SemaDecl.cpp revision 1c23b3ff07ff44e67f0bbc0cc55e2268da57912f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/ParseDiagnostic.h"
28#include "clang/Parse/Template.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Lex/HeaderSearch.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include <algorithm>
38#include <cstring>
39#include <functional>
40#include <queue>
41using namespace clang;
42
43/// getDeclName - Return a pretty name for the specified decl if possible, or
44/// an empty string if not.  This is used for pretty crash reporting.
45std::string Sema::getDeclName(DeclPtrTy d) {
46  Decl *D = d.getAs<Decl>();
47  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
48    return DN->getQualifiedNameAsString();
49  return "";
50}
51
52Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
53  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
54}
55
56/// \brief If the identifier refers to a type name within this scope,
57/// return the declaration of that type.
58///
59/// This routine performs ordinary name lookup of the identifier II
60/// within the given scope, with optional C++ scope specifier SS, to
61/// determine whether the name refers to a type. If so, returns an
62/// opaque pointer (actually a QualType) corresponding to that
63/// type. Otherwise, returns NULL.
64///
65/// If name lookup results in an ambiguity, this routine will complain
66/// and then return NULL.
67Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
68                                Scope *S, const CXXScopeSpec *SS,
69                                bool isClassName) {
70  // C++ [temp.res]p3:
71  //   A qualified-id that refers to a type and in which the
72  //   nested-name-specifier depends on a template-parameter (14.6.2)
73  //   shall be prefixed by the keyword typename to indicate that the
74  //   qualified-id denotes a type, forming an
75  //   elaborated-type-specifier (7.1.5.3).
76  //
77  // We therefore do not perform any name lookup if the result would
78  // refer to a member of an unknown specialization.
79  if (SS && isUnknownSpecialization(*SS)) {
80    if (!isClassName)
81      return 0;
82
83    // We know from the grammar that this name refers to a type, so build a
84    // TypenameType node to describe the type.
85    // FIXME: Record somewhere that this TypenameType node has no "typename"
86    // keyword associated with it.
87    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
88                             II, SS->getRange()).getAsOpaquePtr();
89  }
90
91  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
92  LookupParsedName(Result, S, SS, false);
93
94  NamedDecl *IIDecl = 0;
95  switch (Result.getResultKind()) {
96  case LookupResult::NotFound:
97  case LookupResult::FoundOverloaded:
98  case LookupResult::FoundUnresolvedValue:
99    return 0;
100
101  case LookupResult::Ambiguous:
102    // Recover from type-hiding ambiguities by hiding the type.  We'll
103    // do the lookup again when looking for an object, and we can
104    // diagnose the error then.  If we don't do this, then the error
105    // about hiding the type will be immediately followed by an error
106    // that only makes sense if the identifier was treated like a type.
107    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
108      Result.suppressDiagnostics();
109      return 0;
110    }
111
112    // Look to see if we have a type anywhere in the list of results.
113    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
114         Res != ResEnd; ++Res) {
115      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
116        if (!IIDecl ||
117            (*Res)->getLocation().getRawEncoding() <
118              IIDecl->getLocation().getRawEncoding())
119          IIDecl = *Res;
120      }
121    }
122
123    if (!IIDecl) {
124      // None of the entities we found is a type, so there is no way
125      // to even assume that the result is a type. In this case, don't
126      // complain about the ambiguity. The parser will either try to
127      // perform this lookup again (e.g., as an object name), which
128      // will produce the ambiguity, or will complain that it expected
129      // a type name.
130      Result.suppressDiagnostics();
131      return 0;
132    }
133
134    // We found a type within the ambiguous lookup; diagnose the
135    // ambiguity and then return that type. This might be the right
136    // answer, or it might not be, but it suppresses any attempt to
137    // perform the name lookup again.
138    break;
139
140  case LookupResult::Found:
141    IIDecl = Result.getFoundDecl();
142    break;
143  }
144
145  assert(IIDecl && "Didn't find decl");
146
147  QualType T;
148  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
149    DiagnoseUseOfDecl(IIDecl, NameLoc);
150
151    // C++ [temp.local]p2:
152    //   Within the scope of a class template specialization or
153    //   partial specialization, when the injected-class-name is
154    //   not followed by a <, it is equivalent to the
155    //   injected-class-name followed by the template-argument s
156    //   of the class template specialization or partial
157    //   specialization enclosed in <>.
158    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
159      if (RD->isInjectedClassName())
160        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
161          T = Template->getInjectedClassNameType(Context);
162
163    if (T.isNull())
164      T = Context.getTypeDeclType(TD);
165
166    if (SS)
167      T = getQualifiedNameType(*SS, T);
168
169  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
170    T = Context.getObjCInterfaceType(IDecl);
171  } else if (UnresolvedUsingTypenameDecl *UUDecl =
172               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
173    // FIXME: preserve source structure information.
174    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
175  } else {
176    // If it's not plausibly a type, suppress diagnostics.
177    Result.suppressDiagnostics();
178    return 0;
179  }
180
181  return T.getAsOpaquePtr();
182}
183
184/// isTagName() - This method is called *for error recovery purposes only*
185/// to determine if the specified name is a valid tag name ("struct foo").  If
186/// so, this returns the TST for the tag corresponding to it (TST_enum,
187/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
188/// where the user forgot to specify the tag.
189DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
190  // Do a tag name lookup in this scope.
191  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
192  LookupName(R, S, false);
193  R.suppressDiagnostics();
194  if (R.getResultKind() == LookupResult::Found)
195    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
196      switch (TD->getTagKind()) {
197      case TagDecl::TK_struct: return DeclSpec::TST_struct;
198      case TagDecl::TK_union:  return DeclSpec::TST_union;
199      case TagDecl::TK_class:  return DeclSpec::TST_class;
200      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
201      }
202    }
203
204  return DeclSpec::TST_unspecified;
205}
206
207bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
208                                   SourceLocation IILoc,
209                                   Scope *S,
210                                   const CXXScopeSpec *SS,
211                                   TypeTy *&SuggestedType) {
212  // We don't have anything to suggest (yet).
213  SuggestedType = 0;
214
215  // FIXME: Should we move the logic that tries to recover from a missing tag
216  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
217
218  if (!SS)
219    Diag(IILoc, diag::err_unknown_typename) << &II;
220  else if (DeclContext *DC = computeDeclContext(*SS, false))
221    Diag(IILoc, diag::err_typename_nested_not_found)
222      << &II << DC << SS->getRange();
223  else if (isDependentScopeSpecifier(*SS)) {
224    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
225      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
226      << SourceRange(SS->getRange().getBegin(), IILoc)
227      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
228                                               "typename ");
229    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
230  } else {
231    assert(SS && SS->isInvalid() &&
232           "Invalid scope specifier has already been diagnosed");
233  }
234
235  return true;
236}
237
238// Determines the context to return to after temporarily entering a
239// context.  This depends in an unnecessarily complicated way on the
240// exact ordering of callbacks from the parser.
241DeclContext *Sema::getContainingDC(DeclContext *DC) {
242
243  // Functions defined inline within classes aren't parsed until we've
244  // finished parsing the top-level class, so the top-level class is
245  // the context we'll need to return to.
246  if (isa<FunctionDecl>(DC)) {
247    DC = DC->getLexicalParent();
248
249    // A function not defined within a class will always return to its
250    // lexical context.
251    if (!isa<CXXRecordDecl>(DC))
252      return DC;
253
254    // A C++ inline method/friend is parsed *after* the topmost class
255    // it was declared in is fully parsed ("complete");  the topmost
256    // class is the context we need to return to.
257    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
258      DC = RD;
259
260    // Return the declaration context of the topmost class the inline method is
261    // declared in.
262    return DC;
263  }
264
265  if (isa<ObjCMethodDecl>(DC))
266    return Context.getTranslationUnitDecl();
267
268  return DC->getLexicalParent();
269}
270
271void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
272  assert(getContainingDC(DC) == CurContext &&
273      "The next DeclContext should be lexically contained in the current one.");
274  CurContext = DC;
275  S->setEntity(DC);
276}
277
278void Sema::PopDeclContext() {
279  assert(CurContext && "DeclContext imbalance!");
280
281  CurContext = getContainingDC(CurContext);
282}
283
284/// EnterDeclaratorContext - Used when we must lookup names in the context
285/// of a declarator's nested name specifier.
286void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
287  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
288  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
289  CurContext = DC;
290  assert(CurContext && "No context?");
291  S->setEntity(CurContext);
292}
293
294void Sema::ExitDeclaratorContext(Scope *S) {
295  S->setEntity(PreDeclaratorDC);
296  PreDeclaratorDC = 0;
297
298  // Reset CurContext to the nearest enclosing context.
299  while (!S->getEntity() && S->getParent())
300    S = S->getParent();
301  CurContext = static_cast<DeclContext*>(S->getEntity());
302  assert(CurContext && "No context?");
303}
304
305/// \brief Determine whether we allow overloading of the function
306/// PrevDecl with another declaration.
307///
308/// This routine determines whether overloading is possible, not
309/// whether some new function is actually an overload. It will return
310/// true in C++ (where we can always provide overloads) or, as an
311/// extension, in C when the previous function is already an
312/// overloaded function declaration or has the "overloadable"
313/// attribute.
314static bool AllowOverloadingOfFunction(LookupResult &Previous,
315                                       ASTContext &Context) {
316  if (Context.getLangOptions().CPlusPlus)
317    return true;
318
319  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
320    return true;
321
322  return (Previous.getResultKind() == LookupResult::Found
323          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
324}
325
326/// Add this decl to the scope shadowed decl chains.
327void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
328  // Move up the scope chain until we find the nearest enclosing
329  // non-transparent context. The declaration will be introduced into this
330  // scope.
331  while (S->getEntity() &&
332         ((DeclContext *)S->getEntity())->isTransparentContext())
333    S = S->getParent();
334
335  // Add scoped declarations into their context, so that they can be
336  // found later. Declarations without a context won't be inserted
337  // into any context.
338  if (AddToContext)
339    CurContext->addDecl(D);
340
341  // Out-of-line function and variable definitions should not be pushed into
342  // scope.
343  if ((isa<FunctionTemplateDecl>(D) &&
344       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
345      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
346      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
347    return;
348
349  // If this replaces anything in the current scope,
350  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
351                               IEnd = IdResolver.end();
352  for (; I != IEnd; ++I) {
353    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
354      S->RemoveDecl(DeclPtrTy::make(*I));
355      IdResolver.RemoveDecl(*I);
356
357      // Should only need to replace one decl.
358      break;
359    }
360  }
361
362  S->AddDecl(DeclPtrTy::make(D));
363  IdResolver.AddDecl(D);
364}
365
366bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
367  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
368    // Look inside the overload set to determine if any of the declarations
369    // are in scope. (Possibly) build a new overload set containing only
370    // those declarations that are in scope.
371    OverloadedFunctionDecl *NewOvl = 0;
372    bool FoundInScope = false;
373    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
374         FEnd = Ovl->function_end();
375         F != FEnd; ++F) {
376      NamedDecl *FD = F->get();
377      if (!isDeclInScope(FD, Ctx, S)) {
378        if (!NewOvl && F != Ovl->function_begin()) {
379          NewOvl = OverloadedFunctionDecl::Create(Context,
380                                                  F->get()->getDeclContext(),
381                                                  F->get()->getDeclName());
382          D = NewOvl;
383          for (OverloadedFunctionDecl::function_iterator
384               First = Ovl->function_begin();
385               First != F; ++First)
386            NewOvl->addOverload(*First);
387        }
388      } else {
389        FoundInScope = true;
390        if (NewOvl)
391          NewOvl->addOverload(*F);
392      }
393    }
394
395    return FoundInScope;
396  }
397
398  return IdResolver.isDeclInScope(D, Ctx, Context, S);
399}
400
401static bool isOutOfScopePreviousDeclaration(NamedDecl *,
402                                            DeclContext*,
403                                            ASTContext&);
404
405/// Filters out lookup results that don't fall within the given scope
406/// as determined by isDeclInScope.
407static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
408                                 DeclContext *Ctx, Scope *S,
409                                 bool ConsiderLinkage) {
410  LookupResult::Filter F = R.makeFilter();
411  while (F.hasNext()) {
412    NamedDecl *D = F.next();
413
414    if (SemaRef.isDeclInScope(D, Ctx, S))
415      continue;
416
417    if (ConsiderLinkage &&
418        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
419      continue;
420
421    F.erase();
422  }
423
424  F.done();
425}
426
427static bool isUsingDecl(NamedDecl *D) {
428  return isa<UsingShadowDecl>(D) ||
429         isa<UnresolvedUsingTypenameDecl>(D) ||
430         isa<UnresolvedUsingValueDecl>(D);
431}
432
433/// Removes using shadow declarations from the lookup results.
434static void RemoveUsingDecls(LookupResult &R) {
435  LookupResult::Filter F = R.makeFilter();
436  while (F.hasNext())
437    if (isUsingDecl(F.next()))
438      F.erase();
439
440  F.done();
441}
442
443static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
444  if (D->isUsed() || D->hasAttr<UnusedAttr>())
445    return false;
446
447  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
448    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
449      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
450        if (!RD->hasTrivialConstructor())
451          return false;
452        if (!RD->hasTrivialDestructor())
453          return false;
454      }
455    }
456  }
457
458  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
459          !isa<ImplicitParamDecl>(D) &&
460          D->getDeclContext()->isFunctionOrMethod());
461}
462
463void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
464  if (S->decl_empty()) return;
465  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
466         "Scope shouldn't contain decls!");
467
468  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
469       I != E; ++I) {
470    Decl *TmpD = (*I).getAs<Decl>();
471    assert(TmpD && "This decl didn't get pushed??");
472
473    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
474    NamedDecl *D = cast<NamedDecl>(TmpD);
475
476    if (!D->getDeclName()) continue;
477
478    // Diagnose unused variables in this scope.
479    if (ShouldDiagnoseUnusedDecl(D))
480      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
481
482    // Remove this name from our lexical scope.
483    IdResolver.RemoveDecl(D);
484  }
485}
486
487/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
488/// return 0 if one not found.
489ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
490  // The third "scope" argument is 0 since we aren't enabling lazy built-in
491  // creation from this context.
492  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
493
494  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
495}
496
497/// getNonFieldDeclScope - Retrieves the innermost scope, starting
498/// from S, where a non-field would be declared. This routine copes
499/// with the difference between C and C++ scoping rules in structs and
500/// unions. For example, the following code is well-formed in C but
501/// ill-formed in C++:
502/// @code
503/// struct S6 {
504///   enum { BAR } e;
505/// };
506///
507/// void test_S6() {
508///   struct S6 a;
509///   a.e = BAR;
510/// }
511/// @endcode
512/// For the declaration of BAR, this routine will return a different
513/// scope. The scope S will be the scope of the unnamed enumeration
514/// within S6. In C++, this routine will return the scope associated
515/// with S6, because the enumeration's scope is a transparent
516/// context but structures can contain non-field names. In C, this
517/// routine will return the translation unit scope, since the
518/// enumeration's scope is a transparent context and structures cannot
519/// contain non-field names.
520Scope *Sema::getNonFieldDeclScope(Scope *S) {
521  while (((S->getFlags() & Scope::DeclScope) == 0) ||
522         (S->getEntity() &&
523          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
524         (S->isClassScope() && !getLangOptions().CPlusPlus))
525    S = S->getParent();
526  return S;
527}
528
529void Sema::InitBuiltinVaListType() {
530  if (!Context.getBuiltinVaListType().isNull())
531    return;
532
533  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
534  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
535  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
536  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
537}
538
539/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
540/// file scope.  lazily create a decl for it. ForRedeclaration is true
541/// if we're creating this built-in in anticipation of redeclaring the
542/// built-in.
543NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
544                                     Scope *S, bool ForRedeclaration,
545                                     SourceLocation Loc) {
546  Builtin::ID BID = (Builtin::ID)bid;
547
548  if (Context.BuiltinInfo.hasVAListUse(BID))
549    InitBuiltinVaListType();
550
551  ASTContext::GetBuiltinTypeError Error;
552  QualType R = Context.GetBuiltinType(BID, Error);
553  switch (Error) {
554  case ASTContext::GE_None:
555    // Okay
556    break;
557
558  case ASTContext::GE_Missing_stdio:
559    if (ForRedeclaration)
560      Diag(Loc, diag::err_implicit_decl_requires_stdio)
561        << Context.BuiltinInfo.GetName(BID);
562    return 0;
563
564  case ASTContext::GE_Missing_setjmp:
565    if (ForRedeclaration)
566      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
567        << Context.BuiltinInfo.GetName(BID);
568    return 0;
569  }
570
571  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
572    Diag(Loc, diag::ext_implicit_lib_function_decl)
573      << Context.BuiltinInfo.GetName(BID)
574      << R;
575    if (Context.BuiltinInfo.getHeaderName(BID) &&
576        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
577          != Diagnostic::Ignored)
578      Diag(Loc, diag::note_please_include_header)
579        << Context.BuiltinInfo.getHeaderName(BID)
580        << Context.BuiltinInfo.GetName(BID);
581  }
582
583  FunctionDecl *New = FunctionDecl::Create(Context,
584                                           Context.getTranslationUnitDecl(),
585                                           Loc, II, R, /*DInfo=*/0,
586                                           FunctionDecl::Extern, false,
587                                           /*hasPrototype=*/true);
588  New->setImplicit();
589
590  // Create Decl objects for each parameter, adding them to the
591  // FunctionDecl.
592  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
593    llvm::SmallVector<ParmVarDecl*, 16> Params;
594    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
595      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
596                                           FT->getArgType(i), /*DInfo=*/0,
597                                           VarDecl::None, 0));
598    New->setParams(Context, Params.data(), Params.size());
599  }
600
601  AddKnownFunctionAttributes(New);
602
603  // TUScope is the translation-unit scope to insert this function into.
604  // FIXME: This is hideous. We need to teach PushOnScopeChains to
605  // relate Scopes to DeclContexts, and probably eliminate CurContext
606  // entirely, but we're not there yet.
607  DeclContext *SavedContext = CurContext;
608  CurContext = Context.getTranslationUnitDecl();
609  PushOnScopeChains(New, TUScope);
610  CurContext = SavedContext;
611  return New;
612}
613
614/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
615/// same name and scope as a previous declaration 'Old'.  Figure out
616/// how to resolve this situation, merging decls or emitting
617/// diagnostics as appropriate. If there was an error, set New to be invalid.
618///
619void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
620  // If the new decl is known invalid already, don't bother doing any
621  // merging checks.
622  if (New->isInvalidDecl()) return;
623
624  // Allow multiple definitions for ObjC built-in typedefs.
625  // FIXME: Verify the underlying types are equivalent!
626  if (getLangOptions().ObjC1) {
627    const IdentifierInfo *TypeID = New->getIdentifier();
628    switch (TypeID->getLength()) {
629    default: break;
630    case 2:
631      if (!TypeID->isStr("id"))
632        break;
633      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
634      // Install the built-in type for 'id', ignoring the current definition.
635      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
636      return;
637    case 5:
638      if (!TypeID->isStr("Class"))
639        break;
640      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
641      // Install the built-in type for 'Class', ignoring the current definition.
642      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
643      return;
644    case 3:
645      if (!TypeID->isStr("SEL"))
646        break;
647      Context.setObjCSelType(Context.getTypeDeclType(New));
648      return;
649    case 8:
650      if (!TypeID->isStr("Protocol"))
651        break;
652      Context.setObjCProtoType(New->getUnderlyingType());
653      return;
654    }
655    // Fall through - the typedef name was not a builtin type.
656  }
657
658  // Verify the old decl was also a type.
659  TypeDecl *Old = 0;
660  if (!OldDecls.isSingleResult() ||
661      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
662    Diag(New->getLocation(), diag::err_redefinition_different_kind)
663      << New->getDeclName();
664
665    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
666    if (OldD->getLocation().isValid())
667      Diag(OldD->getLocation(), diag::note_previous_definition);
668
669    return New->setInvalidDecl();
670  }
671
672  // If the old declaration is invalid, just give up here.
673  if (Old->isInvalidDecl())
674    return New->setInvalidDecl();
675
676  // Determine the "old" type we'll use for checking and diagnostics.
677  QualType OldType;
678  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
679    OldType = OldTypedef->getUnderlyingType();
680  else
681    OldType = Context.getTypeDeclType(Old);
682
683  // If the typedef types are not identical, reject them in all languages and
684  // with any extensions enabled.
685
686  if (OldType != New->getUnderlyingType() &&
687      Context.getCanonicalType(OldType) !=
688      Context.getCanonicalType(New->getUnderlyingType())) {
689    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
690      << New->getUnderlyingType() << OldType;
691    if (Old->getLocation().isValid())
692      Diag(Old->getLocation(), diag::note_previous_definition);
693    return New->setInvalidDecl();
694  }
695
696  if (getLangOptions().Microsoft)
697    return;
698
699  // C++ [dcl.typedef]p2:
700  //   In a given non-class scope, a typedef specifier can be used to
701  //   redefine the name of any type declared in that scope to refer
702  //   to the type to which it already refers.
703  if (getLangOptions().CPlusPlus) {
704    if (!isa<CXXRecordDecl>(CurContext))
705      return;
706    Diag(New->getLocation(), diag::err_redefinition)
707      << New->getDeclName();
708    Diag(Old->getLocation(), diag::note_previous_definition);
709    return New->setInvalidDecl();
710  }
711
712  // If we have a redefinition of a typedef in C, emit a warning.  This warning
713  // is normally mapped to an error, but can be controlled with
714  // -Wtypedef-redefinition.  If either the original or the redefinition is
715  // in a system header, don't emit this for compatibility with GCC.
716  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
717      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
718       Context.getSourceManager().isInSystemHeader(New->getLocation())))
719    return;
720
721  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
722    << New->getDeclName();
723  Diag(Old->getLocation(), diag::note_previous_definition);
724  return;
725}
726
727/// DeclhasAttr - returns true if decl Declaration already has the target
728/// attribute.
729static bool
730DeclHasAttr(const Decl *decl, const Attr *target) {
731  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
732    if (attr->getKind() == target->getKind())
733      return true;
734
735  return false;
736}
737
738/// MergeAttributes - append attributes from the Old decl to the New one.
739static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
740  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
741    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
742      Attr *NewAttr = attr->clone(C);
743      NewAttr->setInherited(true);
744      New->addAttr(NewAttr);
745    }
746  }
747}
748
749/// Used in MergeFunctionDecl to keep track of function parameters in
750/// C.
751struct GNUCompatibleParamWarning {
752  ParmVarDecl *OldParm;
753  ParmVarDecl *NewParm;
754  QualType PromotedType;
755};
756
757/// MergeFunctionDecl - We just parsed a function 'New' from
758/// declarator D which has the same name and scope as a previous
759/// declaration 'Old'.  Figure out how to resolve this situation,
760/// merging decls or emitting diagnostics as appropriate.
761///
762/// In C++, New and Old must be declarations that are not
763/// overloaded. Use IsOverload to determine whether New and Old are
764/// overloaded, and to select the Old declaration that New should be
765/// merged with.
766///
767/// Returns true if there was an error, false otherwise.
768bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
769  assert(!isa<OverloadedFunctionDecl>(OldD) &&
770         "Cannot merge with an overloaded function declaration");
771
772  // Verify the old decl was also a function.
773  FunctionDecl *Old = 0;
774  if (FunctionTemplateDecl *OldFunctionTemplate
775        = dyn_cast<FunctionTemplateDecl>(OldD))
776    Old = OldFunctionTemplate->getTemplatedDecl();
777  else
778    Old = dyn_cast<FunctionDecl>(OldD);
779  if (!Old) {
780    Diag(New->getLocation(), diag::err_redefinition_different_kind)
781      << New->getDeclName();
782    Diag(OldD->getLocation(), diag::note_previous_definition);
783    return true;
784  }
785
786  // Determine whether the previous declaration was a definition,
787  // implicit declaration, or a declaration.
788  diag::kind PrevDiag;
789  if (Old->isThisDeclarationADefinition())
790    PrevDiag = diag::note_previous_definition;
791  else if (Old->isImplicit())
792    PrevDiag = diag::note_previous_implicit_declaration;
793  else
794    PrevDiag = diag::note_previous_declaration;
795
796  QualType OldQType = Context.getCanonicalType(Old->getType());
797  QualType NewQType = Context.getCanonicalType(New->getType());
798
799  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
800      New->getStorageClass() == FunctionDecl::Static &&
801      Old->getStorageClass() != FunctionDecl::Static) {
802    Diag(New->getLocation(), diag::err_static_non_static)
803      << New;
804    Diag(Old->getLocation(), PrevDiag);
805    return true;
806  }
807
808  if (getLangOptions().CPlusPlus) {
809    // (C++98 13.1p2):
810    //   Certain function declarations cannot be overloaded:
811    //     -- Function declarations that differ only in the return type
812    //        cannot be overloaded.
813    QualType OldReturnType
814      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
815    QualType NewReturnType
816      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
817    if (OldReturnType != NewReturnType) {
818      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
819      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
820      return true;
821    }
822
823    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
824    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
825    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
826        NewMethod->getLexicalDeclContext()->isRecord()) {
827      //    -- Member function declarations with the same name and the
828      //       same parameter types cannot be overloaded if any of them
829      //       is a static member function declaration.
830      if (OldMethod->isStatic() || NewMethod->isStatic()) {
831        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
832        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
833        return true;
834      }
835
836      // C++ [class.mem]p1:
837      //   [...] A member shall not be declared twice in the
838      //   member-specification, except that a nested class or member
839      //   class template can be declared and then later defined.
840      unsigned NewDiag;
841      if (isa<CXXConstructorDecl>(OldMethod))
842        NewDiag = diag::err_constructor_redeclared;
843      else if (isa<CXXDestructorDecl>(NewMethod))
844        NewDiag = diag::err_destructor_redeclared;
845      else if (isa<CXXConversionDecl>(NewMethod))
846        NewDiag = diag::err_conv_function_redeclared;
847      else
848        NewDiag = diag::err_member_redeclared;
849
850      Diag(New->getLocation(), NewDiag);
851      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
852    }
853
854    // (C++98 8.3.5p3):
855    //   All declarations for a function shall agree exactly in both the
856    //   return type and the parameter-type-list.
857    if (OldQType == NewQType)
858      return MergeCompatibleFunctionDecls(New, Old);
859
860    // Fall through for conflicting redeclarations and redefinitions.
861  }
862
863  // C: Function types need to be compatible, not identical. This handles
864  // duplicate function decls like "void f(int); void f(enum X);" properly.
865  if (!getLangOptions().CPlusPlus &&
866      Context.typesAreCompatible(OldQType, NewQType)) {
867    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
868    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
869    const FunctionProtoType *OldProto = 0;
870    if (isa<FunctionNoProtoType>(NewFuncType) &&
871        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
872      // The old declaration provided a function prototype, but the
873      // new declaration does not. Merge in the prototype.
874      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
875      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
876                                                 OldProto->arg_type_end());
877      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
878                                         ParamTypes.data(), ParamTypes.size(),
879                                         OldProto->isVariadic(),
880                                         OldProto->getTypeQuals());
881      New->setType(NewQType);
882      New->setHasInheritedPrototype();
883
884      // Synthesize a parameter for each argument type.
885      llvm::SmallVector<ParmVarDecl*, 16> Params;
886      for (FunctionProtoType::arg_type_iterator
887             ParamType = OldProto->arg_type_begin(),
888             ParamEnd = OldProto->arg_type_end();
889           ParamType != ParamEnd; ++ParamType) {
890        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
891                                                 SourceLocation(), 0,
892                                                 *ParamType, /*DInfo=*/0,
893                                                 VarDecl::None, 0);
894        Param->setImplicit();
895        Params.push_back(Param);
896      }
897
898      New->setParams(Context, Params.data(), Params.size());
899    }
900
901    return MergeCompatibleFunctionDecls(New, Old);
902  }
903
904  // GNU C permits a K&R definition to follow a prototype declaration
905  // if the declared types of the parameters in the K&R definition
906  // match the types in the prototype declaration, even when the
907  // promoted types of the parameters from the K&R definition differ
908  // from the types in the prototype. GCC then keeps the types from
909  // the prototype.
910  //
911  // If a variadic prototype is followed by a non-variadic K&R definition,
912  // the K&R definition becomes variadic.  This is sort of an edge case, but
913  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
914  // C99 6.9.1p8.
915  if (!getLangOptions().CPlusPlus &&
916      Old->hasPrototype() && !New->hasPrototype() &&
917      New->getType()->getAs<FunctionProtoType>() &&
918      Old->getNumParams() == New->getNumParams()) {
919    llvm::SmallVector<QualType, 16> ArgTypes;
920    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
921    const FunctionProtoType *OldProto
922      = Old->getType()->getAs<FunctionProtoType>();
923    const FunctionProtoType *NewProto
924      = New->getType()->getAs<FunctionProtoType>();
925
926    // Determine whether this is the GNU C extension.
927    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
928                                               NewProto->getResultType());
929    bool LooseCompatible = !MergedReturn.isNull();
930    for (unsigned Idx = 0, End = Old->getNumParams();
931         LooseCompatible && Idx != End; ++Idx) {
932      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
933      ParmVarDecl *NewParm = New->getParamDecl(Idx);
934      if (Context.typesAreCompatible(OldParm->getType(),
935                                     NewProto->getArgType(Idx))) {
936        ArgTypes.push_back(NewParm->getType());
937      } else if (Context.typesAreCompatible(OldParm->getType(),
938                                            NewParm->getType())) {
939        GNUCompatibleParamWarning Warn
940          = { OldParm, NewParm, NewProto->getArgType(Idx) };
941        Warnings.push_back(Warn);
942        ArgTypes.push_back(NewParm->getType());
943      } else
944        LooseCompatible = false;
945    }
946
947    if (LooseCompatible) {
948      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
949        Diag(Warnings[Warn].NewParm->getLocation(),
950             diag::ext_param_promoted_not_compatible_with_prototype)
951          << Warnings[Warn].PromotedType
952          << Warnings[Warn].OldParm->getType();
953        Diag(Warnings[Warn].OldParm->getLocation(),
954             diag::note_previous_declaration);
955      }
956
957      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
958                                           ArgTypes.size(),
959                                           OldProto->isVariadic(), 0));
960      return MergeCompatibleFunctionDecls(New, Old);
961    }
962
963    // Fall through to diagnose conflicting types.
964  }
965
966  // A function that has already been declared has been redeclared or defined
967  // with a different type- show appropriate diagnostic
968  if (unsigned BuiltinID = Old->getBuiltinID()) {
969    // The user has declared a builtin function with an incompatible
970    // signature.
971    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
972      // The function the user is redeclaring is a library-defined
973      // function like 'malloc' or 'printf'. Warn about the
974      // redeclaration, then pretend that we don't know about this
975      // library built-in.
976      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
977      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
978        << Old << Old->getType();
979      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
980      Old->setInvalidDecl();
981      return false;
982    }
983
984    PrevDiag = diag::note_previous_builtin_declaration;
985  }
986
987  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
988  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
989  return true;
990}
991
992/// \brief Completes the merge of two function declarations that are
993/// known to be compatible.
994///
995/// This routine handles the merging of attributes and other
996/// properties of function declarations form the old declaration to
997/// the new declaration, once we know that New is in fact a
998/// redeclaration of Old.
999///
1000/// \returns false
1001bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1002  // Merge the attributes
1003  MergeAttributes(New, Old, Context);
1004
1005  // Merge the storage class.
1006  if (Old->getStorageClass() != FunctionDecl::Extern &&
1007      Old->getStorageClass() != FunctionDecl::None)
1008    New->setStorageClass(Old->getStorageClass());
1009
1010  // Merge "pure" flag.
1011  if (Old->isPure())
1012    New->setPure();
1013
1014  // Merge the "deleted" flag.
1015  if (Old->isDeleted())
1016    New->setDeleted();
1017
1018  if (getLangOptions().CPlusPlus)
1019    return MergeCXXFunctionDecl(New, Old);
1020
1021  return false;
1022}
1023
1024/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1025/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1026/// situation, merging decls or emitting diagnostics as appropriate.
1027///
1028/// Tentative definition rules (C99 6.9.2p2) are checked by
1029/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1030/// definitions here, since the initializer hasn't been attached.
1031///
1032void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1033  // If the new decl is already invalid, don't do any other checking.
1034  if (New->isInvalidDecl())
1035    return;
1036
1037  // Verify the old decl was also a variable.
1038  VarDecl *Old = 0;
1039  if (!Previous.isSingleResult() ||
1040      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1041    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1042      << New->getDeclName();
1043    Diag(Previous.getRepresentativeDecl()->getLocation(),
1044         diag::note_previous_definition);
1045    return New->setInvalidDecl();
1046  }
1047
1048  MergeAttributes(New, Old, Context);
1049
1050  // Merge the types
1051  QualType MergedT;
1052  if (getLangOptions().CPlusPlus) {
1053    if (Context.hasSameType(New->getType(), Old->getType()))
1054      MergedT = New->getType();
1055    // C++ [basic.types]p7:
1056    //   [...] The declared type of an array object might be an array of
1057    //   unknown size and therefore be incomplete at one point in a
1058    //   translation unit and complete later on; [...]
1059    else if (Old->getType()->isIncompleteArrayType() &&
1060             New->getType()->isArrayType()) {
1061      CanQual<ArrayType> OldArray
1062        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1063      CanQual<ArrayType> NewArray
1064        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1065      if (OldArray->getElementType() == NewArray->getElementType())
1066        MergedT = New->getType();
1067    }
1068  } else {
1069    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1070  }
1071  if (MergedT.isNull()) {
1072    Diag(New->getLocation(), diag::err_redefinition_different_type)
1073      << New->getDeclName();
1074    Diag(Old->getLocation(), diag::note_previous_definition);
1075    return New->setInvalidDecl();
1076  }
1077  New->setType(MergedT);
1078
1079  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1080  if (New->getStorageClass() == VarDecl::Static &&
1081      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1082    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1083    Diag(Old->getLocation(), diag::note_previous_definition);
1084    return New->setInvalidDecl();
1085  }
1086  // C99 6.2.2p4:
1087  //   For an identifier declared with the storage-class specifier
1088  //   extern in a scope in which a prior declaration of that
1089  //   identifier is visible,23) if the prior declaration specifies
1090  //   internal or external linkage, the linkage of the identifier at
1091  //   the later declaration is the same as the linkage specified at
1092  //   the prior declaration. If no prior declaration is visible, or
1093  //   if the prior declaration specifies no linkage, then the
1094  //   identifier has external linkage.
1095  if (New->hasExternalStorage() && Old->hasLinkage())
1096    /* Okay */;
1097  else if (New->getStorageClass() != VarDecl::Static &&
1098           Old->getStorageClass() == VarDecl::Static) {
1099    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1100    Diag(Old->getLocation(), diag::note_previous_definition);
1101    return New->setInvalidDecl();
1102  }
1103
1104  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1105
1106  // FIXME: The test for external storage here seems wrong? We still
1107  // need to check for mismatches.
1108  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1109      // Don't complain about out-of-line definitions of static members.
1110      !(Old->getLexicalDeclContext()->isRecord() &&
1111        !New->getLexicalDeclContext()->isRecord())) {
1112    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1113    Diag(Old->getLocation(), diag::note_previous_definition);
1114    return New->setInvalidDecl();
1115  }
1116
1117  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1118    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1119    Diag(Old->getLocation(), diag::note_previous_definition);
1120  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1121    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1122    Diag(Old->getLocation(), diag::note_previous_definition);
1123  }
1124
1125  // Keep a chain of previous declarations.
1126  New->setPreviousDeclaration(Old);
1127}
1128
1129/// CheckFallThrough - Check that we don't fall off the end of a
1130/// Statement that should return a value.
1131///
1132/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1133/// MaybeFallThrough iff we might or might not fall off the end,
1134/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1135/// return.  We assume NeverFallThrough iff we never fall off the end of the
1136/// statement but we may return.  We assume that functions not marked noreturn
1137/// will return.
1138Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1139  // FIXME: Eventually share this CFG object when we have other warnings based
1140  // of the CFG.  This can be done using AnalysisContext.
1141  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1142
1143  // FIXME: They should never return 0, fix that, delete this code.
1144  if (cfg == 0)
1145    // FIXME: This should be NeverFallThrough
1146    return NeverFallThroughOrReturn;
1147  // The CFG leaves in dead things, and we don't want to dead code paths to
1148  // confuse us, so we mark all live things first.
1149  std::queue<CFGBlock*> workq;
1150  llvm::BitVector live(cfg->getNumBlockIDs());
1151  // Prep work queue
1152  workq.push(&cfg->getEntry());
1153  // Solve
1154  while (!workq.empty()) {
1155    CFGBlock *item = workq.front();
1156    workq.pop();
1157    live.set(item->getBlockID());
1158    for (CFGBlock::succ_iterator I=item->succ_begin(),
1159           E=item->succ_end();
1160         I != E;
1161         ++I) {
1162      if ((*I) && !live[(*I)->getBlockID()]) {
1163        live.set((*I)->getBlockID());
1164        workq.push(*I);
1165      }
1166    }
1167  }
1168
1169  // Now we know what is live, we check the live precessors of the exit block
1170  // and look for fall through paths, being careful to ignore normal returns,
1171  // and exceptional paths.
1172  bool HasLiveReturn = false;
1173  bool HasFakeEdge = false;
1174  bool HasPlainEdge = false;
1175  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1176         E = cfg->getExit().pred_end();
1177       I != E;
1178       ++I) {
1179    CFGBlock& B = **I;
1180    if (!live[B.getBlockID()])
1181      continue;
1182    if (B.size() == 0) {
1183      // A labeled empty statement, or the entry block...
1184      HasPlainEdge = true;
1185      continue;
1186    }
1187    Stmt *S = B[B.size()-1];
1188    if (isa<ReturnStmt>(S)) {
1189      HasLiveReturn = true;
1190      continue;
1191    }
1192    if (isa<ObjCAtThrowStmt>(S)) {
1193      HasFakeEdge = true;
1194      continue;
1195    }
1196    if (isa<CXXThrowExpr>(S)) {
1197      HasFakeEdge = true;
1198      continue;
1199    }
1200    bool NoReturnEdge = false;
1201    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1202      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1203      if (CEE->getType().getNoReturnAttr()) {
1204        NoReturnEdge = true;
1205        HasFakeEdge = true;
1206      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1207        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1208          if (FD->hasAttr<NoReturnAttr>()) {
1209            NoReturnEdge = true;
1210            HasFakeEdge = true;
1211          }
1212        }
1213      }
1214    }
1215    // FIXME: Add noreturn message sends.
1216    if (NoReturnEdge == false)
1217      HasPlainEdge = true;
1218  }
1219  if (!HasPlainEdge) {
1220    if (HasLiveReturn)
1221      return NeverFallThrough;
1222    return NeverFallThroughOrReturn;
1223  }
1224  if (HasFakeEdge || HasLiveReturn)
1225    return MaybeFallThrough;
1226  // This says AlwaysFallThrough for calls to functions that are not marked
1227  // noreturn, that don't return.  If people would like this warning to be more
1228  // accurate, such functions should be marked as noreturn.
1229  return AlwaysFallThrough;
1230}
1231
1232/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1233/// function that should return a value.  Check that we don't fall off the end
1234/// of a noreturn function.  We assume that functions and blocks not marked
1235/// noreturn will return.
1236void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1237  // FIXME: Would be nice if we had a better way to control cascading errors,
1238  // but for now, avoid them.  The problem is that when Parse sees:
1239  //   int foo() { return a; }
1240  // The return is eaten and the Sema code sees just:
1241  //   int foo() { }
1242  // which this code would then warn about.
1243  if (getDiagnostics().hasErrorOccurred())
1244    return;
1245
1246  bool ReturnsVoid = false;
1247  bool HasNoReturn = false;
1248  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1249    // If the result type of the function is a dependent type, we don't know
1250    // whether it will be void or not, so don't
1251    if (FD->getResultType()->isDependentType())
1252      return;
1253    if (FD->getResultType()->isVoidType())
1254      ReturnsVoid = true;
1255    if (FD->hasAttr<NoReturnAttr>())
1256      HasNoReturn = true;
1257  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1258    if (MD->getResultType()->isVoidType())
1259      ReturnsVoid = true;
1260    if (MD->hasAttr<NoReturnAttr>())
1261      HasNoReturn = true;
1262  }
1263
1264  // Short circuit for compilation speed.
1265  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1266       == Diagnostic::Ignored || ReturnsVoid)
1267      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1268          == Diagnostic::Ignored || !HasNoReturn)
1269      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1270          == Diagnostic::Ignored || !ReturnsVoid))
1271    return;
1272  // FIXME: Function try block
1273  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1274    switch (CheckFallThrough(Body)) {
1275    case MaybeFallThrough:
1276      if (HasNoReturn)
1277        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1278      else if (!ReturnsVoid)
1279        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1280      break;
1281    case AlwaysFallThrough:
1282      if (HasNoReturn)
1283        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1284      else if (!ReturnsVoid)
1285        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1286      break;
1287    case NeverFallThroughOrReturn:
1288      if (ReturnsVoid && !HasNoReturn)
1289        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1290      break;
1291    case NeverFallThrough:
1292      break;
1293    }
1294  }
1295}
1296
1297/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1298/// that should return a value.  Check that we don't fall off the end of a
1299/// noreturn block.  We assume that functions and blocks not marked noreturn
1300/// will return.
1301void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1302  // FIXME: Would be nice if we had a better way to control cascading errors,
1303  // but for now, avoid them.  The problem is that when Parse sees:
1304  //   int foo() { return a; }
1305  // The return is eaten and the Sema code sees just:
1306  //   int foo() { }
1307  // which this code would then warn about.
1308  if (getDiagnostics().hasErrorOccurred())
1309    return;
1310  bool ReturnsVoid = false;
1311  bool HasNoReturn = false;
1312  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1313    if (FT->getResultType()->isVoidType())
1314      ReturnsVoid = true;
1315    if (FT->getNoReturnAttr())
1316      HasNoReturn = true;
1317  }
1318
1319  // Short circuit for compilation speed.
1320  if (ReturnsVoid
1321      && !HasNoReturn
1322      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1323          == Diagnostic::Ignored || !ReturnsVoid))
1324    return;
1325  // FIXME: Funtion try block
1326  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1327    switch (CheckFallThrough(Body)) {
1328    case MaybeFallThrough:
1329      if (HasNoReturn)
1330        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1331      else if (!ReturnsVoid)
1332        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1333      break;
1334    case AlwaysFallThrough:
1335      if (HasNoReturn)
1336        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1337      else if (!ReturnsVoid)
1338        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1339      break;
1340    case NeverFallThroughOrReturn:
1341      if (ReturnsVoid)
1342        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1343      break;
1344    case NeverFallThrough:
1345      break;
1346    }
1347  }
1348}
1349
1350/// CheckParmsForFunctionDef - Check that the parameters of the given
1351/// function are appropriate for the definition of a function. This
1352/// takes care of any checks that cannot be performed on the
1353/// declaration itself, e.g., that the types of each of the function
1354/// parameters are complete.
1355bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1356  bool HasInvalidParm = false;
1357  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1358    ParmVarDecl *Param = FD->getParamDecl(p);
1359
1360    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1361    // function declarator that is part of a function definition of
1362    // that function shall not have incomplete type.
1363    //
1364    // This is also C++ [dcl.fct]p6.
1365    if (!Param->isInvalidDecl() &&
1366        RequireCompleteType(Param->getLocation(), Param->getType(),
1367                               diag::err_typecheck_decl_incomplete_type)) {
1368      Param->setInvalidDecl();
1369      HasInvalidParm = true;
1370    }
1371
1372    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1373    // declaration of each parameter shall include an identifier.
1374    if (Param->getIdentifier() == 0 &&
1375        !Param->isImplicit() &&
1376        !getLangOptions().CPlusPlus)
1377      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1378  }
1379
1380  return HasInvalidParm;
1381}
1382
1383/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1384/// no declarator (e.g. "struct foo;") is parsed.
1385Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1386  // FIXME: Error on auto/register at file scope
1387  // FIXME: Error on inline/virtual/explicit
1388  // FIXME: Error on invalid restrict
1389  // FIXME: Warn on useless __thread
1390  // FIXME: Warn on useless const/volatile
1391  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1392  // FIXME: Warn on useless attributes
1393  Decl *TagD = 0;
1394  TagDecl *Tag = 0;
1395  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1396      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1397      DS.getTypeSpecType() == DeclSpec::TST_union ||
1398      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1399    TagD = static_cast<Decl *>(DS.getTypeRep());
1400
1401    if (!TagD) // We probably had an error
1402      return DeclPtrTy();
1403
1404    // Note that the above type specs guarantee that the
1405    // type rep is a Decl, whereas in many of the others
1406    // it's a Type.
1407    Tag = dyn_cast<TagDecl>(TagD);
1408  }
1409
1410  if (DS.isFriendSpecified()) {
1411    // If we're dealing with a class template decl, assume that the
1412    // template routines are handling it.
1413    if (TagD && isa<ClassTemplateDecl>(TagD))
1414      return DeclPtrTy();
1415    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1416  }
1417
1418  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1419    // If there are attributes in the DeclSpec, apply them to the record.
1420    if (const AttributeList *AL = DS.getAttributes())
1421      ProcessDeclAttributeList(S, Record, AL);
1422
1423    if (!Record->getDeclName() && Record->isDefinition() &&
1424        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1425      if (getLangOptions().CPlusPlus ||
1426          Record->getDeclContext()->isRecord())
1427        return BuildAnonymousStructOrUnion(S, DS, Record);
1428
1429      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1430        << DS.getSourceRange();
1431    }
1432
1433    // Microsoft allows unnamed struct/union fields. Don't complain
1434    // about them.
1435    // FIXME: Should we support Microsoft's extensions in this area?
1436    if (Record->getDeclName() && getLangOptions().Microsoft)
1437      return DeclPtrTy::make(Tag);
1438  }
1439
1440  if (!DS.isMissingDeclaratorOk() &&
1441      DS.getTypeSpecType() != DeclSpec::TST_error) {
1442    // Warn about typedefs of enums without names, since this is an
1443    // extension in both Microsoft an GNU.
1444    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1445        Tag && isa<EnumDecl>(Tag)) {
1446      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1447        << DS.getSourceRange();
1448      return DeclPtrTy::make(Tag);
1449    }
1450
1451    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1452      << DS.getSourceRange();
1453    return DeclPtrTy();
1454  }
1455
1456  return DeclPtrTy::make(Tag);
1457}
1458
1459/// We are trying to introduce the given name into the given context;
1460/// check if there's an existing declaration that can't be overloaded.
1461///
1462/// \return true if this is a forbidden redeclaration
1463bool Sema::CheckRedeclaration(DeclContext *DC,
1464                              DeclarationName Name,
1465                              SourceLocation NameLoc,
1466                              unsigned diagnostic) {
1467  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1468                 ForRedeclaration);
1469  LookupQualifiedName(R, DC);
1470
1471  if (R.empty()) return false;
1472
1473  if (R.getResultKind() == LookupResult::Found &&
1474      isa<TagDecl>(R.getFoundDecl()))
1475    return false;
1476
1477  // Pick a representative declaration.
1478  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1479
1480  Diag(NameLoc, diagnostic) << Name;
1481  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1482
1483  return true;
1484}
1485
1486/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1487/// anonymous struct or union AnonRecord into the owning context Owner
1488/// and scope S. This routine will be invoked just after we realize
1489/// that an unnamed union or struct is actually an anonymous union or
1490/// struct, e.g.,
1491///
1492/// @code
1493/// union {
1494///   int i;
1495///   float f;
1496/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1497///    // f into the surrounding scope.x
1498/// @endcode
1499///
1500/// This routine is recursive, injecting the names of nested anonymous
1501/// structs/unions into the owning context and scope as well.
1502bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1503                                               RecordDecl *AnonRecord) {
1504  unsigned diagKind
1505    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1506                            : diag::err_anonymous_struct_member_redecl;
1507
1508  bool Invalid = false;
1509  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1510                               FEnd = AnonRecord->field_end();
1511       F != FEnd; ++F) {
1512    if ((*F)->getDeclName()) {
1513      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1514                             (*F)->getLocation(), diagKind)) {
1515        // C++ [class.union]p2:
1516        //   The names of the members of an anonymous union shall be
1517        //   distinct from the names of any other entity in the
1518        //   scope in which the anonymous union is declared.
1519        Invalid = true;
1520      } else {
1521        // C++ [class.union]p2:
1522        //   For the purpose of name lookup, after the anonymous union
1523        //   definition, the members of the anonymous union are
1524        //   considered to have been defined in the scope in which the
1525        //   anonymous union is declared.
1526        Owner->makeDeclVisibleInContext(*F);
1527        S->AddDecl(DeclPtrTy::make(*F));
1528        IdResolver.AddDecl(*F);
1529      }
1530    } else if (const RecordType *InnerRecordType
1531                 = (*F)->getType()->getAs<RecordType>()) {
1532      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1533      if (InnerRecord->isAnonymousStructOrUnion())
1534        Invalid = Invalid ||
1535          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1536    }
1537  }
1538
1539  return Invalid;
1540}
1541
1542/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1543/// anonymous structure or union. Anonymous unions are a C++ feature
1544/// (C++ [class.union]) and a GNU C extension; anonymous structures
1545/// are a GNU C and GNU C++ extension.
1546Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1547                                                  RecordDecl *Record) {
1548  DeclContext *Owner = Record->getDeclContext();
1549
1550  // Diagnose whether this anonymous struct/union is an extension.
1551  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1552    Diag(Record->getLocation(), diag::ext_anonymous_union);
1553  else if (!Record->isUnion())
1554    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1555
1556  // C and C++ require different kinds of checks for anonymous
1557  // structs/unions.
1558  bool Invalid = false;
1559  if (getLangOptions().CPlusPlus) {
1560    const char* PrevSpec = 0;
1561    unsigned DiagID;
1562    // C++ [class.union]p3:
1563    //   Anonymous unions declared in a named namespace or in the
1564    //   global namespace shall be declared static.
1565    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1566        (isa<TranslationUnitDecl>(Owner) ||
1567         (isa<NamespaceDecl>(Owner) &&
1568          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1569      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1570      Invalid = true;
1571
1572      // Recover by adding 'static'.
1573      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1574                             PrevSpec, DiagID);
1575    }
1576    // C++ [class.union]p3:
1577    //   A storage class is not allowed in a declaration of an
1578    //   anonymous union in a class scope.
1579    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1580             isa<RecordDecl>(Owner)) {
1581      Diag(DS.getStorageClassSpecLoc(),
1582           diag::err_anonymous_union_with_storage_spec);
1583      Invalid = true;
1584
1585      // Recover by removing the storage specifier.
1586      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1587                             PrevSpec, DiagID);
1588    }
1589
1590    // C++ [class.union]p2:
1591    //   The member-specification of an anonymous union shall only
1592    //   define non-static data members. [Note: nested types and
1593    //   functions cannot be declared within an anonymous union. ]
1594    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1595                                 MemEnd = Record->decls_end();
1596         Mem != MemEnd; ++Mem) {
1597      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1598        // C++ [class.union]p3:
1599        //   An anonymous union shall not have private or protected
1600        //   members (clause 11).
1601        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1602          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1603            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1604          Invalid = true;
1605        }
1606      } else if ((*Mem)->isImplicit()) {
1607        // Any implicit members are fine.
1608      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1609        // This is a type that showed up in an
1610        // elaborated-type-specifier inside the anonymous struct or
1611        // union, but which actually declares a type outside of the
1612        // anonymous struct or union. It's okay.
1613      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1614        if (!MemRecord->isAnonymousStructOrUnion() &&
1615            MemRecord->getDeclName()) {
1616          // This is a nested type declaration.
1617          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1618            << (int)Record->isUnion();
1619          Invalid = true;
1620        }
1621      } else {
1622        // We have something that isn't a non-static data
1623        // member. Complain about it.
1624        unsigned DK = diag::err_anonymous_record_bad_member;
1625        if (isa<TypeDecl>(*Mem))
1626          DK = diag::err_anonymous_record_with_type;
1627        else if (isa<FunctionDecl>(*Mem))
1628          DK = diag::err_anonymous_record_with_function;
1629        else if (isa<VarDecl>(*Mem))
1630          DK = diag::err_anonymous_record_with_static;
1631        Diag((*Mem)->getLocation(), DK)
1632            << (int)Record->isUnion();
1633          Invalid = true;
1634      }
1635    }
1636  }
1637
1638  if (!Record->isUnion() && !Owner->isRecord()) {
1639    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1640      << (int)getLangOptions().CPlusPlus;
1641    Invalid = true;
1642  }
1643
1644  // Mock up a declarator.
1645  Declarator Dc(DS, Declarator::TypeNameContext);
1646  DeclaratorInfo *DInfo = 0;
1647  GetTypeForDeclarator(Dc, S, &DInfo);
1648  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1649
1650  // Create a declaration for this anonymous struct/union.
1651  NamedDecl *Anon = 0;
1652  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1653    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1654                             /*IdentifierInfo=*/0,
1655                             Context.getTypeDeclType(Record),
1656                             DInfo,
1657                             /*BitWidth=*/0, /*Mutable=*/false);
1658    Anon->setAccess(AS_public);
1659    if (getLangOptions().CPlusPlus)
1660      FieldCollector->Add(cast<FieldDecl>(Anon));
1661  } else {
1662    VarDecl::StorageClass SC;
1663    switch (DS.getStorageClassSpec()) {
1664    default: assert(0 && "Unknown storage class!");
1665    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1666    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1667    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1668    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1669    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1670    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1671    case DeclSpec::SCS_mutable:
1672      // mutable can only appear on non-static class members, so it's always
1673      // an error here
1674      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1675      Invalid = true;
1676      SC = VarDecl::None;
1677      break;
1678    }
1679
1680    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1681                           /*IdentifierInfo=*/0,
1682                           Context.getTypeDeclType(Record),
1683                           DInfo,
1684                           SC);
1685  }
1686  Anon->setImplicit();
1687
1688  // Add the anonymous struct/union object to the current
1689  // context. We'll be referencing this object when we refer to one of
1690  // its members.
1691  Owner->addDecl(Anon);
1692
1693  // Inject the members of the anonymous struct/union into the owning
1694  // context and into the identifier resolver chain for name lookup
1695  // purposes.
1696  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1697    Invalid = true;
1698
1699  // Mark this as an anonymous struct/union type. Note that we do not
1700  // do this until after we have already checked and injected the
1701  // members of this anonymous struct/union type, because otherwise
1702  // the members could be injected twice: once by DeclContext when it
1703  // builds its lookup table, and once by
1704  // InjectAnonymousStructOrUnionMembers.
1705  Record->setAnonymousStructOrUnion(true);
1706
1707  if (Invalid)
1708    Anon->setInvalidDecl();
1709
1710  return DeclPtrTy::make(Anon);
1711}
1712
1713
1714/// GetNameForDeclarator - Determine the full declaration name for the
1715/// given Declarator.
1716DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1717  return GetNameFromUnqualifiedId(D.getName());
1718}
1719
1720/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1721DeclarationName Sema::GetNameFromUnqualifiedId(UnqualifiedId &Name) {
1722  switch (Name.getKind()) {
1723    case UnqualifiedId::IK_Identifier:
1724      return DeclarationName(Name.Identifier);
1725
1726    case UnqualifiedId::IK_OperatorFunctionId:
1727      return Context.DeclarationNames.getCXXOperatorName(
1728                                                         Name.OperatorFunctionId.Operator);
1729
1730    case UnqualifiedId::IK_ConversionFunctionId: {
1731      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1732      if (Ty.isNull())
1733        return DeclarationName();
1734
1735      return Context.DeclarationNames.getCXXConversionFunctionName(
1736                                                                   Context.getCanonicalType(Ty));
1737    }
1738
1739    case UnqualifiedId::IK_ConstructorName: {
1740      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1741      if (Ty.isNull())
1742        return DeclarationName();
1743
1744      return Context.DeclarationNames.getCXXConstructorName(
1745                                                            Context.getCanonicalType(Ty));
1746    }
1747
1748    case UnqualifiedId::IK_DestructorName: {
1749      QualType Ty = GetTypeFromParser(Name.DestructorName);
1750      if (Ty.isNull())
1751        return DeclarationName();
1752
1753      return Context.DeclarationNames.getCXXDestructorName(
1754                                                           Context.getCanonicalType(Ty));
1755    }
1756
1757    case UnqualifiedId::IK_TemplateId: {
1758      TemplateName TName
1759        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1760      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1761        return Template->getDeclName();
1762      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1763        return Ovl->getDeclName();
1764
1765      return DeclarationName();
1766    }
1767  }
1768
1769  assert(false && "Unknown name kind");
1770  return DeclarationName();
1771}
1772
1773/// isNearlyMatchingFunction - Determine whether the C++ functions
1774/// Declaration and Definition are "nearly" matching. This heuristic
1775/// is used to improve diagnostics in the case where an out-of-line
1776/// function definition doesn't match any declaration within
1777/// the class or namespace.
1778static bool isNearlyMatchingFunction(ASTContext &Context,
1779                                     FunctionDecl *Declaration,
1780                                     FunctionDecl *Definition) {
1781  if (Declaration->param_size() != Definition->param_size())
1782    return false;
1783  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1784    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1785    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1786
1787    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1788                                        DefParamTy.getNonReferenceType()))
1789      return false;
1790  }
1791
1792  return true;
1793}
1794
1795Sema::DeclPtrTy
1796Sema::HandleDeclarator(Scope *S, Declarator &D,
1797                       MultiTemplateParamsArg TemplateParamLists,
1798                       bool IsFunctionDefinition) {
1799  DeclarationName Name = GetNameForDeclarator(D);
1800
1801  // All of these full declarators require an identifier.  If it doesn't have
1802  // one, the ParsedFreeStandingDeclSpec action should be used.
1803  if (!Name) {
1804    if (!D.isInvalidType())  // Reject this if we think it is valid.
1805      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1806           diag::err_declarator_need_ident)
1807        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1808    return DeclPtrTy();
1809  }
1810
1811  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1812  // we find one that is.
1813  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1814         (S->getFlags() & Scope::TemplateParamScope) != 0)
1815    S = S->getParent();
1816
1817  // If this is an out-of-line definition of a member of a class template
1818  // or class template partial specialization, we may need to rebuild the
1819  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1820  // for more information.
1821  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1822  // handle expressions properly.
1823  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1824  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1825      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1826      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1827       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1828       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1829       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1830    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1831      // FIXME: Preserve type source info.
1832      QualType T = GetTypeFromParser(DS.getTypeRep());
1833      EnterDeclaratorContext(S, DC);
1834      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1835      ExitDeclaratorContext(S);
1836      if (T.isNull())
1837        return DeclPtrTy();
1838      DS.UpdateTypeRep(T.getAsOpaquePtr());
1839    }
1840  }
1841
1842  DeclContext *DC;
1843  NamedDecl *New;
1844
1845  DeclaratorInfo *DInfo = 0;
1846  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1847
1848  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1849                        ForRedeclaration);
1850
1851  // See if this is a redefinition of a variable in the same scope.
1852  if (D.getCXXScopeSpec().isInvalid()) {
1853    DC = CurContext;
1854    D.setInvalidType();
1855  } else if (!D.getCXXScopeSpec().isSet()) {
1856    bool IsLinkageLookup = false;
1857
1858    // If the declaration we're planning to build will be a function
1859    // or object with linkage, then look for another declaration with
1860    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1861    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1862      /* Do nothing*/;
1863    else if (R->isFunctionType()) {
1864      if (CurContext->isFunctionOrMethod() ||
1865          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1866        IsLinkageLookup = true;
1867    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1868      IsLinkageLookup = true;
1869    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1870             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1871      IsLinkageLookup = true;
1872
1873    if (IsLinkageLookup)
1874      Previous.clear(LookupRedeclarationWithLinkage);
1875
1876    DC = CurContext;
1877    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1878  } else { // Something like "int foo::x;"
1879    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1880
1881    if (!DC) {
1882      // If we could not compute the declaration context, it's because the
1883      // declaration context is dependent but does not refer to a class,
1884      // class template, or class template partial specialization. Complain
1885      // and return early, to avoid the coming semantic disaster.
1886      Diag(D.getIdentifierLoc(),
1887           diag::err_template_qualified_declarator_no_match)
1888        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1889        << D.getCXXScopeSpec().getRange();
1890      return DeclPtrTy();
1891    }
1892
1893    if (!DC->isDependentContext() &&
1894        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1895      return DeclPtrTy();
1896
1897    LookupQualifiedName(Previous, DC);
1898
1899    // Don't consider using declarations as previous declarations for
1900    // out-of-line members.
1901    RemoveUsingDecls(Previous);
1902
1903    // C++ 7.3.1.2p2:
1904    // Members (including explicit specializations of templates) of a named
1905    // namespace can also be defined outside that namespace by explicit
1906    // qualification of the name being defined, provided that the entity being
1907    // defined was already declared in the namespace and the definition appears
1908    // after the point of declaration in a namespace that encloses the
1909    // declarations namespace.
1910    //
1911    // Note that we only check the context at this point. We don't yet
1912    // have enough information to make sure that PrevDecl is actually
1913    // the declaration we want to match. For example, given:
1914    //
1915    //   class X {
1916    //     void f();
1917    //     void f(float);
1918    //   };
1919    //
1920    //   void X::f(int) { } // ill-formed
1921    //
1922    // In this case, PrevDecl will point to the overload set
1923    // containing the two f's declared in X, but neither of them
1924    // matches.
1925
1926    // First check whether we named the global scope.
1927    if (isa<TranslationUnitDecl>(DC)) {
1928      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1929        << Name << D.getCXXScopeSpec().getRange();
1930    } else {
1931      DeclContext *Cur = CurContext;
1932      while (isa<LinkageSpecDecl>(Cur))
1933        Cur = Cur->getParent();
1934      if (!Cur->Encloses(DC)) {
1935        // The qualifying scope doesn't enclose the original declaration.
1936        // Emit diagnostic based on current scope.
1937        SourceLocation L = D.getIdentifierLoc();
1938        SourceRange R = D.getCXXScopeSpec().getRange();
1939        if (isa<FunctionDecl>(Cur))
1940          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1941        else
1942          Diag(L, diag::err_invalid_declarator_scope)
1943            << Name << cast<NamedDecl>(DC) << R;
1944        D.setInvalidType();
1945      }
1946    }
1947  }
1948
1949  if (Previous.isSingleResult() &&
1950      Previous.getFoundDecl()->isTemplateParameter()) {
1951    // Maybe we will complain about the shadowed template parameter.
1952    if (!D.isInvalidType())
1953      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1954                                          Previous.getFoundDecl()))
1955        D.setInvalidType();
1956
1957    // Just pretend that we didn't see the previous declaration.
1958    Previous.clear();
1959  }
1960
1961  // In C++, the previous declaration we find might be a tag type
1962  // (class or enum). In this case, the new declaration will hide the
1963  // tag type. Note that this does does not apply if we're declaring a
1964  // typedef (C++ [dcl.typedef]p4).
1965  if (Previous.isSingleTagDecl() &&
1966      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1967    Previous.clear();
1968
1969  bool Redeclaration = false;
1970  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1971    if (TemplateParamLists.size()) {
1972      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1973      return DeclPtrTy();
1974    }
1975
1976    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, Previous, Redeclaration);
1977  } else if (R->isFunctionType()) {
1978    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, Previous,
1979                                  move(TemplateParamLists),
1980                                  IsFunctionDefinition, Redeclaration);
1981  } else {
1982    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, Previous,
1983                                  move(TemplateParamLists),
1984                                  Redeclaration);
1985  }
1986
1987  if (New == 0)
1988    return DeclPtrTy();
1989
1990  // If this has an identifier and is not an invalid redeclaration or
1991  // function template specialization, add it to the scope stack.
1992  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1993      !(isa<FunctionDecl>(New) &&
1994        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1995    PushOnScopeChains(New, S);
1996
1997  return DeclPtrTy::make(New);
1998}
1999
2000/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2001/// types into constant array types in certain situations which would otherwise
2002/// be errors (for GCC compatibility).
2003static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2004                                                    ASTContext &Context,
2005                                                    bool &SizeIsNegative) {
2006  // This method tries to turn a variable array into a constant
2007  // array even when the size isn't an ICE.  This is necessary
2008  // for compatibility with code that depends on gcc's buggy
2009  // constant expression folding, like struct {char x[(int)(char*)2];}
2010  SizeIsNegative = false;
2011
2012  QualifierCollector Qs;
2013  const Type *Ty = Qs.strip(T);
2014
2015  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2016    QualType Pointee = PTy->getPointeeType();
2017    QualType FixedType =
2018        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2019    if (FixedType.isNull()) return FixedType;
2020    FixedType = Context.getPointerType(FixedType);
2021    return Qs.apply(FixedType);
2022  }
2023
2024  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2025  if (!VLATy)
2026    return QualType();
2027  // FIXME: We should probably handle this case
2028  if (VLATy->getElementType()->isVariablyModifiedType())
2029    return QualType();
2030
2031  Expr::EvalResult EvalResult;
2032  if (!VLATy->getSizeExpr() ||
2033      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2034      !EvalResult.Val.isInt())
2035    return QualType();
2036
2037  llvm::APSInt &Res = EvalResult.Val.getInt();
2038  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2039    // TODO: preserve the size expression in declarator info
2040    return Context.getConstantArrayType(VLATy->getElementType(),
2041                                        Res, ArrayType::Normal, 0);
2042  }
2043
2044  SizeIsNegative = true;
2045  return QualType();
2046}
2047
2048/// \brief Register the given locally-scoped external C declaration so
2049/// that it can be found later for redeclarations
2050void
2051Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2052                                       const LookupResult &Previous,
2053                                       Scope *S) {
2054  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2055         "Decl is not a locally-scoped decl!");
2056  // Note that we have a locally-scoped external with this name.
2057  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2058
2059  if (!Previous.isSingleResult())
2060    return;
2061
2062  NamedDecl *PrevDecl = Previous.getFoundDecl();
2063
2064  // If there was a previous declaration of this variable, it may be
2065  // in our identifier chain. Update the identifier chain with the new
2066  // declaration.
2067  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2068    // The previous declaration was found on the identifer resolver
2069    // chain, so remove it from its scope.
2070    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2071      S = S->getParent();
2072
2073    if (S)
2074      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2075  }
2076}
2077
2078/// \brief Diagnose function specifiers on a declaration of an identifier that
2079/// does not identify a function.
2080void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2081  // FIXME: We should probably indicate the identifier in question to avoid
2082  // confusion for constructs like "inline int a(), b;"
2083  if (D.getDeclSpec().isInlineSpecified())
2084    Diag(D.getDeclSpec().getInlineSpecLoc(),
2085         diag::err_inline_non_function);
2086
2087  if (D.getDeclSpec().isVirtualSpecified())
2088    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2089         diag::err_virtual_non_function);
2090
2091  if (D.getDeclSpec().isExplicitSpecified())
2092    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2093         diag::err_explicit_non_function);
2094}
2095
2096NamedDecl*
2097Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2098                             QualType R,  DeclaratorInfo *DInfo,
2099                             LookupResult &Previous, bool &Redeclaration) {
2100  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2101  if (D.getCXXScopeSpec().isSet()) {
2102    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2103      << D.getCXXScopeSpec().getRange();
2104    D.setInvalidType();
2105    // Pretend we didn't see the scope specifier.
2106    DC = 0;
2107  }
2108
2109  if (getLangOptions().CPlusPlus) {
2110    // Check that there are no default arguments (C++ only).
2111    CheckExtraCXXDefaultArguments(D);
2112  }
2113
2114  DiagnoseFunctionSpecifiers(D);
2115
2116  if (D.getDeclSpec().isThreadSpecified())
2117    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2118
2119  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2120  if (!NewTD) return 0;
2121
2122  // Handle attributes prior to checking for duplicates in MergeVarDecl
2123  ProcessDeclAttributes(S, NewTD, D);
2124
2125  // Merge the decl with the existing one if appropriate. If the decl is
2126  // in an outer scope, it isn't the same thing.
2127  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2128  if (!Previous.empty()) {
2129    Redeclaration = true;
2130    MergeTypeDefDecl(NewTD, Previous);
2131  }
2132
2133  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2134  // then it shall have block scope.
2135  QualType T = NewTD->getUnderlyingType();
2136  if (T->isVariablyModifiedType()) {
2137    CurFunctionNeedsScopeChecking = true;
2138
2139    if (S->getFnParent() == 0) {
2140      bool SizeIsNegative;
2141      QualType FixedTy =
2142          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2143      if (!FixedTy.isNull()) {
2144        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2145        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2146      } else {
2147        if (SizeIsNegative)
2148          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2149        else if (T->isVariableArrayType())
2150          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2151        else
2152          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2153        NewTD->setInvalidDecl();
2154      }
2155    }
2156  }
2157
2158  // If this is the C FILE type, notify the AST context.
2159  if (IdentifierInfo *II = NewTD->getIdentifier())
2160    if (!NewTD->isInvalidDecl() &&
2161        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2162      if (II->isStr("FILE"))
2163        Context.setFILEDecl(NewTD);
2164      else if (II->isStr("jmp_buf"))
2165        Context.setjmp_bufDecl(NewTD);
2166      else if (II->isStr("sigjmp_buf"))
2167        Context.setsigjmp_bufDecl(NewTD);
2168    }
2169
2170  return NewTD;
2171}
2172
2173/// \brief Determines whether the given declaration is an out-of-scope
2174/// previous declaration.
2175///
2176/// This routine should be invoked when name lookup has found a
2177/// previous declaration (PrevDecl) that is not in the scope where a
2178/// new declaration by the same name is being introduced. If the new
2179/// declaration occurs in a local scope, previous declarations with
2180/// linkage may still be considered previous declarations (C99
2181/// 6.2.2p4-5, C++ [basic.link]p6).
2182///
2183/// \param PrevDecl the previous declaration found by name
2184/// lookup
2185///
2186/// \param DC the context in which the new declaration is being
2187/// declared.
2188///
2189/// \returns true if PrevDecl is an out-of-scope previous declaration
2190/// for a new delcaration with the same name.
2191static bool
2192isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2193                                ASTContext &Context) {
2194  if (!PrevDecl)
2195    return 0;
2196
2197  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2198  // case we need to check each of the overloaded functions.
2199  if (!PrevDecl->hasLinkage())
2200    return false;
2201
2202  if (Context.getLangOptions().CPlusPlus) {
2203    // C++ [basic.link]p6:
2204    //   If there is a visible declaration of an entity with linkage
2205    //   having the same name and type, ignoring entities declared
2206    //   outside the innermost enclosing namespace scope, the block
2207    //   scope declaration declares that same entity and receives the
2208    //   linkage of the previous declaration.
2209    DeclContext *OuterContext = DC->getLookupContext();
2210    if (!OuterContext->isFunctionOrMethod())
2211      // This rule only applies to block-scope declarations.
2212      return false;
2213    else {
2214      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2215      if (PrevOuterContext->isRecord())
2216        // We found a member function: ignore it.
2217        return false;
2218      else {
2219        // Find the innermost enclosing namespace for the new and
2220        // previous declarations.
2221        while (!OuterContext->isFileContext())
2222          OuterContext = OuterContext->getParent();
2223        while (!PrevOuterContext->isFileContext())
2224          PrevOuterContext = PrevOuterContext->getParent();
2225
2226        // The previous declaration is in a different namespace, so it
2227        // isn't the same function.
2228        if (OuterContext->getPrimaryContext() !=
2229            PrevOuterContext->getPrimaryContext())
2230          return false;
2231      }
2232    }
2233  }
2234
2235  return true;
2236}
2237
2238NamedDecl*
2239Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2240                              QualType R, DeclaratorInfo *DInfo,
2241                              LookupResult &Previous,
2242                              MultiTemplateParamsArg TemplateParamLists,
2243                              bool &Redeclaration) {
2244  DeclarationName Name = GetNameForDeclarator(D);
2245
2246  // Check that there are no default arguments (C++ only).
2247  if (getLangOptions().CPlusPlus)
2248    CheckExtraCXXDefaultArguments(D);
2249
2250  VarDecl *NewVD;
2251  VarDecl::StorageClass SC;
2252  switch (D.getDeclSpec().getStorageClassSpec()) {
2253  default: assert(0 && "Unknown storage class!");
2254  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2255  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2256  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2257  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2258  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2259  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2260  case DeclSpec::SCS_mutable:
2261    // mutable can only appear on non-static class members, so it's always
2262    // an error here
2263    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2264    D.setInvalidType();
2265    SC = VarDecl::None;
2266    break;
2267  }
2268
2269  IdentifierInfo *II = Name.getAsIdentifierInfo();
2270  if (!II) {
2271    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2272      << Name.getAsString();
2273    return 0;
2274  }
2275
2276  DiagnoseFunctionSpecifiers(D);
2277
2278  if (!DC->isRecord() && S->getFnParent() == 0) {
2279    // C99 6.9p2: The storage-class specifiers auto and register shall not
2280    // appear in the declaration specifiers in an external declaration.
2281    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2282
2283      // If this is a register variable with an asm label specified, then this
2284      // is a GNU extension.
2285      if (SC == VarDecl::Register && D.getAsmLabel())
2286        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2287      else
2288        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2289      D.setInvalidType();
2290    }
2291  }
2292  if (DC->isRecord() && !CurContext->isRecord()) {
2293    // This is an out-of-line definition of a static data member.
2294    if (SC == VarDecl::Static) {
2295      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2296           diag::err_static_out_of_line)
2297        << CodeModificationHint::CreateRemoval(
2298                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2299    } else if (SC == VarDecl::None)
2300      SC = VarDecl::Static;
2301  }
2302  if (SC == VarDecl::Static) {
2303    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2304      if (RD->isLocalClass())
2305        Diag(D.getIdentifierLoc(),
2306             diag::err_static_data_member_not_allowed_in_local_class)
2307          << Name << RD->getDeclName();
2308    }
2309  }
2310
2311  // Match up the template parameter lists with the scope specifier, then
2312  // determine whether we have a template or a template specialization.
2313  bool isExplicitSpecialization = false;
2314  if (TemplateParameterList *TemplateParams
2315        = MatchTemplateParametersToScopeSpecifier(
2316                                  D.getDeclSpec().getSourceRange().getBegin(),
2317                                                  D.getCXXScopeSpec(),
2318                        (TemplateParameterList**)TemplateParamLists.get(),
2319                                                   TemplateParamLists.size(),
2320                                                  isExplicitSpecialization)) {
2321    if (TemplateParams->size() > 0) {
2322      // There is no such thing as a variable template.
2323      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2324        << II
2325        << SourceRange(TemplateParams->getTemplateLoc(),
2326                       TemplateParams->getRAngleLoc());
2327      return 0;
2328    } else {
2329      // There is an extraneous 'template<>' for this variable. Complain
2330      // about it, but allow the declaration of the variable.
2331      Diag(TemplateParams->getTemplateLoc(),
2332           diag::err_template_variable_noparams)
2333        << II
2334        << SourceRange(TemplateParams->getTemplateLoc(),
2335                       TemplateParams->getRAngleLoc());
2336
2337      isExplicitSpecialization = true;
2338    }
2339  }
2340
2341  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2342                          II, R, DInfo, SC);
2343
2344  if (D.isInvalidType())
2345    NewVD->setInvalidDecl();
2346
2347  if (D.getDeclSpec().isThreadSpecified()) {
2348    if (NewVD->hasLocalStorage())
2349      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2350    else if (!Context.Target.isTLSSupported())
2351      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2352    else
2353      NewVD->setThreadSpecified(true);
2354  }
2355
2356  // Set the lexical context. If the declarator has a C++ scope specifier, the
2357  // lexical context will be different from the semantic context.
2358  NewVD->setLexicalDeclContext(CurContext);
2359
2360  // Handle attributes prior to checking for duplicates in MergeVarDecl
2361  ProcessDeclAttributes(S, NewVD, D);
2362
2363  // Handle GNU asm-label extension (encoded as an attribute).
2364  if (Expr *E = (Expr*) D.getAsmLabel()) {
2365    // The parser guarantees this is a string.
2366    StringLiteral *SE = cast<StringLiteral>(E);
2367    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2368                                                        SE->getByteLength())));
2369  }
2370
2371  // Don't consider existing declarations that are in a different
2372  // scope and are out-of-semantic-context declarations (if the new
2373  // declaration has linkage).
2374  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2375
2376  // Merge the decl with the existing one if appropriate.
2377  if (!Previous.empty()) {
2378    if (Previous.isSingleResult() &&
2379        isa<FieldDecl>(Previous.getFoundDecl()) &&
2380        D.getCXXScopeSpec().isSet()) {
2381      // The user tried to define a non-static data member
2382      // out-of-line (C++ [dcl.meaning]p1).
2383      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2384        << D.getCXXScopeSpec().getRange();
2385      Previous.clear();
2386      NewVD->setInvalidDecl();
2387    }
2388  } else if (D.getCXXScopeSpec().isSet()) {
2389    // No previous declaration in the qualifying scope.
2390    Diag(D.getIdentifierLoc(), diag::err_no_member)
2391      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2392      << D.getCXXScopeSpec().getRange();
2393    NewVD->setInvalidDecl();
2394  }
2395
2396  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2397
2398  // This is an explicit specialization of a static data member. Check it.
2399  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2400      CheckMemberSpecialization(NewVD, Previous))
2401    NewVD->setInvalidDecl();
2402
2403  // attributes declared post-definition are currently ignored
2404  if (Previous.isSingleResult()) {
2405    const VarDecl *Def = 0;
2406    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2407    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2408      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2409      Diag(Def->getLocation(), diag::note_previous_definition);
2410    }
2411  }
2412
2413  // If this is a locally-scoped extern C variable, update the map of
2414  // such variables.
2415  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2416      !NewVD->isInvalidDecl())
2417    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2418
2419  return NewVD;
2420}
2421
2422/// \brief Perform semantic checking on a newly-created variable
2423/// declaration.
2424///
2425/// This routine performs all of the type-checking required for a
2426/// variable declaration once it has been built. It is used both to
2427/// check variables after they have been parsed and their declarators
2428/// have been translated into a declaration, and to check variables
2429/// that have been instantiated from a template.
2430///
2431/// Sets NewVD->isInvalidDecl() if an error was encountered.
2432void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2433                                    LookupResult &Previous,
2434                                    bool &Redeclaration) {
2435  // If the decl is already known invalid, don't check it.
2436  if (NewVD->isInvalidDecl())
2437    return;
2438
2439  QualType T = NewVD->getType();
2440
2441  if (T->isObjCInterfaceType()) {
2442    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2443    return NewVD->setInvalidDecl();
2444  }
2445
2446  // The variable can not have an abstract class type.
2447  if (RequireNonAbstractType(NewVD->getLocation(), T,
2448                             diag::err_abstract_type_in_decl,
2449                             AbstractVariableType))
2450    return NewVD->setInvalidDecl();
2451
2452  // Emit an error if an address space was applied to decl with local storage.
2453  // This includes arrays of objects with address space qualifiers, but not
2454  // automatic variables that point to other address spaces.
2455  // ISO/IEC TR 18037 S5.1.2
2456  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2457    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2458    return NewVD->setInvalidDecl();
2459  }
2460
2461  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2462      && !NewVD->hasAttr<BlocksAttr>())
2463    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2464
2465  bool isVM = T->isVariablyModifiedType();
2466  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2467      NewVD->hasAttr<BlocksAttr>())
2468    CurFunctionNeedsScopeChecking = true;
2469
2470  if ((isVM && NewVD->hasLinkage()) ||
2471      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2472    bool SizeIsNegative;
2473    QualType FixedTy =
2474        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2475
2476    if (FixedTy.isNull() && T->isVariableArrayType()) {
2477      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2478      // FIXME: This won't give the correct result for
2479      // int a[10][n];
2480      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2481
2482      if (NewVD->isFileVarDecl())
2483        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2484        << SizeRange;
2485      else if (NewVD->getStorageClass() == VarDecl::Static)
2486        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2487        << SizeRange;
2488      else
2489        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2490        << SizeRange;
2491      return NewVD->setInvalidDecl();
2492    }
2493
2494    if (FixedTy.isNull()) {
2495      if (NewVD->isFileVarDecl())
2496        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2497      else
2498        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2499      return NewVD->setInvalidDecl();
2500    }
2501
2502    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2503    NewVD->setType(FixedTy);
2504  }
2505
2506  if (Previous.empty() && NewVD->isExternC()) {
2507    // Since we did not find anything by this name and we're declaring
2508    // an extern "C" variable, look for a non-visible extern "C"
2509    // declaration with the same name.
2510    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2511      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2512    if (Pos != LocallyScopedExternalDecls.end())
2513      Previous.addDecl(Pos->second);
2514  }
2515
2516  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2517    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2518      << T;
2519    return NewVD->setInvalidDecl();
2520  }
2521
2522  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2523    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2524    return NewVD->setInvalidDecl();
2525  }
2526
2527  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2528    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2529    return NewVD->setInvalidDecl();
2530  }
2531
2532  if (!Previous.empty()) {
2533    Redeclaration = true;
2534    MergeVarDecl(NewVD, Previous);
2535  }
2536}
2537
2538/// \brief Data used with FindOverriddenMethod
2539struct FindOverriddenMethodData {
2540  Sema *S;
2541  CXXMethodDecl *Method;
2542};
2543
2544/// \brief Member lookup function that determines whether a given C++
2545/// method overrides a method in a base class, to be used with
2546/// CXXRecordDecl::lookupInBases().
2547static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2548                                 CXXBasePath &Path,
2549                                 void *UserData) {
2550  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2551
2552  FindOverriddenMethodData *Data
2553    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2554  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2555       Path.Decls.first != Path.Decls.second;
2556       ++Path.Decls.first) {
2557    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2558      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2559        return true;
2560    }
2561  }
2562
2563  return false;
2564}
2565
2566/// AddOverriddenMethods - See if a method overrides any in the base classes,
2567/// and if so, check that it's a valid override and remember it.
2568void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2569  // Look for virtual methods in base classes that this method might override.
2570  CXXBasePaths Paths;
2571  FindOverriddenMethodData Data;
2572  Data.Method = MD;
2573  Data.S = this;
2574  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2575    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2576         E = Paths.found_decls_end(); I != E; ++I) {
2577      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2578        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2579            !CheckOverridingFunctionExceptionSpec(MD, OldMD))
2580          MD->addOverriddenMethod(OldMD);
2581      }
2582    }
2583  }
2584}
2585
2586NamedDecl*
2587Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2588                              QualType R, DeclaratorInfo *DInfo,
2589                              LookupResult &Previous,
2590                              MultiTemplateParamsArg TemplateParamLists,
2591                              bool IsFunctionDefinition, bool &Redeclaration) {
2592  assert(R.getTypePtr()->isFunctionType());
2593
2594  DeclarationName Name = GetNameForDeclarator(D);
2595  FunctionDecl::StorageClass SC = FunctionDecl::None;
2596  switch (D.getDeclSpec().getStorageClassSpec()) {
2597  default: assert(0 && "Unknown storage class!");
2598  case DeclSpec::SCS_auto:
2599  case DeclSpec::SCS_register:
2600  case DeclSpec::SCS_mutable:
2601    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2602         diag::err_typecheck_sclass_func);
2603    D.setInvalidType();
2604    break;
2605  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2606  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2607  case DeclSpec::SCS_static: {
2608    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2609      // C99 6.7.1p5:
2610      //   The declaration of an identifier for a function that has
2611      //   block scope shall have no explicit storage-class specifier
2612      //   other than extern
2613      // See also (C++ [dcl.stc]p4).
2614      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2615           diag::err_static_block_func);
2616      SC = FunctionDecl::None;
2617    } else
2618      SC = FunctionDecl::Static;
2619    break;
2620  }
2621  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2622  }
2623
2624  if (D.getDeclSpec().isThreadSpecified())
2625    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2626
2627  bool isFriend = D.getDeclSpec().isFriendSpecified();
2628  bool isInline = D.getDeclSpec().isInlineSpecified();
2629  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2630  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2631
2632  // Check that the return type is not an abstract class type.
2633  // For record types, this is done by the AbstractClassUsageDiagnoser once
2634  // the class has been completely parsed.
2635  if (!DC->isRecord() &&
2636      RequireNonAbstractType(D.getIdentifierLoc(),
2637                             R->getAs<FunctionType>()->getResultType(),
2638                             diag::err_abstract_type_in_decl,
2639                             AbstractReturnType))
2640    D.setInvalidType();
2641
2642  // Do not allow returning a objc interface by-value.
2643  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2644    Diag(D.getIdentifierLoc(),
2645         diag::err_object_cannot_be_passed_returned_by_value) << 0
2646      << R->getAs<FunctionType>()->getResultType();
2647    D.setInvalidType();
2648  }
2649
2650  bool isVirtualOkay = false;
2651  FunctionDecl *NewFD;
2652
2653  if (isFriend) {
2654    // C++ [class.friend]p5
2655    //   A function can be defined in a friend declaration of a
2656    //   class . . . . Such a function is implicitly inline.
2657    isInline |= IsFunctionDefinition;
2658  }
2659
2660  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2661    // This is a C++ constructor declaration.
2662    assert(DC->isRecord() &&
2663           "Constructors can only be declared in a member context");
2664
2665    R = CheckConstructorDeclarator(D, R, SC);
2666
2667    // Create the new declaration
2668    NewFD = CXXConstructorDecl::Create(Context,
2669                                       cast<CXXRecordDecl>(DC),
2670                                       D.getIdentifierLoc(), Name, R, DInfo,
2671                                       isExplicit, isInline,
2672                                       /*isImplicitlyDeclared=*/false);
2673  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2674    // This is a C++ destructor declaration.
2675    if (DC->isRecord()) {
2676      R = CheckDestructorDeclarator(D, SC);
2677
2678      NewFD = CXXDestructorDecl::Create(Context,
2679                                        cast<CXXRecordDecl>(DC),
2680                                        D.getIdentifierLoc(), Name, R,
2681                                        isInline,
2682                                        /*isImplicitlyDeclared=*/false);
2683
2684      isVirtualOkay = true;
2685    } else {
2686      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2687
2688      // Create a FunctionDecl to satisfy the function definition parsing
2689      // code path.
2690      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2691                                   Name, R, DInfo, SC, isInline,
2692                                   /*hasPrototype=*/true);
2693      D.setInvalidType();
2694    }
2695  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2696    if (!DC->isRecord()) {
2697      Diag(D.getIdentifierLoc(),
2698           diag::err_conv_function_not_member);
2699      return 0;
2700    }
2701
2702    CheckConversionDeclarator(D, R, SC);
2703    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2704                                      D.getIdentifierLoc(), Name, R, DInfo,
2705                                      isInline, isExplicit);
2706
2707    isVirtualOkay = true;
2708  } else if (DC->isRecord()) {
2709    // If the of the function is the same as the name of the record, then this
2710    // must be an invalid constructor that has a return type.
2711    // (The parser checks for a return type and makes the declarator a
2712    // constructor if it has no return type).
2713    // must have an invalid constructor that has a return type
2714    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2715      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2716        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2717        << SourceRange(D.getIdentifierLoc());
2718      return 0;
2719    }
2720
2721    bool isStatic = SC == FunctionDecl::Static;
2722
2723    // [class.free]p1:
2724    // Any allocation function for a class T is a static member
2725    // (even if not explicitly declared static).
2726    if (Name.getCXXOverloadedOperator() == OO_New ||
2727        Name.getCXXOverloadedOperator() == OO_Array_New)
2728      isStatic = true;
2729
2730    // [class.free]p6 Any deallocation function for a class X is a static member
2731    // (even if not explicitly declared static).
2732    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2733        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2734      isStatic = true;
2735
2736    // This is a C++ method declaration.
2737    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2738                                  D.getIdentifierLoc(), Name, R, DInfo,
2739                                  isStatic, isInline);
2740
2741    isVirtualOkay = !isStatic;
2742  } else {
2743    // Determine whether the function was written with a
2744    // prototype. This true when:
2745    //   - we're in C++ (where every function has a prototype),
2746    //   - there is a prototype in the declarator, or
2747    //   - the type R of the function is some kind of typedef or other reference
2748    //     to a type name (which eventually refers to a function type).
2749    bool HasPrototype =
2750       getLangOptions().CPlusPlus ||
2751       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2752       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2753
2754    NewFD = FunctionDecl::Create(Context, DC,
2755                                 D.getIdentifierLoc(),
2756                                 Name, R, DInfo, SC, isInline, HasPrototype);
2757  }
2758
2759  if (D.isInvalidType())
2760    NewFD->setInvalidDecl();
2761
2762  // Set the lexical context. If the declarator has a C++
2763  // scope specifier, or is the object of a friend declaration, the
2764  // lexical context will be different from the semantic context.
2765  NewFD->setLexicalDeclContext(CurContext);
2766
2767  // Match up the template parameter lists with the scope specifier, then
2768  // determine whether we have a template or a template specialization.
2769  FunctionTemplateDecl *FunctionTemplate = 0;
2770  bool isExplicitSpecialization = false;
2771  bool isFunctionTemplateSpecialization = false;
2772  if (TemplateParameterList *TemplateParams
2773        = MatchTemplateParametersToScopeSpecifier(
2774                                  D.getDeclSpec().getSourceRange().getBegin(),
2775                                  D.getCXXScopeSpec(),
2776                           (TemplateParameterList**)TemplateParamLists.get(),
2777                                                  TemplateParamLists.size(),
2778                                                  isExplicitSpecialization)) {
2779    if (TemplateParams->size() > 0) {
2780      // This is a function template
2781
2782      // Check that we can declare a template here.
2783      if (CheckTemplateDeclScope(S, TemplateParams))
2784        return 0;
2785
2786      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2787                                                      NewFD->getLocation(),
2788                                                      Name, TemplateParams,
2789                                                      NewFD);
2790      FunctionTemplate->setLexicalDeclContext(CurContext);
2791      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2792    } else {
2793      // This is a function template specialization.
2794      isFunctionTemplateSpecialization = true;
2795    }
2796
2797    // FIXME: Free this memory properly.
2798    TemplateParamLists.release();
2799  }
2800
2801  // C++ [dcl.fct.spec]p5:
2802  //   The virtual specifier shall only be used in declarations of
2803  //   nonstatic class member functions that appear within a
2804  //   member-specification of a class declaration; see 10.3.
2805  //
2806  if (isVirtual && !NewFD->isInvalidDecl()) {
2807    if (!isVirtualOkay) {
2808       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2809           diag::err_virtual_non_function);
2810    } else if (!CurContext->isRecord()) {
2811      // 'virtual' was specified outside of the class.
2812      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2813        << CodeModificationHint::CreateRemoval(
2814                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2815    } else {
2816      // Okay: Add virtual to the method.
2817      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2818      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2819      CurClass->setAggregate(false);
2820      CurClass->setPOD(false);
2821      CurClass->setEmpty(false);
2822      CurClass->setPolymorphic(true);
2823      CurClass->setHasTrivialConstructor(false);
2824      CurClass->setHasTrivialCopyConstructor(false);
2825      CurClass->setHasTrivialCopyAssignment(false);
2826    }
2827  }
2828
2829  // Filter out previous declarations that don't match the scope.
2830  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2831
2832  if (isFriend) {
2833    // DC is the namespace in which the function is being declared.
2834    assert((DC->isFileContext() || !Previous.empty()) &&
2835           "previously-undeclared friend function being created "
2836           "in a non-namespace context");
2837
2838    if (FunctionTemplate) {
2839      FunctionTemplate->setObjectOfFriendDecl(
2840                                   /* PreviouslyDeclared= */ !Previous.empty());
2841      FunctionTemplate->setAccess(AS_public);
2842    }
2843    else
2844      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2845
2846    NewFD->setAccess(AS_public);
2847  }
2848
2849
2850  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
2851    AddOverriddenMethods(cast<CXXRecordDecl>(DC), NewMD);
2852
2853  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2854      !CurContext->isRecord()) {
2855    // C++ [class.static]p1:
2856    //   A data or function member of a class may be declared static
2857    //   in a class definition, in which case it is a static member of
2858    //   the class.
2859
2860    // Complain about the 'static' specifier if it's on an out-of-line
2861    // member function definition.
2862    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2863         diag::err_static_out_of_line)
2864      << CodeModificationHint::CreateRemoval(
2865                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2866  }
2867
2868  // Handle GNU asm-label extension (encoded as an attribute).
2869  if (Expr *E = (Expr*) D.getAsmLabel()) {
2870    // The parser guarantees this is a string.
2871    StringLiteral *SE = cast<StringLiteral>(E);
2872    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2873                                                        SE->getByteLength())));
2874  }
2875
2876  // Copy the parameter declarations from the declarator D to the function
2877  // declaration NewFD, if they are available.  First scavenge them into Params.
2878  llvm::SmallVector<ParmVarDecl*, 16> Params;
2879  if (D.getNumTypeObjects() > 0) {
2880    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2881
2882    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2883    // function that takes no arguments, not a function that takes a
2884    // single void argument.
2885    // We let through "const void" here because Sema::GetTypeForDeclarator
2886    // already checks for that case.
2887    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2888        FTI.ArgInfo[0].Param &&
2889        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2890      // Empty arg list, don't push any params.
2891      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2892
2893      // In C++, the empty parameter-type-list must be spelled "void"; a
2894      // typedef of void is not permitted.
2895      if (getLangOptions().CPlusPlus &&
2896          Param->getType().getUnqualifiedType() != Context.VoidTy)
2897        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2898      // FIXME: Leaks decl?
2899    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2900      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2901        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2902        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2903        Param->setDeclContext(NewFD);
2904        Params.push_back(Param);
2905      }
2906    }
2907
2908  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2909    // When we're declaring a function with a typedef, typeof, etc as in the
2910    // following example, we'll need to synthesize (unnamed)
2911    // parameters for use in the declaration.
2912    //
2913    // @code
2914    // typedef void fn(int);
2915    // fn f;
2916    // @endcode
2917
2918    // Synthesize a parameter for each argument type.
2919    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2920         AE = FT->arg_type_end(); AI != AE; ++AI) {
2921      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2922                                               SourceLocation(), 0,
2923                                               *AI, /*DInfo=*/0,
2924                                               VarDecl::None, 0);
2925      Param->setImplicit();
2926      Params.push_back(Param);
2927    }
2928  } else {
2929    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2930           "Should not need args for typedef of non-prototype fn");
2931  }
2932  // Finally, we know we have the right number of parameters, install them.
2933  NewFD->setParams(Context, Params.data(), Params.size());
2934
2935  // If the declarator is a template-id, translate the parser's template
2936  // argument list into our AST format.
2937  bool HasExplicitTemplateArgs = false;
2938  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2939  SourceLocation LAngleLoc, RAngleLoc;
2940  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2941    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2942    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2943                                       TemplateId->getTemplateArgs(),
2944                                       TemplateId->NumArgs);
2945    translateTemplateArguments(TemplateArgsPtr,
2946                               TemplateArgs);
2947    TemplateArgsPtr.release();
2948
2949    HasExplicitTemplateArgs = true;
2950    LAngleLoc = TemplateId->LAngleLoc;
2951    RAngleLoc = TemplateId->RAngleLoc;
2952
2953    if (FunctionTemplate) {
2954      // FIXME: Diagnose function template with explicit template
2955      // arguments.
2956      HasExplicitTemplateArgs = false;
2957    } else if (!isFunctionTemplateSpecialization &&
2958               !D.getDeclSpec().isFriendSpecified()) {
2959      // We have encountered something that the user meant to be a
2960      // specialization (because it has explicitly-specified template
2961      // arguments) but that was not introduced with a "template<>" (or had
2962      // too few of them).
2963      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2964        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2965        << CodeModificationHint::CreateInsertion(
2966                                   D.getDeclSpec().getSourceRange().getBegin(),
2967                                                 "template<> ");
2968      isFunctionTemplateSpecialization = true;
2969    }
2970  }
2971
2972  if (isFunctionTemplateSpecialization) {
2973      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2974                                              LAngleLoc, TemplateArgs.data(),
2975                                              TemplateArgs.size(), RAngleLoc,
2976                                              Previous))
2977        NewFD->setInvalidDecl();
2978  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2979             CheckMemberSpecialization(NewFD, Previous))
2980    NewFD->setInvalidDecl();
2981
2982  // Perform semantic checking on the function declaration.
2983  bool OverloadableAttrRequired = false; // FIXME: HACK!
2984  CheckFunctionDeclaration(NewFD, Previous, isExplicitSpecialization,
2985                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2986
2987  assert((NewFD->isInvalidDecl() || !Redeclaration ||
2988          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
2989         "previous declaration set still overloaded");
2990
2991  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2992    // An out-of-line member function declaration must also be a
2993    // definition (C++ [dcl.meaning]p1).
2994    // Note that this is not the case for explicit specializations of
2995    // function templates or member functions of class templates, per
2996    // C++ [temp.expl.spec]p2.
2997    if (!IsFunctionDefinition && !isFriend &&
2998        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2999      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3000        << D.getCXXScopeSpec().getRange();
3001      NewFD->setInvalidDecl();
3002    } else if (!Redeclaration) {
3003      // The user tried to provide an out-of-line definition for a
3004      // function that is a member of a class or namespace, but there
3005      // was no such member function declared (C++ [class.mfct]p2,
3006      // C++ [namespace.memdef]p2). For example:
3007      //
3008      // class X {
3009      //   void f() const;
3010      // };
3011      //
3012      // void X::f() { } // ill-formed
3013      //
3014      // Complain about this problem, and attempt to suggest close
3015      // matches (e.g., those that differ only in cv-qualifiers and
3016      // whether the parameter types are references).
3017      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3018        << Name << DC << D.getCXXScopeSpec().getRange();
3019      NewFD->setInvalidDecl();
3020
3021      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3022                        ForRedeclaration);
3023      LookupQualifiedName(Prev, DC);
3024      assert(!Prev.isAmbiguous() &&
3025             "Cannot have an ambiguity in previous-declaration lookup");
3026      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3027           Func != FuncEnd; ++Func) {
3028        if (isa<FunctionDecl>(*Func) &&
3029            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3030          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3031      }
3032    }
3033  }
3034
3035  // Handle attributes. We need to have merged decls when handling attributes
3036  // (for example to check for conflicts, etc).
3037  // FIXME: This needs to happen before we merge declarations. Then,
3038  // let attribute merging cope with attribute conflicts.
3039  ProcessDeclAttributes(S, NewFD, D);
3040
3041  // attributes declared post-definition are currently ignored
3042  if (Redeclaration && Previous.isSingleResult()) {
3043    const FunctionDecl *Def;
3044    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3045    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3046      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3047      Diag(Def->getLocation(), diag::note_previous_definition);
3048    }
3049  }
3050
3051  AddKnownFunctionAttributes(NewFD);
3052
3053  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3054    // If a function name is overloadable in C, then every function
3055    // with that name must be marked "overloadable".
3056    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3057      << Redeclaration << NewFD;
3058    if (!Previous.empty())
3059      Diag(Previous.getRepresentativeDecl()->getLocation(),
3060           diag::note_attribute_overloadable_prev_overload);
3061    NewFD->addAttr(::new (Context) OverloadableAttr());
3062  }
3063
3064  // If this is a locally-scoped extern C function, update the
3065  // map of such names.
3066  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3067      && !NewFD->isInvalidDecl())
3068    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3069
3070  // Set this FunctionDecl's range up to the right paren.
3071  NewFD->setLocEnd(D.getSourceRange().getEnd());
3072
3073  if (FunctionTemplate && NewFD->isInvalidDecl())
3074    FunctionTemplate->setInvalidDecl();
3075
3076  if (FunctionTemplate)
3077    return FunctionTemplate;
3078
3079  return NewFD;
3080}
3081
3082/// \brief Perform semantic checking of a new function declaration.
3083///
3084/// Performs semantic analysis of the new function declaration
3085/// NewFD. This routine performs all semantic checking that does not
3086/// require the actual declarator involved in the declaration, and is
3087/// used both for the declaration of functions as they are parsed
3088/// (called via ActOnDeclarator) and for the declaration of functions
3089/// that have been instantiated via C++ template instantiation (called
3090/// via InstantiateDecl).
3091///
3092/// \param IsExplicitSpecialiation whether this new function declaration is
3093/// an explicit specialization of the previous declaration.
3094///
3095/// This sets NewFD->isInvalidDecl() to true if there was an error.
3096void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD,
3097                                    LookupResult &Previous,
3098                                    bool IsExplicitSpecialization,
3099                                    bool &Redeclaration,
3100                                    bool &OverloadableAttrRequired) {
3101  // If NewFD is already known erroneous, don't do any of this checking.
3102  if (NewFD->isInvalidDecl())
3103    return;
3104
3105  if (NewFD->getResultType()->isVariablyModifiedType()) {
3106    // Functions returning a variably modified type violate C99 6.7.5.2p2
3107    // because all functions have linkage.
3108    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3109    return NewFD->setInvalidDecl();
3110  }
3111
3112  if (NewFD->isMain())
3113    CheckMain(NewFD);
3114
3115  // Check for a previous declaration of this name.
3116  if (Previous.empty() && NewFD->isExternC()) {
3117    // Since we did not find anything by this name and we're declaring
3118    // an extern "C" function, look for a non-visible extern "C"
3119    // declaration with the same name.
3120    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3121      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3122    if (Pos != LocallyScopedExternalDecls.end())
3123      Previous.addDecl(Pos->second);
3124  }
3125
3126  // Merge or overload the declaration with an existing declaration of
3127  // the same name, if appropriate.
3128  if (!Previous.empty()) {
3129    // Determine whether NewFD is an overload of PrevDecl or
3130    // a declaration that requires merging. If it's an overload,
3131    // there's no more work to do here; we'll just add the new
3132    // function to the scope.
3133
3134    if (!getLangOptions().CPlusPlus &&
3135        AllowOverloadingOfFunction(Previous, Context)) {
3136      OverloadableAttrRequired = true;
3137
3138      // Functions marked "overloadable" must have a prototype (that
3139      // we can't get through declaration merging).
3140      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3141        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3142          << NewFD;
3143        Redeclaration = true;
3144
3145        // Turn this into a variadic function with no parameters.
3146        QualType R = Context.getFunctionType(
3147                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3148                       0, 0, true, 0);
3149        NewFD->setType(R);
3150        return NewFD->setInvalidDecl();
3151      }
3152    }
3153
3154    NamedDecl *OldDecl = 0;
3155    if (!Previous.empty()) {
3156      if (!AllowOverloadingOfFunction(Previous, Context)) {
3157        Redeclaration = true;
3158        OldDecl = Previous.getFoundDecl();
3159      } else if (!IsOverload(NewFD, Previous, OldDecl)) {
3160        if (!isUsingDecl(OldDecl))
3161          Redeclaration = true;
3162      }
3163    }
3164
3165    if (Redeclaration) {
3166      // NewFD and OldDecl represent declarations that need to be
3167      // merged.
3168      if (MergeFunctionDecl(NewFD, OldDecl))
3169        return NewFD->setInvalidDecl();
3170
3171      Previous.clear();
3172      Previous.addDecl(OldDecl);
3173
3174      if (FunctionTemplateDecl *OldTemplateDecl
3175                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3176        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3177        FunctionTemplateDecl *NewTemplateDecl
3178          = NewFD->getDescribedFunctionTemplate();
3179        assert(NewTemplateDecl && "Template/non-template mismatch");
3180        if (CXXMethodDecl *Method
3181              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3182          Method->setAccess(OldTemplateDecl->getAccess());
3183          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3184        }
3185
3186        // If this is an explicit specialization of a member that is a function
3187        // template, mark it as a member specialization.
3188        if (IsExplicitSpecialization &&
3189            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3190          NewTemplateDecl->setMemberSpecialization();
3191          assert(OldTemplateDecl->isMemberSpecialization());
3192        }
3193      } else {
3194        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3195          NewFD->setAccess(OldDecl->getAccess());
3196        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3197      }
3198    }
3199  }
3200
3201  // Semantic checking for this function declaration (in isolation).
3202  if (getLangOptions().CPlusPlus) {
3203    // C++-specific checks.
3204    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3205      CheckConstructor(Constructor);
3206    } else if (CXXDestructorDecl *Destructor =
3207                dyn_cast<CXXDestructorDecl>(NewFD)) {
3208      CXXRecordDecl *Record = Destructor->getParent();
3209      QualType ClassType = Context.getTypeDeclType(Record);
3210
3211      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3212      // type is dependent? Both gcc and edg can handle that.
3213      if (!ClassType->isDependentType()) {
3214        DeclarationName Name
3215          = Context.DeclarationNames.getCXXDestructorName(
3216                                        Context.getCanonicalType(ClassType));
3217        if (NewFD->getDeclName() != Name) {
3218          Diag(NewFD->getLocation(), diag::err_destructor_name);
3219          return NewFD->setInvalidDecl();
3220        }
3221
3222        CheckDestructor(Destructor);
3223      }
3224
3225      Record->setUserDeclaredDestructor(true);
3226      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3227      // user-defined destructor.
3228      Record->setPOD(false);
3229
3230      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3231      // declared destructor.
3232      // FIXME: C++0x: don't do this for "= default" destructors
3233      Record->setHasTrivialDestructor(false);
3234    } else if (CXXConversionDecl *Conversion
3235               = dyn_cast<CXXConversionDecl>(NewFD))
3236      ActOnConversionDeclarator(Conversion);
3237
3238    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3239    if (NewFD->isOverloadedOperator() &&
3240        CheckOverloadedOperatorDeclaration(NewFD))
3241      return NewFD->setInvalidDecl();
3242
3243    // In C++, check default arguments now that we have merged decls. Unless
3244    // the lexical context is the class, because in this case this is done
3245    // during delayed parsing anyway.
3246    if (!CurContext->isRecord())
3247      CheckCXXDefaultArguments(NewFD);
3248  }
3249}
3250
3251void Sema::CheckMain(FunctionDecl* FD) {
3252  // C++ [basic.start.main]p3:  A program that declares main to be inline
3253  //   or static is ill-formed.
3254  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3255  //   shall not appear in a declaration of main.
3256  // static main is not an error under C99, but we should warn about it.
3257  bool isInline = FD->isInlineSpecified();
3258  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3259  if (isInline || isStatic) {
3260    unsigned diagID = diag::warn_unusual_main_decl;
3261    if (isInline || getLangOptions().CPlusPlus)
3262      diagID = diag::err_unusual_main_decl;
3263
3264    int which = isStatic + (isInline << 1) - 1;
3265    Diag(FD->getLocation(), diagID) << which;
3266  }
3267
3268  QualType T = FD->getType();
3269  assert(T->isFunctionType() && "function decl is not of function type");
3270  const FunctionType* FT = T->getAs<FunctionType>();
3271
3272  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3273    // TODO: add a replacement fixit to turn the return type into 'int'.
3274    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3275    FD->setInvalidDecl(true);
3276  }
3277
3278  // Treat protoless main() as nullary.
3279  if (isa<FunctionNoProtoType>(FT)) return;
3280
3281  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3282  unsigned nparams = FTP->getNumArgs();
3283  assert(FD->getNumParams() == nparams);
3284
3285  if (nparams > 3) {
3286    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3287    FD->setInvalidDecl(true);
3288    nparams = 3;
3289  }
3290
3291  // FIXME: a lot of the following diagnostics would be improved
3292  // if we had some location information about types.
3293
3294  QualType CharPP =
3295    Context.getPointerType(Context.getPointerType(Context.CharTy));
3296  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3297
3298  for (unsigned i = 0; i < nparams; ++i) {
3299    QualType AT = FTP->getArgType(i);
3300
3301    bool mismatch = true;
3302
3303    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3304      mismatch = false;
3305    else if (Expected[i] == CharPP) {
3306      // As an extension, the following forms are okay:
3307      //   char const **
3308      //   char const * const *
3309      //   char * const *
3310
3311      QualifierCollector qs;
3312      const PointerType* PT;
3313      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3314          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3315          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3316        qs.removeConst();
3317        mismatch = !qs.empty();
3318      }
3319    }
3320
3321    if (mismatch) {
3322      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3323      // TODO: suggest replacing given type with expected type
3324      FD->setInvalidDecl(true);
3325    }
3326  }
3327
3328  if (nparams == 1 && !FD->isInvalidDecl()) {
3329    Diag(FD->getLocation(), diag::warn_main_one_arg);
3330  }
3331}
3332
3333bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3334  // FIXME: Need strict checking.  In C89, we need to check for
3335  // any assignment, increment, decrement, function-calls, or
3336  // commas outside of a sizeof.  In C99, it's the same list,
3337  // except that the aforementioned are allowed in unevaluated
3338  // expressions.  Everything else falls under the
3339  // "may accept other forms of constant expressions" exception.
3340  // (We never end up here for C++, so the constant expression
3341  // rules there don't matter.)
3342  if (Init->isConstantInitializer(Context))
3343    return false;
3344  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3345    << Init->getSourceRange();
3346  return true;
3347}
3348
3349void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3350  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3351}
3352
3353/// AddInitializerToDecl - Adds the initializer Init to the
3354/// declaration dcl. If DirectInit is true, this is C++ direct
3355/// initialization rather than copy initialization.
3356void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3357  Decl *RealDecl = dcl.getAs<Decl>();
3358  // If there is no declaration, there was an error parsing it.  Just ignore
3359  // the initializer.
3360  if (RealDecl == 0)
3361    return;
3362
3363  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3364    // With declarators parsed the way they are, the parser cannot
3365    // distinguish between a normal initializer and a pure-specifier.
3366    // Thus this grotesque test.
3367    IntegerLiteral *IL;
3368    Expr *Init = static_cast<Expr *>(init.get());
3369    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3370        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3371      if (Method->isVirtualAsWritten()) {
3372        Method->setPure();
3373
3374        // A class is abstract if at least one function is pure virtual.
3375        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3376      } else if (!Method->isInvalidDecl()) {
3377        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3378          << Method->getDeclName() << Init->getSourceRange();
3379        Method->setInvalidDecl();
3380      }
3381    } else {
3382      Diag(Method->getLocation(), diag::err_member_function_initialization)
3383        << Method->getDeclName() << Init->getSourceRange();
3384      Method->setInvalidDecl();
3385    }
3386    return;
3387  }
3388
3389  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3390  if (!VDecl) {
3391    if (getLangOptions().CPlusPlus &&
3392        RealDecl->getLexicalDeclContext()->isRecord() &&
3393        isa<NamedDecl>(RealDecl))
3394      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3395        << cast<NamedDecl>(RealDecl)->getDeclName();
3396    else
3397      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3398    RealDecl->setInvalidDecl();
3399    return;
3400  }
3401
3402  // A definition must end up with a complete type, which means it must be
3403  // complete with the restriction that an array type might be completed by the
3404  // initializer; note that later code assumes this restriction.
3405  QualType BaseDeclType = VDecl->getType();
3406  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3407    BaseDeclType = Array->getElementType();
3408  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3409                          diag::err_typecheck_decl_incomplete_type)) {
3410    RealDecl->setInvalidDecl();
3411    return;
3412  }
3413
3414  const VarDecl *Def = 0;
3415  if (VDecl->getDefinition(Def)) {
3416    Diag(VDecl->getLocation(), diag::err_redefinition)
3417      << VDecl->getDeclName();
3418    Diag(Def->getLocation(), diag::note_previous_definition);
3419    VDecl->setInvalidDecl();
3420    return;
3421  }
3422
3423  // Take ownership of the expression, now that we're sure we have somewhere
3424  // to put it.
3425  Expr *Init = init.takeAs<Expr>();
3426  assert(Init && "missing initializer");
3427
3428  // Get the decls type and save a reference for later, since
3429  // CheckInitializerTypes may change it.
3430  QualType DclT = VDecl->getType(), SavT = DclT;
3431  if (VDecl->isBlockVarDecl()) {
3432    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3433      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3434      VDecl->setInvalidDecl();
3435    } else if (!VDecl->isInvalidDecl()) {
3436      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3437                                VDecl->getDeclName(), DirectInit))
3438        VDecl->setInvalidDecl();
3439
3440      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3441      // Don't check invalid declarations to avoid emitting useless diagnostics.
3442      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3443        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3444          CheckForConstantInitializer(Init, DclT);
3445      }
3446    }
3447  } else if (VDecl->isStaticDataMember() &&
3448             VDecl->getLexicalDeclContext()->isRecord()) {
3449    // This is an in-class initialization for a static data member, e.g.,
3450    //
3451    // struct S {
3452    //   static const int value = 17;
3453    // };
3454
3455    // Attach the initializer
3456    VDecl->setInit(Context, Init);
3457
3458    // C++ [class.mem]p4:
3459    //   A member-declarator can contain a constant-initializer only
3460    //   if it declares a static member (9.4) of const integral or
3461    //   const enumeration type, see 9.4.2.
3462    QualType T = VDecl->getType();
3463    if (!T->isDependentType() &&
3464        (!Context.getCanonicalType(T).isConstQualified() ||
3465         !T->isIntegralType())) {
3466      Diag(VDecl->getLocation(), diag::err_member_initialization)
3467        << VDecl->getDeclName() << Init->getSourceRange();
3468      VDecl->setInvalidDecl();
3469    } else {
3470      // C++ [class.static.data]p4:
3471      //   If a static data member is of const integral or const
3472      //   enumeration type, its declaration in the class definition
3473      //   can specify a constant-initializer which shall be an
3474      //   integral constant expression (5.19).
3475      if (!Init->isTypeDependent() &&
3476          !Init->getType()->isIntegralType()) {
3477        // We have a non-dependent, non-integral or enumeration type.
3478        Diag(Init->getSourceRange().getBegin(),
3479             diag::err_in_class_initializer_non_integral_type)
3480          << Init->getType() << Init->getSourceRange();
3481        VDecl->setInvalidDecl();
3482      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3483        // Check whether the expression is a constant expression.
3484        llvm::APSInt Value;
3485        SourceLocation Loc;
3486        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3487          Diag(Loc, diag::err_in_class_initializer_non_constant)
3488            << Init->getSourceRange();
3489          VDecl->setInvalidDecl();
3490        } else if (!VDecl->getType()->isDependentType())
3491          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3492      }
3493    }
3494  } else if (VDecl->isFileVarDecl()) {
3495    if (VDecl->getStorageClass() == VarDecl::Extern)
3496      Diag(VDecl->getLocation(), diag::warn_extern_init);
3497    if (!VDecl->isInvalidDecl())
3498      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3499                                VDecl->getDeclName(), DirectInit))
3500        VDecl->setInvalidDecl();
3501
3502    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3503    // Don't check invalid declarations to avoid emitting useless diagnostics.
3504    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3505      // C99 6.7.8p4. All file scoped initializers need to be constant.
3506      CheckForConstantInitializer(Init, DclT);
3507    }
3508  }
3509  // If the type changed, it means we had an incomplete type that was
3510  // completed by the initializer. For example:
3511  //   int ary[] = { 1, 3, 5 };
3512  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3513  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3514    VDecl->setType(DclT);
3515    Init->setType(DclT);
3516  }
3517
3518  Init = MaybeCreateCXXExprWithTemporaries(Init,
3519                                           /*ShouldDestroyTemporaries=*/true);
3520  // Attach the initializer to the decl.
3521  VDecl->setInit(Context, Init);
3522
3523  // If the previous declaration of VDecl was a tentative definition,
3524  // remove it from the set of tentative definitions.
3525  if (VDecl->getPreviousDeclaration() &&
3526      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3527    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3528    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3529  }
3530
3531  return;
3532}
3533
3534void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3535                                  bool TypeContainsUndeducedAuto) {
3536  Decl *RealDecl = dcl.getAs<Decl>();
3537
3538  // If there is no declaration, there was an error parsing it. Just ignore it.
3539  if (RealDecl == 0)
3540    return;
3541
3542  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3543    QualType Type = Var->getType();
3544
3545    // Record tentative definitions.
3546    if (Var->isTentativeDefinition(Context)) {
3547      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3548        InsertPair =
3549           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3550
3551      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3552      // want the second one in the map.
3553      InsertPair.first->second = Var;
3554
3555      // However, for the list, we don't care about the order, just make sure
3556      // that there are no dupes for a given declaration name.
3557      if (InsertPair.second)
3558        TentativeDefinitionList.push_back(Var->getDeclName());
3559    }
3560
3561    // C++ [dcl.init.ref]p3:
3562    //   The initializer can be omitted for a reference only in a
3563    //   parameter declaration (8.3.5), in the declaration of a
3564    //   function return type, in the declaration of a class member
3565    //   within its class declaration (9.2), and where the extern
3566    //   specifier is explicitly used.
3567    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3568      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3569        << Var->getDeclName()
3570        << SourceRange(Var->getLocation(), Var->getLocation());
3571      Var->setInvalidDecl();
3572      return;
3573    }
3574
3575    // C++0x [dcl.spec.auto]p3
3576    if (TypeContainsUndeducedAuto) {
3577      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3578        << Var->getDeclName() << Type;
3579      Var->setInvalidDecl();
3580      return;
3581    }
3582
3583    // An array without size is an incomplete type, and there are no special
3584    // rules in C++ to make such a definition acceptable.
3585    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3586        !Var->hasExternalStorage()) {
3587      Diag(Var->getLocation(),
3588           diag::err_typecheck_incomplete_array_needs_initializer);
3589      Var->setInvalidDecl();
3590      return;
3591    }
3592
3593    // C++ [temp.expl.spec]p15:
3594    //   An explicit specialization of a static data member of a template is a
3595    //   definition if the declaration includes an initializer; otherwise, it
3596    //   is a declaration.
3597    if (Var->isStaticDataMember() &&
3598        Var->getInstantiatedFromStaticDataMember() &&
3599        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3600      return;
3601
3602    // C++ [dcl.init]p9:
3603    //   If no initializer is specified for an object, and the object
3604    //   is of (possibly cv-qualified) non-POD class type (or array
3605    //   thereof), the object shall be default-initialized; if the
3606    //   object is of const-qualified type, the underlying class type
3607    //   shall have a user-declared default constructor.
3608    //
3609    // FIXME: Diagnose the "user-declared default constructor" bit.
3610    if (getLangOptions().CPlusPlus) {
3611      QualType InitType = Type;
3612      if (const ArrayType *Array = Context.getAsArrayType(Type))
3613        InitType = Context.getBaseElementType(Array);
3614      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3615          InitType->isRecordType() && !InitType->isDependentType()) {
3616        if (!RequireCompleteType(Var->getLocation(), InitType,
3617                                 diag::err_invalid_incomplete_type_use)) {
3618          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3619
3620          CXXConstructorDecl *Constructor
3621            = PerformInitializationByConstructor(InitType,
3622                                                 MultiExprArg(*this, 0, 0),
3623                                                 Var->getLocation(),
3624                                               SourceRange(Var->getLocation(),
3625                                                           Var->getLocation()),
3626                                                 Var->getDeclName(),
3627                                                 IK_Default,
3628                                                 ConstructorArgs);
3629
3630          // FIXME: Location info for the variable initialization?
3631          if (!Constructor)
3632            Var->setInvalidDecl();
3633          else {
3634            // FIXME: Cope with initialization of arrays
3635            if (!Constructor->isTrivial() &&
3636                InitializeVarWithConstructor(Var, Constructor,
3637                                             move_arg(ConstructorArgs)))
3638              Var->setInvalidDecl();
3639
3640            FinalizeVarWithDestructor(Var, InitType);
3641          }
3642        } else {
3643          Var->setInvalidDecl();
3644        }
3645      }
3646    }
3647
3648#if 0
3649    // FIXME: Temporarily disabled because we are not properly parsing
3650    // linkage specifications on declarations, e.g.,
3651    //
3652    //   extern "C" const CGPoint CGPointerZero;
3653    //
3654    // C++ [dcl.init]p9:
3655    //
3656    //     If no initializer is specified for an object, and the
3657    //     object is of (possibly cv-qualified) non-POD class type (or
3658    //     array thereof), the object shall be default-initialized; if
3659    //     the object is of const-qualified type, the underlying class
3660    //     type shall have a user-declared default
3661    //     constructor. Otherwise, if no initializer is specified for
3662    //     an object, the object and its subobjects, if any, have an
3663    //     indeterminate initial value; if the object or any of its
3664    //     subobjects are of const-qualified type, the program is
3665    //     ill-formed.
3666    //
3667    // This isn't technically an error in C, so we don't diagnose it.
3668    //
3669    // FIXME: Actually perform the POD/user-defined default
3670    // constructor check.
3671    if (getLangOptions().CPlusPlus &&
3672        Context.getCanonicalType(Type).isConstQualified() &&
3673        !Var->hasExternalStorage())
3674      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3675        << Var->getName()
3676        << SourceRange(Var->getLocation(), Var->getLocation());
3677#endif
3678  }
3679}
3680
3681Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3682                                                   DeclPtrTy *Group,
3683                                                   unsigned NumDecls) {
3684  llvm::SmallVector<Decl*, 8> Decls;
3685
3686  if (DS.isTypeSpecOwned())
3687    Decls.push_back((Decl*)DS.getTypeRep());
3688
3689  for (unsigned i = 0; i != NumDecls; ++i)
3690    if (Decl *D = Group[i].getAs<Decl>())
3691      Decls.push_back(D);
3692
3693  // Perform semantic analysis that depends on having fully processed both
3694  // the declarator and initializer.
3695  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3696    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3697    if (!IDecl)
3698      continue;
3699    QualType T = IDecl->getType();
3700
3701    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3702    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3703    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3704      if (T->isDependentType()) {
3705        // If T is dependent, we should not require a complete type.
3706        // (RequireCompleteType shouldn't be called with dependent types.)
3707        // But we still can at least check if we've got an array of unspecified
3708        // size without an initializer.
3709        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3710            !IDecl->getInit()) {
3711          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3712            << T;
3713          IDecl->setInvalidDecl();
3714        }
3715      } else if (!IDecl->isInvalidDecl()) {
3716        // If T is an incomplete array type with an initializer list that is
3717        // dependent on something, its size has not been fixed. We could attempt
3718        // to fix the size for such arrays, but we would still have to check
3719        // here for initializers containing a C++0x vararg expansion, e.g.
3720        // template <typename... Args> void f(Args... args) {
3721        //   int vals[] = { args };
3722        // }
3723        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3724        Expr *Init = IDecl->getInit();
3725        if (IAT && Init &&
3726            (Init->isTypeDependent() || Init->isValueDependent())) {
3727          // Check that the member type of the array is complete, at least.
3728          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3729                                  diag::err_typecheck_decl_incomplete_type))
3730            IDecl->setInvalidDecl();
3731        } else if (RequireCompleteType(IDecl->getLocation(), T,
3732                                      diag::err_typecheck_decl_incomplete_type))
3733          IDecl->setInvalidDecl();
3734      }
3735    }
3736    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3737    // object that has file scope without an initializer, and without a
3738    // storage-class specifier or with the storage-class specifier "static",
3739    // constitutes a tentative definition. Note: A tentative definition with
3740    // external linkage is valid (C99 6.2.2p5).
3741    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3742      if (const IncompleteArrayType *ArrayT
3743          = Context.getAsIncompleteArrayType(T)) {
3744        if (RequireCompleteType(IDecl->getLocation(),
3745                                ArrayT->getElementType(),
3746                                diag::err_illegal_decl_array_incomplete_type))
3747          IDecl->setInvalidDecl();
3748      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3749        // C99 6.9.2p3: If the declaration of an identifier for an object is
3750        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3751        // declared type shall not be an incomplete type.
3752        // NOTE: code such as the following
3753        //     static struct s;
3754        //     struct s { int a; };
3755        // is accepted by gcc. Hence here we issue a warning instead of
3756        // an error and we do not invalidate the static declaration.
3757        // NOTE: to avoid multiple warnings, only check the first declaration.
3758        if (IDecl->getPreviousDeclaration() == 0)
3759          RequireCompleteType(IDecl->getLocation(), T,
3760                              diag::ext_typecheck_decl_incomplete_type);
3761      }
3762    }
3763  }
3764  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3765                                                   Decls.data(), Decls.size()));
3766}
3767
3768
3769/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3770/// to introduce parameters into function prototype scope.
3771Sema::DeclPtrTy
3772Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3773  const DeclSpec &DS = D.getDeclSpec();
3774
3775  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3776  VarDecl::StorageClass StorageClass = VarDecl::None;
3777  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3778    StorageClass = VarDecl::Register;
3779  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3780    Diag(DS.getStorageClassSpecLoc(),
3781         diag::err_invalid_storage_class_in_func_decl);
3782    D.getMutableDeclSpec().ClearStorageClassSpecs();
3783  }
3784
3785  if (D.getDeclSpec().isThreadSpecified())
3786    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3787
3788  DiagnoseFunctionSpecifiers(D);
3789
3790  // Check that there are no default arguments inside the type of this
3791  // parameter (C++ only).
3792  if (getLangOptions().CPlusPlus)
3793    CheckExtraCXXDefaultArguments(D);
3794
3795  DeclaratorInfo *DInfo = 0;
3796  TagDecl *OwnedDecl = 0;
3797  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3798
3799  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3800    // C++ [dcl.fct]p6:
3801    //   Types shall not be defined in return or parameter types.
3802    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3803      << Context.getTypeDeclType(OwnedDecl);
3804  }
3805
3806  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3807  // Can this happen for params?  We already checked that they don't conflict
3808  // among each other.  Here they can only shadow globals, which is ok.
3809  IdentifierInfo *II = D.getIdentifier();
3810  if (II) {
3811    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3812      if (PrevDecl->isTemplateParameter()) {
3813        // Maybe we will complain about the shadowed template parameter.
3814        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3815        // Just pretend that we didn't see the previous declaration.
3816        PrevDecl = 0;
3817      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3818        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3819
3820        // Recover by removing the name
3821        II = 0;
3822        D.SetIdentifier(0, D.getIdentifierLoc());
3823      }
3824    }
3825  }
3826
3827  // Parameters can not be abstract class types.
3828  // For record types, this is done by the AbstractClassUsageDiagnoser once
3829  // the class has been completely parsed.
3830  if (!CurContext->isRecord() &&
3831      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3832                             diag::err_abstract_type_in_decl,
3833                             AbstractParamType))
3834    D.setInvalidType(true);
3835
3836  QualType T = adjustParameterType(parmDeclType);
3837
3838  ParmVarDecl *New
3839    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3840                          T, DInfo, StorageClass, 0);
3841
3842  if (D.isInvalidType())
3843    New->setInvalidDecl();
3844
3845  // Parameter declarators cannot be interface types. All ObjC objects are
3846  // passed by reference.
3847  if (T->isObjCInterfaceType()) {
3848    Diag(D.getIdentifierLoc(),
3849         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3850    New->setInvalidDecl();
3851  }
3852
3853  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3854  if (D.getCXXScopeSpec().isSet()) {
3855    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3856      << D.getCXXScopeSpec().getRange();
3857    New->setInvalidDecl();
3858  }
3859
3860  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3861  // duration shall not be qualified by an address-space qualifier."
3862  // Since all parameters have automatic store duration, they can not have
3863  // an address space.
3864  if (T.getAddressSpace() != 0) {
3865    Diag(D.getIdentifierLoc(),
3866         diag::err_arg_with_address_space);
3867    New->setInvalidDecl();
3868  }
3869
3870
3871  // Add the parameter declaration into this scope.
3872  S->AddDecl(DeclPtrTy::make(New));
3873  if (II)
3874    IdResolver.AddDecl(New);
3875
3876  ProcessDeclAttributes(S, New, D);
3877
3878  if (New->hasAttr<BlocksAttr>()) {
3879    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3880  }
3881  return DeclPtrTy::make(New);
3882}
3883
3884void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3885                                           SourceLocation LocAfterDecls) {
3886  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3887         "Not a function declarator!");
3888  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3889
3890  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3891  // for a K&R function.
3892  if (!FTI.hasPrototype) {
3893    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3894      --i;
3895      if (FTI.ArgInfo[i].Param == 0) {
3896        llvm::SmallString<256> Code;
3897        llvm::raw_svector_ostream(Code) << "  int "
3898                                        << FTI.ArgInfo[i].Ident->getName()
3899                                        << ";\n";
3900        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3901          << FTI.ArgInfo[i].Ident
3902          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3903
3904        // Implicitly declare the argument as type 'int' for lack of a better
3905        // type.
3906        DeclSpec DS;
3907        const char* PrevSpec; // unused
3908        unsigned DiagID; // unused
3909        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3910                           PrevSpec, DiagID);
3911        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3912        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3913        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3914      }
3915    }
3916  }
3917}
3918
3919Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3920                                              Declarator &D) {
3921  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3922  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3923         "Not a function declarator!");
3924  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3925
3926  if (FTI.hasPrototype) {
3927    // FIXME: Diagnose arguments without names in C.
3928  }
3929
3930  Scope *ParentScope = FnBodyScope->getParent();
3931
3932  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3933                                  MultiTemplateParamsArg(*this),
3934                                  /*IsFunctionDefinition=*/true);
3935  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3936}
3937
3938Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3939  // Clear the last template instantiation error context.
3940  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3941
3942  if (!D)
3943    return D;
3944  FunctionDecl *FD = 0;
3945
3946  if (FunctionTemplateDecl *FunTmpl
3947        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3948    FD = FunTmpl->getTemplatedDecl();
3949  else
3950    FD = cast<FunctionDecl>(D.getAs<Decl>());
3951
3952  CurFunctionNeedsScopeChecking = false;
3953
3954  // See if this is a redefinition.
3955  const FunctionDecl *Definition;
3956  if (FD->getBody(Definition)) {
3957    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3958    Diag(Definition->getLocation(), diag::note_previous_definition);
3959  }
3960
3961  // Builtin functions cannot be defined.
3962  if (unsigned BuiltinID = FD->getBuiltinID()) {
3963    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3964      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3965      FD->setInvalidDecl();
3966    }
3967  }
3968
3969  // The return type of a function definition must be complete
3970  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3971  QualType ResultType = FD->getResultType();
3972  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3973      !FD->isInvalidDecl() &&
3974      RequireCompleteType(FD->getLocation(), ResultType,
3975                          diag::err_func_def_incomplete_result))
3976    FD->setInvalidDecl();
3977
3978  // GNU warning -Wmissing-prototypes:
3979  //   Warn if a global function is defined without a previous
3980  //   prototype declaration. This warning is issued even if the
3981  //   definition itself provides a prototype. The aim is to detect
3982  //   global functions that fail to be declared in header files.
3983  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3984      !FD->isMain()) {
3985    bool MissingPrototype = true;
3986    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3987         Prev; Prev = Prev->getPreviousDeclaration()) {
3988      // Ignore any declarations that occur in function or method
3989      // scope, because they aren't visible from the header.
3990      if (Prev->getDeclContext()->isFunctionOrMethod())
3991        continue;
3992
3993      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3994      break;
3995    }
3996
3997    if (MissingPrototype)
3998      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3999  }
4000
4001  if (FnBodyScope)
4002    PushDeclContext(FnBodyScope, FD);
4003
4004  // Check the validity of our function parameters
4005  CheckParmsForFunctionDef(FD);
4006
4007  // Introduce our parameters into the function scope
4008  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4009    ParmVarDecl *Param = FD->getParamDecl(p);
4010    Param->setOwningFunction(FD);
4011
4012    // If this has an identifier, add it to the scope stack.
4013    if (Param->getIdentifier() && FnBodyScope)
4014      PushOnScopeChains(Param, FnBodyScope);
4015  }
4016
4017  // Checking attributes of current function definition
4018  // dllimport attribute.
4019  if (FD->getAttr<DLLImportAttr>() &&
4020      (!FD->getAttr<DLLExportAttr>())) {
4021    // dllimport attribute cannot be applied to definition.
4022    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4023      Diag(FD->getLocation(),
4024           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4025        << "dllimport";
4026      FD->setInvalidDecl();
4027      return DeclPtrTy::make(FD);
4028    } else {
4029      // If a symbol previously declared dllimport is later defined, the
4030      // attribute is ignored in subsequent references, and a warning is
4031      // emitted.
4032      Diag(FD->getLocation(),
4033           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4034        << FD->getNameAsCString() << "dllimport";
4035    }
4036  }
4037  return DeclPtrTy::make(FD);
4038}
4039
4040Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4041  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4042}
4043
4044Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4045                                              bool IsInstantiation) {
4046  Decl *dcl = D.getAs<Decl>();
4047  Stmt *Body = BodyArg.takeAs<Stmt>();
4048
4049  FunctionDecl *FD = 0;
4050  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4051  if (FunTmpl)
4052    FD = FunTmpl->getTemplatedDecl();
4053  else
4054    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4055
4056  if (FD) {
4057    FD->setBody(Body);
4058    if (FD->isMain())
4059      // C and C++ allow for main to automagically return 0.
4060      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4061      FD->setHasImplicitReturnZero(true);
4062    else
4063      CheckFallThroughForFunctionDef(FD, Body);
4064
4065    if (!FD->isInvalidDecl())
4066      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4067
4068    // C++ [basic.def.odr]p2:
4069    //   [...] A virtual member function is used if it is not pure. [...]
4070    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4071      if (Method->isVirtual() && !Method->isPure())
4072        MarkDeclarationReferenced(Method->getLocation(), Method);
4073
4074    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4075  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4076    assert(MD == getCurMethodDecl() && "Method parsing confused");
4077    MD->setBody(Body);
4078    CheckFallThroughForFunctionDef(MD, Body);
4079    MD->setEndLoc(Body->getLocEnd());
4080
4081    if (!MD->isInvalidDecl())
4082      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4083  } else {
4084    Body->Destroy(Context);
4085    return DeclPtrTy();
4086  }
4087  if (!IsInstantiation)
4088    PopDeclContext();
4089
4090  // Verify and clean out per-function state.
4091
4092  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4093
4094  // Check goto/label use.
4095  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4096       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4097    LabelStmt *L = I->second;
4098
4099    // Verify that we have no forward references left.  If so, there was a goto
4100    // or address of a label taken, but no definition of it.  Label fwd
4101    // definitions are indicated with a null substmt.
4102    if (L->getSubStmt() != 0)
4103      continue;
4104
4105    // Emit error.
4106    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4107
4108    // At this point, we have gotos that use the bogus label.  Stitch it into
4109    // the function body so that they aren't leaked and that the AST is well
4110    // formed.
4111    if (Body == 0) {
4112      // The whole function wasn't parsed correctly, just delete this.
4113      L->Destroy(Context);
4114      continue;
4115    }
4116
4117    // Otherwise, the body is valid: we want to stitch the label decl into the
4118    // function somewhere so that it is properly owned and so that the goto
4119    // has a valid target.  Do this by creating a new compound stmt with the
4120    // label in it.
4121
4122    // Give the label a sub-statement.
4123    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4124
4125    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4126                               cast<CXXTryStmt>(Body)->getTryBlock() :
4127                               cast<CompoundStmt>(Body);
4128    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4129    Elements.push_back(L);
4130    Compound->setStmts(Context, &Elements[0], Elements.size());
4131  }
4132  FunctionLabelMap.clear();
4133
4134  if (!Body) return D;
4135
4136  // Verify that that gotos and switch cases don't jump into scopes illegally.
4137  if (CurFunctionNeedsScopeChecking)
4138    DiagnoseInvalidJumps(Body);
4139
4140  // C++ constructors that have function-try-blocks can't have return
4141  // statements in the handlers of that block. (C++ [except.handle]p14)
4142  // Verify this.
4143  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4144    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4145
4146  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4147    MarkBaseAndMemberDestructorsReferenced(Destructor);
4148
4149  // If any errors have occurred, clear out any temporaries that may have
4150  // been leftover. This ensures that these temporaries won't be picked up for
4151  // deletion in some later function.
4152  if (PP.getDiagnostics().hasErrorOccurred())
4153    ExprTemporaries.clear();
4154
4155  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4156  return D;
4157}
4158
4159/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4160/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4161NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4162                                          IdentifierInfo &II, Scope *S) {
4163  // Before we produce a declaration for an implicitly defined
4164  // function, see whether there was a locally-scoped declaration of
4165  // this name as a function or variable. If so, use that
4166  // (non-visible) declaration, and complain about it.
4167  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4168    = LocallyScopedExternalDecls.find(&II);
4169  if (Pos != LocallyScopedExternalDecls.end()) {
4170    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4171    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4172    return Pos->second;
4173  }
4174
4175  // Extension in C99.  Legal in C90, but warn about it.
4176  if (II.getName().startswith("__builtin_"))
4177    Diag(Loc, diag::warn_builtin_unknown) << &II;
4178  else if (getLangOptions().C99)
4179    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4180  else
4181    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4182
4183  // Set a Declarator for the implicit definition: int foo();
4184  const char *Dummy;
4185  DeclSpec DS;
4186  unsigned DiagID;
4187  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4188  Error = Error; // Silence warning.
4189  assert(!Error && "Error setting up implicit decl!");
4190  Declarator D(DS, Declarator::BlockContext);
4191  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4192                                             0, 0, false, SourceLocation(),
4193                                             false, 0,0,0, Loc, Loc, D),
4194                SourceLocation());
4195  D.SetIdentifier(&II, Loc);
4196
4197  // Insert this function into translation-unit scope.
4198
4199  DeclContext *PrevDC = CurContext;
4200  CurContext = Context.getTranslationUnitDecl();
4201
4202  FunctionDecl *FD =
4203 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4204  FD->setImplicit();
4205
4206  CurContext = PrevDC;
4207
4208  AddKnownFunctionAttributes(FD);
4209
4210  return FD;
4211}
4212
4213/// \brief Adds any function attributes that we know a priori based on
4214/// the declaration of this function.
4215///
4216/// These attributes can apply both to implicitly-declared builtins
4217/// (like __builtin___printf_chk) or to library-declared functions
4218/// like NSLog or printf.
4219void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4220  if (FD->isInvalidDecl())
4221    return;
4222
4223  // If this is a built-in function, map its builtin attributes to
4224  // actual attributes.
4225  if (unsigned BuiltinID = FD->getBuiltinID()) {
4226    // Handle printf-formatting attributes.
4227    unsigned FormatIdx;
4228    bool HasVAListArg;
4229    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4230      if (!FD->getAttr<FormatAttr>())
4231        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4232                                             HasVAListArg ? 0 : FormatIdx + 2));
4233    }
4234
4235    // Mark const if we don't care about errno and that is the only
4236    // thing preventing the function from being const. This allows
4237    // IRgen to use LLVM intrinsics for such functions.
4238    if (!getLangOptions().MathErrno &&
4239        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4240      if (!FD->getAttr<ConstAttr>())
4241        FD->addAttr(::new (Context) ConstAttr());
4242    }
4243
4244    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4245      FD->addAttr(::new (Context) NoReturnAttr());
4246  }
4247
4248  IdentifierInfo *Name = FD->getIdentifier();
4249  if (!Name)
4250    return;
4251  if ((!getLangOptions().CPlusPlus &&
4252       FD->getDeclContext()->isTranslationUnit()) ||
4253      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4254       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4255       LinkageSpecDecl::lang_c)) {
4256    // Okay: this could be a libc/libm/Objective-C function we know
4257    // about.
4258  } else
4259    return;
4260
4261  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4262    // FIXME: NSLog and NSLogv should be target specific
4263    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4264      // FIXME: We known better than our headers.
4265      const_cast<FormatAttr *>(Format)->setType("printf");
4266    } else
4267      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4268                                             Name->isStr("NSLogv") ? 0 : 2));
4269  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4270    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4271    // target-specific builtins, perhaps?
4272    if (!FD->getAttr<FormatAttr>())
4273      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4274                                             Name->isStr("vasprintf") ? 0 : 3));
4275  }
4276}
4277
4278TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4279                                    DeclaratorInfo *DInfo) {
4280  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4281  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4282
4283  if (!DInfo) {
4284    assert(D.isInvalidType() && "no declarator info for valid type");
4285    DInfo = Context.getTrivialDeclaratorInfo(T);
4286  }
4287
4288  // Scope manipulation handled by caller.
4289  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4290                                           D.getIdentifierLoc(),
4291                                           D.getIdentifier(),
4292                                           DInfo);
4293
4294  if (const TagType *TT = T->getAs<TagType>()) {
4295    TagDecl *TD = TT->getDecl();
4296
4297    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4298    // keep track of the TypedefDecl.
4299    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4300      TD->setTypedefForAnonDecl(NewTD);
4301  }
4302
4303  if (D.isInvalidType())
4304    NewTD->setInvalidDecl();
4305  return NewTD;
4306}
4307
4308
4309/// \brief Determine whether a tag with a given kind is acceptable
4310/// as a redeclaration of the given tag declaration.
4311///
4312/// \returns true if the new tag kind is acceptable, false otherwise.
4313bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4314                                        TagDecl::TagKind NewTag,
4315                                        SourceLocation NewTagLoc,
4316                                        const IdentifierInfo &Name) {
4317  // C++ [dcl.type.elab]p3:
4318  //   The class-key or enum keyword present in the
4319  //   elaborated-type-specifier shall agree in kind with the
4320  //   declaration to which the name in theelaborated-type-specifier
4321  //   refers. This rule also applies to the form of
4322  //   elaborated-type-specifier that declares a class-name or
4323  //   friend class since it can be construed as referring to the
4324  //   definition of the class. Thus, in any
4325  //   elaborated-type-specifier, the enum keyword shall be used to
4326  //   refer to an enumeration (7.2), the union class-keyshall be
4327  //   used to refer to a union (clause 9), and either the class or
4328  //   struct class-key shall be used to refer to a class (clause 9)
4329  //   declared using the class or struct class-key.
4330  TagDecl::TagKind OldTag = Previous->getTagKind();
4331  if (OldTag == NewTag)
4332    return true;
4333
4334  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4335      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4336    // Warn about the struct/class tag mismatch.
4337    bool isTemplate = false;
4338    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4339      isTemplate = Record->getDescribedClassTemplate();
4340
4341    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4342      << (NewTag == TagDecl::TK_class)
4343      << isTemplate << &Name
4344      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4345                              OldTag == TagDecl::TK_class? "class" : "struct");
4346    Diag(Previous->getLocation(), diag::note_previous_use);
4347    return true;
4348  }
4349  return false;
4350}
4351
4352/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4353/// former case, Name will be non-null.  In the later case, Name will be null.
4354/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4355/// reference/declaration/definition of a tag.
4356Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4357                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4358                               IdentifierInfo *Name, SourceLocation NameLoc,
4359                               AttributeList *Attr, AccessSpecifier AS,
4360                               MultiTemplateParamsArg TemplateParameterLists,
4361                               bool &OwnedDecl, bool &IsDependent) {
4362  // If this is not a definition, it must have a name.
4363  assert((Name != 0 || TUK == TUK_Definition) &&
4364         "Nameless record must be a definition!");
4365
4366  OwnedDecl = false;
4367  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4368
4369  // FIXME: Check explicit specializations more carefully.
4370  bool isExplicitSpecialization = false;
4371  if (TUK != TUK_Reference) {
4372    if (TemplateParameterList *TemplateParams
4373          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4374                        (TemplateParameterList**)TemplateParameterLists.get(),
4375                                              TemplateParameterLists.size(),
4376                                                    isExplicitSpecialization)) {
4377      if (TemplateParams->size() > 0) {
4378        // This is a declaration or definition of a class template (which may
4379        // be a member of another template).
4380        OwnedDecl = false;
4381        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4382                                               SS, Name, NameLoc, Attr,
4383                                               TemplateParams,
4384                                               AS);
4385        TemplateParameterLists.release();
4386        return Result.get();
4387      } else {
4388        // The "template<>" header is extraneous.
4389        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4390          << ElaboratedType::getNameForTagKind(Kind) << Name;
4391        isExplicitSpecialization = true;
4392      }
4393    }
4394
4395    TemplateParameterLists.release();
4396  }
4397
4398  DeclContext *SearchDC = CurContext;
4399  DeclContext *DC = CurContext;
4400  bool isStdBadAlloc = false;
4401  bool Invalid = false;
4402
4403  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4404                                                   : NotForRedeclaration);
4405
4406  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4407
4408  if (Name && SS.isNotEmpty()) {
4409    // We have a nested-name tag ('struct foo::bar').
4410
4411    // Check for invalid 'foo::'.
4412    if (SS.isInvalid()) {
4413      Name = 0;
4414      goto CreateNewDecl;
4415    }
4416
4417    // If this is a friend or a reference to a class in a dependent
4418    // context, don't try to make a decl for it.
4419    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4420      DC = computeDeclContext(SS, false);
4421      if (!DC) {
4422        IsDependent = true;
4423        return DeclPtrTy();
4424      }
4425    }
4426
4427    if (RequireCompleteDeclContext(SS))
4428      return DeclPtrTy::make((Decl *)0);
4429
4430    DC = computeDeclContext(SS, true);
4431    SearchDC = DC;
4432    // Look-up name inside 'foo::'.
4433    LookupQualifiedName(Previous, DC);
4434
4435    if (Previous.isAmbiguous())
4436      return DeclPtrTy();
4437
4438    // A tag 'foo::bar' must already exist.
4439    if (Previous.empty()) {
4440      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4441      Name = 0;
4442      Invalid = true;
4443      goto CreateNewDecl;
4444    }
4445  } else if (Name) {
4446    // If this is a named struct, check to see if there was a previous forward
4447    // declaration or definition.
4448    // FIXME: We're looking into outer scopes here, even when we
4449    // shouldn't be. Doing so can result in ambiguities that we
4450    // shouldn't be diagnosing.
4451    LookupName(Previous, S);
4452
4453    // Note:  there used to be some attempt at recovery here.
4454    if (Previous.isAmbiguous())
4455      return DeclPtrTy();
4456
4457    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4458      // FIXME: This makes sure that we ignore the contexts associated
4459      // with C structs, unions, and enums when looking for a matching
4460      // tag declaration or definition. See the similar lookup tweak
4461      // in Sema::LookupName; is there a better way to deal with this?
4462      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4463        SearchDC = SearchDC->getParent();
4464    }
4465  }
4466
4467  if (Previous.isSingleResult() &&
4468      Previous.getFoundDecl()->isTemplateParameter()) {
4469    // Maybe we will complain about the shadowed template parameter.
4470    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4471    // Just pretend that we didn't see the previous declaration.
4472    Previous.clear();
4473  }
4474
4475  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4476      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4477    // This is a declaration of or a reference to "std::bad_alloc".
4478    isStdBadAlloc = true;
4479
4480    if (Previous.empty() && StdBadAlloc) {
4481      // std::bad_alloc has been implicitly declared (but made invisible to
4482      // name lookup). Fill in this implicit declaration as the previous
4483      // declaration, so that the declarations get chained appropriately.
4484      Previous.addDecl(StdBadAlloc);
4485    }
4486  }
4487
4488  if (!Previous.empty()) {
4489    assert(Previous.isSingleResult());
4490    NamedDecl *PrevDecl = Previous.getFoundDecl();
4491    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4492      // If this is a use of a previous tag, or if the tag is already declared
4493      // in the same scope (so that the definition/declaration completes or
4494      // rementions the tag), reuse the decl.
4495      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4496          isDeclInScope(PrevDecl, SearchDC, S)) {
4497        // Make sure that this wasn't declared as an enum and now used as a
4498        // struct or something similar.
4499        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4500          bool SafeToContinue
4501            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4502               Kind != TagDecl::TK_enum);
4503          if (SafeToContinue)
4504            Diag(KWLoc, diag::err_use_with_wrong_tag)
4505              << Name
4506              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4507                                                  PrevTagDecl->getKindName());
4508          else
4509            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4510          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4511
4512          if (SafeToContinue)
4513            Kind = PrevTagDecl->getTagKind();
4514          else {
4515            // Recover by making this an anonymous redefinition.
4516            Name = 0;
4517            Previous.clear();
4518            Invalid = true;
4519          }
4520        }
4521
4522        if (!Invalid) {
4523          // If this is a use, just return the declaration we found.
4524
4525          // FIXME: In the future, return a variant or some other clue
4526          // for the consumer of this Decl to know it doesn't own it.
4527          // For our current ASTs this shouldn't be a problem, but will
4528          // need to be changed with DeclGroups.
4529          if (TUK == TUK_Reference || TUK == TUK_Friend)
4530            return DeclPtrTy::make(PrevTagDecl);
4531
4532          // Diagnose attempts to redefine a tag.
4533          if (TUK == TUK_Definition) {
4534            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4535              // If we're defining a specialization and the previous definition
4536              // is from an implicit instantiation, don't emit an error
4537              // here; we'll catch this in the general case below.
4538              if (!isExplicitSpecialization ||
4539                  !isa<CXXRecordDecl>(Def) ||
4540                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4541                                               == TSK_ExplicitSpecialization) {
4542                Diag(NameLoc, diag::err_redefinition) << Name;
4543                Diag(Def->getLocation(), diag::note_previous_definition);
4544                // If this is a redefinition, recover by making this
4545                // struct be anonymous, which will make any later
4546                // references get the previous definition.
4547                Name = 0;
4548                Previous.clear();
4549                Invalid = true;
4550              }
4551            } else {
4552              // If the type is currently being defined, complain
4553              // about a nested redefinition.
4554              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4555              if (Tag->isBeingDefined()) {
4556                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4557                Diag(PrevTagDecl->getLocation(),
4558                     diag::note_previous_definition);
4559                Name = 0;
4560                Previous.clear();
4561                Invalid = true;
4562              }
4563            }
4564
4565            // Okay, this is definition of a previously declared or referenced
4566            // tag PrevDecl. We're going to create a new Decl for it.
4567          }
4568        }
4569        // If we get here we have (another) forward declaration or we
4570        // have a definition.  Just create a new decl.
4571
4572      } else {
4573        // If we get here, this is a definition of a new tag type in a nested
4574        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4575        // new decl/type.  We set PrevDecl to NULL so that the entities
4576        // have distinct types.
4577        Previous.clear();
4578      }
4579      // If we get here, we're going to create a new Decl. If PrevDecl
4580      // is non-NULL, it's a definition of the tag declared by
4581      // PrevDecl. If it's NULL, we have a new definition.
4582    } else {
4583      // PrevDecl is a namespace, template, or anything else
4584      // that lives in the IDNS_Tag identifier namespace.
4585      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4586        // The tag name clashes with a namespace name, issue an error and
4587        // recover by making this tag be anonymous.
4588        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4589        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4590        Name = 0;
4591        Previous.clear();
4592        Invalid = true;
4593      } else {
4594        // The existing declaration isn't relevant to us; we're in a
4595        // new scope, so clear out the previous declaration.
4596        Previous.clear();
4597      }
4598    }
4599  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4600             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4601    // C++ [basic.scope.pdecl]p5:
4602    //   -- for an elaborated-type-specifier of the form
4603    //
4604    //          class-key identifier
4605    //
4606    //      if the elaborated-type-specifier is used in the
4607    //      decl-specifier-seq or parameter-declaration-clause of a
4608    //      function defined in namespace scope, the identifier is
4609    //      declared as a class-name in the namespace that contains
4610    //      the declaration; otherwise, except as a friend
4611    //      declaration, the identifier is declared in the smallest
4612    //      non-class, non-function-prototype scope that contains the
4613    //      declaration.
4614    //
4615    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4616    // C structs and unions.
4617    //
4618    // GNU C also supports this behavior as part of its incomplete
4619    // enum types extension, while GNU C++ does not.
4620    //
4621    // Find the context where we'll be declaring the tag.
4622    // FIXME: We would like to maintain the current DeclContext as the
4623    // lexical context,
4624    while (SearchDC->isRecord())
4625      SearchDC = SearchDC->getParent();
4626
4627    // Find the scope where we'll be declaring the tag.
4628    while (S->isClassScope() ||
4629           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4630           ((S->getFlags() & Scope::DeclScope) == 0) ||
4631           (S->getEntity() &&
4632            ((DeclContext *)S->getEntity())->isTransparentContext()))
4633      S = S->getParent();
4634
4635  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4636    // C++ [namespace.memdef]p3:
4637    //   If a friend declaration in a non-local class first declares a
4638    //   class or function, the friend class or function is a member of
4639    //   the innermost enclosing namespace.
4640    while (!SearchDC->isFileContext())
4641      SearchDC = SearchDC->getParent();
4642
4643    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4644    while (S->getEntity() != SearchDC)
4645      S = S->getParent();
4646  }
4647
4648CreateNewDecl:
4649
4650  TagDecl *PrevDecl = 0;
4651  if (Previous.isSingleResult())
4652    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4653
4654  // If there is an identifier, use the location of the identifier as the
4655  // location of the decl, otherwise use the location of the struct/union
4656  // keyword.
4657  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4658
4659  // Otherwise, create a new declaration. If there is a previous
4660  // declaration of the same entity, the two will be linked via
4661  // PrevDecl.
4662  TagDecl *New;
4663
4664  if (Kind == TagDecl::TK_enum) {
4665    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4666    // enum X { A, B, C } D;    D should chain to X.
4667    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4668                           cast_or_null<EnumDecl>(PrevDecl));
4669    // If this is an undefined enum, warn.
4670    if (TUK != TUK_Definition && !Invalid)  {
4671      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4672                                              : diag::ext_forward_ref_enum;
4673      Diag(Loc, DK);
4674    }
4675  } else {
4676    // struct/union/class
4677
4678    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4679    // struct X { int A; } D;    D should chain to X.
4680    if (getLangOptions().CPlusPlus) {
4681      // FIXME: Look for a way to use RecordDecl for simple structs.
4682      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4683                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4684
4685      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4686        StdBadAlloc = cast<CXXRecordDecl>(New);
4687    } else
4688      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4689                               cast_or_null<RecordDecl>(PrevDecl));
4690  }
4691
4692  if (Kind != TagDecl::TK_enum) {
4693    // Handle #pragma pack: if the #pragma pack stack has non-default
4694    // alignment, make up a packed attribute for this decl. These
4695    // attributes are checked when the ASTContext lays out the
4696    // structure.
4697    //
4698    // It is important for implementing the correct semantics that this
4699    // happen here (in act on tag decl). The #pragma pack stack is
4700    // maintained as a result of parser callbacks which can occur at
4701    // many points during the parsing of a struct declaration (because
4702    // the #pragma tokens are effectively skipped over during the
4703    // parsing of the struct).
4704    if (unsigned Alignment = getPragmaPackAlignment())
4705      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4706  }
4707
4708  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4709    // C++ [dcl.typedef]p3:
4710    //   [...] Similarly, in a given scope, a class or enumeration
4711    //   shall not be declared with the same name as a typedef-name
4712    //   that is declared in that scope and refers to a type other
4713    //   than the class or enumeration itself.
4714    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4715                        ForRedeclaration);
4716    LookupName(Lookup, S);
4717    TypedefDecl *PrevTypedef = 0;
4718    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4719      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4720
4721    NamedDecl *PrevTypedefNamed = PrevTypedef;
4722    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4723        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4724          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4725      Diag(Loc, diag::err_tag_definition_of_typedef)
4726        << Context.getTypeDeclType(New)
4727        << PrevTypedef->getUnderlyingType();
4728      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4729      Invalid = true;
4730    }
4731  }
4732
4733  // If this is a specialization of a member class (of a class template),
4734  // check the specialization.
4735  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4736    Invalid = true;
4737
4738  if (Invalid)
4739    New->setInvalidDecl();
4740
4741  if (Attr)
4742    ProcessDeclAttributeList(S, New, Attr);
4743
4744  // If we're declaring or defining a tag in function prototype scope
4745  // in C, note that this type can only be used within the function.
4746  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4747    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4748
4749  // Set the lexical context. If the tag has a C++ scope specifier, the
4750  // lexical context will be different from the semantic context.
4751  New->setLexicalDeclContext(CurContext);
4752
4753  // Mark this as a friend decl if applicable.
4754  if (TUK == TUK_Friend)
4755    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4756
4757  // Set the access specifier.
4758  if (!Invalid && TUK != TUK_Friend)
4759    SetMemberAccessSpecifier(New, PrevDecl, AS);
4760
4761  if (TUK == TUK_Definition)
4762    New->startDefinition();
4763
4764  // If this has an identifier, add it to the scope stack.
4765  if (TUK == TUK_Friend) {
4766    // We might be replacing an existing declaration in the lookup tables;
4767    // if so, borrow its access specifier.
4768    if (PrevDecl)
4769      New->setAccess(PrevDecl->getAccess());
4770
4771    // Friend tag decls are visible in fairly strange ways.
4772    if (!CurContext->isDependentContext()) {
4773      DeclContext *DC = New->getDeclContext()->getLookupContext();
4774      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4775      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4776        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4777    }
4778  } else if (Name) {
4779    S = getNonFieldDeclScope(S);
4780    PushOnScopeChains(New, S);
4781  } else {
4782    CurContext->addDecl(New);
4783  }
4784
4785  // If this is the C FILE type, notify the AST context.
4786  if (IdentifierInfo *II = New->getIdentifier())
4787    if (!New->isInvalidDecl() &&
4788        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4789        II->isStr("FILE"))
4790      Context.setFILEDecl(New);
4791
4792  OwnedDecl = true;
4793  return DeclPtrTy::make(New);
4794}
4795
4796void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4797  AdjustDeclIfTemplate(TagD);
4798  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4799
4800  // Enter the tag context.
4801  PushDeclContext(S, Tag);
4802
4803  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4804    FieldCollector->StartClass();
4805
4806    if (Record->getIdentifier()) {
4807      // C++ [class]p2:
4808      //   [...] The class-name is also inserted into the scope of the
4809      //   class itself; this is known as the injected-class-name. For
4810      //   purposes of access checking, the injected-class-name is treated
4811      //   as if it were a public member name.
4812      CXXRecordDecl *InjectedClassName
4813        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4814                                CurContext, Record->getLocation(),
4815                                Record->getIdentifier(),
4816                                Record->getTagKeywordLoc(),
4817                                Record);
4818      InjectedClassName->setImplicit();
4819      InjectedClassName->setAccess(AS_public);
4820      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4821        InjectedClassName->setDescribedClassTemplate(Template);
4822      PushOnScopeChains(InjectedClassName, S);
4823      assert(InjectedClassName->isInjectedClassName() &&
4824             "Broken injected-class-name");
4825    }
4826  }
4827}
4828
4829void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4830                                    SourceLocation RBraceLoc) {
4831  AdjustDeclIfTemplate(TagD);
4832  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4833  Tag->setRBraceLoc(RBraceLoc);
4834
4835  if (isa<CXXRecordDecl>(Tag))
4836    FieldCollector->FinishClass();
4837
4838  // Exit this scope of this tag's definition.
4839  PopDeclContext();
4840
4841  // Notify the consumer that we've defined a tag.
4842  Consumer.HandleTagDeclDefinition(Tag);
4843}
4844
4845// Note that FieldName may be null for anonymous bitfields.
4846bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4847                          QualType FieldTy, const Expr *BitWidth,
4848                          bool *ZeroWidth) {
4849  // Default to true; that shouldn't confuse checks for emptiness
4850  if (ZeroWidth)
4851    *ZeroWidth = true;
4852
4853  // C99 6.7.2.1p4 - verify the field type.
4854  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4855  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4856    // Handle incomplete types with specific error.
4857    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4858      return true;
4859    if (FieldName)
4860      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4861        << FieldName << FieldTy << BitWidth->getSourceRange();
4862    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4863      << FieldTy << BitWidth->getSourceRange();
4864  }
4865
4866  // If the bit-width is type- or value-dependent, don't try to check
4867  // it now.
4868  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4869    return false;
4870
4871  llvm::APSInt Value;
4872  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4873    return true;
4874
4875  if (Value != 0 && ZeroWidth)
4876    *ZeroWidth = false;
4877
4878  // Zero-width bitfield is ok for anonymous field.
4879  if (Value == 0 && FieldName)
4880    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4881
4882  if (Value.isSigned() && Value.isNegative()) {
4883    if (FieldName)
4884      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4885               << FieldName << Value.toString(10);
4886    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4887      << Value.toString(10);
4888  }
4889
4890  if (!FieldTy->isDependentType()) {
4891    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4892    if (Value.getZExtValue() > TypeSize) {
4893      if (FieldName)
4894        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4895          << FieldName << (unsigned)TypeSize;
4896      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4897        << (unsigned)TypeSize;
4898    }
4899  }
4900
4901  return false;
4902}
4903
4904/// ActOnField - Each field of a struct/union/class is passed into this in order
4905/// to create a FieldDecl object for it.
4906Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4907                                 SourceLocation DeclStart,
4908                                 Declarator &D, ExprTy *BitfieldWidth) {
4909  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4910                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4911                               AS_public);
4912  return DeclPtrTy::make(Res);
4913}
4914
4915/// HandleField - Analyze a field of a C struct or a C++ data member.
4916///
4917FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4918                             SourceLocation DeclStart,
4919                             Declarator &D, Expr *BitWidth,
4920                             AccessSpecifier AS) {
4921  IdentifierInfo *II = D.getIdentifier();
4922  SourceLocation Loc = DeclStart;
4923  if (II) Loc = D.getIdentifierLoc();
4924
4925  DeclaratorInfo *DInfo = 0;
4926  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4927  if (getLangOptions().CPlusPlus)
4928    CheckExtraCXXDefaultArguments(D);
4929
4930  DiagnoseFunctionSpecifiers(D);
4931
4932  if (D.getDeclSpec().isThreadSpecified())
4933    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4934
4935  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
4936                                         ForRedeclaration);
4937
4938  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4939    // Maybe we will complain about the shadowed template parameter.
4940    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4941    // Just pretend that we didn't see the previous declaration.
4942    PrevDecl = 0;
4943  }
4944
4945  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4946    PrevDecl = 0;
4947
4948  bool Mutable
4949    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4950  SourceLocation TSSL = D.getSourceRange().getBegin();
4951  FieldDecl *NewFD
4952    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4953                     AS, PrevDecl, &D);
4954  if (NewFD->isInvalidDecl() && PrevDecl) {
4955    // Don't introduce NewFD into scope; there's already something
4956    // with the same name in the same scope.
4957  } else if (II) {
4958    PushOnScopeChains(NewFD, S);
4959  } else
4960    Record->addDecl(NewFD);
4961
4962  return NewFD;
4963}
4964
4965/// \brief Build a new FieldDecl and check its well-formedness.
4966///
4967/// This routine builds a new FieldDecl given the fields name, type,
4968/// record, etc. \p PrevDecl should refer to any previous declaration
4969/// with the same name and in the same scope as the field to be
4970/// created.
4971///
4972/// \returns a new FieldDecl.
4973///
4974/// \todo The Declarator argument is a hack. It will be removed once
4975FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4976                                DeclaratorInfo *DInfo,
4977                                RecordDecl *Record, SourceLocation Loc,
4978                                bool Mutable, Expr *BitWidth,
4979                                SourceLocation TSSL,
4980                                AccessSpecifier AS, NamedDecl *PrevDecl,
4981                                Declarator *D) {
4982  IdentifierInfo *II = Name.getAsIdentifierInfo();
4983  bool InvalidDecl = false;
4984  if (D) InvalidDecl = D->isInvalidType();
4985
4986  // If we receive a broken type, recover by assuming 'int' and
4987  // marking this declaration as invalid.
4988  if (T.isNull()) {
4989    InvalidDecl = true;
4990    T = Context.IntTy;
4991  }
4992
4993  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4994  // than a variably modified type.
4995  if (T->isVariablyModifiedType()) {
4996    bool SizeIsNegative;
4997    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4998                                                           SizeIsNegative);
4999    if (!FixedTy.isNull()) {
5000      Diag(Loc, diag::warn_illegal_constant_array_size);
5001      T = FixedTy;
5002    } else {
5003      if (SizeIsNegative)
5004        Diag(Loc, diag::err_typecheck_negative_array_size);
5005      else
5006        Diag(Loc, diag::err_typecheck_field_variable_size);
5007      InvalidDecl = true;
5008    }
5009  }
5010
5011  // Fields can not have abstract class types
5012  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
5013                             AbstractFieldType))
5014    InvalidDecl = true;
5015
5016  bool ZeroWidth = false;
5017  // If this is declared as a bit-field, check the bit-field.
5018  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5019    InvalidDecl = true;
5020    DeleteExpr(BitWidth);
5021    BitWidth = 0;
5022    ZeroWidth = false;
5023  }
5024
5025  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
5026                                       BitWidth, Mutable);
5027  if (InvalidDecl)
5028    NewFD->setInvalidDecl();
5029
5030  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5031    Diag(Loc, diag::err_duplicate_member) << II;
5032    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5033    NewFD->setInvalidDecl();
5034  }
5035
5036  if (getLangOptions().CPlusPlus) {
5037    QualType EltTy = Context.getBaseElementType(T);
5038
5039    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5040
5041    if (!T->isPODType())
5042      CXXRecord->setPOD(false);
5043    if (!ZeroWidth)
5044      CXXRecord->setEmpty(false);
5045
5046    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5047      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5048
5049      if (!RDecl->hasTrivialConstructor())
5050        CXXRecord->setHasTrivialConstructor(false);
5051      if (!RDecl->hasTrivialCopyConstructor())
5052        CXXRecord->setHasTrivialCopyConstructor(false);
5053      if (!RDecl->hasTrivialCopyAssignment())
5054        CXXRecord->setHasTrivialCopyAssignment(false);
5055      if (!RDecl->hasTrivialDestructor())
5056        CXXRecord->setHasTrivialDestructor(false);
5057
5058      // C++ 9.5p1: An object of a class with a non-trivial
5059      // constructor, a non-trivial copy constructor, a non-trivial
5060      // destructor, or a non-trivial copy assignment operator
5061      // cannot be a member of a union, nor can an array of such
5062      // objects.
5063      // TODO: C++0x alters this restriction significantly.
5064      if (Record->isUnion()) {
5065        // We check for copy constructors before constructors
5066        // because otherwise we'll never get complaints about
5067        // copy constructors.
5068
5069        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5070
5071        CXXSpecialMember member;
5072        if (!RDecl->hasTrivialCopyConstructor())
5073          member = CXXCopyConstructor;
5074        else if (!RDecl->hasTrivialConstructor())
5075          member = CXXDefaultConstructor;
5076        else if (!RDecl->hasTrivialCopyAssignment())
5077          member = CXXCopyAssignment;
5078        else if (!RDecl->hasTrivialDestructor())
5079          member = CXXDestructor;
5080        else
5081          member = invalid;
5082
5083        if (member != invalid) {
5084          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5085          DiagnoseNontrivial(RT, member);
5086          NewFD->setInvalidDecl();
5087        }
5088      }
5089    }
5090  }
5091
5092  // FIXME: We need to pass in the attributes given an AST
5093  // representation, not a parser representation.
5094  if (D)
5095    // FIXME: What to pass instead of TUScope?
5096    ProcessDeclAttributes(TUScope, NewFD, *D);
5097
5098  if (T.isObjCGCWeak())
5099    Diag(Loc, diag::warn_attribute_weak_on_field);
5100
5101  NewFD->setAccess(AS);
5102
5103  // C++ [dcl.init.aggr]p1:
5104  //   An aggregate is an array or a class (clause 9) with [...] no
5105  //   private or protected non-static data members (clause 11).
5106  // A POD must be an aggregate.
5107  if (getLangOptions().CPlusPlus &&
5108      (AS == AS_private || AS == AS_protected)) {
5109    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5110    CXXRecord->setAggregate(false);
5111    CXXRecord->setPOD(false);
5112  }
5113
5114  return NewFD;
5115}
5116
5117/// DiagnoseNontrivial - Given that a class has a non-trivial
5118/// special member, figure out why.
5119void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5120  QualType QT(T, 0U);
5121  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5122
5123  // Check whether the member was user-declared.
5124  switch (member) {
5125  case CXXDefaultConstructor:
5126    if (RD->hasUserDeclaredConstructor()) {
5127      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5128      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5129        const FunctionDecl *body = 0;
5130        ci->getBody(body);
5131        if (!body ||
5132            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5133          SourceLocation CtorLoc = ci->getLocation();
5134          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5135          return;
5136        }
5137      }
5138
5139      assert(0 && "found no user-declared constructors");
5140      return;
5141    }
5142    break;
5143
5144  case CXXCopyConstructor:
5145    if (RD->hasUserDeclaredCopyConstructor()) {
5146      SourceLocation CtorLoc =
5147        RD->getCopyConstructor(Context, 0)->getLocation();
5148      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5149      return;
5150    }
5151    break;
5152
5153  case CXXCopyAssignment:
5154    if (RD->hasUserDeclaredCopyAssignment()) {
5155      // FIXME: this should use the location of the copy
5156      // assignment, not the type.
5157      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5158      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5159      return;
5160    }
5161    break;
5162
5163  case CXXDestructor:
5164    if (RD->hasUserDeclaredDestructor()) {
5165      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5166      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5167      return;
5168    }
5169    break;
5170  }
5171
5172  typedef CXXRecordDecl::base_class_iterator base_iter;
5173
5174  // Virtual bases and members inhibit trivial copying/construction,
5175  // but not trivial destruction.
5176  if (member != CXXDestructor) {
5177    // Check for virtual bases.  vbases includes indirect virtual bases,
5178    // so we just iterate through the direct bases.
5179    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5180      if (bi->isVirtual()) {
5181        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5182        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5183        return;
5184      }
5185
5186    // Check for virtual methods.
5187    typedef CXXRecordDecl::method_iterator meth_iter;
5188    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5189         ++mi) {
5190      if (mi->isVirtual()) {
5191        SourceLocation MLoc = mi->getSourceRange().getBegin();
5192        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5193        return;
5194      }
5195    }
5196  }
5197
5198  bool (CXXRecordDecl::*hasTrivial)() const;
5199  switch (member) {
5200  case CXXDefaultConstructor:
5201    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5202  case CXXCopyConstructor:
5203    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5204  case CXXCopyAssignment:
5205    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5206  case CXXDestructor:
5207    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5208  default:
5209    assert(0 && "unexpected special member"); return;
5210  }
5211
5212  // Check for nontrivial bases (and recurse).
5213  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5214    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5215    assert(BaseRT && "Don't know how to handle dependent bases");
5216    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5217    if (!(BaseRecTy->*hasTrivial)()) {
5218      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5219      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5220      DiagnoseNontrivial(BaseRT, member);
5221      return;
5222    }
5223  }
5224
5225  // Check for nontrivial members (and recurse).
5226  typedef RecordDecl::field_iterator field_iter;
5227  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5228       ++fi) {
5229    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5230    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5231      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5232
5233      if (!(EltRD->*hasTrivial)()) {
5234        SourceLocation FLoc = (*fi)->getLocation();
5235        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5236        DiagnoseNontrivial(EltRT, member);
5237        return;
5238      }
5239    }
5240  }
5241
5242  assert(0 && "found no explanation for non-trivial member");
5243}
5244
5245/// TranslateIvarVisibility - Translate visibility from a token ID to an
5246///  AST enum value.
5247static ObjCIvarDecl::AccessControl
5248TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5249  switch (ivarVisibility) {
5250  default: assert(0 && "Unknown visitibility kind");
5251  case tok::objc_private: return ObjCIvarDecl::Private;
5252  case tok::objc_public: return ObjCIvarDecl::Public;
5253  case tok::objc_protected: return ObjCIvarDecl::Protected;
5254  case tok::objc_package: return ObjCIvarDecl::Package;
5255  }
5256}
5257
5258/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5259/// in order to create an IvarDecl object for it.
5260Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5261                                SourceLocation DeclStart,
5262                                DeclPtrTy IntfDecl,
5263                                Declarator &D, ExprTy *BitfieldWidth,
5264                                tok::ObjCKeywordKind Visibility) {
5265
5266  IdentifierInfo *II = D.getIdentifier();
5267  Expr *BitWidth = (Expr*)BitfieldWidth;
5268  SourceLocation Loc = DeclStart;
5269  if (II) Loc = D.getIdentifierLoc();
5270
5271  // FIXME: Unnamed fields can be handled in various different ways, for
5272  // example, unnamed unions inject all members into the struct namespace!
5273
5274  DeclaratorInfo *DInfo = 0;
5275  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5276
5277  if (BitWidth) {
5278    // 6.7.2.1p3, 6.7.2.1p4
5279    if (VerifyBitField(Loc, II, T, BitWidth)) {
5280      D.setInvalidType();
5281      DeleteExpr(BitWidth);
5282      BitWidth = 0;
5283    }
5284  } else {
5285    // Not a bitfield.
5286
5287    // validate II.
5288
5289  }
5290
5291  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5292  // than a variably modified type.
5293  if (T->isVariablyModifiedType()) {
5294    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5295    D.setInvalidType();
5296  }
5297
5298  // Get the visibility (access control) for this ivar.
5299  ObjCIvarDecl::AccessControl ac =
5300    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5301                                        : ObjCIvarDecl::None;
5302  // Must set ivar's DeclContext to its enclosing interface.
5303  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5304  DeclContext *EnclosingContext;
5305  if (ObjCImplementationDecl *IMPDecl =
5306      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5307    // Case of ivar declared in an implementation. Context is that of its class.
5308    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5309    assert(IDecl && "No class- ActOnIvar");
5310    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5311  } else
5312    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5313  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5314
5315  // Construct the decl.
5316  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5317                                             EnclosingContext, Loc, II, T,
5318                                             DInfo, ac, (Expr *)BitfieldWidth);
5319
5320  if (II) {
5321    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5322                                           ForRedeclaration);
5323    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5324        && !isa<TagDecl>(PrevDecl)) {
5325      Diag(Loc, diag::err_duplicate_member) << II;
5326      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5327      NewID->setInvalidDecl();
5328    }
5329  }
5330
5331  // Process attributes attached to the ivar.
5332  ProcessDeclAttributes(S, NewID, D);
5333
5334  if (D.isInvalidType())
5335    NewID->setInvalidDecl();
5336
5337  if (II) {
5338    // FIXME: When interfaces are DeclContexts, we'll need to add
5339    // these to the interface.
5340    S->AddDecl(DeclPtrTy::make(NewID));
5341    IdResolver.AddDecl(NewID);
5342  }
5343
5344  return DeclPtrTy::make(NewID);
5345}
5346
5347void Sema::ActOnFields(Scope* S,
5348                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5349                       DeclPtrTy *Fields, unsigned NumFields,
5350                       SourceLocation LBrac, SourceLocation RBrac,
5351                       AttributeList *Attr) {
5352  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5353  assert(EnclosingDecl && "missing record or interface decl");
5354
5355  // If the decl this is being inserted into is invalid, then it may be a
5356  // redeclaration or some other bogus case.  Don't try to add fields to it.
5357  if (EnclosingDecl->isInvalidDecl()) {
5358    // FIXME: Deallocate fields?
5359    return;
5360  }
5361
5362
5363  // Verify that all the fields are okay.
5364  unsigned NumNamedMembers = 0;
5365  llvm::SmallVector<FieldDecl*, 32> RecFields;
5366
5367  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5368  for (unsigned i = 0; i != NumFields; ++i) {
5369    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5370
5371    // Get the type for the field.
5372    Type *FDTy = FD->getType().getTypePtr();
5373
5374    if (!FD->isAnonymousStructOrUnion()) {
5375      // Remember all fields written by the user.
5376      RecFields.push_back(FD);
5377    }
5378
5379    // If the field is already invalid for some reason, don't emit more
5380    // diagnostics about it.
5381    if (FD->isInvalidDecl())
5382      continue;
5383
5384    // C99 6.7.2.1p2:
5385    //   A structure or union shall not contain a member with
5386    //   incomplete or function type (hence, a structure shall not
5387    //   contain an instance of itself, but may contain a pointer to
5388    //   an instance of itself), except that the last member of a
5389    //   structure with more than one named member may have incomplete
5390    //   array type; such a structure (and any union containing,
5391    //   possibly recursively, a member that is such a structure)
5392    //   shall not be a member of a structure or an element of an
5393    //   array.
5394    if (FDTy->isFunctionType()) {
5395      // Field declared as a function.
5396      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5397        << FD->getDeclName();
5398      FD->setInvalidDecl();
5399      EnclosingDecl->setInvalidDecl();
5400      continue;
5401    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5402               Record && Record->isStruct()) {
5403      // Flexible array member.
5404      if (NumNamedMembers < 1) {
5405        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5406          << FD->getDeclName();
5407        FD->setInvalidDecl();
5408        EnclosingDecl->setInvalidDecl();
5409        continue;
5410      }
5411      // Okay, we have a legal flexible array member at the end of the struct.
5412      if (Record)
5413        Record->setHasFlexibleArrayMember(true);
5414    } else if (!FDTy->isDependentType() &&
5415               RequireCompleteType(FD->getLocation(), FD->getType(),
5416                                   diag::err_field_incomplete)) {
5417      // Incomplete type
5418      FD->setInvalidDecl();
5419      EnclosingDecl->setInvalidDecl();
5420      continue;
5421    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5422      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5423        // If this is a member of a union, then entire union becomes "flexible".
5424        if (Record && Record->isUnion()) {
5425          Record->setHasFlexibleArrayMember(true);
5426        } else {
5427          // If this is a struct/class and this is not the last element, reject
5428          // it.  Note that GCC supports variable sized arrays in the middle of
5429          // structures.
5430          if (i != NumFields-1)
5431            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5432              << FD->getDeclName() << FD->getType();
5433          else {
5434            // We support flexible arrays at the end of structs in
5435            // other structs as an extension.
5436            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5437              << FD->getDeclName();
5438            if (Record)
5439              Record->setHasFlexibleArrayMember(true);
5440          }
5441        }
5442      }
5443      if (Record && FDTTy->getDecl()->hasObjectMember())
5444        Record->setHasObjectMember(true);
5445    } else if (FDTy->isObjCInterfaceType()) {
5446      /// A field cannot be an Objective-c object
5447      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5448      FD->setInvalidDecl();
5449      EnclosingDecl->setInvalidDecl();
5450      continue;
5451    } else if (getLangOptions().ObjC1 &&
5452               getLangOptions().getGCMode() != LangOptions::NonGC &&
5453               Record &&
5454               (FD->getType()->isObjCObjectPointerType() ||
5455                FD->getType().isObjCGCStrong()))
5456      Record->setHasObjectMember(true);
5457    // Keep track of the number of named members.
5458    if (FD->getIdentifier())
5459      ++NumNamedMembers;
5460  }
5461
5462  // Okay, we successfully defined 'Record'.
5463  if (Record) {
5464    Record->completeDefinition(Context);
5465  } else {
5466    ObjCIvarDecl **ClsFields =
5467      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5468    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5469      ID->setIVarList(ClsFields, RecFields.size(), Context);
5470      ID->setLocEnd(RBrac);
5471      // Add ivar's to class's DeclContext.
5472      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5473        ClsFields[i]->setLexicalDeclContext(ID);
5474        ID->addDecl(ClsFields[i]);
5475      }
5476      // Must enforce the rule that ivars in the base classes may not be
5477      // duplicates.
5478      if (ID->getSuperClass()) {
5479        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5480             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5481          ObjCIvarDecl* Ivar = (*IVI);
5482
5483          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5484            ObjCIvarDecl* prevIvar =
5485              ID->getSuperClass()->lookupInstanceVariable(II);
5486            if (prevIvar) {
5487              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5488              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5489            }
5490          }
5491        }
5492      }
5493    } else if (ObjCImplementationDecl *IMPDecl =
5494                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5495      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5496      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5497        // Ivar declared in @implementation never belongs to the implementation.
5498        // Only it is in implementation's lexical context.
5499        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5500      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5501    }
5502  }
5503
5504  if (Attr)
5505    ProcessDeclAttributeList(S, Record, Attr);
5506}
5507
5508EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5509                                          EnumConstantDecl *LastEnumConst,
5510                                          SourceLocation IdLoc,
5511                                          IdentifierInfo *Id,
5512                                          ExprArg val) {
5513  Expr *Val = (Expr *)val.get();
5514
5515  llvm::APSInt EnumVal(32);
5516  QualType EltTy;
5517  if (Val) {
5518    if (Val->isTypeDependent())
5519      EltTy = Context.DependentTy;
5520    else {
5521      // Make sure to promote the operand type to int.
5522      UsualUnaryConversions(Val);
5523      if (Val != val.get()) {
5524        val.release();
5525        val = Val;
5526      }
5527
5528      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5529      SourceLocation ExpLoc;
5530      if (!Val->isValueDependent() &&
5531          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5532        Val = 0;
5533      } else {
5534        EltTy = Val->getType();
5535      }
5536    }
5537  }
5538
5539  if (!Val) {
5540    if (LastEnumConst) {
5541      // Assign the last value + 1.
5542      EnumVal = LastEnumConst->getInitVal();
5543      ++EnumVal;
5544
5545      // Check for overflow on increment.
5546      if (EnumVal < LastEnumConst->getInitVal())
5547        Diag(IdLoc, diag::warn_enum_value_overflow);
5548
5549      EltTy = LastEnumConst->getType();
5550    } else {
5551      // First value, set to zero.
5552      EltTy = Context.IntTy;
5553      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5554    }
5555  }
5556
5557  assert(!EltTy.isNull() && "Enum constant with NULL type");
5558
5559  val.release();
5560  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5561                                  Val, EnumVal);
5562}
5563
5564
5565Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5566                                        DeclPtrTy lastEnumConst,
5567                                        SourceLocation IdLoc,
5568                                        IdentifierInfo *Id,
5569                                        SourceLocation EqualLoc, ExprTy *val) {
5570  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5571  EnumConstantDecl *LastEnumConst =
5572    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5573  Expr *Val = static_cast<Expr*>(val);
5574
5575  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5576  // we find one that is.
5577  S = getNonFieldDeclScope(S);
5578
5579  // Verify that there isn't already something declared with this name in this
5580  // scope.
5581  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5582  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5583    // Maybe we will complain about the shadowed template parameter.
5584    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5585    // Just pretend that we didn't see the previous declaration.
5586    PrevDecl = 0;
5587  }
5588
5589  if (PrevDecl) {
5590    // When in C++, we may get a TagDecl with the same name; in this case the
5591    // enum constant will 'hide' the tag.
5592    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5593           "Received TagDecl when not in C++!");
5594    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5595      if (isa<EnumConstantDecl>(PrevDecl))
5596        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5597      else
5598        Diag(IdLoc, diag::err_redefinition) << Id;
5599      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5600      if (Val) Val->Destroy(Context);
5601      return DeclPtrTy();
5602    }
5603  }
5604
5605  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5606                                            IdLoc, Id, Owned(Val));
5607
5608  // Register this decl in the current scope stack.
5609  if (New)
5610    PushOnScopeChains(New, S);
5611
5612  return DeclPtrTy::make(New);
5613}
5614
5615void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5616                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5617                         DeclPtrTy *Elements, unsigned NumElements,
5618                         Scope *S, AttributeList *Attr) {
5619  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5620  QualType EnumType = Context.getTypeDeclType(Enum);
5621
5622  if (Attr)
5623    ProcessDeclAttributeList(S, Enum, Attr);
5624
5625  // TODO: If the result value doesn't fit in an int, it must be a long or long
5626  // long value.  ISO C does not support this, but GCC does as an extension,
5627  // emit a warning.
5628  unsigned IntWidth = Context.Target.getIntWidth();
5629  unsigned CharWidth = Context.Target.getCharWidth();
5630  unsigned ShortWidth = Context.Target.getShortWidth();
5631
5632  // Verify that all the values are okay, compute the size of the values, and
5633  // reverse the list.
5634  unsigned NumNegativeBits = 0;
5635  unsigned NumPositiveBits = 0;
5636
5637  // Keep track of whether all elements have type int.
5638  bool AllElementsInt = true;
5639
5640  for (unsigned i = 0; i != NumElements; ++i) {
5641    EnumConstantDecl *ECD =
5642      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5643    if (!ECD) continue;  // Already issued a diagnostic.
5644
5645    // If the enum value doesn't fit in an int, emit an extension warning.
5646    const llvm::APSInt &InitVal = ECD->getInitVal();
5647    assert(InitVal.getBitWidth() >= IntWidth &&
5648           "Should have promoted value to int");
5649    if (InitVal.getBitWidth() > IntWidth) {
5650      llvm::APSInt V(InitVal);
5651      V.trunc(IntWidth);
5652      V.extend(InitVal.getBitWidth());
5653      if (V != InitVal)
5654        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5655          << InitVal.toString(10);
5656    }
5657
5658    // Keep track of the size of positive and negative values.
5659    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5660      NumPositiveBits = std::max(NumPositiveBits,
5661                                 (unsigned)InitVal.getActiveBits());
5662    else
5663      NumNegativeBits = std::max(NumNegativeBits,
5664                                 (unsigned)InitVal.getMinSignedBits());
5665
5666    // Keep track of whether every enum element has type int (very commmon).
5667    if (AllElementsInt)
5668      AllElementsInt = ECD->getType() == Context.IntTy;
5669  }
5670
5671  // Figure out the type that should be used for this enum.
5672  // FIXME: Support -fshort-enums.
5673  QualType BestType;
5674  unsigned BestWidth;
5675
5676  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5677
5678  if (NumNegativeBits) {
5679    // If there is a negative value, figure out the smallest integer type (of
5680    // int/long/longlong) that fits.
5681    // If it's packed, check also if it fits a char or a short.
5682    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5683        BestType = Context.SignedCharTy;
5684        BestWidth = CharWidth;
5685    } else if (Packed && NumNegativeBits <= ShortWidth &&
5686               NumPositiveBits < ShortWidth) {
5687        BestType = Context.ShortTy;
5688        BestWidth = ShortWidth;
5689    }
5690    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5691      BestType = Context.IntTy;
5692      BestWidth = IntWidth;
5693    } else {
5694      BestWidth = Context.Target.getLongWidth();
5695
5696      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5697        BestType = Context.LongTy;
5698      else {
5699        BestWidth = Context.Target.getLongLongWidth();
5700
5701        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5702          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5703        BestType = Context.LongLongTy;
5704      }
5705    }
5706  } else {
5707    // If there is no negative value, figure out which of uint, ulong, ulonglong
5708    // fits.
5709    // If it's packed, check also if it fits a char or a short.
5710    if (Packed && NumPositiveBits <= CharWidth) {
5711        BestType = Context.UnsignedCharTy;
5712        BestWidth = CharWidth;
5713    } else if (Packed && NumPositiveBits <= ShortWidth) {
5714        BestType = Context.UnsignedShortTy;
5715        BestWidth = ShortWidth;
5716    }
5717    else if (NumPositiveBits <= IntWidth) {
5718      BestType = Context.UnsignedIntTy;
5719      BestWidth = IntWidth;
5720    } else if (NumPositiveBits <=
5721               (BestWidth = Context.Target.getLongWidth())) {
5722      BestType = Context.UnsignedLongTy;
5723    } else {
5724      BestWidth = Context.Target.getLongLongWidth();
5725      assert(NumPositiveBits <= BestWidth &&
5726             "How could an initializer get larger than ULL?");
5727      BestType = Context.UnsignedLongLongTy;
5728    }
5729  }
5730
5731  // Loop over all of the enumerator constants, changing their types to match
5732  // the type of the enum if needed.
5733  for (unsigned i = 0; i != NumElements; ++i) {
5734    EnumConstantDecl *ECD =
5735      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5736    if (!ECD) continue;  // Already issued a diagnostic.
5737
5738    // Standard C says the enumerators have int type, but we allow, as an
5739    // extension, the enumerators to be larger than int size.  If each
5740    // enumerator value fits in an int, type it as an int, otherwise type it the
5741    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5742    // that X has type 'int', not 'unsigned'.
5743    if (ECD->getType() == Context.IntTy) {
5744      // Make sure the init value is signed.
5745      llvm::APSInt IV = ECD->getInitVal();
5746      IV.setIsSigned(true);
5747      ECD->setInitVal(IV);
5748
5749      if (getLangOptions().CPlusPlus)
5750        // C++ [dcl.enum]p4: Following the closing brace of an
5751        // enum-specifier, each enumerator has the type of its
5752        // enumeration.
5753        ECD->setType(EnumType);
5754      continue;  // Already int type.
5755    }
5756
5757    // Determine whether the value fits into an int.
5758    llvm::APSInt InitVal = ECD->getInitVal();
5759    bool FitsInInt;
5760    if (InitVal.isUnsigned() || !InitVal.isNegative())
5761      FitsInInt = InitVal.getActiveBits() < IntWidth;
5762    else
5763      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5764
5765    // If it fits into an integer type, force it.  Otherwise force it to match
5766    // the enum decl type.
5767    QualType NewTy;
5768    unsigned NewWidth;
5769    bool NewSign;
5770    if (FitsInInt) {
5771      NewTy = Context.IntTy;
5772      NewWidth = IntWidth;
5773      NewSign = true;
5774    } else if (ECD->getType() == BestType) {
5775      // Already the right type!
5776      if (getLangOptions().CPlusPlus)
5777        // C++ [dcl.enum]p4: Following the closing brace of an
5778        // enum-specifier, each enumerator has the type of its
5779        // enumeration.
5780        ECD->setType(EnumType);
5781      continue;
5782    } else {
5783      NewTy = BestType;
5784      NewWidth = BestWidth;
5785      NewSign = BestType->isSignedIntegerType();
5786    }
5787
5788    // Adjust the APSInt value.
5789    InitVal.extOrTrunc(NewWidth);
5790    InitVal.setIsSigned(NewSign);
5791    ECD->setInitVal(InitVal);
5792
5793    // Adjust the Expr initializer and type.
5794    if (ECD->getInitExpr())
5795      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5796                                                      CastExpr::CK_IntegralCast,
5797                                                      ECD->getInitExpr(),
5798                                                      /*isLvalue=*/false));
5799    if (getLangOptions().CPlusPlus)
5800      // C++ [dcl.enum]p4: Following the closing brace of an
5801      // enum-specifier, each enumerator has the type of its
5802      // enumeration.
5803      ECD->setType(EnumType);
5804    else
5805      ECD->setType(NewTy);
5806  }
5807
5808  Enum->completeDefinition(Context, BestType);
5809}
5810
5811Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5812                                            ExprArg expr) {
5813  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5814
5815  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5816                                                   Loc, AsmString);
5817  CurContext->addDecl(New);
5818  return DeclPtrTy::make(New);
5819}
5820
5821void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5822                             SourceLocation PragmaLoc,
5823                             SourceLocation NameLoc) {
5824  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5825
5826  if (PrevDecl) {
5827    PrevDecl->addAttr(::new (Context) WeakAttr());
5828  } else {
5829    (void)WeakUndeclaredIdentifiers.insert(
5830      std::pair<IdentifierInfo*,WeakInfo>
5831        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5832  }
5833}
5834
5835void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5836                                IdentifierInfo* AliasName,
5837                                SourceLocation PragmaLoc,
5838                                SourceLocation NameLoc,
5839                                SourceLocation AliasNameLoc) {
5840  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5841  WeakInfo W = WeakInfo(Name, NameLoc);
5842
5843  if (PrevDecl) {
5844    if (!PrevDecl->hasAttr<AliasAttr>())
5845      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5846        DeclApplyPragmaWeak(TUScope, ND, W);
5847  } else {
5848    (void)WeakUndeclaredIdentifiers.insert(
5849      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5850  }
5851}
5852