SemaDecl.cpp revision 1bfe1c2129771c06fb58ae5e8c079ae30e138309
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
31  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
32
33  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
34                 isa<ObjCInterfaceDecl>(IIDecl) ||
35                 isa<TagDecl>(IIDecl)))
36    return IIDecl;
37  return 0;
38}
39
40DeclContext *Sema::getDCParent(DeclContext *DC) {
41  // If CurContext is a ObjC method, getParent() will return NULL.
42  if (isa<ObjCMethodDecl>(DC))
43    return Context.getTranslationUnitDecl();
44
45  // A C++ inline method is parsed *after* the topmost class it was declared in
46  // is fully parsed (it's "complete").
47  // The parsing of a C++ inline method happens at the declaration context of
48  // the topmost (non-nested) class it is declared in.
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
51    DC = MD->getParent();
52    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
53      DC = RD;
54
55    // Return the declaration context of the topmost class the inline method is
56    // declared in.
57    return DC;
58  }
59
60  return DC->getParent();
61}
62
63void Sema::PushDeclContext(DeclContext *DC) {
64  assert(getDCParent(DC) == CurContext &&
65       "The next DeclContext should be directly contained in the current one.");
66  CurContext = DC;
67}
68
69void Sema::PopDeclContext() {
70  assert(CurContext && "DeclContext imbalance!");
71  CurContext = getDCParent(CurContext);
72}
73
74/// Add this decl to the scope shadowed decl chains.
75void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
76  S->AddDecl(D);
77
78  // C++ [basic.scope]p4:
79  //   -- exactly one declaration shall declare a class name or
80  //   enumeration name that is not a typedef name and the other
81  //   declarations shall all refer to the same object or
82  //   enumerator, or all refer to functions and function templates;
83  //   in this case the class name or enumeration name is hidden.
84  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
85    // We are pushing the name of a tag (enum or class).
86    IdentifierResolver::iterator
87        I = IdResolver.begin(TD->getIdentifier(),
88                             TD->getDeclContext(), false/*LookInParentCtx*/);
89    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
90      // There is already a declaration with the same name in the same
91      // scope. It must be found before we find the new declaration,
92      // so swap the order on the shadowed declaration chain.
93
94      IdResolver.AddShadowedDecl(TD, *I);
95      return;
96    }
97  }
98  IdResolver.AddDecl(D);
99}
100
101void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
102  if (S->decl_empty()) return;
103  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
104
105  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
106       I != E; ++I) {
107    Decl *TmpD = static_cast<Decl*>(*I);
108    assert(TmpD && "This decl didn't get pushed??");
109
110    if (isa<CXXFieldDecl>(TmpD)) continue;
111
112    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
113    ScopedDecl *D = cast<ScopedDecl>(TmpD);
114
115    IdentifierInfo *II = D->getIdentifier();
116    if (!II) continue;
117
118    // We only want to remove the decls from the identifier decl chains for
119    // local scopes, when inside a function/method.
120    if (S->getFnParent() != 0)
121      IdResolver.RemoveDecl(D);
122
123    // Chain this decl to the containing DeclContext.
124    D->setNext(CurContext->getDeclChain());
125    CurContext->setDeclChain(D);
126  }
127}
128
129/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
130/// return 0 if one not found.
131ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
132  // The third "scope" argument is 0 since we aren't enabling lazy built-in
133  // creation from this context.
134  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
135
136  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
137}
138
139/// LookupDecl - Look up the inner-most declaration in the specified
140/// namespace.
141Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
142                       Scope *S, bool enableLazyBuiltinCreation) {
143  if (II == 0) return 0;
144  unsigned NS = NSI;
145  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
146    NS |= Decl::IDNS_Tag;
147
148  // Scan up the scope chain looking for a decl that matches this identifier
149  // that is in the appropriate namespace.  This search should not take long, as
150  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
151  for (IdentifierResolver::iterator
152       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
153    if ((*I)->getIdentifierNamespace() & NS)
154      return *I;
155
156  // If we didn't find a use of this identifier, and if the identifier
157  // corresponds to a compiler builtin, create the decl object for the builtin
158  // now, injecting it into translation unit scope, and return it.
159  if (NS & Decl::IDNS_Ordinary) {
160    if (enableLazyBuiltinCreation) {
161      // If this is a builtin on this (or all) targets, create the decl.
162      if (unsigned BuiltinID = II->getBuiltinID())
163        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
164    }
165    if (getLangOptions().ObjC1) {
166      // @interface and @compatibility_alias introduce typedef-like names.
167      // Unlike typedef's, they can only be introduced at file-scope (and are
168      // therefore not scoped decls). They can, however, be shadowed by
169      // other names in IDNS_Ordinary.
170      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
171      if (IDI != ObjCInterfaceDecls.end())
172        return IDI->second;
173      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
174      if (I != ObjCAliasDecls.end())
175        return I->second->getClassInterface();
176    }
177  }
178  return 0;
179}
180
181void Sema::InitBuiltinVaListType() {
182  if (!Context.getBuiltinVaListType().isNull())
183    return;
184
185  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
186  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
187  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
188  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
189}
190
191/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
192/// lazily create a decl for it.
193ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
194                                      Scope *S) {
195  Builtin::ID BID = (Builtin::ID)bid;
196
197  if (Context.BuiltinInfo.hasVAListUse(BID))
198    InitBuiltinVaListType();
199
200  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
201  FunctionDecl *New = FunctionDecl::Create(Context,
202                                           Context.getTranslationUnitDecl(),
203                                           SourceLocation(), II, R,
204                                           FunctionDecl::Extern, false, 0);
205
206  // Create Decl objects for each parameter, adding them to the
207  // FunctionDecl.
208  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
209    llvm::SmallVector<ParmVarDecl*, 16> Params;
210    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
211      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
212                                           FT->getArgType(i), VarDecl::None, 0,
213                                           0));
214    New->setParams(&Params[0], Params.size());
215  }
216
217
218
219  // TUScope is the translation-unit scope to insert this function into.
220  PushOnScopeChains(New, TUScope);
221  return New;
222}
223
224/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
225/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
226/// situation, merging decls or emitting diagnostics as appropriate.
227///
228TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
229  // Allow multiple definitions for ObjC built-in typedefs.
230  // FIXME: Verify the underlying types are equivalent!
231  if (getLangOptions().ObjC1) {
232    const IdentifierInfo *typeIdent = New->getIdentifier();
233    if (typeIdent == Ident_id) {
234      Context.setObjCIdType(New);
235      return New;
236    } else if (typeIdent == Ident_Class) {
237      Context.setObjCClassType(New);
238      return New;
239    } else if (typeIdent == Ident_SEL) {
240      Context.setObjCSelType(New);
241      return New;
242    } else if (typeIdent == Ident_Protocol) {
243      Context.setObjCProtoType(New->getUnderlyingType());
244      return New;
245    }
246    // Fall through - the typedef name was not a builtin type.
247  }
248  // Verify the old decl was also a typedef.
249  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
250  if (!Old) {
251    Diag(New->getLocation(), diag::err_redefinition_different_kind,
252         New->getName());
253    Diag(OldD->getLocation(), diag::err_previous_definition);
254    return New;
255  }
256
257  // If the typedef types are not identical, reject them in all languages and
258  // with any extensions enabled.
259  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
260      Context.getCanonicalType(Old->getUnderlyingType()) !=
261      Context.getCanonicalType(New->getUnderlyingType())) {
262    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
263         New->getUnderlyingType().getAsString(),
264         Old->getUnderlyingType().getAsString());
265    Diag(Old->getLocation(), diag::err_previous_definition);
266    return Old;
267  }
268
269  if (getLangOptions().Microsoft) return New;
270
271  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
272  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
273  // *either* declaration is in a system header. The code below implements
274  // this adhoc compatibility rule. FIXME: The following code will not
275  // work properly when compiling ".i" files (containing preprocessed output).
276  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
277    SourceManager &SrcMgr = Context.getSourceManager();
278    if (SrcMgr.isInSystemHeader(Old->getLocation()))
279      return New;
280    if (SrcMgr.isInSystemHeader(New->getLocation()))
281      return New;
282  }
283
284  Diag(New->getLocation(), diag::err_redefinition, New->getName());
285  Diag(Old->getLocation(), diag::err_previous_definition);
286  return New;
287}
288
289/// DeclhasAttr - returns true if decl Declaration already has the target
290/// attribute.
291static bool DeclHasAttr(const Decl *decl, const Attr *target) {
292  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
293    if (attr->getKind() == target->getKind())
294      return true;
295
296  return false;
297}
298
299/// MergeAttributes - append attributes from the Old decl to the New one.
300static void MergeAttributes(Decl *New, Decl *Old) {
301  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
302
303  while (attr) {
304     tmp = attr;
305     attr = attr->getNext();
306
307    if (!DeclHasAttr(New, tmp)) {
308       New->addAttr(tmp);
309    } else {
310       tmp->setNext(0);
311       delete(tmp);
312    }
313  }
314
315  Old->invalidateAttrs();
316}
317
318/// MergeFunctionDecl - We just parsed a function 'New' from
319/// declarator D which has the same name and scope as a previous
320/// declaration 'Old'.  Figure out how to resolve this situation,
321/// merging decls or emitting diagnostics as appropriate.
322/// Redeclaration will be set true if thisNew is a redeclaration OldD.
323FunctionDecl *
324Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
325  Redeclaration = false;
326  // Verify the old decl was also a function.
327  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
328  if (!Old) {
329    Diag(New->getLocation(), diag::err_redefinition_different_kind,
330         New->getName());
331    Diag(OldD->getLocation(), diag::err_previous_definition);
332    return New;
333  }
334
335  QualType OldQType = Context.getCanonicalType(Old->getType());
336  QualType NewQType = Context.getCanonicalType(New->getType());
337
338  // C++ [dcl.fct]p3:
339  //   All declarations for a function shall agree exactly in both the
340  //   return type and the parameter-type-list.
341  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
342    MergeAttributes(New, Old);
343    Redeclaration = true;
344    return MergeCXXFunctionDecl(New, Old);
345  }
346
347  // C: Function types need to be compatible, not identical. This handles
348  // duplicate function decls like "void f(int); void f(enum X);" properly.
349  if (!getLangOptions().CPlusPlus &&
350      Context.typesAreCompatible(OldQType, NewQType)) {
351    MergeAttributes(New, Old);
352    Redeclaration = true;
353    return New;
354  }
355
356  // A function that has already been declared has been redeclared or defined
357  // with a different type- show appropriate diagnostic
358  diag::kind PrevDiag;
359  if (Old->isThisDeclarationADefinition())
360    PrevDiag = diag::err_previous_definition;
361  else if (Old->isImplicit())
362    PrevDiag = diag::err_previous_implicit_declaration;
363  else
364    PrevDiag = diag::err_previous_declaration;
365
366  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
367  // TODO: This is totally simplistic.  It should handle merging functions
368  // together etc, merging extern int X; int X; ...
369  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
370  Diag(Old->getLocation(), PrevDiag);
371  return New;
372}
373
374/// Predicate for C "tentative" external object definitions (C99 6.9.2).
375static bool isTentativeDefinition(VarDecl *VD) {
376  if (VD->isFileVarDecl())
377    return (!VD->getInit() &&
378            (VD->getStorageClass() == VarDecl::None ||
379             VD->getStorageClass() == VarDecl::Static));
380  return false;
381}
382
383/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
384/// when dealing with C "tentative" external object definitions (C99 6.9.2).
385void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
386  bool VDIsTentative = isTentativeDefinition(VD);
387  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
388
389  for (IdentifierResolver::iterator
390       I = IdResolver.begin(VD->getIdentifier(),
391                            VD->getDeclContext(), false/*LookInParentCtx*/),
392       E = IdResolver.end(); I != E; ++I) {
393    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
394      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
395
396      // Handle the following case:
397      //   int a[10];
398      //   int a[];   - the code below makes sure we set the correct type.
399      //   int a[11]; - this is an error, size isn't 10.
400      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
401          OldDecl->getType()->isConstantArrayType())
402        VD->setType(OldDecl->getType());
403
404      // Check for "tentative" definitions. We can't accomplish this in
405      // MergeVarDecl since the initializer hasn't been attached.
406      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
407        continue;
408
409      // Handle __private_extern__ just like extern.
410      if (OldDecl->getStorageClass() != VarDecl::Extern &&
411          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
412          VD->getStorageClass() != VarDecl::Extern &&
413          VD->getStorageClass() != VarDecl::PrivateExtern) {
414        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
415        Diag(OldDecl->getLocation(), diag::err_previous_definition);
416      }
417    }
418  }
419}
420
421/// MergeVarDecl - We just parsed a variable 'New' which has the same name
422/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
423/// situation, merging decls or emitting diagnostics as appropriate.
424///
425/// Tentative definition rules (C99 6.9.2p2) are checked by
426/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
427/// definitions here, since the initializer hasn't been attached.
428///
429VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
430  // Verify the old decl was also a variable.
431  VarDecl *Old = dyn_cast<VarDecl>(OldD);
432  if (!Old) {
433    Diag(New->getLocation(), diag::err_redefinition_different_kind,
434         New->getName());
435    Diag(OldD->getLocation(), diag::err_previous_definition);
436    return New;
437  }
438
439  MergeAttributes(New, Old);
440
441  // Verify the types match.
442  QualType OldCType = Context.getCanonicalType(Old->getType());
443  QualType NewCType = Context.getCanonicalType(New->getType());
444  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
445    Diag(New->getLocation(), diag::err_redefinition, New->getName());
446    Diag(Old->getLocation(), diag::err_previous_definition);
447    return New;
448  }
449  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
450  if (New->getStorageClass() == VarDecl::Static &&
451      (Old->getStorageClass() == VarDecl::None ||
452       Old->getStorageClass() == VarDecl::Extern)) {
453    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
454    Diag(Old->getLocation(), diag::err_previous_definition);
455    return New;
456  }
457  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
458  if (New->getStorageClass() != VarDecl::Static &&
459      Old->getStorageClass() == VarDecl::Static) {
460    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
461    Diag(Old->getLocation(), diag::err_previous_definition);
462    return New;
463  }
464  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
465  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
466    Diag(New->getLocation(), diag::err_redefinition, New->getName());
467    Diag(Old->getLocation(), diag::err_previous_definition);
468  }
469  return New;
470}
471
472/// CheckParmsForFunctionDef - Check that the parameters of the given
473/// function are appropriate for the definition of a function. This
474/// takes care of any checks that cannot be performed on the
475/// declaration itself, e.g., that the types of each of the function
476/// parameters are complete.
477bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
478  bool HasInvalidParm = false;
479  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
480    ParmVarDecl *Param = FD->getParamDecl(p);
481
482    // C99 6.7.5.3p4: the parameters in a parameter type list in a
483    // function declarator that is part of a function definition of
484    // that function shall not have incomplete type.
485    if (Param->getType()->isIncompleteType() &&
486        !Param->isInvalidDecl()) {
487      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
488           Param->getType().getAsString());
489      Param->setInvalidDecl();
490      HasInvalidParm = true;
491    }
492  }
493
494  return HasInvalidParm;
495}
496
497/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
498/// no declarator (e.g. "struct foo;") is parsed.
499Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
500  // TODO: emit error on 'int;' or 'const enum foo;'.
501  // TODO: emit error on 'typedef int;'
502  // if (!DS.isMissingDeclaratorOk()) Diag(...);
503
504  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
505}
506
507bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
508  // Get the type before calling CheckSingleAssignmentConstraints(), since
509  // it can promote the expression.
510  QualType InitType = Init->getType();
511
512  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
513  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
514                                  InitType, Init, "initializing");
515}
516
517bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
518  const ArrayType *AT = Context.getAsArrayType(DeclT);
519
520  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
521    // C99 6.7.8p14. We have an array of character type with unknown size
522    // being initialized to a string literal.
523    llvm::APSInt ConstVal(32);
524    ConstVal = strLiteral->getByteLength() + 1;
525    // Return a new array type (C99 6.7.8p22).
526    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
527                                         ArrayType::Normal, 0);
528  } else {
529    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
530    // C99 6.7.8p14. We have an array of character type with known size.
531    // FIXME: Avoid truncation for 64-bit length strings.
532    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
533      Diag(strLiteral->getSourceRange().getBegin(),
534           diag::warn_initializer_string_for_char_array_too_long,
535           strLiteral->getSourceRange());
536  }
537  // Set type from "char *" to "constant array of char".
538  strLiteral->setType(DeclT);
539  // For now, we always return false (meaning success).
540  return false;
541}
542
543StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
544  const ArrayType *AT = Context.getAsArrayType(DeclType);
545  if (AT && AT->getElementType()->isCharType()) {
546    return dyn_cast<StringLiteral>(Init);
547  }
548  return 0;
549}
550
551bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
552  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
553  // of unknown size ("[]") or an object type that is not a variable array type.
554  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
555    return Diag(VAT->getSizeExpr()->getLocStart(),
556                diag::err_variable_object_no_init,
557                VAT->getSizeExpr()->getSourceRange());
558
559  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
560  if (!InitList) {
561    // FIXME: Handle wide strings
562    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
563      return CheckStringLiteralInit(strLiteral, DeclType);
564
565    // C99 6.7.8p16.
566    if (DeclType->isArrayType())
567      return Diag(Init->getLocStart(),
568                  diag::err_array_init_list_required,
569                  Init->getSourceRange());
570
571    return CheckSingleInitializer(Init, DeclType);
572  }
573
574  InitListChecker CheckInitList(this, InitList, DeclType);
575  return CheckInitList.HadError();
576}
577
578Sema::DeclTy *
579Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
580  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
581  IdentifierInfo *II = D.getIdentifier();
582
583  // All of these full declarators require an identifier.  If it doesn't have
584  // one, the ParsedFreeStandingDeclSpec action should be used.
585  if (II == 0) {
586    Diag(D.getDeclSpec().getSourceRange().getBegin(),
587         diag::err_declarator_need_ident,
588         D.getDeclSpec().getSourceRange(), D.getSourceRange());
589    return 0;
590  }
591
592  // The scope passed in may not be a decl scope.  Zip up the scope tree until
593  // we find one that is.
594  while ((S->getFlags() & Scope::DeclScope) == 0)
595    S = S->getParent();
596
597  // See if this is a redefinition of a variable in the same scope.
598  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
599  ScopedDecl *New;
600  bool InvalidDecl = false;
601
602  // In C++, the previous declaration we find might be a tag type
603  // (class or enum). In this case, the new declaration will hide the
604  // tag type.
605  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
606    PrevDecl = 0;
607
608  QualType R = GetTypeForDeclarator(D, S);
609  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
610
611  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
612    // Check that there are no default arguments (C++ only).
613    if (getLangOptions().CPlusPlus)
614      CheckExtraCXXDefaultArguments(D);
615
616    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
617    if (!NewTD) return 0;
618
619    // Handle attributes prior to checking for duplicates in MergeVarDecl
620    ProcessDeclAttributes(NewTD, D);
621    // Merge the decl with the existing one if appropriate. If the decl is
622    // in an outer scope, it isn't the same thing.
623    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
624      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
625      if (NewTD == 0) return 0;
626    }
627    New = NewTD;
628    if (S->getFnParent() == 0) {
629      // C99 6.7.7p2: If a typedef name specifies a variably modified type
630      // then it shall have block scope.
631      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
632        // FIXME: Diagnostic needs to be fixed.
633        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
634        InvalidDecl = true;
635      }
636    }
637  } else if (R.getTypePtr()->isFunctionType()) {
638    FunctionDecl::StorageClass SC = FunctionDecl::None;
639    switch (D.getDeclSpec().getStorageClassSpec()) {
640      default: assert(0 && "Unknown storage class!");
641      case DeclSpec::SCS_auto:
642      case DeclSpec::SCS_register:
643        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
644             R.getAsString());
645        InvalidDecl = true;
646        break;
647      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
648      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
649      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
650      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
651    }
652
653    bool isInline = D.getDeclSpec().isInlineSpecified();
654    FunctionDecl *NewFD;
655    if (D.getContext() == Declarator::MemberContext) {
656      // This is a C++ method declaration.
657      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
658                                    D.getIdentifierLoc(), II, R,
659                                    (SC == FunctionDecl::Static), isInline,
660                                    LastDeclarator);
661    } else {
662      NewFD = FunctionDecl::Create(Context, CurContext,
663                                   D.getIdentifierLoc(),
664                                   II, R, SC, isInline, LastDeclarator,
665                                   // FIXME: Move to DeclGroup...
666                                   D.getDeclSpec().getSourceRange().getBegin());
667    }
668    // Handle attributes.
669    ProcessDeclAttributes(NewFD, D);
670
671    // Handle GNU asm-label extension (encoded as an attribute).
672    if (Expr *E = (Expr*) D.getAsmLabel()) {
673      // The parser guarantees this is a string.
674      StringLiteral *SE = cast<StringLiteral>(E);
675      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
676                                                  SE->getByteLength())));
677    }
678
679    // Copy the parameter declarations from the declarator D to
680    // the function declaration NewFD, if they are available.
681    if (D.getNumTypeObjects() > 0) {
682      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
683
684      // Create Decl objects for each parameter, adding them to the
685      // FunctionDecl.
686      llvm::SmallVector<ParmVarDecl*, 16> Params;
687
688      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
689      // function that takes no arguments, not a function that takes a
690      // single void argument.
691      // We let through "const void" here because Sema::GetTypeForDeclarator
692      // already checks for that case.
693      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
694          FTI.ArgInfo[0].Param &&
695          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
696        // empty arg list, don't push any params.
697        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
698
699        // In C++, the empty parameter-type-list must be spelled "void"; a
700        // typedef of void is not permitted.
701        if (getLangOptions().CPlusPlus &&
702            Param->getType().getUnqualifiedType() != Context.VoidTy) {
703          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
704        }
705
706      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
707        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
708          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
709      }
710
711      NewFD->setParams(&Params[0], Params.size());
712    }
713
714    // Merge the decl with the existing one if appropriate. Since C functions
715    // are in a flat namespace, make sure we consider decls in outer scopes.
716    if (PrevDecl &&
717        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
718      bool Redeclaration = false;
719      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
720      if (NewFD == 0) return 0;
721      if (Redeclaration) {
722        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
723      }
724    }
725    New = NewFD;
726
727    // In C++, check default arguments now that we have merged decls.
728    if (getLangOptions().CPlusPlus)
729      CheckCXXDefaultArguments(NewFD);
730  } else {
731    // Check that there are no default arguments (C++ only).
732    if (getLangOptions().CPlusPlus)
733      CheckExtraCXXDefaultArguments(D);
734
735    if (R.getTypePtr()->isObjCInterfaceType()) {
736      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
737           D.getIdentifier()->getName());
738      InvalidDecl = true;
739    }
740
741    VarDecl *NewVD;
742    VarDecl::StorageClass SC;
743    switch (D.getDeclSpec().getStorageClassSpec()) {
744    default: assert(0 && "Unknown storage class!");
745    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
746    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
747    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
748    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
749    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
750    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
751    }
752    if (D.getContext() == Declarator::MemberContext) {
753      assert(SC == VarDecl::Static && "Invalid storage class for member!");
754      // This is a static data member for a C++ class.
755      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
756                                      D.getIdentifierLoc(), II,
757                                      R, LastDeclarator);
758    } else {
759      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
760      if (S->getFnParent() == 0) {
761        // C99 6.9p2: The storage-class specifiers auto and register shall not
762        // appear in the declaration specifiers in an external declaration.
763        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
764          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
765               R.getAsString());
766          InvalidDecl = true;
767        }
768      }
769        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
770                                II, R, SC, LastDeclarator,
771                                // FIXME: Move to DeclGroup...
772                                D.getDeclSpec().getSourceRange().getBegin());
773        NewVD->setThreadSpecified(ThreadSpecified);
774    }
775    // Handle attributes prior to checking for duplicates in MergeVarDecl
776    ProcessDeclAttributes(NewVD, D);
777
778    // Handle GNU asm-label extension (encoded as an attribute).
779    if (Expr *E = (Expr*) D.getAsmLabel()) {
780      // The parser guarantees this is a string.
781      StringLiteral *SE = cast<StringLiteral>(E);
782      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
783                                                  SE->getByteLength())));
784    }
785
786    // Emit an error if an address space was applied to decl with local storage.
787    // This includes arrays of objects with address space qualifiers, but not
788    // automatic variables that point to other address spaces.
789    // ISO/IEC TR 18037 S5.1.2
790    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
791      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
792      InvalidDecl = true;
793    }
794    // Merge the decl with the existing one if appropriate. If the decl is
795    // in an outer scope, it isn't the same thing.
796    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
797      NewVD = MergeVarDecl(NewVD, PrevDecl);
798      if (NewVD == 0) return 0;
799    }
800    New = NewVD;
801  }
802
803  // If this has an identifier, add it to the scope stack.
804  if (II)
805    PushOnScopeChains(New, S);
806  // If any semantic error occurred, mark the decl as invalid.
807  if (D.getInvalidType() || InvalidDecl)
808    New->setInvalidDecl();
809
810  return New;
811}
812
813bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
814  switch (Init->getStmtClass()) {
815  default:
816    Diag(Init->getExprLoc(),
817         diag::err_init_element_not_constant, Init->getSourceRange());
818    return true;
819  case Expr::ParenExprClass: {
820    const ParenExpr* PE = cast<ParenExpr>(Init);
821    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
822  }
823  case Expr::CompoundLiteralExprClass:
824    return cast<CompoundLiteralExpr>(Init)->isFileScope();
825  case Expr::DeclRefExprClass: {
826    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
827    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
828      if (VD->hasGlobalStorage())
829        return false;
830      Diag(Init->getExprLoc(),
831           diag::err_init_element_not_constant, Init->getSourceRange());
832      return true;
833    }
834    if (isa<FunctionDecl>(D))
835      return false;
836    Diag(Init->getExprLoc(),
837         diag::err_init_element_not_constant, Init->getSourceRange());
838    return true;
839  }
840  case Expr::MemberExprClass: {
841    const MemberExpr *M = cast<MemberExpr>(Init);
842    if (M->isArrow())
843      return CheckAddressConstantExpression(M->getBase());
844    return CheckAddressConstantExpressionLValue(M->getBase());
845  }
846  case Expr::ArraySubscriptExprClass: {
847    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
848    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
849    return CheckAddressConstantExpression(ASE->getBase()) ||
850           CheckArithmeticConstantExpression(ASE->getIdx());
851  }
852  case Expr::StringLiteralClass:
853  case Expr::PredefinedExprClass:
854    return false;
855  case Expr::UnaryOperatorClass: {
856    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
857
858    // C99 6.6p9
859    if (Exp->getOpcode() == UnaryOperator::Deref)
860      return CheckAddressConstantExpression(Exp->getSubExpr());
861
862    Diag(Init->getExprLoc(),
863         diag::err_init_element_not_constant, Init->getSourceRange());
864    return true;
865  }
866  }
867}
868
869bool Sema::CheckAddressConstantExpression(const Expr* Init) {
870  switch (Init->getStmtClass()) {
871  default:
872    Diag(Init->getExprLoc(),
873         diag::err_init_element_not_constant, Init->getSourceRange());
874    return true;
875  case Expr::ParenExprClass: {
876    const ParenExpr* PE = cast<ParenExpr>(Init);
877    return CheckAddressConstantExpression(PE->getSubExpr());
878  }
879  case Expr::StringLiteralClass:
880  case Expr::ObjCStringLiteralClass:
881    return false;
882  case Expr::CallExprClass: {
883    const CallExpr *CE = cast<CallExpr>(Init);
884    if (CE->isBuiltinConstantExpr(Context))
885      return false;
886    Diag(Init->getExprLoc(),
887         diag::err_init_element_not_constant, Init->getSourceRange());
888    return true;
889  }
890  case Expr::UnaryOperatorClass: {
891    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
892
893    // C99 6.6p9
894    if (Exp->getOpcode() == UnaryOperator::AddrOf)
895      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
896
897    if (Exp->getOpcode() == UnaryOperator::Extension)
898      return CheckAddressConstantExpression(Exp->getSubExpr());
899
900    Diag(Init->getExprLoc(),
901         diag::err_init_element_not_constant, Init->getSourceRange());
902    return true;
903  }
904  case Expr::BinaryOperatorClass: {
905    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
906    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
907
908    Expr *PExp = Exp->getLHS();
909    Expr *IExp = Exp->getRHS();
910    if (IExp->getType()->isPointerType())
911      std::swap(PExp, IExp);
912
913    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
914    return CheckAddressConstantExpression(PExp) ||
915           CheckArithmeticConstantExpression(IExp);
916  }
917  case Expr::ImplicitCastExprClass:
918  case Expr::ExplicitCastExprClass: {
919    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
920    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
921      // Check for implicit promotion
922      if (SubExpr->getType()->isFunctionType() ||
923          SubExpr->getType()->isArrayType())
924        return CheckAddressConstantExpressionLValue(SubExpr);
925    }
926
927    // Check for pointer->pointer cast
928    if (SubExpr->getType()->isPointerType())
929      return CheckAddressConstantExpression(SubExpr);
930
931    if (SubExpr->getType()->isIntegralType()) {
932      // Check for the special-case of a pointer->int->pointer cast;
933      // this isn't standard, but some code requires it. See
934      // PR2720 for an example.
935      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
936        if (SubCast->getSubExpr()->getType()->isPointerType()) {
937          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
938          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
939          if (IntWidth >= PointerWidth) {
940            return CheckAddressConstantExpression(SubCast->getSubExpr());
941          }
942        }
943      }
944    }
945    if (SubExpr->getType()->isArithmeticType()) {
946      return CheckArithmeticConstantExpression(SubExpr);
947    }
948
949    Diag(Init->getExprLoc(),
950         diag::err_init_element_not_constant, Init->getSourceRange());
951    return true;
952  }
953  case Expr::ConditionalOperatorClass: {
954    // FIXME: Should we pedwarn here?
955    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
956    if (!Exp->getCond()->getType()->isArithmeticType()) {
957      Diag(Init->getExprLoc(),
958           diag::err_init_element_not_constant, Init->getSourceRange());
959      return true;
960    }
961    if (CheckArithmeticConstantExpression(Exp->getCond()))
962      return true;
963    if (Exp->getLHS() &&
964        CheckAddressConstantExpression(Exp->getLHS()))
965      return true;
966    return CheckAddressConstantExpression(Exp->getRHS());
967  }
968  case Expr::AddrLabelExprClass:
969    return false;
970  }
971}
972
973static const Expr* FindExpressionBaseAddress(const Expr* E);
974
975static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
976  switch (E->getStmtClass()) {
977  default:
978    return E;
979  case Expr::ParenExprClass: {
980    const ParenExpr* PE = cast<ParenExpr>(E);
981    return FindExpressionBaseAddressLValue(PE->getSubExpr());
982  }
983  case Expr::MemberExprClass: {
984    const MemberExpr *M = cast<MemberExpr>(E);
985    if (M->isArrow())
986      return FindExpressionBaseAddress(M->getBase());
987    return FindExpressionBaseAddressLValue(M->getBase());
988  }
989  case Expr::ArraySubscriptExprClass: {
990    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
991    return FindExpressionBaseAddress(ASE->getBase());
992  }
993  case Expr::UnaryOperatorClass: {
994    const UnaryOperator *Exp = cast<UnaryOperator>(E);
995
996    if (Exp->getOpcode() == UnaryOperator::Deref)
997      return FindExpressionBaseAddress(Exp->getSubExpr());
998
999    return E;
1000  }
1001  }
1002}
1003
1004static const Expr* FindExpressionBaseAddress(const Expr* E) {
1005  switch (E->getStmtClass()) {
1006  default:
1007    return E;
1008  case Expr::ParenExprClass: {
1009    const ParenExpr* PE = cast<ParenExpr>(E);
1010    return FindExpressionBaseAddress(PE->getSubExpr());
1011  }
1012  case Expr::UnaryOperatorClass: {
1013    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1014
1015    // C99 6.6p9
1016    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1017      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1018
1019    if (Exp->getOpcode() == UnaryOperator::Extension)
1020      return FindExpressionBaseAddress(Exp->getSubExpr());
1021
1022    return E;
1023  }
1024  case Expr::BinaryOperatorClass: {
1025    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1026
1027    Expr *PExp = Exp->getLHS();
1028    Expr *IExp = Exp->getRHS();
1029    if (IExp->getType()->isPointerType())
1030      std::swap(PExp, IExp);
1031
1032    return FindExpressionBaseAddress(PExp);
1033  }
1034  case Expr::ImplicitCastExprClass: {
1035    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1036
1037    // Check for implicit promotion
1038    if (SubExpr->getType()->isFunctionType() ||
1039        SubExpr->getType()->isArrayType())
1040      return FindExpressionBaseAddressLValue(SubExpr);
1041
1042    // Check for pointer->pointer cast
1043    if (SubExpr->getType()->isPointerType())
1044      return FindExpressionBaseAddress(SubExpr);
1045
1046    // We assume that we have an arithmetic expression here;
1047    // if we don't, we'll figure it out later
1048    return 0;
1049  }
1050  case Expr::ExplicitCastExprClass: {
1051    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1052
1053    // Check for pointer->pointer cast
1054    if (SubExpr->getType()->isPointerType())
1055      return FindExpressionBaseAddress(SubExpr);
1056
1057    // We assume that we have an arithmetic expression here;
1058    // if we don't, we'll figure it out later
1059    return 0;
1060  }
1061  }
1062}
1063
1064bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1065  switch (Init->getStmtClass()) {
1066  default:
1067    Diag(Init->getExprLoc(),
1068         diag::err_init_element_not_constant, Init->getSourceRange());
1069    return true;
1070  case Expr::ParenExprClass: {
1071    const ParenExpr* PE = cast<ParenExpr>(Init);
1072    return CheckArithmeticConstantExpression(PE->getSubExpr());
1073  }
1074  case Expr::FloatingLiteralClass:
1075  case Expr::IntegerLiteralClass:
1076  case Expr::CharacterLiteralClass:
1077  case Expr::ImaginaryLiteralClass:
1078  case Expr::TypesCompatibleExprClass:
1079  case Expr::CXXBoolLiteralExprClass:
1080    return false;
1081  case Expr::CallExprClass: {
1082    const CallExpr *CE = cast<CallExpr>(Init);
1083    if (CE->isBuiltinConstantExpr(Context))
1084      return false;
1085    Diag(Init->getExprLoc(),
1086         diag::err_init_element_not_constant, Init->getSourceRange());
1087    return true;
1088  }
1089  case Expr::DeclRefExprClass: {
1090    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1091    if (isa<EnumConstantDecl>(D))
1092      return false;
1093    Diag(Init->getExprLoc(),
1094         diag::err_init_element_not_constant, Init->getSourceRange());
1095    return true;
1096  }
1097  case Expr::CompoundLiteralExprClass:
1098    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1099    // but vectors are allowed to be magic.
1100    if (Init->getType()->isVectorType())
1101      return false;
1102    Diag(Init->getExprLoc(),
1103         diag::err_init_element_not_constant, Init->getSourceRange());
1104    return true;
1105  case Expr::UnaryOperatorClass: {
1106    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1107
1108    switch (Exp->getOpcode()) {
1109    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1110    // See C99 6.6p3.
1111    default:
1112      Diag(Init->getExprLoc(),
1113           diag::err_init_element_not_constant, Init->getSourceRange());
1114      return true;
1115    case UnaryOperator::SizeOf:
1116    case UnaryOperator::AlignOf:
1117    case UnaryOperator::OffsetOf:
1118      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1119      // See C99 6.5.3.4p2 and 6.6p3.
1120      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1121        return false;
1122      Diag(Init->getExprLoc(),
1123           diag::err_init_element_not_constant, Init->getSourceRange());
1124      return true;
1125    case UnaryOperator::Extension:
1126    case UnaryOperator::LNot:
1127    case UnaryOperator::Plus:
1128    case UnaryOperator::Minus:
1129    case UnaryOperator::Not:
1130      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1131    }
1132  }
1133  case Expr::SizeOfAlignOfTypeExprClass: {
1134    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1135    // Special check for void types, which are allowed as an extension
1136    if (Exp->getArgumentType()->isVoidType())
1137      return false;
1138    // alignof always evaluates to a constant.
1139    // FIXME: is sizeof(int[3.0]) a constant expression?
1140    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1141      Diag(Init->getExprLoc(),
1142           diag::err_init_element_not_constant, Init->getSourceRange());
1143      return true;
1144    }
1145    return false;
1146  }
1147  case Expr::BinaryOperatorClass: {
1148    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1149
1150    if (Exp->getLHS()->getType()->isArithmeticType() &&
1151        Exp->getRHS()->getType()->isArithmeticType()) {
1152      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1153             CheckArithmeticConstantExpression(Exp->getRHS());
1154    }
1155
1156    if (Exp->getLHS()->getType()->isPointerType() &&
1157        Exp->getRHS()->getType()->isPointerType()) {
1158      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1159      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1160
1161      // Only allow a null (constant integer) base; we could
1162      // allow some additional cases if necessary, but this
1163      // is sufficient to cover offsetof-like constructs.
1164      if (!LHSBase && !RHSBase) {
1165        return CheckAddressConstantExpression(Exp->getLHS()) ||
1166               CheckAddressConstantExpression(Exp->getRHS());
1167      }
1168    }
1169
1170    Diag(Init->getExprLoc(),
1171         diag::err_init_element_not_constant, Init->getSourceRange());
1172    return true;
1173  }
1174  case Expr::ImplicitCastExprClass:
1175  case Expr::ExplicitCastExprClass: {
1176    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1177    if (SubExpr->getType()->isArithmeticType())
1178      return CheckArithmeticConstantExpression(SubExpr);
1179
1180    if (SubExpr->getType()->isPointerType()) {
1181      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1182      // If the pointer has a null base, this is an offsetof-like construct
1183      if (!Base)
1184        return CheckAddressConstantExpression(SubExpr);
1185    }
1186
1187    Diag(Init->getExprLoc(),
1188         diag::err_init_element_not_constant, Init->getSourceRange());
1189    return true;
1190  }
1191  case Expr::ConditionalOperatorClass: {
1192    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1193    if (CheckArithmeticConstantExpression(Exp->getCond()))
1194      return true;
1195    if (Exp->getLHS() &&
1196        CheckArithmeticConstantExpression(Exp->getLHS()))
1197      return true;
1198    return CheckArithmeticConstantExpression(Exp->getRHS());
1199  }
1200  }
1201}
1202
1203bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1204  Init = Init->IgnoreParens();
1205
1206  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1207  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1208    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1209
1210  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1211    return CheckForConstantInitializer(e->getInitializer(), DclT);
1212
1213  if (Init->getType()->isReferenceType()) {
1214    // FIXME: Work out how the heck reference types work
1215    return false;
1216#if 0
1217    // A reference is constant if the address of the expression
1218    // is constant
1219    // We look through initlists here to simplify
1220    // CheckAddressConstantExpressionLValue.
1221    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1222      assert(Exp->getNumInits() > 0 &&
1223             "Refernce initializer cannot be empty");
1224      Init = Exp->getInit(0);
1225    }
1226    return CheckAddressConstantExpressionLValue(Init);
1227#endif
1228  }
1229
1230  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1231    unsigned numInits = Exp->getNumInits();
1232    for (unsigned i = 0; i < numInits; i++) {
1233      // FIXME: Need to get the type of the declaration for C++,
1234      // because it could be a reference?
1235      if (CheckForConstantInitializer(Exp->getInit(i),
1236                                      Exp->getInit(i)->getType()))
1237        return true;
1238    }
1239    return false;
1240  }
1241
1242  if (Init->isNullPointerConstant(Context))
1243    return false;
1244  if (Init->getType()->isArithmeticType()) {
1245    QualType InitTy = Context.getCanonicalType(Init->getType())
1246                             .getUnqualifiedType();
1247    if (InitTy == Context.BoolTy) {
1248      // Special handling for pointers implicitly cast to bool;
1249      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1250      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1251        Expr* SubE = ICE->getSubExpr();
1252        if (SubE->getType()->isPointerType() ||
1253            SubE->getType()->isArrayType() ||
1254            SubE->getType()->isFunctionType()) {
1255          return CheckAddressConstantExpression(Init);
1256        }
1257      }
1258    } else if (InitTy->isIntegralType()) {
1259      Expr* SubE = 0;
1260      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1261        SubE = CE->getSubExpr();
1262      // Special check for pointer cast to int; we allow as an extension
1263      // an address constant cast to an integer if the integer
1264      // is of an appropriate width (this sort of code is apparently used
1265      // in some places).
1266      // FIXME: Add pedwarn?
1267      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1268      if (SubE && (SubE->getType()->isPointerType() ||
1269                   SubE->getType()->isArrayType() ||
1270                   SubE->getType()->isFunctionType())) {
1271        unsigned IntWidth = Context.getTypeSize(Init->getType());
1272        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1273        if (IntWidth >= PointerWidth)
1274          return CheckAddressConstantExpression(Init);
1275      }
1276    }
1277
1278    return CheckArithmeticConstantExpression(Init);
1279  }
1280
1281  if (Init->getType()->isPointerType())
1282    return CheckAddressConstantExpression(Init);
1283
1284  // An array type at the top level that isn't an init-list must
1285  // be a string literal
1286  if (Init->getType()->isArrayType())
1287    return false;
1288
1289  if (Init->getType()->isFunctionType())
1290    return false;
1291
1292  // Allow block exprs at top level.
1293  if (Init->getType()->isBlockPointerType())
1294    return false;
1295
1296  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1297       Init->getSourceRange());
1298  return true;
1299}
1300
1301void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1302  Decl *RealDecl = static_cast<Decl *>(dcl);
1303  Expr *Init = static_cast<Expr *>(init);
1304  assert(Init && "missing initializer");
1305
1306  // If there is no declaration, there was an error parsing it.  Just ignore
1307  // the initializer.
1308  if (RealDecl == 0) {
1309    delete Init;
1310    return;
1311  }
1312
1313  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1314  if (!VDecl) {
1315    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1316         diag::err_illegal_initializer);
1317    RealDecl->setInvalidDecl();
1318    return;
1319  }
1320  // Get the decls type and save a reference for later, since
1321  // CheckInitializerTypes may change it.
1322  QualType DclT = VDecl->getType(), SavT = DclT;
1323  if (VDecl->isBlockVarDecl()) {
1324    VarDecl::StorageClass SC = VDecl->getStorageClass();
1325    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1326      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1327      VDecl->setInvalidDecl();
1328    } else if (!VDecl->isInvalidDecl()) {
1329      if (CheckInitializerTypes(Init, DclT))
1330        VDecl->setInvalidDecl();
1331
1332      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1333      if (!getLangOptions().CPlusPlus) {
1334        if (SC == VarDecl::Static) // C99 6.7.8p4.
1335          CheckForConstantInitializer(Init, DclT);
1336      }
1337    }
1338  } else if (VDecl->isFileVarDecl()) {
1339    if (VDecl->getStorageClass() == VarDecl::Extern)
1340      Diag(VDecl->getLocation(), diag::warn_extern_init);
1341    if (!VDecl->isInvalidDecl())
1342      if (CheckInitializerTypes(Init, DclT))
1343        VDecl->setInvalidDecl();
1344
1345    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1346    if (!getLangOptions().CPlusPlus) {
1347      // C99 6.7.8p4. All file scoped initializers need to be constant.
1348      CheckForConstantInitializer(Init, DclT);
1349    }
1350  }
1351  // If the type changed, it means we had an incomplete type that was
1352  // completed by the initializer. For example:
1353  //   int ary[] = { 1, 3, 5 };
1354  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1355  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1356    VDecl->setType(DclT);
1357    Init->setType(DclT);
1358  }
1359
1360  // Attach the initializer to the decl.
1361  VDecl->setInit(Init);
1362  return;
1363}
1364
1365/// The declarators are chained together backwards, reverse the list.
1366Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1367  // Often we have single declarators, handle them quickly.
1368  Decl *GroupDecl = static_cast<Decl*>(group);
1369  if (GroupDecl == 0)
1370    return 0;
1371
1372  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1373  ScopedDecl *NewGroup = 0;
1374  if (Group->getNextDeclarator() == 0)
1375    NewGroup = Group;
1376  else { // reverse the list.
1377    while (Group) {
1378      ScopedDecl *Next = Group->getNextDeclarator();
1379      Group->setNextDeclarator(NewGroup);
1380      NewGroup = Group;
1381      Group = Next;
1382    }
1383  }
1384  // Perform semantic analysis that depends on having fully processed both
1385  // the declarator and initializer.
1386  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1387    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1388    if (!IDecl)
1389      continue;
1390    QualType T = IDecl->getType();
1391
1392    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1393    // static storage duration, it shall not have a variable length array.
1394    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1395        IDecl->getStorageClass() == VarDecl::Static) {
1396      if (T->isVariableArrayType()) {
1397        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1398        IDecl->setInvalidDecl();
1399      }
1400    }
1401    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1402    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1403    if (IDecl->isBlockVarDecl() &&
1404        IDecl->getStorageClass() != VarDecl::Extern) {
1405      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1406        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1407             T.getAsString());
1408        IDecl->setInvalidDecl();
1409      }
1410    }
1411    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1412    // object that has file scope without an initializer, and without a
1413    // storage-class specifier or with the storage-class specifier "static",
1414    // constitutes a tentative definition. Note: A tentative definition with
1415    // external linkage is valid (C99 6.2.2p5).
1416    if (isTentativeDefinition(IDecl)) {
1417      if (T->isIncompleteArrayType()) {
1418        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1419        // array to be completed. Don't issue a diagnostic.
1420      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1421        // C99 6.9.2p3: If the declaration of an identifier for an object is
1422        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1423        // declared type shall not be an incomplete type.
1424        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1425             T.getAsString());
1426        IDecl->setInvalidDecl();
1427      }
1428    }
1429    if (IDecl->isFileVarDecl())
1430      CheckForFileScopedRedefinitions(S, IDecl);
1431  }
1432  return NewGroup;
1433}
1434
1435/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1436/// to introduce parameters into function prototype scope.
1437Sema::DeclTy *
1438Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1439  const DeclSpec &DS = D.getDeclSpec();
1440
1441  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1442  VarDecl::StorageClass StorageClass = VarDecl::None;
1443  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1444    StorageClass = VarDecl::Register;
1445  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1446    Diag(DS.getStorageClassSpecLoc(),
1447         diag::err_invalid_storage_class_in_func_decl);
1448    D.getMutableDeclSpec().ClearStorageClassSpecs();
1449  }
1450  if (DS.isThreadSpecified()) {
1451    Diag(DS.getThreadSpecLoc(),
1452         diag::err_invalid_storage_class_in_func_decl);
1453    D.getMutableDeclSpec().ClearStorageClassSpecs();
1454  }
1455
1456  // Check that there are no default arguments inside the type of this
1457  // parameter (C++ only).
1458  if (getLangOptions().CPlusPlus)
1459    CheckExtraCXXDefaultArguments(D);
1460
1461  // In this context, we *do not* check D.getInvalidType(). If the declarator
1462  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1463  // though it will not reflect the user specified type.
1464  QualType parmDeclType = GetTypeForDeclarator(D, S);
1465
1466  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1467
1468  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1469  // Can this happen for params?  We already checked that they don't conflict
1470  // among each other.  Here they can only shadow globals, which is ok.
1471  IdentifierInfo *II = D.getIdentifier();
1472  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1473    if (S->isDeclScope(PrevDecl)) {
1474      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1475           dyn_cast<NamedDecl>(PrevDecl)->getName());
1476
1477      // Recover by removing the name
1478      II = 0;
1479      D.SetIdentifier(0, D.getIdentifierLoc());
1480    }
1481  }
1482
1483  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1484  // Doing the promotion here has a win and a loss. The win is the type for
1485  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1486  // code generator). The loss is the orginal type isn't preserved. For example:
1487  //
1488  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1489  //    int blockvardecl[5];
1490  //    sizeof(parmvardecl);  // size == 4
1491  //    sizeof(blockvardecl); // size == 20
1492  // }
1493  //
1494  // For expressions, all implicit conversions are captured using the
1495  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1496  //
1497  // FIXME: If a source translation tool needs to see the original type, then
1498  // we need to consider storing both types (in ParmVarDecl)...
1499  //
1500  if (parmDeclType->isArrayType()) {
1501    // int x[restrict 4] ->  int *restrict
1502    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1503  } else if (parmDeclType->isFunctionType())
1504    parmDeclType = Context.getPointerType(parmDeclType);
1505
1506  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1507                                         D.getIdentifierLoc(), II,
1508                                         parmDeclType, StorageClass,
1509                                         0, 0);
1510
1511  if (D.getInvalidType())
1512    New->setInvalidDecl();
1513
1514  if (II)
1515    PushOnScopeChains(New, S);
1516
1517  ProcessDeclAttributes(New, D);
1518  return New;
1519
1520}
1521
1522Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1523  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1524  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1525         "Not a function declarator!");
1526  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1527
1528  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1529  // for a K&R function.
1530  if (!FTI.hasPrototype) {
1531    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1532      if (FTI.ArgInfo[i].Param == 0) {
1533        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1534             FTI.ArgInfo[i].Ident->getName());
1535        // Implicitly declare the argument as type 'int' for lack of a better
1536        // type.
1537        DeclSpec DS;
1538        const char* PrevSpec; // unused
1539        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1540                           PrevSpec);
1541        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1542        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1543        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1544      }
1545    }
1546  } else {
1547    // FIXME: Diagnose arguments without names in C.
1548  }
1549
1550  Scope *GlobalScope = FnBodyScope->getParent();
1551
1552  // See if this is a redefinition.
1553  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1554                             GlobalScope);
1555  if (PrevDcl && isDeclInScope(PrevDcl, CurContext)) {
1556    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1557      const FunctionDecl *Definition;
1558      if (FD->getBody(Definition)) {
1559        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1560             D.getIdentifier()->getName());
1561        Diag(Definition->getLocation(), diag::err_previous_definition);
1562      }
1563    }
1564  }
1565
1566  return ActOnStartOfFunctionDef(FnBodyScope,
1567                                 ActOnDeclarator(GlobalScope, D, 0));
1568}
1569
1570Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1571  Decl *decl = static_cast<Decl*>(D);
1572  FunctionDecl *FD = cast<FunctionDecl>(decl);
1573  PushDeclContext(FD);
1574
1575  // Check the validity of our function parameters
1576  CheckParmsForFunctionDef(FD);
1577
1578  // Introduce our parameters into the function scope
1579  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1580    ParmVarDecl *Param = FD->getParamDecl(p);
1581    // If this has an identifier, add it to the scope stack.
1582    if (Param->getIdentifier())
1583      PushOnScopeChains(Param, FnBodyScope);
1584  }
1585
1586  return FD;
1587}
1588
1589Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1590  Decl *dcl = static_cast<Decl *>(D);
1591  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1592    FD->setBody((Stmt*)Body);
1593    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1594  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1595    MD->setBody((Stmt*)Body);
1596  } else
1597    return 0;
1598  PopDeclContext();
1599  // Verify and clean out per-function state.
1600
1601  // Check goto/label use.
1602  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1603       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1604    // Verify that we have no forward references left.  If so, there was a goto
1605    // or address of a label taken, but no definition of it.  Label fwd
1606    // definitions are indicated with a null substmt.
1607    if (I->second->getSubStmt() == 0) {
1608      LabelStmt *L = I->second;
1609      // Emit error.
1610      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1611
1612      // At this point, we have gotos that use the bogus label.  Stitch it into
1613      // the function body so that they aren't leaked and that the AST is well
1614      // formed.
1615      if (Body) {
1616        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1617        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1618      } else {
1619        // The whole function wasn't parsed correctly, just delete this.
1620        delete L;
1621      }
1622    }
1623  }
1624  LabelMap.clear();
1625
1626  return D;
1627}
1628
1629/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1630/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1631ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1632                                           IdentifierInfo &II, Scope *S) {
1633  // Extension in C99.  Legal in C90, but warn about it.
1634  if (getLangOptions().C99)
1635    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1636  else
1637    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1638
1639  // FIXME: handle stuff like:
1640  // void foo() { extern float X(); }
1641  // void bar() { X(); }  <-- implicit decl for X in another scope.
1642
1643  // Set a Declarator for the implicit definition: int foo();
1644  const char *Dummy;
1645  DeclSpec DS;
1646  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1647  Error = Error; // Silence warning.
1648  assert(!Error && "Error setting up implicit decl!");
1649  Declarator D(DS, Declarator::BlockContext);
1650  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1651  D.SetIdentifier(&II, Loc);
1652
1653  // Insert this function into translation-unit scope.
1654
1655  DeclContext *PrevDC = CurContext;
1656  CurContext = Context.getTranslationUnitDecl();
1657
1658  FunctionDecl *FD =
1659    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1660  FD->setImplicit();
1661
1662  CurContext = PrevDC;
1663
1664  return FD;
1665}
1666
1667
1668TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1669                                    ScopedDecl *LastDeclarator) {
1670  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1671  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1672
1673  // Scope manipulation handled by caller.
1674  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1675                                           D.getIdentifierLoc(),
1676                                           D.getIdentifier(),
1677                                           T, LastDeclarator);
1678  if (D.getInvalidType())
1679    NewTD->setInvalidDecl();
1680  return NewTD;
1681}
1682
1683/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1684/// former case, Name will be non-null.  In the later case, Name will be null.
1685/// TagType indicates what kind of tag this is. TK indicates whether this is a
1686/// reference/declaration/definition of a tag.
1687Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1688                             SourceLocation KWLoc, IdentifierInfo *Name,
1689                             SourceLocation NameLoc, AttributeList *Attr) {
1690  // If this is a use of an existing tag, it must have a name.
1691  assert((Name != 0 || TK == TK_Definition) &&
1692         "Nameless record must be a definition!");
1693
1694  TagDecl::TagKind Kind;
1695  switch (TagType) {
1696  default: assert(0 && "Unknown tag type!");
1697  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1698  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1699  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1700  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1701  }
1702
1703  // Two code paths: a new one for structs/unions/classes where we create
1704  //   separate decls for forward declarations, and an old (eventually to
1705  //   be removed) code path for enums.
1706  if (Kind != TagDecl::TK_enum)
1707    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1708
1709  // If this is a named struct, check to see if there was a previous forward
1710  // declaration or definition.
1711  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1712  ScopedDecl *PrevDecl =
1713    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1714
1715  if (PrevDecl) {
1716    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1717            "unexpected Decl type");
1718    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1719      // If this is a use of a previous tag, or if the tag is already declared
1720      // in the same scope (so that the definition/declaration completes or
1721      // rementions the tag), reuse the decl.
1722      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1723        // Make sure that this wasn't declared as an enum and now used as a
1724        // struct or something similar.
1725        if (PrevTagDecl->getTagKind() != Kind) {
1726          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1727          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1728          // Recover by making this an anonymous redefinition.
1729          Name = 0;
1730          PrevDecl = 0;
1731        } else {
1732          // If this is a use or a forward declaration, we're good.
1733          if (TK != TK_Definition)
1734            return PrevDecl;
1735
1736          // Diagnose attempts to redefine a tag.
1737          if (PrevTagDecl->isDefinition()) {
1738            Diag(NameLoc, diag::err_redefinition, Name->getName());
1739            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1740            // If this is a redefinition, recover by making this struct be
1741            // anonymous, which will make any later references get the previous
1742            // definition.
1743            Name = 0;
1744          } else {
1745            // Okay, this is definition of a previously declared or referenced
1746            // tag. Move the location of the decl to be the definition site.
1747            PrevDecl->setLocation(NameLoc);
1748            return PrevDecl;
1749          }
1750        }
1751      }
1752      // If we get here, this is a definition of a new struct type in a nested
1753      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1754      // type.
1755    } else {
1756      // PrevDecl is a namespace.
1757      if (isDeclInScope(PrevDecl, CurContext, S)) {
1758        // The tag name clashes with a namespace name, issue an error and
1759        // recover by making this tag be anonymous.
1760        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1761        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1762        Name = 0;
1763      }
1764    }
1765  }
1766
1767  // If there is an identifier, use the location of the identifier as the
1768  // location of the decl, otherwise use the location of the struct/union
1769  // keyword.
1770  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1771
1772  // Otherwise, if this is the first time we've seen this tag, create the decl.
1773  TagDecl *New;
1774  if (Kind == TagDecl::TK_enum) {
1775    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1776    // enum X { A, B, C } D;    D should chain to X.
1777    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1778    // If this is an undefined enum, warn.
1779    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1780  } else {
1781    // struct/union/class
1782
1783    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1784    // struct X { int A; } D;    D should chain to X.
1785    if (getLangOptions().CPlusPlus)
1786      // FIXME: Look for a way to use RecordDecl for simple structs.
1787      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1788    else
1789      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1790  }
1791
1792  // If this has an identifier, add it to the scope stack.
1793  if (Name) {
1794    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1795    // we find one that is.
1796    while ((S->getFlags() & Scope::DeclScope) == 0)
1797      S = S->getParent();
1798
1799    // Add it to the decl chain.
1800    PushOnScopeChains(New, S);
1801  }
1802
1803  if (Attr)
1804    ProcessDeclAttributeList(New, Attr);
1805  return New;
1806}
1807
1808/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
1809///  the logic for enums, we create separate decls for forward declarations.
1810///  This is called by ActOnTag, but eventually will replace its logic.
1811Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
1812                             SourceLocation KWLoc, IdentifierInfo *Name,
1813                             SourceLocation NameLoc, AttributeList *Attr) {
1814
1815  // If this is a named struct, check to see if there was a previous forward
1816  // declaration or definition.
1817  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1818  ScopedDecl *PrevDecl =
1819    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1820
1821  if (PrevDecl) {
1822    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1823           "unexpected Decl type");
1824
1825    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1826      // If this is a use of a previous tag, or if the tag is already declared
1827      // in the same scope (so that the definition/declaration completes or
1828      // rementions the tag), reuse the decl.
1829      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1830        // Make sure that this wasn't declared as an enum and now used as a
1831        // struct or something similar.
1832        if (PrevTagDecl->getTagKind() != Kind) {
1833          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1834          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1835          // Recover by making this an anonymous redefinition.
1836          Name = 0;
1837          PrevDecl = 0;
1838        } else {
1839          // If this is a use, return the original decl.
1840
1841          // FIXME: In the future, return a variant or some other clue
1842          //  for the consumer of this Decl to know it doesn't own it.
1843          //  For our current ASTs this shouldn't be a problem, but will
1844          //  need to be changed with DeclGroups.
1845          if (TK == TK_Reference)
1846            return PrevDecl;
1847
1848          // The new decl is a definition?
1849          if (TK == TK_Definition) {
1850            // Diagnose attempts to redefine a tag.
1851            if (RecordDecl* DefRecord =
1852                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
1853              Diag(NameLoc, diag::err_redefinition, Name->getName());
1854              Diag(DefRecord->getLocation(), diag::err_previous_definition);
1855              // If this is a redefinition, recover by making this struct be
1856              // anonymous, which will make any later references get the previous
1857              // definition.
1858              Name = 0;
1859              PrevDecl = 0;
1860            }
1861            // Okay, this is definition of a previously declared or referenced
1862            // tag.  We're going to create a new Decl.
1863          }
1864        }
1865        // If we get here we have (another) forward declaration.  Just create
1866        // a new decl.
1867      }
1868      else {
1869        // If we get here, this is a definition of a new struct type in a nested
1870        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
1871        // new decl/type.  We set PrevDecl to NULL so that the Records
1872        // have distinct types.
1873        PrevDecl = 0;
1874      }
1875    } else {
1876      // PrevDecl is a namespace.
1877      if (isDeclInScope(PrevDecl, CurContext, S)) {
1878        // The tag name clashes with a namespace name, issue an error and
1879        // recover by making this tag be anonymous.
1880        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1881        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1882        Name = 0;
1883      }
1884    }
1885  }
1886
1887  // If there is an identifier, use the location of the identifier as the
1888  // location of the decl, otherwise use the location of the struct/union
1889  // keyword.
1890  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1891
1892  // Otherwise, if this is the first time we've seen this tag, create the decl.
1893  TagDecl *New;
1894
1895  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1896  // struct X { int A; } D;    D should chain to X.
1897  if (getLangOptions().CPlusPlus)
1898    // FIXME: Look for a way to use RecordDecl for simple structs.
1899    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1900                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
1901  else
1902    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1903                             dyn_cast_or_null<RecordDecl>(PrevDecl));
1904
1905  // If this has an identifier, add it to the scope stack.
1906  if ((TK == TK_Definition || !PrevDecl) && Name) {
1907    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1908    // we find one that is.
1909    while ((S->getFlags() & Scope::DeclScope) == 0)
1910      S = S->getParent();
1911
1912    // Add it to the decl chain.
1913    PushOnScopeChains(New, S);
1914  }
1915
1916  if (Attr)
1917    ProcessDeclAttributeList(New, Attr);
1918
1919  return New;
1920}
1921
1922
1923/// Collect the instance variables declared in an Objective-C object.  Used in
1924/// the creation of structures from objects using the @defs directive.
1925static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
1926                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
1927  if (Class->getSuperClass())
1928    CollectIvars(Class->getSuperClass(), Ctx, ivars);
1929
1930  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1931  for (ObjCInterfaceDecl::ivar_iterator
1932        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
1933
1934    ObjCIvarDecl* ID = *I;
1935    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
1936                                                ID->getIdentifier(),
1937                                                ID->getType(),
1938                                                ID->getBitWidth()));
1939  }
1940}
1941
1942/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1943/// instance variables of ClassName into Decls.
1944void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
1945                     IdentifierInfo *ClassName,
1946                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
1947  // Check that ClassName is a valid class
1948  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
1949  if (!Class) {
1950    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
1951    return;
1952  }
1953  // Collect the instance variables
1954  CollectIvars(Class, Context, Decls);
1955}
1956
1957QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1958  // This method tries to turn a variable array into a constant
1959  // array even when the size isn't an ICE.  This is necessary
1960  // for compatibility with code that depends on gcc's buggy
1961  // constant expression folding, like struct {char x[(int)(char*)2];}
1962  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1963    APValue Result;
1964    if (VLATy->getSizeExpr() &&
1965        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
1966      llvm::APSInt &Res = Result.getInt();
1967      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1968        return Context.getConstantArrayType(VLATy->getElementType(),
1969                                            Res, ArrayType::Normal, 0);
1970    }
1971  }
1972  return QualType();
1973}
1974
1975/// ActOnField - Each field of a struct/union/class is passed into this in order
1976/// to create a FieldDecl object for it.
1977Sema::DeclTy *Sema::ActOnField(Scope *S,
1978                               SourceLocation DeclStart,
1979                               Declarator &D, ExprTy *BitfieldWidth) {
1980  IdentifierInfo *II = D.getIdentifier();
1981  Expr *BitWidth = (Expr*)BitfieldWidth;
1982  SourceLocation Loc = DeclStart;
1983  if (II) Loc = D.getIdentifierLoc();
1984
1985  // FIXME: Unnamed fields can be handled in various different ways, for
1986  // example, unnamed unions inject all members into the struct namespace!
1987
1988  if (BitWidth) {
1989    // TODO: Validate.
1990    //printf("WARNING: BITFIELDS IGNORED!\n");
1991
1992    // 6.7.2.1p3
1993    // 6.7.2.1p4
1994
1995  } else {
1996    // Not a bitfield.
1997
1998    // validate II.
1999
2000  }
2001
2002  QualType T = GetTypeForDeclarator(D, S);
2003  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2004  bool InvalidDecl = false;
2005
2006  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2007  // than a variably modified type.
2008  if (T->isVariablyModifiedType()) {
2009    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2010    if (!FixedTy.isNull()) {
2011      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2012      T = FixedTy;
2013    } else {
2014      // FIXME: This diagnostic needs work
2015      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2016      InvalidDecl = true;
2017    }
2018  }
2019  // FIXME: Chain fielddecls together.
2020  FieldDecl *NewFD;
2021
2022  if (getLangOptions().CPlusPlus) {
2023    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2024    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2025                                 Loc, II, T, BitWidth);
2026    if (II)
2027      PushOnScopeChains(NewFD, S);
2028  }
2029  else
2030    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2031
2032  ProcessDeclAttributes(NewFD, D);
2033
2034  if (D.getInvalidType() || InvalidDecl)
2035    NewFD->setInvalidDecl();
2036  return NewFD;
2037}
2038
2039/// TranslateIvarVisibility - Translate visibility from a token ID to an
2040///  AST enum value.
2041static ObjCIvarDecl::AccessControl
2042TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2043  switch (ivarVisibility) {
2044    case tok::objc_private: return ObjCIvarDecl::Private;
2045    case tok::objc_public: return ObjCIvarDecl::Public;
2046    case tok::objc_protected: return ObjCIvarDecl::Protected;
2047    case tok::objc_package: return ObjCIvarDecl::Package;
2048    default: assert(false && "Unknown visitibility kind");
2049  }
2050}
2051
2052/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2053/// in order to create an IvarDecl object for it.
2054Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2055                              SourceLocation DeclStart,
2056                              Declarator &D, ExprTy *BitfieldWidth,
2057                              tok::ObjCKeywordKind Visibility) {
2058  IdentifierInfo *II = D.getIdentifier();
2059  Expr *BitWidth = (Expr*)BitfieldWidth;
2060  SourceLocation Loc = DeclStart;
2061  if (II) Loc = D.getIdentifierLoc();
2062
2063  // FIXME: Unnamed fields can be handled in various different ways, for
2064  // example, unnamed unions inject all members into the struct namespace!
2065
2066
2067  if (BitWidth) {
2068    // TODO: Validate.
2069    //printf("WARNING: BITFIELDS IGNORED!\n");
2070
2071    // 6.7.2.1p3
2072    // 6.7.2.1p4
2073
2074  } else {
2075    // Not a bitfield.
2076
2077    // validate II.
2078
2079  }
2080
2081  QualType T = GetTypeForDeclarator(D, S);
2082  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2083  bool InvalidDecl = false;
2084
2085  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2086  // than a variably modified type.
2087  if (T->isVariablyModifiedType()) {
2088    // FIXME: This diagnostic needs work
2089    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2090    InvalidDecl = true;
2091  }
2092
2093  // Get the visibility (access control) for this ivar.
2094  ObjCIvarDecl::AccessControl ac =
2095    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2096                                        : ObjCIvarDecl::None;
2097
2098  // Construct the decl.
2099  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2100                                             (Expr *)BitfieldWidth);
2101
2102  // Process attributes attached to the ivar.
2103  ProcessDeclAttributes(NewID, D);
2104
2105  if (D.getInvalidType() || InvalidDecl)
2106    NewID->setInvalidDecl();
2107
2108  return NewID;
2109}
2110
2111void Sema::ActOnFields(Scope* S,
2112                       SourceLocation RecLoc, DeclTy *RecDecl,
2113                       DeclTy **Fields, unsigned NumFields,
2114                       SourceLocation LBrac, SourceLocation RBrac,
2115                       AttributeList *Attrs) {
2116  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2117  assert(EnclosingDecl && "missing record or interface decl");
2118  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2119
2120  if (Record)
2121    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2122      // Diagnose code like:
2123      //     struct S { struct S {} X; };
2124      // We discover this when we complete the outer S.  Reject and ignore the
2125      // outer S.
2126      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2127           DefRecord->getKindName());
2128      Diag(RecLoc, diag::err_previous_definition);
2129      Record->setInvalidDecl();
2130      return;
2131    }
2132
2133  // Verify that all the fields are okay.
2134  unsigned NumNamedMembers = 0;
2135  llvm::SmallVector<FieldDecl*, 32> RecFields;
2136  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2137
2138  for (unsigned i = 0; i != NumFields; ++i) {
2139
2140    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2141    assert(FD && "missing field decl");
2142
2143    // Remember all fields.
2144    RecFields.push_back(FD);
2145
2146    // Get the type for the field.
2147    Type *FDTy = FD->getType().getTypePtr();
2148
2149    // C99 6.7.2.1p2 - A field may not be a function type.
2150    if (FDTy->isFunctionType()) {
2151      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2152           FD->getName());
2153      FD->setInvalidDecl();
2154      EnclosingDecl->setInvalidDecl();
2155      continue;
2156    }
2157    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2158    if (FDTy->isIncompleteType()) {
2159      if (!Record) {  // Incomplete ivar type is always an error.
2160        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2161        FD->setInvalidDecl();
2162        EnclosingDecl->setInvalidDecl();
2163        continue;
2164      }
2165      if (i != NumFields-1 ||                   // ... that the last member ...
2166          !Record->isStruct() ||  // ... of a structure ...
2167          !FDTy->isArrayType()) {         //... may have incomplete array type.
2168        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2169        FD->setInvalidDecl();
2170        EnclosingDecl->setInvalidDecl();
2171        continue;
2172      }
2173      if (NumNamedMembers < 1) {  //... must have more than named member ...
2174        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2175             FD->getName());
2176        FD->setInvalidDecl();
2177        EnclosingDecl->setInvalidDecl();
2178        continue;
2179      }
2180      // Okay, we have a legal flexible array member at the end of the struct.
2181      if (Record)
2182        Record->setHasFlexibleArrayMember(true);
2183    }
2184    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2185    /// field of another structure or the element of an array.
2186    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2187      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2188        // If this is a member of a union, then entire union becomes "flexible".
2189        if (Record && Record->isUnion()) {
2190          Record->setHasFlexibleArrayMember(true);
2191        } else {
2192          // If this is a struct/class and this is not the last element, reject
2193          // it.  Note that GCC supports variable sized arrays in the middle of
2194          // structures.
2195          if (i != NumFields-1) {
2196            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2197                 FD->getName());
2198            FD->setInvalidDecl();
2199            EnclosingDecl->setInvalidDecl();
2200            continue;
2201          }
2202          // We support flexible arrays at the end of structs in other structs
2203          // as an extension.
2204          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2205               FD->getName());
2206          if (Record)
2207            Record->setHasFlexibleArrayMember(true);
2208        }
2209      }
2210    }
2211    /// A field cannot be an Objective-c object
2212    if (FDTy->isObjCInterfaceType()) {
2213      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2214           FD->getName());
2215      FD->setInvalidDecl();
2216      EnclosingDecl->setInvalidDecl();
2217      continue;
2218    }
2219    // Keep track of the number of named members.
2220    if (IdentifierInfo *II = FD->getIdentifier()) {
2221      // Detect duplicate member names.
2222      if (!FieldIDs.insert(II)) {
2223        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2224        // Find the previous decl.
2225        SourceLocation PrevLoc;
2226        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2227          assert(i != e && "Didn't find previous def!");
2228          if (RecFields[i]->getIdentifier() == II) {
2229            PrevLoc = RecFields[i]->getLocation();
2230            break;
2231          }
2232        }
2233        Diag(PrevLoc, diag::err_previous_definition);
2234        FD->setInvalidDecl();
2235        EnclosingDecl->setInvalidDecl();
2236        continue;
2237      }
2238      ++NumNamedMembers;
2239    }
2240  }
2241
2242  // Okay, we successfully defined 'Record'.
2243  if (Record) {
2244    Record->defineBody(Context, &RecFields[0], RecFields.size());
2245    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2246    // Sema::ActOnFinishCXXClassDef.
2247    if (!isa<CXXRecordDecl>(Record))
2248      Consumer.HandleTagDeclDefinition(Record);
2249  } else {
2250    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2251    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2252      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2253    else if (ObjCImplementationDecl *IMPDecl =
2254               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2255      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2256      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2257      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2258    }
2259  }
2260}
2261
2262Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2263                                      DeclTy *lastEnumConst,
2264                                      SourceLocation IdLoc, IdentifierInfo *Id,
2265                                      SourceLocation EqualLoc, ExprTy *val) {
2266  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2267  EnumConstantDecl *LastEnumConst =
2268    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2269  Expr *Val = static_cast<Expr*>(val);
2270
2271  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2272  // we find one that is.
2273  while ((S->getFlags() & Scope::DeclScope) == 0)
2274    S = S->getParent();
2275
2276  // Verify that there isn't already something declared with this name in this
2277  // scope.
2278  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2279    // When in C++, we may get a TagDecl with the same name; in this case the
2280    // enum constant will 'hide' the tag.
2281    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2282           "Received TagDecl when not in C++!");
2283    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2284      if (isa<EnumConstantDecl>(PrevDecl))
2285        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2286      else
2287        Diag(IdLoc, diag::err_redefinition, Id->getName());
2288      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2289      delete Val;
2290      return 0;
2291    }
2292  }
2293
2294  llvm::APSInt EnumVal(32);
2295  QualType EltTy;
2296  if (Val) {
2297    // Make sure to promote the operand type to int.
2298    UsualUnaryConversions(Val);
2299
2300    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2301    SourceLocation ExpLoc;
2302    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2303      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2304           Id->getName());
2305      delete Val;
2306      Val = 0;  // Just forget about it.
2307    } else {
2308      EltTy = Val->getType();
2309    }
2310  }
2311
2312  if (!Val) {
2313    if (LastEnumConst) {
2314      // Assign the last value + 1.
2315      EnumVal = LastEnumConst->getInitVal();
2316      ++EnumVal;
2317
2318      // Check for overflow on increment.
2319      if (EnumVal < LastEnumConst->getInitVal())
2320        Diag(IdLoc, diag::warn_enum_value_overflow);
2321
2322      EltTy = LastEnumConst->getType();
2323    } else {
2324      // First value, set to zero.
2325      EltTy = Context.IntTy;
2326      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2327    }
2328  }
2329
2330  EnumConstantDecl *New =
2331    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2332                             Val, EnumVal,
2333                             LastEnumConst);
2334
2335  // Register this decl in the current scope stack.
2336  PushOnScopeChains(New, S);
2337  return New;
2338}
2339
2340// FIXME: For consistency with ActOnFields(), we should have the parser
2341// pass in the source location for the left/right braces.
2342void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2343                         DeclTy **Elements, unsigned NumElements) {
2344  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2345
2346  if (Enum && Enum->isDefinition()) {
2347    // Diagnose code like:
2348    //   enum e0 {
2349    //     E0 = sizeof(enum e0 { E1 })
2350    //   };
2351    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2352         Enum->getName());
2353    Diag(EnumLoc, diag::err_previous_definition);
2354    Enum->setInvalidDecl();
2355    return;
2356  }
2357  // TODO: If the result value doesn't fit in an int, it must be a long or long
2358  // long value.  ISO C does not support this, but GCC does as an extension,
2359  // emit a warning.
2360  unsigned IntWidth = Context.Target.getIntWidth();
2361
2362  // Verify that all the values are okay, compute the size of the values, and
2363  // reverse the list.
2364  unsigned NumNegativeBits = 0;
2365  unsigned NumPositiveBits = 0;
2366
2367  // Keep track of whether all elements have type int.
2368  bool AllElementsInt = true;
2369
2370  EnumConstantDecl *EltList = 0;
2371  for (unsigned i = 0; i != NumElements; ++i) {
2372    EnumConstantDecl *ECD =
2373      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2374    if (!ECD) continue;  // Already issued a diagnostic.
2375
2376    // If the enum value doesn't fit in an int, emit an extension warning.
2377    const llvm::APSInt &InitVal = ECD->getInitVal();
2378    assert(InitVal.getBitWidth() >= IntWidth &&
2379           "Should have promoted value to int");
2380    if (InitVal.getBitWidth() > IntWidth) {
2381      llvm::APSInt V(InitVal);
2382      V.trunc(IntWidth);
2383      V.extend(InitVal.getBitWidth());
2384      if (V != InitVal)
2385        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2386             InitVal.toString(10));
2387    }
2388
2389    // Keep track of the size of positive and negative values.
2390    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2391      NumPositiveBits = std::max(NumPositiveBits,
2392                                 (unsigned)InitVal.getActiveBits());
2393    else
2394      NumNegativeBits = std::max(NumNegativeBits,
2395                                 (unsigned)InitVal.getMinSignedBits());
2396
2397    // Keep track of whether every enum element has type int (very commmon).
2398    if (AllElementsInt)
2399      AllElementsInt = ECD->getType() == Context.IntTy;
2400
2401    ECD->setNextDeclarator(EltList);
2402    EltList = ECD;
2403  }
2404
2405  // Figure out the type that should be used for this enum.
2406  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2407  QualType BestType;
2408  unsigned BestWidth;
2409
2410  if (NumNegativeBits) {
2411    // If there is a negative value, figure out the smallest integer type (of
2412    // int/long/longlong) that fits.
2413    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2414      BestType = Context.IntTy;
2415      BestWidth = IntWidth;
2416    } else {
2417      BestWidth = Context.Target.getLongWidth();
2418
2419      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2420        BestType = Context.LongTy;
2421      else {
2422        BestWidth = Context.Target.getLongLongWidth();
2423
2424        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2425          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2426        BestType = Context.LongLongTy;
2427      }
2428    }
2429  } else {
2430    // If there is no negative value, figure out which of uint, ulong, ulonglong
2431    // fits.
2432    if (NumPositiveBits <= IntWidth) {
2433      BestType = Context.UnsignedIntTy;
2434      BestWidth = IntWidth;
2435    } else if (NumPositiveBits <=
2436               (BestWidth = Context.Target.getLongWidth())) {
2437      BestType = Context.UnsignedLongTy;
2438    } else {
2439      BestWidth = Context.Target.getLongLongWidth();
2440      assert(NumPositiveBits <= BestWidth &&
2441             "How could an initializer get larger than ULL?");
2442      BestType = Context.UnsignedLongLongTy;
2443    }
2444  }
2445
2446  // Loop over all of the enumerator constants, changing their types to match
2447  // the type of the enum if needed.
2448  for (unsigned i = 0; i != NumElements; ++i) {
2449    EnumConstantDecl *ECD =
2450      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2451    if (!ECD) continue;  // Already issued a diagnostic.
2452
2453    // Standard C says the enumerators have int type, but we allow, as an
2454    // extension, the enumerators to be larger than int size.  If each
2455    // enumerator value fits in an int, type it as an int, otherwise type it the
2456    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2457    // that X has type 'int', not 'unsigned'.
2458    if (ECD->getType() == Context.IntTy) {
2459      // Make sure the init value is signed.
2460      llvm::APSInt IV = ECD->getInitVal();
2461      IV.setIsSigned(true);
2462      ECD->setInitVal(IV);
2463      continue;  // Already int type.
2464    }
2465
2466    // Determine whether the value fits into an int.
2467    llvm::APSInt InitVal = ECD->getInitVal();
2468    bool FitsInInt;
2469    if (InitVal.isUnsigned() || !InitVal.isNegative())
2470      FitsInInt = InitVal.getActiveBits() < IntWidth;
2471    else
2472      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2473
2474    // If it fits into an integer type, force it.  Otherwise force it to match
2475    // the enum decl type.
2476    QualType NewTy;
2477    unsigned NewWidth;
2478    bool NewSign;
2479    if (FitsInInt) {
2480      NewTy = Context.IntTy;
2481      NewWidth = IntWidth;
2482      NewSign = true;
2483    } else if (ECD->getType() == BestType) {
2484      // Already the right type!
2485      continue;
2486    } else {
2487      NewTy = BestType;
2488      NewWidth = BestWidth;
2489      NewSign = BestType->isSignedIntegerType();
2490    }
2491
2492    // Adjust the APSInt value.
2493    InitVal.extOrTrunc(NewWidth);
2494    InitVal.setIsSigned(NewSign);
2495    ECD->setInitVal(InitVal);
2496
2497    // Adjust the Expr initializer and type.
2498    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2499    ECD->setType(NewTy);
2500  }
2501
2502  Enum->defineElements(EltList, BestType);
2503  Consumer.HandleTagDeclDefinition(Enum);
2504}
2505
2506Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2507                                          ExprTy *expr) {
2508  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2509
2510  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2511}
2512
2513Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2514                                     SourceLocation LBrace,
2515                                     SourceLocation RBrace,
2516                                     const char *Lang,
2517                                     unsigned StrSize,
2518                                     DeclTy *D) {
2519  LinkageSpecDecl::LanguageIDs Language;
2520  Decl *dcl = static_cast<Decl *>(D);
2521  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2522    Language = LinkageSpecDecl::lang_c;
2523  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2524    Language = LinkageSpecDecl::lang_cxx;
2525  else {
2526    Diag(Loc, diag::err_bad_language);
2527    return 0;
2528  }
2529
2530  // FIXME: Add all the various semantics of linkage specifications
2531  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2532}
2533