Tag);
5632}
5633
5634void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5635  AdjustDeclIfTemplate(TagD);
5636  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5637  Tag->setInvalidDecl();
5638
5639  // We're undoing ActOnTagStartDefinition here, not
5640  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5641  // the FieldCollector.
5642
5643  PopDeclContext();
5644}
5645
5646// Note that FieldName may be null for anonymous bitfields.
5647bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5648                          QualType FieldTy, const Expr *BitWidth,
5649                          bool *ZeroWidth) {
5650  // Default to true; that shouldn't confuse checks for emptiness
5651  if (ZeroWidth)
5652    *ZeroWidth = true;
5653
5654  // C99 6.7.2.1p4 - verify the field type.
5655  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5656  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5657    // Handle incomplete types with specific error.
5658    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5659      return true;
5660    if (FieldName)
5661      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5662        << FieldName << FieldTy << BitWidth->getSourceRange();
5663    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5664      << FieldTy << BitWidth->getSourceRange();
5665  }
5666
5667  // If the bit-width is type- or value-dependent, don't try to check
5668  // it now.
5669  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5670    return false;
5671
5672  llvm::APSInt Value;
5673  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5674    return true;
5675
5676  if (Value != 0 && ZeroWidth)
5677    *ZeroWidth = false;
5678
5679  // Zero-width bitfield is ok for anonymous field.
5680  if (Value == 0 && FieldName)
5681    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5682
5683  if (Value.isSigned() && Value.isNegative()) {
5684    if (FieldName)
5685      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5686               << FieldName << Value.toString(10);
5687    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5688      << Value.toString(10);
5689  }
5690
5691  if (!FieldTy->isDependentType()) {
5692    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5693    if (Value.getZExtValue() > TypeSize) {
5694      if (!getLangOptions().CPlusPlus) {
5695        if (FieldName)
5696          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5697            << FieldName << (unsigned)Value.getZExtValue()
5698            << (unsigned)TypeSize;
5699
5700        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5701          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5702      }
5703
5704      if (FieldName)
5705        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5706          << FieldName << (unsigned)Value.getZExtValue()
5707          << (unsigned)TypeSize;
5708      else
5709        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5710          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5711    }
5712  }
5713
5714  return false;
5715}
5716
5717/// ActOnField - Each field of a struct/union/class is passed into this in order
5718/// to create a FieldDecl object for it.
5719Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5720                                 SourceLocation DeclStart,
5721                                 Declarator &D, ExprTy *BitfieldWidth) {
5722  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5723                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5724                               AS_public);
5725  return DeclPtrTy::make(Res);
5726}
5727
5728/// HandleField - Analyze a field of a C struct or a C++ data member.
5729///
5730FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5731                             SourceLocation DeclStart,
5732                             Declarator &D, Expr *BitWidth,
5733                             AccessSpecifier AS) {
5734  IdentifierInfo *II = D.getIdentifier();
5735  SourceLocation Loc = DeclStart;
5736  if (II) Loc = D.getIdentifierLoc();
5737
5738  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5739  QualType T = TInfo->getType();
5740  if (getLangOptions().CPlusPlus)
5741    CheckExtraCXXDefaultArguments(D);
5742
5743  DiagnoseFunctionSpecifiers(D);
5744
5745  if (D.getDeclSpec().isThreadSpecified())
5746    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5747
5748  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5749                                         ForRedeclaration);
5750
5751  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5752    // Maybe we will complain about the shadowed template parameter.
5753    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5754    // Just pretend that we didn't see the previous declaration.
5755    PrevDecl = 0;
5756  }
5757
5758  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5759    PrevDecl = 0;
5760
5761  bool Mutable
5762    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5763  SourceLocation TSSL = D.getSourceRange().getBegin();
5764  FieldDecl *NewFD
5765    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5766                     AS, PrevDecl, &D);
5767
5768  if (NewFD->isInvalidDecl())
5769    Record->setInvalidDecl();
5770
5771  if (NewFD->isInvalidDecl() && PrevDecl) {
5772    // Don't introduce NewFD into scope; there's already something
5773    // with the same name in the same scope.
5774  } else if (II) {
5775    PushOnScopeChains(NewFD, S);
5776  } else
5777    Record->addDecl(NewFD);
5778
5779  return NewFD;
5780}
5781
5782/// \brief Build a new FieldDecl and check its well-formedness.
5783///
5784/// This routine builds a new FieldDecl given the fields name, type,
5785/// record, etc. \p PrevDecl should refer to any previous declaration
5786/// with the same name and in the same scope as the field to be
5787/// created.
5788///
5789/// \returns a new FieldDecl.
5790///
5791/// \todo The Declarator argument is a hack. It will be removed once
5792FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5793                                TypeSourceInfo *TInfo,
5794                                RecordDecl *Record, SourceLocation Loc,
5795                                bool Mutable, Expr *BitWidth,
5796                                SourceLocation TSSL,
5797                                AccessSpecifier AS, NamedDecl *PrevDecl,
5798                                Declarator *D) {
5799  IdentifierInfo *II = Name.getAsIdentifierInfo();
5800  bool InvalidDecl = false;
5801  if (D) InvalidDecl = D->isInvalidType();
5802
5803  // If we receive a broken type, recover by assuming 'int' and
5804  // marking this declaration as invalid.
5805  if (T.isNull()) {
5806    InvalidDecl = true;
5807    T = Context.IntTy;
5808  }
5809
5810  QualType EltTy = Context.getBaseElementType(T);
5811  if (!EltTy->isDependentType() &&
5812      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5813    InvalidDecl = true;
5814
5815  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5816  // than a variably modified type.
5817  if (!InvalidDecl && T->isVariablyModifiedType()) {
5818    bool SizeIsNegative;
5819    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5820                                                           SizeIsNegative);
5821    if (!FixedTy.isNull()) {
5822      Diag(Loc, diag::warn_illegal_constant_array_size);
5823      T = FixedTy;
5824    } else {
5825      if (SizeIsNegative)
5826        Diag(Loc, diag::err_typecheck_negative_array_size);
5827      else
5828        Diag(Loc, diag::err_typecheck_field_variable_size);
5829      InvalidDecl = true;
5830    }
5831  }
5832
5833  // Fields can not have abstract class types
5834  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5835                                             diag::err_abstract_type_in_decl,
5836                                             AbstractFieldType))
5837    InvalidDecl = true;
5838
5839  bool ZeroWidth = false;
5840  // If this is declared as a bit-field, check the bit-field.
5841  if (!InvalidDecl && BitWidth &&
5842      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5843    InvalidDecl = true;
5844    DeleteExpr(BitWidth);
5845    BitWidth = 0;
5846    ZeroWidth = false;
5847  }
5848
5849  // Check that 'mutable' is consistent with the type of the declaration.
5850  if (!InvalidDecl && Mutable) {
5851    unsigned DiagID = 0;
5852    if (T->isReferenceType())
5853      DiagID = diag::err_mutable_reference;
5854    else if (T.isConstQualified())
5855      DiagID = diag::err_mutable_const;
5856
5857    if (DiagID) {
5858      SourceLocation ErrLoc = Loc;
5859      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5860        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5861      Diag(ErrLoc, DiagID);
5862      Mutable = false;
5863      InvalidDecl = true;
5864    }
5865  }
5866
5867  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5868                                       BitWidth, Mutable);
5869  if (InvalidDecl)
5870    NewFD->setInvalidDecl();
5871
5872  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5873    Diag(Loc, diag::err_duplicate_member) << II;
5874    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5875    NewFD->setInvalidDecl();
5876  }
5877
5878  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5879    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5880
5881    if (!T->isPODType())
5882      CXXRecord->setPOD(false);
5883    if (!ZeroWidth)
5884      CXXRecord->setEmpty(false);
5885
5886    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5887      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5888      if (RDecl->getDefinition()) {
5889        if (!RDecl->hasTrivialConstructor())
5890          CXXRecord->setHasTrivialConstructor(false);
5891        if (!RDecl->hasTrivialCopyConstructor())
5892          CXXRecord->setHasTrivialCopyConstructor(false);
5893        if (!RDecl->hasTrivialCopyAssignment())
5894          CXXRecord->setHasTrivialCopyAssignment(false);
5895        if (!RDecl->hasTrivialDestructor())
5896          CXXRecord->setHasTrivialDestructor(false);
5897
5898        // C++ 9.5p1: An object of a class with a non-trivial
5899        // constructor, a non-trivial copy constructor, a non-trivial
5900        // destructor, or a non-trivial copy assignment operator
5901        // cannot be a member of a union, nor can an array of such
5902        // objects.
5903        // TODO: C++0x alters this restriction significantly.
5904        if (Record->isUnion()) {
5905          // We check for copy constructors before constructors
5906          // because otherwise we'll never get complaints about
5907          // copy constructors.
5908
5909          CXXSpecialMember member = CXXInvalid;
5910          if (!RDecl->hasTrivialCopyConstructor())
5911            member = CXXCopyConstructor;
5912          else if (!RDecl->hasTrivialConstructor())
5913            member = CXXConstructor;
5914          else if (!RDecl->hasTrivialCopyAssignment())
5915            member = CXXCopyAssignment;
5916          else if (!RDecl->hasTrivialDestructor())
5917            member = CXXDestructor;
5918
5919          if (member != CXXInvalid) {
5920            Diag(Loc, diag::err_illegal_union_member) << Name << member;
5921            DiagnoseNontrivial(RT, member);
5922            NewFD->setInvalidDecl();
5923          }
5924        }
5925      }
5926    }
5927  }
5928
5929  // FIXME: We need to pass in the attributes given an AST
5930  // representation, not a parser representation.
5931  if (D)
5932    // FIXME: What to pass instead of TUScope?
5933    ProcessDeclAttributes(TUScope, NewFD, *D);
5934
5935  if (T.isObjCGCWeak())
5936    Diag(Loc, diag::warn_attribute_weak_on_field);
5937
5938  NewFD->setAccess(AS);
5939
5940  // C++ [dcl.init.aggr]p1:
5941  //   An aggregate is an array or a class (clause 9) with [...] no
5942  //   private or protected non-static data members (clause 11).
5943  // A POD must be an aggregate.
5944  if (getLangOptions().CPlusPlus &&
5945      (AS == AS_private || AS == AS_protected)) {
5946    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5947    CXXRecord->setAggregate(false);
5948    CXXRecord->setPOD(false);
5949  }
5950
5951  return NewFD;
5952}
5953
5954/// DiagnoseNontrivial - Given that a class has a non-trivial
5955/// special member, figure out why.
5956void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5957  QualType QT(T, 0U);
5958  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5959
5960  // Check whether the member was user-declared.
5961  switch (member) {
5962  case CXXInvalid:
5963    break;
5964
5965  case CXXConstructor:
5966    if (RD->hasUserDeclaredConstructor()) {
5967      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5968      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5969        const FunctionDecl *body = 0;
5970        ci->hasBody(body);
5971        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5972          SourceLocation CtorLoc = ci->getLocation();
5973          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5974          return;
5975        }
5976      }
5977
5978      assert(0 && "found no user-declared constructors");
5979      return;
5980    }
5981    break;
5982
5983  case CXXCopyConstructor:
5984    if (RD->hasUserDeclaredCopyConstructor()) {
5985      SourceLocation CtorLoc =
5986        RD->getCopyConstructor(Context, 0)->getLocation();
5987      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5988      return;
5989    }
5990    break;
5991
5992  case CXXCopyAssignment:
5993    if (RD->hasUserDeclaredCopyAssignment()) {
5994      // FIXME: this should use the location of the copy
5995      // assignment, not the type.
5996      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5997      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5998      return;
5999    }
6000    break;
6001
6002  case CXXDestructor:
6003    if (RD->hasUserDeclaredDestructor()) {
6004      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6005      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6006      return;
6007    }
6008    break;
6009  }
6010
6011  typedef CXXRecordDecl::base_class_iterator base_iter;
6012
6013  // Virtual bases and members inhibit trivial copying/construction,
6014  // but not trivial destruction.
6015  if (member != CXXDestructor) {
6016    // Check for virtual bases.  vbases includes indirect virtual bases,
6017    // so we just iterate through the direct bases.
6018    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6019      if (bi->isVirtual()) {
6020        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6021        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6022        return;
6023      }
6024
6025    // Check for virtual methods.
6026    typedef CXXRecordDecl::method_iterator meth_iter;
6027    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6028         ++mi) {
6029      if (mi->isVirtual()) {
6030        SourceLocation MLoc = mi->getSourceRange().getBegin();
6031        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6032        return;
6033      }
6034    }
6035  }
6036
6037  bool (CXXRecordDecl::*hasTrivial)() const;
6038  switch (member) {
6039  case CXXConstructor:
6040    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6041  case CXXCopyConstructor:
6042    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6043  case CXXCopyAssignment:
6044    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6045  case CXXDestructor:
6046    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6047  default:
6048    assert(0 && "unexpected special member"); return;
6049  }
6050
6051  // Check for nontrivial bases (and recurse).
6052  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6053    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6054    assert(BaseRT && "Don't know how to handle dependent bases");
6055    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6056    if (!(BaseRecTy->*hasTrivial)()) {
6057      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6058      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6059      DiagnoseNontrivial(BaseRT, member);
6060      return;
6061    }
6062  }
6063
6064  // Check for nontrivial members (and recurse).
6065  typedef RecordDecl::field_iterator field_iter;
6066  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6067       ++fi) {
6068    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6069    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6070      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6071
6072      if (!(EltRD->*hasTrivial)()) {
6073        SourceLocation FLoc = (*fi)->getLocation();
6074        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6075        DiagnoseNontrivial(EltRT, member);
6076        return;
6077      }
6078    }
6079  }
6080
6081  assert(0 && "found no explanation for non-trivial member");
6082}
6083
6084/// TranslateIvarVisibility - Translate visibility from a token ID to an
6085///  AST enum value.
6086static ObjCIvarDecl::AccessControl
6087TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6088  switch (ivarVisibility) {
6089  default: assert(0 && "Unknown visitibility kind");
6090  case tok::objc_private: return ObjCIvarDecl::Private;
6091  case tok::objc_public: return ObjCIvarDecl::Public;
6092  case tok::objc_protected: return ObjCIvarDecl::Protected;
6093  case tok::objc_package: return ObjCIvarDecl::Package;
6094  }
6095}
6096
6097/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6098/// in order to create an IvarDecl object for it.
6099Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6100                                SourceLocation DeclStart,
6101                                DeclPtrTy IntfDecl,
6102                                Declarator &D, ExprTy *BitfieldWidth,
6103                                tok::ObjCKeywordKind Visibility) {
6104
6105  IdentifierInfo *II = D.getIdentifier();
6106  Expr *BitWidth = (Expr*)BitfieldWidth;
6107  SourceLocation Loc = DeclStart;
6108  if (II) Loc = D.getIdentifierLoc();
6109
6110  // FIXME: Unnamed fields can be handled in various different ways, for
6111  // example, unnamed unions inject all members into the struct namespace!
6112
6113  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6114  QualType T = TInfo->getType();
6115
6116  if (BitWidth) {
6117    // 6.7.2.1p3, 6.7.2.1p4
6118    if (VerifyBitField(Loc, II, T, BitWidth)) {
6119      D.setInvalidType();
6120      DeleteExpr(BitWidth);
6121      BitWidth = 0;
6122    }
6123  } else {
6124    // Not a bitfield.
6125
6126    // validate II.
6127
6128  }
6129  if (T->isReferenceType()) {
6130    Diag(Loc, diag::err_ivar_reference_type);
6131    D.setInvalidType();
6132  }
6133  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6134  // than a variably modified type.
6135  else if (T->isVariablyModifiedType()) {
6136    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6137    D.setInvalidType();
6138  }
6139
6140  // Get the visibility (access control) for this ivar.
6141  ObjCIvarDecl::AccessControl ac =
6142    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6143                                        : ObjCIvarDecl::None;
6144  // Must set ivar's DeclContext to its enclosing interface.
6145  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6146  ObjCContainerDecl *EnclosingContext;
6147  if (ObjCImplementationDecl *IMPDecl =
6148      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6149    // Case of ivar declared in an implementation. Context is that of its class.
6150    EnclosingContext = IMPDecl->getClassInterface();
6151    assert(EnclosingContext && "Implementation has no class interface!");
6152  } else {
6153    if (ObjCCategoryDecl *CDecl =
6154        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6155      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6156        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6157        return DeclPtrTy();
6158      }
6159    }
6160    EnclosingContext = EnclosingDecl;
6161  }
6162
6163  // Construct the decl.
6164  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6165                                             EnclosingContext, Loc, II, T,
6166                                             TInfo, ac, (Expr *)BitfieldWidth);
6167
6168  if (II) {
6169    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6170                                           ForRedeclaration);
6171    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6172        && !isa<TagDecl>(PrevDecl)) {
6173      Diag(Loc, diag::err_duplicate_member) << II;
6174      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6175      NewID->setInvalidDecl();
6176    }
6177  }
6178
6179  // Process attributes attached to the ivar.
6180  ProcessDeclAttributes(S, NewID, D);
6181
6182  if (D.isInvalidType())
6183    NewID->setInvalidDecl();
6184
6185  if (II) {
6186    // FIXME: When interfaces are DeclContexts, we'll need to add
6187    // these to the interface.
6188    S->AddDecl(DeclPtrTy::make(NewID));
6189    IdResolver.AddDecl(NewID);
6190  }
6191
6192  return DeclPtrTy::make(NewID);
6193}
6194
6195void Sema::ActOnFields(Scope* S,
6196                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6197                       DeclPtrTy *Fields, unsigned NumFields,
6198                       SourceLocation LBrac, SourceLocation RBrac,
6199                       AttributeList *Attr) {
6200  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6201  assert(EnclosingDecl && "missing record or interface decl");
6202
6203  // If the decl this is being inserted into is invalid, then it may be a
6204  // redeclaration or some other bogus case.  Don't try to add fields to it.
6205  if (EnclosingDecl->isInvalidDecl()) {
6206    // FIXME: Deallocate fields?
6207    return;
6208  }
6209
6210
6211  // Verify that all the fields are okay.
6212  unsigned NumNamedMembers = 0;
6213  llvm::SmallVector<FieldDecl*, 32> RecFields;
6214
6215  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6216  for (unsigned i = 0; i != NumFields; ++i) {
6217    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6218
6219    // Get the type for the field.
6220    Type *FDTy = FD->getType().getTypePtr();
6221
6222    if (!FD->isAnonymousStructOrUnion()) {
6223      // Remember all fields written by the user.
6224      RecFields.push_back(FD);
6225    }
6226
6227    // If the field is already invalid for some reason, don't emit more
6228    // diagnostics about it.
6229    if (FD->isInvalidDecl()) {
6230      EnclosingDecl->setInvalidDecl();
6231      continue;
6232    }
6233
6234    // C99 6.7.2.1p2:
6235    //   A structure or union shall not contain a member with
6236    //   incomplete or function type (hence, a structure shall not
6237    //   contain an instance of itself, but may contain a pointer to
6238    //   an instance of itself), except that the last member of a
6239    //   structure with more than one named member may have incomplete
6240    //   array type; such a structure (and any union containing,
6241    //   possibly recursively, a member that is such a structure)
6242    //   shall not be a member of a structure or an element of an
6243    //   array.
6244    if (FDTy->isFunctionType()) {
6245      // Field declared as a function.
6246      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6247        << FD->getDeclName();
6248      FD->setInvalidDecl();
6249      EnclosingDecl->setInvalidDecl();
6250      continue;
6251    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6252               Record && Record->isStruct()) {
6253      // Flexible array member.
6254      if (NumNamedMembers < 1) {
6255        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6256          << FD->getDeclName();
6257        FD->setInvalidDecl();
6258        EnclosingDecl->setInvalidDecl();
6259        continue;
6260      }
6261      if (!FD->getType()->isDependentType() &&
6262          !Context.getBaseElementType(FD->getType())->isPODType()) {
6263        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6264          << FD->getDeclName() << FD->getType();
6265        FD->setInvalidDecl();
6266        EnclosingDecl->setInvalidDecl();
6267        continue;
6268      }
6269
6270      // Okay, we have a legal flexible array member at the end of the struct.
6271      if (Record)
6272        Record->setHasFlexibleArrayMember(true);
6273    } else if (!FDTy->isDependentType() &&
6274               RequireCompleteType(FD->getLocation(), FD->getType(),
6275                                   diag::err_field_incomplete)) {
6276      // Incomplete type
6277      FD->setInvalidDecl();
6278      EnclosingDecl->setInvalidDecl();
6279      continue;
6280    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6281      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6282        // If this is a member of a union, then entire union becomes "flexible".
6283        if (Record && Record->isUnion()) {
6284          Record->setHasFlexibleArrayMember(true);
6285        } else {
6286          // If this is a struct/class and this is not the last element, reject
6287          // it.  Note that GCC supports variable sized arrays in the middle of
6288          // structures.
6289          if (i != NumFields-1)
6290            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6291              << FD->getDeclName() << FD->getType();
6292          else {
6293            // We support flexible arrays at the end of structs in
6294            // other structs as an extension.
6295            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6296              << FD->getDeclName();
6297            if (Record)
6298              Record->setHasFlexibleArrayMember(true);
6299          }
6300        }
6301      }
6302      if (Record && FDTTy->getDecl()->hasObjectMember())
6303        Record->setHasObjectMember(true);
6304    } else if (FDTy->isObjCObjectType()) {
6305      /// A field cannot be an Objective-c object
6306      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6307      FD->setInvalidDecl();
6308      EnclosingDecl->setInvalidDecl();
6309      continue;
6310    } else if (getLangOptions().ObjC1 &&
6311               getLangOptions().getGCMode() != LangOptions::NonGC &&
6312               Record &&
6313               (FD->getType()->isObjCObjectPointerType() ||
6314                FD->getType().isObjCGCStrong()))
6315      Record->setHasObjectMember(true);
6316    else if (Context.getAsArrayType(FD->getType())) {
6317      QualType BaseType = Context.getBaseElementType(FD->getType());
6318      if (Record && BaseType->isRecordType() &&
6319          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6320        Record->setHasObjectMember(true);
6321    }
6322    // Keep track of the number of named members.
6323    if (FD->getIdentifier())
6324      ++NumNamedMembers;
6325  }
6326
6327  // Okay, we successfully defined 'Record'.
6328  if (Record) {
6329    Record->completeDefinition();
6330  } else {
6331    ObjCIvarDecl **ClsFields =
6332      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6333    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6334      ID->setLocEnd(RBrac);
6335      // Add ivar's to class's DeclContext.
6336      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6337        ClsFields[i]->setLexicalDeclContext(ID);
6338        ID->addDecl(ClsFields[i]);
6339      }
6340      // Must enforce the rule that ivars in the base classes may not be
6341      // duplicates.
6342      if (ID->getSuperClass())
6343        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6344    } else if (ObjCImplementationDecl *IMPDecl =
6345                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6346      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6347      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6348        // Ivar declared in @implementation never belongs to the implementation.
6349        // Only it is in implementation's lexical context.
6350        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6351      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6352    } else if (ObjCCategoryDecl *CDecl =
6353                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6354      // case of ivars in class extension; all other cases have been
6355      // reported as errors elsewhere.
6356      // FIXME. Class extension does not have a LocEnd field.
6357      // CDecl->setLocEnd(RBrac);
6358      // Add ivar's to class extension's DeclContext.
6359      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6360        ClsFields[i]->setLexicalDeclContext(CDecl);
6361        CDecl->addDecl(ClsFields[i]);
6362      }
6363    }
6364  }
6365
6366  if (Attr)
6367    ProcessDeclAttributeList(S, Record, Attr);
6368}
6369
6370/// \brief Determine whether the given integral value is representable within
6371/// the given type T.
6372static bool isRepresentableIntegerValue(ASTContext &Context,
6373                                        llvm::APSInt &Value,
6374                                        QualType T) {
6375  assert(T->isIntegralType(Context) && "Integral type required!");
6376  unsigned BitWidth = Context.getIntWidth(T);
6377
6378  if (Value.isUnsigned() || Value.isNonNegative())
6379    return Value.getActiveBits() < BitWidth;
6380
6381  return Value.getMinSignedBits() <= BitWidth;
6382}
6383
6384// \brief Given an integral type, return the next larger integral type
6385// (or a NULL type of no such type exists).
6386static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6387  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6388  // enum checking below.
6389  assert(T->isIntegralType(Context) && "Integral type required!");
6390  const unsigned NumTypes = 4;
6391  QualType SignedIntegralTypes[NumTypes] = {
6392    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6393  };
6394  QualType UnsignedIntegralTypes[NumTypes] = {
6395    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6396    Context.UnsignedLongLongTy
6397  };
6398
6399  unsigned BitWidth = Context.getTypeSize(T);
6400  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6401                                            : UnsignedIntegralTypes;
6402  for (unsigned I = 0; I != NumTypes; ++I)
6403    if (Context.getTypeSize(Types[I]) > BitWidth)
6404      return Types[I];
6405
6406  return QualType();
6407}
6408
6409EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6410                                          EnumConstantDecl *LastEnumConst,
6411                                          SourceLocation IdLoc,
6412                                          IdentifierInfo *Id,
6413                                          ExprArg val) {
6414  Expr *Val = (Expr *)val.get();
6415
6416  unsigned IntWidth = Context.Target.getIntWidth();
6417  llvm::APSInt EnumVal(IntWidth);
6418  QualType EltTy;
6419  if (Val) {
6420    if (Enum->isDependentType() || Val->isTypeDependent())
6421      EltTy = Context.DependentTy;
6422    else {
6423      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6424      SourceLocation ExpLoc;
6425      if (!Val->isValueDependent() &&
6426          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6427        Val = 0;
6428      } else {
6429        if (!getLangOptions().CPlusPlus) {
6430          // C99 6.7.2.2p2:
6431          //   The expression that defines the value of an enumeration constant
6432          //   shall be an integer constant expression that has a value
6433          //   representable as an int.
6434
6435          // Complain if the value is not representable in an int.
6436          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6437            Diag(IdLoc, diag::ext_enum_value_not_int)
6438              << EnumVal.toString(10) << Val->getSourceRange()
6439              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6440          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6441            // Force the type of the expression to 'int'.
6442            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6443
6444            if (Val != val.get()) {
6445              val.release();
6446              val = Val;
6447            }
6448          }
6449        }
6450
6451        // C++0x [dcl.enum]p5:
6452        //   If the underlying type is not fixed, the type of each enumerator
6453        //   is the type of its initializing value:
6454        //     - If an initializer is specified for an enumerator, the
6455        //       initializing value has the same type as the expression.
6456        EltTy = Val->getType();
6457      }
6458    }
6459  }
6460
6461  if (!Val) {
6462    if (Enum->isDependentType())
6463      EltTy = Context.DependentTy;
6464    else if (!LastEnumConst) {
6465      // C++0x [dcl.enum]p5:
6466      //   If the underlying type is not fixed, the type of each enumerator
6467      //   is the type of its initializing value:
6468      //     - If no initializer is specified for the first enumerator, the
6469      //       initializing value has an unspecified integral type.
6470      //
6471      // GCC uses 'int' for its unspecified integral type, as does
6472      // C99 6.7.2.2p3.
6473      EltTy = Context.IntTy;
6474    } else {
6475      // Assign the last value + 1.
6476      EnumVal = LastEnumConst->getInitVal();
6477      ++EnumVal;
6478      EltTy = LastEnumConst->getType();
6479
6480      // Check for overflow on increment.
6481      if (EnumVal < LastEnumConst->getInitVal()) {
6482        // C++0x [dcl.enum]p5:
6483        //   If the underlying type is not fixed, the type of each enumerator
6484        //   is the type of its initializing value:
6485        //
6486        //     - Otherwise the type of the initializing value is the same as
6487        //       the type of the initializing value of the preceding enumerator
6488        //       unless the incremented value is not representable in that type,
6489        //       in which case the type is an unspecified integral type
6490        //       sufficient to contain the incremented value. If no such type
6491        //       exists, the program is ill-formed.
6492        QualType T = getNextLargerIntegralType(Context, EltTy);
6493        if (T.isNull()) {
6494          // There is no integral type larger enough to represent this
6495          // value. Complain, then allow the value to wrap around.
6496          EnumVal = LastEnumConst->getInitVal();
6497          EnumVal.zext(EnumVal.getBitWidth() * 2);
6498          Diag(IdLoc, diag::warn_enumerator_too_large)
6499            << EnumVal.toString(10);
6500        } else {
6501          EltTy = T;
6502        }
6503
6504        // Retrieve the last enumerator's value, extent that type to the
6505        // type that is supposed to be large enough to represent the incremented
6506        // value, then increment.
6507        EnumVal = LastEnumConst->getInitVal();
6508        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6509        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6510        ++EnumVal;
6511
6512        // If we're not in C++, diagnose the overflow of enumerator values,
6513        // which in C99 means that the enumerator value is not representable in
6514        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6515        // permits enumerator values that are representable in some larger
6516        // integral type.
6517        if (!getLangOptions().CPlusPlus && !T.isNull())
6518          Diag(IdLoc, diag::warn_enum_value_overflow);
6519      } else if (!getLangOptions().CPlusPlus &&
6520                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6521        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6522        Diag(IdLoc, diag::ext_enum_value_not_int)
6523          << EnumVal.toString(10) << 1;
6524      }
6525    }
6526  }
6527
6528  if (!EltTy->isDependentType()) {
6529    // Make the enumerator value match the signedness and size of the
6530    // enumerator's type.
6531    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6532    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6533  }
6534
6535  val.release();
6536  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6537                                  Val, EnumVal);
6538}
6539
6540
6541Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6542                                        DeclPtrTy lastEnumConst,
6543                                        SourceLocation IdLoc,
6544                                        IdentifierInfo *Id,
6545                                        SourceLocation EqualLoc, ExprTy *val) {
6546  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6547  EnumConstantDecl *LastEnumConst =
6548    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6549  Expr *Val = static_cast<Expr*>(val);
6550
6551  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6552  // we find one that is.
6553  S = getNonFieldDeclScope(S);
6554
6555  // Verify that there isn't already something declared with this name in this
6556  // scope.
6557  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6558                                         ForRedeclaration);
6559  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6560    // Maybe we will complain about the shadowed template parameter.
6561    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6562    // Just pretend that we didn't see the previous declaration.
6563    PrevDecl = 0;
6564  }
6565
6566  if (PrevDecl) {
6567    // When in C++, we may get a TagDecl with the same name; in this case the
6568    // enum constant will 'hide' the tag.
6569    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6570           "Received TagDecl when not in C++!");
6571    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6572      if (isa<EnumConstantDecl>(PrevDecl))
6573        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6574      else
6575        Diag(IdLoc, diag::err_redefinition) << Id;
6576      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6577      return DeclPtrTy();
6578    }
6579  }
6580
6581  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6582                                            IdLoc, Id, Owned(Val));
6583
6584  // Register this decl in the current scope stack.
6585  if (New) {
6586    New->setAccess(TheEnumDecl->getAccess());
6587    PushOnScopeChains(New, S);
6588  }
6589
6590  return DeclPtrTy::make(New);
6591}
6592
6593void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6594                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6595                         DeclPtrTy *Elements, unsigned NumElements,
6596                         Scope *S, AttributeList *Attr) {
6597  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6598  QualType EnumType = Context.getTypeDeclType(Enum);
6599
6600  if (Attr)
6601    ProcessDeclAttributeList(S, Enum, Attr);
6602
6603  if (Enum->isDependentType()) {
6604    for (unsigned i = 0; i != NumElements; ++i) {
6605      EnumConstantDecl *ECD =
6606        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6607      if (!ECD) continue;
6608
6609      ECD->setType(EnumType);
6610    }
6611
6612    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6613    return;
6614  }
6615
6616  // TODO: If the result value doesn't fit in an int, it must be a long or long
6617  // long value.  ISO C does not support this, but GCC does as an extension,
6618  // emit a warning.
6619  unsigned IntWidth = Context.Target.getIntWidth();
6620  unsigned CharWidth = Context.Target.getCharWidth();
6621  unsigned ShortWidth = Context.Target.getShortWidth();
6622
6623  // Verify that all the values are okay, compute the size of the values, and
6624  // reverse the list.
6625  unsigned NumNegativeBits = 0;
6626  unsigned NumPositiveBits = 0;
6627
6628  // Keep track of whether all elements have type int.
6629  bool AllElementsInt = true;
6630
6631  for (unsigned i = 0; i != NumElements; ++i) {
6632    EnumConstantDecl *ECD =
6633      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6634    if (!ECD) continue;  // Already issued a diagnostic.
6635
6636    const llvm::APSInt &InitVal = ECD->getInitVal();
6637
6638    // Keep track of the size of positive and negative values.
6639    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6640      NumPositiveBits = std::max(NumPositiveBits,
6641                                 (unsigned)InitVal.getActiveBits());
6642    else
6643      NumNegativeBits = std::max(NumNegativeBits,
6644                                 (unsigned)InitVal.getMinSignedBits());
6645
6646    // Keep track of whether every enum element has type int (very commmon).
6647    if (AllElementsInt)
6648      AllElementsInt = ECD->getType() == Context.IntTy;
6649  }
6650
6651  // Figure out the type that should be used for this enum.
6652  // FIXME: Support -fshort-enums.
6653  QualType BestType;
6654  unsigned BestWidth;
6655
6656  // C++0x N3000 [conv.prom]p3:
6657  //   An rvalue of an unscoped enumeration type whose underlying
6658  //   type is not fixed can be converted to an rvalue of the first
6659  //   of the following types that can represent all the values of
6660  //   the enumeration: int, unsigned int, long int, unsigned long
6661  //   int, long long int, or unsigned long long int.
6662  // C99 6.4.4.3p2:
6663  //   An identifier declared as an enumeration constant has type int.
6664  // The C99 rule is modified by a gcc extension
6665  QualType BestPromotionType;
6666
6667  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6668
6669  if (NumNegativeBits) {
6670    // If there is a negative value, figure out the smallest integer type (of
6671    // int/long/longlong) that fits.
6672    // If it's packed, check also if it fits a char or a short.
6673    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6674      BestType = Context.SignedCharTy;
6675      BestWidth = CharWidth;
6676    } else if (Packed && NumNegativeBits <= ShortWidth &&
6677               NumPositiveBits < ShortWidth) {
6678      BestType = Context.ShortTy;
6679      BestWidth = ShortWidth;
6680    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6681      BestType = Context.IntTy;
6682      BestWidth = IntWidth;
6683    } else {
6684      BestWidth = Context.Target.getLongWidth();
6685
6686      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6687        BestType = Context.LongTy;
6688      } else {
6689        BestWidth = Context.Target.getLongLongWidth();
6690
6691        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6692          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6693        BestType = Context.LongLongTy;
6694      }
6695    }
6696    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6697  } else {
6698    // If there is no negative value, figure out the smallest type that fits
6699    // all of the enumerator values.
6700    // If it's packed, check also if it fits a char or a short.
6701    if (Packed && NumPositiveBits <= CharWidth) {
6702      BestType = Context.UnsignedCharTy;
6703      BestPromotionType = Context.IntTy;
6704      BestWidth = CharWidth;
6705    } else if (Packed && NumPositiveBits <= ShortWidth) {
6706      BestType = Context.UnsignedShortTy;
6707      BestPromotionType = Context.IntTy;
6708      BestWidth = ShortWidth;
6709    } else if (NumPositiveBits <= IntWidth) {
6710      BestType = Context.UnsignedIntTy;
6711      BestWidth = IntWidth;
6712      BestPromotionType
6713        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6714                           ? Context.UnsignedIntTy : Context.IntTy;
6715    } else if (NumPositiveBits <=
6716               (BestWidth = Context.Target.getLongWidth())) {
6717      BestType = Context.UnsignedLongTy;
6718      BestPromotionType
6719        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6720                           ? Context.UnsignedLongTy : Context.LongTy;
6721    } else {
6722      BestWidth = Context.Target.getLongLongWidth();
6723      assert(NumPositiveBits <= BestWidth &&
6724             "How could an initializer get larger than ULL?");
6725      BestType = Context.UnsignedLongLongTy;
6726      BestPromotionType
6727        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6728                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6729    }
6730  }
6731
6732  // Loop over all of the enumerator constants, changing their types to match
6733  // the type of the enum if needed.
6734  for (unsigned i = 0; i != NumElements; ++i) {
6735    EnumConstantDecl *ECD =
6736      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6737    if (!ECD) continue;  // Already issued a diagnostic.
6738
6739    // Standard C says the enumerators have int type, but we allow, as an
6740    // extension, the enumerators to be larger than int size.  If each
6741    // enumerator value fits in an int, type it as an int, otherwise type it the
6742    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6743    // that X has type 'int', not 'unsigned'.
6744
6745    // Determine whether the value fits into an int.
6746    llvm::APSInt InitVal = ECD->getInitVal();
6747
6748    // If it fits into an integer type, force it.  Otherwise force it to match
6749    // the enum decl type.
6750    QualType NewTy;
6751    unsigned NewWidth;
6752    bool NewSign;
6753    if (!getLangOptions().CPlusPlus &&
6754        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6755      NewTy = Context.IntTy;
6756      NewWidth = IntWidth;
6757      NewSign = true;
6758    } else if (ECD->getType() == BestType) {
6759      // Already the right type!
6760      if (getLangOptions().CPlusPlus)
6761        // C++ [dcl.enum]p4: Following the closing brace of an
6762        // enum-specifier, each enumerator has the type of its
6763        // enumeration.
6764        ECD->setType(EnumType);
6765      continue;
6766    } else {
6767      NewTy = BestType;
6768      NewWidth = BestWidth;
6769      NewSign = BestType->isSignedIntegerType();
6770    }
6771
6772    // Adjust the APSInt value.
6773    InitVal.extOrTrunc(NewWidth);
6774    InitVal.setIsSigned(NewSign);
6775    ECD->setInitVal(InitVal);
6776
6777    // Adjust the Expr initializer and type.
6778    if (ECD->getInitExpr())
6779      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6780                                                      CastExpr::CK_IntegralCast,
6781                                                      ECD->getInitExpr(),
6782                                                      CXXBaseSpecifierArray(),
6783                                                     ImplicitCastExpr::RValue));
6784    if (getLangOptions().CPlusPlus)
6785      // C++ [dcl.enum]p4: Following the closing brace of an
6786      // enum-specifier, each enumerator has the type of its
6787      // enumeration.
6788      ECD->setType(EnumType);
6789    else
6790      ECD->setType(NewTy);
6791  }
6792
6793  Enum->completeDefinition(BestType, BestPromotionType,
6794                           NumPositiveBits, NumNegativeBits);
6795}
6796
6797Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6798                                            ExprArg expr) {
6799  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6800
6801  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6802                                                   Loc, AsmString);
6803  CurContext->addDecl(New);
6804  return DeclPtrTy::make(New);
6805}
6806
6807void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6808                             SourceLocation PragmaLoc,
6809                             SourceLocation NameLoc) {
6810  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6811
6812  if (PrevDecl) {
6813    PrevDecl->addAttr(::new (Context) WeakAttr());
6814  } else {
6815    (void)WeakUndeclaredIdentifiers.insert(
6816      std::pair<IdentifierInfo*,WeakInfo>
6817        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6818  }
6819}
6820
6821void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6822                                IdentifierInfo* AliasName,
6823                                SourceLocation PragmaLoc,
6824                                SourceLocation NameLoc,
6825                                SourceLocation AliasNameLoc) {
6826  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6827                                    LookupOrdinaryName);
6828  WeakInfo W = WeakInfo(Name, NameLoc);
6829
6830  if (PrevDecl) {
6831    if (!PrevDecl->hasAttr<AliasAttr>())
6832      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6833        DeclApplyPragmaWeak(TUScope, ND, W);
6834  } else {
6835    (void)WeakUndeclaredIdentifiers.insert(
6836      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6837  }
6838}
6839