SemaDecl.cpp revision 1a5d35539a16f3b2eb2426f3f23a8376b190741c
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo,
74                             IdentifierInfo **CorrectedII) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149    if (CorrectedII) {
150      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
151                                              Kind, S, SS, 0, false,
152                                              Sema::CTC_Type);
153      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
154      TemplateTy Template;
155      bool MemberOfUnknownSpecialization;
156      UnqualifiedId TemplateName;
157      TemplateName.setIdentifier(NewII, NameLoc);
158      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
159      CXXScopeSpec NewSS, *NewSSPtr = SS;
160      if (SS && NNS) {
161        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
162        NewSSPtr = &NewSS;
163      }
164      if (Correction && (NNS || NewII != &II) &&
165          // Ignore a correction to a template type as the to-be-corrected
166          // identifier is not a template (typo correction for template names
167          // is handled elsewhere).
168          !(getLangOptions().CPlusPlus && NewSSPtr &&
169            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
170                           false, Template, MemberOfUnknownSpecialization))) {
171        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
172                                    isClassName, HasTrailingDot, ObjectTypePtr,
173                                    WantNontrivialTypeSourceInfo);
174        if (Ty) {
175          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
176          std::string CorrectedQuotedStr(
177              Correction.getQuoted(getLangOptions()));
178          Diag(NameLoc, diag::err_unknown_typename_suggest)
179              << Result.getLookupName() << CorrectedQuotedStr
180              << FixItHint::CreateReplacement(SourceRange(NameLoc),
181                                              CorrectedStr);
182          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
183            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
184              << CorrectedQuotedStr;
185
186          if (SS && NNS)
187            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
188          *CorrectedII = NewII;
189          return Ty;
190        }
191      }
192    }
193    // If typo correction failed or was not performed, fall through
194  case LookupResult::FoundOverloaded:
195  case LookupResult::FoundUnresolvedValue:
196    Result.suppressDiagnostics();
197    return ParsedType();
198
199  case LookupResult::Ambiguous:
200    // Recover from type-hiding ambiguities by hiding the type.  We'll
201    // do the lookup again when looking for an object, and we can
202    // diagnose the error then.  If we don't do this, then the error
203    // about hiding the type will be immediately followed by an error
204    // that only makes sense if the identifier was treated like a type.
205    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
206      Result.suppressDiagnostics();
207      return ParsedType();
208    }
209
210    // Look to see if we have a type anywhere in the list of results.
211    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
212         Res != ResEnd; ++Res) {
213      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
214        if (!IIDecl ||
215            (*Res)->getLocation().getRawEncoding() <
216              IIDecl->getLocation().getRawEncoding())
217          IIDecl = *Res;
218      }
219    }
220
221    if (!IIDecl) {
222      // None of the entities we found is a type, so there is no way
223      // to even assume that the result is a type. In this case, don't
224      // complain about the ambiguity. The parser will either try to
225      // perform this lookup again (e.g., as an object name), which
226      // will produce the ambiguity, or will complain that it expected
227      // a type name.
228      Result.suppressDiagnostics();
229      return ParsedType();
230    }
231
232    // We found a type within the ambiguous lookup; diagnose the
233    // ambiguity and then return that type. This might be the right
234    // answer, or it might not be, but it suppresses any attempt to
235    // perform the name lookup again.
236    break;
237
238  case LookupResult::Found:
239    IIDecl = Result.getFoundDecl();
240    break;
241  }
242
243  assert(IIDecl && "Didn't find decl");
244
245  QualType T;
246  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
247    DiagnoseUseOfDecl(IIDecl, NameLoc);
248
249    if (T.isNull())
250      T = Context.getTypeDeclType(TD);
251
252    if (SS && SS->isNotEmpty()) {
253      if (WantNontrivialTypeSourceInfo) {
254        // Construct a type with type-source information.
255        TypeLocBuilder Builder;
256        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
257
258        T = getElaboratedType(ETK_None, *SS, T);
259        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
260        ElabTL.setKeywordLoc(SourceLocation());
261        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
262        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
263      } else {
264        T = getElaboratedType(ETK_None, *SS, T);
265      }
266    }
267  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
268    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
269    if (!HasTrailingDot)
270      T = Context.getObjCInterfaceType(IDecl);
271  }
272
273  if (T.isNull()) {
274    // If it's not plausibly a type, suppress diagnostics.
275    Result.suppressDiagnostics();
276    return ParsedType();
277  }
278  return ParsedType::make(T);
279}
280
281/// isTagName() - This method is called *for error recovery purposes only*
282/// to determine if the specified name is a valid tag name ("struct foo").  If
283/// so, this returns the TST for the tag corresponding to it (TST_enum,
284/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
285/// where the user forgot to specify the tag.
286DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
287  // Do a tag name lookup in this scope.
288  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
289  LookupName(R, S, false);
290  R.suppressDiagnostics();
291  if (R.getResultKind() == LookupResult::Found)
292    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
293      switch (TD->getTagKind()) {
294      default:         return DeclSpec::TST_unspecified;
295      case TTK_Struct: return DeclSpec::TST_struct;
296      case TTK_Union:  return DeclSpec::TST_union;
297      case TTK_Class:  return DeclSpec::TST_class;
298      case TTK_Enum:   return DeclSpec::TST_enum;
299      }
300    }
301
302  return DeclSpec::TST_unspecified;
303}
304
305/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
306/// if a CXXScopeSpec's type is equal to the type of one of the base classes
307/// then downgrade the missing typename error to a warning.
308/// This is needed for MSVC compatibility; Example:
309/// @code
310/// template<class T> class A {
311/// public:
312///   typedef int TYPE;
313/// };
314/// template<class T> class B : public A<T> {
315/// public:
316///   A<T>::TYPE a; // no typename required because A<T> is a base class.
317/// };
318/// @endcode
319bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
320  if (CurContext->isRecord()) {
321    const Type *Ty = SS->getScopeRep()->getAsType();
322
323    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
324    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
325          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
326      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
327        return true;
328    return S->isFunctionPrototypeScope();
329  }
330  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
331}
332
333bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
334                                   SourceLocation IILoc,
335                                   Scope *S,
336                                   CXXScopeSpec *SS,
337                                   ParsedType &SuggestedType) {
338  // We don't have anything to suggest (yet).
339  SuggestedType = ParsedType();
340
341  // There may have been a typo in the name of the type. Look up typo
342  // results, in case we have something that we can suggest.
343  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
344                                             LookupOrdinaryName, S, SS, NULL,
345                                             false, CTC_Type)) {
346    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
347    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
348
349    if (Corrected.isKeyword()) {
350      // We corrected to a keyword.
351      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
352      Diag(IILoc, diag::err_unknown_typename_suggest)
353        << &II << CorrectedQuotedStr;
354      return true;
355    } else {
356      NamedDecl *Result = Corrected.getCorrectionDecl();
357      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
358          !Result->isInvalidDecl()) {
359        // We found a similarly-named type or interface; suggest that.
360        if (!SS || !SS->isSet())
361          Diag(IILoc, diag::err_unknown_typename_suggest)
362            << &II << CorrectedQuotedStr
363            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
364        else if (DeclContext *DC = computeDeclContext(*SS, false))
365          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
366            << &II << DC << CorrectedQuotedStr << SS->getRange()
367            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
368        else
369          llvm_unreachable("could not have corrected a typo here");
370
371        Diag(Result->getLocation(), diag::note_previous_decl)
372          << CorrectedQuotedStr;
373
374        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
375                                    false, false, ParsedType(),
376                                    /*NonTrivialTypeSourceInfo=*/true);
377        return true;
378      }
379    }
380  }
381
382  if (getLangOptions().CPlusPlus) {
383    // See if II is a class template that the user forgot to pass arguments to.
384    UnqualifiedId Name;
385    Name.setIdentifier(&II, IILoc);
386    CXXScopeSpec EmptySS;
387    TemplateTy TemplateResult;
388    bool MemberOfUnknownSpecialization;
389    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
390                       Name, ParsedType(), true, TemplateResult,
391                       MemberOfUnknownSpecialization) == TNK_Type_template) {
392      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
393      Diag(IILoc, diag::err_template_missing_args) << TplName;
394      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
395        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
396          << TplDecl->getTemplateParameters()->getSourceRange();
397      }
398      return true;
399    }
400  }
401
402  // FIXME: Should we move the logic that tries to recover from a missing tag
403  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
404
405  if (!SS || (!SS->isSet() && !SS->isInvalid()))
406    Diag(IILoc, diag::err_unknown_typename) << &II;
407  else if (DeclContext *DC = computeDeclContext(*SS, false))
408    Diag(IILoc, diag::err_typename_nested_not_found)
409      << &II << DC << SS->getRange();
410  else if (isDependentScopeSpecifier(*SS)) {
411    unsigned DiagID = diag::err_typename_missing;
412    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
413      DiagID = diag::warn_typename_missing;
414
415    Diag(SS->getRange().getBegin(), DiagID)
416      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
417      << SourceRange(SS->getRange().getBegin(), IILoc)
418      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
419    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
420                                                                         .get();
421  } else {
422    assert(SS && SS->isInvalid() &&
423           "Invalid scope specifier has already been diagnosed");
424  }
425
426  return true;
427}
428
429/// \brief Determine whether the given result set contains either a type name
430/// or
431static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
432  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
433                       NextToken.is(tok::less);
434
435  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
436    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
437      return true;
438
439    if (CheckTemplate && isa<TemplateDecl>(*I))
440      return true;
441  }
442
443  return false;
444}
445
446Sema::NameClassification Sema::ClassifyName(Scope *S,
447                                            CXXScopeSpec &SS,
448                                            IdentifierInfo *&Name,
449                                            SourceLocation NameLoc,
450                                            const Token &NextToken) {
451  DeclarationNameInfo NameInfo(Name, NameLoc);
452  ObjCMethodDecl *CurMethod = getCurMethodDecl();
453
454  if (NextToken.is(tok::coloncolon)) {
455    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
456                                QualType(), false, SS, 0, false);
457
458  }
459
460  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
461  LookupParsedName(Result, S, &SS, !CurMethod);
462
463  // Perform lookup for Objective-C instance variables (including automatically
464  // synthesized instance variables), if we're in an Objective-C method.
465  // FIXME: This lookup really, really needs to be folded in to the normal
466  // unqualified lookup mechanism.
467  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
468    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
469    if (E.get() || E.isInvalid())
470      return E;
471  }
472
473  bool SecondTry = false;
474  bool IsFilteredTemplateName = false;
475
476Corrected:
477  switch (Result.getResultKind()) {
478  case LookupResult::NotFound:
479    // If an unqualified-id is followed by a '(', then we have a function
480    // call.
481    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
482      // In C++, this is an ADL-only call.
483      // FIXME: Reference?
484      if (getLangOptions().CPlusPlus)
485        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
486
487      // C90 6.3.2.2:
488      //   If the expression that precedes the parenthesized argument list in a
489      //   function call consists solely of an identifier, and if no
490      //   declaration is visible for this identifier, the identifier is
491      //   implicitly declared exactly as if, in the innermost block containing
492      //   the function call, the declaration
493      //
494      //     extern int identifier ();
495      //
496      //   appeared.
497      //
498      // We also allow this in C99 as an extension.
499      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
500        Result.addDecl(D);
501        Result.resolveKind();
502        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
503      }
504    }
505
506    // In C, we first see whether there is a tag type by the same name, in
507    // which case it's likely that the user just forget to write "enum",
508    // "struct", or "union".
509    if (!getLangOptions().CPlusPlus && !SecondTry) {
510      Result.clear(LookupTagName);
511      LookupParsedName(Result, S, &SS);
512      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
513        const char *TagName = 0;
514        const char *FixItTagName = 0;
515        switch (Tag->getTagKind()) {
516          case TTK_Class:
517            TagName = "class";
518            FixItTagName = "class ";
519            break;
520
521          case TTK_Enum:
522            TagName = "enum";
523            FixItTagName = "enum ";
524            break;
525
526          case TTK_Struct:
527            TagName = "struct";
528            FixItTagName = "struct ";
529            break;
530
531          case TTK_Union:
532            TagName = "union";
533            FixItTagName = "union ";
534            break;
535        }
536
537        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
538          << Name << TagName << getLangOptions().CPlusPlus
539          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
540        break;
541      }
542
543      Result.clear(LookupOrdinaryName);
544    }
545
546    // Perform typo correction to determine if there is another name that is
547    // close to this name.
548    if (!SecondTry) {
549      SecondTry = true;
550      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
551                                                 Result.getLookupKind(), S,
552                                                 &SS)) {
553        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
554        unsigned QualifiedDiag = diag::err_no_member_suggest;
555        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
556        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
557
558        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
559        NamedDecl *UnderlyingFirstDecl
560          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
561        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
562            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
563          UnqualifiedDiag = diag::err_no_template_suggest;
564          QualifiedDiag = diag::err_no_member_template_suggest;
565        } else if (UnderlyingFirstDecl &&
566                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
569           UnqualifiedDiag = diag::err_unknown_typename_suggest;
570           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
571         }
572
573        if (SS.isEmpty())
574          Diag(NameLoc, UnqualifiedDiag)
575            << Name << CorrectedQuotedStr
576            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
577        else
578          Diag(NameLoc, QualifiedDiag)
579            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
580            << SS.getRange()
581            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
582
583        // Update the name, so that the caller has the new name.
584        Name = Corrected.getCorrectionAsIdentifierInfo();
585
586        // Also update the LookupResult...
587        // FIXME: This should probably go away at some point
588        Result.clear();
589        Result.setLookupName(Corrected.getCorrection());
590        if (FirstDecl) Result.addDecl(FirstDecl);
591
592        // Typo correction corrected to a keyword.
593        if (Corrected.isKeyword())
594          return Corrected.getCorrectionAsIdentifierInfo();
595
596        if (FirstDecl)
597          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
598            << CorrectedQuotedStr;
599
600        // If we found an Objective-C instance variable, let
601        // LookupInObjCMethod build the appropriate expression to
602        // reference the ivar.
603        // FIXME: This is a gross hack.
604        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
605          Result.clear();
606          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
607          return move(E);
608        }
609
610        goto Corrected;
611      }
612    }
613
614    // We failed to correct; just fall through and let the parser deal with it.
615    Result.suppressDiagnostics();
616    return NameClassification::Unknown();
617
618  case LookupResult::NotFoundInCurrentInstantiation:
619    // We performed name lookup into the current instantiation, and there were
620    // dependent bases, so we treat this result the same way as any other
621    // dependent nested-name-specifier.
622
623    // C++ [temp.res]p2:
624    //   A name used in a template declaration or definition and that is
625    //   dependent on a template-parameter is assumed not to name a type
626    //   unless the applicable name lookup finds a type name or the name is
627    //   qualified by the keyword typename.
628    //
629    // FIXME: If the next token is '<', we might want to ask the parser to
630    // perform some heroics to see if we actually have a
631    // template-argument-list, which would indicate a missing 'template'
632    // keyword here.
633    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
634
635  case LookupResult::Found:
636  case LookupResult::FoundOverloaded:
637  case LookupResult::FoundUnresolvedValue:
638    break;
639
640  case LookupResult::Ambiguous:
641    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
642        hasAnyAcceptableTemplateNames(Result)) {
643      // C++ [temp.local]p3:
644      //   A lookup that finds an injected-class-name (10.2) can result in an
645      //   ambiguity in certain cases (for example, if it is found in more than
646      //   one base class). If all of the injected-class-names that are found
647      //   refer to specializations of the same class template, and if the name
648      //   is followed by a template-argument-list, the reference refers to the
649      //   class template itself and not a specialization thereof, and is not
650      //   ambiguous.
651      //
652      // This filtering can make an ambiguous result into an unambiguous one,
653      // so try again after filtering out template names.
654      FilterAcceptableTemplateNames(Result);
655      if (!Result.isAmbiguous()) {
656        IsFilteredTemplateName = true;
657        break;
658      }
659    }
660
661    // Diagnose the ambiguity and return an error.
662    return NameClassification::Error();
663  }
664
665  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
666      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
667    // C++ [temp.names]p3:
668    //   After name lookup (3.4) finds that a name is a template-name or that
669    //   an operator-function-id or a literal- operator-id refers to a set of
670    //   overloaded functions any member of which is a function template if
671    //   this is followed by a <, the < is always taken as the delimiter of a
672    //   template-argument-list and never as the less-than operator.
673    if (!IsFilteredTemplateName)
674      FilterAcceptableTemplateNames(Result);
675
676    if (!Result.empty()) {
677      bool IsFunctionTemplate;
678      TemplateName Template;
679      if (Result.end() - Result.begin() > 1) {
680        IsFunctionTemplate = true;
681        Template = Context.getOverloadedTemplateName(Result.begin(),
682                                                     Result.end());
683      } else {
684        TemplateDecl *TD
685          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
686        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
687
688        if (SS.isSet() && !SS.isInvalid())
689          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
690                                                    /*TemplateKeyword=*/false,
691                                                      TD);
692        else
693          Template = TemplateName(TD);
694      }
695
696      if (IsFunctionTemplate) {
697        // Function templates always go through overload resolution, at which
698        // point we'll perform the various checks (e.g., accessibility) we need
699        // to based on which function we selected.
700        Result.suppressDiagnostics();
701
702        return NameClassification::FunctionTemplate(Template);
703      }
704
705      return NameClassification::TypeTemplate(Template);
706    }
707  }
708
709  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
710  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
711    DiagnoseUseOfDecl(Type, NameLoc);
712    QualType T = Context.getTypeDeclType(Type);
713    return ParsedType::make(T);
714  }
715
716  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
717  if (!Class) {
718    // FIXME: It's unfortunate that we don't have a Type node for handling this.
719    if (ObjCCompatibleAliasDecl *Alias
720                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
721      Class = Alias->getClassInterface();
722  }
723
724  if (Class) {
725    DiagnoseUseOfDecl(Class, NameLoc);
726
727    if (NextToken.is(tok::period)) {
728      // Interface. <something> is parsed as a property reference expression.
729      // Just return "unknown" as a fall-through for now.
730      Result.suppressDiagnostics();
731      return NameClassification::Unknown();
732    }
733
734    QualType T = Context.getObjCInterfaceType(Class);
735    return ParsedType::make(T);
736  }
737
738  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
739    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
740
741  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
742  return BuildDeclarationNameExpr(SS, Result, ADL);
743}
744
745// Determines the context to return to after temporarily entering a
746// context.  This depends in an unnecessarily complicated way on the
747// exact ordering of callbacks from the parser.
748DeclContext *Sema::getContainingDC(DeclContext *DC) {
749
750  // Functions defined inline within classes aren't parsed until we've
751  // finished parsing the top-level class, so the top-level class is
752  // the context we'll need to return to.
753  if (isa<FunctionDecl>(DC)) {
754    DC = DC->getLexicalParent();
755
756    // A function not defined within a class will always return to its
757    // lexical context.
758    if (!isa<CXXRecordDecl>(DC))
759      return DC;
760
761    // A C++ inline method/friend is parsed *after* the topmost class
762    // it was declared in is fully parsed ("complete");  the topmost
763    // class is the context we need to return to.
764    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
765      DC = RD;
766
767    // Return the declaration context of the topmost class the inline method is
768    // declared in.
769    return DC;
770  }
771
772  return DC->getLexicalParent();
773}
774
775void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
776  assert(getContainingDC(DC) == CurContext &&
777      "The next DeclContext should be lexically contained in the current one.");
778  CurContext = DC;
779  S->setEntity(DC);
780}
781
782void Sema::PopDeclContext() {
783  assert(CurContext && "DeclContext imbalance!");
784
785  CurContext = getContainingDC(CurContext);
786  assert(CurContext && "Popped translation unit!");
787}
788
789/// EnterDeclaratorContext - Used when we must lookup names in the context
790/// of a declarator's nested name specifier.
791///
792void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
793  // C++0x [basic.lookup.unqual]p13:
794  //   A name used in the definition of a static data member of class
795  //   X (after the qualified-id of the static member) is looked up as
796  //   if the name was used in a member function of X.
797  // C++0x [basic.lookup.unqual]p14:
798  //   If a variable member of a namespace is defined outside of the
799  //   scope of its namespace then any name used in the definition of
800  //   the variable member (after the declarator-id) is looked up as
801  //   if the definition of the variable member occurred in its
802  //   namespace.
803  // Both of these imply that we should push a scope whose context
804  // is the semantic context of the declaration.  We can't use
805  // PushDeclContext here because that context is not necessarily
806  // lexically contained in the current context.  Fortunately,
807  // the containing scope should have the appropriate information.
808
809  assert(!S->getEntity() && "scope already has entity");
810
811#ifndef NDEBUG
812  Scope *Ancestor = S->getParent();
813  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
814  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
815#endif
816
817  CurContext = DC;
818  S->setEntity(DC);
819}
820
821void Sema::ExitDeclaratorContext(Scope *S) {
822  assert(S->getEntity() == CurContext && "Context imbalance!");
823
824  // Switch back to the lexical context.  The safety of this is
825  // enforced by an assert in EnterDeclaratorContext.
826  Scope *Ancestor = S->getParent();
827  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
828  CurContext = (DeclContext*) Ancestor->getEntity();
829
830  // We don't need to do anything with the scope, which is going to
831  // disappear.
832}
833
834
835void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
836  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
837  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
838    // We assume that the caller has already called
839    // ActOnReenterTemplateScope
840    FD = TFD->getTemplatedDecl();
841  }
842  if (!FD)
843    return;
844
845  PushDeclContext(S, FD);
846  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
847    ParmVarDecl *Param = FD->getParamDecl(P);
848    // If the parameter has an identifier, then add it to the scope
849    if (Param->getIdentifier()) {
850      S->AddDecl(Param);
851      IdResolver.AddDecl(Param);
852    }
853  }
854}
855
856
857/// \brief Determine whether we allow overloading of the function
858/// PrevDecl with another declaration.
859///
860/// This routine determines whether overloading is possible, not
861/// whether some new function is actually an overload. It will return
862/// true in C++ (where we can always provide overloads) or, as an
863/// extension, in C when the previous function is already an
864/// overloaded function declaration or has the "overloadable"
865/// attribute.
866static bool AllowOverloadingOfFunction(LookupResult &Previous,
867                                       ASTContext &Context) {
868  if (Context.getLangOptions().CPlusPlus)
869    return true;
870
871  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
872    return true;
873
874  return (Previous.getResultKind() == LookupResult::Found
875          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
876}
877
878/// Add this decl to the scope shadowed decl chains.
879void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
880  // Move up the scope chain until we find the nearest enclosing
881  // non-transparent context. The declaration will be introduced into this
882  // scope.
883  while (S->getEntity() &&
884         ((DeclContext *)S->getEntity())->isTransparentContext())
885    S = S->getParent();
886
887  // Add scoped declarations into their context, so that they can be
888  // found later. Declarations without a context won't be inserted
889  // into any context.
890  if (AddToContext)
891    CurContext->addDecl(D);
892
893  // Out-of-line definitions shouldn't be pushed into scope in C++.
894  // Out-of-line variable and function definitions shouldn't even in C.
895  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
896      D->isOutOfLine() &&
897      !D->getDeclContext()->getRedeclContext()->Equals(
898        D->getLexicalDeclContext()->getRedeclContext()))
899    return;
900
901  // Template instantiations should also not be pushed into scope.
902  if (isa<FunctionDecl>(D) &&
903      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
904    return;
905
906  // If this replaces anything in the current scope,
907  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
908                               IEnd = IdResolver.end();
909  for (; I != IEnd; ++I) {
910    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
911      S->RemoveDecl(*I);
912      IdResolver.RemoveDecl(*I);
913
914      // Should only need to replace one decl.
915      break;
916    }
917  }
918
919  S->AddDecl(D);
920
921  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
922    // Implicitly-generated labels may end up getting generated in an order that
923    // isn't strictly lexical, which breaks name lookup. Be careful to insert
924    // the label at the appropriate place in the identifier chain.
925    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
926      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
927      if (IDC == CurContext) {
928        if (!S->isDeclScope(*I))
929          continue;
930      } else if (IDC->Encloses(CurContext))
931        break;
932    }
933
934    IdResolver.InsertDeclAfter(I, D);
935  } else {
936    IdResolver.AddDecl(D);
937  }
938}
939
940void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
941  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
942    TUScope->AddDecl(D);
943}
944
945bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
946                         bool ExplicitInstantiationOrSpecialization) {
947  return IdResolver.isDeclInScope(D, Ctx, Context, S,
948                                  ExplicitInstantiationOrSpecialization);
949}
950
951Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
952  DeclContext *TargetDC = DC->getPrimaryContext();
953  do {
954    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
955      if (ScopeDC->getPrimaryContext() == TargetDC)
956        return S;
957  } while ((S = S->getParent()));
958
959  return 0;
960}
961
962static bool isOutOfScopePreviousDeclaration(NamedDecl *,
963                                            DeclContext*,
964                                            ASTContext&);
965
966/// Filters out lookup results that don't fall within the given scope
967/// as determined by isDeclInScope.
968void Sema::FilterLookupForScope(LookupResult &R,
969                                DeclContext *Ctx, Scope *S,
970                                bool ConsiderLinkage,
971                                bool ExplicitInstantiationOrSpecialization) {
972  LookupResult::Filter F = R.makeFilter();
973  while (F.hasNext()) {
974    NamedDecl *D = F.next();
975
976    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
977      continue;
978
979    if (ConsiderLinkage &&
980        isOutOfScopePreviousDeclaration(D, Ctx, Context))
981      continue;
982
983    F.erase();
984  }
985
986  F.done();
987}
988
989static bool isUsingDecl(NamedDecl *D) {
990  return isa<UsingShadowDecl>(D) ||
991         isa<UnresolvedUsingTypenameDecl>(D) ||
992         isa<UnresolvedUsingValueDecl>(D);
993}
994
995/// Removes using shadow declarations from the lookup results.
996static void RemoveUsingDecls(LookupResult &R) {
997  LookupResult::Filter F = R.makeFilter();
998  while (F.hasNext())
999    if (isUsingDecl(F.next()))
1000      F.erase();
1001
1002  F.done();
1003}
1004
1005/// \brief Check for this common pattern:
1006/// @code
1007/// class S {
1008///   S(const S&); // DO NOT IMPLEMENT
1009///   void operator=(const S&); // DO NOT IMPLEMENT
1010/// };
1011/// @endcode
1012static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1013  // FIXME: Should check for private access too but access is set after we get
1014  // the decl here.
1015  if (D->doesThisDeclarationHaveABody())
1016    return false;
1017
1018  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1019    return CD->isCopyConstructor();
1020  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1021    return Method->isCopyAssignmentOperator();
1022  return false;
1023}
1024
1025bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1026  assert(D);
1027
1028  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1029    return false;
1030
1031  // Ignore class templates.
1032  if (D->getDeclContext()->isDependentContext() ||
1033      D->getLexicalDeclContext()->isDependentContext())
1034    return false;
1035
1036  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1037    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1038      return false;
1039
1040    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1041      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1042        return false;
1043    } else {
1044      // 'static inline' functions are used in headers; don't warn.
1045      if (FD->getStorageClass() == SC_Static &&
1046          FD->isInlineSpecified())
1047        return false;
1048    }
1049
1050    if (FD->doesThisDeclarationHaveABody() &&
1051        Context.DeclMustBeEmitted(FD))
1052      return false;
1053  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1054    if (!VD->isFileVarDecl() ||
1055        VD->getType().isConstant(Context) ||
1056        Context.DeclMustBeEmitted(VD))
1057      return false;
1058
1059    if (VD->isStaticDataMember() &&
1060        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1061      return false;
1062
1063  } else {
1064    return false;
1065  }
1066
1067  // Only warn for unused decls internal to the translation unit.
1068  if (D->getLinkage() == ExternalLinkage)
1069    return false;
1070
1071  return true;
1072}
1073
1074void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1075  if (!D)
1076    return;
1077
1078  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1079    const FunctionDecl *First = FD->getFirstDeclaration();
1080    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1081      return; // First should already be in the vector.
1082  }
1083
1084  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1085    const VarDecl *First = VD->getFirstDeclaration();
1086    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1087      return; // First should already be in the vector.
1088  }
1089
1090   if (ShouldWarnIfUnusedFileScopedDecl(D))
1091     UnusedFileScopedDecls.push_back(D);
1092 }
1093
1094static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1095  if (D->isInvalidDecl())
1096    return false;
1097
1098  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1099    return false;
1100
1101  if (isa<LabelDecl>(D))
1102    return true;
1103
1104  // White-list anything that isn't a local variable.
1105  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1106      !D->getDeclContext()->isFunctionOrMethod())
1107    return false;
1108
1109  // Types of valid local variables should be complete, so this should succeed.
1110  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1111
1112    // White-list anything with an __attribute__((unused)) type.
1113    QualType Ty = VD->getType();
1114
1115    // Only look at the outermost level of typedef.
1116    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1117      if (TT->getDecl()->hasAttr<UnusedAttr>())
1118        return false;
1119    }
1120
1121    // If we failed to complete the type for some reason, or if the type is
1122    // dependent, don't diagnose the variable.
1123    if (Ty->isIncompleteType() || Ty->isDependentType())
1124      return false;
1125
1126    if (const TagType *TT = Ty->getAs<TagType>()) {
1127      const TagDecl *Tag = TT->getDecl();
1128      if (Tag->hasAttr<UnusedAttr>())
1129        return false;
1130
1131      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1132        if (!RD->hasTrivialDestructor())
1133          return false;
1134
1135        if (const Expr *Init = VD->getInit()) {
1136          const CXXConstructExpr *Construct =
1137            dyn_cast<CXXConstructExpr>(Init);
1138          if (Construct && !Construct->isElidable()) {
1139            CXXConstructorDecl *CD = Construct->getConstructor();
1140            if (!CD->isTrivial())
1141              return false;
1142          }
1143        }
1144      }
1145    }
1146
1147    // TODO: __attribute__((unused)) templates?
1148  }
1149
1150  return true;
1151}
1152
1153static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1154                                     FixItHint &Hint) {
1155  if (isa<LabelDecl>(D)) {
1156    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1157                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1158    if (AfterColon.isInvalid())
1159      return;
1160    Hint = FixItHint::CreateRemoval(CharSourceRange::
1161                                    getCharRange(D->getLocStart(), AfterColon));
1162  }
1163  return;
1164}
1165
1166/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1167/// unless they are marked attr(unused).
1168void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1169  FixItHint Hint;
1170  if (!ShouldDiagnoseUnusedDecl(D))
1171    return;
1172
1173  GenerateFixForUnusedDecl(D, Context, Hint);
1174
1175  unsigned DiagID;
1176  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1177    DiagID = diag::warn_unused_exception_param;
1178  else if (isa<LabelDecl>(D))
1179    DiagID = diag::warn_unused_label;
1180  else
1181    DiagID = diag::warn_unused_variable;
1182
1183  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1184}
1185
1186static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1187  // Verify that we have no forward references left.  If so, there was a goto
1188  // or address of a label taken, but no definition of it.  Label fwd
1189  // definitions are indicated with a null substmt.
1190  if (L->getStmt() == 0)
1191    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1192}
1193
1194void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1195  if (S->decl_empty()) return;
1196  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1197         "Scope shouldn't contain decls!");
1198
1199  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1200       I != E; ++I) {
1201    Decl *TmpD = (*I);
1202    assert(TmpD && "This decl didn't get pushed??");
1203
1204    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1205    NamedDecl *D = cast<NamedDecl>(TmpD);
1206
1207    if (!D->getDeclName()) continue;
1208
1209    // Diagnose unused variables in this scope.
1210    if (!S->hasErrorOccurred())
1211      DiagnoseUnusedDecl(D);
1212
1213    // If this was a forward reference to a label, verify it was defined.
1214    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1215      CheckPoppedLabel(LD, *this);
1216
1217    // Remove this name from our lexical scope.
1218    IdResolver.RemoveDecl(D);
1219  }
1220}
1221
1222/// \brief Look for an Objective-C class in the translation unit.
1223///
1224/// \param Id The name of the Objective-C class we're looking for. If
1225/// typo-correction fixes this name, the Id will be updated
1226/// to the fixed name.
1227///
1228/// \param IdLoc The location of the name in the translation unit.
1229///
1230/// \param TypoCorrection If true, this routine will attempt typo correction
1231/// if there is no class with the given name.
1232///
1233/// \returns The declaration of the named Objective-C class, or NULL if the
1234/// class could not be found.
1235ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1236                                              SourceLocation IdLoc,
1237                                              bool DoTypoCorrection) {
1238  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1239  // creation from this context.
1240  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1241
1242  if (!IDecl && DoTypoCorrection) {
1243    // Perform typo correction at the given location, but only if we
1244    // find an Objective-C class name.
1245    TypoCorrection C;
1246    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1247                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1248        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1249      Diag(IdLoc, diag::err_undef_interface_suggest)
1250        << Id << IDecl->getDeclName()
1251        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1252      Diag(IDecl->getLocation(), diag::note_previous_decl)
1253        << IDecl->getDeclName();
1254
1255      Id = IDecl->getIdentifier();
1256    }
1257  }
1258
1259  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1260}
1261
1262/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1263/// from S, where a non-field would be declared. This routine copes
1264/// with the difference between C and C++ scoping rules in structs and
1265/// unions. For example, the following code is well-formed in C but
1266/// ill-formed in C++:
1267/// @code
1268/// struct S6 {
1269///   enum { BAR } e;
1270/// };
1271///
1272/// void test_S6() {
1273///   struct S6 a;
1274///   a.e = BAR;
1275/// }
1276/// @endcode
1277/// For the declaration of BAR, this routine will return a different
1278/// scope. The scope S will be the scope of the unnamed enumeration
1279/// within S6. In C++, this routine will return the scope associated
1280/// with S6, because the enumeration's scope is a transparent
1281/// context but structures can contain non-field names. In C, this
1282/// routine will return the translation unit scope, since the
1283/// enumeration's scope is a transparent context and structures cannot
1284/// contain non-field names.
1285Scope *Sema::getNonFieldDeclScope(Scope *S) {
1286  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1287         (S->getEntity() &&
1288          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1289         (S->isClassScope() && !getLangOptions().CPlusPlus))
1290    S = S->getParent();
1291  return S;
1292}
1293
1294/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1295/// file scope.  lazily create a decl for it. ForRedeclaration is true
1296/// if we're creating this built-in in anticipation of redeclaring the
1297/// built-in.
1298NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1299                                     Scope *S, bool ForRedeclaration,
1300                                     SourceLocation Loc) {
1301  Builtin::ID BID = (Builtin::ID)bid;
1302
1303  ASTContext::GetBuiltinTypeError Error;
1304  QualType R = Context.GetBuiltinType(BID, Error);
1305  switch (Error) {
1306  case ASTContext::GE_None:
1307    // Okay
1308    break;
1309
1310  case ASTContext::GE_Missing_stdio:
1311    if (ForRedeclaration)
1312      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1313        << Context.BuiltinInfo.GetName(BID);
1314    return 0;
1315
1316  case ASTContext::GE_Missing_setjmp:
1317    if (ForRedeclaration)
1318      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1319        << Context.BuiltinInfo.GetName(BID);
1320    return 0;
1321
1322  case ASTContext::GE_Missing_ucontext:
1323    if (ForRedeclaration)
1324      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1325        << Context.BuiltinInfo.GetName(BID);
1326    return 0;
1327  }
1328
1329  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1330    Diag(Loc, diag::ext_implicit_lib_function_decl)
1331      << Context.BuiltinInfo.GetName(BID)
1332      << R;
1333    if (Context.BuiltinInfo.getHeaderName(BID) &&
1334        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1335          != DiagnosticsEngine::Ignored)
1336      Diag(Loc, diag::note_please_include_header)
1337        << Context.BuiltinInfo.getHeaderName(BID)
1338        << Context.BuiltinInfo.GetName(BID);
1339  }
1340
1341  FunctionDecl *New = FunctionDecl::Create(Context,
1342                                           Context.getTranslationUnitDecl(),
1343                                           Loc, Loc, II, R, /*TInfo=*/0,
1344                                           SC_Extern,
1345                                           SC_None, false,
1346                                           /*hasPrototype=*/true);
1347  New->setImplicit();
1348
1349  // Create Decl objects for each parameter, adding them to the
1350  // FunctionDecl.
1351  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1352    SmallVector<ParmVarDecl*, 16> Params;
1353    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1354      ParmVarDecl *parm =
1355        ParmVarDecl::Create(Context, New, SourceLocation(),
1356                            SourceLocation(), 0,
1357                            FT->getArgType(i), /*TInfo=*/0,
1358                            SC_None, SC_None, 0);
1359      parm->setScopeInfo(0, i);
1360      Params.push_back(parm);
1361    }
1362    New->setParams(Params);
1363  }
1364
1365  AddKnownFunctionAttributes(New);
1366
1367  // TUScope is the translation-unit scope to insert this function into.
1368  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1369  // relate Scopes to DeclContexts, and probably eliminate CurContext
1370  // entirely, but we're not there yet.
1371  DeclContext *SavedContext = CurContext;
1372  CurContext = Context.getTranslationUnitDecl();
1373  PushOnScopeChains(New, TUScope);
1374  CurContext = SavedContext;
1375  return New;
1376}
1377
1378bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1379  QualType OldType;
1380  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1381    OldType = OldTypedef->getUnderlyingType();
1382  else
1383    OldType = Context.getTypeDeclType(Old);
1384  QualType NewType = New->getUnderlyingType();
1385
1386  if (OldType != NewType &&
1387      !OldType->isDependentType() &&
1388      !NewType->isDependentType() &&
1389      !Context.hasSameType(OldType, NewType)) {
1390    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1391    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1392      << Kind << NewType << OldType;
1393    if (Old->getLocation().isValid())
1394      Diag(Old->getLocation(), diag::note_previous_definition);
1395    New->setInvalidDecl();
1396    return true;
1397  }
1398  return false;
1399}
1400
1401/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1402/// same name and scope as a previous declaration 'Old'.  Figure out
1403/// how to resolve this situation, merging decls or emitting
1404/// diagnostics as appropriate. If there was an error, set New to be invalid.
1405///
1406void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1407  // If the new decl is known invalid already, don't bother doing any
1408  // merging checks.
1409  if (New->isInvalidDecl()) return;
1410
1411  // Allow multiple definitions for ObjC built-in typedefs.
1412  // FIXME: Verify the underlying types are equivalent!
1413  if (getLangOptions().ObjC1) {
1414    const IdentifierInfo *TypeID = New->getIdentifier();
1415    switch (TypeID->getLength()) {
1416    default: break;
1417    case 2:
1418      if (!TypeID->isStr("id"))
1419        break;
1420      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1421      // Install the built-in type for 'id', ignoring the current definition.
1422      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1423      return;
1424    case 5:
1425      if (!TypeID->isStr("Class"))
1426        break;
1427      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1428      // Install the built-in type for 'Class', ignoring the current definition.
1429      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1430      return;
1431    case 3:
1432      if (!TypeID->isStr("SEL"))
1433        break;
1434      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1435      // Install the built-in type for 'SEL', ignoring the current definition.
1436      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1437      return;
1438    }
1439    // Fall through - the typedef name was not a builtin type.
1440  }
1441
1442  // Verify the old decl was also a type.
1443  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1444  if (!Old) {
1445    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1446      << New->getDeclName();
1447
1448    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1449    if (OldD->getLocation().isValid())
1450      Diag(OldD->getLocation(), diag::note_previous_definition);
1451
1452    return New->setInvalidDecl();
1453  }
1454
1455  // If the old declaration is invalid, just give up here.
1456  if (Old->isInvalidDecl())
1457    return New->setInvalidDecl();
1458
1459  // If the typedef types are not identical, reject them in all languages and
1460  // with any extensions enabled.
1461  if (isIncompatibleTypedef(Old, New))
1462    return;
1463
1464  // The types match.  Link up the redeclaration chain if the old
1465  // declaration was a typedef.
1466  // FIXME: this is a potential source of weirdness if the type
1467  // spellings don't match exactly.
1468  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1469    New->setPreviousDeclaration(Typedef);
1470
1471  if (getLangOptions().MicrosoftExt)
1472    return;
1473
1474  if (getLangOptions().CPlusPlus) {
1475    // C++ [dcl.typedef]p2:
1476    //   In a given non-class scope, a typedef specifier can be used to
1477    //   redefine the name of any type declared in that scope to refer
1478    //   to the type to which it already refers.
1479    if (!isa<CXXRecordDecl>(CurContext))
1480      return;
1481
1482    // C++0x [dcl.typedef]p4:
1483    //   In a given class scope, a typedef specifier can be used to redefine
1484    //   any class-name declared in that scope that is not also a typedef-name
1485    //   to refer to the type to which it already refers.
1486    //
1487    // This wording came in via DR424, which was a correction to the
1488    // wording in DR56, which accidentally banned code like:
1489    //
1490    //   struct S {
1491    //     typedef struct A { } A;
1492    //   };
1493    //
1494    // in the C++03 standard. We implement the C++0x semantics, which
1495    // allow the above but disallow
1496    //
1497    //   struct S {
1498    //     typedef int I;
1499    //     typedef int I;
1500    //   };
1501    //
1502    // since that was the intent of DR56.
1503    if (!isa<TypedefNameDecl>(Old))
1504      return;
1505
1506    Diag(New->getLocation(), diag::err_redefinition)
1507      << New->getDeclName();
1508    Diag(Old->getLocation(), diag::note_previous_definition);
1509    return New->setInvalidDecl();
1510  }
1511
1512  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1513  // is normally mapped to an error, but can be controlled with
1514  // -Wtypedef-redefinition.  If either the original or the redefinition is
1515  // in a system header, don't emit this for compatibility with GCC.
1516  if (getDiagnostics().getSuppressSystemWarnings() &&
1517      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1518       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1519    return;
1520
1521  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1522    << New->getDeclName();
1523  Diag(Old->getLocation(), diag::note_previous_definition);
1524  return;
1525}
1526
1527/// DeclhasAttr - returns true if decl Declaration already has the target
1528/// attribute.
1529static bool
1530DeclHasAttr(const Decl *D, const Attr *A) {
1531  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1532  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1533  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1534    if ((*i)->getKind() == A->getKind()) {
1535      if (Ann) {
1536        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1537          return true;
1538        continue;
1539      }
1540      // FIXME: Don't hardcode this check
1541      if (OA && isa<OwnershipAttr>(*i))
1542        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1543      return true;
1544    }
1545
1546  return false;
1547}
1548
1549/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1550void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1551                               bool MergeDeprecation) {
1552  if (!Old->hasAttrs())
1553    return;
1554
1555  bool foundAny = New->hasAttrs();
1556
1557  // Ensure that any moving of objects within the allocated map is done before
1558  // we process them.
1559  if (!foundAny) New->setAttrs(AttrVec());
1560
1561  for (specific_attr_iterator<InheritableAttr>
1562         i = Old->specific_attr_begin<InheritableAttr>(),
1563         e = Old->specific_attr_end<InheritableAttr>();
1564       i != e; ++i) {
1565    // Ignore deprecated/unavailable/availability attributes if requested.
1566    if (!MergeDeprecation &&
1567        (isa<DeprecatedAttr>(*i) ||
1568         isa<UnavailableAttr>(*i) ||
1569         isa<AvailabilityAttr>(*i)))
1570      continue;
1571
1572    if (!DeclHasAttr(New, *i)) {
1573      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1574      newAttr->setInherited(true);
1575      New->addAttr(newAttr);
1576      foundAny = true;
1577    }
1578  }
1579
1580  if (!foundAny) New->dropAttrs();
1581}
1582
1583/// mergeParamDeclAttributes - Copy attributes from the old parameter
1584/// to the new one.
1585static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1586                                     const ParmVarDecl *oldDecl,
1587                                     ASTContext &C) {
1588  if (!oldDecl->hasAttrs())
1589    return;
1590
1591  bool foundAny = newDecl->hasAttrs();
1592
1593  // Ensure that any moving of objects within the allocated map is
1594  // done before we process them.
1595  if (!foundAny) newDecl->setAttrs(AttrVec());
1596
1597  for (specific_attr_iterator<InheritableParamAttr>
1598       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1599       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1600    if (!DeclHasAttr(newDecl, *i)) {
1601      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1602      newAttr->setInherited(true);
1603      newDecl->addAttr(newAttr);
1604      foundAny = true;
1605    }
1606  }
1607
1608  if (!foundAny) newDecl->dropAttrs();
1609}
1610
1611namespace {
1612
1613/// Used in MergeFunctionDecl to keep track of function parameters in
1614/// C.
1615struct GNUCompatibleParamWarning {
1616  ParmVarDecl *OldParm;
1617  ParmVarDecl *NewParm;
1618  QualType PromotedType;
1619};
1620
1621}
1622
1623/// getSpecialMember - get the special member enum for a method.
1624Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1625  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1626    if (Ctor->isDefaultConstructor())
1627      return Sema::CXXDefaultConstructor;
1628
1629    if (Ctor->isCopyConstructor())
1630      return Sema::CXXCopyConstructor;
1631
1632    if (Ctor->isMoveConstructor())
1633      return Sema::CXXMoveConstructor;
1634  } else if (isa<CXXDestructorDecl>(MD)) {
1635    return Sema::CXXDestructor;
1636  } else if (MD->isCopyAssignmentOperator()) {
1637    return Sema::CXXCopyAssignment;
1638  } else if (MD->isMoveAssignmentOperator()) {
1639    return Sema::CXXMoveAssignment;
1640  }
1641
1642  return Sema::CXXInvalid;
1643}
1644
1645/// canRedefineFunction - checks if a function can be redefined. Currently,
1646/// only extern inline functions can be redefined, and even then only in
1647/// GNU89 mode.
1648static bool canRedefineFunction(const FunctionDecl *FD,
1649                                const LangOptions& LangOpts) {
1650  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1651          !LangOpts.CPlusPlus &&
1652          FD->isInlineSpecified() &&
1653          FD->getStorageClass() == SC_Extern);
1654}
1655
1656/// MergeFunctionDecl - We just parsed a function 'New' from
1657/// declarator D which has the same name and scope as a previous
1658/// declaration 'Old'.  Figure out how to resolve this situation,
1659/// merging decls or emitting diagnostics as appropriate.
1660///
1661/// In C++, New and Old must be declarations that are not
1662/// overloaded. Use IsOverload to determine whether New and Old are
1663/// overloaded, and to select the Old declaration that New should be
1664/// merged with.
1665///
1666/// Returns true if there was an error, false otherwise.
1667bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1668  // Verify the old decl was also a function.
1669  FunctionDecl *Old = 0;
1670  if (FunctionTemplateDecl *OldFunctionTemplate
1671        = dyn_cast<FunctionTemplateDecl>(OldD))
1672    Old = OldFunctionTemplate->getTemplatedDecl();
1673  else
1674    Old = dyn_cast<FunctionDecl>(OldD);
1675  if (!Old) {
1676    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1677      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1678      Diag(Shadow->getTargetDecl()->getLocation(),
1679           diag::note_using_decl_target);
1680      Diag(Shadow->getUsingDecl()->getLocation(),
1681           diag::note_using_decl) << 0;
1682      return true;
1683    }
1684
1685    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1686      << New->getDeclName();
1687    Diag(OldD->getLocation(), diag::note_previous_definition);
1688    return true;
1689  }
1690
1691  // Determine whether the previous declaration was a definition,
1692  // implicit declaration, or a declaration.
1693  diag::kind PrevDiag;
1694  if (Old->isThisDeclarationADefinition())
1695    PrevDiag = diag::note_previous_definition;
1696  else if (Old->isImplicit())
1697    PrevDiag = diag::note_previous_implicit_declaration;
1698  else
1699    PrevDiag = diag::note_previous_declaration;
1700
1701  QualType OldQType = Context.getCanonicalType(Old->getType());
1702  QualType NewQType = Context.getCanonicalType(New->getType());
1703
1704  // Don't complain about this if we're in GNU89 mode and the old function
1705  // is an extern inline function.
1706  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1707      New->getStorageClass() == SC_Static &&
1708      Old->getStorageClass() != SC_Static &&
1709      !canRedefineFunction(Old, getLangOptions())) {
1710    if (getLangOptions().MicrosoftExt) {
1711      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1712      Diag(Old->getLocation(), PrevDiag);
1713    } else {
1714      Diag(New->getLocation(), diag::err_static_non_static) << New;
1715      Diag(Old->getLocation(), PrevDiag);
1716      return true;
1717    }
1718  }
1719
1720  // If a function is first declared with a calling convention, but is
1721  // later declared or defined without one, the second decl assumes the
1722  // calling convention of the first.
1723  //
1724  // For the new decl, we have to look at the NON-canonical type to tell the
1725  // difference between a function that really doesn't have a calling
1726  // convention and one that is declared cdecl. That's because in
1727  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1728  // because it is the default calling convention.
1729  //
1730  // Note also that we DO NOT return at this point, because we still have
1731  // other tests to run.
1732  const FunctionType *OldType = cast<FunctionType>(OldQType);
1733  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1734  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1735  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1736  bool RequiresAdjustment = false;
1737  if (OldTypeInfo.getCC() != CC_Default &&
1738      NewTypeInfo.getCC() == CC_Default) {
1739    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1740    RequiresAdjustment = true;
1741  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1742                                     NewTypeInfo.getCC())) {
1743    // Calling conventions really aren't compatible, so complain.
1744    Diag(New->getLocation(), diag::err_cconv_change)
1745      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1746      << (OldTypeInfo.getCC() == CC_Default)
1747      << (OldTypeInfo.getCC() == CC_Default ? "" :
1748          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1749    Diag(Old->getLocation(), diag::note_previous_declaration);
1750    return true;
1751  }
1752
1753  // FIXME: diagnose the other way around?
1754  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1755    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1756    RequiresAdjustment = true;
1757  }
1758
1759  // Merge regparm attribute.
1760  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1761      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1762    if (NewTypeInfo.getHasRegParm()) {
1763      Diag(New->getLocation(), diag::err_regparm_mismatch)
1764        << NewType->getRegParmType()
1765        << OldType->getRegParmType();
1766      Diag(Old->getLocation(), diag::note_previous_declaration);
1767      return true;
1768    }
1769
1770    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1771    RequiresAdjustment = true;
1772  }
1773
1774  // Merge ns_returns_retained attribute.
1775  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1776    if (NewTypeInfo.getProducesResult()) {
1777      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1778      Diag(Old->getLocation(), diag::note_previous_declaration);
1779      return true;
1780    }
1781
1782    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1783    RequiresAdjustment = true;
1784  }
1785
1786  if (RequiresAdjustment) {
1787    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1788    New->setType(QualType(NewType, 0));
1789    NewQType = Context.getCanonicalType(New->getType());
1790  }
1791
1792  if (getLangOptions().CPlusPlus) {
1793    // (C++98 13.1p2):
1794    //   Certain function declarations cannot be overloaded:
1795    //     -- Function declarations that differ only in the return type
1796    //        cannot be overloaded.
1797    QualType OldReturnType = OldType->getResultType();
1798    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1799    QualType ResQT;
1800    if (OldReturnType != NewReturnType) {
1801      if (NewReturnType->isObjCObjectPointerType()
1802          && OldReturnType->isObjCObjectPointerType())
1803        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1804      if (ResQT.isNull()) {
1805        if (New->isCXXClassMember() && New->isOutOfLine())
1806          Diag(New->getLocation(),
1807               diag::err_member_def_does_not_match_ret_type) << New;
1808        else
1809          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1810        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1811        return true;
1812      }
1813      else
1814        NewQType = ResQT;
1815    }
1816
1817    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1818    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1819    if (OldMethod && NewMethod) {
1820      // Preserve triviality.
1821      NewMethod->setTrivial(OldMethod->isTrivial());
1822
1823      // MSVC allows explicit template specialization at class scope:
1824      // 2 CXMethodDecls referring to the same function will be injected.
1825      // We don't want a redeclartion error.
1826      bool IsClassScopeExplicitSpecialization =
1827                              OldMethod->isFunctionTemplateSpecialization() &&
1828                              NewMethod->isFunctionTemplateSpecialization();
1829      bool isFriend = NewMethod->getFriendObjectKind();
1830
1831      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1832          !IsClassScopeExplicitSpecialization) {
1833        //    -- Member function declarations with the same name and the
1834        //       same parameter types cannot be overloaded if any of them
1835        //       is a static member function declaration.
1836        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1837          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1838          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1839          return true;
1840        }
1841
1842        // C++ [class.mem]p1:
1843        //   [...] A member shall not be declared twice in the
1844        //   member-specification, except that a nested class or member
1845        //   class template can be declared and then later defined.
1846        unsigned NewDiag;
1847        if (isa<CXXConstructorDecl>(OldMethod))
1848          NewDiag = diag::err_constructor_redeclared;
1849        else if (isa<CXXDestructorDecl>(NewMethod))
1850          NewDiag = diag::err_destructor_redeclared;
1851        else if (isa<CXXConversionDecl>(NewMethod))
1852          NewDiag = diag::err_conv_function_redeclared;
1853        else
1854          NewDiag = diag::err_member_redeclared;
1855
1856        Diag(New->getLocation(), NewDiag);
1857        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1858
1859      // Complain if this is an explicit declaration of a special
1860      // member that was initially declared implicitly.
1861      //
1862      // As an exception, it's okay to befriend such methods in order
1863      // to permit the implicit constructor/destructor/operator calls.
1864      } else if (OldMethod->isImplicit()) {
1865        if (isFriend) {
1866          NewMethod->setImplicit();
1867        } else {
1868          Diag(NewMethod->getLocation(),
1869               diag::err_definition_of_implicitly_declared_member)
1870            << New << getSpecialMember(OldMethod);
1871          return true;
1872        }
1873      } else if (OldMethod->isExplicitlyDefaulted()) {
1874        Diag(NewMethod->getLocation(),
1875             diag::err_definition_of_explicitly_defaulted_member)
1876          << getSpecialMember(OldMethod);
1877        return true;
1878      }
1879    }
1880
1881    // (C++98 8.3.5p3):
1882    //   All declarations for a function shall agree exactly in both the
1883    //   return type and the parameter-type-list.
1884    // We also want to respect all the extended bits except noreturn.
1885
1886    // noreturn should now match unless the old type info didn't have it.
1887    QualType OldQTypeForComparison = OldQType;
1888    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1889      assert(OldQType == QualType(OldType, 0));
1890      const FunctionType *OldTypeForComparison
1891        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1892      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1893      assert(OldQTypeForComparison.isCanonical());
1894    }
1895
1896    if (OldQTypeForComparison == NewQType)
1897      return MergeCompatibleFunctionDecls(New, Old);
1898
1899    // Fall through for conflicting redeclarations and redefinitions.
1900  }
1901
1902  // C: Function types need to be compatible, not identical. This handles
1903  // duplicate function decls like "void f(int); void f(enum X);" properly.
1904  if (!getLangOptions().CPlusPlus &&
1905      Context.typesAreCompatible(OldQType, NewQType)) {
1906    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1907    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1908    const FunctionProtoType *OldProto = 0;
1909    if (isa<FunctionNoProtoType>(NewFuncType) &&
1910        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1911      // The old declaration provided a function prototype, but the
1912      // new declaration does not. Merge in the prototype.
1913      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1914      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1915                                                 OldProto->arg_type_end());
1916      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1917                                         ParamTypes.data(), ParamTypes.size(),
1918                                         OldProto->getExtProtoInfo());
1919      New->setType(NewQType);
1920      New->setHasInheritedPrototype();
1921
1922      // Synthesize a parameter for each argument type.
1923      SmallVector<ParmVarDecl*, 16> Params;
1924      for (FunctionProtoType::arg_type_iterator
1925             ParamType = OldProto->arg_type_begin(),
1926             ParamEnd = OldProto->arg_type_end();
1927           ParamType != ParamEnd; ++ParamType) {
1928        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1929                                                 SourceLocation(),
1930                                                 SourceLocation(), 0,
1931                                                 *ParamType, /*TInfo=*/0,
1932                                                 SC_None, SC_None,
1933                                                 0);
1934        Param->setScopeInfo(0, Params.size());
1935        Param->setImplicit();
1936        Params.push_back(Param);
1937      }
1938
1939      New->setParams(Params);
1940    }
1941
1942    return MergeCompatibleFunctionDecls(New, Old);
1943  }
1944
1945  // GNU C permits a K&R definition to follow a prototype declaration
1946  // if the declared types of the parameters in the K&R definition
1947  // match the types in the prototype declaration, even when the
1948  // promoted types of the parameters from the K&R definition differ
1949  // from the types in the prototype. GCC then keeps the types from
1950  // the prototype.
1951  //
1952  // If a variadic prototype is followed by a non-variadic K&R definition,
1953  // the K&R definition becomes variadic.  This is sort of an edge case, but
1954  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1955  // C99 6.9.1p8.
1956  if (!getLangOptions().CPlusPlus &&
1957      Old->hasPrototype() && !New->hasPrototype() &&
1958      New->getType()->getAs<FunctionProtoType>() &&
1959      Old->getNumParams() == New->getNumParams()) {
1960    SmallVector<QualType, 16> ArgTypes;
1961    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1962    const FunctionProtoType *OldProto
1963      = Old->getType()->getAs<FunctionProtoType>();
1964    const FunctionProtoType *NewProto
1965      = New->getType()->getAs<FunctionProtoType>();
1966
1967    // Determine whether this is the GNU C extension.
1968    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1969                                               NewProto->getResultType());
1970    bool LooseCompatible = !MergedReturn.isNull();
1971    for (unsigned Idx = 0, End = Old->getNumParams();
1972         LooseCompatible && Idx != End; ++Idx) {
1973      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1974      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1975      if (Context.typesAreCompatible(OldParm->getType(),
1976                                     NewProto->getArgType(Idx))) {
1977        ArgTypes.push_back(NewParm->getType());
1978      } else if (Context.typesAreCompatible(OldParm->getType(),
1979                                            NewParm->getType(),
1980                                            /*CompareUnqualified=*/true)) {
1981        GNUCompatibleParamWarning Warn
1982          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1983        Warnings.push_back(Warn);
1984        ArgTypes.push_back(NewParm->getType());
1985      } else
1986        LooseCompatible = false;
1987    }
1988
1989    if (LooseCompatible) {
1990      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1991        Diag(Warnings[Warn].NewParm->getLocation(),
1992             diag::ext_param_promoted_not_compatible_with_prototype)
1993          << Warnings[Warn].PromotedType
1994          << Warnings[Warn].OldParm->getType();
1995        if (Warnings[Warn].OldParm->getLocation().isValid())
1996          Diag(Warnings[Warn].OldParm->getLocation(),
1997               diag::note_previous_declaration);
1998      }
1999
2000      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2001                                           ArgTypes.size(),
2002                                           OldProto->getExtProtoInfo()));
2003      return MergeCompatibleFunctionDecls(New, Old);
2004    }
2005
2006    // Fall through to diagnose conflicting types.
2007  }
2008
2009  // A function that has already been declared has been redeclared or defined
2010  // with a different type- show appropriate diagnostic
2011  if (unsigned BuiltinID = Old->getBuiltinID()) {
2012    // The user has declared a builtin function with an incompatible
2013    // signature.
2014    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2015      // The function the user is redeclaring is a library-defined
2016      // function like 'malloc' or 'printf'. Warn about the
2017      // redeclaration, then pretend that we don't know about this
2018      // library built-in.
2019      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2020      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2021        << Old << Old->getType();
2022      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2023      Old->setInvalidDecl();
2024      return false;
2025    }
2026
2027    PrevDiag = diag::note_previous_builtin_declaration;
2028  }
2029
2030  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2031  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2032  return true;
2033}
2034
2035/// \brief Completes the merge of two function declarations that are
2036/// known to be compatible.
2037///
2038/// This routine handles the merging of attributes and other
2039/// properties of function declarations form the old declaration to
2040/// the new declaration, once we know that New is in fact a
2041/// redeclaration of Old.
2042///
2043/// \returns false
2044bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2045  // Merge the attributes
2046  mergeDeclAttributes(New, Old);
2047
2048  // Merge the storage class.
2049  if (Old->getStorageClass() != SC_Extern &&
2050      Old->getStorageClass() != SC_None)
2051    New->setStorageClass(Old->getStorageClass());
2052
2053  // Merge "pure" flag.
2054  if (Old->isPure())
2055    New->setPure();
2056
2057  // Merge attributes from the parameters.  These can mismatch with K&R
2058  // declarations.
2059  if (New->getNumParams() == Old->getNumParams())
2060    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2061      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2062                               Context);
2063
2064  if (getLangOptions().CPlusPlus)
2065    return MergeCXXFunctionDecl(New, Old);
2066
2067  return false;
2068}
2069
2070
2071void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2072                                ObjCMethodDecl *oldMethod) {
2073  // We don't want to merge unavailable and deprecated attributes
2074  // except from interface to implementation.
2075  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2076
2077  // Merge the attributes.
2078  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2079
2080  // Merge attributes from the parameters.
2081  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2082  for (ObjCMethodDecl::param_iterator
2083         ni = newMethod->param_begin(), ne = newMethod->param_end();
2084       ni != ne; ++ni, ++oi)
2085    mergeParamDeclAttributes(*ni, *oi, Context);
2086
2087  CheckObjCMethodOverride(newMethod, oldMethod, true);
2088}
2089
2090/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2091/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2092/// emitting diagnostics as appropriate.
2093///
2094/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2095/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2096/// check them before the initializer is attached.
2097///
2098void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2099  if (New->isInvalidDecl() || Old->isInvalidDecl())
2100    return;
2101
2102  QualType MergedT;
2103  if (getLangOptions().CPlusPlus) {
2104    AutoType *AT = New->getType()->getContainedAutoType();
2105    if (AT && !AT->isDeduced()) {
2106      // We don't know what the new type is until the initializer is attached.
2107      return;
2108    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2109      // These could still be something that needs exception specs checked.
2110      return MergeVarDeclExceptionSpecs(New, Old);
2111    }
2112    // C++ [basic.link]p10:
2113    //   [...] the types specified by all declarations referring to a given
2114    //   object or function shall be identical, except that declarations for an
2115    //   array object can specify array types that differ by the presence or
2116    //   absence of a major array bound (8.3.4).
2117    else if (Old->getType()->isIncompleteArrayType() &&
2118             New->getType()->isArrayType()) {
2119      CanQual<ArrayType> OldArray
2120        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2121      CanQual<ArrayType> NewArray
2122        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2123      if (OldArray->getElementType() == NewArray->getElementType())
2124        MergedT = New->getType();
2125    } else if (Old->getType()->isArrayType() &&
2126             New->getType()->isIncompleteArrayType()) {
2127      CanQual<ArrayType> OldArray
2128        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2129      CanQual<ArrayType> NewArray
2130        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2131      if (OldArray->getElementType() == NewArray->getElementType())
2132        MergedT = Old->getType();
2133    } else if (New->getType()->isObjCObjectPointerType()
2134               && Old->getType()->isObjCObjectPointerType()) {
2135        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2136                                                        Old->getType());
2137    }
2138  } else {
2139    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2140  }
2141  if (MergedT.isNull()) {
2142    Diag(New->getLocation(), diag::err_redefinition_different_type)
2143      << New->getDeclName();
2144    Diag(Old->getLocation(), diag::note_previous_definition);
2145    return New->setInvalidDecl();
2146  }
2147  New->setType(MergedT);
2148}
2149
2150/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2151/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2152/// situation, merging decls or emitting diagnostics as appropriate.
2153///
2154/// Tentative definition rules (C99 6.9.2p2) are checked by
2155/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2156/// definitions here, since the initializer hasn't been attached.
2157///
2158void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2159  // If the new decl is already invalid, don't do any other checking.
2160  if (New->isInvalidDecl())
2161    return;
2162
2163  // Verify the old decl was also a variable.
2164  VarDecl *Old = 0;
2165  if (!Previous.isSingleResult() ||
2166      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2167    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2168      << New->getDeclName();
2169    Diag(Previous.getRepresentativeDecl()->getLocation(),
2170         diag::note_previous_definition);
2171    return New->setInvalidDecl();
2172  }
2173
2174  // C++ [class.mem]p1:
2175  //   A member shall not be declared twice in the member-specification [...]
2176  //
2177  // Here, we need only consider static data members.
2178  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2179    Diag(New->getLocation(), diag::err_duplicate_member)
2180      << New->getIdentifier();
2181    Diag(Old->getLocation(), diag::note_previous_declaration);
2182    New->setInvalidDecl();
2183  }
2184
2185  mergeDeclAttributes(New, Old);
2186  // Warn if an already-declared variable is made a weak_import in a subsequent
2187  // declaration
2188  if (New->getAttr<WeakImportAttr>() &&
2189      Old->getStorageClass() == SC_None &&
2190      !Old->getAttr<WeakImportAttr>()) {
2191    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193    // Remove weak_import attribute on new declaration.
2194    New->dropAttr<WeakImportAttr>();
2195  }
2196
2197  // Merge the types.
2198  MergeVarDeclTypes(New, Old);
2199  if (New->isInvalidDecl())
2200    return;
2201
2202  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2203  if (New->getStorageClass() == SC_Static &&
2204      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2205    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2206    Diag(Old->getLocation(), diag::note_previous_definition);
2207    return New->setInvalidDecl();
2208  }
2209  // C99 6.2.2p4:
2210  //   For an identifier declared with the storage-class specifier
2211  //   extern in a scope in which a prior declaration of that
2212  //   identifier is visible,23) if the prior declaration specifies
2213  //   internal or external linkage, the linkage of the identifier at
2214  //   the later declaration is the same as the linkage specified at
2215  //   the prior declaration. If no prior declaration is visible, or
2216  //   if the prior declaration specifies no linkage, then the
2217  //   identifier has external linkage.
2218  if (New->hasExternalStorage() && Old->hasLinkage())
2219    /* Okay */;
2220  else if (New->getStorageClass() != SC_Static &&
2221           Old->getStorageClass() == SC_Static) {
2222    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2223    Diag(Old->getLocation(), diag::note_previous_definition);
2224    return New->setInvalidDecl();
2225  }
2226
2227  // Check if extern is followed by non-extern and vice-versa.
2228  if (New->hasExternalStorage() &&
2229      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2230    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2231    Diag(Old->getLocation(), diag::note_previous_definition);
2232    return New->setInvalidDecl();
2233  }
2234  if (Old->hasExternalStorage() &&
2235      !New->hasLinkage() && New->isLocalVarDecl()) {
2236    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2237    Diag(Old->getLocation(), diag::note_previous_definition);
2238    return New->setInvalidDecl();
2239  }
2240
2241  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2242
2243  // FIXME: The test for external storage here seems wrong? We still
2244  // need to check for mismatches.
2245  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2246      // Don't complain about out-of-line definitions of static members.
2247      !(Old->getLexicalDeclContext()->isRecord() &&
2248        !New->getLexicalDeclContext()->isRecord())) {
2249    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2250    Diag(Old->getLocation(), diag::note_previous_definition);
2251    return New->setInvalidDecl();
2252  }
2253
2254  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2255    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2256    Diag(Old->getLocation(), diag::note_previous_definition);
2257  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2258    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2259    Diag(Old->getLocation(), diag::note_previous_definition);
2260  }
2261
2262  // C++ doesn't have tentative definitions, so go right ahead and check here.
2263  const VarDecl *Def;
2264  if (getLangOptions().CPlusPlus &&
2265      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2266      (Def = Old->getDefinition())) {
2267    Diag(New->getLocation(), diag::err_redefinition)
2268      << New->getDeclName();
2269    Diag(Def->getLocation(), diag::note_previous_definition);
2270    New->setInvalidDecl();
2271    return;
2272  }
2273  // c99 6.2.2 P4.
2274  // For an identifier declared with the storage-class specifier extern in a
2275  // scope in which a prior declaration of that identifier is visible, if
2276  // the prior declaration specifies internal or external linkage, the linkage
2277  // of the identifier at the later declaration is the same as the linkage
2278  // specified at the prior declaration.
2279  // FIXME. revisit this code.
2280  if (New->hasExternalStorage() &&
2281      Old->getLinkage() == InternalLinkage &&
2282      New->getDeclContext() == Old->getDeclContext())
2283    New->setStorageClass(Old->getStorageClass());
2284
2285  // Keep a chain of previous declarations.
2286  New->setPreviousDeclaration(Old);
2287
2288  // Inherit access appropriately.
2289  New->setAccess(Old->getAccess());
2290}
2291
2292/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2293/// no declarator (e.g. "struct foo;") is parsed.
2294Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2295                                       DeclSpec &DS) {
2296  return ParsedFreeStandingDeclSpec(S, AS, DS,
2297                                    MultiTemplateParamsArg(*this, 0, 0));
2298}
2299
2300/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2301/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2302/// parameters to cope with template friend declarations.
2303Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2304                                       DeclSpec &DS,
2305                                       MultiTemplateParamsArg TemplateParams) {
2306  Decl *TagD = 0;
2307  TagDecl *Tag = 0;
2308  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2309      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2310      DS.getTypeSpecType() == DeclSpec::TST_union ||
2311      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2312    TagD = DS.getRepAsDecl();
2313
2314    if (!TagD) // We probably had an error
2315      return 0;
2316
2317    // Note that the above type specs guarantee that the
2318    // type rep is a Decl, whereas in many of the others
2319    // it's a Type.
2320    if (isa<TagDecl>(TagD))
2321      Tag = cast<TagDecl>(TagD);
2322    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2323      Tag = CTD->getTemplatedDecl();
2324  }
2325
2326  if (Tag)
2327    Tag->setFreeStanding();
2328
2329  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2330    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2331    // or incomplete types shall not be restrict-qualified."
2332    if (TypeQuals & DeclSpec::TQ_restrict)
2333      Diag(DS.getRestrictSpecLoc(),
2334           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2335           << DS.getSourceRange();
2336  }
2337
2338  if (DS.isConstexprSpecified()) {
2339    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2340    // and definitions of functions and variables.
2341    if (Tag)
2342      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2343        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2344            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2345            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2346    else
2347      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2348    // Don't emit warnings after this error.
2349    return TagD;
2350  }
2351
2352  if (DS.isFriendSpecified()) {
2353    // If we're dealing with a decl but not a TagDecl, assume that
2354    // whatever routines created it handled the friendship aspect.
2355    if (TagD && !Tag)
2356      return 0;
2357    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2358  }
2359
2360  // Track whether we warned about the fact that there aren't any
2361  // declarators.
2362  bool emittedWarning = false;
2363
2364  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2365    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2366        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2367      if (getLangOptions().CPlusPlus ||
2368          Record->getDeclContext()->isRecord())
2369        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2370
2371      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2372        << DS.getSourceRange();
2373      emittedWarning = true;
2374    }
2375  }
2376
2377  // Check for Microsoft C extension: anonymous struct.
2378  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2379      CurContext->isRecord() &&
2380      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2381    // Handle 2 kinds of anonymous struct:
2382    //   struct STRUCT;
2383    // and
2384    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2385    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2386    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2387        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2388         DS.getRepAsType().get()->isStructureType())) {
2389      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2390        << DS.getSourceRange();
2391      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2392    }
2393  }
2394
2395  if (getLangOptions().CPlusPlus &&
2396      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2397    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2398      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2399          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2400        Diag(Enum->getLocation(), diag::ext_no_declarators)
2401          << DS.getSourceRange();
2402        emittedWarning = true;
2403      }
2404
2405  // Skip all the checks below if we have a type error.
2406  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2407
2408  if (!DS.isMissingDeclaratorOk()) {
2409    // Warn about typedefs of enums without names, since this is an
2410    // extension in both Microsoft and GNU.
2411    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2412        Tag && isa<EnumDecl>(Tag)) {
2413      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2414        << DS.getSourceRange();
2415      return Tag;
2416    }
2417
2418    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2419      << DS.getSourceRange();
2420    emittedWarning = true;
2421  }
2422
2423  // We're going to complain about a bunch of spurious specifiers;
2424  // only do this if we're declaring a tag, because otherwise we
2425  // should be getting diag::ext_no_declarators.
2426  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2427    return TagD;
2428
2429  // Note that a linkage-specification sets a storage class, but
2430  // 'extern "C" struct foo;' is actually valid and not theoretically
2431  // useless.
2432  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2433    if (!DS.isExternInLinkageSpec())
2434      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2435        << DeclSpec::getSpecifierName(scs);
2436
2437  if (DS.isThreadSpecified())
2438    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2439  if (DS.getTypeQualifiers()) {
2440    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2441      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2442    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2443      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2444    // Restrict is covered above.
2445  }
2446  if (DS.isInlineSpecified())
2447    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2448  if (DS.isVirtualSpecified())
2449    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2450  if (DS.isExplicitSpecified())
2451    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2452
2453  if (DS.isModulePrivateSpecified() &&
2454      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2455    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2456      << Tag->getTagKind()
2457      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2458
2459  // Warn about ignored type attributes, for example:
2460  // __attribute__((aligned)) struct A;
2461  // Attributes should be placed after tag to apply to type declaration.
2462  if (!DS.getAttributes().empty()) {
2463    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2464    if (TypeSpecType == DeclSpec::TST_class ||
2465        TypeSpecType == DeclSpec::TST_struct ||
2466        TypeSpecType == DeclSpec::TST_union ||
2467        TypeSpecType == DeclSpec::TST_enum) {
2468      AttributeList* attrs = DS.getAttributes().getList();
2469      while (attrs) {
2470        Diag(attrs->getScopeLoc(),
2471             diag::warn_declspec_attribute_ignored)
2472        << attrs->getName()
2473        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2474            TypeSpecType == DeclSpec::TST_struct ? 1 :
2475            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2476        attrs = attrs->getNext();
2477      }
2478    }
2479  }
2480
2481  return TagD;
2482}
2483
2484/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2485/// builds a statement for it and returns it so it is evaluated.
2486StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2487  StmtResult R;
2488  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2489    Expr *Exp = DS.getRepAsExpr();
2490    QualType Ty = Exp->getType();
2491    if (Ty->isPointerType()) {
2492      do
2493        Ty = Ty->getAs<PointerType>()->getPointeeType();
2494      while (Ty->isPointerType());
2495    }
2496    if (Ty->isVariableArrayType()) {
2497      R = ActOnExprStmt(MakeFullExpr(Exp));
2498    }
2499  }
2500  return R;
2501}
2502
2503/// We are trying to inject an anonymous member into the given scope;
2504/// check if there's an existing declaration that can't be overloaded.
2505///
2506/// \return true if this is a forbidden redeclaration
2507static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2508                                         Scope *S,
2509                                         DeclContext *Owner,
2510                                         DeclarationName Name,
2511                                         SourceLocation NameLoc,
2512                                         unsigned diagnostic) {
2513  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2514                 Sema::ForRedeclaration);
2515  if (!SemaRef.LookupName(R, S)) return false;
2516
2517  if (R.getAsSingle<TagDecl>())
2518    return false;
2519
2520  // Pick a representative declaration.
2521  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2522  assert(PrevDecl && "Expected a non-null Decl");
2523
2524  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2525    return false;
2526
2527  SemaRef.Diag(NameLoc, diagnostic) << Name;
2528  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2529
2530  return true;
2531}
2532
2533/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2534/// anonymous struct or union AnonRecord into the owning context Owner
2535/// and scope S. This routine will be invoked just after we realize
2536/// that an unnamed union or struct is actually an anonymous union or
2537/// struct, e.g.,
2538///
2539/// @code
2540/// union {
2541///   int i;
2542///   float f;
2543/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2544///    // f into the surrounding scope.x
2545/// @endcode
2546///
2547/// This routine is recursive, injecting the names of nested anonymous
2548/// structs/unions into the owning context and scope as well.
2549static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2550                                                DeclContext *Owner,
2551                                                RecordDecl *AnonRecord,
2552                                                AccessSpecifier AS,
2553                              SmallVector<NamedDecl*, 2> &Chaining,
2554                                                      bool MSAnonStruct) {
2555  unsigned diagKind
2556    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2557                            : diag::err_anonymous_struct_member_redecl;
2558
2559  bool Invalid = false;
2560
2561  // Look every FieldDecl and IndirectFieldDecl with a name.
2562  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2563                               DEnd = AnonRecord->decls_end();
2564       D != DEnd; ++D) {
2565    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2566        cast<NamedDecl>(*D)->getDeclName()) {
2567      ValueDecl *VD = cast<ValueDecl>(*D);
2568      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2569                                       VD->getLocation(), diagKind)) {
2570        // C++ [class.union]p2:
2571        //   The names of the members of an anonymous union shall be
2572        //   distinct from the names of any other entity in the
2573        //   scope in which the anonymous union is declared.
2574        Invalid = true;
2575      } else {
2576        // C++ [class.union]p2:
2577        //   For the purpose of name lookup, after the anonymous union
2578        //   definition, the members of the anonymous union are
2579        //   considered to have been defined in the scope in which the
2580        //   anonymous union is declared.
2581        unsigned OldChainingSize = Chaining.size();
2582        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2583          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2584               PE = IF->chain_end(); PI != PE; ++PI)
2585            Chaining.push_back(*PI);
2586        else
2587          Chaining.push_back(VD);
2588
2589        assert(Chaining.size() >= 2);
2590        NamedDecl **NamedChain =
2591          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2592        for (unsigned i = 0; i < Chaining.size(); i++)
2593          NamedChain[i] = Chaining[i];
2594
2595        IndirectFieldDecl* IndirectField =
2596          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2597                                    VD->getIdentifier(), VD->getType(),
2598                                    NamedChain, Chaining.size());
2599
2600        IndirectField->setAccess(AS);
2601        IndirectField->setImplicit();
2602        SemaRef.PushOnScopeChains(IndirectField, S);
2603
2604        // That includes picking up the appropriate access specifier.
2605        if (AS != AS_none) IndirectField->setAccess(AS);
2606
2607        Chaining.resize(OldChainingSize);
2608      }
2609    }
2610  }
2611
2612  return Invalid;
2613}
2614
2615/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2616/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2617/// illegal input values are mapped to SC_None.
2618static StorageClass
2619StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2620  switch (StorageClassSpec) {
2621  case DeclSpec::SCS_unspecified:    return SC_None;
2622  case DeclSpec::SCS_extern:         return SC_Extern;
2623  case DeclSpec::SCS_static:         return SC_Static;
2624  case DeclSpec::SCS_auto:           return SC_Auto;
2625  case DeclSpec::SCS_register:       return SC_Register;
2626  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2627    // Illegal SCSs map to None: error reporting is up to the caller.
2628  case DeclSpec::SCS_mutable:        // Fall through.
2629  case DeclSpec::SCS_typedef:        return SC_None;
2630  }
2631  llvm_unreachable("unknown storage class specifier");
2632}
2633
2634/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2635/// a StorageClass. Any error reporting is up to the caller:
2636/// illegal input values are mapped to SC_None.
2637static StorageClass
2638StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2639  switch (StorageClassSpec) {
2640  case DeclSpec::SCS_unspecified:    return SC_None;
2641  case DeclSpec::SCS_extern:         return SC_Extern;
2642  case DeclSpec::SCS_static:         return SC_Static;
2643  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2644    // Illegal SCSs map to None: error reporting is up to the caller.
2645  case DeclSpec::SCS_auto:           // Fall through.
2646  case DeclSpec::SCS_mutable:        // Fall through.
2647  case DeclSpec::SCS_register:       // Fall through.
2648  case DeclSpec::SCS_typedef:        return SC_None;
2649  }
2650  llvm_unreachable("unknown storage class specifier");
2651}
2652
2653/// BuildAnonymousStructOrUnion - Handle the declaration of an
2654/// anonymous structure or union. Anonymous unions are a C++ feature
2655/// (C++ [class.union]) and a GNU C extension; anonymous structures
2656/// are a GNU C and GNU C++ extension.
2657Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2658                                             AccessSpecifier AS,
2659                                             RecordDecl *Record) {
2660  DeclContext *Owner = Record->getDeclContext();
2661
2662  // Diagnose whether this anonymous struct/union is an extension.
2663  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2664    Diag(Record->getLocation(), diag::ext_anonymous_union);
2665  else if (!Record->isUnion())
2666    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2667
2668  // C and C++ require different kinds of checks for anonymous
2669  // structs/unions.
2670  bool Invalid = false;
2671  if (getLangOptions().CPlusPlus) {
2672    const char* PrevSpec = 0;
2673    unsigned DiagID;
2674    if (Record->isUnion()) {
2675      // C++ [class.union]p6:
2676      //   Anonymous unions declared in a named namespace or in the
2677      //   global namespace shall be declared static.
2678      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2679          (isa<TranslationUnitDecl>(Owner) ||
2680           (isa<NamespaceDecl>(Owner) &&
2681            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2682        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2683          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2684
2685        // Recover by adding 'static'.
2686        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2687                               PrevSpec, DiagID);
2688      }
2689      // C++ [class.union]p6:
2690      //   A storage class is not allowed in a declaration of an
2691      //   anonymous union in a class scope.
2692      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2693               isa<RecordDecl>(Owner)) {
2694        Diag(DS.getStorageClassSpecLoc(),
2695             diag::err_anonymous_union_with_storage_spec)
2696          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2697
2698        // Recover by removing the storage specifier.
2699        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2700                               SourceLocation(),
2701                               PrevSpec, DiagID);
2702      }
2703    }
2704
2705    // Ignore const/volatile/restrict qualifiers.
2706    if (DS.getTypeQualifiers()) {
2707      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2708        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2709          << Record->isUnion() << 0
2710          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2711      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2712        Diag(DS.getVolatileSpecLoc(),
2713             diag::ext_anonymous_struct_union_qualified)
2714          << Record->isUnion() << 1
2715          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2716      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2717        Diag(DS.getRestrictSpecLoc(),
2718             diag::ext_anonymous_struct_union_qualified)
2719          << Record->isUnion() << 2
2720          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2721
2722      DS.ClearTypeQualifiers();
2723    }
2724
2725    // C++ [class.union]p2:
2726    //   The member-specification of an anonymous union shall only
2727    //   define non-static data members. [Note: nested types and
2728    //   functions cannot be declared within an anonymous union. ]
2729    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2730                                 MemEnd = Record->decls_end();
2731         Mem != MemEnd; ++Mem) {
2732      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2733        // C++ [class.union]p3:
2734        //   An anonymous union shall not have private or protected
2735        //   members (clause 11).
2736        assert(FD->getAccess() != AS_none);
2737        if (FD->getAccess() != AS_public) {
2738          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2739            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2740          Invalid = true;
2741        }
2742
2743        // C++ [class.union]p1
2744        //   An object of a class with a non-trivial constructor, a non-trivial
2745        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2746        //   assignment operator cannot be a member of a union, nor can an
2747        //   array of such objects.
2748        if (CheckNontrivialField(FD))
2749          Invalid = true;
2750      } else if ((*Mem)->isImplicit()) {
2751        // Any implicit members are fine.
2752      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2753        // This is a type that showed up in an
2754        // elaborated-type-specifier inside the anonymous struct or
2755        // union, but which actually declares a type outside of the
2756        // anonymous struct or union. It's okay.
2757      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2758        if (!MemRecord->isAnonymousStructOrUnion() &&
2759            MemRecord->getDeclName()) {
2760          // Visual C++ allows type definition in anonymous struct or union.
2761          if (getLangOptions().MicrosoftExt)
2762            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2763              << (int)Record->isUnion();
2764          else {
2765            // This is a nested type declaration.
2766            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2767              << (int)Record->isUnion();
2768            Invalid = true;
2769          }
2770        }
2771      } else if (isa<AccessSpecDecl>(*Mem)) {
2772        // Any access specifier is fine.
2773      } else {
2774        // We have something that isn't a non-static data
2775        // member. Complain about it.
2776        unsigned DK = diag::err_anonymous_record_bad_member;
2777        if (isa<TypeDecl>(*Mem))
2778          DK = diag::err_anonymous_record_with_type;
2779        else if (isa<FunctionDecl>(*Mem))
2780          DK = diag::err_anonymous_record_with_function;
2781        else if (isa<VarDecl>(*Mem))
2782          DK = diag::err_anonymous_record_with_static;
2783
2784        // Visual C++ allows type definition in anonymous struct or union.
2785        if (getLangOptions().MicrosoftExt &&
2786            DK == diag::err_anonymous_record_with_type)
2787          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2788            << (int)Record->isUnion();
2789        else {
2790          Diag((*Mem)->getLocation(), DK)
2791              << (int)Record->isUnion();
2792          Invalid = true;
2793        }
2794      }
2795    }
2796  }
2797
2798  if (!Record->isUnion() && !Owner->isRecord()) {
2799    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2800      << (int)getLangOptions().CPlusPlus;
2801    Invalid = true;
2802  }
2803
2804  // Mock up a declarator.
2805  Declarator Dc(DS, Declarator::MemberContext);
2806  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2807  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2808
2809  // Create a declaration for this anonymous struct/union.
2810  NamedDecl *Anon = 0;
2811  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2812    Anon = FieldDecl::Create(Context, OwningClass,
2813                             DS.getSourceRange().getBegin(),
2814                             Record->getLocation(),
2815                             /*IdentifierInfo=*/0,
2816                             Context.getTypeDeclType(Record),
2817                             TInfo,
2818                             /*BitWidth=*/0, /*Mutable=*/false,
2819                             /*HasInit=*/false);
2820    Anon->setAccess(AS);
2821    if (getLangOptions().CPlusPlus)
2822      FieldCollector->Add(cast<FieldDecl>(Anon));
2823  } else {
2824    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2825    assert(SCSpec != DeclSpec::SCS_typedef &&
2826           "Parser allowed 'typedef' as storage class VarDecl.");
2827    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2828    if (SCSpec == DeclSpec::SCS_mutable) {
2829      // mutable can only appear on non-static class members, so it's always
2830      // an error here
2831      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2832      Invalid = true;
2833      SC = SC_None;
2834    }
2835    SCSpec = DS.getStorageClassSpecAsWritten();
2836    VarDecl::StorageClass SCAsWritten
2837      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2838
2839    Anon = VarDecl::Create(Context, Owner,
2840                           DS.getSourceRange().getBegin(),
2841                           Record->getLocation(), /*IdentifierInfo=*/0,
2842                           Context.getTypeDeclType(Record),
2843                           TInfo, SC, SCAsWritten);
2844
2845    // Default-initialize the implicit variable. This initialization will be
2846    // trivial in almost all cases, except if a union member has an in-class
2847    // initializer:
2848    //   union { int n = 0; };
2849    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2850  }
2851  Anon->setImplicit();
2852
2853  // Add the anonymous struct/union object to the current
2854  // context. We'll be referencing this object when we refer to one of
2855  // its members.
2856  Owner->addDecl(Anon);
2857
2858  // Inject the members of the anonymous struct/union into the owning
2859  // context and into the identifier resolver chain for name lookup
2860  // purposes.
2861  SmallVector<NamedDecl*, 2> Chain;
2862  Chain.push_back(Anon);
2863
2864  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2865                                          Chain, false))
2866    Invalid = true;
2867
2868  // Mark this as an anonymous struct/union type. Note that we do not
2869  // do this until after we have already checked and injected the
2870  // members of this anonymous struct/union type, because otherwise
2871  // the members could be injected twice: once by DeclContext when it
2872  // builds its lookup table, and once by
2873  // InjectAnonymousStructOrUnionMembers.
2874  Record->setAnonymousStructOrUnion(true);
2875
2876  if (Invalid)
2877    Anon->setInvalidDecl();
2878
2879  return Anon;
2880}
2881
2882/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2883/// Microsoft C anonymous structure.
2884/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2885/// Example:
2886///
2887/// struct A { int a; };
2888/// struct B { struct A; int b; };
2889///
2890/// void foo() {
2891///   B var;
2892///   var.a = 3;
2893/// }
2894///
2895Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2896                                           RecordDecl *Record) {
2897
2898  // If there is no Record, get the record via the typedef.
2899  if (!Record)
2900    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2901
2902  // Mock up a declarator.
2903  Declarator Dc(DS, Declarator::TypeNameContext);
2904  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2905  assert(TInfo && "couldn't build declarator info for anonymous struct");
2906
2907  // Create a declaration for this anonymous struct.
2908  NamedDecl* Anon = FieldDecl::Create(Context,
2909                             cast<RecordDecl>(CurContext),
2910                             DS.getSourceRange().getBegin(),
2911                             DS.getSourceRange().getBegin(),
2912                             /*IdentifierInfo=*/0,
2913                             Context.getTypeDeclType(Record),
2914                             TInfo,
2915                             /*BitWidth=*/0, /*Mutable=*/false,
2916                             /*HasInit=*/false);
2917  Anon->setImplicit();
2918
2919  // Add the anonymous struct object to the current context.
2920  CurContext->addDecl(Anon);
2921
2922  // Inject the members of the anonymous struct into the current
2923  // context and into the identifier resolver chain for name lookup
2924  // purposes.
2925  SmallVector<NamedDecl*, 2> Chain;
2926  Chain.push_back(Anon);
2927
2928  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2929                                          Record->getDefinition(),
2930                                          AS_none, Chain, true))
2931    Anon->setInvalidDecl();
2932
2933  return Anon;
2934}
2935
2936/// GetNameForDeclarator - Determine the full declaration name for the
2937/// given Declarator.
2938DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2939  return GetNameFromUnqualifiedId(D.getName());
2940}
2941
2942/// \brief Retrieves the declaration name from a parsed unqualified-id.
2943DeclarationNameInfo
2944Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2945  DeclarationNameInfo NameInfo;
2946  NameInfo.setLoc(Name.StartLocation);
2947
2948  switch (Name.getKind()) {
2949
2950  case UnqualifiedId::IK_ImplicitSelfParam:
2951  case UnqualifiedId::IK_Identifier:
2952    NameInfo.setName(Name.Identifier);
2953    NameInfo.setLoc(Name.StartLocation);
2954    return NameInfo;
2955
2956  case UnqualifiedId::IK_OperatorFunctionId:
2957    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2958                                           Name.OperatorFunctionId.Operator));
2959    NameInfo.setLoc(Name.StartLocation);
2960    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2961      = Name.OperatorFunctionId.SymbolLocations[0];
2962    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2963      = Name.EndLocation.getRawEncoding();
2964    return NameInfo;
2965
2966  case UnqualifiedId::IK_LiteralOperatorId:
2967    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2968                                                           Name.Identifier));
2969    NameInfo.setLoc(Name.StartLocation);
2970    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2971    return NameInfo;
2972
2973  case UnqualifiedId::IK_ConversionFunctionId: {
2974    TypeSourceInfo *TInfo;
2975    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2976    if (Ty.isNull())
2977      return DeclarationNameInfo();
2978    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2979                                               Context.getCanonicalType(Ty)));
2980    NameInfo.setLoc(Name.StartLocation);
2981    NameInfo.setNamedTypeInfo(TInfo);
2982    return NameInfo;
2983  }
2984
2985  case UnqualifiedId::IK_ConstructorName: {
2986    TypeSourceInfo *TInfo;
2987    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2988    if (Ty.isNull())
2989      return DeclarationNameInfo();
2990    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2991                                              Context.getCanonicalType(Ty)));
2992    NameInfo.setLoc(Name.StartLocation);
2993    NameInfo.setNamedTypeInfo(TInfo);
2994    return NameInfo;
2995  }
2996
2997  case UnqualifiedId::IK_ConstructorTemplateId: {
2998    // In well-formed code, we can only have a constructor
2999    // template-id that refers to the current context, so go there
3000    // to find the actual type being constructed.
3001    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3002    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3003      return DeclarationNameInfo();
3004
3005    // Determine the type of the class being constructed.
3006    QualType CurClassType = Context.getTypeDeclType(CurClass);
3007
3008    // FIXME: Check two things: that the template-id names the same type as
3009    // CurClassType, and that the template-id does not occur when the name
3010    // was qualified.
3011
3012    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3013                                    Context.getCanonicalType(CurClassType)));
3014    NameInfo.setLoc(Name.StartLocation);
3015    // FIXME: should we retrieve TypeSourceInfo?
3016    NameInfo.setNamedTypeInfo(0);
3017    return NameInfo;
3018  }
3019
3020  case UnqualifiedId::IK_DestructorName: {
3021    TypeSourceInfo *TInfo;
3022    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3023    if (Ty.isNull())
3024      return DeclarationNameInfo();
3025    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3026                                              Context.getCanonicalType(Ty)));
3027    NameInfo.setLoc(Name.StartLocation);
3028    NameInfo.setNamedTypeInfo(TInfo);
3029    return NameInfo;
3030  }
3031
3032  case UnqualifiedId::IK_TemplateId: {
3033    TemplateName TName = Name.TemplateId->Template.get();
3034    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3035    return Context.getNameForTemplate(TName, TNameLoc);
3036  }
3037
3038  } // switch (Name.getKind())
3039
3040  llvm_unreachable("Unknown name kind");
3041}
3042
3043static QualType getCoreType(QualType Ty) {
3044  do {
3045    if (Ty->isPointerType() || Ty->isReferenceType())
3046      Ty = Ty->getPointeeType();
3047    else if (Ty->isArrayType())
3048      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3049    else
3050      return Ty.withoutLocalFastQualifiers();
3051  } while (true);
3052}
3053
3054/// hasSimilarParameters - Determine whether the C++ functions Declaration
3055/// and Definition have "nearly" matching parameters. This heuristic is
3056/// used to improve diagnostics in the case where an out-of-line function
3057/// definition doesn't match any declaration within the class or namespace.
3058/// Also sets Params to the list of indices to the parameters that differ
3059/// between the declaration and the definition. If hasSimilarParameters
3060/// returns true and Params is empty, then all of the parameters match.
3061static bool hasSimilarParameters(ASTContext &Context,
3062                                     FunctionDecl *Declaration,
3063                                     FunctionDecl *Definition,
3064                                     llvm::SmallVectorImpl<unsigned> &Params) {
3065  Params.clear();
3066  if (Declaration->param_size() != Definition->param_size())
3067    return false;
3068  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3069    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3070    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3071
3072    // The parameter types are identical
3073    if (Context.hasSameType(DefParamTy, DeclParamTy))
3074      continue;
3075
3076    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3077    QualType DefParamBaseTy = getCoreType(DefParamTy);
3078    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3079    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3080
3081    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3082        (DeclTyName && DeclTyName == DefTyName))
3083      Params.push_back(Idx);
3084    else  // The two parameters aren't even close
3085      return false;
3086  }
3087
3088  return true;
3089}
3090
3091/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3092/// declarator needs to be rebuilt in the current instantiation.
3093/// Any bits of declarator which appear before the name are valid for
3094/// consideration here.  That's specifically the type in the decl spec
3095/// and the base type in any member-pointer chunks.
3096static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3097                                                    DeclarationName Name) {
3098  // The types we specifically need to rebuild are:
3099  //   - typenames, typeofs, and decltypes
3100  //   - types which will become injected class names
3101  // Of course, we also need to rebuild any type referencing such a
3102  // type.  It's safest to just say "dependent", but we call out a
3103  // few cases here.
3104
3105  DeclSpec &DS = D.getMutableDeclSpec();
3106  switch (DS.getTypeSpecType()) {
3107  case DeclSpec::TST_typename:
3108  case DeclSpec::TST_typeofType:
3109  case DeclSpec::TST_decltype:
3110  case DeclSpec::TST_underlyingType:
3111  case DeclSpec::TST_atomic: {
3112    // Grab the type from the parser.
3113    TypeSourceInfo *TSI = 0;
3114    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3115    if (T.isNull() || !T->isDependentType()) break;
3116
3117    // Make sure there's a type source info.  This isn't really much
3118    // of a waste; most dependent types should have type source info
3119    // attached already.
3120    if (!TSI)
3121      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3122
3123    // Rebuild the type in the current instantiation.
3124    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3125    if (!TSI) return true;
3126
3127    // Store the new type back in the decl spec.
3128    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3129    DS.UpdateTypeRep(LocType);
3130    break;
3131  }
3132
3133  case DeclSpec::TST_typeofExpr: {
3134    Expr *E = DS.getRepAsExpr();
3135    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3136    if (Result.isInvalid()) return true;
3137    DS.UpdateExprRep(Result.get());
3138    break;
3139  }
3140
3141  default:
3142    // Nothing to do for these decl specs.
3143    break;
3144  }
3145
3146  // It doesn't matter what order we do this in.
3147  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3148    DeclaratorChunk &Chunk = D.getTypeObject(I);
3149
3150    // The only type information in the declarator which can come
3151    // before the declaration name is the base type of a member
3152    // pointer.
3153    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3154      continue;
3155
3156    // Rebuild the scope specifier in-place.
3157    CXXScopeSpec &SS = Chunk.Mem.Scope();
3158    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3159      return true;
3160  }
3161
3162  return false;
3163}
3164
3165Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3166  D.setFunctionDefinitionKind(FDK_Declaration);
3167  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3168
3169  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3170      Dcl->getDeclContext()->isFileContext())
3171    Dcl->setTopLevelDeclInObjCContainer();
3172
3173  return Dcl;
3174}
3175
3176/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3177///   If T is the name of a class, then each of the following shall have a
3178///   name different from T:
3179///     - every static data member of class T;
3180///     - every member function of class T
3181///     - every member of class T that is itself a type;
3182/// \returns true if the declaration name violates these rules.
3183bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3184                                   DeclarationNameInfo NameInfo) {
3185  DeclarationName Name = NameInfo.getName();
3186
3187  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3188    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3189      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3190      return true;
3191    }
3192
3193  return false;
3194}
3195
3196Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3197                             MultiTemplateParamsArg TemplateParamLists) {
3198  // TODO: consider using NameInfo for diagnostic.
3199  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3200  DeclarationName Name = NameInfo.getName();
3201
3202  // All of these full declarators require an identifier.  If it doesn't have
3203  // one, the ParsedFreeStandingDeclSpec action should be used.
3204  if (!Name) {
3205    if (!D.isInvalidType())  // Reject this if we think it is valid.
3206      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3207           diag::err_declarator_need_ident)
3208        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3209    return 0;
3210  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3211    return 0;
3212
3213  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3214  // we find one that is.
3215  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3216         (S->getFlags() & Scope::TemplateParamScope) != 0)
3217    S = S->getParent();
3218
3219  DeclContext *DC = CurContext;
3220  if (D.getCXXScopeSpec().isInvalid())
3221    D.setInvalidType();
3222  else if (D.getCXXScopeSpec().isSet()) {
3223    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3224                                        UPPC_DeclarationQualifier))
3225      return 0;
3226
3227    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3228    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3229    if (!DC) {
3230      // If we could not compute the declaration context, it's because the
3231      // declaration context is dependent but does not refer to a class,
3232      // class template, or class template partial specialization. Complain
3233      // and return early, to avoid the coming semantic disaster.
3234      Diag(D.getIdentifierLoc(),
3235           diag::err_template_qualified_declarator_no_match)
3236        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3237        << D.getCXXScopeSpec().getRange();
3238      return 0;
3239    }
3240    bool IsDependentContext = DC->isDependentContext();
3241
3242    if (!IsDependentContext &&
3243        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3244      return 0;
3245
3246    if (isa<CXXRecordDecl>(DC)) {
3247      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3248        Diag(D.getIdentifierLoc(),
3249             diag::err_member_def_undefined_record)
3250          << Name << DC << D.getCXXScopeSpec().getRange();
3251        D.setInvalidType();
3252      } else if (isa<CXXRecordDecl>(CurContext) &&
3253                 !D.getDeclSpec().isFriendSpecified()) {
3254        // The user provided a superfluous scope specifier inside a class
3255        // definition:
3256        //
3257        // class X {
3258        //   void X::f();
3259        // };
3260        if (CurContext->Equals(DC)) {
3261          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3262            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3263        } else {
3264          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3265            << Name << D.getCXXScopeSpec().getRange();
3266
3267          // C++ constructors and destructors with incorrect scopes can break
3268          // our AST invariants by having the wrong underlying types. If
3269          // that's the case, then drop this declaration entirely.
3270          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3271               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3272              !Context.hasSameType(Name.getCXXNameType(),
3273                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3274            return 0;
3275        }
3276
3277        // Pretend that this qualifier was not here.
3278        D.getCXXScopeSpec().clear();
3279      }
3280    }
3281
3282    // Check whether we need to rebuild the type of the given
3283    // declaration in the current instantiation.
3284    if (EnteringContext && IsDependentContext &&
3285        TemplateParamLists.size() != 0) {
3286      ContextRAII SavedContext(*this, DC);
3287      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3288        D.setInvalidType();
3289    }
3290  }
3291
3292  if (DiagnoseClassNameShadow(DC, NameInfo))
3293    // If this is a typedef, we'll end up spewing multiple diagnostics.
3294    // Just return early; it's safer.
3295    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3296      return 0;
3297
3298  NamedDecl *New;
3299
3300  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3301  QualType R = TInfo->getType();
3302
3303  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3304                                      UPPC_DeclarationType))
3305    D.setInvalidType();
3306
3307  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3308                        ForRedeclaration);
3309
3310  // See if this is a redefinition of a variable in the same scope.
3311  if (!D.getCXXScopeSpec().isSet()) {
3312    bool IsLinkageLookup = false;
3313
3314    // If the declaration we're planning to build will be a function
3315    // or object with linkage, then look for another declaration with
3316    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3317    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3318      /* Do nothing*/;
3319    else if (R->isFunctionType()) {
3320      if (CurContext->isFunctionOrMethod() ||
3321          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3322        IsLinkageLookup = true;
3323    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3324      IsLinkageLookup = true;
3325    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3326             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3327      IsLinkageLookup = true;
3328
3329    if (IsLinkageLookup)
3330      Previous.clear(LookupRedeclarationWithLinkage);
3331
3332    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3333  } else { // Something like "int foo::x;"
3334    LookupQualifiedName(Previous, DC);
3335
3336    // Don't consider using declarations as previous declarations for
3337    // out-of-line members.
3338    RemoveUsingDecls(Previous);
3339
3340    // C++ 7.3.1.2p2:
3341    // Members (including explicit specializations of templates) of a named
3342    // namespace can also be defined outside that namespace by explicit
3343    // qualification of the name being defined, provided that the entity being
3344    // defined was already declared in the namespace and the definition appears
3345    // after the point of declaration in a namespace that encloses the
3346    // declarations namespace.
3347    //
3348    // Note that we only check the context at this point. We don't yet
3349    // have enough information to make sure that PrevDecl is actually
3350    // the declaration we want to match. For example, given:
3351    //
3352    //   class X {
3353    //     void f();
3354    //     void f(float);
3355    //   };
3356    //
3357    //   void X::f(int) { } // ill-formed
3358    //
3359    // In this case, PrevDecl will point to the overload set
3360    // containing the two f's declared in X, but neither of them
3361    // matches.
3362
3363    // First check whether we named the global scope.
3364    if (isa<TranslationUnitDecl>(DC)) {
3365      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3366        << Name << D.getCXXScopeSpec().getRange();
3367    } else {
3368      DeclContext *Cur = CurContext;
3369      while (isa<LinkageSpecDecl>(Cur))
3370        Cur = Cur->getParent();
3371      if (!Cur->Encloses(DC)) {
3372        // The qualifying scope doesn't enclose the original declaration.
3373        // Emit diagnostic based on current scope.
3374        SourceLocation L = D.getIdentifierLoc();
3375        SourceRange R = D.getCXXScopeSpec().getRange();
3376        if (isa<FunctionDecl>(Cur))
3377          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3378        else
3379          Diag(L, diag::err_invalid_declarator_scope)
3380            << Name << cast<NamedDecl>(DC) << R;
3381        D.setInvalidType();
3382      }
3383
3384      // C++11 8.3p1:
3385      // ... "The nested-name-specifier of the qualified declarator-id shall
3386      // not begin with a decltype-specifer"
3387      NestedNameSpecifierLoc SpecLoc =
3388            D.getCXXScopeSpec().getWithLocInContext(Context);
3389      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3390                        "NestedNameSpecifierLoc");
3391      while (SpecLoc.getPrefix())
3392        SpecLoc = SpecLoc.getPrefix();
3393      if (dyn_cast_or_null<DecltypeType>(
3394            SpecLoc.getNestedNameSpecifier()->getAsType()))
3395        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3396          << SpecLoc.getTypeLoc().getSourceRange();
3397    }
3398  }
3399
3400  if (Previous.isSingleResult() &&
3401      Previous.getFoundDecl()->isTemplateParameter()) {
3402    // Maybe we will complain about the shadowed template parameter.
3403    if (!D.isInvalidType())
3404      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3405                                      Previous.getFoundDecl());
3406
3407    // Just pretend that we didn't see the previous declaration.
3408    Previous.clear();
3409  }
3410
3411  // In C++, the previous declaration we find might be a tag type
3412  // (class or enum). In this case, the new declaration will hide the
3413  // tag type. Note that this does does not apply if we're declaring a
3414  // typedef (C++ [dcl.typedef]p4).
3415  if (Previous.isSingleTagDecl() &&
3416      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3417    Previous.clear();
3418
3419  bool AddToScope = true;
3420  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3421    if (TemplateParamLists.size()) {
3422      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3423      return 0;
3424    }
3425
3426    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3427  } else if (R->isFunctionType()) {
3428    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3429                                  move(TemplateParamLists),
3430                                  AddToScope);
3431  } else {
3432    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3433                                  move(TemplateParamLists));
3434  }
3435
3436  if (New == 0)
3437    return 0;
3438
3439  // If this has an identifier and is not an invalid redeclaration or
3440  // function template specialization, add it to the scope stack.
3441  if (New->getDeclName() && AddToScope &&
3442       !(D.isRedeclaration() && New->isInvalidDecl()))
3443    PushOnScopeChains(New, S);
3444
3445  return New;
3446}
3447
3448/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3449/// types into constant array types in certain situations which would otherwise
3450/// be errors (for GCC compatibility).
3451static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3452                                                    ASTContext &Context,
3453                                                    bool &SizeIsNegative,
3454                                                    llvm::APSInt &Oversized) {
3455  // This method tries to turn a variable array into a constant
3456  // array even when the size isn't an ICE.  This is necessary
3457  // for compatibility with code that depends on gcc's buggy
3458  // constant expression folding, like struct {char x[(int)(char*)2];}
3459  SizeIsNegative = false;
3460  Oversized = 0;
3461
3462  if (T->isDependentType())
3463    return QualType();
3464
3465  QualifierCollector Qs;
3466  const Type *Ty = Qs.strip(T);
3467
3468  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3469    QualType Pointee = PTy->getPointeeType();
3470    QualType FixedType =
3471        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3472                                            Oversized);
3473    if (FixedType.isNull()) return FixedType;
3474    FixedType = Context.getPointerType(FixedType);
3475    return Qs.apply(Context, FixedType);
3476  }
3477  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3478    QualType Inner = PTy->getInnerType();
3479    QualType FixedType =
3480        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3481                                            Oversized);
3482    if (FixedType.isNull()) return FixedType;
3483    FixedType = Context.getParenType(FixedType);
3484    return Qs.apply(Context, FixedType);
3485  }
3486
3487  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3488  if (!VLATy)
3489    return QualType();
3490  // FIXME: We should probably handle this case
3491  if (VLATy->getElementType()->isVariablyModifiedType())
3492    return QualType();
3493
3494  llvm::APSInt Res;
3495  if (!VLATy->getSizeExpr() ||
3496      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3497    return QualType();
3498
3499  // Check whether the array size is negative.
3500  if (Res.isSigned() && Res.isNegative()) {
3501    SizeIsNegative = true;
3502    return QualType();
3503  }
3504
3505  // Check whether the array is too large to be addressed.
3506  unsigned ActiveSizeBits
3507    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3508                                              Res);
3509  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3510    Oversized = Res;
3511    return QualType();
3512  }
3513
3514  return Context.getConstantArrayType(VLATy->getElementType(),
3515                                      Res, ArrayType::Normal, 0);
3516}
3517
3518/// \brief Register the given locally-scoped external C declaration so
3519/// that it can be found later for redeclarations
3520void
3521Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3522                                       const LookupResult &Previous,
3523                                       Scope *S) {
3524  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3525         "Decl is not a locally-scoped decl!");
3526  // Note that we have a locally-scoped external with this name.
3527  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3528
3529  if (!Previous.isSingleResult())
3530    return;
3531
3532  NamedDecl *PrevDecl = Previous.getFoundDecl();
3533
3534  // If there was a previous declaration of this variable, it may be
3535  // in our identifier chain. Update the identifier chain with the new
3536  // declaration.
3537  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3538    // The previous declaration was found on the identifer resolver
3539    // chain, so remove it from its scope.
3540
3541    if (S->isDeclScope(PrevDecl)) {
3542      // Special case for redeclarations in the SAME scope.
3543      // Because this declaration is going to be added to the identifier chain
3544      // later, we should temporarily take it OFF the chain.
3545      IdResolver.RemoveDecl(ND);
3546
3547    } else {
3548      // Find the scope for the original declaration.
3549      while (S && !S->isDeclScope(PrevDecl))
3550        S = S->getParent();
3551    }
3552
3553    if (S)
3554      S->RemoveDecl(PrevDecl);
3555  }
3556}
3557
3558llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3559Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3560  if (ExternalSource) {
3561    // Load locally-scoped external decls from the external source.
3562    SmallVector<NamedDecl *, 4> Decls;
3563    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3564    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3565      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3566        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3567      if (Pos == LocallyScopedExternalDecls.end())
3568        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3569    }
3570  }
3571
3572  return LocallyScopedExternalDecls.find(Name);
3573}
3574
3575/// \brief Diagnose function specifiers on a declaration of an identifier that
3576/// does not identify a function.
3577void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3578  // FIXME: We should probably indicate the identifier in question to avoid
3579  // confusion for constructs like "inline int a(), b;"
3580  if (D.getDeclSpec().isInlineSpecified())
3581    Diag(D.getDeclSpec().getInlineSpecLoc(),
3582         diag::err_inline_non_function);
3583
3584  if (D.getDeclSpec().isVirtualSpecified())
3585    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3586         diag::err_virtual_non_function);
3587
3588  if (D.getDeclSpec().isExplicitSpecified())
3589    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3590         diag::err_explicit_non_function);
3591}
3592
3593NamedDecl*
3594Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3595                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3596  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3597  if (D.getCXXScopeSpec().isSet()) {
3598    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3599      << D.getCXXScopeSpec().getRange();
3600    D.setInvalidType();
3601    // Pretend we didn't see the scope specifier.
3602    DC = CurContext;
3603    Previous.clear();
3604  }
3605
3606  if (getLangOptions().CPlusPlus) {
3607    // Check that there are no default arguments (C++ only).
3608    CheckExtraCXXDefaultArguments(D);
3609  }
3610
3611  DiagnoseFunctionSpecifiers(D);
3612
3613  if (D.getDeclSpec().isThreadSpecified())
3614    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3615  if (D.getDeclSpec().isConstexprSpecified())
3616    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3617      << 1;
3618
3619  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3620    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3621      << D.getName().getSourceRange();
3622    return 0;
3623  }
3624
3625  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3626  if (!NewTD) return 0;
3627
3628  // Handle attributes prior to checking for duplicates in MergeVarDecl
3629  ProcessDeclAttributes(S, NewTD, D);
3630
3631  CheckTypedefForVariablyModifiedType(S, NewTD);
3632
3633  bool Redeclaration = D.isRedeclaration();
3634  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3635  D.setRedeclaration(Redeclaration);
3636  return ND;
3637}
3638
3639void
3640Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3641  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3642  // then it shall have block scope.
3643  // Note that variably modified types must be fixed before merging the decl so
3644  // that redeclarations will match.
3645  QualType T = NewTD->getUnderlyingType();
3646  if (T->isVariablyModifiedType()) {
3647    getCurFunction()->setHasBranchProtectedScope();
3648
3649    if (S->getFnParent() == 0) {
3650      bool SizeIsNegative;
3651      llvm::APSInt Oversized;
3652      QualType FixedTy =
3653          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3654                                              Oversized);
3655      if (!FixedTy.isNull()) {
3656        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3657        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3658      } else {
3659        if (SizeIsNegative)
3660          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3661        else if (T->isVariableArrayType())
3662          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3663        else if (Oversized.getBoolValue())
3664          Diag(NewTD->getLocation(), diag::err_array_too_large)
3665            << Oversized.toString(10);
3666        else
3667          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3668        NewTD->setInvalidDecl();
3669      }
3670    }
3671  }
3672}
3673
3674
3675/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3676/// declares a typedef-name, either using the 'typedef' type specifier or via
3677/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3678NamedDecl*
3679Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3680                           LookupResult &Previous, bool &Redeclaration) {
3681  // Merge the decl with the existing one if appropriate. If the decl is
3682  // in an outer scope, it isn't the same thing.
3683  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3684                       /*ExplicitInstantiationOrSpecialization=*/false);
3685  if (!Previous.empty()) {
3686    Redeclaration = true;
3687    MergeTypedefNameDecl(NewTD, Previous);
3688  }
3689
3690  // If this is the C FILE type, notify the AST context.
3691  if (IdentifierInfo *II = NewTD->getIdentifier())
3692    if (!NewTD->isInvalidDecl() &&
3693        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3694      if (II->isStr("FILE"))
3695        Context.setFILEDecl(NewTD);
3696      else if (II->isStr("jmp_buf"))
3697        Context.setjmp_bufDecl(NewTD);
3698      else if (II->isStr("sigjmp_buf"))
3699        Context.setsigjmp_bufDecl(NewTD);
3700      else if (II->isStr("ucontext_t"))
3701        Context.setucontext_tDecl(NewTD);
3702      else if (II->isStr("__builtin_va_list"))
3703        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3704    }
3705
3706  return NewTD;
3707}
3708
3709/// \brief Determines whether the given declaration is an out-of-scope
3710/// previous declaration.
3711///
3712/// This routine should be invoked when name lookup has found a
3713/// previous declaration (PrevDecl) that is not in the scope where a
3714/// new declaration by the same name is being introduced. If the new
3715/// declaration occurs in a local scope, previous declarations with
3716/// linkage may still be considered previous declarations (C99
3717/// 6.2.2p4-5, C++ [basic.link]p6).
3718///
3719/// \param PrevDecl the previous declaration found by name
3720/// lookup
3721///
3722/// \param DC the context in which the new declaration is being
3723/// declared.
3724///
3725/// \returns true if PrevDecl is an out-of-scope previous declaration
3726/// for a new delcaration with the same name.
3727static bool
3728isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3729                                ASTContext &Context) {
3730  if (!PrevDecl)
3731    return false;
3732
3733  if (!PrevDecl->hasLinkage())
3734    return false;
3735
3736  if (Context.getLangOptions().CPlusPlus) {
3737    // C++ [basic.link]p6:
3738    //   If there is a visible declaration of an entity with linkage
3739    //   having the same name and type, ignoring entities declared
3740    //   outside the innermost enclosing namespace scope, the block
3741    //   scope declaration declares that same entity and receives the
3742    //   linkage of the previous declaration.
3743    DeclContext *OuterContext = DC->getRedeclContext();
3744    if (!OuterContext->isFunctionOrMethod())
3745      // This rule only applies to block-scope declarations.
3746      return false;
3747
3748    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3749    if (PrevOuterContext->isRecord())
3750      // We found a member function: ignore it.
3751      return false;
3752
3753    // Find the innermost enclosing namespace for the new and
3754    // previous declarations.
3755    OuterContext = OuterContext->getEnclosingNamespaceContext();
3756    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3757
3758    // The previous declaration is in a different namespace, so it
3759    // isn't the same function.
3760    if (!OuterContext->Equals(PrevOuterContext))
3761      return false;
3762  }
3763
3764  return true;
3765}
3766
3767static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3768  CXXScopeSpec &SS = D.getCXXScopeSpec();
3769  if (!SS.isSet()) return;
3770  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3771}
3772
3773bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3774  QualType type = decl->getType();
3775  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3776  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3777    // Various kinds of declaration aren't allowed to be __autoreleasing.
3778    unsigned kind = -1U;
3779    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3780      if (var->hasAttr<BlocksAttr>())
3781        kind = 0; // __block
3782      else if (!var->hasLocalStorage())
3783        kind = 1; // global
3784    } else if (isa<ObjCIvarDecl>(decl)) {
3785      kind = 3; // ivar
3786    } else if (isa<FieldDecl>(decl)) {
3787      kind = 2; // field
3788    }
3789
3790    if (kind != -1U) {
3791      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3792        << kind;
3793    }
3794  } else if (lifetime == Qualifiers::OCL_None) {
3795    // Try to infer lifetime.
3796    if (!type->isObjCLifetimeType())
3797      return false;
3798
3799    lifetime = type->getObjCARCImplicitLifetime();
3800    type = Context.getLifetimeQualifiedType(type, lifetime);
3801    decl->setType(type);
3802  }
3803
3804  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3805    // Thread-local variables cannot have lifetime.
3806    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3807        var->isThreadSpecified()) {
3808      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3809        << var->getType();
3810      return true;
3811    }
3812  }
3813
3814  return false;
3815}
3816
3817NamedDecl*
3818Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3819                              TypeSourceInfo *TInfo, LookupResult &Previous,
3820                              MultiTemplateParamsArg TemplateParamLists) {
3821  QualType R = TInfo->getType();
3822  DeclarationName Name = GetNameForDeclarator(D).getName();
3823
3824  // Check that there are no default arguments (C++ only).
3825  if (getLangOptions().CPlusPlus)
3826    CheckExtraCXXDefaultArguments(D);
3827
3828  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3829  assert(SCSpec != DeclSpec::SCS_typedef &&
3830         "Parser allowed 'typedef' as storage class VarDecl.");
3831  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3832  if (SCSpec == DeclSpec::SCS_mutable) {
3833    // mutable can only appear on non-static class members, so it's always
3834    // an error here
3835    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3836    D.setInvalidType();
3837    SC = SC_None;
3838  }
3839  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3840  VarDecl::StorageClass SCAsWritten
3841    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3842
3843  IdentifierInfo *II = Name.getAsIdentifierInfo();
3844  if (!II) {
3845    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3846      << Name;
3847    return 0;
3848  }
3849
3850  DiagnoseFunctionSpecifiers(D);
3851
3852  if (!DC->isRecord() && S->getFnParent() == 0) {
3853    // C99 6.9p2: The storage-class specifiers auto and register shall not
3854    // appear in the declaration specifiers in an external declaration.
3855    if (SC == SC_Auto || SC == SC_Register) {
3856
3857      // If this is a register variable with an asm label specified, then this
3858      // is a GNU extension.
3859      if (SC == SC_Register && D.getAsmLabel())
3860        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3861      else
3862        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3863      D.setInvalidType();
3864    }
3865  }
3866
3867  if (getLangOptions().OpenCL) {
3868    // Set up the special work-group-local storage class for variables in the
3869    // OpenCL __local address space.
3870    if (R.getAddressSpace() == LangAS::opencl_local)
3871      SC = SC_OpenCLWorkGroupLocal;
3872  }
3873
3874  bool isExplicitSpecialization = false;
3875  VarDecl *NewVD;
3876  if (!getLangOptions().CPlusPlus) {
3877    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3878                            D.getIdentifierLoc(), II,
3879                            R, TInfo, SC, SCAsWritten);
3880
3881    if (D.isInvalidType())
3882      NewVD->setInvalidDecl();
3883  } else {
3884    if (DC->isRecord() && !CurContext->isRecord()) {
3885      // This is an out-of-line definition of a static data member.
3886      if (SC == SC_Static) {
3887        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3888             diag::err_static_out_of_line)
3889          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3890      } else if (SC == SC_None)
3891        SC = SC_Static;
3892    }
3893    if (SC == SC_Static) {
3894      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3895        if (RD->isLocalClass())
3896          Diag(D.getIdentifierLoc(),
3897               diag::err_static_data_member_not_allowed_in_local_class)
3898            << Name << RD->getDeclName();
3899
3900        // C++ [class.union]p1: If a union contains a static data member,
3901        // the program is ill-formed.
3902        //
3903        // We also disallow static data members in anonymous structs.
3904        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3905          Diag(D.getIdentifierLoc(),
3906               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3907            << Name << RD->isUnion();
3908      }
3909    }
3910
3911    // Match up the template parameter lists with the scope specifier, then
3912    // determine whether we have a template or a template specialization.
3913    isExplicitSpecialization = false;
3914    bool Invalid = false;
3915    if (TemplateParameterList *TemplateParams
3916        = MatchTemplateParametersToScopeSpecifier(
3917                                  D.getDeclSpec().getSourceRange().getBegin(),
3918                                                  D.getIdentifierLoc(),
3919                                                  D.getCXXScopeSpec(),
3920                                                  TemplateParamLists.get(),
3921                                                  TemplateParamLists.size(),
3922                                                  /*never a friend*/ false,
3923                                                  isExplicitSpecialization,
3924                                                  Invalid)) {
3925      if (TemplateParams->size() > 0) {
3926        // There is no such thing as a variable template.
3927        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3928          << II
3929          << SourceRange(TemplateParams->getTemplateLoc(),
3930                         TemplateParams->getRAngleLoc());
3931        return 0;
3932      } else {
3933        // There is an extraneous 'template<>' for this variable. Complain
3934        // about it, but allow the declaration of the variable.
3935        Diag(TemplateParams->getTemplateLoc(),
3936             diag::err_template_variable_noparams)
3937          << II
3938          << SourceRange(TemplateParams->getTemplateLoc(),
3939                         TemplateParams->getRAngleLoc());
3940      }
3941    }
3942
3943    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3944                            D.getIdentifierLoc(), II,
3945                            R, TInfo, SC, SCAsWritten);
3946
3947    // If this decl has an auto type in need of deduction, make a note of the
3948    // Decl so we can diagnose uses of it in its own initializer.
3949    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3950        R->getContainedAutoType())
3951      ParsingInitForAutoVars.insert(NewVD);
3952
3953    if (D.isInvalidType() || Invalid)
3954      NewVD->setInvalidDecl();
3955
3956    SetNestedNameSpecifier(NewVD, D);
3957
3958    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3959      NewVD->setTemplateParameterListsInfo(Context,
3960                                           TemplateParamLists.size(),
3961                                           TemplateParamLists.release());
3962    }
3963
3964    if (D.getDeclSpec().isConstexprSpecified())
3965      NewVD->setConstexpr(true);
3966  }
3967
3968  // Set the lexical context. If the declarator has a C++ scope specifier, the
3969  // lexical context will be different from the semantic context.
3970  NewVD->setLexicalDeclContext(CurContext);
3971
3972  if (D.getDeclSpec().isThreadSpecified()) {
3973    if (NewVD->hasLocalStorage())
3974      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3975    else if (!Context.getTargetInfo().isTLSSupported())
3976      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3977    else
3978      NewVD->setThreadSpecified(true);
3979  }
3980
3981  if (D.getDeclSpec().isModulePrivateSpecified()) {
3982    if (isExplicitSpecialization)
3983      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3984        << 2
3985        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3986    else if (NewVD->hasLocalStorage())
3987      Diag(NewVD->getLocation(), diag::err_module_private_local)
3988        << 0 << NewVD->getDeclName()
3989        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3990        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3991    else
3992      NewVD->setModulePrivate();
3993  }
3994
3995  // Handle attributes prior to checking for duplicates in MergeVarDecl
3996  ProcessDeclAttributes(S, NewVD, D);
3997
3998  // In auto-retain/release, infer strong retension for variables of
3999  // retainable type.
4000  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4001    NewVD->setInvalidDecl();
4002
4003  // Handle GNU asm-label extension (encoded as an attribute).
4004  if (Expr *E = (Expr*)D.getAsmLabel()) {
4005    // The parser guarantees this is a string.
4006    StringLiteral *SE = cast<StringLiteral>(E);
4007    StringRef Label = SE->getString();
4008    if (S->getFnParent() != 0) {
4009      switch (SC) {
4010      case SC_None:
4011      case SC_Auto:
4012        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4013        break;
4014      case SC_Register:
4015        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4016          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4017        break;
4018      case SC_Static:
4019      case SC_Extern:
4020      case SC_PrivateExtern:
4021      case SC_OpenCLWorkGroupLocal:
4022        break;
4023      }
4024    }
4025
4026    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4027                                                Context, Label));
4028  }
4029
4030  // Diagnose shadowed variables before filtering for scope.
4031  if (!D.getCXXScopeSpec().isSet())
4032    CheckShadow(S, NewVD, Previous);
4033
4034  // Don't consider existing declarations that are in a different
4035  // scope and are out-of-semantic-context declarations (if the new
4036  // declaration has linkage).
4037  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4038                       isExplicitSpecialization);
4039
4040  if (!getLangOptions().CPlusPlus) {
4041    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4042  } else {
4043    // Merge the decl with the existing one if appropriate.
4044    if (!Previous.empty()) {
4045      if (Previous.isSingleResult() &&
4046          isa<FieldDecl>(Previous.getFoundDecl()) &&
4047          D.getCXXScopeSpec().isSet()) {
4048        // The user tried to define a non-static data member
4049        // out-of-line (C++ [dcl.meaning]p1).
4050        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4051          << D.getCXXScopeSpec().getRange();
4052        Previous.clear();
4053        NewVD->setInvalidDecl();
4054      }
4055    } else if (D.getCXXScopeSpec().isSet()) {
4056      // No previous declaration in the qualifying scope.
4057      Diag(D.getIdentifierLoc(), diag::err_no_member)
4058        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4059        << D.getCXXScopeSpec().getRange();
4060      NewVD->setInvalidDecl();
4061    }
4062
4063    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4064
4065    // This is an explicit specialization of a static data member. Check it.
4066    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4067        CheckMemberSpecialization(NewVD, Previous))
4068      NewVD->setInvalidDecl();
4069  }
4070
4071  // attributes declared post-definition are currently ignored
4072  // FIXME: This should be handled in attribute merging, not
4073  // here.
4074  if (Previous.isSingleResult()) {
4075    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4076    if (Def && (Def = Def->getDefinition()) &&
4077        Def != NewVD && D.hasAttributes()) {
4078      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4079      Diag(Def->getLocation(), diag::note_previous_definition);
4080    }
4081  }
4082
4083  // If this is a locally-scoped extern C variable, update the map of
4084  // such variables.
4085  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4086      !NewVD->isInvalidDecl())
4087    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4088
4089  // If there's a #pragma GCC visibility in scope, and this isn't a class
4090  // member, set the visibility of this variable.
4091  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4092    AddPushedVisibilityAttribute(NewVD);
4093
4094  MarkUnusedFileScopedDecl(NewVD);
4095
4096  return NewVD;
4097}
4098
4099/// \brief Diagnose variable or built-in function shadowing.  Implements
4100/// -Wshadow.
4101///
4102/// This method is called whenever a VarDecl is added to a "useful"
4103/// scope.
4104///
4105/// \param S the scope in which the shadowing name is being declared
4106/// \param R the lookup of the name
4107///
4108void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4109  // Return if warning is ignored.
4110  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4111        DiagnosticsEngine::Ignored)
4112    return;
4113
4114  // Don't diagnose declarations at file scope.
4115  if (D->hasGlobalStorage())
4116    return;
4117
4118  DeclContext *NewDC = D->getDeclContext();
4119
4120  // Only diagnose if we're shadowing an unambiguous field or variable.
4121  if (R.getResultKind() != LookupResult::Found)
4122    return;
4123
4124  NamedDecl* ShadowedDecl = R.getFoundDecl();
4125  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4126    return;
4127
4128  // Fields are not shadowed by variables in C++ static methods.
4129  if (isa<FieldDecl>(ShadowedDecl))
4130    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4131      if (MD->isStatic())
4132        return;
4133
4134  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4135    if (shadowedVar->isExternC()) {
4136      // For shadowing external vars, make sure that we point to the global
4137      // declaration, not a locally scoped extern declaration.
4138      for (VarDecl::redecl_iterator
4139             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4140           I != E; ++I)
4141        if (I->isFileVarDecl()) {
4142          ShadowedDecl = *I;
4143          break;
4144        }
4145    }
4146
4147  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4148
4149  // Only warn about certain kinds of shadowing for class members.
4150  if (NewDC && NewDC->isRecord()) {
4151    // In particular, don't warn about shadowing non-class members.
4152    if (!OldDC->isRecord())
4153      return;
4154
4155    // TODO: should we warn about static data members shadowing
4156    // static data members from base classes?
4157
4158    // TODO: don't diagnose for inaccessible shadowed members.
4159    // This is hard to do perfectly because we might friend the
4160    // shadowing context, but that's just a false negative.
4161  }
4162
4163  // Determine what kind of declaration we're shadowing.
4164  unsigned Kind;
4165  if (isa<RecordDecl>(OldDC)) {
4166    if (isa<FieldDecl>(ShadowedDecl))
4167      Kind = 3; // field
4168    else
4169      Kind = 2; // static data member
4170  } else if (OldDC->isFileContext())
4171    Kind = 1; // global
4172  else
4173    Kind = 0; // local
4174
4175  DeclarationName Name = R.getLookupName();
4176
4177  // Emit warning and note.
4178  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4179  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4180}
4181
4182/// \brief Check -Wshadow without the advantage of a previous lookup.
4183void Sema::CheckShadow(Scope *S, VarDecl *D) {
4184  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4185        DiagnosticsEngine::Ignored)
4186    return;
4187
4188  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4189                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4190  LookupName(R, S);
4191  CheckShadow(S, D, R);
4192}
4193
4194/// \brief Perform semantic checking on a newly-created variable
4195/// declaration.
4196///
4197/// This routine performs all of the type-checking required for a
4198/// variable declaration once it has been built. It is used both to
4199/// check variables after they have been parsed and their declarators
4200/// have been translated into a declaration, and to check variables
4201/// that have been instantiated from a template.
4202///
4203/// Sets NewVD->isInvalidDecl() if an error was encountered.
4204///
4205/// Returns true if the variable declaration is a redeclaration.
4206bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4207                                    LookupResult &Previous) {
4208  // If the decl is already known invalid, don't check it.
4209  if (NewVD->isInvalidDecl())
4210    return false;
4211
4212  QualType T = NewVD->getType();
4213
4214  if (T->isObjCObjectType()) {
4215    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4216      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4217    T = Context.getObjCObjectPointerType(T);
4218    NewVD->setType(T);
4219  }
4220
4221  // Emit an error if an address space was applied to decl with local storage.
4222  // This includes arrays of objects with address space qualifiers, but not
4223  // automatic variables that point to other address spaces.
4224  // ISO/IEC TR 18037 S5.1.2
4225  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4226    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4227    NewVD->setInvalidDecl();
4228    return false;
4229  }
4230
4231  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4232      && !NewVD->hasAttr<BlocksAttr>()) {
4233    if (getLangOptions().getGC() != LangOptions::NonGC)
4234      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4235    else
4236      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4237  }
4238
4239  bool isVM = T->isVariablyModifiedType();
4240  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4241      NewVD->hasAttr<BlocksAttr>())
4242    getCurFunction()->setHasBranchProtectedScope();
4243
4244  if ((isVM && NewVD->hasLinkage()) ||
4245      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4246    bool SizeIsNegative;
4247    llvm::APSInt Oversized;
4248    QualType FixedTy =
4249        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4250                                            Oversized);
4251
4252    if (FixedTy.isNull() && T->isVariableArrayType()) {
4253      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4254      // FIXME: This won't give the correct result for
4255      // int a[10][n];
4256      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4257
4258      if (NewVD->isFileVarDecl())
4259        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4260        << SizeRange;
4261      else if (NewVD->getStorageClass() == SC_Static)
4262        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4263        << SizeRange;
4264      else
4265        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4266        << SizeRange;
4267      NewVD->setInvalidDecl();
4268      return false;
4269    }
4270
4271    if (FixedTy.isNull()) {
4272      if (NewVD->isFileVarDecl())
4273        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4274      else
4275        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4276      NewVD->setInvalidDecl();
4277      return false;
4278    }
4279
4280    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4281    NewVD->setType(FixedTy);
4282  }
4283
4284  if (Previous.empty() && NewVD->isExternC()) {
4285    // Since we did not find anything by this name and we're declaring
4286    // an extern "C" variable, look for a non-visible extern "C"
4287    // declaration with the same name.
4288    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4289      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4290    if (Pos != LocallyScopedExternalDecls.end())
4291      Previous.addDecl(Pos->second);
4292  }
4293
4294  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4295    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4296      << T;
4297    NewVD->setInvalidDecl();
4298    return false;
4299  }
4300
4301  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4302    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4303    NewVD->setInvalidDecl();
4304    return false;
4305  }
4306
4307  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4308    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4309    NewVD->setInvalidDecl();
4310    return false;
4311  }
4312
4313  // Function pointers and references cannot have qualified function type, only
4314  // function pointer-to-members can do that.
4315  QualType Pointee;
4316  unsigned PtrOrRef = 0;
4317  if (const PointerType *Ptr = T->getAs<PointerType>())
4318    Pointee = Ptr->getPointeeType();
4319  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4320    Pointee = Ref->getPointeeType();
4321    PtrOrRef = 1;
4322  }
4323  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4324      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4325    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4326        << PtrOrRef;
4327    NewVD->setInvalidDecl();
4328    return false;
4329  }
4330
4331  if (!Previous.empty()) {
4332    MergeVarDecl(NewVD, Previous);
4333    return true;
4334  }
4335  return false;
4336}
4337
4338/// \brief Data used with FindOverriddenMethod
4339struct FindOverriddenMethodData {
4340  Sema *S;
4341  CXXMethodDecl *Method;
4342};
4343
4344/// \brief Member lookup function that determines whether a given C++
4345/// method overrides a method in a base class, to be used with
4346/// CXXRecordDecl::lookupInBases().
4347static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4348                                 CXXBasePath &Path,
4349                                 void *UserData) {
4350  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4351
4352  FindOverriddenMethodData *Data
4353    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4354
4355  DeclarationName Name = Data->Method->getDeclName();
4356
4357  // FIXME: Do we care about other names here too?
4358  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4359    // We really want to find the base class destructor here.
4360    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4361    CanQualType CT = Data->S->Context.getCanonicalType(T);
4362
4363    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4364  }
4365
4366  for (Path.Decls = BaseRecord->lookup(Name);
4367       Path.Decls.first != Path.Decls.second;
4368       ++Path.Decls.first) {
4369    NamedDecl *D = *Path.Decls.first;
4370    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4371      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4372        return true;
4373    }
4374  }
4375
4376  return false;
4377}
4378
4379/// AddOverriddenMethods - See if a method overrides any in the base classes,
4380/// and if so, check that it's a valid override and remember it.
4381bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4382  // Look for virtual methods in base classes that this method might override.
4383  CXXBasePaths Paths;
4384  FindOverriddenMethodData Data;
4385  Data.Method = MD;
4386  Data.S = this;
4387  bool AddedAny = false;
4388  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4389    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4390         E = Paths.found_decls_end(); I != E; ++I) {
4391      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4392        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4393        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4394            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4395            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4396          AddedAny = true;
4397        }
4398      }
4399    }
4400  }
4401
4402  return AddedAny;
4403}
4404
4405namespace {
4406  // Struct for holding all of the extra arguments needed by
4407  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4408  struct ActOnFDArgs {
4409    Scope *S;
4410    Declarator &D;
4411    MultiTemplateParamsArg TemplateParamLists;
4412    bool AddToScope;
4413  };
4414}
4415
4416/// \brief Generate diagnostics for an invalid function redeclaration.
4417///
4418/// This routine handles generating the diagnostic messages for an invalid
4419/// function redeclaration, including finding possible similar declarations
4420/// or performing typo correction if there are no previous declarations with
4421/// the same name.
4422///
4423/// Returns a NamedDecl iff typo correction was performed and substituting in
4424/// the new declaration name does not cause new errors.
4425static NamedDecl* DiagnoseInvalidRedeclaration(
4426    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4427    ActOnFDArgs &ExtraArgs) {
4428  NamedDecl *Result = NULL;
4429  DeclarationName Name = NewFD->getDeclName();
4430  DeclContext *NewDC = NewFD->getDeclContext();
4431  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4432                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4433  llvm::SmallVector<unsigned, 1> MismatchedParams;
4434  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4435  TypoCorrection Correction;
4436  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4437                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4438  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4439                                  : diag::err_member_def_does_not_match;
4440
4441  NewFD->setInvalidDecl();
4442  SemaRef.LookupQualifiedName(Prev, NewDC);
4443  assert(!Prev.isAmbiguous() &&
4444         "Cannot have an ambiguity in previous-declaration lookup");
4445  if (!Prev.empty()) {
4446    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4447         Func != FuncEnd; ++Func) {
4448      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4449      if (FD &&
4450          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4451        // Add 1 to the index so that 0 can mean the mismatch didn't
4452        // involve a parameter
4453        unsigned ParamNum =
4454            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4455        NearMatches.push_back(std::make_pair(FD, ParamNum));
4456      }
4457    }
4458  // If the qualified name lookup yielded nothing, try typo correction
4459  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4460                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4461             Correction.getCorrection() != Name) {
4462    // Trap errors.
4463    Sema::SFINAETrap Trap(SemaRef);
4464
4465    // Set up everything for the call to ActOnFunctionDeclarator
4466    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4467                              ExtraArgs.D.getIdentifierLoc());
4468    Previous.clear();
4469    Previous.setLookupName(Correction.getCorrection());
4470    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4471                                    CDeclEnd = Correction.end();
4472         CDecl != CDeclEnd; ++CDecl) {
4473      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4474      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4475                                     MismatchedParams)) {
4476        Previous.addDecl(FD);
4477      }
4478    }
4479    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4480    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4481    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4482    // eliminate the need for the parameter pack ExtraArgs.
4483    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4484                                             NewFD->getDeclContext(),
4485                                             NewFD->getTypeSourceInfo(),
4486                                             Previous,
4487                                             ExtraArgs.TemplateParamLists,
4488                                             ExtraArgs.AddToScope);
4489    if (Trap.hasErrorOccurred()) {
4490      // Pretend the typo correction never occurred
4491      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4492                                ExtraArgs.D.getIdentifierLoc());
4493      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4494      Previous.clear();
4495      Previous.setLookupName(Name);
4496      Result = NULL;
4497    } else {
4498      for (LookupResult::iterator Func = Previous.begin(),
4499                               FuncEnd = Previous.end();
4500           Func != FuncEnd; ++Func) {
4501        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4502          NearMatches.push_back(std::make_pair(FD, 0));
4503      }
4504    }
4505    if (NearMatches.empty()) {
4506      // Ignore the correction if it didn't yield any close FunctionDecl matches
4507      Correction = TypoCorrection();
4508    } else {
4509      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4510                             : diag::err_member_def_does_not_match_suggest;
4511    }
4512  }
4513
4514  if (Correction)
4515    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4516        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4517        << FixItHint::CreateReplacement(
4518            NewFD->getLocation(),
4519            Correction.getAsString(SemaRef.getLangOptions()));
4520  else
4521    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4522        << Name << NewDC << NewFD->getLocation();
4523
4524  bool NewFDisConst = false;
4525  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4526    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4527
4528  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4529       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4530       NearMatch != NearMatchEnd; ++NearMatch) {
4531    FunctionDecl *FD = NearMatch->first;
4532    bool FDisConst = false;
4533    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4534      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4535
4536    if (unsigned Idx = NearMatch->second) {
4537      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4538      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4539             diag::note_member_def_close_param_match)
4540          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4541    } else if (Correction) {
4542      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4543          << Correction.getQuoted(SemaRef.getLangOptions());
4544    } else if (FDisConst != NewFDisConst) {
4545      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4546          << NewFDisConst << FD->getSourceRange().getEnd();
4547    } else
4548      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4549  }
4550  return Result;
4551}
4552
4553static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4554                                                          Declarator &D) {
4555  switch (D.getDeclSpec().getStorageClassSpec()) {
4556  default: llvm_unreachable("Unknown storage class!");
4557  case DeclSpec::SCS_auto:
4558  case DeclSpec::SCS_register:
4559  case DeclSpec::SCS_mutable:
4560    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4561                 diag::err_typecheck_sclass_func);
4562    D.setInvalidType();
4563    break;
4564  case DeclSpec::SCS_unspecified: break;
4565  case DeclSpec::SCS_extern: return SC_Extern;
4566  case DeclSpec::SCS_static: {
4567    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4568      // C99 6.7.1p5:
4569      //   The declaration of an identifier for a function that has
4570      //   block scope shall have no explicit storage-class specifier
4571      //   other than extern
4572      // See also (C++ [dcl.stc]p4).
4573      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4574                   diag::err_static_block_func);
4575      break;
4576    } else
4577      return SC_Static;
4578  }
4579  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4580  }
4581
4582  // No explicit storage class has already been returned
4583  return SC_None;
4584}
4585
4586static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4587                                           DeclContext *DC, QualType &R,
4588                                           TypeSourceInfo *TInfo,
4589                                           FunctionDecl::StorageClass SC,
4590                                           bool &IsVirtualOkay) {
4591  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4592  DeclarationName Name = NameInfo.getName();
4593
4594  FunctionDecl *NewFD = 0;
4595  bool isInline = D.getDeclSpec().isInlineSpecified();
4596  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4597  FunctionDecl::StorageClass SCAsWritten
4598    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4599
4600  if (!SemaRef.getLangOptions().CPlusPlus) {
4601    // Determine whether the function was written with a
4602    // prototype. This true when:
4603    //   - there is a prototype in the declarator, or
4604    //   - the type R of the function is some kind of typedef or other reference
4605    //     to a type name (which eventually refers to a function type).
4606    bool HasPrototype =
4607      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4608      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4609
4610    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4611                                 D.getSourceRange().getBegin(), NameInfo, R,
4612                                 TInfo, SC, SCAsWritten, isInline,
4613                                 HasPrototype);
4614    if (D.isInvalidType())
4615      NewFD->setInvalidDecl();
4616
4617    // Set the lexical context.
4618    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4619
4620    return NewFD;
4621  }
4622
4623  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4624  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4625
4626  // Check that the return type is not an abstract class type.
4627  // For record types, this is done by the AbstractClassUsageDiagnoser once
4628  // the class has been completely parsed.
4629  if (!DC->isRecord() &&
4630      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4631                                     R->getAs<FunctionType>()->getResultType(),
4632                                     diag::err_abstract_type_in_decl,
4633                                     SemaRef.AbstractReturnType))
4634    D.setInvalidType();
4635
4636  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4637    // This is a C++ constructor declaration.
4638    assert(DC->isRecord() &&
4639           "Constructors can only be declared in a member context");
4640
4641    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4642    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4643                                      D.getSourceRange().getBegin(), NameInfo,
4644                                      R, TInfo, isExplicit, isInline,
4645                                      /*isImplicitlyDeclared=*/false,
4646                                      isConstexpr);
4647
4648  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4649    // This is a C++ destructor declaration.
4650    if (DC->isRecord()) {
4651      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4652      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4653      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4654                                        SemaRef.Context, Record,
4655                                        D.getSourceRange().getBegin(),
4656                                        NameInfo, R, TInfo, isInline,
4657                                        /*isImplicitlyDeclared=*/false);
4658
4659      // If the class is complete, then we now create the implicit exception
4660      // specification. If the class is incomplete or dependent, we can't do
4661      // it yet.
4662      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4663          Record->getDefinition() && !Record->isBeingDefined() &&
4664          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4665        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4666      }
4667
4668      IsVirtualOkay = true;
4669      return NewDD;
4670
4671    } else {
4672      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4673      D.setInvalidType();
4674
4675      // Create a FunctionDecl to satisfy the function definition parsing
4676      // code path.
4677      return FunctionDecl::Create(SemaRef.Context, DC,
4678                                  D.getSourceRange().getBegin(),
4679                                  D.getIdentifierLoc(), Name, R, TInfo,
4680                                  SC, SCAsWritten, isInline,
4681                                  /*hasPrototype=*/true, isConstexpr);
4682    }
4683
4684  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4685    if (!DC->isRecord()) {
4686      SemaRef.Diag(D.getIdentifierLoc(),
4687           diag::err_conv_function_not_member);
4688      return 0;
4689    }
4690
4691    SemaRef.CheckConversionDeclarator(D, R, SC);
4692    IsVirtualOkay = true;
4693    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4694                                     D.getSourceRange().getBegin(), NameInfo,
4695                                     R, TInfo, isInline, isExplicit,
4696                                     isConstexpr, SourceLocation());
4697
4698  } else if (DC->isRecord()) {
4699    // If the name of the function is the same as the name of the record,
4700    // then this must be an invalid constructor that has a return type.
4701    // (The parser checks for a return type and makes the declarator a
4702    // constructor if it has no return type).
4703    if (Name.getAsIdentifierInfo() &&
4704        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4705      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4706        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4707        << SourceRange(D.getIdentifierLoc());
4708      return 0;
4709    }
4710
4711    bool isStatic = SC == SC_Static;
4712
4713    // [class.free]p1:
4714    // Any allocation function for a class T is a static member
4715    // (even if not explicitly declared static).
4716    if (Name.getCXXOverloadedOperator() == OO_New ||
4717        Name.getCXXOverloadedOperator() == OO_Array_New)
4718      isStatic = true;
4719
4720    // [class.free]p6 Any deallocation function for a class X is a static member
4721    // (even if not explicitly declared static).
4722    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4723        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4724      isStatic = true;
4725
4726    IsVirtualOkay = !isStatic;
4727
4728    // This is a C++ method declaration.
4729    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4730                                 D.getSourceRange().getBegin(), NameInfo, R,
4731                                 TInfo, isStatic, SCAsWritten, isInline,
4732                                 isConstexpr, SourceLocation());
4733
4734  } else {
4735    // Determine whether the function was written with a
4736    // prototype. This true when:
4737    //   - we're in C++ (where every function has a prototype),
4738    return FunctionDecl::Create(SemaRef.Context, DC,
4739                                D.getSourceRange().getBegin(),
4740                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4741                                true/*HasPrototype*/, isConstexpr);
4742  }
4743}
4744
4745NamedDecl*
4746Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4747                              TypeSourceInfo *TInfo, LookupResult &Previous,
4748                              MultiTemplateParamsArg TemplateParamLists,
4749                              bool &AddToScope) {
4750  QualType R = TInfo->getType();
4751
4752  assert(R.getTypePtr()->isFunctionType());
4753
4754  // TODO: consider using NameInfo for diagnostic.
4755  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4756  DeclarationName Name = NameInfo.getName();
4757  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4758
4759  if (D.getDeclSpec().isThreadSpecified())
4760    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4761
4762  // Do not allow returning a objc interface by-value.
4763  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4764    Diag(D.getIdentifierLoc(),
4765         diag::err_object_cannot_be_passed_returned_by_value) << 0
4766    << R->getAs<FunctionType>()->getResultType()
4767    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4768
4769    QualType T = R->getAs<FunctionType>()->getResultType();
4770    T = Context.getObjCObjectPointerType(T);
4771    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4772      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4773      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4774                                  FPT->getNumArgs(), EPI);
4775    }
4776    else if (isa<FunctionNoProtoType>(R))
4777      R = Context.getFunctionNoProtoType(T);
4778  }
4779
4780  bool isFriend = false;
4781  FunctionTemplateDecl *FunctionTemplate = 0;
4782  bool isExplicitSpecialization = false;
4783  bool isFunctionTemplateSpecialization = false;
4784  bool isDependentClassScopeExplicitSpecialization = false;
4785  bool isVirtualOkay = false;
4786
4787  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4788                                              isVirtualOkay);
4789  if (!NewFD) return 0;
4790
4791  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4792    NewFD->setTopLevelDeclInObjCContainer();
4793
4794  if (getLangOptions().CPlusPlus) {
4795    bool isInline = D.getDeclSpec().isInlineSpecified();
4796    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4797    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4798    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4799    isFriend = D.getDeclSpec().isFriendSpecified();
4800    if (isFriend && !isInline && D.isFunctionDefinition()) {
4801      // C++ [class.friend]p5
4802      //   A function can be defined in a friend declaration of a
4803      //   class . . . . Such a function is implicitly inline.
4804      NewFD->setImplicitlyInline();
4805    }
4806
4807    SetNestedNameSpecifier(NewFD, D);
4808    isExplicitSpecialization = false;
4809    isFunctionTemplateSpecialization = false;
4810    if (D.isInvalidType())
4811      NewFD->setInvalidDecl();
4812
4813    // Set the lexical context. If the declarator has a C++
4814    // scope specifier, or is the object of a friend declaration, the
4815    // lexical context will be different from the semantic context.
4816    NewFD->setLexicalDeclContext(CurContext);
4817
4818    // Match up the template parameter lists with the scope specifier, then
4819    // determine whether we have a template or a template specialization.
4820    bool Invalid = false;
4821    if (TemplateParameterList *TemplateParams
4822          = MatchTemplateParametersToScopeSpecifier(
4823                                  D.getDeclSpec().getSourceRange().getBegin(),
4824                                  D.getIdentifierLoc(),
4825                                  D.getCXXScopeSpec(),
4826                                  TemplateParamLists.get(),
4827                                  TemplateParamLists.size(),
4828                                  isFriend,
4829                                  isExplicitSpecialization,
4830                                  Invalid)) {
4831      if (TemplateParams->size() > 0) {
4832        // This is a function template
4833
4834        // Check that we can declare a template here.
4835        if (CheckTemplateDeclScope(S, TemplateParams))
4836          return 0;
4837
4838        // A destructor cannot be a template.
4839        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4840          Diag(NewFD->getLocation(), diag::err_destructor_template);
4841          return 0;
4842        }
4843
4844        // If we're adding a template to a dependent context, we may need to
4845        // rebuilding some of the types used within the template parameter list,
4846        // now that we know what the current instantiation is.
4847        if (DC->isDependentContext()) {
4848          ContextRAII SavedContext(*this, DC);
4849          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4850            Invalid = true;
4851        }
4852
4853
4854        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4855                                                        NewFD->getLocation(),
4856                                                        Name, TemplateParams,
4857                                                        NewFD);
4858        FunctionTemplate->setLexicalDeclContext(CurContext);
4859        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4860
4861        // For source fidelity, store the other template param lists.
4862        if (TemplateParamLists.size() > 1) {
4863          NewFD->setTemplateParameterListsInfo(Context,
4864                                               TemplateParamLists.size() - 1,
4865                                               TemplateParamLists.release());
4866        }
4867      } else {
4868        // This is a function template specialization.
4869        isFunctionTemplateSpecialization = true;
4870        // For source fidelity, store all the template param lists.
4871        NewFD->setTemplateParameterListsInfo(Context,
4872                                             TemplateParamLists.size(),
4873                                             TemplateParamLists.release());
4874
4875        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4876        if (isFriend) {
4877          // We want to remove the "template<>", found here.
4878          SourceRange RemoveRange = TemplateParams->getSourceRange();
4879
4880          // If we remove the template<> and the name is not a
4881          // template-id, we're actually silently creating a problem:
4882          // the friend declaration will refer to an untemplated decl,
4883          // and clearly the user wants a template specialization.  So
4884          // we need to insert '<>' after the name.
4885          SourceLocation InsertLoc;
4886          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4887            InsertLoc = D.getName().getSourceRange().getEnd();
4888            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4889          }
4890
4891          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4892            << Name << RemoveRange
4893            << FixItHint::CreateRemoval(RemoveRange)
4894            << FixItHint::CreateInsertion(InsertLoc, "<>");
4895        }
4896      }
4897    }
4898    else {
4899      // All template param lists were matched against the scope specifier:
4900      // this is NOT (an explicit specialization of) a template.
4901      if (TemplateParamLists.size() > 0)
4902        // For source fidelity, store all the template param lists.
4903        NewFD->setTemplateParameterListsInfo(Context,
4904                                             TemplateParamLists.size(),
4905                                             TemplateParamLists.release());
4906    }
4907
4908    if (Invalid) {
4909      NewFD->setInvalidDecl();
4910      if (FunctionTemplate)
4911        FunctionTemplate->setInvalidDecl();
4912    }
4913
4914    // If we see "T var();" at block scope, where T is a class type, it is
4915    // probably an attempt to initialize a variable, not a function declaration.
4916    // We don't catch this case earlier, since there is no ambiguity here.
4917    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4918        CurContext->isFunctionOrMethod() &&
4919        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4920        D.getDeclSpec().getStorageClassSpecAsWritten()
4921          == DeclSpec::SCS_unspecified) {
4922      QualType T = R->getAs<FunctionType>()->getResultType();
4923      DeclaratorChunk &C = D.getTypeObject(0);
4924      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4925          !C.Fun.TrailingReturnType &&
4926          C.Fun.getExceptionSpecType() == EST_None) {
4927        Diag(C.Loc, diag::warn_empty_parens_are_function_decl)
4928          << SourceRange(C.Loc, C.EndLoc);
4929      }
4930    }
4931
4932    // C++ [dcl.fct.spec]p5:
4933    //   The virtual specifier shall only be used in declarations of
4934    //   nonstatic class member functions that appear within a
4935    //   member-specification of a class declaration; see 10.3.
4936    //
4937    if (isVirtual && !NewFD->isInvalidDecl()) {
4938      if (!isVirtualOkay) {
4939        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4940             diag::err_virtual_non_function);
4941      } else if (!CurContext->isRecord()) {
4942        // 'virtual' was specified outside of the class.
4943        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4944             diag::err_virtual_out_of_class)
4945          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4946      } else if (NewFD->getDescribedFunctionTemplate()) {
4947        // C++ [temp.mem]p3:
4948        //  A member function template shall not be virtual.
4949        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4950             diag::err_virtual_member_function_template)
4951          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4952      } else {
4953        // Okay: Add virtual to the method.
4954        NewFD->setVirtualAsWritten(true);
4955      }
4956    }
4957
4958    // C++ [dcl.fct.spec]p3:
4959    //  The inline specifier shall not appear on a block scope function
4960    //  declaration.
4961    if (isInline && !NewFD->isInvalidDecl()) {
4962      if (CurContext->isFunctionOrMethod()) {
4963        // 'inline' is not allowed on block scope function declaration.
4964        Diag(D.getDeclSpec().getInlineSpecLoc(),
4965             diag::err_inline_declaration_block_scope) << Name
4966          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4967      }
4968    }
4969
4970    // C++ [dcl.fct.spec]p6:
4971    //  The explicit specifier shall be used only in the declaration of a
4972    //  constructor or conversion function within its class definition;
4973    //  see 12.3.1 and 12.3.2.
4974    if (isExplicit && !NewFD->isInvalidDecl()) {
4975      if (!CurContext->isRecord()) {
4976        // 'explicit' was specified outside of the class.
4977        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4978             diag::err_explicit_out_of_class)
4979          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4980      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4981                 !isa<CXXConversionDecl>(NewFD)) {
4982        // 'explicit' was specified on a function that wasn't a constructor
4983        // or conversion function.
4984        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4985             diag::err_explicit_non_ctor_or_conv_function)
4986          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4987      }
4988    }
4989
4990    if (isConstexpr) {
4991      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4992      // are implicitly inline.
4993      NewFD->setImplicitlyInline();
4994
4995      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4996      // be either constructors or to return a literal type. Therefore,
4997      // destructors cannot be declared constexpr.
4998      if (isa<CXXDestructorDecl>(NewFD))
4999        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5000    }
5001
5002    // If __module_private__ was specified, mark the function accordingly.
5003    if (D.getDeclSpec().isModulePrivateSpecified()) {
5004      if (isFunctionTemplateSpecialization) {
5005        SourceLocation ModulePrivateLoc
5006          = D.getDeclSpec().getModulePrivateSpecLoc();
5007        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5008          << 0
5009          << FixItHint::CreateRemoval(ModulePrivateLoc);
5010      } else {
5011        NewFD->setModulePrivate();
5012        if (FunctionTemplate)
5013          FunctionTemplate->setModulePrivate();
5014      }
5015    }
5016
5017    if (isFriend) {
5018      // For now, claim that the objects have no previous declaration.
5019      if (FunctionTemplate) {
5020        FunctionTemplate->setObjectOfFriendDecl(false);
5021        FunctionTemplate->setAccess(AS_public);
5022      }
5023      NewFD->setObjectOfFriendDecl(false);
5024      NewFD->setAccess(AS_public);
5025    }
5026
5027    // If a function is defined as defaulted or deleted, mark it as such now.
5028    switch (D.getFunctionDefinitionKind()) {
5029      case FDK_Declaration:
5030      case FDK_Definition:
5031        break;
5032
5033      case FDK_Defaulted:
5034        NewFD->setDefaulted();
5035        break;
5036
5037      case FDK_Deleted:
5038        NewFD->setDeletedAsWritten();
5039        break;
5040    }
5041
5042    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5043        D.isFunctionDefinition()) {
5044      // C++ [class.mfct]p2:
5045      //   A member function may be defined (8.4) in its class definition, in
5046      //   which case it is an inline member function (7.1.2)
5047      NewFD->setImplicitlyInline();
5048    }
5049
5050    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5051        !CurContext->isRecord()) {
5052      // C++ [class.static]p1:
5053      //   A data or function member of a class may be declared static
5054      //   in a class definition, in which case it is a static member of
5055      //   the class.
5056
5057      // Complain about the 'static' specifier if it's on an out-of-line
5058      // member function definition.
5059      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5060           diag::err_static_out_of_line)
5061        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5062    }
5063  }
5064
5065  // Filter out previous declarations that don't match the scope.
5066  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5067                       isExplicitSpecialization ||
5068                       isFunctionTemplateSpecialization);
5069
5070  // Handle GNU asm-label extension (encoded as an attribute).
5071  if (Expr *E = (Expr*) D.getAsmLabel()) {
5072    // The parser guarantees this is a string.
5073    StringLiteral *SE = cast<StringLiteral>(E);
5074    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5075                                                SE->getString()));
5076  }
5077
5078  // Copy the parameter declarations from the declarator D to the function
5079  // declaration NewFD, if they are available.  First scavenge them into Params.
5080  SmallVector<ParmVarDecl*, 16> Params;
5081  if (D.isFunctionDeclarator()) {
5082    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5083
5084    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5085    // function that takes no arguments, not a function that takes a
5086    // single void argument.
5087    // We let through "const void" here because Sema::GetTypeForDeclarator
5088    // already checks for that case.
5089    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5090        FTI.ArgInfo[0].Param &&
5091        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5092      // Empty arg list, don't push any params.
5093      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5094
5095      // In C++, the empty parameter-type-list must be spelled "void"; a
5096      // typedef of void is not permitted.
5097      if (getLangOptions().CPlusPlus &&
5098          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5099        bool IsTypeAlias = false;
5100        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5101          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5102        else if (const TemplateSpecializationType *TST =
5103                   Param->getType()->getAs<TemplateSpecializationType>())
5104          IsTypeAlias = TST->isTypeAlias();
5105        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5106          << IsTypeAlias;
5107      }
5108    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5109      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5110        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5111        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5112        Param->setDeclContext(NewFD);
5113        Params.push_back(Param);
5114
5115        if (Param->isInvalidDecl())
5116          NewFD->setInvalidDecl();
5117      }
5118    }
5119
5120  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5121    // When we're declaring a function with a typedef, typeof, etc as in the
5122    // following example, we'll need to synthesize (unnamed)
5123    // parameters for use in the declaration.
5124    //
5125    // @code
5126    // typedef void fn(int);
5127    // fn f;
5128    // @endcode
5129
5130    // Synthesize a parameter for each argument type.
5131    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5132         AE = FT->arg_type_end(); AI != AE; ++AI) {
5133      ParmVarDecl *Param =
5134        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5135      Param->setScopeInfo(0, Params.size());
5136      Params.push_back(Param);
5137    }
5138  } else {
5139    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5140           "Should not need args for typedef of non-prototype fn");
5141  }
5142
5143  // Finally, we know we have the right number of parameters, install them.
5144  NewFD->setParams(Params);
5145
5146  // Process the non-inheritable attributes on this declaration.
5147  ProcessDeclAttributes(S, NewFD, D,
5148                        /*NonInheritable=*/true, /*Inheritable=*/false);
5149
5150  if (!getLangOptions().CPlusPlus) {
5151    // Perform semantic checking on the function declaration.
5152    bool isExplicitSpecialization=false;
5153    if (!NewFD->isInvalidDecl()) {
5154      if (NewFD->getResultType()->isVariablyModifiedType()) {
5155        // Functions returning a variably modified type violate C99 6.7.5.2p2
5156        // because all functions have linkage.
5157        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5158        NewFD->setInvalidDecl();
5159      } else {
5160        if (NewFD->isMain())
5161          CheckMain(NewFD, D.getDeclSpec());
5162        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5163                                                    isExplicitSpecialization));
5164      }
5165    }
5166    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5167            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5168           "previous declaration set still overloaded");
5169  } else {
5170    // If the declarator is a template-id, translate the parser's template
5171    // argument list into our AST format.
5172    bool HasExplicitTemplateArgs = false;
5173    TemplateArgumentListInfo TemplateArgs;
5174    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5175      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5176      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5177      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5178      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5179                                         TemplateId->getTemplateArgs(),
5180                                         TemplateId->NumArgs);
5181      translateTemplateArguments(TemplateArgsPtr,
5182                                 TemplateArgs);
5183      TemplateArgsPtr.release();
5184
5185      HasExplicitTemplateArgs = true;
5186
5187      if (NewFD->isInvalidDecl()) {
5188        HasExplicitTemplateArgs = false;
5189      } else if (FunctionTemplate) {
5190        // Function template with explicit template arguments.
5191        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5192          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5193
5194        HasExplicitTemplateArgs = false;
5195      } else if (!isFunctionTemplateSpecialization &&
5196                 !D.getDeclSpec().isFriendSpecified()) {
5197        // We have encountered something that the user meant to be a
5198        // specialization (because it has explicitly-specified template
5199        // arguments) but that was not introduced with a "template<>" (or had
5200        // too few of them).
5201        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5202          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5203          << FixItHint::CreateInsertion(
5204                                    D.getDeclSpec().getSourceRange().getBegin(),
5205                                        "template<> ");
5206        isFunctionTemplateSpecialization = true;
5207      } else {
5208        // "friend void foo<>(int);" is an implicit specialization decl.
5209        isFunctionTemplateSpecialization = true;
5210      }
5211    } else if (isFriend && isFunctionTemplateSpecialization) {
5212      // This combination is only possible in a recovery case;  the user
5213      // wrote something like:
5214      //   template <> friend void foo(int);
5215      // which we're recovering from as if the user had written:
5216      //   friend void foo<>(int);
5217      // Go ahead and fake up a template id.
5218      HasExplicitTemplateArgs = true;
5219        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5220      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5221    }
5222
5223    // If it's a friend (and only if it's a friend), it's possible
5224    // that either the specialized function type or the specialized
5225    // template is dependent, and therefore matching will fail.  In
5226    // this case, don't check the specialization yet.
5227    bool InstantiationDependent = false;
5228    if (isFunctionTemplateSpecialization && isFriend &&
5229        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5230         TemplateSpecializationType::anyDependentTemplateArguments(
5231            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5232            InstantiationDependent))) {
5233      assert(HasExplicitTemplateArgs &&
5234             "friend function specialization without template args");
5235      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5236                                                       Previous))
5237        NewFD->setInvalidDecl();
5238    } else if (isFunctionTemplateSpecialization) {
5239      if (CurContext->isDependentContext() && CurContext->isRecord()
5240          && !isFriend) {
5241        isDependentClassScopeExplicitSpecialization = true;
5242        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5243          diag::ext_function_specialization_in_class :
5244          diag::err_function_specialization_in_class)
5245          << NewFD->getDeclName();
5246      } else if (CheckFunctionTemplateSpecialization(NewFD,
5247                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5248                                                     Previous))
5249        NewFD->setInvalidDecl();
5250
5251      // C++ [dcl.stc]p1:
5252      //   A storage-class-specifier shall not be specified in an explicit
5253      //   specialization (14.7.3)
5254      if (SC != SC_None) {
5255        if (SC != NewFD->getStorageClass())
5256          Diag(NewFD->getLocation(),
5257               diag::err_explicit_specialization_inconsistent_storage_class)
5258            << SC
5259            << FixItHint::CreateRemoval(
5260                                      D.getDeclSpec().getStorageClassSpecLoc());
5261
5262        else
5263          Diag(NewFD->getLocation(),
5264               diag::ext_explicit_specialization_storage_class)
5265            << FixItHint::CreateRemoval(
5266                                      D.getDeclSpec().getStorageClassSpecLoc());
5267      }
5268
5269    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5270      if (CheckMemberSpecialization(NewFD, Previous))
5271          NewFD->setInvalidDecl();
5272    }
5273
5274    // Perform semantic checking on the function declaration.
5275    if (!isDependentClassScopeExplicitSpecialization) {
5276      if (NewFD->isInvalidDecl()) {
5277        // If this is a class member, mark the class invalid immediately.
5278        // This avoids some consistency errors later.
5279        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5280          methodDecl->getParent()->setInvalidDecl();
5281      } else {
5282        if (NewFD->isMain())
5283          CheckMain(NewFD, D.getDeclSpec());
5284        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5285                                                    isExplicitSpecialization));
5286      }
5287    }
5288
5289    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5290            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5291           "previous declaration set still overloaded");
5292
5293    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5294        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5295      NewFD->setInvalidDecl();
5296
5297    NamedDecl *PrincipalDecl = (FunctionTemplate
5298                                ? cast<NamedDecl>(FunctionTemplate)
5299                                : NewFD);
5300
5301    if (isFriend && D.isRedeclaration()) {
5302      AccessSpecifier Access = AS_public;
5303      if (!NewFD->isInvalidDecl())
5304        Access = NewFD->getPreviousDeclaration()->getAccess();
5305
5306      NewFD->setAccess(Access);
5307      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5308
5309      PrincipalDecl->setObjectOfFriendDecl(true);
5310    }
5311
5312    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5313        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5314      PrincipalDecl->setNonMemberOperator();
5315
5316    // If we have a function template, check the template parameter
5317    // list. This will check and merge default template arguments.
5318    if (FunctionTemplate) {
5319      FunctionTemplateDecl *PrevTemplate =
5320                                     FunctionTemplate->getPreviousDeclaration();
5321      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5322                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5323                            D.getDeclSpec().isFriendSpecified()
5324                              ? (D.isFunctionDefinition()
5325                                   ? TPC_FriendFunctionTemplateDefinition
5326                                   : TPC_FriendFunctionTemplate)
5327                              : (D.getCXXScopeSpec().isSet() &&
5328                                 DC && DC->isRecord() &&
5329                                 DC->isDependentContext())
5330                                  ? TPC_ClassTemplateMember
5331                                  : TPC_FunctionTemplate);
5332    }
5333
5334    if (NewFD->isInvalidDecl()) {
5335      // Ignore all the rest of this.
5336    } else if (!D.isRedeclaration()) {
5337      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5338                                       AddToScope };
5339      // Fake up an access specifier if it's supposed to be a class member.
5340      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5341        NewFD->setAccess(AS_public);
5342
5343      // Qualified decls generally require a previous declaration.
5344      if (D.getCXXScopeSpec().isSet()) {
5345        // ...with the major exception of templated-scope or
5346        // dependent-scope friend declarations.
5347
5348        // TODO: we currently also suppress this check in dependent
5349        // contexts because (1) the parameter depth will be off when
5350        // matching friend templates and (2) we might actually be
5351        // selecting a friend based on a dependent factor.  But there
5352        // are situations where these conditions don't apply and we
5353        // can actually do this check immediately.
5354        if (isFriend &&
5355            (TemplateParamLists.size() ||
5356             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5357             CurContext->isDependentContext())) {
5358          // ignore these
5359        } else {
5360          // The user tried to provide an out-of-line definition for a
5361          // function that is a member of a class or namespace, but there
5362          // was no such member function declared (C++ [class.mfct]p2,
5363          // C++ [namespace.memdef]p2). For example:
5364          //
5365          // class X {
5366          //   void f() const;
5367          // };
5368          //
5369          // void X::f() { } // ill-formed
5370          //
5371          // Complain about this problem, and attempt to suggest close
5372          // matches (e.g., those that differ only in cv-qualifiers and
5373          // whether the parameter types are references).
5374
5375          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5376                                                               NewFD,
5377                                                               ExtraArgs)) {
5378            AddToScope = ExtraArgs.AddToScope;
5379            return Result;
5380          }
5381        }
5382
5383        // Unqualified local friend declarations are required to resolve
5384        // to something.
5385      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5386        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5387                                                             NewFD,
5388                                                             ExtraArgs)) {
5389          AddToScope = ExtraArgs.AddToScope;
5390          return Result;
5391        }
5392      }
5393
5394    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5395               !isFriend && !isFunctionTemplateSpecialization &&
5396               !isExplicitSpecialization) {
5397      // An out-of-line member function declaration must also be a
5398      // definition (C++ [dcl.meaning]p1).
5399      // Note that this is not the case for explicit specializations of
5400      // function templates or member functions of class templates, per
5401      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5402      // extension for compatibility with old SWIG code which likes to
5403      // generate them.
5404      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5405        << D.getCXXScopeSpec().getRange();
5406    }
5407  }
5408
5409
5410  // Handle attributes. We need to have merged decls when handling attributes
5411  // (for example to check for conflicts, etc).
5412  // FIXME: This needs to happen before we merge declarations. Then,
5413  // let attribute merging cope with attribute conflicts.
5414  ProcessDeclAttributes(S, NewFD, D,
5415                        /*NonInheritable=*/false, /*Inheritable=*/true);
5416
5417  // attributes declared post-definition are currently ignored
5418  // FIXME: This should happen during attribute merging
5419  if (D.isRedeclaration() && Previous.isSingleResult()) {
5420    const FunctionDecl *Def;
5421    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5422    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5423      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5424      Diag(Def->getLocation(), diag::note_previous_definition);
5425    }
5426  }
5427
5428  AddKnownFunctionAttributes(NewFD);
5429
5430  if (NewFD->hasAttr<OverloadableAttr>() &&
5431      !NewFD->getType()->getAs<FunctionProtoType>()) {
5432    Diag(NewFD->getLocation(),
5433         diag::err_attribute_overloadable_no_prototype)
5434      << NewFD;
5435
5436    // Turn this into a variadic function with no parameters.
5437    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5438    FunctionProtoType::ExtProtoInfo EPI;
5439    EPI.Variadic = true;
5440    EPI.ExtInfo = FT->getExtInfo();
5441
5442    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5443    NewFD->setType(R);
5444  }
5445
5446  // If there's a #pragma GCC visibility in scope, and this isn't a class
5447  // member, set the visibility of this function.
5448  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5449    AddPushedVisibilityAttribute(NewFD);
5450
5451  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5452  // marking the function.
5453  AddCFAuditedAttribute(NewFD);
5454
5455  // If this is a locally-scoped extern C function, update the
5456  // map of such names.
5457  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5458      && !NewFD->isInvalidDecl())
5459    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5460
5461  // Set this FunctionDecl's range up to the right paren.
5462  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5463
5464  if (getLangOptions().CPlusPlus) {
5465    if (FunctionTemplate) {
5466      if (NewFD->isInvalidDecl())
5467        FunctionTemplate->setInvalidDecl();
5468      return FunctionTemplate;
5469    }
5470  }
5471
5472  MarkUnusedFileScopedDecl(NewFD);
5473
5474  if (getLangOptions().CUDA)
5475    if (IdentifierInfo *II = NewFD->getIdentifier())
5476      if (!NewFD->isInvalidDecl() &&
5477          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5478        if (II->isStr("cudaConfigureCall")) {
5479          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5480            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5481
5482          Context.setcudaConfigureCallDecl(NewFD);
5483        }
5484      }
5485
5486  // Here we have an function template explicit specialization at class scope.
5487  // The actually specialization will be postponed to template instatiation
5488  // time via the ClassScopeFunctionSpecializationDecl node.
5489  if (isDependentClassScopeExplicitSpecialization) {
5490    ClassScopeFunctionSpecializationDecl *NewSpec =
5491                         ClassScopeFunctionSpecializationDecl::Create(
5492                                Context, CurContext,  SourceLocation(),
5493                                cast<CXXMethodDecl>(NewFD));
5494    CurContext->addDecl(NewSpec);
5495    AddToScope = false;
5496  }
5497
5498  return NewFD;
5499}
5500
5501/// \brief Perform semantic checking of a new function declaration.
5502///
5503/// Performs semantic analysis of the new function declaration
5504/// NewFD. This routine performs all semantic checking that does not
5505/// require the actual declarator involved in the declaration, and is
5506/// used both for the declaration of functions as they are parsed
5507/// (called via ActOnDeclarator) and for the declaration of functions
5508/// that have been instantiated via C++ template instantiation (called
5509/// via InstantiateDecl).
5510///
5511/// \param IsExplicitSpecialiation whether this new function declaration is
5512/// an explicit specialization of the previous declaration.
5513///
5514/// This sets NewFD->isInvalidDecl() to true if there was an error.
5515///
5516/// Returns true if the function declaration is a redeclaration.
5517bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5518                                    LookupResult &Previous,
5519                                    bool IsExplicitSpecialization) {
5520  assert(!NewFD->getResultType()->isVariablyModifiedType()
5521         && "Variably modified return types are not handled here");
5522
5523  // Check for a previous declaration of this name.
5524  if (Previous.empty() && NewFD->isExternC()) {
5525    // Since we did not find anything by this name and we're declaring
5526    // an extern "C" function, look for a non-visible extern "C"
5527    // declaration with the same name.
5528    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5529      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5530    if (Pos != LocallyScopedExternalDecls.end())
5531      Previous.addDecl(Pos->second);
5532  }
5533
5534  bool Redeclaration = false;
5535
5536  // Merge or overload the declaration with an existing declaration of
5537  // the same name, if appropriate.
5538  if (!Previous.empty()) {
5539    // Determine whether NewFD is an overload of PrevDecl or
5540    // a declaration that requires merging. If it's an overload,
5541    // there's no more work to do here; we'll just add the new
5542    // function to the scope.
5543
5544    NamedDecl *OldDecl = 0;
5545    if (!AllowOverloadingOfFunction(Previous, Context)) {
5546      Redeclaration = true;
5547      OldDecl = Previous.getFoundDecl();
5548    } else {
5549      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5550                            /*NewIsUsingDecl*/ false)) {
5551      case Ovl_Match:
5552        Redeclaration = true;
5553        break;
5554
5555      case Ovl_NonFunction:
5556        Redeclaration = true;
5557        break;
5558
5559      case Ovl_Overload:
5560        Redeclaration = false;
5561        break;
5562      }
5563
5564      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5565        // If a function name is overloadable in C, then every function
5566        // with that name must be marked "overloadable".
5567        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5568          << Redeclaration << NewFD;
5569        NamedDecl *OverloadedDecl = 0;
5570        if (Redeclaration)
5571          OverloadedDecl = OldDecl;
5572        else if (!Previous.empty())
5573          OverloadedDecl = Previous.getRepresentativeDecl();
5574        if (OverloadedDecl)
5575          Diag(OverloadedDecl->getLocation(),
5576               diag::note_attribute_overloadable_prev_overload);
5577        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5578                                                        Context));
5579      }
5580    }
5581
5582    if (Redeclaration) {
5583      // NewFD and OldDecl represent declarations that need to be
5584      // merged.
5585      if (MergeFunctionDecl(NewFD, OldDecl)) {
5586        NewFD->setInvalidDecl();
5587        return Redeclaration;
5588      }
5589
5590      Previous.clear();
5591      Previous.addDecl(OldDecl);
5592
5593      if (FunctionTemplateDecl *OldTemplateDecl
5594                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5595        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5596        FunctionTemplateDecl *NewTemplateDecl
5597          = NewFD->getDescribedFunctionTemplate();
5598        assert(NewTemplateDecl && "Template/non-template mismatch");
5599        if (CXXMethodDecl *Method
5600              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5601          Method->setAccess(OldTemplateDecl->getAccess());
5602          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5603        }
5604
5605        // If this is an explicit specialization of a member that is a function
5606        // template, mark it as a member specialization.
5607        if (IsExplicitSpecialization &&
5608            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5609          NewTemplateDecl->setMemberSpecialization();
5610          assert(OldTemplateDecl->isMemberSpecialization());
5611        }
5612
5613      } else {
5614        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5615          NewFD->setAccess(OldDecl->getAccess());
5616        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5617      }
5618    }
5619  }
5620
5621  // Semantic checking for this function declaration (in isolation).
5622  if (getLangOptions().CPlusPlus) {
5623    // C++-specific checks.
5624    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5625      CheckConstructor(Constructor);
5626    } else if (CXXDestructorDecl *Destructor =
5627                dyn_cast<CXXDestructorDecl>(NewFD)) {
5628      CXXRecordDecl *Record = Destructor->getParent();
5629      QualType ClassType = Context.getTypeDeclType(Record);
5630
5631      // FIXME: Shouldn't we be able to perform this check even when the class
5632      // type is dependent? Both gcc and edg can handle that.
5633      if (!ClassType->isDependentType()) {
5634        DeclarationName Name
5635          = Context.DeclarationNames.getCXXDestructorName(
5636                                        Context.getCanonicalType(ClassType));
5637        if (NewFD->getDeclName() != Name) {
5638          Diag(NewFD->getLocation(), diag::err_destructor_name);
5639          NewFD->setInvalidDecl();
5640          return Redeclaration;
5641        }
5642      }
5643    } else if (CXXConversionDecl *Conversion
5644               = dyn_cast<CXXConversionDecl>(NewFD)) {
5645      ActOnConversionDeclarator(Conversion);
5646    }
5647
5648    // Find any virtual functions that this function overrides.
5649    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5650      if (!Method->isFunctionTemplateSpecialization() &&
5651          !Method->getDescribedFunctionTemplate()) {
5652        if (AddOverriddenMethods(Method->getParent(), Method)) {
5653          // If the function was marked as "static", we have a problem.
5654          if (NewFD->getStorageClass() == SC_Static) {
5655            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5656              << NewFD->getDeclName();
5657            for (CXXMethodDecl::method_iterator
5658                      Overridden = Method->begin_overridden_methods(),
5659                   OverriddenEnd = Method->end_overridden_methods();
5660                 Overridden != OverriddenEnd;
5661                 ++Overridden) {
5662              Diag((*Overridden)->getLocation(),
5663                   diag::note_overridden_virtual_function);
5664            }
5665          }
5666        }
5667      }
5668    }
5669
5670    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5671    if (NewFD->isOverloadedOperator() &&
5672        CheckOverloadedOperatorDeclaration(NewFD)) {
5673      NewFD->setInvalidDecl();
5674      return Redeclaration;
5675    }
5676
5677    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5678    if (NewFD->getLiteralIdentifier() &&
5679        CheckLiteralOperatorDeclaration(NewFD)) {
5680      NewFD->setInvalidDecl();
5681      return Redeclaration;
5682    }
5683
5684    // In C++, check default arguments now that we have merged decls. Unless
5685    // the lexical context is the class, because in this case this is done
5686    // during delayed parsing anyway.
5687    if (!CurContext->isRecord())
5688      CheckCXXDefaultArguments(NewFD);
5689
5690    // If this function declares a builtin function, check the type of this
5691    // declaration against the expected type for the builtin.
5692    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5693      ASTContext::GetBuiltinTypeError Error;
5694      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5695      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5696        // The type of this function differs from the type of the builtin,
5697        // so forget about the builtin entirely.
5698        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5699      }
5700    }
5701  }
5702  return Redeclaration;
5703}
5704
5705void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5706  // C++ [basic.start.main]p3:  A program that declares main to be inline
5707  //   or static is ill-formed.
5708  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5709  //   shall not appear in a declaration of main.
5710  // static main is not an error under C99, but we should warn about it.
5711  if (FD->getStorageClass() == SC_Static)
5712    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5713         ? diag::err_static_main : diag::warn_static_main)
5714      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5715  if (FD->isInlineSpecified())
5716    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5717      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5718
5719  QualType T = FD->getType();
5720  assert(T->isFunctionType() && "function decl is not of function type");
5721  const FunctionType* FT = T->getAs<FunctionType>();
5722
5723  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5724    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5725    FD->setInvalidDecl(true);
5726  }
5727
5728  // Treat protoless main() as nullary.
5729  if (isa<FunctionNoProtoType>(FT)) return;
5730
5731  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5732  unsigned nparams = FTP->getNumArgs();
5733  assert(FD->getNumParams() == nparams);
5734
5735  bool HasExtraParameters = (nparams > 3);
5736
5737  // Darwin passes an undocumented fourth argument of type char**.  If
5738  // other platforms start sprouting these, the logic below will start
5739  // getting shifty.
5740  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5741    HasExtraParameters = false;
5742
5743  if (HasExtraParameters) {
5744    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5745    FD->setInvalidDecl(true);
5746    nparams = 3;
5747  }
5748
5749  // FIXME: a lot of the following diagnostics would be improved
5750  // if we had some location information about types.
5751
5752  QualType CharPP =
5753    Context.getPointerType(Context.getPointerType(Context.CharTy));
5754  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5755
5756  for (unsigned i = 0; i < nparams; ++i) {
5757    QualType AT = FTP->getArgType(i);
5758
5759    bool mismatch = true;
5760
5761    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5762      mismatch = false;
5763    else if (Expected[i] == CharPP) {
5764      // As an extension, the following forms are okay:
5765      //   char const **
5766      //   char const * const *
5767      //   char * const *
5768
5769      QualifierCollector qs;
5770      const PointerType* PT;
5771      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5772          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5773          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5774        qs.removeConst();
5775        mismatch = !qs.empty();
5776      }
5777    }
5778
5779    if (mismatch) {
5780      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5781      // TODO: suggest replacing given type with expected type
5782      FD->setInvalidDecl(true);
5783    }
5784  }
5785
5786  if (nparams == 1 && !FD->isInvalidDecl()) {
5787    Diag(FD->getLocation(), diag::warn_main_one_arg);
5788  }
5789
5790  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5791    Diag(FD->getLocation(), diag::err_main_template_decl);
5792    FD->setInvalidDecl();
5793  }
5794}
5795
5796bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5797  // FIXME: Need strict checking.  In C89, we need to check for
5798  // any assignment, increment, decrement, function-calls, or
5799  // commas outside of a sizeof.  In C99, it's the same list,
5800  // except that the aforementioned are allowed in unevaluated
5801  // expressions.  Everything else falls under the
5802  // "may accept other forms of constant expressions" exception.
5803  // (We never end up here for C++, so the constant expression
5804  // rules there don't matter.)
5805  if (Init->isConstantInitializer(Context, false))
5806    return false;
5807  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5808    << Init->getSourceRange();
5809  return true;
5810}
5811
5812namespace {
5813  // Visits an initialization expression to see if OrigDecl is evaluated in
5814  // its own initialization and throws a warning if it does.
5815  class SelfReferenceChecker
5816      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5817    Sema &S;
5818    Decl *OrigDecl;
5819    bool isRecordType;
5820    bool isPODType;
5821
5822  public:
5823    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5824
5825    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5826                                                    S(S), OrigDecl(OrigDecl) {
5827      isPODType = false;
5828      isRecordType = false;
5829      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5830        isPODType = VD->getType().isPODType(S.Context);
5831        isRecordType = VD->getType()->isRecordType();
5832      }
5833    }
5834
5835    void VisitExpr(Expr *E) {
5836      if (isa<ObjCMessageExpr>(*E)) return;
5837      if (isRecordType) {
5838        Expr *expr = E;
5839        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5840          ValueDecl *VD = ME->getMemberDecl();
5841          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5842          expr = ME->getBase();
5843        }
5844        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5845          HandleDeclRefExpr(DRE);
5846          return;
5847        }
5848      }
5849      Inherited::VisitExpr(E);
5850    }
5851
5852    void VisitMemberExpr(MemberExpr *E) {
5853      if (E->getType()->canDecayToPointerType()) return;
5854      if (isa<FieldDecl>(E->getMemberDecl()))
5855        if (DeclRefExpr *DRE
5856              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5857          HandleDeclRefExpr(DRE);
5858          return;
5859        }
5860      Inherited::VisitMemberExpr(E);
5861    }
5862
5863    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5864      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5865          (isRecordType && E->getCastKind() == CK_NoOp)) {
5866        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5867        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5868          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5869        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5870          HandleDeclRefExpr(DRE);
5871          return;
5872        }
5873      }
5874      Inherited::VisitImplicitCastExpr(E);
5875    }
5876
5877    void VisitUnaryOperator(UnaryOperator *E) {
5878      // For POD record types, addresses of its own members are well-defined.
5879      if (isRecordType && isPODType) return;
5880      Inherited::VisitUnaryOperator(E);
5881    }
5882
5883    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5884      Decl* ReferenceDecl = DRE->getDecl();
5885      if (OrigDecl != ReferenceDecl) return;
5886      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5887                          Sema::NotForRedeclaration);
5888      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5889                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5890                              << Result.getLookupName()
5891                              << OrigDecl->getLocation()
5892                              << DRE->getSourceRange());
5893    }
5894  };
5895}
5896
5897/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5898void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5899  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5900}
5901
5902/// AddInitializerToDecl - Adds the initializer Init to the
5903/// declaration dcl. If DirectInit is true, this is C++ direct
5904/// initialization rather than copy initialization.
5905void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5906                                bool DirectInit, bool TypeMayContainAuto) {
5907  // If there is no declaration, there was an error parsing it.  Just ignore
5908  // the initializer.
5909  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5910    return;
5911
5912  // Check for self-references within variable initializers.
5913  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5914    // Variables declared within a function/method body are handled
5915    // by a dataflow analysis.
5916    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5917      CheckSelfReference(RealDecl, Init);
5918  }
5919  else {
5920    CheckSelfReference(RealDecl, Init);
5921  }
5922
5923  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5924    // With declarators parsed the way they are, the parser cannot
5925    // distinguish between a normal initializer and a pure-specifier.
5926    // Thus this grotesque test.
5927    IntegerLiteral *IL;
5928    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5929        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5930      CheckPureMethod(Method, Init->getSourceRange());
5931    else {
5932      Diag(Method->getLocation(), diag::err_member_function_initialization)
5933        << Method->getDeclName() << Init->getSourceRange();
5934      Method->setInvalidDecl();
5935    }
5936    return;
5937  }
5938
5939  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5940  if (!VDecl) {
5941    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5942    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5943    RealDecl->setInvalidDecl();
5944    return;
5945  }
5946
5947  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5948  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5949    TypeSourceInfo *DeducedType = 0;
5950    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5951      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5952        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5953        << Init->getSourceRange();
5954    if (!DeducedType) {
5955      RealDecl->setInvalidDecl();
5956      return;
5957    }
5958    VDecl->setTypeSourceInfo(DeducedType);
5959    VDecl->setType(DeducedType->getType());
5960
5961    // In ARC, infer lifetime.
5962    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5963      VDecl->setInvalidDecl();
5964
5965    // If this is a redeclaration, check that the type we just deduced matches
5966    // the previously declared type.
5967    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5968      MergeVarDeclTypes(VDecl, Old);
5969  }
5970
5971  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
5972    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
5973    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5974    VDecl->setInvalidDecl();
5975    return;
5976  }
5977
5978
5979  // A definition must end up with a complete type, which means it must be
5980  // complete with the restriction that an array type might be completed by the
5981  // initializer; note that later code assumes this restriction.
5982  QualType BaseDeclType = VDecl->getType();
5983  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5984    BaseDeclType = Array->getElementType();
5985  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5986                          diag::err_typecheck_decl_incomplete_type)) {
5987    RealDecl->setInvalidDecl();
5988    return;
5989  }
5990
5991  // The variable can not have an abstract class type.
5992  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5993                             diag::err_abstract_type_in_decl,
5994                             AbstractVariableType))
5995    VDecl->setInvalidDecl();
5996
5997  const VarDecl *Def;
5998  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5999    Diag(VDecl->getLocation(), diag::err_redefinition)
6000      << VDecl->getDeclName();
6001    Diag(Def->getLocation(), diag::note_previous_definition);
6002    VDecl->setInvalidDecl();
6003    return;
6004  }
6005
6006  const VarDecl* PrevInit = 0;
6007  if (getLangOptions().CPlusPlus) {
6008    // C++ [class.static.data]p4
6009    //   If a static data member is of const integral or const
6010    //   enumeration type, its declaration in the class definition can
6011    //   specify a constant-initializer which shall be an integral
6012    //   constant expression (5.19). In that case, the member can appear
6013    //   in integral constant expressions. The member shall still be
6014    //   defined in a namespace scope if it is used in the program and the
6015    //   namespace scope definition shall not contain an initializer.
6016    //
6017    // We already performed a redefinition check above, but for static
6018    // data members we also need to check whether there was an in-class
6019    // declaration with an initializer.
6020    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6021      Diag(VDecl->getLocation(), diag::err_redefinition)
6022        << VDecl->getDeclName();
6023      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6024      return;
6025    }
6026
6027    if (VDecl->hasLocalStorage())
6028      getCurFunction()->setHasBranchProtectedScope();
6029
6030    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6031      VDecl->setInvalidDecl();
6032      return;
6033    }
6034  }
6035
6036  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6037  // a kernel function cannot be initialized."
6038  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6039    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6040    VDecl->setInvalidDecl();
6041    return;
6042  }
6043
6044  // Get the decls type and save a reference for later, since
6045  // CheckInitializerTypes may change it.
6046  QualType DclT = VDecl->getType(), SavT = DclT;
6047
6048  // Perform the initialization.
6049  if (!VDecl->isInvalidDecl()) {
6050    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6051    InitializationKind Kind
6052      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6053                                                      Init->getLocStart(),
6054                                                      Init->getLocEnd())
6055                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6056                                                    Init->getLocStart());
6057
6058    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6059    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6060                                              MultiExprArg(*this, &Init, 1),
6061                                              &DclT);
6062    if (Result.isInvalid()) {
6063      VDecl->setInvalidDecl();
6064      return;
6065    }
6066
6067    Init = Result.takeAs<Expr>();
6068  }
6069
6070  // If the type changed, it means we had an incomplete type that was
6071  // completed by the initializer. For example:
6072  //   int ary[] = { 1, 3, 5 };
6073  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6074  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6075    VDecl->setType(DclT);
6076    Init->setType(DclT.getNonReferenceType());
6077  }
6078
6079  // Check any implicit conversions within the expression.
6080  CheckImplicitConversions(Init, VDecl->getLocation());
6081
6082  if (!VDecl->isInvalidDecl())
6083    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6084
6085  Init = MaybeCreateExprWithCleanups(Init);
6086  // Attach the initializer to the decl.
6087  VDecl->setInit(Init);
6088
6089  if (VDecl->isLocalVarDecl()) {
6090    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6091    // static storage duration shall be constant expressions or string literals.
6092    // C++ does not have this restriction.
6093    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6094        VDecl->getStorageClass() == SC_Static)
6095      CheckForConstantInitializer(Init, DclT);
6096  } else if (VDecl->isStaticDataMember() &&
6097             VDecl->getLexicalDeclContext()->isRecord()) {
6098    // This is an in-class initialization for a static data member, e.g.,
6099    //
6100    // struct S {
6101    //   static const int value = 17;
6102    // };
6103
6104    // C++ [class.mem]p4:
6105    //   A member-declarator can contain a constant-initializer only
6106    //   if it declares a static member (9.4) of const integral or
6107    //   const enumeration type, see 9.4.2.
6108    //
6109    // C++11 [class.static.data]p3:
6110    //   If a non-volatile const static data member is of integral or
6111    //   enumeration type, its declaration in the class definition can
6112    //   specify a brace-or-equal-initializer in which every initalizer-clause
6113    //   that is an assignment-expression is a constant expression. A static
6114    //   data member of literal type can be declared in the class definition
6115    //   with the constexpr specifier; if so, its declaration shall specify a
6116    //   brace-or-equal-initializer in which every initializer-clause that is
6117    //   an assignment-expression is a constant expression.
6118
6119    // Do nothing on dependent types.
6120    if (DclT->isDependentType()) {
6121
6122    // Allow any 'static constexpr' members, whether or not they are of literal
6123    // type. We separately check that the initializer is a constant expression,
6124    // which implicitly requires the member to be of literal type.
6125    } else if (VDecl->isConstexpr()) {
6126
6127    // Require constness.
6128    } else if (!DclT.isConstQualified()) {
6129      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6130        << Init->getSourceRange();
6131      VDecl->setInvalidDecl();
6132
6133    // We allow integer constant expressions in all cases.
6134    } else if (DclT->isIntegralOrEnumerationType()) {
6135      // Check whether the expression is a constant expression.
6136      SourceLocation Loc;
6137      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6138        // In C++11, a non-constexpr const static data member with an
6139        // in-class initializer cannot be volatile.
6140        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6141      else if (Init->isValueDependent())
6142        ; // Nothing to check.
6143      else if (Init->isIntegerConstantExpr(Context, &Loc))
6144        ; // Ok, it's an ICE!
6145      else if (Init->isEvaluatable(Context)) {
6146        // If we can constant fold the initializer through heroics, accept it,
6147        // but report this as a use of an extension for -pedantic.
6148        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6149          << Init->getSourceRange();
6150      } else {
6151        // Otherwise, this is some crazy unknown case.  Report the issue at the
6152        // location provided by the isIntegerConstantExpr failed check.
6153        Diag(Loc, diag::err_in_class_initializer_non_constant)
6154          << Init->getSourceRange();
6155        VDecl->setInvalidDecl();
6156      }
6157
6158    // We allow foldable floating-point constants as an extension.
6159    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6160      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6161        << DclT << Init->getSourceRange();
6162      if (getLangOptions().CPlusPlus0x)
6163        Diag(VDecl->getLocation(),
6164             diag::note_in_class_initializer_float_type_constexpr)
6165          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6166
6167      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6168        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6169          << Init->getSourceRange();
6170        VDecl->setInvalidDecl();
6171      }
6172
6173    // Suggest adding 'constexpr' in C++11 for literal types.
6174    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6175      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6176        << DclT << Init->getSourceRange()
6177        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6178      VDecl->setConstexpr(true);
6179
6180    } else {
6181      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6182        << DclT << Init->getSourceRange();
6183      VDecl->setInvalidDecl();
6184    }
6185  } else if (VDecl->isFileVarDecl()) {
6186    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6187        (!getLangOptions().CPlusPlus ||
6188         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6189      Diag(VDecl->getLocation(), diag::warn_extern_init);
6190
6191    // C99 6.7.8p4. All file scoped initializers need to be constant.
6192    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6193      CheckForConstantInitializer(Init, DclT);
6194  }
6195
6196  CheckCompleteVariableDeclaration(VDecl);
6197}
6198
6199/// ActOnInitializerError - Given that there was an error parsing an
6200/// initializer for the given declaration, try to return to some form
6201/// of sanity.
6202void Sema::ActOnInitializerError(Decl *D) {
6203  // Our main concern here is re-establishing invariants like "a
6204  // variable's type is either dependent or complete".
6205  if (!D || D->isInvalidDecl()) return;
6206
6207  VarDecl *VD = dyn_cast<VarDecl>(D);
6208  if (!VD) return;
6209
6210  // Auto types are meaningless if we can't make sense of the initializer.
6211  if (ParsingInitForAutoVars.count(D)) {
6212    D->setInvalidDecl();
6213    return;
6214  }
6215
6216  QualType Ty = VD->getType();
6217  if (Ty->isDependentType()) return;
6218
6219  // Require a complete type.
6220  if (RequireCompleteType(VD->getLocation(),
6221                          Context.getBaseElementType(Ty),
6222                          diag::err_typecheck_decl_incomplete_type)) {
6223    VD->setInvalidDecl();
6224    return;
6225  }
6226
6227  // Require an abstract type.
6228  if (RequireNonAbstractType(VD->getLocation(), Ty,
6229                             diag::err_abstract_type_in_decl,
6230                             AbstractVariableType)) {
6231    VD->setInvalidDecl();
6232    return;
6233  }
6234
6235  // Don't bother complaining about constructors or destructors,
6236  // though.
6237}
6238
6239void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6240                                  bool TypeMayContainAuto) {
6241  // If there is no declaration, there was an error parsing it. Just ignore it.
6242  if (RealDecl == 0)
6243    return;
6244
6245  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6246    QualType Type = Var->getType();
6247
6248    // C++11 [dcl.spec.auto]p3
6249    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6250      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6251        << Var->getDeclName() << Type;
6252      Var->setInvalidDecl();
6253      return;
6254    }
6255
6256    // C++11 [class.static.data]p3: A static data member can be declared with
6257    // the constexpr specifier; if so, its declaration shall specify
6258    // a brace-or-equal-initializer.
6259    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6260    // the definition of a variable [...] or the declaration of a static data
6261    // member.
6262    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6263      if (Var->isStaticDataMember())
6264        Diag(Var->getLocation(),
6265             diag::err_constexpr_static_mem_var_requires_init)
6266          << Var->getDeclName();
6267      else
6268        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6269      Var->setInvalidDecl();
6270      return;
6271    }
6272
6273    switch (Var->isThisDeclarationADefinition()) {
6274    case VarDecl::Definition:
6275      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6276        break;
6277
6278      // We have an out-of-line definition of a static data member
6279      // that has an in-class initializer, so we type-check this like
6280      // a declaration.
6281      //
6282      // Fall through
6283
6284    case VarDecl::DeclarationOnly:
6285      // It's only a declaration.
6286
6287      // Block scope. C99 6.7p7: If an identifier for an object is
6288      // declared with no linkage (C99 6.2.2p6), the type for the
6289      // object shall be complete.
6290      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6291          !Var->getLinkage() && !Var->isInvalidDecl() &&
6292          RequireCompleteType(Var->getLocation(), Type,
6293                              diag::err_typecheck_decl_incomplete_type))
6294        Var->setInvalidDecl();
6295
6296      // Make sure that the type is not abstract.
6297      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6298          RequireNonAbstractType(Var->getLocation(), Type,
6299                                 diag::err_abstract_type_in_decl,
6300                                 AbstractVariableType))
6301        Var->setInvalidDecl();
6302      return;
6303
6304    case VarDecl::TentativeDefinition:
6305      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6306      // object that has file scope without an initializer, and without a
6307      // storage-class specifier or with the storage-class specifier "static",
6308      // constitutes a tentative definition. Note: A tentative definition with
6309      // external linkage is valid (C99 6.2.2p5).
6310      if (!Var->isInvalidDecl()) {
6311        if (const IncompleteArrayType *ArrayT
6312                                    = Context.getAsIncompleteArrayType(Type)) {
6313          if (RequireCompleteType(Var->getLocation(),
6314                                  ArrayT->getElementType(),
6315                                  diag::err_illegal_decl_array_incomplete_type))
6316            Var->setInvalidDecl();
6317        } else if (Var->getStorageClass() == SC_Static) {
6318          // C99 6.9.2p3: If the declaration of an identifier for an object is
6319          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6320          // declared type shall not be an incomplete type.
6321          // NOTE: code such as the following
6322          //     static struct s;
6323          //     struct s { int a; };
6324          // is accepted by gcc. Hence here we issue a warning instead of
6325          // an error and we do not invalidate the static declaration.
6326          // NOTE: to avoid multiple warnings, only check the first declaration.
6327          if (Var->getPreviousDeclaration() == 0)
6328            RequireCompleteType(Var->getLocation(), Type,
6329                                diag::ext_typecheck_decl_incomplete_type);
6330        }
6331      }
6332
6333      // Record the tentative definition; we're done.
6334      if (!Var->isInvalidDecl())
6335        TentativeDefinitions.push_back(Var);
6336      return;
6337    }
6338
6339    // Provide a specific diagnostic for uninitialized variable
6340    // definitions with incomplete array type.
6341    if (Type->isIncompleteArrayType()) {
6342      Diag(Var->getLocation(),
6343           diag::err_typecheck_incomplete_array_needs_initializer);
6344      Var->setInvalidDecl();
6345      return;
6346    }
6347
6348    // Provide a specific diagnostic for uninitialized variable
6349    // definitions with reference type.
6350    if (Type->isReferenceType()) {
6351      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6352        << Var->getDeclName()
6353        << SourceRange(Var->getLocation(), Var->getLocation());
6354      Var->setInvalidDecl();
6355      return;
6356    }
6357
6358    // Do not attempt to type-check the default initializer for a
6359    // variable with dependent type.
6360    if (Type->isDependentType())
6361      return;
6362
6363    if (Var->isInvalidDecl())
6364      return;
6365
6366    if (RequireCompleteType(Var->getLocation(),
6367                            Context.getBaseElementType(Type),
6368                            diag::err_typecheck_decl_incomplete_type)) {
6369      Var->setInvalidDecl();
6370      return;
6371    }
6372
6373    // The variable can not have an abstract class type.
6374    if (RequireNonAbstractType(Var->getLocation(), Type,
6375                               diag::err_abstract_type_in_decl,
6376                               AbstractVariableType)) {
6377      Var->setInvalidDecl();
6378      return;
6379    }
6380
6381    // Check for jumps past the implicit initializer.  C++0x
6382    // clarifies that this applies to a "variable with automatic
6383    // storage duration", not a "local variable".
6384    // C++11 [stmt.dcl]p3
6385    //   A program that jumps from a point where a variable with automatic
6386    //   storage duration is not in scope to a point where it is in scope is
6387    //   ill-formed unless the variable has scalar type, class type with a
6388    //   trivial default constructor and a trivial destructor, a cv-qualified
6389    //   version of one of these types, or an array of one of the preceding
6390    //   types and is declared without an initializer.
6391    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6392      if (const RecordType *Record
6393            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6394        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6395        // Mark the function for further checking even if the looser rules of
6396        // C++11 do not require such checks, so that we can diagnose
6397        // incompatibilities with C++98.
6398        if (!CXXRecord->isPOD())
6399          getCurFunction()->setHasBranchProtectedScope();
6400      }
6401    }
6402
6403    // C++03 [dcl.init]p9:
6404    //   If no initializer is specified for an object, and the
6405    //   object is of (possibly cv-qualified) non-POD class type (or
6406    //   array thereof), the object shall be default-initialized; if
6407    //   the object is of const-qualified type, the underlying class
6408    //   type shall have a user-declared default
6409    //   constructor. Otherwise, if no initializer is specified for
6410    //   a non- static object, the object and its subobjects, if
6411    //   any, have an indeterminate initial value); if the object
6412    //   or any of its subobjects are of const-qualified type, the
6413    //   program is ill-formed.
6414    // C++0x [dcl.init]p11:
6415    //   If no initializer is specified for an object, the object is
6416    //   default-initialized; [...].
6417    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6418    InitializationKind Kind
6419      = InitializationKind::CreateDefault(Var->getLocation());
6420
6421    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6422    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6423                                      MultiExprArg(*this, 0, 0));
6424    if (Init.isInvalid())
6425      Var->setInvalidDecl();
6426    else if (Init.get())
6427      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6428
6429    CheckCompleteVariableDeclaration(Var);
6430  }
6431}
6432
6433void Sema::ActOnCXXForRangeDecl(Decl *D) {
6434  VarDecl *VD = dyn_cast<VarDecl>(D);
6435  if (!VD) {
6436    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6437    D->setInvalidDecl();
6438    return;
6439  }
6440
6441  VD->setCXXForRangeDecl(true);
6442
6443  // for-range-declaration cannot be given a storage class specifier.
6444  int Error = -1;
6445  switch (VD->getStorageClassAsWritten()) {
6446  case SC_None:
6447    break;
6448  case SC_Extern:
6449    Error = 0;
6450    break;
6451  case SC_Static:
6452    Error = 1;
6453    break;
6454  case SC_PrivateExtern:
6455    Error = 2;
6456    break;
6457  case SC_Auto:
6458    Error = 3;
6459    break;
6460  case SC_Register:
6461    Error = 4;
6462    break;
6463  case SC_OpenCLWorkGroupLocal:
6464    llvm_unreachable("Unexpected storage class");
6465  }
6466  if (VD->isConstexpr())
6467    Error = 5;
6468  if (Error != -1) {
6469    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6470      << VD->getDeclName() << Error;
6471    D->setInvalidDecl();
6472  }
6473}
6474
6475void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6476  if (var->isInvalidDecl()) return;
6477
6478  // In ARC, don't allow jumps past the implicit initialization of a
6479  // local retaining variable.
6480  if (getLangOptions().ObjCAutoRefCount &&
6481      var->hasLocalStorage()) {
6482    switch (var->getType().getObjCLifetime()) {
6483    case Qualifiers::OCL_None:
6484    case Qualifiers::OCL_ExplicitNone:
6485    case Qualifiers::OCL_Autoreleasing:
6486      break;
6487
6488    case Qualifiers::OCL_Weak:
6489    case Qualifiers::OCL_Strong:
6490      getCurFunction()->setHasBranchProtectedScope();
6491      break;
6492    }
6493  }
6494
6495  // All the following checks are C++ only.
6496  if (!getLangOptions().CPlusPlus) return;
6497
6498  QualType baseType = Context.getBaseElementType(var->getType());
6499  if (baseType->isDependentType()) return;
6500
6501  // __block variables might require us to capture a copy-initializer.
6502  if (var->hasAttr<BlocksAttr>()) {
6503    // It's currently invalid to ever have a __block variable with an
6504    // array type; should we diagnose that here?
6505
6506    // Regardless, we don't want to ignore array nesting when
6507    // constructing this copy.
6508    QualType type = var->getType();
6509
6510    if (type->isStructureOrClassType()) {
6511      SourceLocation poi = var->getLocation();
6512      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6513      ExprResult result =
6514        PerformCopyInitialization(
6515                        InitializedEntity::InitializeBlock(poi, type, false),
6516                                  poi, Owned(varRef));
6517      if (!result.isInvalid()) {
6518        result = MaybeCreateExprWithCleanups(result);
6519        Expr *init = result.takeAs<Expr>();
6520        Context.setBlockVarCopyInits(var, init);
6521      }
6522    }
6523  }
6524
6525  Expr *Init = var->getInit();
6526  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6527
6528  if (!var->getDeclContext()->isDependentContext() && Init) {
6529    if (IsGlobal && !var->isConstexpr() &&
6530        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6531                                            var->getLocation())
6532          != DiagnosticsEngine::Ignored &&
6533        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6534      Diag(var->getLocation(), diag::warn_global_constructor)
6535        << Init->getSourceRange();
6536
6537    if (var->isConstexpr()) {
6538      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6539      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6540        SourceLocation DiagLoc = var->getLocation();
6541        // If the note doesn't add any useful information other than a source
6542        // location, fold it into the primary diagnostic.
6543        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6544              diag::note_invalid_subexpr_in_const_expr) {
6545          DiagLoc = Notes[0].first;
6546          Notes.clear();
6547        }
6548        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6549          << var << Init->getSourceRange();
6550        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6551          Diag(Notes[I].first, Notes[I].second);
6552      }
6553    } else if (var->isUsableInConstantExpressions()) {
6554      // Check whether the initializer of a const variable of integral or
6555      // enumeration type is an ICE now, since we can't tell whether it was
6556      // initialized by a constant expression if we check later.
6557      var->checkInitIsICE();
6558    }
6559  }
6560
6561  // Require the destructor.
6562  if (const RecordType *recordType = baseType->getAs<RecordType>())
6563    FinalizeVarWithDestructor(var, recordType);
6564}
6565
6566/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6567/// any semantic actions necessary after any initializer has been attached.
6568void
6569Sema::FinalizeDeclaration(Decl *ThisDecl) {
6570  // Note that we are no longer parsing the initializer for this declaration.
6571  ParsingInitForAutoVars.erase(ThisDecl);
6572}
6573
6574Sema::DeclGroupPtrTy
6575Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6576                              Decl **Group, unsigned NumDecls) {
6577  SmallVector<Decl*, 8> Decls;
6578
6579  if (DS.isTypeSpecOwned())
6580    Decls.push_back(DS.getRepAsDecl());
6581
6582  for (unsigned i = 0; i != NumDecls; ++i)
6583    if (Decl *D = Group[i])
6584      Decls.push_back(D);
6585
6586  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6587                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6588}
6589
6590/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6591/// group, performing any necessary semantic checking.
6592Sema::DeclGroupPtrTy
6593Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6594                           bool TypeMayContainAuto) {
6595  // C++0x [dcl.spec.auto]p7:
6596  //   If the type deduced for the template parameter U is not the same in each
6597  //   deduction, the program is ill-formed.
6598  // FIXME: When initializer-list support is added, a distinction is needed
6599  // between the deduced type U and the deduced type which 'auto' stands for.
6600  //   auto a = 0, b = { 1, 2, 3 };
6601  // is legal because the deduced type U is 'int' in both cases.
6602  if (TypeMayContainAuto && NumDecls > 1) {
6603    QualType Deduced;
6604    CanQualType DeducedCanon;
6605    VarDecl *DeducedDecl = 0;
6606    for (unsigned i = 0; i != NumDecls; ++i) {
6607      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6608        AutoType *AT = D->getType()->getContainedAutoType();
6609        // Don't reissue diagnostics when instantiating a template.
6610        if (AT && D->isInvalidDecl())
6611          break;
6612        if (AT && AT->isDeduced()) {
6613          QualType U = AT->getDeducedType();
6614          CanQualType UCanon = Context.getCanonicalType(U);
6615          if (Deduced.isNull()) {
6616            Deduced = U;
6617            DeducedCanon = UCanon;
6618            DeducedDecl = D;
6619          } else if (DeducedCanon != UCanon) {
6620            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6621                 diag::err_auto_different_deductions)
6622              << Deduced << DeducedDecl->getDeclName()
6623              << U << D->getDeclName()
6624              << DeducedDecl->getInit()->getSourceRange()
6625              << D->getInit()->getSourceRange();
6626            D->setInvalidDecl();
6627            break;
6628          }
6629        }
6630      }
6631    }
6632  }
6633
6634  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6635}
6636
6637
6638/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6639/// to introduce parameters into function prototype scope.
6640Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6641  const DeclSpec &DS = D.getDeclSpec();
6642
6643  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6644  // C++03 [dcl.stc]p2 also permits 'auto'.
6645  VarDecl::StorageClass StorageClass = SC_None;
6646  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6647  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6648    StorageClass = SC_Register;
6649    StorageClassAsWritten = SC_Register;
6650  } else if (getLangOptions().CPlusPlus &&
6651             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6652    StorageClass = SC_Auto;
6653    StorageClassAsWritten = SC_Auto;
6654  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6655    Diag(DS.getStorageClassSpecLoc(),
6656         diag::err_invalid_storage_class_in_func_decl);
6657    D.getMutableDeclSpec().ClearStorageClassSpecs();
6658  }
6659
6660  if (D.getDeclSpec().isThreadSpecified())
6661    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6662  if (D.getDeclSpec().isConstexprSpecified())
6663    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6664      << 0;
6665
6666  DiagnoseFunctionSpecifiers(D);
6667
6668  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6669  QualType parmDeclType = TInfo->getType();
6670
6671  if (getLangOptions().CPlusPlus) {
6672    // Check that there are no default arguments inside the type of this
6673    // parameter.
6674    CheckExtraCXXDefaultArguments(D);
6675
6676    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6677    if (D.getCXXScopeSpec().isSet()) {
6678      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6679        << D.getCXXScopeSpec().getRange();
6680      D.getCXXScopeSpec().clear();
6681    }
6682  }
6683
6684  // Ensure we have a valid name
6685  IdentifierInfo *II = 0;
6686  if (D.hasName()) {
6687    II = D.getIdentifier();
6688    if (!II) {
6689      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6690        << GetNameForDeclarator(D).getName().getAsString();
6691      D.setInvalidType(true);
6692    }
6693  }
6694
6695  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6696  if (II) {
6697    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6698                   ForRedeclaration);
6699    LookupName(R, S);
6700    if (R.isSingleResult()) {
6701      NamedDecl *PrevDecl = R.getFoundDecl();
6702      if (PrevDecl->isTemplateParameter()) {
6703        // Maybe we will complain about the shadowed template parameter.
6704        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6705        // Just pretend that we didn't see the previous declaration.
6706        PrevDecl = 0;
6707      } else if (S->isDeclScope(PrevDecl)) {
6708        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6709        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6710
6711        // Recover by removing the name
6712        II = 0;
6713        D.SetIdentifier(0, D.getIdentifierLoc());
6714        D.setInvalidType(true);
6715      }
6716    }
6717  }
6718
6719  // Temporarily put parameter variables in the translation unit, not
6720  // the enclosing context.  This prevents them from accidentally
6721  // looking like class members in C++.
6722  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6723                                    D.getSourceRange().getBegin(),
6724                                    D.getIdentifierLoc(), II,
6725                                    parmDeclType, TInfo,
6726                                    StorageClass, StorageClassAsWritten);
6727
6728  if (D.isInvalidType())
6729    New->setInvalidDecl();
6730
6731  assert(S->isFunctionPrototypeScope());
6732  assert(S->getFunctionPrototypeDepth() >= 1);
6733  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6734                    S->getNextFunctionPrototypeIndex());
6735
6736  // Add the parameter declaration into this scope.
6737  S->AddDecl(New);
6738  if (II)
6739    IdResolver.AddDecl(New);
6740
6741  ProcessDeclAttributes(S, New, D);
6742
6743  if (D.getDeclSpec().isModulePrivateSpecified())
6744    Diag(New->getLocation(), diag::err_module_private_local)
6745      << 1 << New->getDeclName()
6746      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6747      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6748
6749  if (New->hasAttr<BlocksAttr>()) {
6750    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6751  }
6752  return New;
6753}
6754
6755/// \brief Synthesizes a variable for a parameter arising from a
6756/// typedef.
6757ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6758                                              SourceLocation Loc,
6759                                              QualType T) {
6760  /* FIXME: setting StartLoc == Loc.
6761     Would it be worth to modify callers so as to provide proper source
6762     location for the unnamed parameters, embedding the parameter's type? */
6763  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6764                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6765                                           SC_None, SC_None, 0);
6766  Param->setImplicit();
6767  return Param;
6768}
6769
6770void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6771                                    ParmVarDecl * const *ParamEnd) {
6772  // Don't diagnose unused-parameter errors in template instantiations; we
6773  // will already have done so in the template itself.
6774  if (!ActiveTemplateInstantiations.empty())
6775    return;
6776
6777  for (; Param != ParamEnd; ++Param) {
6778    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6779        !(*Param)->hasAttr<UnusedAttr>()) {
6780      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6781        << (*Param)->getDeclName();
6782    }
6783  }
6784}
6785
6786void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6787                                                  ParmVarDecl * const *ParamEnd,
6788                                                  QualType ReturnTy,
6789                                                  NamedDecl *D) {
6790  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6791    return;
6792
6793  // Warn if the return value is pass-by-value and larger than the specified
6794  // threshold.
6795  if (ReturnTy.isPODType(Context)) {
6796    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6797    if (Size > LangOpts.NumLargeByValueCopy)
6798      Diag(D->getLocation(), diag::warn_return_value_size)
6799          << D->getDeclName() << Size;
6800  }
6801
6802  // Warn if any parameter is pass-by-value and larger than the specified
6803  // threshold.
6804  for (; Param != ParamEnd; ++Param) {
6805    QualType T = (*Param)->getType();
6806    if (!T.isPODType(Context))
6807      continue;
6808    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6809    if (Size > LangOpts.NumLargeByValueCopy)
6810      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6811          << (*Param)->getDeclName() << Size;
6812  }
6813}
6814
6815ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6816                                  SourceLocation NameLoc, IdentifierInfo *Name,
6817                                  QualType T, TypeSourceInfo *TSInfo,
6818                                  VarDecl::StorageClass StorageClass,
6819                                  VarDecl::StorageClass StorageClassAsWritten) {
6820  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6821  if (getLangOptions().ObjCAutoRefCount &&
6822      T.getObjCLifetime() == Qualifiers::OCL_None &&
6823      T->isObjCLifetimeType()) {
6824
6825    Qualifiers::ObjCLifetime lifetime;
6826
6827    // Special cases for arrays:
6828    //   - if it's const, use __unsafe_unretained
6829    //   - otherwise, it's an error
6830    if (T->isArrayType()) {
6831      if (!T.isConstQualified()) {
6832        DelayedDiagnostics.add(
6833            sema::DelayedDiagnostic::makeForbiddenType(
6834            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6835      }
6836      lifetime = Qualifiers::OCL_ExplicitNone;
6837    } else {
6838      lifetime = T->getObjCARCImplicitLifetime();
6839    }
6840    T = Context.getLifetimeQualifiedType(T, lifetime);
6841  }
6842
6843  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6844                                         Context.getAdjustedParameterType(T),
6845                                         TSInfo,
6846                                         StorageClass, StorageClassAsWritten,
6847                                         0);
6848
6849  // Parameters can not be abstract class types.
6850  // For record types, this is done by the AbstractClassUsageDiagnoser once
6851  // the class has been completely parsed.
6852  if (!CurContext->isRecord() &&
6853      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6854                             AbstractParamType))
6855    New->setInvalidDecl();
6856
6857  // Parameter declarators cannot be interface types. All ObjC objects are
6858  // passed by reference.
6859  if (T->isObjCObjectType()) {
6860    Diag(NameLoc,
6861         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6862      << FixItHint::CreateInsertion(NameLoc, "*");
6863    T = Context.getObjCObjectPointerType(T);
6864    New->setType(T);
6865  }
6866
6867  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6868  // duration shall not be qualified by an address-space qualifier."
6869  // Since all parameters have automatic store duration, they can not have
6870  // an address space.
6871  if (T.getAddressSpace() != 0) {
6872    Diag(NameLoc, diag::err_arg_with_address_space);
6873    New->setInvalidDecl();
6874  }
6875
6876  return New;
6877}
6878
6879void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6880                                           SourceLocation LocAfterDecls) {
6881  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6882
6883  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6884  // for a K&R function.
6885  if (!FTI.hasPrototype) {
6886    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6887      --i;
6888      if (FTI.ArgInfo[i].Param == 0) {
6889        llvm::SmallString<256> Code;
6890        llvm::raw_svector_ostream(Code) << "  int "
6891                                        << FTI.ArgInfo[i].Ident->getName()
6892                                        << ";\n";
6893        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6894          << FTI.ArgInfo[i].Ident
6895          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6896
6897        // Implicitly declare the argument as type 'int' for lack of a better
6898        // type.
6899        AttributeFactory attrs;
6900        DeclSpec DS(attrs);
6901        const char* PrevSpec; // unused
6902        unsigned DiagID; // unused
6903        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6904                           PrevSpec, DiagID);
6905        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6906        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6907        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6908      }
6909    }
6910  }
6911}
6912
6913Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6914                                         Declarator &D) {
6915  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6916  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6917  Scope *ParentScope = FnBodyScope->getParent();
6918
6919  D.setFunctionDefinitionKind(FDK_Definition);
6920  Decl *DP = HandleDeclarator(ParentScope, D,
6921                              MultiTemplateParamsArg(*this));
6922  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6923}
6924
6925static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6926  // Don't warn about invalid declarations.
6927  if (FD->isInvalidDecl())
6928    return false;
6929
6930  // Or declarations that aren't global.
6931  if (!FD->isGlobal())
6932    return false;
6933
6934  // Don't warn about C++ member functions.
6935  if (isa<CXXMethodDecl>(FD))
6936    return false;
6937
6938  // Don't warn about 'main'.
6939  if (FD->isMain())
6940    return false;
6941
6942  // Don't warn about inline functions.
6943  if (FD->isInlined())
6944    return false;
6945
6946  // Don't warn about function templates.
6947  if (FD->getDescribedFunctionTemplate())
6948    return false;
6949
6950  // Don't warn about function template specializations.
6951  if (FD->isFunctionTemplateSpecialization())
6952    return false;
6953
6954  bool MissingPrototype = true;
6955  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6956       Prev; Prev = Prev->getPreviousDeclaration()) {
6957    // Ignore any declarations that occur in function or method
6958    // scope, because they aren't visible from the header.
6959    if (Prev->getDeclContext()->isFunctionOrMethod())
6960      continue;
6961
6962    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6963    break;
6964  }
6965
6966  return MissingPrototype;
6967}
6968
6969void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6970  // Don't complain if we're in GNU89 mode and the previous definition
6971  // was an extern inline function.
6972  const FunctionDecl *Definition;
6973  if (FD->isDefined(Definition) &&
6974      !canRedefineFunction(Definition, getLangOptions())) {
6975    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6976        Definition->getStorageClass() == SC_Extern)
6977      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6978        << FD->getDeclName() << getLangOptions().CPlusPlus;
6979    else
6980      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6981    Diag(Definition->getLocation(), diag::note_previous_definition);
6982  }
6983}
6984
6985Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6986  // Clear the last template instantiation error context.
6987  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6988
6989  if (!D)
6990    return D;
6991  FunctionDecl *FD = 0;
6992
6993  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6994    FD = FunTmpl->getTemplatedDecl();
6995  else
6996    FD = cast<FunctionDecl>(D);
6997
6998  // Enter a new function scope
6999  PushFunctionScope();
7000
7001  // See if this is a redefinition.
7002  if (!FD->isLateTemplateParsed())
7003    CheckForFunctionRedefinition(FD);
7004
7005  // Builtin functions cannot be defined.
7006  if (unsigned BuiltinID = FD->getBuiltinID()) {
7007    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7008      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7009      FD->setInvalidDecl();
7010    }
7011  }
7012
7013  // The return type of a function definition must be complete
7014  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7015  QualType ResultType = FD->getResultType();
7016  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7017      !FD->isInvalidDecl() &&
7018      RequireCompleteType(FD->getLocation(), ResultType,
7019                          diag::err_func_def_incomplete_result))
7020    FD->setInvalidDecl();
7021
7022  // GNU warning -Wmissing-prototypes:
7023  //   Warn if a global function is defined without a previous
7024  //   prototype declaration. This warning is issued even if the
7025  //   definition itself provides a prototype. The aim is to detect
7026  //   global functions that fail to be declared in header files.
7027  if (ShouldWarnAboutMissingPrototype(FD))
7028    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7029
7030  if (FnBodyScope)
7031    PushDeclContext(FnBodyScope, FD);
7032
7033  // Check the validity of our function parameters
7034  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7035                           /*CheckParameterNames=*/true);
7036
7037  // Introduce our parameters into the function scope
7038  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7039    ParmVarDecl *Param = FD->getParamDecl(p);
7040    Param->setOwningFunction(FD);
7041
7042    // If this has an identifier, add it to the scope stack.
7043    if (Param->getIdentifier() && FnBodyScope) {
7044      CheckShadow(FnBodyScope, Param);
7045
7046      PushOnScopeChains(Param, FnBodyScope);
7047    }
7048  }
7049
7050  // Checking attributes of current function definition
7051  // dllimport attribute.
7052  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7053  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7054    // dllimport attribute cannot be directly applied to definition.
7055    // Microsoft accepts dllimport for functions defined within class scope.
7056    if (!DA->isInherited() &&
7057        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7058      Diag(FD->getLocation(),
7059           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7060        << "dllimport";
7061      FD->setInvalidDecl();
7062      return FD;
7063    }
7064
7065    // Visual C++ appears to not think this is an issue, so only issue
7066    // a warning when Microsoft extensions are disabled.
7067    if (!LangOpts.MicrosoftExt) {
7068      // If a symbol previously declared dllimport is later defined, the
7069      // attribute is ignored in subsequent references, and a warning is
7070      // emitted.
7071      Diag(FD->getLocation(),
7072           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7073        << FD->getName() << "dllimport";
7074    }
7075  }
7076  return FD;
7077}
7078
7079/// \brief Given the set of return statements within a function body,
7080/// compute the variables that are subject to the named return value
7081/// optimization.
7082///
7083/// Each of the variables that is subject to the named return value
7084/// optimization will be marked as NRVO variables in the AST, and any
7085/// return statement that has a marked NRVO variable as its NRVO candidate can
7086/// use the named return value optimization.
7087///
7088/// This function applies a very simplistic algorithm for NRVO: if every return
7089/// statement in the function has the same NRVO candidate, that candidate is
7090/// the NRVO variable.
7091///
7092/// FIXME: Employ a smarter algorithm that accounts for multiple return
7093/// statements and the lifetimes of the NRVO candidates. We should be able to
7094/// find a maximal set of NRVO variables.
7095void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7096  ReturnStmt **Returns = Scope->Returns.data();
7097
7098  const VarDecl *NRVOCandidate = 0;
7099  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7100    if (!Returns[I]->getNRVOCandidate())
7101      return;
7102
7103    if (!NRVOCandidate)
7104      NRVOCandidate = Returns[I]->getNRVOCandidate();
7105    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7106      return;
7107  }
7108
7109  if (NRVOCandidate)
7110    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7111}
7112
7113Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7114  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7115}
7116
7117Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7118                                    bool IsInstantiation) {
7119  FunctionDecl *FD = 0;
7120  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7121  if (FunTmpl)
7122    FD = FunTmpl->getTemplatedDecl();
7123  else
7124    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7125
7126  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7127  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7128
7129  if (FD) {
7130    FD->setBody(Body);
7131    if (FD->isMain()) {
7132      // C and C++ allow for main to automagically return 0.
7133      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7134      FD->setHasImplicitReturnZero(true);
7135      WP.disableCheckFallThrough();
7136    } else if (FD->hasAttr<NakedAttr>()) {
7137      // If the function is marked 'naked', don't complain about missing return
7138      // statements.
7139      WP.disableCheckFallThrough();
7140    }
7141
7142    // MSVC permits the use of pure specifier (=0) on function definition,
7143    // defined at class scope, warn about this non standard construct.
7144    if (getLangOptions().MicrosoftExt && FD->isPure())
7145      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7146
7147    if (!FD->isInvalidDecl()) {
7148      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7149      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7150                                             FD->getResultType(), FD);
7151
7152      // If this is a constructor, we need a vtable.
7153      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7154        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7155
7156      computeNRVO(Body, getCurFunction());
7157    }
7158
7159    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7160  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7161    assert(MD == getCurMethodDecl() && "Method parsing confused");
7162    MD->setBody(Body);
7163    if (Body)
7164      MD->setEndLoc(Body->getLocEnd());
7165    if (!MD->isInvalidDecl()) {
7166      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7167      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7168                                             MD->getResultType(), MD);
7169
7170      if (Body)
7171        computeNRVO(Body, getCurFunction());
7172    }
7173    if (ObjCShouldCallSuperDealloc) {
7174      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7175      ObjCShouldCallSuperDealloc = false;
7176    }
7177    if (ObjCShouldCallSuperFinalize) {
7178      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7179      ObjCShouldCallSuperFinalize = false;
7180    }
7181  } else {
7182    return 0;
7183  }
7184
7185  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7186         "ObjC methods, which should have been handled in the block above.");
7187  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7188         "ObjC methods, which should have been handled in the block above.");
7189
7190  // Verify and clean out per-function state.
7191  if (Body) {
7192    // C++ constructors that have function-try-blocks can't have return
7193    // statements in the handlers of that block. (C++ [except.handle]p14)
7194    // Verify this.
7195    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7196      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7197
7198    // Verify that gotos and switch cases don't jump into scopes illegally.
7199    if (getCurFunction()->NeedsScopeChecking() &&
7200        !dcl->isInvalidDecl() &&
7201        !hasAnyUnrecoverableErrorsInThisFunction())
7202      DiagnoseInvalidJumps(Body);
7203
7204    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7205      if (!Destructor->getParent()->isDependentType())
7206        CheckDestructor(Destructor);
7207
7208      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7209                                             Destructor->getParent());
7210    }
7211
7212    // If any errors have occurred, clear out any temporaries that may have
7213    // been leftover. This ensures that these temporaries won't be picked up for
7214    // deletion in some later function.
7215    if (PP.getDiagnostics().hasErrorOccurred() ||
7216        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7217      DiscardCleanupsInEvaluationContext();
7218    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7219      // Since the body is valid, issue any analysis-based warnings that are
7220      // enabled.
7221      ActivePolicy = &WP;
7222    }
7223
7224    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7225        !CheckConstexprFunctionBody(FD, Body))
7226      FD->setInvalidDecl();
7227
7228    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7229    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7230  }
7231
7232  if (!IsInstantiation)
7233    PopDeclContext();
7234
7235  PopFunctionScopeInfo(ActivePolicy, dcl);
7236
7237  // If any errors have occurred, clear out any temporaries that may have
7238  // been leftover. This ensures that these temporaries won't be picked up for
7239  // deletion in some later function.
7240  if (getDiagnostics().hasErrorOccurred()) {
7241    DiscardCleanupsInEvaluationContext();
7242  }
7243
7244  return dcl;
7245}
7246
7247
7248/// When we finish delayed parsing of an attribute, we must attach it to the
7249/// relevant Decl.
7250void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7251                                       ParsedAttributes &Attrs) {
7252  ProcessDeclAttributeList(S, D, Attrs.getList());
7253}
7254
7255
7256/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7257/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7258NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7259                                          IdentifierInfo &II, Scope *S) {
7260  // Before we produce a declaration for an implicitly defined
7261  // function, see whether there was a locally-scoped declaration of
7262  // this name as a function or variable. If so, use that
7263  // (non-visible) declaration, and complain about it.
7264  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7265    = findLocallyScopedExternalDecl(&II);
7266  if (Pos != LocallyScopedExternalDecls.end()) {
7267    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7268    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7269    return Pos->second;
7270  }
7271
7272  // Extension in C99.  Legal in C90, but warn about it.
7273  unsigned diag_id;
7274  if (II.getName().startswith("__builtin_"))
7275    diag_id = diag::err_builtin_unknown;
7276  else if (getLangOptions().C99)
7277    diag_id = diag::ext_implicit_function_decl;
7278  else
7279    diag_id = diag::warn_implicit_function_decl;
7280  Diag(Loc, diag_id) << &II;
7281
7282  // Because typo correction is expensive, only do it if the implicit
7283  // function declaration is going to be treated as an error.
7284  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7285    TypoCorrection Corrected;
7286    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7287                                      LookupOrdinaryName, S, 0))) {
7288      NamedDecl *Decl = Corrected.getCorrectionDecl();
7289      if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Decl)) {
7290        std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7291        std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7292
7293        Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7294            << FixItHint::CreateReplacement(Loc, CorrectedStr);
7295
7296        if (Func->getLocation().isValid()
7297            && !II.getName().startswith("__builtin_"))
7298          Diag(Func->getLocation(), diag::note_previous_decl)
7299              << CorrectedQuotedStr;
7300      }
7301    }
7302  }
7303
7304  // Set a Declarator for the implicit definition: int foo();
7305  const char *Dummy;
7306  AttributeFactory attrFactory;
7307  DeclSpec DS(attrFactory);
7308  unsigned DiagID;
7309  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7310  (void)Error; // Silence warning.
7311  assert(!Error && "Error setting up implicit decl!");
7312  Declarator D(DS, Declarator::BlockContext);
7313  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7314                                             0, 0, true, SourceLocation(),
7315                                             SourceLocation(), SourceLocation(),
7316                                             SourceLocation(),
7317                                             EST_None, SourceLocation(),
7318                                             0, 0, 0, 0, Loc, Loc, D),
7319                DS.getAttributes(),
7320                SourceLocation());
7321  D.SetIdentifier(&II, Loc);
7322
7323  // Insert this function into translation-unit scope.
7324
7325  DeclContext *PrevDC = CurContext;
7326  CurContext = Context.getTranslationUnitDecl();
7327
7328  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7329  FD->setImplicit();
7330
7331  CurContext = PrevDC;
7332
7333  AddKnownFunctionAttributes(FD);
7334
7335  return FD;
7336}
7337
7338/// \brief Adds any function attributes that we know a priori based on
7339/// the declaration of this function.
7340///
7341/// These attributes can apply both to implicitly-declared builtins
7342/// (like __builtin___printf_chk) or to library-declared functions
7343/// like NSLog or printf.
7344///
7345/// We need to check for duplicate attributes both here and where user-written
7346/// attributes are applied to declarations.
7347void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7348  if (FD->isInvalidDecl())
7349    return;
7350
7351  // If this is a built-in function, map its builtin attributes to
7352  // actual attributes.
7353  if (unsigned BuiltinID = FD->getBuiltinID()) {
7354    // Handle printf-formatting attributes.
7355    unsigned FormatIdx;
7356    bool HasVAListArg;
7357    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7358      if (!FD->getAttr<FormatAttr>())
7359        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7360                                                "printf", FormatIdx+1,
7361                                               HasVAListArg ? 0 : FormatIdx+2));
7362    }
7363    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7364                                             HasVAListArg)) {
7365     if (!FD->getAttr<FormatAttr>())
7366       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7367                                              "scanf", FormatIdx+1,
7368                                              HasVAListArg ? 0 : FormatIdx+2));
7369    }
7370
7371    // Mark const if we don't care about errno and that is the only
7372    // thing preventing the function from being const. This allows
7373    // IRgen to use LLVM intrinsics for such functions.
7374    if (!getLangOptions().MathErrno &&
7375        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7376      if (!FD->getAttr<ConstAttr>())
7377        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7378    }
7379
7380    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7381        !FD->getAttr<ReturnsTwiceAttr>())
7382      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7383    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7384      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7385    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7386      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7387  }
7388
7389  IdentifierInfo *Name = FD->getIdentifier();
7390  if (!Name)
7391    return;
7392  if ((!getLangOptions().CPlusPlus &&
7393       FD->getDeclContext()->isTranslationUnit()) ||
7394      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7395       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7396       LinkageSpecDecl::lang_c)) {
7397    // Okay: this could be a libc/libm/Objective-C function we know
7398    // about.
7399  } else
7400    return;
7401
7402  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7403    // FIXME: NSLog and NSLogv should be target specific
7404    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7405      // FIXME: We known better than our headers.
7406      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7407    } else
7408      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7409                                             "printf", 1,
7410                                             Name->isStr("NSLogv") ? 0 : 2));
7411  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7412    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7413    // target-specific builtins, perhaps?
7414    if (!FD->getAttr<FormatAttr>())
7415      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7416                                             "printf", 2,
7417                                             Name->isStr("vasprintf") ? 0 : 3));
7418  }
7419}
7420
7421TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7422                                    TypeSourceInfo *TInfo) {
7423  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7424  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7425
7426  if (!TInfo) {
7427    assert(D.isInvalidType() && "no declarator info for valid type");
7428    TInfo = Context.getTrivialTypeSourceInfo(T);
7429  }
7430
7431  // Scope manipulation handled by caller.
7432  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7433                                           D.getSourceRange().getBegin(),
7434                                           D.getIdentifierLoc(),
7435                                           D.getIdentifier(),
7436                                           TInfo);
7437
7438  // Bail out immediately if we have an invalid declaration.
7439  if (D.isInvalidType()) {
7440    NewTD->setInvalidDecl();
7441    return NewTD;
7442  }
7443
7444  if (D.getDeclSpec().isModulePrivateSpecified()) {
7445    if (CurContext->isFunctionOrMethod())
7446      Diag(NewTD->getLocation(), diag::err_module_private_local)
7447        << 2 << NewTD->getDeclName()
7448        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7449        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7450    else
7451      NewTD->setModulePrivate();
7452  }
7453
7454  // C++ [dcl.typedef]p8:
7455  //   If the typedef declaration defines an unnamed class (or
7456  //   enum), the first typedef-name declared by the declaration
7457  //   to be that class type (or enum type) is used to denote the
7458  //   class type (or enum type) for linkage purposes only.
7459  // We need to check whether the type was declared in the declaration.
7460  switch (D.getDeclSpec().getTypeSpecType()) {
7461  case TST_enum:
7462  case TST_struct:
7463  case TST_union:
7464  case TST_class: {
7465    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7466
7467    // Do nothing if the tag is not anonymous or already has an
7468    // associated typedef (from an earlier typedef in this decl group).
7469    if (tagFromDeclSpec->getIdentifier()) break;
7470    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7471
7472    // A well-formed anonymous tag must always be a TUK_Definition.
7473    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7474
7475    // The type must match the tag exactly;  no qualifiers allowed.
7476    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7477      break;
7478
7479    // Otherwise, set this is the anon-decl typedef for the tag.
7480    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7481    break;
7482  }
7483
7484  default:
7485    break;
7486  }
7487
7488  return NewTD;
7489}
7490
7491
7492/// \brief Determine whether a tag with a given kind is acceptable
7493/// as a redeclaration of the given tag declaration.
7494///
7495/// \returns true if the new tag kind is acceptable, false otherwise.
7496bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7497                                        TagTypeKind NewTag, bool isDefinition,
7498                                        SourceLocation NewTagLoc,
7499                                        const IdentifierInfo &Name) {
7500  // C++ [dcl.type.elab]p3:
7501  //   The class-key or enum keyword present in the
7502  //   elaborated-type-specifier shall agree in kind with the
7503  //   declaration to which the name in the elaborated-type-specifier
7504  //   refers. This rule also applies to the form of
7505  //   elaborated-type-specifier that declares a class-name or
7506  //   friend class since it can be construed as referring to the
7507  //   definition of the class. Thus, in any
7508  //   elaborated-type-specifier, the enum keyword shall be used to
7509  //   refer to an enumeration (7.2), the union class-key shall be
7510  //   used to refer to a union (clause 9), and either the class or
7511  //   struct class-key shall be used to refer to a class (clause 9)
7512  //   declared using the class or struct class-key.
7513  TagTypeKind OldTag = Previous->getTagKind();
7514  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7515    if (OldTag == NewTag)
7516      return true;
7517
7518  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7519      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7520    // Warn about the struct/class tag mismatch.
7521    bool isTemplate = false;
7522    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7523      isTemplate = Record->getDescribedClassTemplate();
7524
7525    if (!ActiveTemplateInstantiations.empty()) {
7526      // In a template instantiation, do not offer fix-its for tag mismatches
7527      // since they usually mess up the template instead of fixing the problem.
7528      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7529        << (NewTag == TTK_Class) << isTemplate << &Name;
7530      return true;
7531    }
7532
7533    if (isDefinition) {
7534      // On definitions, check previous tags and issue a fix-it for each
7535      // one that doesn't match the current tag.
7536      if (Previous->getDefinition()) {
7537        // Don't suggest fix-its for redefinitions.
7538        return true;
7539      }
7540
7541      bool previousMismatch = false;
7542      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7543           E(Previous->redecls_end()); I != E; ++I) {
7544        if (I->getTagKind() != NewTag) {
7545          if (!previousMismatch) {
7546            previousMismatch = true;
7547            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7548              << (NewTag == TTK_Class) << isTemplate << &Name;
7549          }
7550          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7551            << (NewTag == TTK_Class)
7552            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7553                                            NewTag == TTK_Class?
7554                                            "class" : "struct");
7555        }
7556      }
7557      return true;
7558    }
7559
7560    // Check for a previous definition.  If current tag and definition
7561    // are same type, do nothing.  If no definition, but disagree with
7562    // with previous tag type, give a warning, but no fix-it.
7563    const TagDecl *Redecl = Previous->getDefinition() ?
7564                            Previous->getDefinition() : Previous;
7565    if (Redecl->getTagKind() == NewTag) {
7566      return true;
7567    }
7568
7569    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7570      << (NewTag == TTK_Class)
7571      << isTemplate << &Name;
7572    Diag(Redecl->getLocation(), diag::note_previous_use);
7573
7574    // If there is a previous defintion, suggest a fix-it.
7575    if (Previous->getDefinition()) {
7576        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7577          << (Redecl->getTagKind() == TTK_Class)
7578          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7579                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7580    }
7581
7582    return true;
7583  }
7584  return false;
7585}
7586
7587/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7588/// former case, Name will be non-null.  In the later case, Name will be null.
7589/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7590/// reference/declaration/definition of a tag.
7591Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7592                     SourceLocation KWLoc, CXXScopeSpec &SS,
7593                     IdentifierInfo *Name, SourceLocation NameLoc,
7594                     AttributeList *Attr, AccessSpecifier AS,
7595                     SourceLocation ModulePrivateLoc,
7596                     MultiTemplateParamsArg TemplateParameterLists,
7597                     bool &OwnedDecl, bool &IsDependent,
7598                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7599                     TypeResult UnderlyingType) {
7600  // If this is not a definition, it must have a name.
7601  assert((Name != 0 || TUK == TUK_Definition) &&
7602         "Nameless record must be a definition!");
7603  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7604
7605  OwnedDecl = false;
7606  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7607
7608  // FIXME: Check explicit specializations more carefully.
7609  bool isExplicitSpecialization = false;
7610  bool Invalid = false;
7611
7612  // We only need to do this matching if we have template parameters
7613  // or a scope specifier, which also conveniently avoids this work
7614  // for non-C++ cases.
7615  if (TemplateParameterLists.size() > 0 ||
7616      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7617    if (TemplateParameterList *TemplateParams
7618          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7619                                                TemplateParameterLists.get(),
7620                                                TemplateParameterLists.size(),
7621                                                    TUK == TUK_Friend,
7622                                                    isExplicitSpecialization,
7623                                                    Invalid)) {
7624      if (TemplateParams->size() > 0) {
7625        // This is a declaration or definition of a class template (which may
7626        // be a member of another template).
7627
7628        if (Invalid)
7629          return 0;
7630
7631        OwnedDecl = false;
7632        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7633                                               SS, Name, NameLoc, Attr,
7634                                               TemplateParams, AS,
7635                                               ModulePrivateLoc,
7636                                           TemplateParameterLists.size() - 1,
7637                 (TemplateParameterList**) TemplateParameterLists.release());
7638        return Result.get();
7639      } else {
7640        // The "template<>" header is extraneous.
7641        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7642          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7643        isExplicitSpecialization = true;
7644      }
7645    }
7646  }
7647
7648  // Figure out the underlying type if this a enum declaration. We need to do
7649  // this early, because it's needed to detect if this is an incompatible
7650  // redeclaration.
7651  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7652
7653  if (Kind == TTK_Enum) {
7654    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7655      // No underlying type explicitly specified, or we failed to parse the
7656      // type, default to int.
7657      EnumUnderlying = Context.IntTy.getTypePtr();
7658    else if (UnderlyingType.get()) {
7659      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7660      // integral type; any cv-qualification is ignored.
7661      TypeSourceInfo *TI = 0;
7662      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7663      EnumUnderlying = TI;
7664
7665      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7666
7667      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7668        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7669          << T;
7670        // Recover by falling back to int.
7671        EnumUnderlying = Context.IntTy.getTypePtr();
7672      }
7673
7674      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7675                                          UPPC_FixedUnderlyingType))
7676        EnumUnderlying = Context.IntTy.getTypePtr();
7677
7678    } else if (getLangOptions().MicrosoftExt)
7679      // Microsoft enums are always of int type.
7680      EnumUnderlying = Context.IntTy.getTypePtr();
7681  }
7682
7683  DeclContext *SearchDC = CurContext;
7684  DeclContext *DC = CurContext;
7685  bool isStdBadAlloc = false;
7686
7687  RedeclarationKind Redecl = ForRedeclaration;
7688  if (TUK == TUK_Friend || TUK == TUK_Reference)
7689    Redecl = NotForRedeclaration;
7690
7691  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7692
7693  if (Name && SS.isNotEmpty()) {
7694    // We have a nested-name tag ('struct foo::bar').
7695
7696    // Check for invalid 'foo::'.
7697    if (SS.isInvalid()) {
7698      Name = 0;
7699      goto CreateNewDecl;
7700    }
7701
7702    // If this is a friend or a reference to a class in a dependent
7703    // context, don't try to make a decl for it.
7704    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7705      DC = computeDeclContext(SS, false);
7706      if (!DC) {
7707        IsDependent = true;
7708        return 0;
7709      }
7710    } else {
7711      DC = computeDeclContext(SS, true);
7712      if (!DC) {
7713        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7714          << SS.getRange();
7715        return 0;
7716      }
7717    }
7718
7719    if (RequireCompleteDeclContext(SS, DC))
7720      return 0;
7721
7722    SearchDC = DC;
7723    // Look-up name inside 'foo::'.
7724    LookupQualifiedName(Previous, DC);
7725
7726    if (Previous.isAmbiguous())
7727      return 0;
7728
7729    if (Previous.empty()) {
7730      // Name lookup did not find anything. However, if the
7731      // nested-name-specifier refers to the current instantiation,
7732      // and that current instantiation has any dependent base
7733      // classes, we might find something at instantiation time: treat
7734      // this as a dependent elaborated-type-specifier.
7735      // But this only makes any sense for reference-like lookups.
7736      if (Previous.wasNotFoundInCurrentInstantiation() &&
7737          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7738        IsDependent = true;
7739        return 0;
7740      }
7741
7742      // A tag 'foo::bar' must already exist.
7743      Diag(NameLoc, diag::err_not_tag_in_scope)
7744        << Kind << Name << DC << SS.getRange();
7745      Name = 0;
7746      Invalid = true;
7747      goto CreateNewDecl;
7748    }
7749  } else if (Name) {
7750    // If this is a named struct, check to see if there was a previous forward
7751    // declaration or definition.
7752    // FIXME: We're looking into outer scopes here, even when we
7753    // shouldn't be. Doing so can result in ambiguities that we
7754    // shouldn't be diagnosing.
7755    LookupName(Previous, S);
7756
7757    if (Previous.isAmbiguous() &&
7758        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7759      LookupResult::Filter F = Previous.makeFilter();
7760      while (F.hasNext()) {
7761        NamedDecl *ND = F.next();
7762        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7763          F.erase();
7764      }
7765      F.done();
7766    }
7767
7768    // Note:  there used to be some attempt at recovery here.
7769    if (Previous.isAmbiguous())
7770      return 0;
7771
7772    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7773      // FIXME: This makes sure that we ignore the contexts associated
7774      // with C structs, unions, and enums when looking for a matching
7775      // tag declaration or definition. See the similar lookup tweak
7776      // in Sema::LookupName; is there a better way to deal with this?
7777      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7778        SearchDC = SearchDC->getParent();
7779    }
7780  } else if (S->isFunctionPrototypeScope()) {
7781    // If this is an enum declaration in function prototype scope, set its
7782    // initial context to the translation unit.
7783    SearchDC = Context.getTranslationUnitDecl();
7784  }
7785
7786  if (Previous.isSingleResult() &&
7787      Previous.getFoundDecl()->isTemplateParameter()) {
7788    // Maybe we will complain about the shadowed template parameter.
7789    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7790    // Just pretend that we didn't see the previous declaration.
7791    Previous.clear();
7792  }
7793
7794  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7795      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7796    // This is a declaration of or a reference to "std::bad_alloc".
7797    isStdBadAlloc = true;
7798
7799    if (Previous.empty() && StdBadAlloc) {
7800      // std::bad_alloc has been implicitly declared (but made invisible to
7801      // name lookup). Fill in this implicit declaration as the previous
7802      // declaration, so that the declarations get chained appropriately.
7803      Previous.addDecl(getStdBadAlloc());
7804    }
7805  }
7806
7807  // If we didn't find a previous declaration, and this is a reference
7808  // (or friend reference), move to the correct scope.  In C++, we
7809  // also need to do a redeclaration lookup there, just in case
7810  // there's a shadow friend decl.
7811  if (Name && Previous.empty() &&
7812      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7813    if (Invalid) goto CreateNewDecl;
7814    assert(SS.isEmpty());
7815
7816    if (TUK == TUK_Reference) {
7817      // C++ [basic.scope.pdecl]p5:
7818      //   -- for an elaborated-type-specifier of the form
7819      //
7820      //          class-key identifier
7821      //
7822      //      if the elaborated-type-specifier is used in the
7823      //      decl-specifier-seq or parameter-declaration-clause of a
7824      //      function defined in namespace scope, the identifier is
7825      //      declared as a class-name in the namespace that contains
7826      //      the declaration; otherwise, except as a friend
7827      //      declaration, the identifier is declared in the smallest
7828      //      non-class, non-function-prototype scope that contains the
7829      //      declaration.
7830      //
7831      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7832      // C structs and unions.
7833      //
7834      // It is an error in C++ to declare (rather than define) an enum
7835      // type, including via an elaborated type specifier.  We'll
7836      // diagnose that later; for now, declare the enum in the same
7837      // scope as we would have picked for any other tag type.
7838      //
7839      // GNU C also supports this behavior as part of its incomplete
7840      // enum types extension, while GNU C++ does not.
7841      //
7842      // Find the context where we'll be declaring the tag.
7843      // FIXME: We would like to maintain the current DeclContext as the
7844      // lexical context,
7845      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7846        SearchDC = SearchDC->getParent();
7847
7848      // Find the scope where we'll be declaring the tag.
7849      while (S->isClassScope() ||
7850             (getLangOptions().CPlusPlus &&
7851              S->isFunctionPrototypeScope()) ||
7852             ((S->getFlags() & Scope::DeclScope) == 0) ||
7853             (S->getEntity() &&
7854              ((DeclContext *)S->getEntity())->isTransparentContext()))
7855        S = S->getParent();
7856    } else {
7857      assert(TUK == TUK_Friend);
7858      // C++ [namespace.memdef]p3:
7859      //   If a friend declaration in a non-local class first declares a
7860      //   class or function, the friend class or function is a member of
7861      //   the innermost enclosing namespace.
7862      SearchDC = SearchDC->getEnclosingNamespaceContext();
7863    }
7864
7865    // In C++, we need to do a redeclaration lookup to properly
7866    // diagnose some problems.
7867    if (getLangOptions().CPlusPlus) {
7868      Previous.setRedeclarationKind(ForRedeclaration);
7869      LookupQualifiedName(Previous, SearchDC);
7870    }
7871  }
7872
7873  if (!Previous.empty()) {
7874    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7875
7876    // It's okay to have a tag decl in the same scope as a typedef
7877    // which hides a tag decl in the same scope.  Finding this
7878    // insanity with a redeclaration lookup can only actually happen
7879    // in C++.
7880    //
7881    // This is also okay for elaborated-type-specifiers, which is
7882    // technically forbidden by the current standard but which is
7883    // okay according to the likely resolution of an open issue;
7884    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7885    if (getLangOptions().CPlusPlus) {
7886      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7887        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7888          TagDecl *Tag = TT->getDecl();
7889          if (Tag->getDeclName() == Name &&
7890              Tag->getDeclContext()->getRedeclContext()
7891                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7892            PrevDecl = Tag;
7893            Previous.clear();
7894            Previous.addDecl(Tag);
7895            Previous.resolveKind();
7896          }
7897        }
7898      }
7899    }
7900
7901    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7902      // If this is a use of a previous tag, or if the tag is already declared
7903      // in the same scope (so that the definition/declaration completes or
7904      // rementions the tag), reuse the decl.
7905      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7906          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7907        // Make sure that this wasn't declared as an enum and now used as a
7908        // struct or something similar.
7909        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7910                                          TUK == TUK_Definition, KWLoc,
7911                                          *Name)) {
7912          bool SafeToContinue
7913            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7914               Kind != TTK_Enum);
7915          if (SafeToContinue)
7916            Diag(KWLoc, diag::err_use_with_wrong_tag)
7917              << Name
7918              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7919                                              PrevTagDecl->getKindName());
7920          else
7921            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7922          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7923
7924          if (SafeToContinue)
7925            Kind = PrevTagDecl->getTagKind();
7926          else {
7927            // Recover by making this an anonymous redefinition.
7928            Name = 0;
7929            Previous.clear();
7930            Invalid = true;
7931          }
7932        }
7933
7934        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7935          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7936
7937          // All conflicts with previous declarations are recovered by
7938          // returning the previous declaration.
7939          if (ScopedEnum != PrevEnum->isScoped()) {
7940            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7941              << PrevEnum->isScoped();
7942            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7943            return PrevTagDecl;
7944          }
7945          else if (EnumUnderlying && PrevEnum->isFixed()) {
7946            QualType T;
7947            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7948                T = TI->getType();
7949            else
7950                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7951
7952            if (!Context.hasSameUnqualifiedType(T,
7953                                                PrevEnum->getIntegerType())) {
7954              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7955                   diag::err_enum_redeclare_type_mismatch)
7956                << T
7957                << PrevEnum->getIntegerType();
7958              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7959              return PrevTagDecl;
7960            }
7961          }
7962          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7963            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7964              << PrevEnum->isFixed();
7965            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7966            return PrevTagDecl;
7967          }
7968        }
7969
7970        if (!Invalid) {
7971          // If this is a use, just return the declaration we found.
7972
7973          // FIXME: In the future, return a variant or some other clue
7974          // for the consumer of this Decl to know it doesn't own it.
7975          // For our current ASTs this shouldn't be a problem, but will
7976          // need to be changed with DeclGroups.
7977          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7978               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7979            return PrevTagDecl;
7980
7981          // Diagnose attempts to redefine a tag.
7982          if (TUK == TUK_Definition) {
7983            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7984              // If we're defining a specialization and the previous definition
7985              // is from an implicit instantiation, don't emit an error
7986              // here; we'll catch this in the general case below.
7987              if (!isExplicitSpecialization ||
7988                  !isa<CXXRecordDecl>(Def) ||
7989                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7990                                               == TSK_ExplicitSpecialization) {
7991                Diag(NameLoc, diag::err_redefinition) << Name;
7992                Diag(Def->getLocation(), diag::note_previous_definition);
7993                // If this is a redefinition, recover by making this
7994                // struct be anonymous, which will make any later
7995                // references get the previous definition.
7996                Name = 0;
7997                Previous.clear();
7998                Invalid = true;
7999              }
8000            } else {
8001              // If the type is currently being defined, complain
8002              // about a nested redefinition.
8003              const TagType *Tag
8004                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8005              if (Tag->isBeingDefined()) {
8006                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8007                Diag(PrevTagDecl->getLocation(),
8008                     diag::note_previous_definition);
8009                Name = 0;
8010                Previous.clear();
8011                Invalid = true;
8012              }
8013            }
8014
8015            // Okay, this is definition of a previously declared or referenced
8016            // tag PrevDecl. We're going to create a new Decl for it.
8017          }
8018        }
8019        // If we get here we have (another) forward declaration or we
8020        // have a definition.  Just create a new decl.
8021
8022      } else {
8023        // If we get here, this is a definition of a new tag type in a nested
8024        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8025        // new decl/type.  We set PrevDecl to NULL so that the entities
8026        // have distinct types.
8027        Previous.clear();
8028      }
8029      // If we get here, we're going to create a new Decl. If PrevDecl
8030      // is non-NULL, it's a definition of the tag declared by
8031      // PrevDecl. If it's NULL, we have a new definition.
8032
8033
8034    // Otherwise, PrevDecl is not a tag, but was found with tag
8035    // lookup.  This is only actually possible in C++, where a few
8036    // things like templates still live in the tag namespace.
8037    } else {
8038      // Use a better diagnostic if an elaborated-type-specifier
8039      // found the wrong kind of type on the first
8040      // (non-redeclaration) lookup.
8041      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8042          !Previous.isForRedeclaration()) {
8043        unsigned Kind = 0;
8044        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8045        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8046        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8047        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8048        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8049        Invalid = true;
8050
8051      // Otherwise, only diagnose if the declaration is in scope.
8052      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8053                                isExplicitSpecialization)) {
8054        // do nothing
8055
8056      // Diagnose implicit declarations introduced by elaborated types.
8057      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8058        unsigned Kind = 0;
8059        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8060        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8061        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8062        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8063        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8064        Invalid = true;
8065
8066      // Otherwise it's a declaration.  Call out a particularly common
8067      // case here.
8068      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8069        unsigned Kind = 0;
8070        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8071        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8072          << Name << Kind << TND->getUnderlyingType();
8073        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8074        Invalid = true;
8075
8076      // Otherwise, diagnose.
8077      } else {
8078        // The tag name clashes with something else in the target scope,
8079        // issue an error and recover by making this tag be anonymous.
8080        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8081        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8082        Name = 0;
8083        Invalid = true;
8084      }
8085
8086      // The existing declaration isn't relevant to us; we're in a
8087      // new scope, so clear out the previous declaration.
8088      Previous.clear();
8089    }
8090  }
8091
8092CreateNewDecl:
8093
8094  TagDecl *PrevDecl = 0;
8095  if (Previous.isSingleResult())
8096    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8097
8098  // If there is an identifier, use the location of the identifier as the
8099  // location of the decl, otherwise use the location of the struct/union
8100  // keyword.
8101  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8102
8103  // Otherwise, create a new declaration. If there is a previous
8104  // declaration of the same entity, the two will be linked via
8105  // PrevDecl.
8106  TagDecl *New;
8107
8108  bool IsForwardReference = false;
8109  if (Kind == TTK_Enum) {
8110    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8111    // enum X { A, B, C } D;    D should chain to X.
8112    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8113                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8114                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8115    // If this is an undefined enum, warn.
8116    if (TUK != TUK_Definition && !Invalid) {
8117      TagDecl *Def;
8118      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8119        // C++0x: 7.2p2: opaque-enum-declaration.
8120        // Conflicts are diagnosed above. Do nothing.
8121      }
8122      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8123        Diag(Loc, diag::ext_forward_ref_enum_def)
8124          << New;
8125        Diag(Def->getLocation(), diag::note_previous_definition);
8126      } else {
8127        unsigned DiagID = diag::ext_forward_ref_enum;
8128        if (getLangOptions().MicrosoftExt)
8129          DiagID = diag::ext_ms_forward_ref_enum;
8130        else if (getLangOptions().CPlusPlus)
8131          DiagID = diag::err_forward_ref_enum;
8132        Diag(Loc, DiagID);
8133
8134        // If this is a forward-declared reference to an enumeration, make a
8135        // note of it; we won't actually be introducing the declaration into
8136        // the declaration context.
8137        if (TUK == TUK_Reference)
8138          IsForwardReference = true;
8139      }
8140    }
8141
8142    if (EnumUnderlying) {
8143      EnumDecl *ED = cast<EnumDecl>(New);
8144      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8145        ED->setIntegerTypeSourceInfo(TI);
8146      else
8147        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8148      ED->setPromotionType(ED->getIntegerType());
8149    }
8150
8151  } else {
8152    // struct/union/class
8153
8154    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8155    // struct X { int A; } D;    D should chain to X.
8156    if (getLangOptions().CPlusPlus) {
8157      // FIXME: Look for a way to use RecordDecl for simple structs.
8158      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8159                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8160
8161      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8162        StdBadAlloc = cast<CXXRecordDecl>(New);
8163    } else
8164      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8165                               cast_or_null<RecordDecl>(PrevDecl));
8166  }
8167
8168  // Maybe add qualifier info.
8169  if (SS.isNotEmpty()) {
8170    if (SS.isSet()) {
8171      New->setQualifierInfo(SS.getWithLocInContext(Context));
8172      if (TemplateParameterLists.size() > 0) {
8173        New->setTemplateParameterListsInfo(Context,
8174                                           TemplateParameterLists.size(),
8175                    (TemplateParameterList**) TemplateParameterLists.release());
8176      }
8177    }
8178    else
8179      Invalid = true;
8180  }
8181
8182  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8183    // Add alignment attributes if necessary; these attributes are checked when
8184    // the ASTContext lays out the structure.
8185    //
8186    // It is important for implementing the correct semantics that this
8187    // happen here (in act on tag decl). The #pragma pack stack is
8188    // maintained as a result of parser callbacks which can occur at
8189    // many points during the parsing of a struct declaration (because
8190    // the #pragma tokens are effectively skipped over during the
8191    // parsing of the struct).
8192    AddAlignmentAttributesForRecord(RD);
8193
8194    AddMsStructLayoutForRecord(RD);
8195  }
8196
8197  if (ModulePrivateLoc.isValid()) {
8198    if (isExplicitSpecialization)
8199      Diag(New->getLocation(), diag::err_module_private_specialization)
8200        << 2
8201        << FixItHint::CreateRemoval(ModulePrivateLoc);
8202    // __module_private__ does not apply to local classes. However, we only
8203    // diagnose this as an error when the declaration specifiers are
8204    // freestanding. Here, we just ignore the __module_private__.
8205    else if (!SearchDC->isFunctionOrMethod())
8206      New->setModulePrivate();
8207  }
8208
8209  // If this is a specialization of a member class (of a class template),
8210  // check the specialization.
8211  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8212    Invalid = true;
8213
8214  if (Invalid)
8215    New->setInvalidDecl();
8216
8217  if (Attr)
8218    ProcessDeclAttributeList(S, New, Attr);
8219
8220  // If we're declaring or defining a tag in function prototype scope
8221  // in C, note that this type can only be used within the function.
8222  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8223    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8224
8225  // Set the lexical context. If the tag has a C++ scope specifier, the
8226  // lexical context will be different from the semantic context.
8227  New->setLexicalDeclContext(CurContext);
8228
8229  // Mark this as a friend decl if applicable.
8230  // In Microsoft mode, a friend declaration also acts as a forward
8231  // declaration so we always pass true to setObjectOfFriendDecl to make
8232  // the tag name visible.
8233  if (TUK == TUK_Friend)
8234    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8235                               getLangOptions().MicrosoftExt);
8236
8237  // Set the access specifier.
8238  if (!Invalid && SearchDC->isRecord())
8239    SetMemberAccessSpecifier(New, PrevDecl, AS);
8240
8241  if (TUK == TUK_Definition)
8242    New->startDefinition();
8243
8244  // If this has an identifier, add it to the scope stack.
8245  if (TUK == TUK_Friend) {
8246    // We might be replacing an existing declaration in the lookup tables;
8247    // if so, borrow its access specifier.
8248    if (PrevDecl)
8249      New->setAccess(PrevDecl->getAccess());
8250
8251    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8252    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8253    if (Name) // can be null along some error paths
8254      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8255        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8256  } else if (Name) {
8257    S = getNonFieldDeclScope(S);
8258    PushOnScopeChains(New, S, !IsForwardReference);
8259    if (IsForwardReference)
8260      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8261
8262  } else {
8263    CurContext->addDecl(New);
8264  }
8265
8266  // If this is the C FILE type, notify the AST context.
8267  if (IdentifierInfo *II = New->getIdentifier())
8268    if (!New->isInvalidDecl() &&
8269        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8270        II->isStr("FILE"))
8271      Context.setFILEDecl(New);
8272
8273  OwnedDecl = true;
8274  return New;
8275}
8276
8277void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8278  AdjustDeclIfTemplate(TagD);
8279  TagDecl *Tag = cast<TagDecl>(TagD);
8280
8281  // Enter the tag context.
8282  PushDeclContext(S, Tag);
8283}
8284
8285Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8286  assert(isa<ObjCContainerDecl>(IDecl) &&
8287         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8288  DeclContext *OCD = cast<DeclContext>(IDecl);
8289  assert(getContainingDC(OCD) == CurContext &&
8290      "The next DeclContext should be lexically contained in the current one.");
8291  CurContext = OCD;
8292  return IDecl;
8293}
8294
8295void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8296                                           SourceLocation FinalLoc,
8297                                           SourceLocation LBraceLoc) {
8298  AdjustDeclIfTemplate(TagD);
8299  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8300
8301  FieldCollector->StartClass();
8302
8303  if (!Record->getIdentifier())
8304    return;
8305
8306  if (FinalLoc.isValid())
8307    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8308
8309  // C++ [class]p2:
8310  //   [...] The class-name is also inserted into the scope of the
8311  //   class itself; this is known as the injected-class-name. For
8312  //   purposes of access checking, the injected-class-name is treated
8313  //   as if it were a public member name.
8314  CXXRecordDecl *InjectedClassName
8315    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8316                            Record->getLocStart(), Record->getLocation(),
8317                            Record->getIdentifier(),
8318                            /*PrevDecl=*/0,
8319                            /*DelayTypeCreation=*/true);
8320  Context.getTypeDeclType(InjectedClassName, Record);
8321  InjectedClassName->setImplicit();
8322  InjectedClassName->setAccess(AS_public);
8323  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8324      InjectedClassName->setDescribedClassTemplate(Template);
8325  PushOnScopeChains(InjectedClassName, S);
8326  assert(InjectedClassName->isInjectedClassName() &&
8327         "Broken injected-class-name");
8328}
8329
8330void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8331                                    SourceLocation RBraceLoc) {
8332  AdjustDeclIfTemplate(TagD);
8333  TagDecl *Tag = cast<TagDecl>(TagD);
8334  Tag->setRBraceLoc(RBraceLoc);
8335
8336  if (isa<CXXRecordDecl>(Tag))
8337    FieldCollector->FinishClass();
8338
8339  // Exit this scope of this tag's definition.
8340  PopDeclContext();
8341
8342  // Notify the consumer that we've defined a tag.
8343  Consumer.HandleTagDeclDefinition(Tag);
8344}
8345
8346void Sema::ActOnObjCContainerFinishDefinition() {
8347  // Exit this scope of this interface definition.
8348  PopDeclContext();
8349}
8350
8351void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8352  assert(DC == CurContext && "Mismatch of container contexts");
8353  OriginalLexicalContext = DC;
8354  ActOnObjCContainerFinishDefinition();
8355}
8356
8357void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8358  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8359  OriginalLexicalContext = 0;
8360}
8361
8362void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8363  AdjustDeclIfTemplate(TagD);
8364  TagDecl *Tag = cast<TagDecl>(TagD);
8365  Tag->setInvalidDecl();
8366
8367  // We're undoing ActOnTagStartDefinition here, not
8368  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8369  // the FieldCollector.
8370
8371  PopDeclContext();
8372}
8373
8374// Note that FieldName may be null for anonymous bitfields.
8375bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8376                          QualType FieldTy, const Expr *BitWidth,
8377                          bool *ZeroWidth) {
8378  // Default to true; that shouldn't confuse checks for emptiness
8379  if (ZeroWidth)
8380    *ZeroWidth = true;
8381
8382  // C99 6.7.2.1p4 - verify the field type.
8383  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8384  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8385    // Handle incomplete types with specific error.
8386    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8387      return true;
8388    if (FieldName)
8389      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8390        << FieldName << FieldTy << BitWidth->getSourceRange();
8391    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8392      << FieldTy << BitWidth->getSourceRange();
8393  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8394                                             UPPC_BitFieldWidth))
8395    return true;
8396
8397  // If the bit-width is type- or value-dependent, don't try to check
8398  // it now.
8399  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8400    return false;
8401
8402  llvm::APSInt Value;
8403  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8404    return true;
8405
8406  if (Value != 0 && ZeroWidth)
8407    *ZeroWidth = false;
8408
8409  // Zero-width bitfield is ok for anonymous field.
8410  if (Value == 0 && FieldName)
8411    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8412
8413  if (Value.isSigned() && Value.isNegative()) {
8414    if (FieldName)
8415      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8416               << FieldName << Value.toString(10);
8417    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8418      << Value.toString(10);
8419  }
8420
8421  if (!FieldTy->isDependentType()) {
8422    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8423    if (Value.getZExtValue() > TypeSize) {
8424      if (!getLangOptions().CPlusPlus) {
8425        if (FieldName)
8426          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8427            << FieldName << (unsigned)Value.getZExtValue()
8428            << (unsigned)TypeSize;
8429
8430        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8431          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8432      }
8433
8434      if (FieldName)
8435        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8436          << FieldName << (unsigned)Value.getZExtValue()
8437          << (unsigned)TypeSize;
8438      else
8439        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8440          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8441    }
8442  }
8443
8444  return false;
8445}
8446
8447/// ActOnField - Each field of a C struct/union is passed into this in order
8448/// to create a FieldDecl object for it.
8449Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8450                       Declarator &D, Expr *BitfieldWidth) {
8451  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8452                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8453                               /*HasInit=*/false, AS_public);
8454  return Res;
8455}
8456
8457/// HandleField - Analyze a field of a C struct or a C++ data member.
8458///
8459FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8460                             SourceLocation DeclStart,
8461                             Declarator &D, Expr *BitWidth, bool HasInit,
8462                             AccessSpecifier AS) {
8463  IdentifierInfo *II = D.getIdentifier();
8464  SourceLocation Loc = DeclStart;
8465  if (II) Loc = D.getIdentifierLoc();
8466
8467  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8468  QualType T = TInfo->getType();
8469  if (getLangOptions().CPlusPlus) {
8470    CheckExtraCXXDefaultArguments(D);
8471
8472    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8473                                        UPPC_DataMemberType)) {
8474      D.setInvalidType();
8475      T = Context.IntTy;
8476      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8477    }
8478  }
8479
8480  DiagnoseFunctionSpecifiers(D);
8481
8482  if (D.getDeclSpec().isThreadSpecified())
8483    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8484  if (D.getDeclSpec().isConstexprSpecified())
8485    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8486      << 2;
8487
8488  // Check to see if this name was declared as a member previously
8489  NamedDecl *PrevDecl = 0;
8490  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8491  LookupName(Previous, S);
8492  switch (Previous.getResultKind()) {
8493    case LookupResult::Found:
8494    case LookupResult::FoundUnresolvedValue:
8495      PrevDecl = Previous.getAsSingle<NamedDecl>();
8496      break;
8497
8498    case LookupResult::FoundOverloaded:
8499      PrevDecl = Previous.getRepresentativeDecl();
8500      break;
8501
8502    case LookupResult::NotFound:
8503    case LookupResult::NotFoundInCurrentInstantiation:
8504    case LookupResult::Ambiguous:
8505      break;
8506  }
8507  Previous.suppressDiagnostics();
8508
8509  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8510    // Maybe we will complain about the shadowed template parameter.
8511    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8512    // Just pretend that we didn't see the previous declaration.
8513    PrevDecl = 0;
8514  }
8515
8516  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8517    PrevDecl = 0;
8518
8519  bool Mutable
8520    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8521  SourceLocation TSSL = D.getSourceRange().getBegin();
8522  FieldDecl *NewFD
8523    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8524                     TSSL, AS, PrevDecl, &D);
8525
8526  if (NewFD->isInvalidDecl())
8527    Record->setInvalidDecl();
8528
8529  if (D.getDeclSpec().isModulePrivateSpecified())
8530    NewFD->setModulePrivate();
8531
8532  if (NewFD->isInvalidDecl() && PrevDecl) {
8533    // Don't introduce NewFD into scope; there's already something
8534    // with the same name in the same scope.
8535  } else if (II) {
8536    PushOnScopeChains(NewFD, S);
8537  } else
8538    Record->addDecl(NewFD);
8539
8540  return NewFD;
8541}
8542
8543/// \brief Build a new FieldDecl and check its well-formedness.
8544///
8545/// This routine builds a new FieldDecl given the fields name, type,
8546/// record, etc. \p PrevDecl should refer to any previous declaration
8547/// with the same name and in the same scope as the field to be
8548/// created.
8549///
8550/// \returns a new FieldDecl.
8551///
8552/// \todo The Declarator argument is a hack. It will be removed once
8553FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8554                                TypeSourceInfo *TInfo,
8555                                RecordDecl *Record, SourceLocation Loc,
8556                                bool Mutable, Expr *BitWidth, bool HasInit,
8557                                SourceLocation TSSL,
8558                                AccessSpecifier AS, NamedDecl *PrevDecl,
8559                                Declarator *D) {
8560  IdentifierInfo *II = Name.getAsIdentifierInfo();
8561  bool InvalidDecl = false;
8562  if (D) InvalidDecl = D->isInvalidType();
8563
8564  // If we receive a broken type, recover by assuming 'int' and
8565  // marking this declaration as invalid.
8566  if (T.isNull()) {
8567    InvalidDecl = true;
8568    T = Context.IntTy;
8569  }
8570
8571  QualType EltTy = Context.getBaseElementType(T);
8572  if (!EltTy->isDependentType() &&
8573      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8574    // Fields of incomplete type force their record to be invalid.
8575    Record->setInvalidDecl();
8576    InvalidDecl = true;
8577  }
8578
8579  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8580  // than a variably modified type.
8581  if (!InvalidDecl && T->isVariablyModifiedType()) {
8582    bool SizeIsNegative;
8583    llvm::APSInt Oversized;
8584    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8585                                                           SizeIsNegative,
8586                                                           Oversized);
8587    if (!FixedTy.isNull()) {
8588      Diag(Loc, diag::warn_illegal_constant_array_size);
8589      T = FixedTy;
8590    } else {
8591      if (SizeIsNegative)
8592        Diag(Loc, diag::err_typecheck_negative_array_size);
8593      else if (Oversized.getBoolValue())
8594        Diag(Loc, diag::err_array_too_large)
8595          << Oversized.toString(10);
8596      else
8597        Diag(Loc, diag::err_typecheck_field_variable_size);
8598      InvalidDecl = true;
8599    }
8600  }
8601
8602  // Fields can not have abstract class types
8603  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8604                                             diag::err_abstract_type_in_decl,
8605                                             AbstractFieldType))
8606    InvalidDecl = true;
8607
8608  bool ZeroWidth = false;
8609  // If this is declared as a bit-field, check the bit-field.
8610  if (!InvalidDecl && BitWidth &&
8611      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8612    InvalidDecl = true;
8613    BitWidth = 0;
8614    ZeroWidth = false;
8615  }
8616
8617  // Check that 'mutable' is consistent with the type of the declaration.
8618  if (!InvalidDecl && Mutable) {
8619    unsigned DiagID = 0;
8620    if (T->isReferenceType())
8621      DiagID = diag::err_mutable_reference;
8622    else if (T.isConstQualified())
8623      DiagID = diag::err_mutable_const;
8624
8625    if (DiagID) {
8626      SourceLocation ErrLoc = Loc;
8627      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8628        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8629      Diag(ErrLoc, DiagID);
8630      Mutable = false;
8631      InvalidDecl = true;
8632    }
8633  }
8634
8635  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8636                                       BitWidth, Mutable, HasInit);
8637  if (InvalidDecl)
8638    NewFD->setInvalidDecl();
8639
8640  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8641    Diag(Loc, diag::err_duplicate_member) << II;
8642    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8643    NewFD->setInvalidDecl();
8644  }
8645
8646  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8647    if (Record->isUnion()) {
8648      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8649        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8650        if (RDecl->getDefinition()) {
8651          // C++ [class.union]p1: An object of a class with a non-trivial
8652          // constructor, a non-trivial copy constructor, a non-trivial
8653          // destructor, or a non-trivial copy assignment operator
8654          // cannot be a member of a union, nor can an array of such
8655          // objects.
8656          if (CheckNontrivialField(NewFD))
8657            NewFD->setInvalidDecl();
8658        }
8659      }
8660
8661      // C++ [class.union]p1: If a union contains a member of reference type,
8662      // the program is ill-formed.
8663      if (EltTy->isReferenceType()) {
8664        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8665          << NewFD->getDeclName() << EltTy;
8666        NewFD->setInvalidDecl();
8667      }
8668    }
8669  }
8670
8671  // FIXME: We need to pass in the attributes given an AST
8672  // representation, not a parser representation.
8673  if (D)
8674    // FIXME: What to pass instead of TUScope?
8675    ProcessDeclAttributes(TUScope, NewFD, *D);
8676
8677  // In auto-retain/release, infer strong retension for fields of
8678  // retainable type.
8679  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8680    NewFD->setInvalidDecl();
8681
8682  if (T.isObjCGCWeak())
8683    Diag(Loc, diag::warn_attribute_weak_on_field);
8684
8685  NewFD->setAccess(AS);
8686  return NewFD;
8687}
8688
8689bool Sema::CheckNontrivialField(FieldDecl *FD) {
8690  assert(FD);
8691  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8692
8693  if (FD->isInvalidDecl())
8694    return true;
8695
8696  QualType EltTy = Context.getBaseElementType(FD->getType());
8697  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8698    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8699    if (RDecl->getDefinition()) {
8700      // We check for copy constructors before constructors
8701      // because otherwise we'll never get complaints about
8702      // copy constructors.
8703
8704      CXXSpecialMember member = CXXInvalid;
8705      if (!RDecl->hasTrivialCopyConstructor())
8706        member = CXXCopyConstructor;
8707      else if (!RDecl->hasTrivialDefaultConstructor())
8708        member = CXXDefaultConstructor;
8709      else if (!RDecl->hasTrivialCopyAssignment())
8710        member = CXXCopyAssignment;
8711      else if (!RDecl->hasTrivialDestructor())
8712        member = CXXDestructor;
8713
8714      if (member != CXXInvalid) {
8715        if (!getLangOptions().CPlusPlus0x &&
8716            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8717          // Objective-C++ ARC: it is an error to have a non-trivial field of
8718          // a union. However, system headers in Objective-C programs
8719          // occasionally have Objective-C lifetime objects within unions,
8720          // and rather than cause the program to fail, we make those
8721          // members unavailable.
8722          SourceLocation Loc = FD->getLocation();
8723          if (getSourceManager().isInSystemHeader(Loc)) {
8724            if (!FD->hasAttr<UnavailableAttr>())
8725              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8726                                  "this system field has retaining ownership"));
8727            return false;
8728          }
8729        }
8730
8731        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8732               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8733               diag::err_illegal_union_or_anon_struct_member)
8734          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8735        DiagnoseNontrivial(RT, member);
8736        return !getLangOptions().CPlusPlus0x;
8737      }
8738    }
8739  }
8740
8741  return false;
8742}
8743
8744/// DiagnoseNontrivial - Given that a class has a non-trivial
8745/// special member, figure out why.
8746void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8747  QualType QT(T, 0U);
8748  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8749
8750  // Check whether the member was user-declared.
8751  switch (member) {
8752  case CXXInvalid:
8753    break;
8754
8755  case CXXDefaultConstructor:
8756    if (RD->hasUserDeclaredConstructor()) {
8757      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8758      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8759        const FunctionDecl *body = 0;
8760        ci->hasBody(body);
8761        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8762          SourceLocation CtorLoc = ci->getLocation();
8763          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8764          return;
8765        }
8766      }
8767
8768      llvm_unreachable("found no user-declared constructors");
8769    }
8770    break;
8771
8772  case CXXCopyConstructor:
8773    if (RD->hasUserDeclaredCopyConstructor()) {
8774      SourceLocation CtorLoc =
8775        RD->getCopyConstructor(0)->getLocation();
8776      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8777      return;
8778    }
8779    break;
8780
8781  case CXXMoveConstructor:
8782    if (RD->hasUserDeclaredMoveConstructor()) {
8783      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8784      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8785      return;
8786    }
8787    break;
8788
8789  case CXXCopyAssignment:
8790    if (RD->hasUserDeclaredCopyAssignment()) {
8791      // FIXME: this should use the location of the copy
8792      // assignment, not the type.
8793      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8794      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8795      return;
8796    }
8797    break;
8798
8799  case CXXMoveAssignment:
8800    if (RD->hasUserDeclaredMoveAssignment()) {
8801      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8802      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8803      return;
8804    }
8805    break;
8806
8807  case CXXDestructor:
8808    if (RD->hasUserDeclaredDestructor()) {
8809      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8810      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8811      return;
8812    }
8813    break;
8814  }
8815
8816  typedef CXXRecordDecl::base_class_iterator base_iter;
8817
8818  // Virtual bases and members inhibit trivial copying/construction,
8819  // but not trivial destruction.
8820  if (member != CXXDestructor) {
8821    // Check for virtual bases.  vbases includes indirect virtual bases,
8822    // so we just iterate through the direct bases.
8823    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8824      if (bi->isVirtual()) {
8825        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8826        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8827        return;
8828      }
8829
8830    // Check for virtual methods.
8831    typedef CXXRecordDecl::method_iterator meth_iter;
8832    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8833         ++mi) {
8834      if (mi->isVirtual()) {
8835        SourceLocation MLoc = mi->getSourceRange().getBegin();
8836        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8837        return;
8838      }
8839    }
8840  }
8841
8842  bool (CXXRecordDecl::*hasTrivial)() const;
8843  switch (member) {
8844  case CXXDefaultConstructor:
8845    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8846  case CXXCopyConstructor:
8847    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8848  case CXXCopyAssignment:
8849    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8850  case CXXDestructor:
8851    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8852  default:
8853    llvm_unreachable("unexpected special member");
8854  }
8855
8856  // Check for nontrivial bases (and recurse).
8857  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8858    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8859    assert(BaseRT && "Don't know how to handle dependent bases");
8860    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8861    if (!(BaseRecTy->*hasTrivial)()) {
8862      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8863      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8864      DiagnoseNontrivial(BaseRT, member);
8865      return;
8866    }
8867  }
8868
8869  // Check for nontrivial members (and recurse).
8870  typedef RecordDecl::field_iterator field_iter;
8871  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8872       ++fi) {
8873    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8874    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8875      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8876
8877      if (!(EltRD->*hasTrivial)()) {
8878        SourceLocation FLoc = (*fi)->getLocation();
8879        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8880        DiagnoseNontrivial(EltRT, member);
8881        return;
8882      }
8883    }
8884
8885    if (EltTy->isObjCLifetimeType()) {
8886      switch (EltTy.getObjCLifetime()) {
8887      case Qualifiers::OCL_None:
8888      case Qualifiers::OCL_ExplicitNone:
8889        break;
8890
8891      case Qualifiers::OCL_Autoreleasing:
8892      case Qualifiers::OCL_Weak:
8893      case Qualifiers::OCL_Strong:
8894        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8895          << QT << EltTy.getObjCLifetime();
8896        return;
8897      }
8898    }
8899  }
8900
8901  llvm_unreachable("found no explanation for non-trivial member");
8902}
8903
8904/// TranslateIvarVisibility - Translate visibility from a token ID to an
8905///  AST enum value.
8906static ObjCIvarDecl::AccessControl
8907TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8908  switch (ivarVisibility) {
8909  default: llvm_unreachable("Unknown visitibility kind");
8910  case tok::objc_private: return ObjCIvarDecl::Private;
8911  case tok::objc_public: return ObjCIvarDecl::Public;
8912  case tok::objc_protected: return ObjCIvarDecl::Protected;
8913  case tok::objc_package: return ObjCIvarDecl::Package;
8914  }
8915}
8916
8917/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8918/// in order to create an IvarDecl object for it.
8919Decl *Sema::ActOnIvar(Scope *S,
8920                                SourceLocation DeclStart,
8921                                Declarator &D, Expr *BitfieldWidth,
8922                                tok::ObjCKeywordKind Visibility) {
8923
8924  IdentifierInfo *II = D.getIdentifier();
8925  Expr *BitWidth = (Expr*)BitfieldWidth;
8926  SourceLocation Loc = DeclStart;
8927  if (II) Loc = D.getIdentifierLoc();
8928
8929  // FIXME: Unnamed fields can be handled in various different ways, for
8930  // example, unnamed unions inject all members into the struct namespace!
8931
8932  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8933  QualType T = TInfo->getType();
8934
8935  if (BitWidth) {
8936    // 6.7.2.1p3, 6.7.2.1p4
8937    if (VerifyBitField(Loc, II, T, BitWidth)) {
8938      D.setInvalidType();
8939      BitWidth = 0;
8940    }
8941  } else {
8942    // Not a bitfield.
8943
8944    // validate II.
8945
8946  }
8947  if (T->isReferenceType()) {
8948    Diag(Loc, diag::err_ivar_reference_type);
8949    D.setInvalidType();
8950  }
8951  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8952  // than a variably modified type.
8953  else if (T->isVariablyModifiedType()) {
8954    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8955    D.setInvalidType();
8956  }
8957
8958  // Get the visibility (access control) for this ivar.
8959  ObjCIvarDecl::AccessControl ac =
8960    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8961                                        : ObjCIvarDecl::None;
8962  // Must set ivar's DeclContext to its enclosing interface.
8963  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8964  ObjCContainerDecl *EnclosingContext;
8965  if (ObjCImplementationDecl *IMPDecl =
8966      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8967    if (!LangOpts.ObjCNonFragileABI2) {
8968    // Case of ivar declared in an implementation. Context is that of its class.
8969      EnclosingContext = IMPDecl->getClassInterface();
8970      assert(EnclosingContext && "Implementation has no class interface!");
8971    }
8972    else
8973      EnclosingContext = EnclosingDecl;
8974  } else {
8975    if (ObjCCategoryDecl *CDecl =
8976        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8977      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8978        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8979        return 0;
8980      }
8981    }
8982    EnclosingContext = EnclosingDecl;
8983  }
8984
8985  // Construct the decl.
8986  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8987                                             DeclStart, Loc, II, T,
8988                                             TInfo, ac, (Expr *)BitfieldWidth);
8989
8990  if (II) {
8991    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8992                                           ForRedeclaration);
8993    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8994        && !isa<TagDecl>(PrevDecl)) {
8995      Diag(Loc, diag::err_duplicate_member) << II;
8996      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8997      NewID->setInvalidDecl();
8998    }
8999  }
9000
9001  // Process attributes attached to the ivar.
9002  ProcessDeclAttributes(S, NewID, D);
9003
9004  if (D.isInvalidType())
9005    NewID->setInvalidDecl();
9006
9007  // In ARC, infer 'retaining' for ivars of retainable type.
9008  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9009    NewID->setInvalidDecl();
9010
9011  if (D.getDeclSpec().isModulePrivateSpecified())
9012    NewID->setModulePrivate();
9013
9014  if (II) {
9015    // FIXME: When interfaces are DeclContexts, we'll need to add
9016    // these to the interface.
9017    S->AddDecl(NewID);
9018    IdResolver.AddDecl(NewID);
9019  }
9020
9021  return NewID;
9022}
9023
9024/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9025/// class and class extensions. For every class @interface and class
9026/// extension @interface, if the last ivar is a bitfield of any type,
9027/// then add an implicit `char :0` ivar to the end of that interface.
9028void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9029                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9030  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9031    return;
9032
9033  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9034  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9035
9036  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9037    return;
9038  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9039  if (!ID) {
9040    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9041      if (!CD->IsClassExtension())
9042        return;
9043    }
9044    // No need to add this to end of @implementation.
9045    else
9046      return;
9047  }
9048  // All conditions are met. Add a new bitfield to the tail end of ivars.
9049  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9050  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9051
9052  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9053                              DeclLoc, DeclLoc, 0,
9054                              Context.CharTy,
9055                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9056                                                               DeclLoc),
9057                              ObjCIvarDecl::Private, BW,
9058                              true);
9059  AllIvarDecls.push_back(Ivar);
9060}
9061
9062void Sema::ActOnFields(Scope* S,
9063                       SourceLocation RecLoc, Decl *EnclosingDecl,
9064                       llvm::ArrayRef<Decl *> Fields,
9065                       SourceLocation LBrac, SourceLocation RBrac,
9066                       AttributeList *Attr) {
9067  assert(EnclosingDecl && "missing record or interface decl");
9068
9069  // If the decl this is being inserted into is invalid, then it may be a
9070  // redeclaration or some other bogus case.  Don't try to add fields to it.
9071  if (EnclosingDecl->isInvalidDecl())
9072    return;
9073
9074  // Verify that all the fields are okay.
9075  unsigned NumNamedMembers = 0;
9076  SmallVector<FieldDecl*, 32> RecFields;
9077
9078  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9079  bool ARCErrReported = false;
9080  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9081       i != end; ++i) {
9082    FieldDecl *FD = cast<FieldDecl>(*i);
9083
9084    // Get the type for the field.
9085    const Type *FDTy = FD->getType().getTypePtr();
9086
9087    if (!FD->isAnonymousStructOrUnion()) {
9088      // Remember all fields written by the user.
9089      RecFields.push_back(FD);
9090    }
9091
9092    // If the field is already invalid for some reason, don't emit more
9093    // diagnostics about it.
9094    if (FD->isInvalidDecl()) {
9095      EnclosingDecl->setInvalidDecl();
9096      continue;
9097    }
9098
9099    // C99 6.7.2.1p2:
9100    //   A structure or union shall not contain a member with
9101    //   incomplete or function type (hence, a structure shall not
9102    //   contain an instance of itself, but may contain a pointer to
9103    //   an instance of itself), except that the last member of a
9104    //   structure with more than one named member may have incomplete
9105    //   array type; such a structure (and any union containing,
9106    //   possibly recursively, a member that is such a structure)
9107    //   shall not be a member of a structure or an element of an
9108    //   array.
9109    if (FDTy->isFunctionType()) {
9110      // Field declared as a function.
9111      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9112        << FD->getDeclName();
9113      FD->setInvalidDecl();
9114      EnclosingDecl->setInvalidDecl();
9115      continue;
9116    } else if (FDTy->isIncompleteArrayType() && Record &&
9117               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9118                ((getLangOptions().MicrosoftExt ||
9119                  getLangOptions().CPlusPlus) &&
9120                 (i + 1 == Fields.end() || Record->isUnion())))) {
9121      // Flexible array member.
9122      // Microsoft and g++ is more permissive regarding flexible array.
9123      // It will accept flexible array in union and also
9124      // as the sole element of a struct/class.
9125      if (getLangOptions().MicrosoftExt) {
9126        if (Record->isUnion())
9127          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9128            << FD->getDeclName();
9129        else if (Fields.size() == 1)
9130          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9131            << FD->getDeclName() << Record->getTagKind();
9132      } else if (getLangOptions().CPlusPlus) {
9133        if (Record->isUnion())
9134          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9135            << FD->getDeclName();
9136        else if (Fields.size() == 1)
9137          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9138            << FD->getDeclName() << Record->getTagKind();
9139      } else if (NumNamedMembers < 1) {
9140        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9141          << FD->getDeclName();
9142        FD->setInvalidDecl();
9143        EnclosingDecl->setInvalidDecl();
9144        continue;
9145      }
9146      if (!FD->getType()->isDependentType() &&
9147          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9148        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9149          << FD->getDeclName() << FD->getType();
9150        FD->setInvalidDecl();
9151        EnclosingDecl->setInvalidDecl();
9152        continue;
9153      }
9154      // Okay, we have a legal flexible array member at the end of the struct.
9155      if (Record)
9156        Record->setHasFlexibleArrayMember(true);
9157    } else if (!FDTy->isDependentType() &&
9158               RequireCompleteType(FD->getLocation(), FD->getType(),
9159                                   diag::err_field_incomplete)) {
9160      // Incomplete type
9161      FD->setInvalidDecl();
9162      EnclosingDecl->setInvalidDecl();
9163      continue;
9164    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9165      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9166        // If this is a member of a union, then entire union becomes "flexible".
9167        if (Record && Record->isUnion()) {
9168          Record->setHasFlexibleArrayMember(true);
9169        } else {
9170          // If this is a struct/class and this is not the last element, reject
9171          // it.  Note that GCC supports variable sized arrays in the middle of
9172          // structures.
9173          if (i + 1 != Fields.end())
9174            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9175              << FD->getDeclName() << FD->getType();
9176          else {
9177            // We support flexible arrays at the end of structs in
9178            // other structs as an extension.
9179            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9180              << FD->getDeclName();
9181            if (Record)
9182              Record->setHasFlexibleArrayMember(true);
9183          }
9184        }
9185      }
9186      if (Record && FDTTy->getDecl()->hasObjectMember())
9187        Record->setHasObjectMember(true);
9188    } else if (FDTy->isObjCObjectType()) {
9189      /// A field cannot be an Objective-c object
9190      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9191        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9192      QualType T = Context.getObjCObjectPointerType(FD->getType());
9193      FD->setType(T);
9194    }
9195    else if (!getLangOptions().CPlusPlus) {
9196      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9197        // It's an error in ARC if a field has lifetime.
9198        // We don't want to report this in a system header, though,
9199        // so we just make the field unavailable.
9200        // FIXME: that's really not sufficient; we need to make the type
9201        // itself invalid to, say, initialize or copy.
9202        QualType T = FD->getType();
9203        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9204        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9205          SourceLocation loc = FD->getLocation();
9206          if (getSourceManager().isInSystemHeader(loc)) {
9207            if (!FD->hasAttr<UnavailableAttr>()) {
9208              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9209                                "this system field has retaining ownership"));
9210            }
9211          } else {
9212            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9213              << T->isBlockPointerType();
9214          }
9215          ARCErrReported = true;
9216        }
9217      }
9218      else if (getLangOptions().ObjC1 &&
9219               getLangOptions().getGC() != LangOptions::NonGC &&
9220               Record && !Record->hasObjectMember()) {
9221        if (FD->getType()->isObjCObjectPointerType() ||
9222            FD->getType().isObjCGCStrong())
9223          Record->setHasObjectMember(true);
9224        else if (Context.getAsArrayType(FD->getType())) {
9225          QualType BaseType = Context.getBaseElementType(FD->getType());
9226          if (BaseType->isRecordType() &&
9227              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9228            Record->setHasObjectMember(true);
9229          else if (BaseType->isObjCObjectPointerType() ||
9230                   BaseType.isObjCGCStrong())
9231                 Record->setHasObjectMember(true);
9232        }
9233      }
9234    }
9235    // Keep track of the number of named members.
9236    if (FD->getIdentifier())
9237      ++NumNamedMembers;
9238  }
9239
9240  // Okay, we successfully defined 'Record'.
9241  if (Record) {
9242    bool Completed = false;
9243    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9244      if (!CXXRecord->isInvalidDecl()) {
9245        // Set access bits correctly on the directly-declared conversions.
9246        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9247        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9248             I != E; ++I)
9249          Convs->setAccess(I, (*I)->getAccess());
9250
9251        if (!CXXRecord->isDependentType()) {
9252          // Objective-C Automatic Reference Counting:
9253          //   If a class has a non-static data member of Objective-C pointer
9254          //   type (or array thereof), it is a non-POD type and its
9255          //   default constructor (if any), copy constructor, copy assignment
9256          //   operator, and destructor are non-trivial.
9257          //
9258          // This rule is also handled by CXXRecordDecl::completeDefinition().
9259          // However, here we check whether this particular class is only
9260          // non-POD because of the presence of an Objective-C pointer member.
9261          // If so, objects of this type cannot be shared between code compiled
9262          // with instant objects and code compiled with manual retain/release.
9263          if (getLangOptions().ObjCAutoRefCount &&
9264              CXXRecord->hasObjectMember() &&
9265              CXXRecord->getLinkage() == ExternalLinkage) {
9266            if (CXXRecord->isPOD()) {
9267              Diag(CXXRecord->getLocation(),
9268                   diag::warn_arc_non_pod_class_with_object_member)
9269               << CXXRecord;
9270            } else {
9271              // FIXME: Fix-Its would be nice here, but finding a good location
9272              // for them is going to be tricky.
9273              if (CXXRecord->hasTrivialCopyConstructor())
9274                Diag(CXXRecord->getLocation(),
9275                     diag::warn_arc_trivial_member_function_with_object_member)
9276                  << CXXRecord << 0;
9277              if (CXXRecord->hasTrivialCopyAssignment())
9278                Diag(CXXRecord->getLocation(),
9279                     diag::warn_arc_trivial_member_function_with_object_member)
9280                << CXXRecord << 1;
9281              if (CXXRecord->hasTrivialDestructor())
9282                Diag(CXXRecord->getLocation(),
9283                     diag::warn_arc_trivial_member_function_with_object_member)
9284                << CXXRecord << 2;
9285            }
9286          }
9287
9288          // Adjust user-defined destructor exception spec.
9289          if (getLangOptions().CPlusPlus0x &&
9290              CXXRecord->hasUserDeclaredDestructor())
9291            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9292
9293          // Add any implicitly-declared members to this class.
9294          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9295
9296          // If we have virtual base classes, we may end up finding multiple
9297          // final overriders for a given virtual function. Check for this
9298          // problem now.
9299          if (CXXRecord->getNumVBases()) {
9300            CXXFinalOverriderMap FinalOverriders;
9301            CXXRecord->getFinalOverriders(FinalOverriders);
9302
9303            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9304                                             MEnd = FinalOverriders.end();
9305                 M != MEnd; ++M) {
9306              for (OverridingMethods::iterator SO = M->second.begin(),
9307                                            SOEnd = M->second.end();
9308                   SO != SOEnd; ++SO) {
9309                assert(SO->second.size() > 0 &&
9310                       "Virtual function without overridding functions?");
9311                if (SO->second.size() == 1)
9312                  continue;
9313
9314                // C++ [class.virtual]p2:
9315                //   In a derived class, if a virtual member function of a base
9316                //   class subobject has more than one final overrider the
9317                //   program is ill-formed.
9318                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9319                  << (NamedDecl *)M->first << Record;
9320                Diag(M->first->getLocation(),
9321                     diag::note_overridden_virtual_function);
9322                for (OverridingMethods::overriding_iterator
9323                          OM = SO->second.begin(),
9324                       OMEnd = SO->second.end();
9325                     OM != OMEnd; ++OM)
9326                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9327                    << (NamedDecl *)M->first << OM->Method->getParent();
9328
9329                Record->setInvalidDecl();
9330              }
9331            }
9332            CXXRecord->completeDefinition(&FinalOverriders);
9333            Completed = true;
9334          }
9335        }
9336      }
9337    }
9338
9339    if (!Completed)
9340      Record->completeDefinition();
9341
9342    // Now that the record is complete, do any delayed exception spec checks
9343    // we were missing.
9344    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9345      const CXXDestructorDecl *Dtor =
9346              DelayedDestructorExceptionSpecChecks.back().first;
9347      if (Dtor->getParent() != Record)
9348        break;
9349
9350      assert(!Dtor->getParent()->isDependentType() &&
9351          "Should not ever add destructors of templates into the list.");
9352      CheckOverridingFunctionExceptionSpec(Dtor,
9353          DelayedDestructorExceptionSpecChecks.back().second);
9354      DelayedDestructorExceptionSpecChecks.pop_back();
9355    }
9356
9357  } else {
9358    ObjCIvarDecl **ClsFields =
9359      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9360    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9361      ID->setEndOfDefinitionLoc(RBrac);
9362      // Add ivar's to class's DeclContext.
9363      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9364        ClsFields[i]->setLexicalDeclContext(ID);
9365        ID->addDecl(ClsFields[i]);
9366      }
9367      // Must enforce the rule that ivars in the base classes may not be
9368      // duplicates.
9369      if (ID->getSuperClass())
9370        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9371    } else if (ObjCImplementationDecl *IMPDecl =
9372                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9373      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9374      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9375        // Ivar declared in @implementation never belongs to the implementation.
9376        // Only it is in implementation's lexical context.
9377        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9378      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9379    } else if (ObjCCategoryDecl *CDecl =
9380                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9381      // case of ivars in class extension; all other cases have been
9382      // reported as errors elsewhere.
9383      // FIXME. Class extension does not have a LocEnd field.
9384      // CDecl->setLocEnd(RBrac);
9385      // Add ivar's to class extension's DeclContext.
9386      // Diagnose redeclaration of private ivars.
9387      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9388      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9389        if (IDecl) {
9390          if (const ObjCIvarDecl *ClsIvar =
9391              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9392            Diag(ClsFields[i]->getLocation(),
9393                 diag::err_duplicate_ivar_declaration);
9394            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9395            continue;
9396          }
9397          for (const ObjCCategoryDecl *ClsExtDecl =
9398                IDecl->getFirstClassExtension();
9399               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9400            if (const ObjCIvarDecl *ClsExtIvar =
9401                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9402              Diag(ClsFields[i]->getLocation(),
9403                   diag::err_duplicate_ivar_declaration);
9404              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9405              continue;
9406            }
9407          }
9408        }
9409        ClsFields[i]->setLexicalDeclContext(CDecl);
9410        CDecl->addDecl(ClsFields[i]);
9411      }
9412    }
9413  }
9414
9415  if (Attr)
9416    ProcessDeclAttributeList(S, Record, Attr);
9417
9418  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9419  // set the visibility of this record.
9420  if (Record && !Record->getDeclContext()->isRecord())
9421    AddPushedVisibilityAttribute(Record);
9422}
9423
9424/// \brief Determine whether the given integral value is representable within
9425/// the given type T.
9426static bool isRepresentableIntegerValue(ASTContext &Context,
9427                                        llvm::APSInt &Value,
9428                                        QualType T) {
9429  assert(T->isIntegralType(Context) && "Integral type required!");
9430  unsigned BitWidth = Context.getIntWidth(T);
9431
9432  if (Value.isUnsigned() || Value.isNonNegative()) {
9433    if (T->isSignedIntegerOrEnumerationType())
9434      --BitWidth;
9435    return Value.getActiveBits() <= BitWidth;
9436  }
9437  return Value.getMinSignedBits() <= BitWidth;
9438}
9439
9440// \brief Given an integral type, return the next larger integral type
9441// (or a NULL type of no such type exists).
9442static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9443  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9444  // enum checking below.
9445  assert(T->isIntegralType(Context) && "Integral type required!");
9446  const unsigned NumTypes = 4;
9447  QualType SignedIntegralTypes[NumTypes] = {
9448    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9449  };
9450  QualType UnsignedIntegralTypes[NumTypes] = {
9451    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9452    Context.UnsignedLongLongTy
9453  };
9454
9455  unsigned BitWidth = Context.getTypeSize(T);
9456  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9457                                                        : UnsignedIntegralTypes;
9458  for (unsigned I = 0; I != NumTypes; ++I)
9459    if (Context.getTypeSize(Types[I]) > BitWidth)
9460      return Types[I];
9461
9462  return QualType();
9463}
9464
9465EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9466                                          EnumConstantDecl *LastEnumConst,
9467                                          SourceLocation IdLoc,
9468                                          IdentifierInfo *Id,
9469                                          Expr *Val) {
9470  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9471  llvm::APSInt EnumVal(IntWidth);
9472  QualType EltTy;
9473
9474  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9475    Val = 0;
9476
9477  if (Val)
9478    Val = DefaultLvalueConversion(Val).take();
9479
9480  if (Val) {
9481    if (Enum->isDependentType() || Val->isTypeDependent())
9482      EltTy = Context.DependentTy;
9483    else {
9484      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9485      SourceLocation ExpLoc;
9486      if (!Val->isValueDependent() &&
9487          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9488        Val = 0;
9489      } else {
9490        if (!getLangOptions().CPlusPlus) {
9491          // C99 6.7.2.2p2:
9492          //   The expression that defines the value of an enumeration constant
9493          //   shall be an integer constant expression that has a value
9494          //   representable as an int.
9495
9496          // Complain if the value is not representable in an int.
9497          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9498            Diag(IdLoc, diag::ext_enum_value_not_int)
9499              << EnumVal.toString(10) << Val->getSourceRange()
9500              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9501          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9502            // Force the type of the expression to 'int'.
9503            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9504          }
9505        }
9506
9507        if (Enum->isFixed()) {
9508          EltTy = Enum->getIntegerType();
9509
9510          // C++0x [dcl.enum]p5:
9511          //   ... if the initializing value of an enumerator cannot be
9512          //   represented by the underlying type, the program is ill-formed.
9513          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9514            if (getLangOptions().MicrosoftExt) {
9515              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9516              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9517            } else
9518              Diag(IdLoc, diag::err_enumerator_too_large)
9519                << EltTy;
9520          } else
9521            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9522        }
9523        else {
9524          // C++0x [dcl.enum]p5:
9525          //   If the underlying type is not fixed, the type of each enumerator
9526          //   is the type of its initializing value:
9527          //     - If an initializer is specified for an enumerator, the
9528          //       initializing value has the same type as the expression.
9529          EltTy = Val->getType();
9530        }
9531      }
9532    }
9533  }
9534
9535  if (!Val) {
9536    if (Enum->isDependentType())
9537      EltTy = Context.DependentTy;
9538    else if (!LastEnumConst) {
9539      // C++0x [dcl.enum]p5:
9540      //   If the underlying type is not fixed, the type of each enumerator
9541      //   is the type of its initializing value:
9542      //     - If no initializer is specified for the first enumerator, the
9543      //       initializing value has an unspecified integral type.
9544      //
9545      // GCC uses 'int' for its unspecified integral type, as does
9546      // C99 6.7.2.2p3.
9547      if (Enum->isFixed()) {
9548        EltTy = Enum->getIntegerType();
9549      }
9550      else {
9551        EltTy = Context.IntTy;
9552      }
9553    } else {
9554      // Assign the last value + 1.
9555      EnumVal = LastEnumConst->getInitVal();
9556      ++EnumVal;
9557      EltTy = LastEnumConst->getType();
9558
9559      // Check for overflow on increment.
9560      if (EnumVal < LastEnumConst->getInitVal()) {
9561        // C++0x [dcl.enum]p5:
9562        //   If the underlying type is not fixed, the type of each enumerator
9563        //   is the type of its initializing value:
9564        //
9565        //     - Otherwise the type of the initializing value is the same as
9566        //       the type of the initializing value of the preceding enumerator
9567        //       unless the incremented value is not representable in that type,
9568        //       in which case the type is an unspecified integral type
9569        //       sufficient to contain the incremented value. If no such type
9570        //       exists, the program is ill-formed.
9571        QualType T = getNextLargerIntegralType(Context, EltTy);
9572        if (T.isNull() || Enum->isFixed()) {
9573          // There is no integral type larger enough to represent this
9574          // value. Complain, then allow the value to wrap around.
9575          EnumVal = LastEnumConst->getInitVal();
9576          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9577          ++EnumVal;
9578          if (Enum->isFixed())
9579            // When the underlying type is fixed, this is ill-formed.
9580            Diag(IdLoc, diag::err_enumerator_wrapped)
9581              << EnumVal.toString(10)
9582              << EltTy;
9583          else
9584            Diag(IdLoc, diag::warn_enumerator_too_large)
9585              << EnumVal.toString(10);
9586        } else {
9587          EltTy = T;
9588        }
9589
9590        // Retrieve the last enumerator's value, extent that type to the
9591        // type that is supposed to be large enough to represent the incremented
9592        // value, then increment.
9593        EnumVal = LastEnumConst->getInitVal();
9594        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9595        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9596        ++EnumVal;
9597
9598        // If we're not in C++, diagnose the overflow of enumerator values,
9599        // which in C99 means that the enumerator value is not representable in
9600        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9601        // permits enumerator values that are representable in some larger
9602        // integral type.
9603        if (!getLangOptions().CPlusPlus && !T.isNull())
9604          Diag(IdLoc, diag::warn_enum_value_overflow);
9605      } else if (!getLangOptions().CPlusPlus &&
9606                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9607        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9608        Diag(IdLoc, diag::ext_enum_value_not_int)
9609          << EnumVal.toString(10) << 1;
9610      }
9611    }
9612  }
9613
9614  if (!EltTy->isDependentType()) {
9615    // Make the enumerator value match the signedness and size of the
9616    // enumerator's type.
9617    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9618    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9619  }
9620
9621  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9622                                  Val, EnumVal);
9623}
9624
9625
9626Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9627                              SourceLocation IdLoc, IdentifierInfo *Id,
9628                              AttributeList *Attr,
9629                              SourceLocation EqualLoc, Expr *val) {
9630  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9631  EnumConstantDecl *LastEnumConst =
9632    cast_or_null<EnumConstantDecl>(lastEnumConst);
9633  Expr *Val = static_cast<Expr*>(val);
9634
9635  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9636  // we find one that is.
9637  S = getNonFieldDeclScope(S);
9638
9639  // Verify that there isn't already something declared with this name in this
9640  // scope.
9641  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9642                                         ForRedeclaration);
9643  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9644    // Maybe we will complain about the shadowed template parameter.
9645    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9646    // Just pretend that we didn't see the previous declaration.
9647    PrevDecl = 0;
9648  }
9649
9650  if (PrevDecl) {
9651    // When in C++, we may get a TagDecl with the same name; in this case the
9652    // enum constant will 'hide' the tag.
9653    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9654           "Received TagDecl when not in C++!");
9655    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9656      if (isa<EnumConstantDecl>(PrevDecl))
9657        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9658      else
9659        Diag(IdLoc, diag::err_redefinition) << Id;
9660      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9661      return 0;
9662    }
9663  }
9664
9665  // C++ [class.mem]p13:
9666  //   If T is the name of a class, then each of the following shall have a
9667  //   name different from T:
9668  //     - every enumerator of every member of class T that is an enumerated
9669  //       type
9670  if (CXXRecordDecl *Record
9671                      = dyn_cast<CXXRecordDecl>(
9672                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9673    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9674      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9675
9676  EnumConstantDecl *New =
9677    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9678
9679  if (New) {
9680    // Process attributes.
9681    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9682
9683    // Register this decl in the current scope stack.
9684    New->setAccess(TheEnumDecl->getAccess());
9685    PushOnScopeChains(New, S);
9686  }
9687
9688  return New;
9689}
9690
9691void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9692                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9693                         Decl **Elements, unsigned NumElements,
9694                         Scope *S, AttributeList *Attr) {
9695  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9696  QualType EnumType = Context.getTypeDeclType(Enum);
9697
9698  if (Attr)
9699    ProcessDeclAttributeList(S, Enum, Attr);
9700
9701  if (Enum->isDependentType()) {
9702    for (unsigned i = 0; i != NumElements; ++i) {
9703      EnumConstantDecl *ECD =
9704        cast_or_null<EnumConstantDecl>(Elements[i]);
9705      if (!ECD) continue;
9706
9707      ECD->setType(EnumType);
9708    }
9709
9710    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9711    return;
9712  }
9713
9714  // TODO: If the result value doesn't fit in an int, it must be a long or long
9715  // long value.  ISO C does not support this, but GCC does as an extension,
9716  // emit a warning.
9717  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9718  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9719  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9720
9721  // Verify that all the values are okay, compute the size of the values, and
9722  // reverse the list.
9723  unsigned NumNegativeBits = 0;
9724  unsigned NumPositiveBits = 0;
9725
9726  // Keep track of whether all elements have type int.
9727  bool AllElementsInt = true;
9728
9729  for (unsigned i = 0; i != NumElements; ++i) {
9730    EnumConstantDecl *ECD =
9731      cast_or_null<EnumConstantDecl>(Elements[i]);
9732    if (!ECD) continue;  // Already issued a diagnostic.
9733
9734    const llvm::APSInt &InitVal = ECD->getInitVal();
9735
9736    // Keep track of the size of positive and negative values.
9737    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9738      NumPositiveBits = std::max(NumPositiveBits,
9739                                 (unsigned)InitVal.getActiveBits());
9740    else
9741      NumNegativeBits = std::max(NumNegativeBits,
9742                                 (unsigned)InitVal.getMinSignedBits());
9743
9744    // Keep track of whether every enum element has type int (very commmon).
9745    if (AllElementsInt)
9746      AllElementsInt = ECD->getType() == Context.IntTy;
9747  }
9748
9749  // Figure out the type that should be used for this enum.
9750  QualType BestType;
9751  unsigned BestWidth;
9752
9753  // C++0x N3000 [conv.prom]p3:
9754  //   An rvalue of an unscoped enumeration type whose underlying
9755  //   type is not fixed can be converted to an rvalue of the first
9756  //   of the following types that can represent all the values of
9757  //   the enumeration: int, unsigned int, long int, unsigned long
9758  //   int, long long int, or unsigned long long int.
9759  // C99 6.4.4.3p2:
9760  //   An identifier declared as an enumeration constant has type int.
9761  // The C99 rule is modified by a gcc extension
9762  QualType BestPromotionType;
9763
9764  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9765  // -fshort-enums is the equivalent to specifying the packed attribute on all
9766  // enum definitions.
9767  if (LangOpts.ShortEnums)
9768    Packed = true;
9769
9770  if (Enum->isFixed()) {
9771    BestType = Enum->getIntegerType();
9772    if (BestType->isPromotableIntegerType())
9773      BestPromotionType = Context.getPromotedIntegerType(BestType);
9774    else
9775      BestPromotionType = BestType;
9776    // We don't need to set BestWidth, because BestType is going to be the type
9777    // of the enumerators, but we do anyway because otherwise some compilers
9778    // warn that it might be used uninitialized.
9779    BestWidth = CharWidth;
9780  }
9781  else if (NumNegativeBits) {
9782    // If there is a negative value, figure out the smallest integer type (of
9783    // int/long/longlong) that fits.
9784    // If it's packed, check also if it fits a char or a short.
9785    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9786      BestType = Context.SignedCharTy;
9787      BestWidth = CharWidth;
9788    } else if (Packed && NumNegativeBits <= ShortWidth &&
9789               NumPositiveBits < ShortWidth) {
9790      BestType = Context.ShortTy;
9791      BestWidth = ShortWidth;
9792    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9793      BestType = Context.IntTy;
9794      BestWidth = IntWidth;
9795    } else {
9796      BestWidth = Context.getTargetInfo().getLongWidth();
9797
9798      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9799        BestType = Context.LongTy;
9800      } else {
9801        BestWidth = Context.getTargetInfo().getLongLongWidth();
9802
9803        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9804          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9805        BestType = Context.LongLongTy;
9806      }
9807    }
9808    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9809  } else {
9810    // If there is no negative value, figure out the smallest type that fits
9811    // all of the enumerator values.
9812    // If it's packed, check also if it fits a char or a short.
9813    if (Packed && NumPositiveBits <= CharWidth) {
9814      BestType = Context.UnsignedCharTy;
9815      BestPromotionType = Context.IntTy;
9816      BestWidth = CharWidth;
9817    } else if (Packed && NumPositiveBits <= ShortWidth) {
9818      BestType = Context.UnsignedShortTy;
9819      BestPromotionType = Context.IntTy;
9820      BestWidth = ShortWidth;
9821    } else if (NumPositiveBits <= IntWidth) {
9822      BestType = Context.UnsignedIntTy;
9823      BestWidth = IntWidth;
9824      BestPromotionType
9825        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9826                           ? Context.UnsignedIntTy : Context.IntTy;
9827    } else if (NumPositiveBits <=
9828               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9829      BestType = Context.UnsignedLongTy;
9830      BestPromotionType
9831        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9832                           ? Context.UnsignedLongTy : Context.LongTy;
9833    } else {
9834      BestWidth = Context.getTargetInfo().getLongLongWidth();
9835      assert(NumPositiveBits <= BestWidth &&
9836             "How could an initializer get larger than ULL?");
9837      BestType = Context.UnsignedLongLongTy;
9838      BestPromotionType
9839        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9840                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9841    }
9842  }
9843
9844  // Loop over all of the enumerator constants, changing their types to match
9845  // the type of the enum if needed.
9846  for (unsigned i = 0; i != NumElements; ++i) {
9847    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9848    if (!ECD) continue;  // Already issued a diagnostic.
9849
9850    // Standard C says the enumerators have int type, but we allow, as an
9851    // extension, the enumerators to be larger than int size.  If each
9852    // enumerator value fits in an int, type it as an int, otherwise type it the
9853    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9854    // that X has type 'int', not 'unsigned'.
9855
9856    // Determine whether the value fits into an int.
9857    llvm::APSInt InitVal = ECD->getInitVal();
9858
9859    // If it fits into an integer type, force it.  Otherwise force it to match
9860    // the enum decl type.
9861    QualType NewTy;
9862    unsigned NewWidth;
9863    bool NewSign;
9864    if (!getLangOptions().CPlusPlus &&
9865        !Enum->isFixed() &&
9866        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9867      NewTy = Context.IntTy;
9868      NewWidth = IntWidth;
9869      NewSign = true;
9870    } else if (ECD->getType() == BestType) {
9871      // Already the right type!
9872      if (getLangOptions().CPlusPlus)
9873        // C++ [dcl.enum]p4: Following the closing brace of an
9874        // enum-specifier, each enumerator has the type of its
9875        // enumeration.
9876        ECD->setType(EnumType);
9877      continue;
9878    } else {
9879      NewTy = BestType;
9880      NewWidth = BestWidth;
9881      NewSign = BestType->isSignedIntegerOrEnumerationType();
9882    }
9883
9884    // Adjust the APSInt value.
9885    InitVal = InitVal.extOrTrunc(NewWidth);
9886    InitVal.setIsSigned(NewSign);
9887    ECD->setInitVal(InitVal);
9888
9889    // Adjust the Expr initializer and type.
9890    if (ECD->getInitExpr() &&
9891        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9892      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9893                                                CK_IntegralCast,
9894                                                ECD->getInitExpr(),
9895                                                /*base paths*/ 0,
9896                                                VK_RValue));
9897    if (getLangOptions().CPlusPlus)
9898      // C++ [dcl.enum]p4: Following the closing brace of an
9899      // enum-specifier, each enumerator has the type of its
9900      // enumeration.
9901      ECD->setType(EnumType);
9902    else
9903      ECD->setType(NewTy);
9904  }
9905
9906  Enum->completeDefinition(BestType, BestPromotionType,
9907                           NumPositiveBits, NumNegativeBits);
9908}
9909
9910Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9911                                  SourceLocation StartLoc,
9912                                  SourceLocation EndLoc) {
9913  StringLiteral *AsmString = cast<StringLiteral>(expr);
9914
9915  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9916                                                   AsmString, StartLoc,
9917                                                   EndLoc);
9918  CurContext->addDecl(New);
9919  return New;
9920}
9921
9922DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
9923                                   SourceLocation ImportLoc,
9924                                   ModuleIdPath Path) {
9925  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
9926                                                Module::AllVisible,
9927                                                /*IsIncludeDirective=*/false);
9928  if (!Mod)
9929    return true;
9930
9931  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
9932  Module *ModCheck = Mod;
9933  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
9934    // If we've run out of module parents, just drop the remaining identifiers.
9935    // We need the length to be consistent.
9936    if (!ModCheck)
9937      break;
9938    ModCheck = ModCheck->Parent;
9939
9940    IdentifierLocs.push_back(Path[I].second);
9941  }
9942
9943  ImportDecl *Import = ImportDecl::Create(Context,
9944                                          Context.getTranslationUnitDecl(),
9945                                          AtLoc.isValid()? AtLoc : ImportLoc,
9946                                          Mod, IdentifierLocs);
9947  Context.getTranslationUnitDecl()->addDecl(Import);
9948  return Import;
9949}
9950
9951void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9952                             SourceLocation PragmaLoc,
9953                             SourceLocation NameLoc) {
9954  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9955
9956  if (PrevDecl) {
9957    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9958  } else {
9959    (void)WeakUndeclaredIdentifiers.insert(
9960      std::pair<IdentifierInfo*,WeakInfo>
9961        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9962  }
9963}
9964
9965void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9966                                IdentifierInfo* AliasName,
9967                                SourceLocation PragmaLoc,
9968                                SourceLocation NameLoc,
9969                                SourceLocation AliasNameLoc) {
9970  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9971                                    LookupOrdinaryName);
9972  WeakInfo W = WeakInfo(Name, NameLoc);
9973
9974  if (PrevDecl) {
9975    if (!PrevDecl->hasAttr<AliasAttr>())
9976      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9977        DeclApplyPragmaWeak(TUScope, ND, W);
9978  } else {
9979    (void)WeakUndeclaredIdentifiers.insert(
9980      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9981  }
9982}
9983
9984Decl *Sema::getObjCDeclContext() const {
9985  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9986}
9987
9988AvailabilityResult Sema::getCurContextAvailability() const {
9989  const Decl *D = cast<Decl>(getCurLexicalContext());
9990  // A category implicitly has the availability of the interface.
9991  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9992    D = CatD->getClassInterface();
9993
9994  return D->getAvailability();
9995}
9996